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Abstract 

The main goal of the present lecture is to is to give a short description of neutron 
transport phenomena limited to those definitions that are necessary to understand the 
approach to practical solution of the problem given in the second lecture on reactor lattice 
transport calculations. The discussion of the neutron cross sections has been skipped as other 
lecturers have treated this subject in detail. 
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1 Definitions 

1.1 Description of the medium 

The medium is described by its isotopic composition and its nuclear properties. The 
composition is given in terms of number densities of isotopes defined as the numbers of 
respective nuclei in a cubic centimetre: 

i P*'NA NDl = ^ - , (1) 
A1 

with the Avogadro Number AfA=6.022xl023, pl - density of the isotope i in grams per cubic 
centimetre, and A1 the Atomic Number. 

The nuclear properties are described by microscopic cross sections, (/, for reactions of 
typex. 

The macroscopic cross sections, Z x (rfE) of an isotope i, is a product of its microscopic 
cross section and its number density, NDl, at position r: 

Zx'1 (r,E) = NDl (r)> axl(E). (2) 

If the medium is composed of more than one isotope then the total macroscopic cross section 
of the medium is equal to the sum of cross sections for each isotope: 

^meduun (r,E) = Z Zx>1 {T,E) = Z «J*l(E)- Nff (r)). (3) 

The sum of the partial cross sections for all possible types of neutron-nucleus collisions is the 
total cross section. It is defined as the total collision (or interaction) cross section of a neutron 
at position r having energy E (in the laboratory system). It is the probability of neutron 
interaction per unit distance travelled by a neutron and has the dimension of a reciprocal 
length, e.g., cm'1: 

Zm
M(r,E) =ZxZm

x(r,E). (4) 

A reciprocal of the total cross section, X, is called a mean free path and is an average distance 
of neutron travel between two consecutive collisions. 

X=l/Zm
tot(r,E). (5) 

A form of differential cross section, 

Zx(r,Ey)fx (r;Q\Ey->QyE)y (6) 

is defined for collisions, from which neutrons emerge, as the cross sections for initial direction 
Ql and energy E' emerging in a collision in the interval dQ about Q with energy dE about E. 
The cross section for a reaction of type x, for neutrons of energy E\ is i f and / x 

(r;Q'yE'—>Q,E)dQ dE is the probability that if a neutron of direction Q' and energy E' has a 
collision of type x, there will emerge from the collision a neutron in the direction interval dQ 
about Q , with energy dE about E. For elastic scattering, integration of/* over all directions 
and energies gives unity. For elastic scattering of neutrons from initially stationary nuclei fx is 
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a function only of Q'Q which is a cosine of the scattering angle between the directions of 
motion of the neutron before and after the collision. For fission it is a good approximation to 
assume that the neutrons are emitted isotropically in the laboratory system. Then it is possible 
to write: 

fx (r;Q\Ey^QyE)dQ dE = l/(4n)-K( r; Ey->E) dQdEy (7) 

where -Kfr; Ey—>E)dEy referred to as the spectrum of the fission neutrons, is the probability that 
a fission caused by a neutron at r with energy Ey will lead to a neutron within dE about E. It is 
normalised so that after integration over full angle it gives K(r;Ey), which is the average 
number of neutrons produced by a fission at r caused by a neutron of energy Ey. 

Instead of the neutron energy, E, the neutron velocity, v, may be used represented as: 

v = vQ, 

where v = | v I is the neutron speed and is connected to the energy by a standard equation 

E = mv2/2. 
with m the neutron mass. 

The rate, in neutrons per unit volume and time at r and t, at which neutrons are transferred 
by interactions of type x into final directions within dQ about Q and final energies dE about E 
is: 

v' Zx(r,Ey)fx(r;Q\Ey^QyE) N(ryQ\Ey
yt) dQldEy dQ dE. (8) 

The total rate at which neutrons are transferred is obtained by integrating the above quantity 
over all initial neutron directions and energies, and summing over all reactions. 

1.2 Description of neutrons 

A population of neutrons is described by a quantity called the neutron angular density denoted 
by 

N(ryQyE,t)y 

and defined as the probable (or expected) number of neutrons at the position r with direction 
Q and energy E at time f, per unit volume per unit solid angle per unit energy, e.g., per cm per 
steradian per MeV. Thus 

N(r,QyEyt)dVdQdE 

is the expected number of neutrons in the volume element dV about r, having directions within 
dQ about Q and energies in dE about E at time t. Such a number of neutrons in an 
infinitesimal volume is sometimes referred to as a packet of neutrons. 
In the definition the expression 'probable' or 'expected' number of neutrons is meant to imply 
that fluctuations from the mean neutron population are not taken into account. 
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Figure 1. A packet of neutrons. 

The integral of the neutron angular density over all directions is the energy dependent neutron 
density n(ryE,t): 

n( r, E,t)= J N(r, Q, E, t)dQ , (9) 
4K 

where the integral is taken over all directions. Hence n(ryEyt) is the expected number of 
neutrons at ry with energy E at time t, per unit volume per unit energy. 

The product of the neutron speed v and the neutron angular density is called the neutron 
angularflux: 

<P(ryQyEyt)=vN(r,QyEyt)y (10) 

The integral over all directions of the neutron angular flux is called total neutron flux, often 
referred to simply as the neutron flux, and is equal to: 

(t>(ryEyt).= vn(ryEyt). (11) 

The neutron flux has been introduced as a quantity much more useful for the description of 
reactor properties than the neutron number density. The product of the neutron flux and the 
macroscopic cross section: 

{RR}X=ZX> (ryE)-$ (r,E,t) (12) 

gives, by definition, the number of reactions suffered by neutrons per second, per cubic 
centimetre and per eV. This quantity is called a reaction rate of type x. In particular, the 
fission reaction rate integrated over energy is used to calculate the energy production. 

The net number of neutrons crossing a surface element per unit energy in unit time is 
called the neutron current: 

J( r,E,t) = v j QN( r&, E, t)dQ • (13) 
4n 

The quantities defined above are expressed in units given in Table 1. 
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Table 1. Summary of introduced quantities. 

Quantity 
Neutron angular density 
Neutron density 
Neutron angular flux 
Neutron flux 
Neutron net current 

Symbol 
N 
n 
0 

Unit u 
neutrons/(cm3- steradian-eV) 
neutrons/(cm3 -eV) 
neutrons/(cm2- steradian-eV-sec) 
neutrons/(cm2 -eV-sec) 
neutrons/(cm2 -eV-sec) 

It can be seen that the neutron current and the neutron total flux have the same units. The 
difference between these two quantities can be better understood if we compare their 
definitions, derived from Eqs. (9-11) and Eq.(13), but expressed in terms of the angular flux: 

(j)(r,E,t)= j<P(r,Q,E,t)dQ, 
An 

(14) 

J(r,E,t)= JQ-&(r,Q,E,t)dQ. 
4n 

Equations (14) show that the neutron flux and.current are, respectively, the zero's and first 
moment of the neutron angular flux. 

By the neutron sources we understand neutrons which emerge in the system from events 
other than neutron collision and, therefore, they are independent of the neutron density. They 
are usually denoted by Q(ryQ,E,t), which expresses the probability per unit time that a neutron 
of energy E will appear at r per unit volume per unit solid angle per unit energy. Sometimes 
they are referred to as external or independent neutron sources. 

2 The neutron transport equation 

2.1 Two basic forms of the neutron transport equation 

The neutron transport equation is derived from the neutron balance inside a neutron packet (cf. 
Fig.l). It takes into account the number of neutrons remaining in the packet, the number of 
neutrons entering the packet as a result of collision and the number of neutrons entering the 
packet from external sources. The final result is: 

dN 
— + vQVN + EvN = JJ r Jv' N' dE'dQ'+Qy dt 

(15) 

where N=N(ryQyEyt)y Ny=N(r,Q'yEy
yt)y Z=Z(ryE)y Zl = Z(ryEy)y f = f(r;Q\Ey->QyE)y Q 

Q(ryQyEyt). 

The neutron transport equation may be also expressed in terms of the angular flux O, which is 
equal to v-N. By a direct substitution of its definition one gets: 
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+ QV0 + Z&= \\rf®dE'dQ'+Q 
v ^ . (16) 

2.2 Interface conditions 

The solutions to the neutron transport equation are frequently sought in spatial regions 
including interfaces between different materials. At such interfaces, the cross sections are 
discontinuous and it is necessary to consider how the transport equation is to be used in these 
circumstances. The number of neutrons in a packet is not changed, merely by crossing a 
physical interface. This means that the neutron angular density must be continuous in r as the 
interface is crossed. Thus the continuity condition is to be used at the interface. This refers to 
the neutron angular density but is equally applicable to the angular flux. 

2.3 Boundary conditions 

In general the region of interest is surrounded by a convex surface. A neutron leaving the 
region through the surface cannot intersect the surface again. If neutrons enter the region from 
external sources, then the incoming neutron flux must be specified. If no neutrons enter from 
external sources and if a neutron, once it leaves the surface, cannot return, then the surface is 
called a free surface and we have the condition: 

N(ryQyEyt) = 0 if n-Q<Oy (17) 

where n is a unit vector in the direction of the outward normal at a position r on the surface. 
Such situation appears, if the region is surrounded by vacuum or a perfect absorber. 

In practical applications we deal quite often with another type of boundary conditions. 
We speak about a specular reflection boundary condition if all the neutrons approaching the 
boundary from within are reflected back to the region with angles preserving the general 
reflection rule, and about a white boundary condition if they are reflected back with an 
isotropic distribution. The schematic explanation of the difference between the two boundary 
conditions is given in Fig. 2. It can be seen that if a packet of neutrons born in the middle of 
square region reaches the consecutive boundaries without collision they have a good chance to 
reach the central region under both types of boundary conditions. The same packet born in the 
middle of a circular region has a good chance to reach the central region under the white 
boundary condition but practically no chance under the reflective one. This fact will be used in 
the application of the transport theory to the solution of practical reactor problems. 
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Figure 2. Effect of reflective (on the left hand side) and white (on the nght hand side) boundary conditions for plane, 
square and circular boundaries 

2.4 Neutron conservation 
The neutron transport equation is simply a statement of neutron conservation as applied to an 
infinitesimal element of volume, direction and energy. If it is integrated over all directions, the 
result will be a statement of neutron conservation for a small element of volume and energy. 
Integration of the neutron transport equation (15) over all values of Q gives with the previous 
notation (cf. Eqs. (9) and (13)): 

— + V7 + Zvn =\ Z(r;E'-^E)v'n'dE'+Q, (18) 
dt J 
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where also Q and Z have been integrated over the angle and 

Z(r;E,^E) = jZ(r;Et )f(r;Q'yE'-^QyE)dQ, (19) 

which is the cross section at r for collisions which result in a neutron of energy Ey being 
replaced by one of energy E. 

Integration over a finite region of volume, V, and energy gives: 

d \\ndVdE rr cc 
- ^ + 11 VJdVdE+ vnldVdE 

dt J J JJ . (20) 
= jjjZ(r;E,^E)v'n,dE'dVdE+jJQdVdE 

Each of the five terms in the equation has clear physical meaning. The quantity 

\\ndVdE 

is the total number of neutrons in the space-energy region under consideration. Hence the first 
term is the time rate of change of the total number of neutrons in this region. The second term 
can be written with application of the divergence theorem: 

jjVJ-dVdE=jjjn-dAdE, (21) 
V A 

where dA refers to an element of area, on the boundary surface of the region, V, under 
consideration and n is a unit normal to the surface element, directed outward from the region. 
Hence, the second term is the net number of neutrons flowing out of the space-energy region 
per unit time. The third term 

jjvZndVdE 

is the rate at which neutrons are entering into collisions in the given region, i.e., the total 
collision rate, and the fourth term 

\\\z(r; E' -> E)v' n' dE' dVdE 

is the rate at which they emerge from these collisions. The fifth term gives the rate at which 
neutrons from independent sources are introduced into the region. 

Thus the direct representation of particular terms gives: 

Rate of change of neutrons = Net rate of generation of neutrons in collisions 
+ Rate of introduction of source neutrons 
- Net rate of outflow of neutrons. 

file:////ndVdE
file:////ndVdE
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2.5 Integral equation for neutron transport 
The neutron transport equation is an integro-differential one for the neutron angular density or 
flux. By the application of the method of characteristics to the neutron transport equation, it 
can be converted into an integral equation: 

q(r-s'Q;Q,E,t- — )ds' (22) 
v 

oo 

<P(r,Q,E,t)= \exp 

0 
with 
q(r;Q,E,t) = 

s' 

0 
-s"Q;E)ds" 

= jdE,jl(r;Ef )f(r;Q\E,^Q,E)0(rfQ,Qf,E)l£2, + Q(r,Q,E,t)' 

Thus q is the total rate with which neutrons appear at r, Qy E and t as a result of both collisions 
and the independent source. 

The integral equation in the simple case of the total cross section independent of position, 
isotropic scattering and source and no time dependence of the neutron flux becomes: 

<P(r,E)= J 
-Z(E)R 

4n-Rx 
-dV - \z{r';E'-* E)p(r',E' )dE' +Q(r',E ) 

(23) 
with R= I r-ry \. 

The assumption of a cross section independent of the spatial variable is not fulfilled in 
any realistic reactor system. However, if the system can be divided into subregions with 
constant material properties Eq. (23) can be used for effective reactor calculations. 

2.6 Multigroup approach to the neutron transport equation solution 
There is no possibility of obtaining exact solutions to the energy-dependent neutron transport 
equation for general reactor problems. It is necessary, therefore, to adopt approximate 
methods for solving the transport equation. The most important are the multigroup methods in 
which the neutron energy interval of interest is divided into a finite number of intervals, AEg 
(called groups). It is then assumed that the cross section in each group is constant, e.g., equal 
to an average over energy. Within each group it is then independent of energy, although 
arbitrarily dependent on position: 

Zx(ryE)=*Zx(r), for g=l,2,...Gy 

J \f(r;Q'yE'^QyE)dE'dE = cg(r).fg,g(r;Q'^Q). (24) 

AEg. AEg 
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The neutron angular flux and sources are integrated over respective energy intervals of 
groups: 

0g(r,Q)= j&(ryQyE)dE 
AES 

, • (25) 
Qg(r,Q)= \Q(ryQ,E)dE 

AEg 

For a time independent case, using definitions from Eqs. (24,25), the energy dependent 
equation is replaced by a set of coupled one-speed equations which are then solved by 
approximate methods 

QV<Pg(ryQ) + Ig(r)0g(ryQ) = 

= cg(rf£zg>(r)lfg>g(r;Q'^ Q)&g>(ryG' )dQ'+Qg(r,Q ) (26) 

g' 

The quantity cg{r) introduced in Eq. .(24) has a meaning of the mean number of neutrons with 
energy in AEg emerging per collision at r. For scattering collision c = 1 and for fission c = K 
(cf.Eq.(7)). 

3 Criticality 

From physical consideration, it is to be expected that system containing fissile nuclides can be 
subcritical, critical or supercritical, based on the behaviour of the neutron population as a 
function of time. 

A system is said to be subcritical if for any nonzero initial neutron population, the 
expected population dies out with time unless it is sustained by an external neutron source. 

A system is said to be supercritical when the expected neutron population diverges with 
time, starting from any nonzero population. 

A system is said to be critical as one in which a steady, time independent neutron 
population can be maintained in the absence of a source. 

The neutron transport equation with boundary conditions defines an initial value problem. 
If the neutron angular density at t = 0 is given, the expected density at any later time can be 
found, in principle, by solving the neutron transport equation. It has been shown that such a 
solution exists and is unique, provided some mathematical conditions are satisfied for actual 
physical situations. 

The homogeneous (source free) neutron transport equation may be written in the operator 
form: 

-^- = -vQVN-ZvN+ [[Z'jv'N'dE'dQ'^LN y (27) 
at JJ 

where L is the transport operator. The boundary condition of no incoming neutrons is 
assumed. We consider the solution of the equation expressed in the form N = N(ryQyE)eCtt 
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from which ccN(r,Q,E) = LN(ryQ,E). There may exist many eigenvalues a of the operator L, 
represented by (Xj with corresponding eigenfunctions Nf 

(XjNj-LNj. (28) 

In practical cases there exist a real eigenvalue greater than the real part of any other 
eigenvalue. It will be denoted a0 and the eigenfunction associated with it N0(ryQ,E). If the sign 
of (Xo is negative the solution of Eq. (27) will decrease asymptotically and the system is 
subcritical. If the sign is positive the solution will tend asymptotically to infinity and the 
system is supercritical. More rigorous considerations consisting in applying the Laplace 
transform lead to the asymptotic solution in the form: 

N(ryQyEyt) = A exp(a0t) N0 (ryQyE), as f-^°o, (29) 

where A is a constant determined by the initial conditions. Thus, the criticality problem is that 
of finding the conditions for which a0 = 0. A rigorous analysis has shown that for certain 
conditions (satisfied in practice) on the scattering kernel there is at least one discrete 
eigenvalue. 

The homogeneous neutron transport equation will have a time independent solution when 
a0 = 0 or the system is critical: 

LN0 = 0. 

Introducing auxiliary characteristic values may approach the criticality problem. In particular, 
the spectrum of the fission neutrons K(ryEy—>E) we replace by K(r,Ey—>E)/k, and k can be 
varied to obtain the stationary solution, with k = k-eff, called effective multiplication factor. 
This amounts to multiplying the number of neutrons emitted per fission by the factor llk-ejf. 

By definition k-eff is, a characteristic value of the equation: 

vQVNk + ZvNk = 

= IT YjZx'fxv' Nk' dQ' dE'+—[\-^K( r; E' -» E )ZfV Nk' dQ' dE' ( 3 0 ) 

**/ keffJJ4n 

where the summation over x unequal/refers to collisions other than fission in which neutrons 
are produced and Nk are eigenfunctions independent of time. 

In elementary reactor theory k-eff is treated as a ratio between the numbers of neutrons in 
successive generations, with the fission process being regarded as the birth event which 
separates generations of neutrons. 

For a critical system, i.e., when a0 = 0 and k-eff = 1, the corresponding eigenfunctions 
satisfy the same equation, for any other system, however, the two eigenfunctions are different. 
This can be seen when writing the homogeneous eigenvalue equation in the form: 

vQVNa +(Z+-^-)vNa =\\Z'Jv'N' dQ'dE'. (31) 

The term ajv appears as an additional absorption and it is sometimes referred to as 'time 
absorption' (or production). 



An Introduction to the Neutron Transport Phenomena All 

4 Solution of the one-speed transport equation by the spherical harmonics method 

4.1 Limitation to a time independent one-speed transport equation 
The method is demonstrated for the time-independent, one-speed neutron transport equation in 
plane geometry. It has been shown that the application of the multigroup approach leads to a 
set of coupled one speed equations and, therefore, the assumption of one speed is not a real 
limitation of the method. 
For a one speed case scattering is a function only of the cosine of the scattering angle, i.e., p0 
= QQy, where Qy and Qare the neutron directions before and after scattering, respectively. A 
quantity Zs(r,QyQy) is then defined by: 

Zs(r,Q,Q') = Z (r)c(r)fir; Q^Q'), (32) 

which will be referred to as scattering cross section. With this notation the one-speed Eq. (26) 
may be written: 

QV<P(ryQ) + Z( r)0(ryQ) = JZS( ryQ • Q')&(r,Q')dQ'+Q( ryQ ) . (33) 

4.2 Choice of geometry 
To apply any effective method of solution to the neutron transport equation one has to specify 
the streaming term given by Eq. (21), i.e., to have expressions for the quantity QVN or QV<P. 
For that purpose a system of co-ordinates has to be chosen and the geometry defined. The 
expression can be derived for co-ordinate systems where the position vector r is given in terms 
of rectangular, spherical, or cylindrical co-ordinates. Two angular co-ordinates are required to 
specify the neutron direction and these are chosen to be polar and azimuthal angles. Here the 
method is demonstrated using the simplest possible geometry, i.e., the plane geometry, for 
which spherical harmonics reduce to Legendre polynomials. 

For plane geometry, in which the neutron angular density (for a specific energy) is a 
function of x and the azimuthal angle, 6, the streaming term can be expressed: 

™-7^ d& d& dx d<P „ d& 
<QV<2> = = = cos6=/U (34) 

ds dx ds dx dx 

with p = cosQ, where 6 is the azimuthal angle corresponding to the direction Q. 

Hence Eq. (32) becomes: 

fld0(*^) + Z(x)&(xyju)= jde'jZJxyju0)&(x,ju')diu'+Q(xyju), (35) 
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4.3 Expansion of the scattering cross section 
The scattering cross section is expanded in Legendre polynomials and associated Legendre 
functions: 

Zs(W0 > = 2 / -T—ZsiMPlfro ) <36) 

and then P{p0) is expressed in terms of Legendre polynomials and associated Legendre 
functions of the directional cosines p and p\ The integration over the azimuthal angle is 
carried out giving: 

fid0^pl + Z(x)0(x,p) = ̂ ^ZJx)Pl wl&MmW+Qix^) 07) 
dx to 2 * 

4.4 Expansion of the flux 
The next step is to represent the angular dependence of the neutron flux as an expansion in 
terms of Legendre polynomials, Pm(p): 

<P(x,p) = 2^— (l>m(x)Pm(/JL) (38) 
m=0 4 ; r 

where (j>m(x) are the expansion coefficients dependent on x. Because of the orthogonality of 
Pm(p) the latter are given by 

1 
<l)m(x) = j&(xyiu)Pm(ii)dQ = 2nj<P(xyfi)Pm(iii)diu. (39) 

- l 

If the series is truncated after N+l terms, the result is referred to as a PN approximation. 
For m = 0, P0(p) = 1; hence (frrfx) is simply the total flux at x. For m = 1, Pj(p) = p and 

Eq. (39) gives 
1 

<t>i(x) = 2n\ju0( xy fi )d/LL, (40) 
- l 

which is the net current at x in the positive direction. 
The general form of equations obtained by substituting expansion of Eq. (38) into Eq. 

(37) is: 

dx dx 
n=0, 1, 2, ... 

where Zn(x)=Z(x)-Zsn(x) and the expansion coefficients are given by the orthogonality 
relations: 
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(t>n(x) = 2nJ0(x,fi)Pn(fi)dfi, 
- l 
1 

Qn(x) = 2nJQ(xyju)Pn(fi)diu. 

(42a) 

(42b) 

4.5 The Pj approximation 
It is easy to see that the first two equations of the system (41), for n = 0 and n = 1 are: 

dJ(x) 
dx 

d${x) 
dx 

+ Z0(xWx) = Q0(x)9 

+ 3Zl(x)J(x) = 3Ql(x), 

(43a) 

(43b) 

with appropriate definitions of Q0 (x) and Q\ (x). 
By definition 20(x) = S(x)-S so(x) and, therefore, is equal to the absorption cross section 

while Zi is the transport cross section.. 

4.6 Diffusion approximation 
If the source is isotropic, Q\(x) = 0 and Eq. (43b) becomes a so called Fick's law: 

<h(x) = J(x) = -D d(J)(x) 
dx 

(44) 

where D(x)=l/3Zj(x) is the diffusion coefficient. 
Equation (44) combined with Eq. (43a) gives the diffusion equation: 

d_ 
dx 

D(x) 
d(j)( x) 

dx 
+ Z0(x)$(x) = Q0(x) (45) 

With anisotropic scattering the equivalent equation can be obtained but with the diffusion 
coefficient defined as 

D=(3%(l-fJo)) - l (46) 

The quantity (1- Po)Zs = Ztr, is the transport cross section corrected for the first order of 
anisotropy. 
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5 Multigroup equations 

5.7 Pj equations 

The general form of the Pi equations in the multigroup approximation with the characteristic 
value introduced in section 3 is: 

VVr) + r o , , ( ^ 
g' 8' 

(47) 

V(^g(r) + 3Z:0fg(r)Jg(r) = 3^Zlgl^g(r)Jgf(r); gygy=l,2,...,G. 
g' 

In Eqs. (47) the indices g and gy refer to the group number and represent the energy 
dependence, while the variable r refers to the spatial dependence. 

5.2 Diffusion equations 

With the same notation the multigroup diffusion equations are: 

-VDg(r)V$g(r) + Z0g(l)g(r) = 

8' 8' 
g=ly2y...yGygy=ly2y...yG 

6 The BN approximation 

6.1 Assumption on the spatial shape of the neutron flux 

The method is demonstrated for the time independent neutron transport equation in plane 
geometry. The basis of the BN method is that the spatial dependence of the angular flux can be 
often approximated by a cosine or exponential term. Thus, by assuming spatial distribution 
independent of neutron energy it is possible to write: 

<p(xyjUyE)=e-iBxxF(juyE), (49) 

where B2 for a bare reactor is the lowest eigenvalue of the wave equation, i.e., V 0 = B 0 
with the zero flux boundary condition. For a reflected reactor, B is expected to be a real 
number in the core and an imaginary number in the reflector. 

6.2 Expansion of the scattering cross section 

If Eq. (49) is inserted to the neutron transport equation with scattering cross section expanded 
in Legendre polynomials (Eq.(37) generalized to the energy dependent case), we get: 
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v J (50) 

1=0 l - l l 

where Q(xyp,E) has been replaced by an isotropic fission source, — F( E)e~lBx. 
2 

6.5 Algebraic transformations 

Equation (50) is divided by 1 — (iBjJL / X), multiplied by Pn l/Ll), and then integrated to 

obtain for n = 0, 1, 2,. . . 

I(E)^JE)=fj(2l + l)AJE)jZs
l(E,-^E)(l>l(Ef)dEf+A0n(E)F(E) (51) 

/=o 
with 

AJE) y—iBir*"' 
Z(E) 

l 

4>n(E)=\W(pL,E)Pn(iim. (51b) 
-1 

The coefficients A/„ can be found by the fact that they satisfy the recurrence relation: 

-(21 + l)Aj,(y)-d + DAj;+1 - lAjM = - ^ (52) 

where 3; = 

Furthermore, A 7 = A, and A00 = - . 
y 

The set of coupled equations (51) can be solved numerically for (j)n provided the sum on the 
right-hand side is truncated. If the series is terminated by assuming 0/ = 0 for 1>N the result is 
the BN approximation. In practical lattice calculations the most often used is the Bi 
approximation. 
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7 Leakage in diffusion approximation 

In every realistic reactor system there exists the neutron leakage through the outer boundary. 
This leakage can be accounted for in an approximate way by applying the formulas based on 
the Fick's law. Let us consider in infinitesimal cube defined in Fig.3. 

dy 

7V~ dz 

^v dx 

-* y 

Figure 3. Infinitesimal cube in rectangular co-ordinate system 

Through each of the cube boundaries there exists a neutron flow connected with the net 
current: 

J net J+-J- (53) 

where the components, J+ and /_, describe the partial currents in positive and negative 
directions. Using the definition of the diffusion coefficient introduced in Eqs. (44,46): 

D = V 3 , 

the following formulas can be derived for the magnitude of the partial currents in the z 
direction: 

J + = - - 2 dz 

Hence for the z direction: 

and 

/ _ 

h = 

(j> D 
~ 4 2 ' 

dz 

d<l> 
dz 

3 
d<t> 

'dz 

(54) 

(55) 
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(Jz+dZ-Jz)dxdy=~D 

.*Jz+dz 

90 
dz z J 

dxdy-

d26 
D—i-dxdydz-

dz2 

d2(t) 
-D—+-dV 

dz2 

(56) 

Similar expressions are obtained for x and y. 
The leakage of neutrons out of an arbitrary volume will be composed of those in all 

partial directions and can be written as - DV (j). Assuming the spatial independence of the 
diffusion coefficient D(x)-D in Eq. (45) the diffusion equation can be written: 

Dv20-i ;> + e = o, (57) 

which expresses the neutron balance in diffusion approximation: leakage out of the system 
plus absorption equals the total sources, Q, including the external as well as internal sources. 

8 The boundary with vacuum 

The typical boundary condition, introduced together with the diffusion approximation, is the 
neutron flux going to zero at some distance from the outer boundary of the system considered. 
Let us consider an idealised case of an infinite plane reactor core surrounded by vacuum. The 
distance at which the flux drops off to zero is called then the extrapolation distance, and it is 
shown in Fig. 4. 

Extrapolation distance 

Figure 4. Extrapolation distance. 

By diffusion theory, using Eqs. (55) the extrapolation distance, d, is found to be equal to: 

3 tr' 
A calculation based on the transport theory gives approximately: 

d = - d (j) / dx 
= 0.71 ktr . (58) 

where A,r is the transport mean free path. 
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