SYNTHESIS OF THE RADIOPHARMACEUTICALS FOR POSITRON EMISSION TOMOGRAPHY

Veronika Biricová, Jozef Kuruc

Department of the nuclear chemistry, Faculty of natural sciences, Comenius University Mlynská dolina CH-1, 842 15 Bratislava <u>kuruc@fns.uniba.sk</u>

Abstract

In this paper is shown a short overview of the biogenic positron radiopharmaceuticals production and a brief summary of some PET preparation synthesis. At the end the overview of some forward-looking positron radionuclides, which can be used for a preparation of the PET radiopharmaceuticals is said. A short review of diagnostic use of PET radiopharmaceuticals is presented.

Descriptors: Positron computed tomography; radioactive scanning; beta-plus decay; carbon 11; nitrogen 13; oxygen 15; fluoride 18; radiopharmaceuticals; chemical preparation; nuclear chemistry; nuclear reactions; nuclear medicine; bibliographies

INTRODUCTION

Protection of the health and human life belongs to the basic human rights. At the present time when those attributes are often endangered by the conveniences of a modern technical society is required to integrate the science with a prevention process and a prompt muckrake of the most important civilization diseases. Nuclear chemistry has become a one of the scientific disciplines efficient to give a hand to the doctors by solving the global health problems. In this paper we are presenting some methods of the radiopharmaceutical synthesis used in nuclear medicine during a diagnostic method - the positron emission tomography (PET).

In this overview we are showing the synthesis of the radiopharmaceuticals labelled with the short life radionuclides such a carbon-11, nitrogen-13, oxygen-15 and fluor-18. Use of these biogenic elements in positron emission tomography cause much lower radiological strain on the patient organism during the medical examination or therapy then the medical treatment methods traditionally used in oncology, cardiography and neurology, or for the other diagnostic or research purpose.

In termination we are presenting a short description of some other radionuclides – positron emitters efficient for the PET radiopharmaceuticals synthesis and their use in the positron emission tomography.

1 PET radiopharmaceuticals and their use in nuclear medicine

1.1 A characterization of the PET radiopharmaceuticals

PET radiopharmaceuticals are formed by reactions of the organic compounds with radionuclides or positron emission isotopes. They are also called the labelled compounds. So-called "tracers", required for the production of the radiopharmaceuticals, are usually produced by an accelerator of the elements, a cyclotron, possibly by a nuclear reactor. ¹¹C, ¹³N, ¹⁵O and ¹⁸F are the most used in positron emission tomography (next only PET) – scanning technology based on a detection of the gamma radiation, appeared because of the annihilation of the positrons emitted by the radioisotopes, made by PET scanners [1, 31].

An advantage of the positron emission radionuclides is their short half-life time. For that reason, a patient gets much smaller radiation dose then during the other similar medical examinations.

In the Table 1 biogenic radionuclides mostly used for a synthesis of the PET radiopharmaceuticals and their characteristics are presented.

Nuclide	Decay Mode (%)	Half- Life <i>t</i> 1/2	Max. energy, MeV	Nuclear reaction	Extent of energy, MeV	Max. specific activity, Ci∙mmol ⁻¹	Refs.
¹¹ C	β^+ (99.8), E.C. (0.2)	20.3 min	0.96	$^{14}N(p,lpha)^{11}C$ $^{11}B(p,n)^{11}C^{*}$ $^{10}B(d,n)^{11}C^{*}$	$5,0 \div 22,0 \\ 6,48 \div 20,5 \\ 0.479 \div 5.02$	9.22·10 ⁹	[49] [50] [51]
¹³ N	β ⁺ (100)	9.97 min	1.19	$^{12}C(d,n)^{13}N$ $^{16}O(p,\alpha)^{13}N$	$0.523 \div 5.6$ $15.6 \div 27.8$	1.89·10 ⁹	[51] [52]
¹⁵ O	β^+ (99.9), E.C. (0.1)	122 s		$^{14}N(d,n)^{15}O$ $^{15}N(p,n)^{15}O$ $^{16}O(p,d)^{15}O$	0.893 ÷ 5.27 15.9 ÷ 28.1 18.5 ÷ 18.5		[53] [54] [55]
¹⁸ F	β ⁺ (97), E.C. (3)	109.8 min	0.635	$^{20}Ne(d, lpha)^{18}F$ $^{18}O(p, n)^{18}F$ $^{16}O(^{3}He, p)^{18}F$	$24.7 \div 76.0 \\ 2.52 \div 3.87 \\ 2.40 \div 9.70$	1.7·10 ⁹	[56] [57] [58]

Table. 1. Biogenic radionuclides mostly used for a synthesis of the PET radiopharmaceuticals.

1.1 Positron decay of the radionuclides

Positron (β^+) decay occurs in the radionuclides with the lack of the neutrons. By the radioactive decay the positron (β^+) is emitted simultaneously with electron neutrino v_e . The basis of the β^+ decay is a conversion of a proton on a neutron.

$$p \to n + \beta^+ + \upsilon \,. \tag{1}$$

Positron decays these radionuclides can be described by equations:

$${}^{11}_{6}C_5 \rightarrow {}^{11}_{5}B_6 + \beta^+ + \upsilon \tag{2}$$

$${}^{13}_{7}N_6 \rightarrow {}^{13}_{6}C_7 + \beta^+ + \upsilon$$
 (3)

$${}^{15}_{8}O_{7} \rightarrow {}^{15}_{7}N_{8} + \beta^{+} + \upsilon$$
(4)

$${}^{18}_{9}F_{9} \rightarrow {}^{18}_{8}O_{10} + \beta^{+} + \nu \tag{5}$$

1.2 A preparation of the radionuclides

The experiments showed that the appropriate amounts of the four positron emitters frequently used in PET can be obtained by flow of the protons with energy 10 MeV and deuterons with energy % MeV [3].

The targets for the preparation of the radiopharmaceuticals can be gases, liquids and solid materials. The preparation of needed radionuclides precedes the radiopharmaceuticals synthesis. For the preparation of the artificial radionuclides in required amount for a study of chemical and biological processes is necessary to have a high intensity of the bombarding particles flow with the adequate energy.

The cyclotron produce from 10^{14} to 10^{15} accelerated particles per second. It can be protons, deuterons, hellions and heavy nucleuses. The targets mentioned previously are irradiating with a bunch of the accelerated particles.

These reactions are employed for it:

$${}^{14}_{7} \mathrm{N} + {}^{1}_{1} \mathrm{H} \rightarrow {}^{11}_{6} \mathrm{C} + {}^{4}_{2} \mathrm{He} \tag{7}$$

$${}^{16}_{8} \bigcirc +{}^{1}_{1} \mathbb{H} \longrightarrow {}^{13}_{7} \mathbb{N} +{}^{4}_{2} \mathbb{H} e \tag{8}$$

$${}^{14}_{7}\mathrm{N} + {}^{2}_{1}\mathrm{H} \to {}^{15}_{8}\mathrm{O} + {}^{1}_{0}\mathrm{n} \tag{9}$$

$${}^{18}_{8} \bigcirc {}^{+1}_{1} \text{H} \rightarrow {}^{18}_{9} \text{F} {}^{+1}_{0} \text{n}$$
(10)

$${}^{20}_{10}\text{Ne} + {}^{2}_{1}\text{H} \to {}^{18}_{9}\text{F} + {}^{4}_{2}\text{He}$$
(11)

Results of the nuclear reaction are the radionuclides with oversupply of protons, which are spontaneously stabilized by emitting of positron, positron decay.

Carbon-11 is produced by bombarding the natural nitrogen with protons via nuclear reaction ${}^{14}N(p,\alpha){}^{11}C$. Radioactive carbon dioxide (${}^{11}CO_2$) and methane (${}^{11}CH_4$) will be produced from a gas target made by mixing 2% of oxygen in nitrogen and 5% of hydrogen in nitrogen. Carbon oxide (${}^{11}CO$) is made by reduction of ${}^{11}CO_2$ with coal at 900°C.

A possibility of the low-energy deuterons accelerating offers an advantage of the **oxygen-15** production by bombarding the natural gaseous nitrogen by nuclear reaction ¹⁴N(d,n)¹⁵O. The ¹⁵O can be produced as molecular oxygen (¹⁵O₂) or straight as carbon dioxide ($C^{15}O_2$) by mixing a gaseous target with 5% of natural CO₂ such a carrier. Carbon oxide ($C^{15}O$) is also easily made by reduction of $C^{15}O_2$ with coal at 900°C.

Gaseous oxygen labelled with ¹⁵O is used for a study of the oxygen metabolism, carbon oxide for a study of a blood volume and water ($H_2^{15}O$) for a study of a blood circulation in a brain.

Nitrogen-13 is made by bombarding of distillated water with protons via nuclear reaction ${}^{16}O(p,\alpha){}^{13}N$. With relatively low-energy bunch of protons in cyclotron (10 MeV) can be efficient production yield 3.7 GBq (100 mCi) achieved by irradiating for 20 minutes. Using a mixture of water and ethanol is obtained more useful chemical form ammonia (${}^{13}NH_3$). Another form also used is nitrate anion (${}^{13}NO_3$).

Fluoride-18 is prepared by bombarding oxygen-18 enriched water with protons via nuclear reaction ¹⁸O(p,n)¹⁸F. Fluorine-18 is back obtained as an aqueous solution of ions ¹⁸F⁻ and can be easily separated by ion exchange chromatography. Ionizated ¹⁸F can be transferred into the organic solvent and used for the stereospecific nucleofil substitutions. ¹⁸F with specific activity 8000 GBq.µmol⁻¹ can be produced after one hour of the irradiation. Fluor-18 can be also make as a radioactive gas via reaction ²⁰Ne(d, α)¹⁸F. This method is useful for the electrofil substitutions and requires an addition of the gas fluorine-19 to a target as a carrier. Specific activity of a product is lower then 1 GBq·µmol⁻¹ [10].

Gaseous oxygen, radioactive water, carbon dioxide, carbon oxide, labelled ¹⁵O are used for a study of the oxygen metabolism, the blood volume, and ammonia for an examination of the blood flow in a brain [3].

These four radionuclides may be also produced by radiation of the stabile isotopes with an isotope of helium-3 with energy 9 MeV by following reactions:

(12)
(13)
(14)
(15)
(16)

A preparation of ^{18}F :

$${}^{16}O({}^{3}He,p){}^{18}F$$
(17)
$${}^{16}O({}^{3}He,n){}^{18}Ne \xrightarrow{\beta^{+}} {}^{18}F$$
(18)

 $t_{1/2}(^{18}\text{Ne}) = 1.67 \text{ s}$

Nuclear reactions with ³He for production of the beneficial amounts of PET radiopharmaceuticals are not often used, because the sufficient flow of the ³He elements is not accessible [5, 16]. Fluorine-18 decays by emitting positron having maximum energy of 635 keV and mean range of 2.39 mm in water.

2 Synthesis of the radiopharmaceuticals

Radionuclides produced in the cyclotrons are not usually in an appropriate chemical and pharmaceutical form for the use as the biological isotope indicators, therefore, the synthesis of the suitable compounds are realized in radiopharmacological laboratories [2].

In the synthesis of the labelled compounds is one of the most critical periods of PET, important factor is time. The qualities of the radionuclide, which can be produced in a specific period of time, determine the energy of an element and a density of the bunch crossing the target.

2.1 Radiopharmaceuticals labelled with fluorine-18

The most used radiopharmaceutical in PET is 2-[¹⁸F] fluoro-2-deoxy-D-glucose ([¹⁸F]FDG). [¹⁸F]FDG is aptly named as the "Molecule of the Millennium" due to its versatility and enormous importance application in oncology, neurology and cardiology. It is the first PET radiopharmaceutical to be included in United States Pharmacopoeia USP 1989 [59]. Its structure is similar to glucose. [¹⁸F]FDG is prepared from radioactive isotope ¹⁸F. It allows a study of a cellular metabolism of glucose. Representation of the glucose consumption by the cells is a basis of the clinical indications of PET diagnostics with FDG. It gives an advantage for a detection of the change of a cellular function before the structural changes appear [2].

Preparation of the [¹⁸F]FDG and the [¹⁸F]MISO

Scheme 1

Irradiated water [¹⁸O]H₂O is evaporated in presence of a cryptand (aminopolyether potassium carbonate complex - Kryptofix 222), which affect as a catalyst of stereospecific S_{N^2} substitution reaction. Dry evaporated mixture with developed ¹⁸F⁻ is dissolved in waterless acetonitrile and leave at 90°C to react with prepared precursor, an analog of the mannose-1,3,4,6-tetra-O-acetyl-2-triflate- β -D-mannopyranose, so called the triflate of mannose. Formed 1,3,4,6-tetra-O-acetyl-2-[¹⁸F]fluoro-D-glucopyranose hydrolyzes at 110°C with dilute hydrochloric acid (14 minutes) and a product [¹⁸F]FDG is clarified with ion exchange chromatography. The synthesis lasts for 30 minutes and radiochemical yield is 65%. The product has got the molar activity higher then 400 GBq·µmol⁻¹ [4].

By the same procedure is realized the preparation of the **fluoromisonidazole** ([¹⁸F]MISO), however as a precursor is used an analog of misonidazole. Radiochemical yeald is 20% and it's lower then in [¹⁸F]FDG preparation. The activity of a product [¹⁸F]MISO is 3.7 GBq (100 mCi).

Transformation of fluoride ¹⁸F⁻ on the [¹⁸F]CH₃F

Into a dry radioactive fluoride ¹⁸F⁻ made by bombarding water enriched with ¹⁸O is inserted CH₃I. Concentrated CH₃¹⁸F is purified by gas chromatography and the other reactions with it are analogous of alkylations with ¹¹CH₃I. Specific activity of a product is 55 GBq·µmol⁻¹. An advantage is a longer half-life time of ¹⁸F then ¹¹C.

Preparation of the fluorobromomethane

The [¹⁸F]fluorobromomethane is prepared [10] from dibromomethane with cryptand 222 and fluorine-18 anion in acetonitrile:

$$CH_{2}Br_{2}Br_{2}\xrightarrow{18}CH_{3}CN \xrightarrow{18}FCH_{2}Br$$

Scheme 2

where cryptand 222 is 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane:

Into a pure ¹⁸F⁻ is inserted CH₂Br and a prepared product ¹⁸FBrCH₂ is purified on gas chromatographic column. Its specific activity is 1000 GBq·µmol⁻¹. It is applied in a reaction with [¹⁸F]fluoromethyl-McN5652 and for the preparation of [¹⁸F]fluorocholine according to the named reactions [10].

$$CH_2^{18}FBr + HO(CH_2)_2N(CH_3)_2$$

$$\downarrow$$

$$[HO(CH_2)_2N + (CH_3)_2CH_2^{-18}F]Br^-$$

Scheme 3

Scheme 4

Preparation of [¹⁸F]fluoroiodomethane

[¹⁸F]Fluorine is dried with acetonitrile and cryptand 222. Then it reacts with diiodomethane and a product is separated by distillation [10]. The yield is 40%. A process of the preparation shows the following scheme:

$$CH_2I_2 \xrightarrow{{}^{18}F^{-}/Cryptand 222} CH_2I_2 \xrightarrow{}^{18}CH_2^{-18}FI$$

Scheme 5

Using $[^{18}F]FCH_2I$ the yields of the fluoromethylations are nearly three times higher then in preparation using fluoride $[^{18}F]F$ (See Appendix 2, Table 2).

Preparation of [¹⁸F]fluorobromoethane

 $[^{18}F]$ Fluoromethane dried with acetonitrile and cryptand 222 (2.2.2.K) reacts with 2-brom methyltriflate in THF or dibrommethane in acetonitrile. A product of the first preparation is separated by distillation. A yield of a product made second way is 60-70%. The result product is used in synthesis of the $[2'-^{18}F]$ fluoroethyl(1R-2-exo-3-exo)-8-methyl-3-(4-methylphenyl)-8-azabicyclo[3.2.1]octane-2-carboxylate ($[^{18}F]$ FETT) [32].

Scheme 6 Successful and unsuccessful synthesis of $[^{18}F]FETT$.

Synthesis of [F-18]fluororaclopride

 $[^{18}$ F]Fluoroethyltriflate (18 F7) is applied in synthesis of $[^{18}$ F]fluororaclopride (18 F6). $[^{18}$ F]Fluoroethyltriflate is prepared [60] by $[^{18}$ F]fluoride displacement on the bistriflate of ethylene glycol:

Scheme 8 Synthesis of S-3,5-dichloro-6-methoxy-N-(1-(2-[¹⁸F]fluoroethyl)-2pyrrolidinylmethyl)salicylamide ([¹⁸F]fluororaclopride)

Preparation of the [F-18]fluoroethylamine

[¹⁸F]Fluoromethane dried with acetonitrile and cryptand 222 reacts with N-[2-(p-toluene sulfonyl-oxy)ethyl]-phtalene. A product hydrolyses with hydrazine and it's separated by distillation. A yield of the reaction is $(27 \pm 11)\%$.

Scheme 9 Synthesis of [¹⁸F]FNECA: In a preparation is used the [¹⁸F]fluoroethylamine [10].

Preparation of the [¹⁸F]**fluoroethyl tosylate**

[¹⁸F]Fluoromethane dried with acetonitrile and cryptand reacts with ethyleneglycol-1,2ditosylate in acetonitrile. A product is purified on HPLC and a yield of the reaction is 50% [10].

Preparation of the [¹⁸F]fluoroacetone

[¹⁸F]Fluoromethane dried with acetonitrile and cryptand reacts with acetonetosylate in acetonitrile. A product is separated by distillation and a yield of the reaction is 60-95% [10].

Preparation of the [¹⁸F]fluoroprophylbromide

 $[^{18}F]$ Fluoromethane dried with acetonitrile/n-Bu₄NOH reacts with 3-bromopropyltriphtalate in acetonitrile. A yield of the reaction is more then 90%. (Scheme 10) Obtained $[^{18}F]$ fluoroprophylbromide might use in another synthesis, such an example on Scheme 11 [10].

Scheme 11

Synhesis of neuroleptic agent spiperone (8-[3-[¹⁸F]fluoro{*p*-fluorobenzoyl}propyl]-l-phenyll,3,8-triazaspiro-[4.5]decan-4-one). [10]

Preparation of the [¹⁸F]fluoropropranolol [10]

Synthesis using [2-¹⁸F]ethylamine (¹⁸FCH₂CH₂NH₂) [10]

Synthesis of the [4-¹⁸F]fluorobenzylhalogenid

 $[4-^{18}F]$ fluorobenzaldehyd is synthesized from $[^{18}F]F^-$ by aromatic nucleofil substitution on 4trimethylamidebenzaldehydtriflate and effectively reduced on $[4-^{18}F]$ fluorobenzylalcohol with NaBH₄. Transformation of the 4- $[^{18}F]$ fluorobenzylalcohol on the $[4-^{18}F]$ fluorobenzylhalogenid is done with using HI, SOCl₂, HBr, SOBr₂, PBr3, PI₃, P₂I₄, Ph₃PBr₂ a Ph₃PI₂ in dichloroethane. [10, 12] A procedure of the synthesis shows Scheme 14.

Synthesis of the [¹⁸F]FNE

 $[6^{-18}F]$ fluoronorepinephrine (next only $[6^{-18}F]FNE$), cetacholamine labelled with fluorine-18, is synthesized via nucleofil aromatic substitution. The pure samples of the (-)- $[6^{-18}F]FNE$ and the (+)- $[6^{-18}F]FNE$ are obtained by purifying the racemic mixture on HPLC column. A radiochemical yield at the end of bombarding is 20% with a specific activity 72÷185 GBq·mol⁻¹ (2÷5 Ci·mol⁻¹). [11]

PET studies with [6-¹⁸F]FNE show the high absorption in a baboon heart. A useful precursor for the radiosynthesis of the other complexes is dihydroxynitrobenzaldehyd. [11]

Scheme 15 Structure of R-(-)- and S-(+)- [6-¹⁸F]fluoronorepinephrine

Synthesis of the 2'-deoxy-[2'-¹⁸F]fluoro-5-methyl-1-alfa-D-arabinofuranosyluracil (next only [¹⁸F]FMAU)

2-deoxy- $[2^{-18}F]$ fluoro-1,3-5-tri-O-benzyol-alpha-D-arabinofuranose is made by a reaction of the applicable triflate with tetrabutylammonium[¹⁸F]fluoride. The fluorosaccharide is transformed on 1-bromo-derivate and reacts with thymine. The production mixture is hydrolyzed at basic conditions and purified by HPLC for obtaining the radiolabelled FMAU. A radiochemical yield is 20-30% with a purity higher then 99% and specific activity 85.1 GBq·mol⁻¹ (2300 mCi·mol⁻¹). The synthesis period is 3.5÷4 hours [13].

Synthesis of the 9-([3-¹⁸F]fluoro-1-hydroxy-2-propoxy)menthylguanine (next only [¹⁸F]FHPG)

9-[1,3-dihydroxy-2-propoxy(methyl)]guanine is prepared by tosylation with methoxytritylchloride. Tosylate reacts with [¹⁸F]KF in a presence of kryptand on 3-fluoro-N-2-Obis(methoxytrityl)acrivate. Remotion of the saved tosyl-trityl groups is done by hydrolysis. Obtained product [¹⁸F]FHPG is purified via HPLC and its specific activity is 19.46 GBq·mol⁻¹ (526 mCi·mol⁻¹) [14].

Synthesis of the 9-[4-¹⁸F]-fluoro-3-hydroxymethylbuty)guanine (next only [¹⁸F]FHBG)

9-(4-hydroxy-3-hydroxymethylbutyl) guanine is changed by tosylation on the 9-[N-2,0-bis(methoxy-trityl)-3-(tosylmethylbutyl)]guanine using methoxytritylchloride. The tosylate reacts with tetrabutylammoniumfluoride or KF in a presence of a cryptand on 4-fluoro-N-2-O-bis-(methoxytrityl) derivate. Remotion of the methoxytrityl groups by hydrolysis is obtained the product FHBG. Radiolabelled product [¹⁸F]FHBG is prepared by fluoridation of the tosylate with [¹⁸F]cryptand. The product is purified using HPLC [15].

Synthesis of the $[16-\alpha-^{18}F]$ fluoroestradiol-3,17- β -disulphamate (next only $[^{18}F]$ FESDS)

 $[16-\alpha-{}^{18}F]$ fluorestradiol ($[{}^{18}F]FES$) is converted on a product $[{}^{18}F]FESDS$, with specific activity (150÷200 GBq·mol⁻¹), using the abundance of the suphamoylchloride in acetonitrile in a presence of the cryptand [17].

Synthesis of the [2-¹⁸F]fluoroestradiol

 $[2^{-18}F]$ fluoroestradiol has got a high affinity for an estrogen receptor and it also binds with sex hormone which binds the globuline. $[^{18}F]F^-$ is used as a precursor in a synthesis. Trimethylammonia group in a C-2 position of estrogen is exchanged for the $[^{18}F]F^-$. A yield of the reaction is $20 \div 50\%$ [19].

Synthesis of the O-[2-¹⁸F]fluoroethyl)-L-tyrozine (next only [¹⁸F]FET)

 $[2-^{18}F]$ fluoroethylbromide (next only $[^{18}F]F$ -EtBr) is prepared by nucleofil substitution of the $[^{18}F]F$ with 2-bromethyltriflate in acetonitrile at 95°C. $[^{18}F]FEtBr$ is distillated at 85°C in gaseous nitrogen and it is caught in DMSO or DMF, and so added to a suspension of a disodium salt of the L-Tyrosine in DMSO. The radiochemical purity of a product is controlled by HPLC, a synthesis lasts for 80 minutes and its yield is 14÷26% [20].

Synthesis of the [¹⁸F]fluorocholine

Choline analog of (beta-hydroxyethyl)dimethyl[¹⁸F]fluoromethyl-ammonium ([¹⁸F]fluorocholine) labelled with fluorine-18 is prepared by [¹⁸F]fluoromethylation of the N,N-dimethylaminoethanol. For the mentioned reaction the [¹⁸F]fluoromethyltriflate ([¹⁸F]CH₂FOTf) and the [¹⁸F]fluoromethylbromide ([¹⁸F]CH₂BrF) are needed. The [¹⁸F]CH₂FOTf is prepared from the [¹⁸F]CH₂BrF, synthesized by nucleofil substitution of the CH₂Br₂ with [¹⁸F]F⁻. [¹⁸F]CH₂BrF is quantitatively transformed on the [¹⁸F]CH₂FOTf passing through a warmed column with AgOTf. A yield of the reaction is 47%. Final [¹⁸F]fluorocholine forms in 30 minutes synthesis with a yield 40% [30].

2.2 Radiopharmaceuticals labelled with carbon-11

Theoretically taken whatever organic compound could be labelled with carbon-11 via isotopic substitution. A method ordinarily used for the ¹¹C radiolabeling of the PET radiopharmaceuticals is a methylation using [¹¹C]methyliodide (¹¹CH₃I).

The preparation of the compounds of a benzodiazepine receptor $[^{11}C]SCH23390$ and $[^{11}C]flumanezil$, are realized by the methylation with suitable precursor using $^{11}CH_3I$ [3]. This process shows the following reaction scheme:

Scheme 16

Another radiopharmaceuticals used in the clinical PET procedures are $[^{11}C]$ methyl-derivates and $[^{11}C]$ acetyl-derivates. In their synthesis are used methyliodine, Grignard reagents or acetone as the labeling synthetic precursors [6].

[¹¹C]aldose such the D-[¹¹C]galactose and the D-[¹¹C]glucose with activity 47 MBq can be produced by Kiliani-Fischer method [8].

 $[^{11}C]$ methylation reactions on the functional groups such the phenols and amids require a use of the bases when the $[^{11}C]CH_3I$ is used in a preparation. It is possible to use tetrabuthylammoniumfluoride (next only TBAF) as a base for the preparation of the $[^{11}C]$ radiopharmaceuticals with the high yields.

Preparation of the [¹¹C]PK11195

Desmethyl PK11195 (1.5 mg) is dissolved in DMSO (350 μ l). The mixture is stirred in an ampule (volume - 5 cm³) and TBAF itself (3 mg) is added or as a mixture with KOH (0.5 mg) (150 μ l, 22 mg·cm⁻³ TBAF, 4 mg·cm⁻³ KOH v DMSO). Then Al/KF in acetonitrile is added 2 minutes before the alkylation. The solution is percolated with [¹¹C]CH₃I at the room temperature and consecutively it has to be warming for 5 minutes [9, 61]. Reaction mixture is purified using HPLC with column Waters Prep Nova Pak C-18 (7,8 cm x 30 cm) and elution reagent is a mixture of ethanol/water (60:40). Radiochemical yields are presented in Appendix 1, Table 1.

Scheme 17

Preparation of the [¹¹C]dihydrotetrabenazine

 α -9-O-desmethyldihydrotetrabenazine (200 µg) is dissolved in acetonitrile (350 µl). A mixture in an ampule (volume -5 cm³) is stirred and TBAF (0.4 mg) is added 3 minutes before the alkylation. Al/KF is used for the reaction. For the reaction with NaOH is DMSO added as a solution with NaOH (8 µl) 3 minutes before the alkylation. The mixture is percolated with [¹¹C]CH₃I and has to be warming for 5 minutes [9, 63]. A product is purified on HPLC using Waters Prep Nova Pak column C-18 (7,8 cm x 30 cm) with an elution reagent CH₃CN/0,1 M and 0,1% acetic acid (17:83). Radiochemical yields are in Appendix 1, Table 1.

Scheme 18

Preparation of the [¹¹C]**raclopride**

Desmethyl raclopride (1.7 mg) is dissolved in DMSO. TBAF (2 mg) (250 μ l, 14 mg in 1.5 cm³ DMSO) is added to a solution 20 minutes before alkylation. 3 minutes before alkylation 8 μ l KOH is added. A green color will appear only if KOH is used. A solution is percolated with [¹¹C]CH₃I and the mixture has to be warming for 5 minutes [9, 63]. A product is purified on HPLC using Water Prep Nova Pak C-18 column with an elution reagent CH₃CN/0,1 M,

0.5% acetic acid (32:68). NaOH (5 µl), TBAF (3 mg) a KF/Al (10 mg) is used. Radiochemical yields for the other combinations of the solutions and bases are presented in Appendix 1, Table 1.

Scheme 19

Preparation of the [¹¹C]MDL100907

(R)-(+)- α -(3-hydroxy-2-methoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidine-methanol (200 µg) is dissolved in acetone (400 µl) and stirred in an ampule (volume - 5 cm³). TBAF (0.4 mg) in THF (150 µl, 2,7 mg·cm⁻³) is added 20 minutes before alkylation. The solution is percolated with [¹¹C]CH₃I and a mixture has to be warming for 5 minutes [9]. Then it is purified with HPLC using Water Prep Nova Pak C-18 column with an elution reagent CH₃CN/0,1 M, 0.5% acetic acid (32:68). 5 µl 5 M NaOH is used. The yields are presented in Appendix 1, Table 1.

Preparation of the [¹¹C]methylphenidate

N-(protected)-d-*threo*-ritalinicacid (200 µg) is dissolved in acetonitrile (350 µl) and stirred in an ampule (volume 5 cm³). TBAF (0,4 mg) in acetonitrile is added in the solution 20 minutes before alkylation. In a case of use Al/KF (10 mg) is that added 20 minutes before alkylation, in a case of use NaOH is DMSO in NaOH (0.5 M 8 µl) added. The solution is percolated with [¹¹C]CH₃I and has to be warming for 5 minutes [9, 64]. A mixture is purified with HPLC using Whatman Partisil 10 ODS 3.250 mm x 9.4 mm column with an elution reagent CH₃CN/0.17 M. Radiochemical yields are in Appendix 1, Table 1.

Scheme 21

Tetrabuthylammomiumfluoride is an ideal base for the ¹¹C-metylation reactions of five mentioned compounds, except raclopride, which gives appropriate yields of the radiopharmaceuticals [9].

Synthesis of the [¹¹C]methanol required for a production of the [¹¹C]methyliodide

 $[^{11}C]CH_3OH$ is prepared on the Al₂O₃ column impregnated with LiAlH₄ caught by $[^{11}C]CO_2$ from the irradiated target gas. A product $[^{11}C]CH_3I$ is made by hydrolysis and transformation of the LiAl $[^{11}C]$ methylate complex with a 95% yield [18].

Synthesis of the [¹¹C]edrophonium

 $[^{11}C]$ edrophonium and its analogs are used in scanning of the heart acetylcholine. Its made by N- $[^{11}C]$ methylation with precursor using $[^{11}C]$ methyltriflate and isolated by extraction with radiochemical yield 50÷65% [21].

Synthesis of the (3-N-[¹¹C]methyl)temozolomide and the [4-¹¹C]carbonyl)temozolomide

8-carbomoyl- $[3^{-11}C]$ methylimidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-(temozolomide) is a radiopharmaceutical used in PET studies. Reaction of the 5-diazoimidazole-4-carboxamide with labelled ($[^{11}C]$ methyl)methylisocynate gives $[3-N-(^{11}C)$ -methyl]temozolomide in 14÷20% yield. Similarly $[4-(^{11}C)$ -carbonyl]temozolomide is made by reaction of the 5-diazomidazole-4-carboxamide with ($[^{11}C]$ carbonyl)methylisocynate with 10÷15% yield [22].

Synthesis of the [¹¹C]befloxatone

Befloxatone(1-(5R)-5-(methoxymethyl)-3-[4-[(3R)-4,4,4-3-hydroxybutoxy]phenyl]-2-oxazolidinone), oxazolodine derivate, is labelled with carbon-11 using [¹¹C]phosgene. A product with specific activity 18.5÷74.0 GBq·µmol⁻¹ (500÷2000 mCi·µmol⁻¹), purified with HPLC is made up by a synthesis lasting for 20 minutes, with a purity and yield 99% [23].

Synthesis of the [¹¹C]methyl-D-glucose

[¹¹C]methyl-D-glucose is produced by methylation of the glucose using [¹¹C]methyltriflate and its obtained as a mixture of the anomers, which are separated by liquid chromatography [24].

Synthesis of the [¹¹C]([R]-3-N,N-dicyklobutylamonio-8-fluoro-3,4-dihydro-2H-1benzopyran-5-carboxamide) (next only [¹¹C]NAD-299)

 $[^{11}C]$ NAD-299 is a radiopharmaceutical used for a visualization of 5-HT_{1A} receptor in a human brain using PET method. It is synthesized from NAD-195 ([R]-3-N,N-dicyclobutylamino-8-fluoro-5-trifluoromethylsulfonyloxy-3,4-dihydro-2H-1-benzopyrane) with $[^{11}C]$ cyamide by reaction catalyzed with palladium. A labelled nitride, a semifinished product in hydrogen peroxide, is consecutively hydrolyzed with carbon-11. Radiochemical field of the reaction is 20÷40%, specific radioactivity of the product is 24 GBq.mol⁻¹ and purity is 99%. The time needed for a synthesis is 40-45 minutes [28].

Synthesis of the [C-11] methyltriflate

 $[^{11}C]$ methyltriflate ([C-11]methyltrifluoromethanesulfonate) is made in the high yields from the $[^{11}C]$ metyliodide in supporting nitrogen, which passes through graphite column impregnated with silver triflate at 200°C [29].

2.3 Radiopharmaceuticals labelled with oxygen-15

Synthesis of the buthanol labelled with oxygen-15

1-buthanol and 2-buthanol labelled with oxygen-15 are used for the examination of a blood flow by PET method. They are prepared by reaction of $[^{15}O]O_2$ with tri-*n*-buthylborane and tri-*sec*-buthylborane in tetrahydrofurane. The reaction products are isolated chromatographically. The yields of the reactions are 50% [25].

Synthesis [¹⁵O]N₂O

Nitrous oxide labelled with oxygen-15 is produced by the oxidation of a waterless ammonia in a gaseous mixture of a oxygen labelled with oxygen-15. Labelled gas is purified in a column with H_3PO_4 and KOH. Specific activity of the chromatographically purified [¹⁵O]N₂O is 1.85 GBq·mmol⁻¹ (50 mCi·mmol⁻¹) and a purity is 98%. It is used for an examination of a blood flow by PET method [27].

Synthesis of the [¹⁵O]H₂O₂

 $[^{15}O]H_2O_2$ is thought to be a candidate of attractive injectable tracers for the study of oxygen metabolism with PET. A simple synthetic method yielding $[^{15}O]H_2O_2$ in saline solution by the autoxidation of 2-ethylanthrahydroquinol with gaseous $[^{15}O]O_2$ produced by cyclotron target system is described [33].

2.4 Radiopharmaceuticals labelled with nitrogen-13

Synthesis of the [¹³N]N₂O

¹³N-labelled nitrous oxide has been prepared in view to study its behaviour into the brain using a technique suggested by Nickles et al. Nitrogen-13 was prepared via the ¹⁶O(p,α)¹³N reaction by irradiation of water. Using the medical cyclotron of Liege, with a focused beam of 21 MeV protons at 25 μ A current, a 24 minutes irradiation produces 14.8 GBq (400 mCi) of ¹³NO₃⁻ at the end of bombardment (E.O.B.). The irradiated water (12 cm³) was concentrated to 1 cm³ by rotary evaporation. The pyrolysis of $NH_4^{13}NO_3$ was done in the presence of NH_4NO_3 and $(NH_4)_2SO_4$ in sulfuric acid. The $^{13}N_2O$ was evolved at 220°C. Ozone and other oxides of nitrogen were produced in the system. Therefore, great care must be taken to remove them. The purification was done in one-line process requiring no handling other than the manipulation of cold traps at appropriate time. This purification leads to safety $^{13}N_2O$ ready for medical experiments showing less than 0.3 ppm of NO₂, 1.7 ppm of NO and 0.05 ppm of O₃. 20 minutes after E.O.B., 1.85 GBq (50 mCi) of $^{13}N_2O$ are available. It has been used, as such, in 10 normal volunteers and detected by positron emission tomography [34].

Preparation of the ¹³NH₃

Nitrogen-13 is prepared in cyclotron via nuclear reaction ${}^{12}C(d,n){}^{13}N$, in which the target is a gaseous methane [35]. The ${}^{13}NH_3$ formed was collected with a gas-circulating system and trapped in an acidic water solution. After this solution was made basic, the ${}^{13}NH_3$ was distilled into a slightly acidic saline solution which was then passed through a Millipore filter. The ${}^{13}NH_3$ preparation was carried out under sterile pyrogen free conditions. The radiochemical purity, as determined by gas-liquid chromatography, was typically 97% ${}^{13}NH_3$, 0.3% CHPNH₂, and 2% unknown [36].

¹³N-SD-62

In order to study opioid receptor function by PET, it has been desired to develop the radioligand with high specific activity, high receptor affinity and metabolic stability. [¹³N]ammonia is easily produced and the introducing of ammonia into glycine residue at C-terminal avoid any racemization, ¹³N-labelled enkephalin-like peptide, H-Tyr-(D)-Met(O)-Phe-Gly-NH₂ (SD-62), was considered as a plausible canditate. ¹³N-SD-62 was easily synthesized by the use of nitrophenol ester as a precursor. The synthetic time was 3-5 min and yield was about 50%. In the mice distribution studies, the radioactivity in the brain increased along with the time within 30 min after injection. This brain accumulation of ¹³N-SD-62 showed 10-15 times higher than that of ¹³¹I-RISA, a good indication of the permiability through the blood-brain barrier. The gathered data demonstrate that ¹³N-SD-62 hold great potentiality as a radiopharmaceutical for opioid receptor studies by PET [37].

2.5 **Progresses in the synthesis of the PET radiopharmaceuticals**

One of the first overview about the synthesis of the PET radiopharmaceuticals was a work of Kabalk, G.W. [38]. Great progress in synthetic methodologies of short half-life radiopharmaceuticals for PET has been made. This article aims to summarize the synthetic methodologies and progress of fluorine-18, carbon-11, oxygen-15 and nitrogen-13 labelled radiopharmaceuticals, with special emphasis on the radiochemistry of those labelled with carbon-11 and fluorine-18 [39].

Step by step, the automatic systems for a production of the radiopharmaceuticals have been developed, which allows obtaining cost-effective source of the positron emitter-labelled radiotracers labelled with carbon-11, nitrogen-13, oxygen-15, and fluorine-18 [65]. The Siemens Radioisotope Delivery System (RDS 112) is a fully automated system dedicated to the production and delivery of positron-emitter labelled precursors and radiochemicals required to support a clinical PET imaging program. Thus, the entire RDS can be thought of as an automated radiochemical processing apparatus [40].

The list of some diagnostic radiopharmaceuticals is in the Table 2.

Radiopharmaceutical	Uso	Recommendation for diagnostics		
preparation	Use			
Ionic radiopharmaceutical preparation				
123 I, $[^{123}$ I]KI, (I)	Function of thyroid	Scintigraphy and radiotherapy of		
	gland	thyroid gland		
82 RbCl, (Rb ⁺)	Flow rate of blow in	Perfusion of myocardium,		
	myocardium	myocardial infarction		
Radiopharmaceutical prepa	rations for binding with	receptors		
¹²³ I-VIP	Vasoactive intestinal	Stomach and intestine adenomas;		
	peptide (VIP) receptor	colorectal cancer; pancreatic		
		adenocarcinomas; neuroendocrine		
		tumours		
¹²³ I-MIBG	Presynaptic adrenergic	Myocardium scintigraphy, tumors		
	receptors	visualization (feochromocytomas,		
		neuroendocrine tumors,		
		neuroblastomas)		
[¹¹ C]methylspiperone	Dopamine D2 receptors	Visualization of dopamine D2		
		receptors distribution in brain		
		(Schizophrenia)		
[¹¹ C]Raclopride	Dopamine D2 receptors	Visualization of dopamine D2		
122		receptors distribution in brain		
¹²³ I-IBZM	Dopamine D2 receptors	Visualization of dopamine D2		
		receptors distribution in brain,		
		tumors scintigraphy, malignant		
10		melanomas		
[¹⁸ F]fluoroestradiol (FES)	Estrogens receptors	Breast tumors		
Labelled substrates of meta	bolism			
[^{1°} F]Fluorodeoxyglucose,	Viability and	Visualization of tumors, scintigraphy		
([^{1°} F]FDG)	metabolism of tumors,	of brain and myocardium		
	metabolism of glucose			
[¹¹ C] or [¹²³ I]metyltyrosine	Synthesis and regulation	Brain tumors		
	of protein metabolism			
[¹¹ C]metionine	Transport of amino	Brain and myocardium tumors		
11	acids			
[¹¹ C]tymidine	Synthesis of DNA, cells	Brain tumors		
10 122	proliferation			
[^{1°} F] and ^{12°} I-fatty acids	Myocardium	Scintigraphy of myocardium		
10	metabolism			
[¹ °F]Fluoromisonidazol	Hypoxia and	Tumors, remove at radiotherapy		
	metabolism of oxidation			

Table. 2. Review of use of some PET radiopharmaceuticals for diagnostics [66].

2.6 The other forward-looking positron emitters suitable for a synthesis of the PET radiopharmaceuticals

Apart from the most using positron emitters ¹¹C, ¹³N, ¹⁵O a¹⁹F, a lot of publications are dedicated to the use of ⁶⁸Ga and ⁸²Rb, obtained from the generators. Respectable number of the works, from a whole number of works about a synthesis of the PET radiopharmaceuticals (according to database INIS - 957 works), is dedicated to a use of the other positron radionuclides in a form of PET radiopharmaceuticals. In a forthcoming time their wider participation as the radiopharmaceuticals using in PET diagnostics is expectable. [41]

In a Table 3 are said the forward-looking positron radionuclides and their half-life times.

Radionuclide	Half-Life t _{1/2}	Radionuclide	Half-Life t _{1/2}	Radionuclide	Half-Life t _{1/2}
¹⁹ Ne	17,22 s	⁵⁵ Co	17,5 h *	⁷⁷ Kr	1,24 h *
²² Na	2,605 r	⁵⁶ Co	77,7 d	⁸² Rb	1,273 min
³⁰ P	2,5 min	⁵⁷ Ni	36,1 h *	⁸⁰ Sr	106 min
^{34m} Cl	32,0 min	⁶⁰ Cu	23,2 min *	⁸⁵ Y	2,6 h *
³⁸ K	7,63 min	⁶¹ Cu	3,41 h	⁸⁷ Zr	1,73 h *
⁴³ Sc	3,89 h *	⁶² Cu	9,74 min	⁸⁹ Zr	78,43 h *
⁴⁴ Sc	3,93 h *	⁶⁴ Cu	12,701 h **	⁹² Tc	4,44 min *
⁴⁵ Ti	3,078 h	⁶³ Zn	38,1 min *	⁹³ Tc	2,88 h *
⁴⁹ Cr	42,1 min *	⁶⁸ Ga	68,1 min	^{94m} Tc	52 min
^{47}V	31,3 min *	⁷³ Se	7,1 h *	¹¹⁰ In	69 min [*]
^{48}V	15,98 d	⁷⁵ Br	98 min [*]	¹¹⁷ Te	62 min *
⁵¹ Mn	46,2 min [*]	⁷⁶ Br	16,1 h *	¹²⁹ Ba	2,5 h *
^{52m} Mn	21,1 min	⁷⁸ Br	6,46 min	120 I	81 min
⁵² Mn	5,59 d *	⁷⁴ Kr	11,5 min *	¹²² I	3,6 min
⁵² Fe	8,28 h *	⁷⁵ Kr	4,5 min *	¹²³ I	13.27 h
				¹²⁴ I	4.15 d

Table 3. Positron radionuclides exploitable for PET [42].

^{*} Decay modes: β^+ and E.C.; ^{**} β^+ , β^- , and E.C.

Besides the other positron emitters, potentially exploitable for a preparation of the PET radiopharmaceuticals are known.

SUMMARY

It has passed 26 years since the first publication about the PET radiopharmaceutical was published. [43, 45] The PET method, using the positron radionuclides, has obtained a stabile position among the diagnostic methods of nuclear medicine during a passed quatre of the century. [44, 45] We can suppose, that in a forthcoming time its use will be even more assert in nuclear medicine, while not the only positron radionuclides ¹¹C, ¹³N, ¹⁵O a¹⁹F used the most until present time, but the other showed in Table 2 will be often used as well.

It's nice, that Slovak republic has also joined the states, which do not only use the PET radiopharmaceuticals for the diagnostic purpose, but can also produce them in an own equipment. In a presence their production is realized in Biont, a.s. (Bratislava) [48, 67].

LITERATURE

- 1. **Kuruc, J.:** *Selected chapter of nuclear physics* (lectures, in Slovak). Faculty of Natural Sciences, Comenius University, Bratislava. 2003-2006.
- 2. *PET radiopharmaceuticals*. <u>http://www.RadiofármacosPet.htm</u> (2004-03-01)
- 3. *PET* in more detail. Radionuclides & Radiopharmaceuticals. <u>http://www.Rationuclides&Radiopharmaceuticals-PositronEmissionTomogra-phy.htm</u> (2004-03-01)
- 4. **Macášek, F.:** *Cyklotrón minulosť, prítomnosť a budúcnosť.* <u>http://www.fns.uniba.sk/~kjd/katref.htm</u> (2002-09-20)
- 5. PFQ-PET Radiochemistry Research. <u>http://www.RFQ-PETRadiochemistryResearch.htm</u> (2004-03-15)
- 6. Berridge, Ms. Cassidy, Eh. Miraldi, F.: [C-11]acetate and [C-11]methionineimproved syntheses and quality-control. *Appl. Radiat. Isot.*, (1995), **46**(3), 173-175.
- Nishimura, S. Yajima, K. Harada, N. et al.: Automated synthesis of radiopharmaceuticals for PET and apparatus for [1-C-11] labelled aldoses. J. Autom. Chem., (1999), 16(6). 195-204.
- 8. Vanbrocklin, Hf. Lin, Aj. Welch, M. J. et al.: The synthesis of 7-alpha-methylsubstituted estrogens beled with F-18-potential breast – tumor imaging agents. *Steroids*, (1994), **59**(1), 34-45.
- 9. Adam, M.J. Jivan, S. Huser, J. M. Lu, J.: ¹¹C-methylations using ¹¹C-methyl iodide and tetrabutylammonium fluoride. *Radiochim. Acta*, 2000, **88**(3-4), 207-209.
- Mikecz, D.: *F-18 labelling agents*. In: Regional Workshop F-18 Radiopharmaceuticals. Smolenice Castle of the Slovak Academy of Sciences, Slovakia, November 25-27, 2001; <u>http://www.curie.sk/F18/Smolenice%20Mikecz.pdf</u>; INIS: 34022347.

- 11. **Ding, Ys. Fowler, Js. Gatley, Sj. et al.:** Synthesis of high specific activity (+)-6-[F-18]Fluoronorepine-phrine and (-)-6-[F-18]fluoronorepinephrine via the nucleophilic aromatic-substitution reaction. *J. Medical Chem.*, (1991), **34**(2), 767-771.
- 12. Iwata, R. Pascali, C. Bogni, A. et. al.: Anex convenient method for the preparation of 4-[F-18]fluorobenzyl halides. *Appll. Radiat. Isot.*, (2000), **52**(1), 87-92.
- Alauddin, M. Conti, P. Fissekis, J.: Synthesis of [F-18] labelled 2'-deoxy-2'-fluoro-5-methyl-1-beta-D-arabinofuranosyluracil ([F-18]-FMAU). J. Labell. Compds & Radiopharm., (2002), 45(7), 583-590.
- 14. Alauddin, M. Conti, P. Mazza, S. et al.: Synthesis of 9-[(3-[F-18]-fluoro-1-hydroxy-2-propoxy)methyl]guanine([F-18]-FHPG): A potential imaging agent of viral infection and gene therapy using PET. *Nucl. Med. Biol.*, (1996), **23**(6), 787-792.
- 15. Alauddin, M. Conti, P.: Synthesis and preliminary evaluation of 9-(4-[F-18]-fluoro-3hydroxymethylbutyl)guanine ([F-18]FHBG): A new potential imaging agent for viral infection and gene therapy using PET. *Nucl. Med. Biol.*, (1998), **25**(3), 175-180.
- 16. Krohn, K. Link, J. Weitkamp, W.: In-target chemistry during the production of ¹⁵O and ¹¹C using ³He reactions. *Radiochim. Acta*, (2000), 88(3-4), 193.
- 17. Romer, J. Fuchtner, F. Steinbach, J.: Synthesis of 16 alpha-[F-18]fluoroestradiol-3,17 beta-disulphamate. *Appl. Radiat. Isot.*, (2001), **55**(5), 631-639.
- 18. Sarkati, E. Kovacs, Z. Horvath, G. et al.: Synthesis of [C-11]methanol on alumina column for production of [C-11]methyl iodide. *Radiochim. Acta*, (1998), 83(1), 49-52.
- Hostetler, Ed. Jonson, Sd. Welch, M. J.– Katzenellenbogen, J. A.: Synthesis of 2-[¹⁸F]fluoroestradiol, a potential diagnostic imaging agent for breast cancer: strategies to achieve nucleophilic substitution of an electronic-rich aromatic ring with [¹⁸F]. J. Org Chem., (1999), 64, 178-185.
- Wadsak, W. Schmaljohann, J. Keppler, B. et al.: A new route for the synthesis of O-(2-[¹⁸F]fluoroethyl)-L-tyrosin using distilled 2-[¹⁸F]fluoroethybromide. Radioactive Isotopes in Clinical Medicine and Research. 25th International Symposium, 8-11 January 2002, Badgastein, Austria. European J. Nucl. Med. Mol. Imaging, (2002), 29(3), 1619-7070. INIS: 31-060808. <u>http://www.akh-wien.ac.at/bg2002</u>
- Zheng, Q. Lin, X. Fei, X. et al.: Facile synthesis of [¹¹C]edrophonium and its analogues as new potential PET imaging agents for heart acetylcholinesterase. *Bioorg. Med. Chem. Lett.*, (2003), 13(10), 1787-1790.
- Brown, G. Luthra, S. Brock, C. et al.: Antitumor imidazotetrazines. 40. Radiosyntheses of [4-¹¹C-carbonyl]- and[3-N-¹¹C-methyl]-8-carbomoyl-3methylimidaro[5,1-d]-1,2,3,5-tetrazin-4(3H)-one(temozolomide) for positron emission tomography (PET) studies. J. Med. Chem., (2002), 45(25), 5448-57.

- 23. Dolle, F. Valette, H. Bramovulle, Y. et al.: Synthesis and in vivo imaging properties of [¹¹C]befloxatone: a novel nighly potent positron emission tomography ligand for mono-amine oxidase–A. *Bioorg. Met. Chem. Lett.*, (2003), **13**(10), 1771-1775.
- 24. Bormans, G. Van Oosterwyck, G. De Groot, T. et al.: Synthesis and biologie evalution of [¹¹C]-methyl-d-glueosid, a tracer of the sodium-dependent glucose transporders. J. Nucl. Med., (2003), 44(7). 1075-1081.
- 25. Kabalka, G. Kunda, S. McCollum, G. et al.: Synthesis of ¹⁵O labelled butanol via organoborane chemistry. *Int. J. App. Radiat. Isot.*, (1985), **36**(11), 853-855.
- 26. Ehrin, E. Farde, L. Paulis, T. et al.: Preparation of ¹¹C-labelled Radopride, a new potent dopamine receptor antigonist: preliminary PET studies of cerebral dopamine receptors mi the montey. J. Appl. Radiat. Isot., (1985), 36(4), 269-273.
- 27. Diksie, M. Yamamota, Y. Feintel, W.: On-line synthesis of ¹⁵ON₂O: a new blood-flow tracers for PET imaging. J. Nucl. Medicine (USA), (1983), **24**(7), 603-607.
- 28. Sandell, J. Halltin, Ch. Hall, H. et al.: Radiosynthesis and autoradiographic eveluation of [¹¹C]NAD-299, a radioligand for visaulization of the 5-HT_{1A} receptor. *Nucl. Med. Biol.*, (1999), 26(2), 159-164.
- 29. Jewett, D. M.: A simple synthesis of [¹¹C]methyltriflate. *Appl. Radiat. Isot.*, (1992), 43, 1383-1385.
- 30. Iwata, R. Pascali, C. Bogni, A. et al.: [¹⁸F]fluoromethyl triflate, a novel and reactive [¹⁸F]fluoromethylating agent: preparation and application to the on-column preparation of [¹⁸F]fluorocholine. *Appl. Radiat. Isot.*, (2002), **57**(3), 347-352.
- 31. Saha G. P.: Basic of PET Imaging, Physics, Chemistry, and Regulations. Springer, (2005). ISBN 0-387-21307-4
- 32. Wilson A. A. DaSilva J. N. Houle S.: In vivo evaluation of [¹¹C]- and [¹⁸F]-labelled cocaine analogues as potential dopamine transporter ligands for positron emission tomography. *Nucl. Med. Biol.*, (1996); **23**(2):141-146.
- 33. Takahashi, K. Murakami, M. Hagami, E. et al.: Radiosynthesis of ¹⁵O-labelled hydrogen peroxide. J. Labelled Comp. Radiopharm. (1989), 27(10), 1167-1175.
- 34. Del Fiore, G. Peters, J. M. Quaglia, L. Bougharouat, N. Lamotte, D. Niethammer, T.: Preparation of nitrogen 13-labelled nitrous oxide for its in vivo detection in man with positron emission tomography. J. Biophys. Med. Nucl. (1982), 6(4), 163-166.
- 35. Tilbury, R. S. Dahl J. R. Monahan, W. G. et al.: The production of ¹³N-labelled ammonia for medical use. *Radiochern Radioanal Left* 8: 317-323, 1971.
- 36. Straatmann, M. G., Welch, M. J.: Enzymatic synthesis of nitrogen-13 labelled amino acids. *Radiat. Res.*, (1973), 56(1), 48-56.

- 37. Saji, H. Tsutsumi, D. Magata, Y. Yokoyama, A. Kiso, Y. Iinuma, S. The 1989 international chemical congress of Pacific Basin Societies: Abstracts of papers, Parts I and II. Washington, DC (USA). American Chemical Society. 1989. 1700 p. p. 637, Paper INOR 440. INIS: 22047064
- 38. Padgett, H. C. Schmidt, D. G. Bida, G. T. Wieland, B. W. Pekrul, E. -Kingsbury, W. G. Automated radiochemical processing for clinical PET. In: *New trends in radiopharmaceutical synthesis, quality assurance, and regulatory control.* Emran, A.M. (Ed.). New York, NY (United States). Plenum Press. (1991). 529 p. p. 371-386.
- 39. Tang, Ganghua: Synthetic methodology of short half-life radiopharmaceuticals for PET. *Nucl. Techniques*, (2003), 26(7), 551-555. INIS: 35068592.
- 40. Kabalka, G. W.: Synthesis of radiopharmaceuticals containing short-lived radiomuclides: Progress report, March 1, February 28, 1988. Sep 1987. 18 p. INIS: 19045217
- 41. Isotopes for Medicine and the Life Sciences. (S. J. Adelstein, F. D. Manning, Eds.). Washington: National Academy Press, (1995), 132 p.
- 42. Blatt, F. J.: Modern Physics. New York: McGraw-Hill, Inc., (1992). 517 p.
- 43. Knapp, F. F., Jr.: *Report*, Oct 1980. Oak Ridge National Lab., TN (USA), 25 p. INIS: 12585349.
- 44. Welch, M. J.: *Preparation of gallium-68 radiopharmaceuticals for positron tomography. Progress report*, November 1, 1977-October 31, 1980. Jun 1980. 54 p. INIS: 12594879.
- 45. Jay, M.; Digenis, G. A. Chaney, J. E. Washburn, L. C. Byrd, B. L. Hayes, R. L. Callahan, A. P.: Synthesis and brain uptake of carbon-11 phenethylamine. J. Labelled Compd. Radiopharm. (1981), 18(1-2), 237.
- 46. Meyer, G. J. Waters, G. J. Coenen S. L. Luxen H. H. Maziere B. Langstrom, B.: PET radiopharmaceuticals in Europe: current use and data relevant for the formulation of summaries of product characteristics (SPCs). *Eur. J. Nucl. Med.*, 1995, 22(12):1420-32.
- 47. Tewson, T.J. Krohn, K. A.: PET radiopharmaceuticals: state-of-the-art and future prospects. *Semin. Nucl. Med.*, (1998), 28(3), 221-34.
- Rajec, P.: Výroba rádiofarmák na Slovensku nová príležitosť pre jadrovú chémiu. In: Mimulosť a súčasné trendy jadrovej chémie (Ľ. Mátel and J. Kuruc, Eds.). Bratislava: Omega Info, (2007).
- 49. Jacobs, W. W. Bodansky, D. Chamberlin, D. and Oberg, D. L.: Production of Li and B in proton and alpha-particle reactions on ¹⁴N at low energies. *Phys. Rev. C*, (1974), 9(6), 2134-2143.
- 50. Dyer, P. Bodansky, D. Seamster, A. G. Norman, E. B. and Maxson, D. R.: Cross sections relevant to gamma-ray astronomy: Proton induced reactions. *Phys. Rev. C*, (1981), 23(5), 1865 1882.

- 51. Michelmann, R. Krauskopf, J. Meyer, J. D. Bethge, K.: Excitation functions for the reactions ¹⁰B(d, n)¹¹C and ¹²C(d, n)¹³N for charged particle activation analysis. *Nucl. Instrum. Methods in Phys. Res. B: Beam Interactions with Materials and Atoms*, (1990), 51(1), 1-4.
- 52. Kitwanga, Sindano Wa Leleux, P. Lipnik, P. Vanhorenbeeck, J.: Production of ¹³N radioactive nuclei from ¹³(p,n) or ¹⁶O(p, α) reactions. *Phys. Rev. C*, (1989), **40**(1), 35-38.
- 53. **Retz-Schmidt, Theo and Weil, Jesse L.:** Excitation Curves and Angular Distributions for N¹⁴(*d*, *n*)O¹⁵. *Phys. Rev.* 119(3), 1079-1084 (1960).
- 54. Kitwanga, Sindano Wa, Leleux, P. Lipnik, P. Vanhorenbeeck, J.: Production of ^{14,15}O, ¹⁸F, and ¹⁹Ne radioactive nuclei from (*p*,*n*) reactions up to 30 MeV. *Phys. Rev. C* 42(2), 748-752 (1990).
- 55. Legg, J. C.: (*p*, *d*) and (*p*, *t*) reactions on B¹¹, C¹⁴, O¹⁶, and O¹⁸. *Phys. Rev.* (1963), **129**(1), 272-282.
- 56. Backhausen, H. Stöcklin, G. Weinreich, R.: Radiochim. Acta, (1981), 29(1), 1.
- 57. **Bair, J. K.:** Total neutron yields from the proton bombardment of ^{17,18}O. *Phys. Rev. C*, (1973), **8**(1), 120-123.
- 58. **Hahn, R. L. and Ricci, E.:** Interactions of ³He Particles with ⁹Be, ¹²C, ¹⁶O, and ¹⁹F. *Phys. Rev.*, (1966) **146**(3), 650-659.
- 59. Korde, A.: Nucleus. IANCAS Bull., (2004), 3(2), 172-174.
- 60. Kiesewetter, D. O. Brucke, T. Finn R. D.: Radiochemical synthesis of [18F]fluororaclopride. Int. J. Rad. Appl. Instrum. [A], (1989); 40(6), 455-60.
- 61. Shah, F. Hume, S.P. Pike, V.W. Ashworth, S. McDermott, J.: Synthesis of the enantiomers of [N-methyl-11C]PK11195 and comparison of their behaviours as radioligand for PK binding sites in rats. *Nucl. Med. Biol.*, (1994), **21**, 573–81.
- 62. Jewett D. M. Kilbourn M. R. Lee, L. C.: A simple synthesis of [11C]dihydrotetrabenazine (DTBZ). Nucl. Med. Biol. (1997) 24(2), 197-1999.
- 63. Fei, Xiangshu Mock, B. H. DeGrado, T. R. Wang, Ji-Quan Glick-Wilson, B. E. Sullivan, M. L. Hutchins, G. D. Zheng Qi-Huang.: An Improved Synthesis of PET Dopamine D 2 Receptors Radioligand [¹¹C]Raclopride. *Synthetic Commun.*, (2004), 34(10), 1897-1907.
- 64. Ding, Y.-S. Sugano, Y. Fowler, J. S. Salata, C.: Synthesis of the racemate and individual enantiomers of [11C]methylphenidate for studying presynaptic dopaminergic neuron with positron emission tomography. J. Label. Compd. Radiopharm., (2006), 34(10), 989-997.
- 65. **Kuruc, J.:** Príprava rádioaktívne označených zlúčenín. In: *Základy rádiochémie*. Bratislava: Omega Info, 2004, p.163-196.

- 66. **Kuruc, J.:** Applications of radiopharmaceuticals in nuclear medicine. In: *Isotopically modified compounds* (Lectures, in Slovak). Faculty of Natural Sciences, Comenius University, Bratislava. (2006).
- 67. Kováč, P., Macášek, F., Pavlovič, M.: Perspectives of Life Sciences at Cyclotron Center of the Slovak Republic. Presented at 1st Coordination Meeting "Perspectives of Life Sciences Research at Nuclear Centers" PLSRNC-1, (September 21-27, 2003 Riviera, Golden Sands, Bulgaria).

Appendix 1

Compound	Amount of precursor	Solvent	Base	Reaction tempera- ture, °C	Yield, %	Specific activity (Ci/mmol)
	200 µg	CH ₃ CN	KF/A1	85	30-40	
Dihydro-	200 µg	CH ₃ CN	TDAF	85	45	3000-5000
tetrabenazine	200 μg	DMSO	NaOH	50	10	
	1,0 mg	DMSO	NaOH	50	30	
	200 µg	CH ₃ CN	KF/A1	85	27-31	
Methyl-	200 µg	CH ₃ CN	TBAF	85	33-40	1500-2500
phenidate	200 μg	DMSO	NaOH	85	No	
	1,5 mg	DMF	NaOH	80	30	
	1 mg	DMSO	KF/A1	100	No	
	1,5 mg	DMSO	TBAF	100	27	2000
	2 mg	DMSO	NaOH	80	2	
PK11195	1,5 mg	DMSO	TBAF/	100	40-50	
			KOH			
	400 µg	DMSO	TBAF/	100	4	
			KOH			
	200 µg	CH ₃ CN	KF/Al	85	No	
	200 µg	DMF	KF/Al	85	No	
	200 µg	Acetone	KF/Al	85	No	
	200 µg	CH ₃ CN	TBAF	85	No	
Raclopride	1,7 mg	DMSO	KF/Al	80	no	
	1,7 mg	DMSO	TBAF	80	No	
	1,7 mg	DMSO	TBAF/	80	28-41	7000-10000
			NaOH			
	1,7 mg	DMSO	NaOH	80	17-35	
	200 mg	Acetone	TBAF	80	30-50	3000-5000
MDL100907	200 mg	DMSO	TBAF/	80	9	
			NaOH			

Table 1 Radiochemical yields of the methylations

Appendix 2

RX	SOLVENT	Yield in % using	
		¹⁸ FCH ₂ I	18 F
Diethylamine	Acetonitrile	95	33
Diphenylamine	Acetonitrile	60	22
Phenylcarboxyl acid	Acetonitrile	57	20
Phenylmethantiol	Acetonitrile	12	5
Phenyl-Ona	Methanol	67	25

 Table 2. Results of the fluoromethylations using fluoromethyliodide