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Absiract

The main goal of the pressnt lecturs is 1 is to give a shon descriplicn of neutron
mranspor, phenomena limited 1o those definitions that are necessary (o wnderstand the
approach o practical solution of the problem given in the second lecture on reactor latice
transport calcwlations. The discussion of the newron cross sections has heen skipped as other
Jecturers have treated this subgect in detail.
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1 Deflinitions

If Depeription of the medium

The medium is described by its isgéopic compositien and jts nuclear properties. The
composition Is given in teons of manber densivies of isutopes defined a5 the numbers of
respective nuclei in a cubic centimetre:

i
i N
ND*=P £ (1
AI

with the Avopadro Number N,=6.022<107, & - density of the isotope / in grams per cubic
centimatre, and A' the Atomic Mumber.

The nuclear propenies are described by microscapic cross secrions, o, for reaciions of
type X.

The macroscapic cross sections, X *(r.E) of an isowpe £, is & product of its microscopic
cross section and its number density, MDF' |, al position 7

™ (r By = NOV (r}- °(E). (2}

If the medinm is composed of more than one isgtope then the toeal macroseopic cross saction
of the me=dium is equal o he sum of croes sectons for esch isotope:

E wetwn (r.E} = K EZ(r.B} = X ((E} ND' (7)) 3

The sum of the panial cross sections for all passible types of neutron-nuclens collisions is the
total cross section. L is defined as the 1otal collision (or interaclion) cross section of 8 noutron
at position r bhaving energy £ (in the laborarory system). It is the probability of neuron
int¢raction per wnit distanct mavelled by 2 pewtoon and has the dimension of & reciprocal
length, e.z., cro

I, "trnE) = L E. (rE}. 4

A rectprocal of the wtal cross section, A, 15 called A mear free paik and is an average distance
of neutron mavel betwesn two consecubive collisions.

A=V Zr.E). (3}

& form of differential crass sectlon,

e B ) (r42 £ =82 E), (6)

iz defined for collisions, from which neotrons emerge, as the cross sections for initial dirsction
2 pnvd energy £ emerging in a collision n the interval 42 abow £2 with energy &8 abow E,
The cross section for & reaction of type x, for neutrons of cnerpy E' is X and f7
(r 53, F &) EYdL2 AF 15 the probability thet if a newtron of direction £° and energy £ has a
collision of type X, there will emerge from the collision a newtron in the direction interval £02
about £2, with energy dE about E. For elastic scaltering, integration of f* over all directions
and energies gives unity. For elastic scattering of newlrons from initially stationary nuclei £7 is
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a funcrion only of £2'{2 which iz a cosine of the scanering angle bepween the directons of
motion of e nevton before and after the collision. For [zzion it is a good appooximation 1o
assnme that the neutroms are emitted isotropically in the laboratory system Then it is poasible
0O Wwrite:

Fr e £ =S Ep AF = |Adr)x 1; E'—E) di3 dE, )

where-ifr: E'—<EFE, refemed o as the specirom of the fission nenrons, is the probability thae
a fission cavsed by a nentron at F with energy £ will lead 60 a neuton within Z about E. It is
norrmalized so that altér ntegration over full angle it gives MrET, which iz the avwmage
number of neutrons produced by a fisgion at ¥ cansed by a newtron of energy E'.

Instesd of the newtron energy, E, the newtron velocity, v, oy be used represented as:

¥ = vl
where v= | vl i3 the neutron speed and is connected to the energy by a standard equation

E=m2
with m the neniron mass.
The rate, in néutrons per it vofurne and e al 7 and #, at which noculrons are fransfooed
by interactions of type x into final directions within 4 sbowr 2 and final energies £ abow E
is:
v' Ee B v B =L B Ner Q" F" 1) did'dF' A2 4F. (E)

The total mate at which osulons are transferred is obtained by integmating the abowe guantity
aver all initial vewtron directions and energies, and summing over all reactions

1.2 Descriprion of Rettrons

A population of nenirons is descrived by a quantity called the rewrron anpular densiry denoted
by
Mir L E¢),

and defined as the probable {or expected) number of neoirons at the position ¢ with direcbon
£2 and emergy E a1 ime v, per unil volume per unil solid angle per unil nergy, €., per e’ per
steradian per MeV, Thus

N L EANVAEHE

is the expected number of neutons in the volume lement 4V about r, having directions within
J02 abo 2 and energies in JF abot E et e r.o Soch a number of newtrons in an
itfinitesimal volume i3 scimetimes refermred to as a packs? of peumons,

In the definition the expression "probable” or "expecied” number of neutrons iz meant 1o imply
that fluctuations from the mean pewten population are not taken inlo account.
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/ ¥
X
Figure 1. A packet of neunnons,

The integral of the newrom angwlar deosity over all directions is the coergy dependent pestron
dersity mfr, E, 1y
a(r,Ety= [ N(rnQ, E.)de2, ©)
an

where (he ntegral is token over all direciiems. Hence mfr.B) is the expecied oumber of
n=utrons st r. with energy E at time £, per onit volume per unit enerpy.

The product of the nentron speed v and the nenlon angular density 15 called e nextron
argular fluz:

Hr.RE=v-MriLE), (10

The integral over all directions of the neutron agular flux is called iovs! remron flux, often
refcrred b simply as the nestron fTux, and is equal to:

P inE L= va(r.Eq) {11}

The weuron flux has been inmoduced 2t a quantily much more wseful for the deseripiion of
reactor properties than the nentron namber density. The product of the neatron flux and the
MECrOACOPIC Croas secim:

{RRF=Z" (rE)-9(rEr) {12)

gives, by definition, the number of reactions suffered by neatrems per secomd, per cubic
centimetre and per ey, This guantity 15 called a reaction rate of 1ype & [n particular, the
fission reacton rate integrabed over energy is used w czlculate the energy produciion.

The pet number of newoons crossing a surface element per unit energy in unit time is
called the tetteot curment:

JrEri=v [QN(r0 Exd@- (13)

¥
The quantities defined abave are expressed in units given in Tabke 1,
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Tabbe 1. Summary of introdueced quandilies.

Quantity Symbol | Unit

Neutron angnlar density N | neutronsfiem™ steradiane¥)
Neatron density n |oeutmmstien’ €V)

Meumron angnlar flux & neutronsfcm®- steradian £ V-sec)
Menteon fluz ¢ | reutromsiiom® e¥-secd

Neulron net current J | nentronsticm’ £V-sec)

It can be zeen thal the nentron current and the neutron todal Aux have the same prits. The
differtnee bétween these two quaniities can be better woderstood 3 we compare their
definitions, derived from Eqs. (%-11} and Eq.{13}, bur expressed in terms of the angular flos:

Ofr, Et)= Ji;ﬁ{r,D,E,de,
dz
(143

Hr Bt = j' QD(r.0 E1dQ.
A

Equations {14) show ihat the meuoon flux and cuarrent are, respectively, the zero's and first
moment of the nevtron angular flux.

By the keuiror seurces we undersiand neurons which emerge in the syst=m from events
ethet that newtron collision and, thesefiore, they ace independent of the nevttom density. They
are ually denoted by (X LLE 1), which expreszes the probability per unit bime that a neniron
of energy E will appear at + per unit volome per unil solid angle per unit energy. Sometimes
they are referred 1o a5 extetnal or independent newtron sources,

2 The neutron IFANSPOEE ¢qoaltion

21 Two Basic forms of the meulvon (ranipers gquation

The neulron ransport equation is derived from the neoiron balance inside a newron packet (cf.
Fig-1). It wakes o accounl the number of neutrons omaining in the packet, e oumber of
neutrons entering the packet as a result of collision and the number of neurons entering 1he
packet from external sources. The final result is:

%+ vRVN + IoN ={[ 2" /' N' dE'dIX+0, {15}

where N=Mrf2EL N'=NrQE 1) E=HrE)L E = HrE'). f = finf¥ . E'—E) @ =
Gir L3 E.rh

The neatron transport cquation may be also expressed in tenme of the angolar flux @, which is
equal te w-M. By a direct substicution of iz definition ote gets:
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122 avp+zo= [[ 5 RdE d+0

v & . (16)

22 Interfoce conditions

The solufions to the Dewron ransport equation are frequently sought in spatial regions
including mtecfaces between different materials At such intcrfaces, the cross scctons ac
discontnupns and it is necessary to comsider how the mansport equetion is w be used in these
circumstances. The number of newicons in a packet is ot chaoged, merely by crossing a
physical interfacc. This means that the pouton angular density must be continwous in » as the
interface is crossed. Thus the continuity condition is 10 be used at the interface. This refers o
the pruton angular deosity bul is equally applicable b the angular Aux.

2.3 Boundary vonditions

I peoeral the wgiom of interest is sunmounded by a comvex swrface. A nouten leaving the
region through the surface cannot interseet the surface apain. If neutrons enter the egion from
extemal sowrces, then the incoming pewron flux st be specified. 1f oo newioons enter from
extemal sources and if a neubron, omee 1L leaves the surface, cannot retom, then the surface 13
called a free surface and we have the condition:

MrQEy=0 if n-k=0, (17)

where iz a unir vector in the direction of the cutward nonmal at 2 position £ on the surface.
Such situation appears, if the region is sumoumded by vacuum or a perfect absorber,

In practical applications we deal gnite often with angther ype of boundary condifions.
We speak about 3 speculer reflection boundary condition if all the neutrons approaching the
boundary from within are meflected back to the region with angles preserving the peneral
reflection rule, and abour 2 white boundary conditon if they are reflected back with an
isctropic distibutisn, The schematic explanation of the difference between the two boundary
conditions is given in Fig. 2. It can be seen that if a packet of netrons born in the middle of
square rgion ceaches the cotnseculive bourdaries withoul collizion they bave a good chanee 10
reach the cemoal region under both types of boundary conditions, The same pecket born in the
widdle of a circular region has & good chance (0 reach the central region ender (he white
beundary condition but practically no chance umder the reflective one. This fact will be nsed in
the application of the transport theory ko the solotion of practical reactor problems.
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Figure 2, Effes of reflesuve (on the kR hand sde) and white (on the oghe band srde) boutdary comdituons for plane,
square and ciecu bar Boundares

24 MNeutron conservaiion

The nentron ranspart equation is simply a statement of neulron conservalion as applisd to an
infinitesinnal efement of voluroe, direction and energy. If it is integrated over all directions, the
result will be a statctment of neutron comservaton [or a small clenent of volume and energy.
Integration of the neuron ranspont eguation {135) over all valees of &2 pives with the previous
trotation (f. Eqs. (9} and (13)):

%+ Vi+Em=[ErE—>ENndE+Q, (8
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where also £ and X' have been integrated over the angle and
E(rE'— E)= [ I(r;E fir? B'>Q,E6Q.  (19)

which is the crost section al 7 for collisions which result in a newrem of emergy E' being
replaced by one of energy £.
ntegration over & Anite region of volume, ¥, and enerpy gives:

JH L Nivsavasfmzvar

= j”Hr:E'—}E}v'n'dE'dVdE+” QdVdE
Each of the hive lems in the 2qualion has clear physical meaning. The quantity

|[ navaE

is the total number of neutrons in the space-energy region under consideration. Hence the firs
ke is the e rate of change of the dal number of neutrons in this egion. The secordd tetin
can b witter: with application of the divengnes heorem:

{[vr-avae=[[ m- aade. 21
vV A

where #A refers to an element of area, on the boumdary smface of the cegion, V., under
consideration and « is a unit nomal o the surface element, directed outward from the region.
Hence, the secomd term iz the net number of neurons Aowing oot of the spacs-eteriy region
per umit ime. The third term

[[vznavae

is the mic at which nculrons are enteting ioto collisions in the given region, 14, the otal
collision cate, and the fourth berm

[i=tr: B~ By naE" avaE

is the rate ar which they enwerge from these collisions. The fifth verm gives the rare at which
nenttons o independent sources are introduced inte the region.
Thus the direct reprezentation of particolar terms gives:

Rate of change of neutrons = Net rate of generation of neutrons in collisions
+ Rate of inttoduction of source newtrons
= Net rate of outflow of neutrons,


file:////ndVdE
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25 Mtegral equation for neutvon iranspost

The nevtron transport equation is an inlegro-differeatial one for the neutron angular density or
flux. By the application of the tmethod of characrenistics to the peutron ransport equation, it
can b convened inte an integral equation:

=] 5
O(rQEN= [exp| - | E(r-5"Q:Edis” |gfr - ' Q0. Bt =S pds’ 22)
0 0 Y
with
ol 8. E) =

- j dE’IE{r; E' Jir: E' = £, E){r.0.0" EYQ + Qir.0,Et)

Thus ¢ is the total rate with which newtrons appear at r, 2 E and £ a5 a resolt of both collisions
and the independent source.

The intepral equation in the simple caze of the total crogs section independent of position,
isnttopic scattering and source and oo time Jependence of e nentron Aux becomes:

e LBk
& rE)a J'—zcﬂ-“ - _[z{r’:E“ — EXbf ' E ME +0(F . E )|
dx - R
(23}
wimK=|r—r'|_
The assumption of a cross secton independent of e spaual variable is not fulfilled in
any realistic reacior system. However, if the system can be divided into subregions with
constant material properiies Eq. (23) can be wsed for effective mactor calculations.

248 Mufiigroup appreach io iRe nentron (rarsport equarion: sofution

There is no possibilicy of obaining sxacl solutons to the encory-dependent neulton Lansport
cquation for general wactor problems. [t i= necessary, therefore, o adopt approximate
methods for solving the ransport equation. The most importimi are the multigroup methods in
which the ocutem encrgy imiérval of interest is divided into a finite number of Intervals, AE,
(called groups}. [t is then assumed that the cross secton in each group is comstant, &.g., equal
1 an avetage over energy. Within cach group it s then independent of energy, aldwugh
arhiirarily depemwdent on position:

ZHrE}= ZXr). forg=12,..G,

| [An2 B @ EMEE=c (1) Syt R Q) 28)
AE, AE,
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The ntulmom angular Aux atd sources are micgraied over respective éemtrgy intervals of
Eroups:
®y(rQ)= [¥ 0 EME
AEE

Q;(rR)= [QInQEME

JEE

{23}

For a rime independent case, using definitions from Eqs. (24,251, the encrgy dependent
equation &5 replaced by a sel of coupled ome-spesd equadions which are then solved by
approximate methods

W'mgfﬂﬂ Ik zgfrj¢gfﬁﬂ)=
= (1Y, ZoAr)] fyglr: @ = QD (r, Q" JQ+0, (7,52 ) 20
<

The quantity c,{r) introduced in Eq. .{24) has 2 meming of the mean number of neetrons with

energy in AE, emerging per collision at r. For scattering collision ¢ = | and for fission ¢ = &
{ef. Eq. {T)).

3 Cridleality

From physical consideration, itis to be expected that svsierm containing fissile nuclides can be
aubcridcal, critical or supercritical, based on the behaviour of the oewrom population as a
function of time.

A system iz said to be subcribcal if for any nonzero initial neuron population, the
expecied population dies ot with time unless it i3 sustaned by an external pentron sounce.

A system s 5aid to be supercritical when the expected neuiron population diverges with
me, starting from any nonzero population.

A system i3 said o be Coritical as ome in which a steady, time independent neution
population can be maintained in the absemce of a source.

The neutron transport aquation with boundary conditions defines an indtial value problem.
I the peutrem angular density at £ = O Is given, the eapected density at any lawer time can be
found, in principle, by sclving the newron transpon equation. It has been shown that such a
solution exists and is unique, provided some mathematoal conditons are sarisfizd for actoal
phy=ical situations.
The homoegeneois (source freg) npevtron transpont aqualion may be written in the operator
form:

%:-vﬂ?h’ -ZwN + [[ " o N dEd = LN, 27

where L is e gmnsporl operator. The boundary condition of no incoming nenrons is
assumed. We consider the solution of the equatiom expressed in the Form ¥ = N(r.f2 El™
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o which G, S2E) = LN{r, Q E). There may «xist many sigenvaluss @ of the operator L,
represented by ¢4 with comesponding eipenfunctons My

4N = LN o8

In practical cases there exist a real cipemvelut greater than the real parit of any other
eigenvaloe. It will be dencted oo and the eigenfunction associated with it Naw S2E). [f the sign
of 5 is negative v solution of Eq. (27 will decrease ayympiotically and (the system is
subcritical. If the sipn is posidve the solution will tend asympiotically to infinicy and the
system 15 superctilical. Mote rigovous consideralions consisting in applying the Laplace
transform lead o the asymptotic sohition in the form:

NirS2Et) = A exp{ctet) N (r.LLE), 85 1—wo, (29}

where A iz a constant dewermmingd by the inital condiions. Thus, the criticality problem is that
of finding the conditions for which &, = 0. A rigorous analysis has shown thar for cenain
conditicms (satisfied in practice) on the scatlering kernel there s at Jeast ome discrels
cigenvalue.

The homogensous neviron ranspont equation will have g time independent solution when
&, = 0 or the system is critical:

LNy =0.

Introadacing awxiliary characteristic valoes may approach the criticaliy preblem. In particolar,
the specium of the fission pewoons afrE'—E) we replace by &fr B —EME, and & can be
varigd 0 obtain the stationary solution, with & = b-2f , called effective nuldplicadon factor.
This amrcunts b muluplying the nuinber of weutroms cmitted per fission by the ewr 17k-2fF

By definition k2§ is a characteristic value of the equalion:

VN U | I A , (30)
EHJ‘EE: Fv dﬂ‘dE+—i_;}-HEﬂr.E S E)E YN, A dE

where the summation over x unequal £ refers to collisions other than fission in which neutrons
are produced ated iy are cigenfimetions independent of rime.

In elementary reacww theory &-¢ff is eated as a ratio between the numbers of neutrons in
successive generations, with the fission process being regarded as the birth event which
stparates gemerations of neuwons,

For a critical system, i.e., when &, = 0 and k-£ff = 1, the comesponding eigenfunciions
satisfy the same equation, for any ather system, however, the wo cigenfunctions are different.
Thiz can be seen when writng the homogeosous eipeovalue equation in the form:

74
VAVN, +(Z+—2pN, =IjE'ﬁr'N‘ diXdE” {an
a ¥ L Hﬂ

The term &/ appeas 45 an additional absorption and it is somctimes refemed to as ‘time
absorption’ (or production).,
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4 Solution of the one-speed transporl eqmation by the spherical harmenics method

4.1 Limiiation te a time independent onesspeed transpart quation

The methad is demensirated for the time-independent, one-speed nearon ransport equaton in
plane geometry. 1t has been shown that the application of the multigroup approach leads w e
set of coupled one speed equations and, therefore, the aszmption of one speed is not a eal
limitation of the method.

For & one speed caze scattering is a function only of the cosine of the scatterimg angle, i.e.. L,
= £24¥', where 12" and £2 are the neutron directions before and afler scatlering, respectively. A
guantity e 43 627 is then defined by:

Zr Q) = Z(rjirifir; Q) ©2)

which will be referred o as scaltering crogs section. With this notation whe one-spesd Eq. (26)
may be written:

QVE(FQ)+ (W2 )= | Z,(1.Q BIDr.29dL+0( 7.2 ). 533)

4.2 Choice of geomeiry

To apply any effective method of solution to the neuron transport equaton ons has to specify
the steaming term given by Eq. (21}, e, to have axpressions for the quantity Q2 VN or 288,
For that purpose a systetn of co-ondinates has to be chosen and the gromery defined. The
expression can be derived for co-ordinate syztemns where the position vector r is given in terms
of rectangular, spherical, or cylindnical co-ondinates. Two angular oe-ordinates are required to
specify the peaton direction and these are chozen bo be polar and azimuthal angles, Hers the
method is demenstrated using Ihe simplest possible geomeiry, ie., the plane geomelty, {or
which spherical harmonics reduce 1o Legendre polynomizls.

For plane geometry, in which the neutron angular density (for a specific energy) is a
Funetion of x and 1he szimuthal angle, 8, the strearing Llerm can be eapressed;

d@ oD dx 6‘@ Pl
NP =—=———=—vcosl = — 34
gy odx ds ax =# 519 G4

with = cos@ whers 8 is the azimuhal angle correspotding 1o the diveclion £

Hence Eq. {32) becomes:

1
T )P )= jdﬂ [ 28520 )0 55" M+ Qx5

&’qﬁrx,n )
& |
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4.3 Expansion of the seanering cross gection
The scarering cross section is expanded in Legendre polynomials and #ssocialed Legendre
fumctions;

il T 8 |
fsf-*#u1=2—+ alx)Filug ) (36)
=0 4ar

and then Fyipy) 15 expressed in terms of Legendre polynomials and associated Legendre
functions of the divecticnal cosines g and p'. The intepration over the azimuthzl angle is
camried out giving:

B L T W T L Pt S

d.4  Exponsion of the flux

The next step is ta represent the angular dependence of the neutron flux as an expansion in
terms of Legendrs polynomials, Puf ik

(38)

where f$fx} are the expansion coefficienls dependent oo x. Becanse of the orthogonality of
Pofubthe latter are given by

1
Prafx)= [ (x5 )Pl 1 JQ = 20 [ B %, 2 )Pl p)ds - 39)
-1

IF dve series is trucdcatsd after N+ terms, e cosull 18 ceftrred 10 45 a Py apptoxirmation.
For m = &, Pfuh = |; henee gyx) is simply the ttat flux at v, For e = 1, Pyt = poand
Eg. (39) pives

1
ouf x )= 2 [ u®( x, p s, 40
-
which iz the net cimrent at x in the positive direction.
The general form of equatioms obtained by subsiititing expansion of Eg. (333 inte Eq.
(37 is:

fn+tl) derrn——+{2n+1}E fx ) fx}={2n+1)Q.(x) (a1

a=, L2, ..

d¢n+1(1} d¢"_]
dax dx

where Zixp=XKx]-Z fr) and the expansion coefficienis are given by ithe onhoponality
relations:
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1
Bl X )= 21 [ B x, 12 )P, 42 Mt @28)
-

1
Ol x)=27 [ Qf x40 )P (4 M. (42b)
-1

4.5 The P; approximation
It iz easy to see that the first bvo egquations of the system (41), forn =0 and n= | are:

afix)

+E{x M x}=0yl x), {43a)

d'l‘” #3250 M(%)=30,(x). (a31)

with zppropiate definitions of @, (2 ) and € (2L
By definition Z(x} = Efx)—-L (=) amd, therefore, is zqual to the absorption cross section
whilz L, i5 the transport cross sechion..

40 Diffusion approximarion
If the souree 13 ispdropic, £4(x) = and Eq. (43b) becomes a so called Fick™s law:

d(x)

=Jx)=-D 44
¢ix)=J(x} n (44
where DY x)=13Zx} is the diffusion coeffcient
Equatiom (44) combined with Eq, {43a) gives the diffusion squarion:
d diy x)
'E[D!’IJ' 11 ]+EafIJ¢fI}=Q¢JfIJ (45)

With anlsotropic scattering the equivalent equation can be obtained buy with the diffusion
coefficient defined as

D=(3E, (1- tig}} "' {46)

The quantivy 1- pplX, = X, is the tansport croas secion comected for the frst order of
anisotropy.
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£  Multigroup equations

31 F) equotions
The geteral form of the Prequations in the multigroup approximation with the charactetisiic
value inroduced o section 3 is:

f

V)% Fo,gibglrt = Ty, nié (1) LT KE ol Bl
[ g

{47

v¢3{rj+3£'urgfruxfrj =3EZ' (70 peir) ge=12,..6.

Le'=g
In Eqs. (47} the indices g and g~ mfer o the proup number and represent the energy
dependence, while the variable r refers 1o the spatial dependence.
3.2 Diffuslon equations
With the same notation the multdgroup diffusion equations are:

- ?Dgfrj"F?g[ ri+ Eﬁ‘gpgfrj =

I f “8)
:Eﬁég._’lgfrkﬁg-fr)-t-}—;ng—_}gfr Wetr)

2=12,..G. g'=12...G

& The By approxintion

6.1 Aswmimprion on the spatiaf shape of the neatron flex

The method is demonsiated for the time independent nevmon transport equation in plane
geomelry. The basiz of the By method iz that the spatial dependence of the angular flux can be
often approximated by a cosine or exponential term. Thus, by assuming spatial disimbation
ind¢pendent of ncutrom gy it is possible wo wiite:

D{x, 4, E}=e P, EY, 49

whete 8° for a bare Teactor is the Jowest eigenvalue of the wave equation, i.e., vip=pgle
with the zero fluz bowmdary comdition. For a eeflected macion, 8 i5 cxpected to be a real
number in the core and an imaginary oumber in the reflecior.

6.2 Erparition of the seafer g cross seelion

If Eq. (4%) is insenzd o the newtron oansport equation with scateering cross section expanded
in Legendre polynemials (Eq.(37) gencralized Lo the encigy depemdent casc), we geb
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iBM
F1=-— E b=
[ 5 }rtu )

where Qfx,utE) has been replaced by m isobropic fisskon source, -;T Fy .‘E'}rz*""":'E .

(507

1
Lt pwf 58— B) ¥ BV 4B+ FLE)
2

6.3  Algefraic ransfarmtions

Equation (50} is divided by 1={iBjz/ Z}, multiplied by P,(t). and then integrated to
obtain forn=0,1,2, ...

Z(EW,(E)= (2 + VYA E) Zi(E— EP,(E JHE+ A {E)F(E) ©D)

Inf)
with
1 R(u)P(p)
A;anJ—El[I - B L, (51a)
XiE}

1

9.(E)=[¥(1E)P,(1)dpt. i)
.

The coefficients Aw can be found by the Tact that they satisfy the recuorence relavion:
1 _ ¢ it

where y=——o.
X E)
tanh ™t y
¥
The sct of coupled equations {51) can be solved numerically for ¢, provided the sum on the
right-hand side is truncated. If the series is temminated by assuming gy = O for f=) the result is

the By approdimation. In practical ladice calculations the mwost ofien uwsed is the By
approximation.

Furthermoce, -"'!'_1'! =A¢r‘ and Ay =
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T  Leakage in diffesion approximation

In 2very mealistic reactor systen there exisis the rtutron lszkage through the outer boumdary.
This lzakage can be accounted for in an approximate way by applying the formmulas hased on
the Fick's law. Let us oomsider in infinitesimal cube defined in Fig.3.

&

X

Figmrs 5. Iofatesimal cube i rectangudar oo-grdinage system

Though each of the cube boundauies (hete exists a tenbon Mow conmected with the el
cuorent:

I =44 = Jo {53y

where the components, J, and 1 describe the partial currents in posibve and oegabive
directions. Using the definition of the diffusion coefficient introdueed in Egs. (44.46}:

og
f=0-—
oz
D= 4.3,
the following formmilas can be derived for the maghitede of the partial curremis in the ¢
direction:
;.8 D o
HEPEPEFY
6 D &' (34
J_o=tt— =
4 2 &
Hence fon the = divection:
& Ay o9
J,==-D —— {33)
z & 3 &
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]
1
I+ Z i (560

Similar cxpressions are abtziosd for x and 7.
The leakage of newrons out of an arbitrary volume will be composed of those in all

partial divections and can be wriken as - D?zqi. Assimming the spatal indspendencs of the
diffusion coefficiant I¥x)=0 in Eg. (45) the diffusion squation can be written:

DVip-Z% + O =0, {57)

which 2upresses the nenron balance in diffusion approximation: leakage out of e system
plus absorption equals the toial sources, 4, including the extemal as well &< intemal sources.

§ The boondary with vamuuom

The typical boundary condition, intmoduced topether with the diffision approximation, is the
pewinon fluz going 0 Zero at some distancs from the omer boundary of the system considersd
Lat us considér an idealised case of an infinile plane reactor cors surenmded by vacuum. The
distance at which the flux drops off to zeto is called chen the extrapolarion distance, and it is
shown In Fig. 4.

slope

Tlux

]
Extrapolation dstance

Figmre 4. Extrapolation disiaoce.

By diffusion theory. using Eqs. (35} the extrapolation distance, d, is iound 10 be aqual to:

2
d=;.;.1r.

A calculation based on the transpost theory pives approximately:

% 58
d Y 0.71 &, . (58)

where 4, is the Iranspont mean free path.
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