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Abstract

The basic features of elastic and inelastic scattering within the framework of
the spherical and deformed nuclear optical models are discussed. The calculation
of cross sections, angular distributions and other scattering quantities using J. Ray-
nal’s code ECIS95 is described. The use of the ECIS method (Equations Couplées
en Itérations Séquentielles) in coupled-channels and distorted-wave Born approxi-
mation calculations is also reviewed.
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1 Introduction

A nuclear reaction is initiated when a nucleon or nucleus collides with another
nucleon or nucleus. Reactions are characterized in first place by the incoming nuclei
and the outgoing reaction products. Examples of the usual notation for this are
14C(n,n)1C, for the elastic scattering of neutrons on '2C, 56Fe(p,t)**Fe, for the
pickup by a proton of two neutrons from *®Fe, and 23*U(n,n’) for inelastic neutron
scattering from 235U.

A complete description of a nuclear reaction involves other observable quantities
beside the incoming nuclei and the outgoing reaction products. Among these are
the relative energy of the incoming and outgoing nuclei and the scattering angle of
the outgoing products. When the nuclei/nucleons involved have spin and/or excited
states, their polarizations and/or excitation energies can also be observed.

The characteristics of the reactions induced by a given pair of incident nucle-
ons/nuclei can be summarized in distributions of the occurrence of the reaction
products, called cross sections. Quantitatively, the cross section o, for the produc-
tion of a product p is defined as

number of particles p produced per unit time

o) = M

number of incident particles per unit time per unit area

Cross sections have the dimension of area. The information obtained from cross
sections often depends quite strongly on the internal structure of the initial and final
nuclei. In fact, the comparison of experimental scattering observables with those
obtained from various nuclear models can teach us a great deal about the structure
of individual nuclei. After having used such a comparison to determine the model
parameters appropriate for a given system, one hopes to use the same parameters
to predict cross sections in other energy ranges or in neighboring systems.

At low energies and for all but the lightest nuclear systems, nuclear reactions
occur on two very distinct time scales. Direct reactions occur promptly, on a time
scale of the same magnitude as the time it takes the projectile nucleus to pass by the
target nucleus. Compound nuclear reactions, which involve the formation of a quasi-
bound intermediate complex, occur on a time scale that is at least several orders
of magnitude larger. A naive application of the uncertainty relation, AEAt > h,
would lead one to expect their energy scales to be inversely related. This is, in fact,
the case. The contributions of direct reactions to the cross sections vary smoothly
with energy. Compound nuclear reactions make contributions to the cross sections
that fluctuate rapidly with energy.

The difference in the energy dependence of the direct and compound nucleus
contributions to the cross section is clearly seen in Fig. 1, which displays the total
neutron cross section on *®Ni at extremely low incident neutron energy. One ob-
serves a direct reaction cross section — the result of elastic scattering of the neutron,
in this case — that varies slowly with energy, except where it is punctuated by a
faster variation due to the presence of a compound nuclear state of >’ Ni of about the
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Figure 1: The total cross section for neutrons incident on 58Ni at low incident energy, taken
from the data of Ref. 1

same energy. At such low energies, separation of the direct and compound nucleus
cross sections is a fairly straightforward (although often an arduous) task.

At higher energies, the density of compound nucleus states becomes so large that
the individual contributions can no longer be resolved. It then becomes impossible
to distinguish the slow energy dependence of the direct contribution from the rapid
variations of the compound nucleus one. An example of this is given in Fig. 2, where
the total cross section for neutrons incident on 58Ni is again shown, but now at
higher energies. The fluctuations in the cross section, called Ericson fluctuations,[3]
do not permit the determination of the contribution to the cross section of each
individual compound nuclear state. Instead, only the average properties of the
compound nucleus contribution to the cross section can be determined. It is in this
context that the optical potential plays a crucial role in the separation of the two
contributions.

The principal objective of the optical model is to describe just the prompt,
direct reactions in a nuclear collision. To separate the direct reactions from the
compound-nucleus ones (theoretically), one assumes that the compound-nucleus
reactions do not contribute to the average wave function and scattering amplitudes,
due to their rapid fluctuations in energy. Note that the compound-nucleus reactions
still DO contribute to the average cross sections, which are, for the most part,
proportional to the squares of the amplitudes. The energy-averaged amplitudes,
however, are associated with the scattering amplitudes for the prompt component
of the scattering. The optical model potential is defined as the potential which
furnishes the energy-averaged scattering amplitudes.
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Figure 2: The total cross section for neutrons incident on *8Ni in a small incident energy range
close to 5 MeV, taken from the data of Ref. 2

In a wider context, the optical potential can be considered an effective poten-
tial that takes into account all of the physical processes one does not want to take
into account explicitly. The most important of these are the rapidly fluctuating
compound-nucleus contributions to the scattering. But direct processes are also in-
cluded at times. One example of this is the use of an effective spherical optical model
potential to take into account the coupling to excited states of the target. Another
example is the deuteron optical potential, which usually contains the contribution
of direct deuteron breakup.

As well as being fundamental for the calculation of direct reaction observables,
optical model calculations are also used to produce the transmission coefficients
essential for the analysis of compound nucleus cross sections within the Hauser-
Feshbach statistical theory. They are thus one of the first and most important steps
in the evaluation of nuclear cross sections.

2 Formal development of the optical model

To derive the optical model from ‘first principles’, one begins by partitioning the
Hilbert space of states into a component P containing the prompt states and an
orthogonal component Q that contains the closed channels of the intermediate com-
pound complex.[4] As a concrete example, one may consider P to be the subspace
consisting of a nucleon scattering on 3®Ni, while Q consists of the ground and ex-
cited states of the nucleus >°Ni (and other processes, such as - emission, that have
been neglected). The projection operators, P and (), onto the subspaces P and Q,
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respectively, which satisfy the properties

P=p! Q=0q
P =P Q@*=Q (2)
P+Q=1,

are then used to decompose the state vector of the system, ¥, and the Schrodinger
equation it satisfies,

(E-H)¥ =0. (3)

The prompt component of the state vector is P¥, while the slower component is
QU, with

U =PU+QU. (4)

We can multiply the Schrodinger equation on the left by P or by @) and use the
decomposition of the wave vector to write the equation as two coupled equations,

(E— Hpp)P¥ =VpoQV¥ (5)
and
(E - HqQ)QV = VopP¥, (6)
where
Hpp = Hop + Vpp = PHoP + PV P, Vpg = PHQ, etc.,

and we have assumed that the contributions to the Hamiltonian of the internal
degrees of freedom and the kinetic energy, both contained in Hy, do not couple the
P and Q subspaces. We may formally solve the first of these, Eq.(5), as

4 1 .
P\I’z - ¢z + E(+) _ HPP VPQQlIIza (7)

(+)

in which the (4+) denotes an incoming wave boundary condition, the vector ¢;

satisfies the Schrédinger equation in the P subspace,

(E - Hpp)g{P =0, ®)

(2

with an incoming wave in channel i alone (and none in the Q subspace) and P¥;
and Q¥; are the components of the full wave vector that evolve from this incoming
wave. The solution PU;, when substituted into the second coupled equation, Eq.
(6), yields

(E - Hgqg — Woq)QU; = Vors!™, (9)
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where
1

MVPQ : (10)

WQQ = VQP

We can decompose the P-subspace Greens function into its real and imaginary parts
as
1 PP
E®) —Hpp E—Hpp

—7:7T(5(E—pr), (].].)

where P.P. represents the principal part. The open channels in the P subspace thus
make a negative imaginary contribution to Wgg, which results in singularities in
the wave vector in the lower half of the complex E plane.

Eq. (9) can be solved to obtain the Q-subspace component of the wave vector
as

1
 E—Hgo —Waq

+
QY; VQP‘,ZS,( ) (12)
which then permits the expression of the P-subspace component of the wave vector
as

1

1 (+)
(5 1
B — Hpp PO - Hoo — Waq Vord: (13)

Py, =g +

A careful analysis of the last expression leads one to the scattering matrix 7y; giving
the transition amplitude in the P subspace,

7}2. = 7}(;3) + <¢§c)

o). (14)

The first term in this expression is the direct scattering amplitude associated with
scattering in the P subspace alone. The second term describes the slower processes
that result from coupling through the states of the Q subspace. The first term
varies slowly as a function of energy while the second term varies rapidly.

The energy average of the P-subspace wave vector can now be written as

Vp Vor
°E—Hoq —Waq °

1 1
(PT;) = o + B _Hpp @ <%> Vord!™, (15)
where
e =FE —Hqq — Wqq (16)

is the only rapidly varying function of the energy in the expression. The average
wave vector can be written in a Schrédinger-equation-like form by multiplying both
sides of the expression, Eq. (15), by Et) — Hpp,

(B — Hpp) (PU) = Vi <é> Vord™. a7
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Using Eq. (15) again to rewrite the wave vector ¢§+) as

+) _ 1 PU, 18
¢z 1+ (E(+) — pr)_IVPQ <1/€QQ) VQP < Z> ’ ( )

substituting this in Eq. (17) and performing a bit of algebra, one finally obtains
the optical model equation,

1
(1/eqq) " + Woq

The optical potential can thus be written as

E—Hpp —Vpg

Vor| (PT;) =0. (19)

1
(1/eqq) " + Woq

To conclude the formal development of the optical model, one must evaluate the
average value (1/egg). The simplest way of doing this is to average the quantity
1/eqq over a normalized Lorentzian density,

Vopt =Vpp + Vpg Vor . (20)

1 / p(E, Ey)
L Y ) o : (21)
<€QQ> ® Eo — Hoq — Woq
where
A 1
p(E,Ey) = (22)

2 (B - Fo)’ + (A2

Assuming the quantity 1/egg to have no poles in the upper half of the complex E
plane (due to causality, it should have them only in the lower half-plane), we can
perform the integral by closing the contour and calculating residues in the upper
half plane to obtain

1 1
— , 23
<€QQ> E—I—iA/Q—HQQ—WQQ ( )
and hence
1
= . 24
Vot =Ver +Vro g a2 @7 (24)

The optical potential is obviously energy-dependent, non-local and complex due
to the energy-averaged propagator (E — Hgg + iA/2)! in the second term. Its
imaginary part is negative, resulting in a potential that is absorptive. The flux
of particles leaving the scattering region is, in this case, smaller than the incident
flux, with the remaining fraction of the flux being absorbed by the potential. It
is through its imaginary part that the optical potential takes into account the flux
that is lost from the states of the P subspace to the states of the Q subspace.
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The optical scattering matrix can easily be derived in the same manner. One

obtains
1
VPQ < E— > VQP
€QQ

with (1/eqq) given by Eq. (23). Observe that the second, rapidly fluctuating term
does not vanish completely. Indeed it should not vanish in general, for its average
contribution describes the loss of flux from the prompt channels to the long-lived
compound-nucleus states.

<T>fi = T(z'P) + <¢§e_)

¢§“> : (25)

3 Low-energy neutron scattering

At low relative energies, a collision between charged nuclei or a nucleus and a
charged nucleon is dominated by the Coulomb force, which keeps the two beyond
the range of nuclear interaction. Only neutrons can enter sufficiently close to a
nucleus at such energies to feel the effects of the nuclear force.

Several factors also simplify the description of low-energy neutron scattering.
The centripetal barrier keeps all but the 1=0 s-wave contribution effectively out
of the reach of the nuclear interaction for energies smaller than about 50 keV. In
addition, with few exceptions, nuclei have no excited states at energies lower than
about 20 keV. The prompt component of neutron scattering then reduces to s-wave
elastic scattering in this energy range.

The optical model equation for the s-state wave function g is

Yo

(Ecm -T— Uopt) r =0, (26)
which can be reduced to
&2 2
d:ﬁO + [ 2 h_ZUopt] ’¢0 = 07 (27)

where the wavenumber is k = 1/2uFE., /h2, p is the reduced mass and E.,, the
center-of-mass energy.

To solve this equation numerically, one develops the solution, 9, in:(r), starting
from r = 0, using the condition that the wave function vanishes at the origin,
¥0,int(r = 0) = 0 and one of many possible numerical methods (Cowell, Numerov,
modified Numerov, Runge-Kutta, etc.). The equation is solved numerically out to
a radius r,,, beyond which the optical potential can be neglected. For values of the
radius equal to or larger than this matching radius, the solution to the differential
equation that satisfies the incoming wave boundary condition takes the form

Y0,ext(r) = 5(6_“" — Spettr) > T (28)
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One requires, at the matching radius 7,,, that this external wave function and its
derivative be the continuous extensions of the numerical wave function obtained in
the the internal region and of its derivative. This results in two equations,

a0¥0,int(Tm) = 5(67“”’” — Spetkrm) (29)
and
d k ) ,
aogwo,mt(rm) = 5(67"”’" + Soethrm) (30)

whose solution yields the amplitude of the internal wave function, ag, and the S-
matrix element, Sp.

Once the S-matrix is known, the cross sections can be calculated. For the case
of s-wave scattering, these are

27
Otot = k_2(1 - Re S(]) s
Vs
o = 33 1So — 11, (31)
Vs ™
and o, = (- |So|?) = =T,

where Ty is the s-wave transmission coefficient. The reaction cross section and the
transmission coefficient Ty are non-zero when the S-matrix element Sy is smaller
than one in magnitude. This occurs when flux is absorbed by the long-lived
compound-nucleus states. Care must be taken, however, when comparing the opti-
cal model reaction cross section to the experimental one. A part of the flux absorbed
by the compound nucleus can later be re-emitted in the elastic channel, in which
case it should rightly be considered part of the elastic cross section.

Of the three cross sections, only the total one can be compared directly with
experimental data, as it is the only one that is linear in the scattering amplitude
(here the S-matrix element Sp). The S-matrix element can be written in general as
the sum of an average and a fluctuating part, S = Sge + Syi. The average elastic
cross section then has the form

™ ™
(0a) = 25 1Sae =17 + 25 (ISpl*) - (32)

The first term alone gives the elastic cross section of the optical model. The second
term contributes to the optical model reaction cross section.

Other scattering quantities of physical interest can also be calculated for low-
energy neutron scattering. At extremely low energies — below the resonance region
— the elastic cross section is observed to approach a constant value, 6. This value
is used to calculate the scattering radius, R' = /0¥ /4.

In the resonance region, s-wave and p-wave strength functions can be defined.
The s-wave strength function, sg, relates the average neutron partial width (I'g)



Optical Model Calculations with the Code ECIS95 71

and spacing Dg of the resonances to the optical model absorption. One has, ap-
proximately,

0 DO Ecm 271'V Ecm ’

where Fjy is usually taken to be 1 €V. The factor /E.,,, proportional to the s-wave
penetrability, kR’, cancels the energy dependence of the neutron partial width, so
that the strength function varies slowly with the incident neutron energy. The p-
wave strength function, s;, relating the average partial width and spacing of the
[ = 1 resonances is defined analogously in terms of the p-wave S-matrix elements
and penetrability.

Adjustment of the optical model parameters at low energy to reproduce the s-
wave and p-wave strength functions, the scattering radius and the total cross section
is known as the SPRT method.[5] A good fit to these observables is important in de-
termining the low energy behavior of the optical cross sections and the transmission
coefficients, which is important, in turn, in determining the behavior of compound
nucleus cross section calculations near threshold.

4 The phenomenological optical potential

The formal derivation of the optical potential presented in Section 2 might suggest
that it could be calculated directly. Although a good deal of work has indeed been
done in this direction, the resulting potentials are often difficult to calculate and
still not sufficiently precise. They also have the drawback of being non-local, which
can greatly complicate solution of the corresponding Schrédinger equation.[6, 7, 8]

Instead, phenomenological optical model potentials are normally used to com-
pare and fit to experimental data. With few exceptions, these potentials are taken
to be local. However, the qualitative characteristics of the geometry and the gen-
eral trend of the energy dependence of the phenomenological potentials are quite
similar to those found in microscopic potentials. Both types of potentials are, after
all, trying to describe the same physical processes.

In the empirical potentials, the functional form is usually determined by a limited
set of parameters that are adjusted to obtain a best fit with the experimental data.
Over the years, a standard form of the phenomenological optical model potential
has evolved, which permits the parametrization of the scattering of a light particle
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(neutron, proton, deuteron, triton, He or alpha) from a given nucleus. This is

Uopt(r) =
+Ve(r) a Coulomb term,
=V fv(r) a real volume term,
+Vsgv (1) a real surface term,
—iWs gw (1) an imaginary surface term, (34)
—iW, fw (r) an imaginary volume term,
—dyol+ 8V hy, (1) a real spin-orbit term,

+idg, I3 Wso hw,,(r) and an imaginary spin-orbit term,

where the spin-orbit constant is ds, = (h/m.c)? = 2 fm?, m, being the pion mass.
The Coulomb term is usually taken to be the interaction of a point charge with
a uniformly charged sphere of radius R.,

Vo(r) =

{(3—5%)4Z¢Wm: r <R, (35)

ZyZie?r r> R,

where Z, and Z; are the projectile and target charge, respectively. Although this
potential neglects the surface diffusivity of the nuclear charge distribution, it is a
reasonable approximation in the case of the scattering of light particles from nuclei.

The real and imaginary volume terms are normally taken to be of Wood-Saxon
form,

1
T Ttexp((r — Ri)/ai]

fi i=V,W, (36)
where R; and a; are the radii and the diffusivities, respectively, of the two terms.
The Wood-Saxon form factor, shown in Fig. 3, can be thought of as a smoothed
step function, falling from one for values of the radius r smaller than the radius R;
to zero for values of r greater than R;, in a few multiples of the diffusivity a;.

The real volume potential reflects the average interaction of the projectile with
the nucleons of the target nucleus. The Wood-Saxon form factor it uses is quite
similar in form to the nucleon density of a saturated nucleus (A4 > 30 ). (For lighter
nuclei, a Gaussian geometry is sometimes used.) The strength of the real volume
potential is roughly proportional to the mass of the projectile and decreases with
the incident energy, in qualitative agreement with the results of calculations of the
nuclear mean field.[9]

The imaginary volume potential takes into account the loss of projectile particles
due to collisions with the nucleons of the target. It is zero at low energies, for which
the projectile does not have sufficient energy to knock out a target nucleon. At
higher energies, it increases slowly with the incident energy, as the phase space
available for nucleon knockout increases. At even higher energies, both the real and
imaginary volume potentials for nucleon scattering are fairly well described by the
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Figure 3: The Wood-Saxon (solid line) and sharp cutoff (dashed line) form factors with a radius
of R=5 fm and a diffusivity of a=0.5 fm are shown.

impulse approximation, in which the the target density is simply folded with the
nucleon-nucleon cross section.[10, 11]

The real and imaginary surface terms of the optical potential are taken to be
either the derivative of a Wood-Saxon,

exp [(r — R;)/a;)

5 i=V,W, (37
(14 exp[(r — Ri)/as])

d
i(r) = —4a;— fi(r) =4
gi(r) = —da; 2 i(r)
or a Gaussian,

(r= R")z] i=V,W. (38)

gi(r) = exp [T

In either case, the potential peaks at a radius R; and falls to zero within a few
multiples of the diffusivity a;. A derivative Wood-Saxon form factor with diffusivity
aws is almost indistinguishable from a Gaussian form factor with diffusivity ag =
2.21lawsg, as shown in Fig. 4. The code ECIS95 uses only the Wood-Saxon derivative
form.

The imaginary surface term of the optical potential takes into account the ab-
sorption due to the coupling to the quasi-bound compound nucleus states and to the
excitation of low-energy collective modes, which have their couplings concentrated
in the nuclear surface. Similar many-body effects can also be invoked to justify the
presence of a real surface term. However, given the imaginary surface term, the
existence of the real term can be shown to follow directly, by using a dispersion
relation based on the causality of the optical potential (no singularities in the en-
ergy upper halfplane).[12] The dispersion relation shows that an energy-dependent
imaginary potential W (r, E) necessarily leads to a contribution AV (r, E) to the
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Figure 4: The derivative Wood-Saxon (solid line) and Gaussian (dashed line) form factors with
a radius of R=>5 fm and diffusivities of ay g=0.5 fm. and ag=1.105 fm, respectively, are shown.

real potential given by

PP. [ W(rE') ,_,
Obviously, if the imaginary term is a surface one, the real term resulting from the
dispersion relation will be a surface one as well.

Both the real and imaginary spin-orbit terms of the optical potential are taken
to have a Thomas form factor,

1d 1 exp [(r — R;)/a;

hilr) = i) = e Ut exp [ = Ry)ai])?

i = Vso; Wio - (40)

Like the surface imaginary term, the Thomas form factor, shown in Fig. 5, yields
potentials which peak at a radius near R; and fall to zero in a few multiples of the
diffusivity a;.

The Thomas form factor, as well as the spin-orbit potential itself, can be de-
rived (for spin 1/2 particles) by performing a reduction of a Dirac equation with
Wood-Saxon potentials to an equivalent Schrodinger equation.[9] The spin-orbit
interaction and the Thomas form factor can then be interpreted as but another
manifestation of the volume interaction of the incident particle with the nucleons
of the target nucleus.

The phenomenological optical potential is thus parametrized in terms of a set of
potential strengths and corresponding geometrical parameters. These parameters
have been adjusted for many systems and values of the relative energy. Several
attempts have been made to adjust a single set of parameters to a wide range of
systems by introducing a dependence on the target charge and mass as well as
that on the relative energy. The potentials obtained using such sets of parameters
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Figure 5: The Thomas form factor with a radius of R=5 fm and a diffusivity of a=0.5 fm is
shown.

are called global optical potentials. Many individual and global optical parameter
sets can be found in an old compilation by Perey and Perey.[13] However, the best
modern reference for optical potential parameters is the Reference Input Parameter
Library (RIPL), available both online and in CD from the Internationational Atomic
Energy Agency.[14]

For nucleons, typical values of the potential strengths are

V= (45-55) MeV-(0.2-0.3)F,
W, =~ (2-7) MeV+(0.3-0.5)E E < 8-10 MeV, (41)
Vio = (4-10) MeV.

Above 8 — 10 MeV, Wy is usually constant or slightly decreasing. V; and Wy, can
normally be taken to be zero as can W below about 10 MeV. Above about 10 MeV,
W is constant or slightly increasing. As mentioned above, for heavier particles, the
real volume potential V scales approximately linearly with the mass.

The radii R; characteristically take on values close to that of the radius of the
target matter distribution. They are often parameterized in terms of reduced radii
r; and the target mass as R; = riA,% / 3, with the reduced radii in the range r; =~ 1.1
- 1.3 fm. The diffusivities normally take on values in the range a; ~ 0.4 - 0.7 fm,
except in the case of a Gaussian surface form factor, for which the typical values
are slightly larger.

Not all of the optical model parameters are uniquely determined by the exper-
imental data. It has been observed, for example, that fairly wide ranges of the
parameters V, R,,, Wy, and a, result in equally good fits to the experimental data
if the values of VR2 and Wya,s remain constant. These are known as potential
ambiguities.
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5 Partial wave expansion in the single-channel
optical model

When angular momenta greater than the s-wave contribute to the scattering, the
wave function and the scattering matrix are determined most conveniently when
decomposed in angular momentum partial waves.

The partial wave expansion of the scattering wave function of a particle of spin
s [15] can be written as

Z i €] (Y (YT (R) (42)

lgn

in terms of the spin-angular functions

l’S” = zlz (svlm|jn) Yim (7) |sv) , (43)

mv

where [ and j are the orbital and total angular momenta and |sv) is an eigenvector of
the particle spin. In the expansion of the wave function, o; is the Coulomb phase, 7
denotes the angular variables and k the direction of the incident momentum. (The
S-matrix element in partial wave [ for pure Coulomb scattering of the projectile
from the target would be e?¢!.) The factor i'e®!¢)] (r)/kr could have been written
as simply ¢lj (r) in the partial wave expansion. The form used above simplifies later
manipulations.

When the partial-wave expansion of the wave function is substituted in the
optical Schrodinger equation, one can extract an independent equation for the wave
function ¢ in each partial wave. One finds

{4 -l - 2 () + U i) =0, )

dr? r2

where the spin-orbit constant is d{ =dso(JG+1) =1l +1)—s(s+1))/2 and Ueep,
and Uy, are the central and spin-orbit terms of the phenomenological optical model
potential discussed in the previous section.

The incoming-wave boundary condition requires that asymptotically the wave
function take the form of an incoming plane wave and an outgoing scattering wave,

¥ — exp (zEF + inlog(kr — F)) Z |sv) (sv| (45)
1
- ) —inl 2 ! v'v )
+ XD (ikr —inlog(2kr)) ;L‘su)f 0) (sv|

where the f,.,(6) are the spin-projected matrix elements of the elastic scattering
amplitude and 7 is the Coulomb parameter, n = pZ,Zie?/ h%k. To be consistent
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with this expression and satisfy the differential equation, the wave function ¢lj must
have the asymptotic form,

Y ) = Fir) + (Gilr) +iR() Of =+ (H (r) — Hf (e s]) 7ot (46)

where C’lj = (Sl] — 1)/2i, F; and G are the regular and irregular Coulomb wave
functions, respectively, and Hli = T (G + iF}) are the linear combinations of
these that asymptotically contain only incoming (H; ) or outgoing (H;") waves. S/
is the nuclear part of the S-matrix element and €% the Coulomb part.

The S-matrix elements, Slj , are obtained in the same manner as Sy is obtained
in the case of low-energy neutron scattering. In the internal region, the differential
equation for each partial wave, Eq. (44), is solved numerically out to the radius, r,,.
The numerical solution and its derivative are matched there to the wave function in
the external region, given by Eq. (46), and to its derivative, to obtain the ampitude
in the internal region, a{ , and the S-matrix element, Slj .

The only novelty to the solution here is deciding with which partial wave to stop
the calculation, for [ and j extend to infinity. The calculation is normally stopped
when the nuclear S-matrix elements are sufficiently close to one. This occurs when
the centripetal barrier no longer permits the projectile to enter the range of nuclear
interaction with the target. For partial waves of larger [, the scattering reduces to
pure Coulomb scattering (or for neutrons, no scattering at all), as is evident from
Eq. (46).

When the asymptotic form of the partial wave function, zp{ , of Eq. (46), is
substituted in the partial wave expansion of the total wave function, Eq. (42),
and the result is compared to the expected form of the asymptotic wave function,
Eq. (45), one can extract the partial wave expansion of the scattering amplitude,

= 5 > (s = 1) Vi b, )

f0) = %k -

or,in terms of its spin-projected matrix elements,

_An
20k 4=

mm’

foru(6) (2157 = 1) Yigw ()Y (B) (bm's| ) (jmlimsv) . (48)

Due to the slow convergence of the Coulomb term, it is convenient to write these
amplitudes in a form in which the Coulomb contribution has been summed exactly,

fin® = 5 3 (@ =)+ (5] =1)] Vi ()i

mml

x (Im'sv'|jn) (jn|lmsv)
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_ Am 2o, (i _ N E (T
= b fe@)+ g > e (87 =1) Yiw O¥ir(B)  (49)

mm’

x (Im'sv'|jn) (jn|lmsv) ,
where

fc(0) = —%51;7720/2 exp [—inlog (sin® 6/2) + 2ioo] (50)

is the Coulomb amplitude.
For spin-0 particles, there is only one amplitude. This is

f(0) = foo(8) = fc(0) (21 + 1)e* (S} — 1) Pi(cosb) . (51)

n 1
2ik
1
For spin-1/2 particles there are two distinct amplitudes. They are

AO) = fir=f1_1 (52)

— fo(0) + ﬁ > e+ 1)(S2 — 1)+ 1877 - 1)] Pi(cos ).
l
and
B) = fi_i=/f11 (53)
= ﬁzl: e%ior [SIH% —Sll_% P} (cosb).

The differential elastic cross section for an unpolarized incident beam is obtained
by averaging the squared magnitude of the scattering amplitudes over the initial
values of the projectile spin and summing over the final ones. The general expression
that results is

do 1 2
0 il ;lfu’u(a)l . (54)
For spin-0 particles, this is
do 2
o =15®) 5=0. (55)
For spin-1/2 particles, it is
do
= 14@)F + B s=1/2. (56)

For particles of spin-1/2 and greater, one can define vector and tensor spin
observables in terms of other combinations of the amplitudes. In particular, for
particles of spin-1/2, the vector polarization, P(6), is

_ 2Tm A*(6) B(9)

P©) = do /d§ (57)
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The fraction of flux absorbed from each partial wave is given by the transmission
coefficient, le , defined as
. 12
T/ =1-|s]| (58)
When the S-matrix element is unitary, no flux is absorbed and the transmission
coefficient is zero. When absorption is complete, the transmission coefficient is
one. These quantities are essential for calculating statistical reaction cross sections.
Quite often, optical model calculations are a mere preliminary to statistical model
calculations and are performed only to obtain the transmission coefficients.
The total flux lost in the scattering is related to the reaction cross section through
the equation

1
Wz——ffdm (59)
v
where it is understood that the probability current,
h
7= — (¥ive — (vehw
7= 5 (VO - (V) (60)

is integrated over a surface which tends to infinity. The reaction cross section can
be expressed in terms of the transmission coefficients as

1 ™ ;
= —— 25 +1)T7. 1
o= gt E 0T o

For charged particles, integration of the differential elastic cross section of Eq. (54)
leads to an infinite result, due to the infinite range of the Coulomb interaction. For
neutrons, it yields the elastic cross section,

do T ;
a=[ d2 % = TN (2; 1‘1—1
oel /d Ty 2m%xf+) Si

This is often called the shape elastic cross section to distinguish it form the com-
pound elastic one.

For neutrons, a total cross section can also be defined as the sum of the elastic
and reaction cross sections,

™ . j
@d=0d+W=7§§}%+nu—Rﬂ$y (63)
lj

i (62)

The total cross section takes into account all flux lost from the incident plane wave,
either by scattering or by absorption. Comparing the expression for the total cross
section with that of the scattering amplitude, A(#), one sees that the optical theorem
is explicitly verified by the partial wave expansion,

4
@m=%mmw=my (64)
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Figure 6: Various experimental measurements of the n 4+-58 Ni total cross section, identified by
their EXFOR access numbers, are shown together with two optical model calculations.

As observed earlier, when it exists, the total optical cross section is the aver-
age of an amplitude and can thus be compared directly with the energy-averaged
experimental data. This is done in Fig. 6, where a selection of the experimental
measurements of the n 458 Ni total cross section is shown together with optical
model calculations using the parameters of A. Prince[16] and those used in the ex-
ercises. Although there is a great deal of dispersion in the low energy data, the
calculations succeed in following its trend.

The optical elastic and reaction cross sections involve the average of a squared
amplitude and cannot be compared directly with the energy-averaged experimental
data. The compound elastic cross section is part of the optical reaction cross section
rather than the elastic cross section. The experimental elastic cross section can thus
greatly exceed the optical component of the cross section. This is illustrated in Fig.
7, in which a selection of the experimental measurements of n +% Ni are compared
to optical model calculations using the parameters of Prince[16] and of the exercises.
At energies sufficiently high for the elastic compound nucleus cross section to have
dropped to zero (which usually occurs at an energy of the order of a few MeV),
the differential and integral (when it exists) optical elastic cross sections can be
compared with the energy-averaged experimental data. Note that the elastic cross
section for neutron-induced scattering can also be compared to the experimental
data at extremely low incident energies, where it is customarily expressed as a
scattering radius R'.

At high energies, the reaction cross section can also be compared to experimental
data. However, the reaction cross section cannot be measured directly, making the
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Figure 7: Various experimental measurements of the n 458 N3 elastic cross section, identified by
their EXFOR access numbers, are shown together with two optical model calculations.

data for such a comparison scarce.

6 Using ECIS95 for single-channel optical model
calculations

To perform a single-channel optical model calculation with ECIS95 [17, 18, 19], one
must first provide it with the parameters it needs to perform the calculation. The
first of these are the system parameters — the charges and masses of the projectile
and target, Z,, A,, Z;, and A;, and the relative energy, Ecp, = ArEjp/(A: +
Ap). Also needed are the parameters defining the optical potential, the potential
strengths — V, W, Wy, Vs, and Wy, and the geometrical parameters — the reduced
radii r; and diffusivities a;. The spin and parity of the target ground state must also
be provided, although they are actually irrelevant in the single-channel problem.

The input file to ECIS95 for a single-channel calculation is not difficult to pre-
pare. The code, however, does not permit the input of energy-dependent parametriza-
tions, a common characteristic of potential strengths. Instead, the strengths at each
value of the energy must be calculated and entered separately. This is a task easily
delegated to a small utility program. But it is then a small step to a utility pro-
gram that prepares the entire input. An example of the dialogue with an interactive
program of this type, PRECIS, is given in the Appendix.

Once the input is ready, the code can perform the requested calculations. This is
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done along the lines already discussed. For each set of system parameters, internal
and external regions and a matching radius are first defined. For each partial wave,
the wave function is calculated numerically in the internal region and matched to the
external wave function to obtain the S-matrix element. Once the S-matrix elements
are known, cross sections, transmission coefficients and angular distributions can
be calculated.

ECIS95 calculates cross sections automatically. S-matrix elements (in the form
C} = (S} — 1)/2i) are printed on request. Differential cross sections, polarizations
and transmission coefficients are calculated and printed on request. If desired, the
differential cross sections and polarizations can be plotted. However, the code does
not calculate low-energy observables — the sg and s; strength functions and the
scattering radius, R'.

The code ECIS95 permits comparison with and fitting to experimental data.
For this, the code calculates and minimizes the x2, which takes the following form,
for a differential cross section,

=2 |G T ) @) y (65)

with do®(6;)/d} the experimental value at angle 6; and Ac”(6;) the experimental
error. When the normalization of the experimental data is uncertain, it can also be
adjusted by redefining the x? as

0 = 2 Mg 0 - /a0 )] + (0= 69

k3

where A* is the experimental normalization and AM® its error. The experimental
data can be in the form of integrated and differential cross sections or polarizations.
Again, the utility code PRECIS can be used to facilitate input preparation, as
shown in the Appendix.

A drawback to the data fitting abilities of ECIS95 is its limitation to a single
value of the relative energy at any one time. Just as it cannot utilize energy-
dependent parametrizations of the potential strengths, it cannot adjust their pa-
rameters.

7 The generalized optical potential

The single-channel or spherical optical model treates the target nucleus as if it
were spherical. But nuclei are often deformed. Even those that are spherical are
often susceptible to shape oscillations. Deformed and vibrational nuclei possess
low-lying collective states that are easily excited in a collision. As these excitations
are prompt reaction modes, one would expect their description to lie within the
scope of a generalized optical model. The standard extension of the optical model
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takes into account the expected deviation from spherical symmetry by modifying
the radii R; of the terms in the optical model potential.

A vibrational nucleus possesses a spherically symmetric ground state. Its excited
states undergo shape oscillations about the spherical equilibrium mode.[20] To take
these into account, the radii of the terms in the potential are expressed as

R;

Roi [ 14 ax, Yau(#) (67)
Ap

(1+Z ,—2)\ Z M bx—p) Yau (7 )) )

where the b:'\ 4 and by, are the creation and annihilation operators of nuclear phonons
and the 3, are the amplitudes of their respective shape oscillations. One usually
expands the optical potential to first or second order in the creation and annihilation
operators,

. ouU, .
Uopt('r; T) = Uopt("') + ﬁROi Z 5] Y/\u (T) (68)
i e

0%U, .
+ Z 6R2pt R(z)Z Z a,\“ Y)\H(T) ;
i g A

thereby taking into account the direct excitation of one- and two-phonon states. The
vibrational model including one-phonon states is called the first-order vibrational
model, while that containing the two-photon states as well is known as the second-
order model.

The nucleus *®Ni serves as an example of a typical vibrational nucleus. Two
neutrons from a doubly magic configuration, it has a spherically symmetric J = 0%
ground state and a J = 2% excited state at E,=1.454 MeV that can be considered
a one-quadrupole-phonon vibrational state. At about twice the energy of the one-
phonon state, in particular, at E,=2.459, 2.776, and 2.943 MeV, one finds a trio of
states with J = 4%, 2%, and 07, respectively, which can be interpreted as the two-
phonon states. The fact that the first two these (but not the third) decay almost
exclusively to the J = 2T excited state corroborates such an interpretation, but
also shows its limitations.

A statically deformed nucleus possesses rotational excited states.[20] When the
nucleus possesses axial symmetry, the radii are replaced by

Rz(gl) = Ro; (1 + Z ﬂ,\ Y,\o(el)) , (69)

where £, is the static deformation of mutipolarity A and the angle 8’ is in the body-
fixed frame. This substitution could be extended to the general case of triaxial
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nuclei without too much difficulty (at least at this point). The model is then called
the assymetric rotational model in contrast to the (axially) symmetric one. In either
case, the potential obviously depends on the orientation of the principal axes of the
target.

When the deformation of the nucleus is large, expansion of the potential in a
Taylor series is not a good approximation. It is better to expand it directly in
multipoles as

Uopt (1, 7) Z Ux(r) Yo (), (70)
where the multipole potentials are obtained as
Ux(r) = / dY Ugpt (r,68") Y0 (') . (71)

In the body-fixed frame, the moments Uy, (r) with g # 0 vanish. The body-fixed
angles 7' are related to the space-fixed ones 7 by a rotation through the angles that
define the orientation of the nucleus, which are the collective angular coordinates
of the nucleus, 7;,;. For the spherical harmonics, this implies that

Y)\O Z Y)\u rznt Z Y)\u Y,\u rznt) (72)

where the Df;u’ are rotation matrices with the special value for p' = 0 used in the
last equality. The optical potential in the rotational model can thus be decomposed
as

Uopt 7, Tznt Z UA Y/\u Y,\u (r’mt) (73)

The nucleus 238U provides an excellent example of a statically deformed nu-
cleus with rotational excitations. Its 0T ground state possesses static quadrupolar
e hexadecapolar deformations with S = 0.198 and B4 = 0.057. Its first four ex-
cited states, at E, — J™= 0.044 MeV-2*, 0.148 MeV-471, 0.307 MeV-67, and 0.518
MeV-87, iniciate a rotational band that can be traced to at least the 28+ state at
E,=4.516 MeV. Each of these states decays exclusively to the next lower state in
the rotational band.

Morel elaborate couplings between projectile and target can also be described
through appropriate generalizations of the optical potential. One of these was men-
tioned above — the assymetric rotational model — obtained by taking into account
triaxial deformations of the nucleus. Another is the vibrational-rotational model
which couples static deformation to dynamic shape oscillations. More details about
these can be found in Ref. 19.

The generalization of the spherical spin-orbit potential to a deformed one is
not as straightforward as the above discussion would make it appear. In spin-
1/2 systems, it can be obtained from the Dirac equation by eliminating the lower
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components of the wave function to obtain an equivalent Schriodinger equation for
the upper ones. It then appears in it full Thomas form as,

VU(F) x =iV - &, (74)

where ¢ are the Pauli matrices. Applying this form of the coupling to a typical term
in the multipole expansion, Ux(r) Yy, (#), Raynal found that its matrix element
between two partial waves, |l;j;) and |lzjf), takes the form

A Yo (P)] % %6 = {Lyig] Yau(7) 1afi) {1 [d—Uw)] "

r | dr
v B0yt (75)
Ux(r)

—+

AA+1) = (vp =v)vp =7 =1}

For the spherical optical model, A = 0, 7; = 77 and this expression reduces to the
usual one.

In the code ECIS95, six parameters z1, 22, 23, 24, 25, and zg have been introduced
to generalize the form of the deformed spin-orbit coupling. They appear as

r2

% [dd—TU,\(T)] (21 + 237 +2av5) + UAT(T) 6 (i — ’Yf)cil—r (76)
+ 2 LA+ 1) (o ) — 3~ 1]
The full Thomas form of the potential corresponds to the values
271=24=0 and 2o =23 =25 =26 =1. (77)
The deformed spin-orbit interaction can be increased by a factor z by using
21 =24 =0, =1, and 23 =25 =2 =X. (78)

In the generalizations of the optical potential discussed in this section, the in-
troduction of target degrees of freedom leads to a potential that depends on the
relative orientation of the target with respect to the projectile. The system is no
longer invariant under independent rotations of the target or the projectile and their
individual angular momenta are not conserved. However, in all cases, the system
continues invariant under a simultaneous rotation of the projectile and target. The
total angular momentum thus continues to be a conserved quantity.

8 Partial wave expansion in the coupled-channels
optical model

The partial wave expansion proceeds in the coupled-channels optical model much
as it did in the single-channel one. There are several new features however. The
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first of these is that the excited states and their angular momentum must now be
taken into account.

To include the angular momentum of the target, the spin-angular functions are
coupled to the target states to form target-spin-angular functions,

Vija(#) = (jnlNe[JM) Vi () |INe) (79)
nN,.

where the |I.N.) represent the target states with total angular momentum and
angular momentum projection I. and N., respectively. In the vibrational model,
these are the one- and two-phonon states,

1
LNy =B} v 0) and  |LN,)= [b}lbL]I 0y.  (80)

\/1+(5[112 N,

In the axial symmetric rotational model, they are the rotational states, which can
be written in terms of the rotation matrices DY, as

1 2. +1
\/1+5K0 1672

x [ Fint) DI ine) + (2) 5 X (Font) DX e i)

<'Fint |Ich>

(81)

where xik is the internal wave function of the rotational band, I, its internal
angular momentum and K the projection of the total internal angular momentum
on the symmetry axis.

The scattering wave function is expanded in a sum over both the excited states
and the angular momenta. The expansion can be written as

U=dn 3 Ve 0 b5 r) T Vige (R). (82)
ljeJM

et

Factors of i!’ and et /kcr, where k. is the wave number in channel ¢, have again
been extracted from the wave functions to simplify later manipulations. The Coulomb
phase now depends on the channel energy, through k., as well as on the angular
momentum.

In the deformed optical model, the wave functions, 1;l jrer 1je(T), couple different
values of the angular momenta [ and j and different channels ¢ for each value of the
total angular momentum J. This contrasts with the single-channel optical model, in
which the wave function for total angular momentum j also possesses a well defined
orbital angular momentum [. This is due to the fact that the interaction couples
the different partial waves in the deformed model, while it does not do so in the
spherical one. (If it did, a partial wave expansion in terms of the wave functions
¢}, in Eq. (42) would, in general, have been necessary.)
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When the partial-wave expansion of the wave function is substituted in the
optical Schrédinger equation, the latter can be reduced to a set of coupled equations
for each value of the total angular momentum J. These are

R (d® U +1)
% {W ——m 1 k2 } ity 1je(r) (83)
- Z ul.l]jlcl )ll/jl/ C,I (T)wl'{ljl’cll )ljc(r) = 0 )
ll’j/lcl/

where the potential matrix elements are calculated with respect to the orthonormal
target-spin-angular functions,

Although the target-spin-angular functions used to calculate these matrix elements
have a well-defined projection M of the the total angular momentum J, the matrix
elements that result are independent of this value if the system is rotationally in-
variant. When the system is invariant under time-reversal, the potential matrix is
also symmetric under interchange of the primed and unprimed indices.

By writing the matrix elements as matrices,

4 épldjljéc/c — Ly, ke éméjfjdclc - Ky, (85)
’gbl'{j:c,’ljc(T) - \IJJ(T') ; ul':]j,c:7ljc(7') — UJ("') ;

the Schrédinger equation can be recast in a more familiar form as a matrix equation,

d>  Lj(L;+1) 2u
{W_T"FK.%_?UJ(T) ¥, (r)=0. (86)

The incoming-wave boundary condition again requires that asymptotically the
wave function take the form of an incoming plane wave and an outgoing scattering
wave. Here this takes the form

U — Z exp (zl—c’c -7+ in. log(ker  — k. r")) Z |svI.N.) (svI.N.|

1
- kor  —  ing log(2ky
+ - %’: exp (iker ine log(2kerr)) (87)

x Z|3VIIC’ CI)?V’NC/VNC(0)<SVICNC|7

vv!

where the f,/ N.wn.(0) are the target and projectile spin-projected matrix elements
of the elastic scattering amplitude.

The asymptotic form expected of the wave function in the partial wave of total
angular momentum J can be most easily expressed using an obvious extension of the
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matrix notation above. To be consistent with Eq. (87) and satisfy the differential
equation, the matrix wave function ¥; must have for its asymptotic form,

Uy(r) > Fs(r) + (Gy(r)+iF;(r))Cy (88)
= % (H; (r) — Hf (r)e"”? S e"77) e~V ,

where C; = (S; —1;)/2i, F; and G are the regular and irregular Coulomb wave
functions in (diagonal) matrix form, respectively, and HT = e¥%7 (G ; £ iFy) are
the linear combinations of these that asymptotically contain only incoming (H}')
or outgoing (H}) waves. S is the nuclear part of the S-matrix element. One can
loosely interpret the half of the Coulomb phase shift e’ that precedes the nuclear
S-matrix in Eq. (88) as the Coulomb deflection accumulated on the incoming half
of the ‘trajectory,” with the half of the Coulomb phase shift following the nuclear
S-matrix then being the Coulomb deflection of the outgoing half of the ‘trajectory’.

The S-matrix elements, Sy, can be obtained by an obvious extension of the
method used for the spherical optical model. In the internal region, the differential
equation for each partial wave, Eq. (86) is solved numerically out to the radius, ry,.
The numerical solution and its derivative are matched there to the wave function
in the external region, given by Eq. (88), and to its derivative, to obtain the
amplitudes in the internal region, ay, and the S-matrix elements, S;. This is
repeated for increasing values of J until the value of S; which results is sufficiently
close to one.

The important difference between the deformed optical model and the spherical
model is that the wave function in partial wave J is not a scalar, as it is in the
spherical model, but a matrix. The differential equation that must be solved is also
a matrix one. Although the only solution that is normally of interest is the one in
which the target is in its ground state in the incoming wave, the complete matrix
solution is needed to invert the matching equations and obtain the S-matrix. The
calculation is thus much more time consuming than in the spherical case.

To obtain the partial wave expansion of the scattering amplitude, one repeats
the procedure used earlier: substitute the asymptotic form of the partial wave
function, ¥ ; of Eq. (88), in the partial wave expansion of the total wave function,
Eq. (82), and compare the result to the expected form of the asymptotic wave
function, Eq. (87). One then finds

) 47T Loy I_J o 1 ~ 1.

O =5 3 (e’ NH 5,,,5j,j5c,c) SV OV ). (89)
ljed M <
l’j’c’

Its target and projectile spin-projected matrix elements are
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. _J .
7 101c
fonon.(0) = o E (6 TV Sy e 1je€ —5l’l51"j‘5c’c)

ljel’j'c!
JMmm'nn'

1
ke
X Yirme (7) Yo () (U'msv/|'n’) (90)
X {j'n' I Not | TM)Y (T M |jnI.N.) {jn|lmsv) .
In the scattering problem considered here, the flux, not the density, is conserved.
When a state is excited, the energy that goes to excitation must be taken from the

relative motion. The relative velocity thus decreases, as does the flux. To take this
into account, the S-matrix and scattering amplitude must be renormalized as

k,‘c/ —J - —
Sitjierije = V . Sviveic or Sy =K,*S;K;'?, (91)
and
ke —
fV’Nc/ vN, (9) = k_ fu’Nc, vN, (0) . (92)

When the system is time-reversal invariant, the matrix S is symmetric.
The scattering amplitude with the Coulomb term extracted thus has the form

fl/’NC”/NC (6) = 6V’V6NclchCC(0)
471— idll ’ J i(f[c 1
+2_Z E e © (Slljlcl,ljc - 6[’[6‘7"]'(56/0) e k_

C

Irr ot
X Yirme (F) Vi, () (I'msv/|j'n') (93)
X (j'n' I N |JM)Y (JM|jnI.N.) (jn|lmsv) .
where
foc(0) = _m exp [—inelog (sin® 6/2) + 2iayo.] (94)

is the Coulomb amplitude in channel c.

Once the scattering amplitude is known, calculating cross sections is a simple
matter. The differential cross sections for an unpolarized incident beam and target
are obtained by averaging the squared magnitude of the scattering amplitudes over
the initial values of the projectile and target spin and summing over the final values.
The differential elastic cross section for a collision in which the target is initially in
its ground state is then given by

dUel _ 1 9
0 = @D 2 Fren @
v NO

(95)

0
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The differential inelastic cross section for inelastic scattering to an excited state c
can be written similarly as

do. 1 )
dQ  (2s+1)(2L + 1) ,,'szl |fV’N;uNO(0)| ,

(96)

where it should be emphasized that the sum over N/ refers to a sum over the spin
projections of the final state ¢ only.

Due to the infinite range of the Coulomb force, the integrated elastic cross
section is finite only when at least one of the two colliding particles is neutral. In
the particular case of neutrons incident on a nucleus, integration of the differential
cross section of Eq. (95) yields.

1 ™ J
7T, + 1) k2 D @+ 1) [Siljregjes = Oidyr;

iy
J

2

(97)

The integrated inelastic cross sections exist for for both neutral and charged parti-
cles. They take the form

! T
(25 +1)(2Iy + 1) k2

3 @I+ 1) |SEireie|” c#co. (98)

15
J

Oc =

Just as in the single-channel problem, the total flux lost from the elastic channel
can be related to the reaction cross section through the equation

1
aTz—Efja-da, (99)

where the probability current,

o= o (U - (V) ) | (100)
L
is integrated over a surface which tends to infinity, with ¥4 being the ground-state
component of the wave function. However, in the coupled-channel problem, it is
also possible to define an absorption cross section, which can be related to the total
flux lost from all channels, elastic and inelastic, as

1 o
ouse = =, § 07 (101)

where the probability current in channel ¢, J, is

I
7= — (gt — i
7 o (TIVE®, — (VT)'T,) (102)
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with ¥, the component of the wave function that asymptotically occupies state c.
Using the asymptotic form of the partial waves, Eq. (88), the expression for the
reaction cross section can be reduced to

1 ™ 2
o = GEDERTDE o D (61855 = 15T yeaes ) - (103)

Uil
cJ

The contribution of each partial wave to the reaction cross section is determined by
the fraction of the flux lost from the elastic channel. The absorption cross section
can, of course, be reduced to a similiar form, which can be written as

1 ™ J
e = s+ 1)(2L + 1) k2 22T+ 1) Tty (109
1jJ

where the coupled-channels transmission coefficients have been introduced. These
are defined as

J — § J* J
]}Ijlcl,ljc — 6[’[6j’j6clc - Sllljllcll,lljlclSllljllcll’ljc - (105)

llljll e

The similarity of the transmission coefficients to the single-channel ones becomes
clear when they are written in matrix form. The transmission matrix in partial
wave J can be written in terms of the corresponding S-matrix as

Ty=1;-5%S;. (106)

Comparison of the form of the reaction and absorption cross sections reveals a
simple relation between the two,

Or = Ogbs + Z Oc. (107)
c#co

In other words, the elastic channel loses flux to both the prompt inelastic channels
and the long-lived compound states. The reaction cross section takes both of these
into account.

The absorption cross section and the corresponding transmission coefficients
characterize the transition of flux from the prompt channels to the compound
states. These are the quantities of principal interest for compound-nucleus calcula-
tions. When using coupled-channels transmission coefficients in compound-nucleus
calculations, it is quite common to use just the diagonal elements of the transmis-
sion matrix and neglect the off-diagonal ones. A careful analysis by Engelbrecht
and Weidenmiiller [22] showed that a more correct procedure is to perform the
compound-nucleus calculation in a basis in which the transmission coefficients are
diagonal and transform the resulting cross sections back to the non-diagonal basis.
ECIS95 can, in fact, perform such an analysis. However, discussion of this feature
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of the code requires entering fairly deeply into the details of the statistical model,
which will not be done here.

For neutral particles, the neutron in particular, the elastic cross section is finite.
A total cross section can then be defined as the sum of the elastic and reaction cross
sections,

]. ™ J
Otot = Oel +0r = mﬁ ;(Z] +1)(1-Re Sljco,ljco) . (108)

The total cross section takes into account the occurence of scattering of any type.
It is a measure of the flux lost from the incident plane wave state.
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Figure 8: Various experimental measurements of the n +58 Ni E,=1.454 MeV 27 inelastic cross
section, identified by their EXFOR access numbers, are shown together with two optical model
calculations.

Just as in the case of the elastic cross section, care must be taken when comparing
inelastic optical model cross sections with experimental data. At low energies, these
cross sections are dominated by their compound nucleus contribution, as shown in
Figs. 8 and 9, for neutron-induced excitation of the first excited state in 3Ni and
23817, respectively. One observes that the direct process plays a very minor role in
the excitation of these states in the first few MeV above threshhold. In Fig. 8, the
58Ni data are compared to optical model calculations using the parameters of A.
Prince[16] and those of the exercises, both with a phonon amplitude of 8,=0.2. Note
the strong influence of the optical model parameters on the direct component of the
inelastic 58Ni excitation. The Prince parameters yield an inelastic cross section
that is almost twice that of the parameters of the exercises, although both use the
same phonon amplitude. The 238U data of Fig. 9 is compared to an optical model
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calculation using the parameters of Young and Arthur[21], which fits the higher
energy data quite well. One notes that the direct excitation cross section of the
2387 2t state reaches a value of almost 500 mb. In general, the inelastic excitation
of a rotational band can be quite large, demanding a coupled channels method for
its precise calculation.
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Figure 9: Various experimental measurements of the n 4238 U E,=0.044 MeV 27 inelastic cross
section, identified by their EXFOR access numbers, are shown together with an optical model
calculation.

9 Using ECIS95 for coupled-channels optical model
calculations

Most of the information needed to perform a coupled-channels optical model cal-
culation using ECIS95 is already needed to perform the single-channel calculation.
This information consists of the system parameters — the charges and masses of the
projectile and target, Z,, Ap, Z;, and A;, and the relative energy, Ecy,, as well as
the potential strengths — V', W, W, V,, and Wy, and the geometrical parameters
— the reduced radii r; and diffusivities a;.

The additional information that must be furnished concerns the excited states of
the target and the oscillation amplitudes or deformation parameters that determine
their excitation. The excitation energy, spin and parity of each of the excited states
must be provided to the code. The spin and parity of the ground state, requested
but irrelevant to the single channel case, are also necessary now. (Although only
the total angular momentum has been mentioned, parity is also conserved in purely
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nuclear reactions.)

In the vibrational model, an excited state can be a one-phonon state, a two
phonon state or a mixture of the two. ECIS95 requires this information to cal-
culate the coupling correctly. When a state is a mixture of one- and two-phonon
states, the code also requires a mixing parameter. In the pure symmetric rotational
model, all possible excited states are members of the same rotational band and more
information on their structure is unnecessary.

In the vibrational model, each phonon must be characterized by its angular
momentum and amplitude of oscillation. In the rotational model, the static defor-
mations (A = 2, 4, ...) must be furnished. In this case, one must also furnish the
maximum value of A to be used in the multipole expansion of the potential. A rea-
sonable value for this parameter is twice the angular momentum of the most highly
excited state. Terms in the multipole expansion with A larger than this value have
no effect and need not be included. The exclusion of terms with A smaller than this
value omits coupling and reorientation terms that are usually small but that can
still have observable effects.

The simplest description of the phonon amplitudes or the static deformations
assumes them to be the same for all deformed terms in the optical potential. It is
also possible to use a different set of phonon amplitudes or deformations for each
term in the potential. In fact, it is even possible to furnish a different set of optical
model parameters for each of the states. In this case, it is the ground state potential
that is deformed to obtain the coupling matrix elements.

With the input prepared, the code performs the calculations along the lines dis-
cussed earlier. It calculates cross sections automatically while S-matrix elements (in
the form Clj = (Sl’ —1)/24) are printed on request. Differential cross sections, po-
larizations and transmission coefficients are also calculated and printed on request.
If desired, the differential cross sections and polarizations can be plotted. The code
permits comparison with and fitting to experimental data, as in the single-channel
case, with the same restriction to a single value of the relative energy. An interest-
ing feature that is particular to the coupled-channels case is the ability to adjust
the sum of cross sections for two or more states to unresolved experimental cross
sections.

10 The ECIS method

The ECIS method (Equations Couplées en Itérations Séquentielles — Sequential
iteration of coupled equations) provides an alternative to the conventional matrix
method of performing coupled-channels calculations. Instead of the differential
representation of the wave equation, the Schrédinger equation, it uses its integral
representation, the Lippmann-Schwinger equation,

T=U+G{U' ¥, (109)
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where G is the Green’s function of the same Schrodinger equation satisfied by ¥g
and the + superscript means that the wave function ¥ satisfies incoming-wave
bounday conditions while the propagator G(T asymptotically contains only outgo-
ing waves. The ECIS method takes advantage of the structure of the Lippmann-
Schwinger equation by placing the diagonal solution of the single-channel optical
model in \Ilar and Gar and relegating the channel coupling to the interaction term,
UI

In the single-channel opmcal model problem, one can define incoming- and
outgoing-wave solutions, hj; ( ), of the wave equation in each channel,

L S B
dT2 r2 h2

(Veoner) + ] Vo) f ) =0, (110

where the spin-orbit constant d! = ds, (j(j + 1) = I(l + 1) — s(s + 1))/2 is as
before. Asymptotically, these solutlons have the same behavior as the incoming
and outgoing Coulomb waves,

hiE(r) = HE(r) = €T (Ge(r) £ iFie(r)) - (111)

They are, however, solutions to the optical Schrédinger equation at all values of .
Numerically, they can be obtained by solving the differential equation inward from
the matching point, using the conditions for matching to the asymptotic Coulomb
functions as the initial conditions.

The incoming- and outgoing- wave solutions to the optical Schrédinger equation
are not regular at the origin. Through a comparison with the asymptotic form given
in Eq. (46), it is easy to convince oneself that a linear combination of the two that
is regular is given in terms of the S-matrix as

. 7 . . ioy
A (TN OE A GEE N
= ], (r)er, (112)

where the last equality simply makes note of the relationship between the wave
function wl’j and the single-channel wave function ¢fc of the partial wave expansion
in Eq. (42). The S-matrix has been relabelled Sy to emphasize its relation to the
single-channel problem as well.

The single-channel Green’s function in channel ¢ can be decomposed in partial
waves as

1
rr!

Ge.(7 ) = = Y ViME) gt (r,r YV (), . (113)
ljn

where the partial-wave Green’s functions are defined in terms of the regular and
outgoing partial wave solutions as

) 2 )
G (1) = A O MY ). 114
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The channel Green’s functions can then be combined into the complete single-
channel Green’s function appropriate to the coupled-channels problem,

GE)F(F:'F') = ZG T |IN><Ich| (115)

JM
= TT’I Z lS] glc )ylS] 1—( )

lJc

When the partial wave expansions, Egs. (82) and (115), are substituted in the
Lippmann-Schwinger equation, Eq. (109), it can be reduced to a set of coupled
equations for each partial wave,

,(pl{j’c',ljc(r) = %c 7)0110j10crc (116)
/ dT’ g{,c_t_ 7' T Z Z/{l/ o Ut et (/r.l)d}l.{’j”c”,ljc(rl)‘

l”]” et

In matrix notation, this takes a much simpler form,
U;(r) = oy(r) +/ dr' G (r,r" UL (r") U 4 (1), (117)
0

where ¥o; = U ,€¥7 is the coupled-channels (diagonal) matrix form of the single-
channel wave function of Eq. (42). Asymptotically, this partial wave equation tends
to

(Hy (r) — Hj(r)e'"7 8 e7) e
= % (Hy (r) — Hi (r)e'7 Spse'7) e 77 (118)
_HE(r) Z—’;K;Iem / dr' oy (') UL (') U5 (")
0

Extracting the coefficient of the outgoing Coulomb wave, H}, one obtains an ex-
pression for the coupled-channels S-matrix,

2 _ o _
Sy = Sos + 2¢h—‘; KJl/Q/ dr' Bo (YUY (r') B (') K72 (119)
0

(Recall that S, = K3/>5, K;'/?)

The drawback to this form of obtaining the S-matrix is that it first requires
knowledge of the full coupled-channels wave function. The ECIS method tries to
obtain this knowledge by solving the partial-wave Lippmann-Schwinger equation,
Eq. (117), iteratively. To describe the method precisely and simply, the notation in
use must be modified slightly to permit a compact representation of the submatrices
between two channels in a given partial wave, an example being the component of
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the interaction, U, ., where the partial wave index J has been suppressed. The
matrix structure of U/, takes into account the I'j’,1j dependence.

The ECIS method first assumes that the excited states have been arranged in
order of decreasing coupling with the ground state. It begins iterating by using the
single-channel ground-state wave function as the zeroth-order approximation to the
coupled-channels ground-state wave function, lI!(()O) (r) = Woe, (7).

The first-order approximation to the wave function of the first excited state is

W00 = [ gt e 90, (120)
with the corresponding approximation to its S-matrix element being
2 o0
SO =g 2K / dr' T, (F) Ul () TO (1) (121)
h*Vkok1 Jo
The first-order iteration to the wave function of excited state j is given by
j—1
W00 = [ ar g ) [l ¥ 6 + T ) w0 |, 2
i=1

with the approximation to the S-matrix element being

2 o
S,(-l) — 2ih27u'/0 dr' Woe, (r') [Uly (') () (123)
J

Z e ] .

Note that the jth excited-state wave function is not given merely in terms of the
zeroth-order approximation to the wave function, which contributes the first term
in the expressions above. It also makes use of the j — 1 first-order wave functions
already calculated to improve the approximation.

After approximating each of the N excited states in turn, the first-order iteration
is concluded at step N + 1 by correcting the ground-state wave function,

H0) = o)+ [ g ) (U 2 (124)

+ Z u()z 51) ) ] ’
and S-matrix element,

2 oo
S = Sua 2 [ e () [Upo(r) B() (125)
0 JO

+Zu02 (1) ) ] ’
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where Sy, is the single-channel ground-state S-matrix element.

In the successive iterations, the most recent approximation to the wave function
in each of the channels is used. In iteration m, for example, each of the N excited
states are approximated as

/00 dr' g (r,r") Z ‘I'(m Dy (126)
0 :

1
Hjo (') TGV (r Z M6,
with corresponding S-matrix elements

2 oo
S = 2 E [ @ W, (0 Z ) B Y (o) (127)
0

h?\/kok;
Ul (e B Z )™ ()] .

The iteration concludes with a new approximation to the ground-state wave
function

T () = Woe(r) + /Ooo dr' g (r, ") [ Upe(r') TSV (") (128)

+ Z qu lI;(m) ) ] ’
and S-matrix element,

s = 50c0+21 / dr' Yo, (r') [ Ugo (') T~V (") (129)

+Zu0z IR ARICONE

Iteration of the equations is continued until the S-matrix converges. Unfortu-
nately, this does not always occur when the coupling is strong. The code ECIS95
can attempt to improve the convergence through the use of Padé approximants.
These attempt to approximate a power series expansion in terms of a ratio of poly-
nomials. To this end, ECIS95 actually solves the Lippmann-Schwinger equation in
the form

=0+ AGHU' T, (130)

where A is a multiplicative factor that is taken to be one at the end of the calcu-
lation. In practice, this is done by storing the intermediate results for each state
independently at each iteration.
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The ECIS method has two advantages over the usual method of solving the
coupled-channels problem. The first and most important is that it need only solve
the system of equations with the incoming-wave boundary condition of physical
interest. The conventional method requires solutions for all possible incoming waves,
in order to invert the matching equations and obtain the S-matrix. Thus, even
though the ECIS method is iterative, it is often much faster than the conventional
method of solution.

A second advantage of the ECIS method is that it permits calculations us-
ing deformed spin-orbit potentials. The integration method used by ECIS95 to
numerically solve the differential equations takes advantage of the standard form
of the radial Schrédinger equation, which contains second derivatives but no first
derivatives. As the deformed spin-orbit potential of Eq. (75) normally contains first
derivatives, it would require another method of integration. The alternative is to
use the ECIS method, which has no restrictions of this type.

11 The distorted-wave Born approximation

The distorted-wave Born approximations (DWBA) can be understood as a simple
iterative expansion of the Lippmann-Schwinger equation in powers of the potential.
It is thus a good approximation when the coupling is weak.

Making use of the general expressions for a partial wave J, Egs. (117) and (119),
one has for the zeroth-order approximations (starting values) for the wave function
and S-matrix,

\I’(JO) (7‘) = \I’OJ(T') and SSI) = Sos. (131)

The first-order distorted-wave Born approximation, or just DWBA, to the wave
function is then

D (r) = Ty (r) + / dr' GE,(r, ) Ul (') Tos ('), (132)
0
while the DWBA to the S-matrix is
2 1/ o0 _
S = Sos + 205 K / dr' o, (') Us(r') Bos () K72 (133)
0

Note that the S-matrix is clearly symmetric when the optical potential matrix U’
is symmetric.

The DWBA is at times extended to second order in the coupling. In this case,
one obtains for the wave function,

D) = W)+ / Y G (rr" ) U (r') Toy(r') (134)

0
+/ dr' G¢;(r,r") U}(r')/o dr" G (', P UL (") T ("),
0
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and for the S-matrix

. 2u =
S.(IZ)ZSOJ + QZh_K 1/2/ dr' o (r') U (r') Yo, (r )KJ1/2
; 2@h—KJ1/2/ dr' W, (r') U} (r') (135)

x/0 dr'" G (', r") UL (") ‘I’OJ(T”)K;I/2.

The DWBA is usually not extended beyond second order. If higher order terms
in the interaction are necessary, it is usually better to resort to other methods, such
as the conventional or ECIS methods for coupled-channels calculations.

Although similar in form, the ECIS method and the DWBA are not equivalent.
The first-order DWBA contains terms of at most first order in the coupling. In
the ECIS method, this is necessarily the case only for the first excited state in
the first iteration. The approximation to the second state, in the first iteration of
the ECIS method, contains a second-order contribution obtained by coupling the
ground state to the first excited state and the latter to the second excited state.
This term appears in the DWBA only in the second-order approximation.

The DWBA was developed to approximate the effects of the coupling between
channels when that coupling is weak. It assumes that the contribution of the next-
order term will always be relatively small compared to the last term included, due
to the weakness of the coupling. The goal of the ECIS method is to solve the
coupled-channels problem quickly and efficiently, irregardless of the magnitude of
the coupling. It thus makes use of all the information it has on hand.

12 Reduced matrix elements and form factors

In Eq. (84), the target-spin-angular functions were used to calculate the matrix
elements of the optical potential,

U150 / P rint AV (7) Uo7, o) VM (). (136)

It was noted that although these elements are calculated for a particular value M of
the projection of the total angular momentum J, the matrix elements that result are
independent of this value if the system is rotationally invariant. The representation
of these matrix elements will be discussed here.

The most general form of a rotationally-invariant interaction between a projectile
and a target couples tensor operators acting on the orbital angular momentum,
i*Yy,(7), the spin of the projectile, @2, and the angular momentum of the target,
Qn{ (int), to a scalar,

ov)

o int) = 32 Vi) P Va0 Qe Qeelrion) () 0 8 )0 (130

ATK
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In principle, the radial dependence of each term, V)«m( r), can depend on the angular
momenta of the tensor operators, A, o, and k, as well as on the initial and final
channels, ¢ and ¢'.

The interactions in the vibrational and rotational models (with a spherical spin-
orbit potential) are simpler than the general one above, as they couple only the
orbital and target angular momenta. In these cases, the projectile-spin tensor op-
erator is itself a scalar. This is not true in general, as can be seen from the form of
the deformed spin-orbit potential in Eq. (75).

The matrix elements of the general interaction of Eq. (137), calculated with
respect to the target-spin-angular functions, can always be written in the form

Uiy jr s 17 (T) ZG’?‘; o 1sje (8] Q2 [8) (Lo | QL L) VG (r) . (138)

)\an

The factor Gj7% e 1sje 18 @ geometrical /statistical coefficient, which gives the ap-
propriate weight to the angular momenta involved,

_ (_)J+I;+j PUEZAR (139)

xy/ (21 + )21+ 1)(2A + 1)(25' + 1)(25 + 1)(2u + 1)
8 1A i & i i A
00 0 I L. J y g
i ok

The reduced matrix elements of the projectile and target angular momentum tensor
operators, (s'| QF |s) and (I| Q% |I.) can, in principle, contain information about
the nuclear part of the matrix elements. In the macroscopic models discussed, the
reduced matrix element for the projectile is just a number, the number 1, to be
precise. The reduced matrix element for the target depend on the oscillation ampli-
tude in the vibrational model and on the deformation parameters in the rotational
one.

Models with quite general couplings can be constructed in terms of their reduced
matrix elements and form factors. In this way, it is possible to construct micro-
scopic as well as alternative macroscopic models of the nuclear coupling. ECIS95
permits the definition of the interaction in terms of its reduced matrix elements
and form factors (the geometrical factor is calculated within the code). It thus
has the flexibility to perform coupled-channels calculations with an almost arbitary
coupling.

Gl’s

'j'cl\lsje

13 The ECIS method and the DWBA in ECIS95

When the spin-orbit potential is not deformed, there is almost no difference, from
the user’s point of view, between the conventional and ECIS methods of performing
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coupled-channels calculations in the code ECIS95. The information needed to per-
form the calculation is almost identical in the two cases. The only differences are
in technical details, such as the maximum number of ECIS iterations and the use
or not of Padé approximants, and in the execution time, which is generally shorter
when the ECIS method is used.

When the spin-orbit potential is deformed, the results of the conventional and
the ECIS method of calculation can differ, as the conventional method cannot take
into account the deivative terms that appear in the potential. Only the ECIS
method can perform the calculation correctly in this case.

When compound-nucleus cross sections are requested from the code ECIS95,
it is usually better to use the conventional method of calculation. To obtain the
transmission coefficients, it is necessary to calculate the complete S-matrix. The
conventional method of calculation is usually more efficient at doing this than the
ECIS one (at least if the spin-orbit potential is not deformed).

The ECIS method in ECIS95 can always be used to calculate the first-order
distorted-wave Born approximation. For this, the code must be restricted to perform
just the first ECIS iteration. One must also take care that the excited states couple
only to the ground state and not among themselves. From Eq. (122), it is clear
that the ECIS method would take into account coupling among the excited states,
if such coupling were included, thereby going beyond the DWBA.

A particular case of the second-order DWBA can also be performed using the
ECIS method. In this case, which can be treated using a simple extension of the
method above, the ground state couples to a set of excited states that couple to
yet another set of distinct excited states. A direct coupling of the ground state to
the second set of states could also be included. The states must be arranged so
that the first set that couples to the ground state comes before the second set of
excited states. Again, one must take care that no coupling is allowed among the
states in each set. The ECIS method will then perform the second-order DWBA
calculation in its first iteration, making it extremely useful for the calculation of
two-step statistical direct cross sections.

14 Final remarks

These lectures have tried to describe the basic nuclear physics problems to which
ECIS95 can be applied. For lack of time, however, only the most basic applications
could be addressed. Several other possible applications, such as the more elaborate
macroscopic models — the vibrational-rotational model and the asymmetric rota-
tional model — as well as the Engelbrecht-Weidenmiiller statistical model, were
mentioned, but no details were given. Many of the capabilities of ECIS95 were
not even mentioned. Among these are the ability to perform Dirac optical model
calculations, heavy-ion optical model calculations that include long-range Coulomb
excitation and excitation of both the projectile and the target, and calculations of
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transfer-reaction cross sections within the zero-range distorted-wave Born approxi-
mation. In short, the code ECIS95 has many capabilities. It can be a powerful tool
in the hands of those who know how to use it.

The optical model and optical potential continue to be subjects of intense re-
search. One can find out more about the directions this research is taking in the
proceedings of a recent conference[23)].
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