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Abstract

Let X [n] be the Hilbert scheme of n points on a smooth projective surface

X over the complex numbers. In these lectures we describe the action of the

Heisenberg algebra on the direct sum of the cohomologies of all the X [n],

which has been constructed by Nakajima. In the second half of the lectures

we study the relation of the Heisenberg algebra action and the ring structures

of the cohomologies of the X [n], following recent work of Lehn. In particular

we study the Chern and Segre classes of tautological vector bundles on the

Hilbert schemes X [n].
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1. Introduction

In these notes X will be a smooth and projective surface over the complex

numbers. The object of our interest will be the Hilbert scheme of points on

X. For any nonnegative integer n there is such a Hilbert scheme X [n] which

parameterizes �nite subschemes of X of length n.

If W � X is a �nite subscheme of length n, we shall also denote the

corresponding point in X [n] by W .

There is a universal subscheme Zn � X [n] � X whose underlying set is

given as Zn =
�
(W;P )

�� P 2 W	. The �rst projection from Zn � X [n] �X

onto X [n] induces a �nite and 
at map � : Zn ! X [n]. Let O[n] := ��(OZn).

It is a locally free sheaf on X [n] of rank n.

The Hilbert schemeX [n] enjoys several nice geometric properties, the most

basic one being:

Theorem 1.1. The Hilbert scheme X [n] is smooth, connected and of dimen-

sion 2n.

The �rst proof of this result was given in [6]. Once connectedness is

established, that the dimension of X [n] is 2n, is clear: Each of the n points

has two degrees of freedom.

Any subscheme W 2 X [n] can be written as W =
S
iWi where the Wi

are mutually disjoint subschemes each having support in just one point. If

SuppWi = fPig, we may de�ne the 0-cycle

�(W ) :=
X
i

(lengthWi)Pi =
X
W2X

(lengthOW;P )P:

This 0-cycle is an element of the symmetric power X(n) := Xn=Sn; the

quotient of Xn by the symmetric group Sn acting on Xn by permutation.

In this way we get a map � : X [n] ! X(n), which turns out to be a morphism

(see [6]). It is called the Hilbert-Chow morphism.

Contrary to X [n] the symmetric power X(n) is singular. Along the diago-

nals, where two or more points come together, the action of the symmetric

group has nontrivial isotropy, and because this happens in codimension two

or more, the quotient will be singular.

It is easy to see that the Hilbert-Chow morphism is birational; indeed it

is an isomorphism between the set of reduced subschemes in X [n] and the

subset of X(n) consisting of 0-cycles all whose points are di�erent.
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Theorem 1.2. The Hilbert-Chow morphism is a resolution of the singular-

ities. In fact it is even a semismall resolution; which means that

codimfzjdim ��1(z) � rg � 2r

for any natural number r.

For any point P 2 X we let the closed subscheme Mn(P ) � X [n] be the

set of subschemes whose support is the single point P . In other words

Mn(P ) =
�
W 2 X [n]

�� Supp (W ) = fPg
	
:

This is set-theoretically the same as ��1(nP ), and Mn(P ) is indeed closed.

We also give a name to the closed subset of X [n] whose elements are the

subschemes with support in one (unspeci�ed) point, and de�ne

Mn :=
�
W 2 X [n]

�� Supp (W ) contains just one point
	
:

There is an obvious map Mn ! X which sends a one-point-supported

subscheme to the point where it is supported. The following is a basic result

which now has several proofs. The �rst one was given by Brian�con in [2],

For other proofs see [4] or [5].

Theorem 1.3. Mn(P ) is irreducible of dimension n � 1, and Mn is irre-

ducible of dimension n+ 1.

When studying the Hilbert schemes X [n] of points, it is often a good

idea to look at all the X [n] at the same time, because they are all related

and therefore there is hope that a new structure emerges. One instance

of this is the fact that there is a nice generating function for all the Betti

numbers of all the X [n]. We shall see that this is a re
ection of the fact

that the direct sum of all the cohomologies of all the X [n] has an additional

structure. It is an irreducible module for a Heisenberg algebra action. This

has been shown by Nakajima [13]. This Heisenberg action is constructed

by means of correspondences between the Hilbert schemes, and the varieties

Mn and Mn(P ) play a big role. In fact the idea is that one can go from

the cohomology of X [k] to that of X [k+n], by adding subschemes of length n

supported in one point of X.

In the second part of these lecture notes we will investigate how this

Heisenberg action is related to the ring structure of the cohomology rings

of the Hilbert schemes. Here we follow the work [11] of Lehn. We are

particularly interested in the Chern classes of so-called tautological vector

bundles on the Hilbert schemes. For every vector bundle V on X one has

an associated tautological vector bundle V [n] on X [n] whose �bers over the
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points W 2 X [n] are naturally identi�ed with H0(W;V jW ). In particular, if

V has rank r, then V [n] is a vector bundle of rank nr. The Chern classes and

Chern numbers of these tautological bundles have interesting geometrical

and enumerative interpretations.

We study the operators of multiplication with the Chern classes of the

tautological sheaves, and express them in terms of the operators of the

Heisenberg algebra action. It is easy to see that the Heisenberg algebra

action induces an action of a Virasoro algebra and an important step in the

argument is a geometric interpretation of the Virasoro operators. Finally, we

restrict to the case of tautological vector bundles associated to a line bundle

L on X. We �nd a generating function for all the Chern classes in terms of

the Heisenberg operators and, at least conjecturally, a generating function

for the top Segre classes of the L[n].

2. The Betti numbers of X [n]

If one is interested in the cohomology of X [n], the �rst question to ask is

what are the Betti numbers of X [n]; i.e., what are the dimensions bi(X
[n]) :=

dimHi(X [n])? (In these notes we will only be interested in homology and

cohomology with coe�cients in Q , so for any space Y we write Hi(Y ) for

Hi(Y;Q) and Hi(Y ) for Hi(Y;Q).)

The Betti numbers of the Hilbert schemes X [n] were determined in [8].

There the following generating series for the Betti numbers was obtained:

Theorem 2.1.X
n�0;i�0

bi(X
[n]) tiqn =

Y
m>0;i�0

(1� (�1)it2m�2+iqm)(�1)
i+1bi(X

[n]):

There are several proofs of this formula. The original proof is by using

the Weil-conjectures and counting subschemes over �nite �elds. A second

proof, based on intersection cohomology, was given by G�ottsche and Soergel

in [9], and �nally in [3] Cheah gave a third proof using the so-called virtual

Hodge polynomials. In addition to the Betti numbers, the last two proofs

also give the Hodge numbers of the Hilbert schemes.

If one puts t = �1 in Theorem 2.1, one gets an expression for the topo-

logical Euler characteristic e(X [n]) of the spaces X [n]:X
n�0

e(X [n]) qn =
Y
m>0

(1� qm)�e(X)
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and by putting t = 1 one gets the generating series for the total dimensions

of the cohomology of X [n] :

X
n�0

dimQ H
�(X [n]) qn =

Y
m>0

(1 + qm)d�

(1� qm)d+
:(1)

Here d� and d+ are respectively the dimensions of the even and odd part of

H�(X), i.e.,

d+ =
X
i

dimH2i(X); d� =
X
i

dimH2i+1(X):

Later in these notes we shall come back to these formulas and give indi-

cations on how one can prove them.

One should note that we got nice generating functions for the Betti num-

bers and Euler numbers by looking at all the Hilbert schemes X [n] at once.

This is a �rst indication that one should also look at all the cohomologies of

the Hilbert schemes at the same time.

3. The Fock space and the current algebra

Let

H (X) =
M
n�0

H�(X [n])

be the direct sum of all the cohomologies of all the Hilbert schemes X [n].

This is a bigraded vector space over Q whose homogeneous parts are the

cohomology groupsHi(X [n]) for n � 0 and i � 0. For any class � 2 Hi(X [n])

we will call n the weight of � and i the cohomological degree or for short the

degree of �. Sometimes we will write deg� = (n; i).

The Hilbert scheme X [0] is just one point | the empty set is the only

subscheme of length zero. Hence H�(X [0]) �= Q in a canonical way. We let

1 denote the fundamental class [X [0]]. It corresponds to 1 2 Q , and we call

it the vacuum vector.

The space H (X) has a parity structure, or a super structure as many call

it: There is a decomposition

H (X) = H +(X)� H �(X)
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where H +(X) and H �(X) are respectively the sums of the even and odd

part of the cohomology H�(X [n]); that is

H +(X) =
M

n�0;i�0

H2i(X [n]);

H �(X) =
M

n�0;i�0

H2i+1(X [n]):

The intersection form Z
X[n]

�� =: h�; �i

induces an intersection form on H (X) which respects the parity structure,

which means that it is symmetric on H +(X) and antisymmetric on H �(X),

and that the two spaces H + (X) and H �(X) are orthogonal.

The Poincar�e series of H (X) with respect to the weight-grading is given

by G�ottsche's formula with t = 1 as in (1):X
n�0

dimQ H
�(X [n]) qn =

Y
m>0

(1 + qm)d�

(1� qm)d+
:

This series also appears naturally in a construction in the theory of Lie

algebras: Let V be a Q-vector space with a parity structure, or a super

space if you want; that is a decomposition V = V + � V � of V into an odd

and an even part. Assume that V comes equipped with a bilinear form h ; i

respecting the parity structure. The cohomology H�(X) with the pairingR
X
� � � is our prototype of such a V .

Associated to V one constructs the Fock space F(V ) in the following way:

First we take a look at V 
Q tQ [t]. A typical element of this space looks likePm
i=1 vi 
 ti. Let T be the full tensor algebra on V 
Q tQ [t]. To construct

F(V ) we impose in T the (super-)commutation relations:

[u
 ti; v 
 tj] := (u
 ti)(v 
 tj)� (�1)p(u)p(v)(v 
 tj)(u
 ti) = 0(2)

where u and v are any homogeneous elements in V , i.e., elements either in

V + or V �, and where i � 1 and j � 1 are any integers. By p(w) we mean

the parity of a homogeneous element w, i.e., p(w) = 0 when w 2 V + and

p(w) = 1 when w 2 V �. In order not to get confused with having two

di�erent 
-signs around, one from V 
Q tQ [t] and one from T , we have

suppressed the 
-signs from the tensor algebra T in equation (2).
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The formal way to impose the relations above, is to divide T by the two-

sided ideal generated by the relations in (2). Clearly F(V ) is an algebra.

The unit element 1 2 F 0(V ) is called the vacuum vector.

There is a natural grading on V 
Q tQ [t] for which the degree of v
 ti is i.

This grading induces, in an obvious way, a grading on the tensor algebra T .

As the relations (2) are homogeneous of degree i + j, the Fock space F(V )

is graded.

The elements of F(V ) are linear combinations of monomials of the form

(v1 
 tj1) (v2 
 tj2) : : : (vp 
 tjp)

where each vm is either an even or an odd element. The degree of such a

monomial is
P

jm. The Fock space also has a parity structure. A monomial

as the one above is even (resp. odd) if the number of odd vm's is even (resp.

odd).

One may then easily check that there is an isomorphism of graded vector

spaces

F(V ) �=

1O
m=0

S(V + 
 tm)
 �(V � 
 tm):

Here

S(V ) :=
M
i�0

Si(V ); �(V ) :=
M
i�0

�i(V );

are the symmetric and alternating algebra on V .

From this the Poincar�e series of F(V ) is readily found to beX
m�0

dimQ F
m (V ) =

Y
m>0

(1 + qm)dimV �

(1� qm)dimV + :

There is another algebra one may associate to V called the current algebra.

To construct this we start by setting V [t; t�1] = V 
Q [t; t�1 ]. The elements

of V [t; t�1] are linear combinations of the elements qi[v] := v 
 ti for v 2 V

and i 2 Z.

Let now T be the full tensor algebra on V [t; t�1]. Elements of T are linear

combinations of monomials qi1 [v1] qi2 [v2] : : : qip [vp] where we again suppress

the 
-signs.

By declaring the degree (or weight) of qi[v] to be i, we get a grading on

T . There is also a parity structure on T : We declare qi[v] to be even if v

is even and odd if v is odd; and a monomial qi1 [v1] qi2 [v2] : : : qip [vp] is even

(resp. odd) if it contains an even (resp. odd) number of odd qi[v]'s.
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We get the current algebra S(V ) by imposing the following relations in T :�
qi[u]; qj [v]

�
= i�i+jhu; vie(3)

where e is the unit element in T 0V [t; t�1] = Q , and where u and v are any

elements either in V + or in V �. The bracket is the supercommutator

[A;B] = AB � (�1)p(A)p(B)BA:

We also use the convention that �m = 0 if m 6= 0 and �0 = 1.

The current algebra S(V ) acts on the Fock space F(V ) in the following

way. Recall that the Fock space is an algebra.

If i > 0, we let the element qi[u] act as multiplication by u 
 ti in the

algebra F(V ), i.e., qi[u]w = (u 
 ti)w for any w 2 F(V ). In particular

qi[u]1 = u
 ti.

For i = 0, we simply put q0[u]w = 0 for any u and w.

To de�ne the action of the operators q�i[u], with i > 0, it is su�cient to

state that q�i[u]1 = 0 for any i > 0 and any u. Indeed by the relations (3)

we get

q�i[u] (v 
 tj) = q�i[u] qj [v]1

= �qj[v] q�i[u]1� i�j�ihu; vi1

= �i�j�ihu; vi1:

Thus the action is given by the formula

q�i[u] (v 
 tj) = �i�j�ihu; vi1:(4)

We call the operators qi[u] creation operators if i > 0 and annihilation

operators if i < 0. One has the following lemma:

Lemma 3.1. If the pairing h ; i is non-degenerate, the S(V )-module F(V ) is

irreducible, i.e., there is no proper, nonzero subspace invariant under S(V ).

Proof. It is clear that the vacuum vector 1 is a generator for F(V ) as a

module over S(V ). On the other hand, by applying an appropriate sequence

of annihilation operators q�i[u] to any element w of F(V ), we may bring it

back to the vacuum 1. Indeed if fv�g and fv
0
�g are dual bases for V , then

by equation (4) above we get

q�ip [v
0
ip ] q�ip�1

[v0ip�1
] : : : q�i1 [v

0
i1 ](vi1 
 ti1) (vi2 
 ti2) : : : (vip 
 tip) =

= (�1)pi1 � i2 � : : : � ip 1
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where the vi's and the v0i's are elements from the bases fv�g and fv
0
�g. The

operator

q�ip [uip ]q�ip�1
[uip�1

] : : : q�i1 [ui1 ] kills any other monomial made from ele-

ments in fv�g, again by the relation (4). Hence any nonzero and invariant

subspace contains the vacuum, and consequently equals F(V ) because the

vacuum generates F(V ) as an S(V )-module.

4. The Nakajima operators

We now come back to our space H (X). It has the same Poincar�e series

as the Fock space modelled on the cohomology H�(X) of X. The aim of

this section is to de�ne an action of the current algebra S
�
H�(X)

�
on the

space H (X) in a geometric way, making H (X) and F
�
H�(X)

�
isomorphic as

S
�
H�(X)

�
-modules.

We need to de�ne operators qi[u] for i 2 Z and u 2 H�(X) satisfying

the relations (3). The operator qi[u] changes the weight by i, hence is given

by a map H�(X [n]) ! H�(X [n+i]) for any n � 0. In order to de�ne these

maps, we introduce the incidence scheme X [n;n+i] � X [n] � X [n+i]; where

now i � 0. It is de�ned as

X [n;n+i] :=
�
(W;W 0)

�� W �W 0;W 2 X [n] andW 0 2 X [n+i]
	

Here, as also in futureW �W 0 means that W is a subscheme of W 0. This is

easily seen to be a closed subset of the product, and we give it the reduced

scheme structure.

The two projections induce two maps pn : X [n;n+i] ! X [n] and qn+i :

X [n;n+i] ! X [n+i]. There also is a morphism � : X [n;n+i] ! X(i) which is a

variant of the Hilbert-Chow-map. If W � W 0, then for the ideals IW and

IW 0 of IW and IW 0, we do have the inclusion IW 0 � IW , and the quotient

IW=IW 0 is an OX -module of �nite length which is supported at the points

where the two subschemes W and W 0 di�er. We de�ne

�(W;W 0) :=
X
P2X

length(IW =IW 0)P 2 X(i):

One may show that � is a morphism.

Inside X(i) there is the small diagonal � =
�
iP

�� P 2 X
	
which is

isomorphic to X.
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We have the following diagram:

X = � � X(i)

f

x?? �

x??
Zn;i � X [n;n+i] qn+i

�! X [n+i]

pn

??y
X [n]

(5)

where Zn;i is the component1 of

��1(�) =
�
(W;W 0)

��W �W 0; IW=IW 0 is supported in one point
	

which is the closure of the subset where Supp (IW =IW 0) is disjoint from W .

We give it the reduced scheme structure.2 One easily checks that

dimZn;i = 2n+ i+ 1;(6)

indeed W is arbitrary in X [n], but W 0 �W is con�ned to Mi.

We may pull back any class u 2 H�(X) along f to get a cohomology

class f�u on Zn;i. Applying this to the fundamental class [Zn;i], we get the

homology class f�u \ [Zn;i]. This in turn we may push forward to X [n;n+i]

via the inclusion j : Zn;i ! X [n;n+i], and in this way we get the homology

class

Qn;i(u) := j�(f
�u \ [Zn;i])

on X [n;n+i].

Now we are ready to de�ne the Nakajima creation operators; i.e., the

operators qi[u] with i � 0. We de�ne their action on an element � 2 H�(X [n])

by

qi[u]� := qn+i �(p
�
n � \Qn;i(u));

which we regard as an element in H�(X [n+i]) by Poincar�e duality.

This de�nition is similar to the classical way of de�ning the correspondence

betweenX [n] andX [n+i] associated to a class on their product| if one insists

on qi[u] being a correspondence, one has

qi[u]� = pr2 �(pr
�
1 � \ ��Qn;i(u))

where � : Zn;i ! X [n] �X [n+i] is the inclusion map, and where pr1 and pr2
are the two projections.

1To our knowledge it is unknown whether ��1(�) is irreducible or not.
2The scheme-theoretical inverse image ��1(�) is not reduced.
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In order to get some geometric feeling for what these operators do, we

assume that u and � are represented by submanifolds U � X and A � X [n].

Then qi[u]� is represented by the subspace

(7)
�
W 0 2 X [n+i]

�� there is a W 2 A with W �W 0;

W and W 0 such that they di�er in one point in U
	
:

To put it loosely, the creation operator qi[u] sends A to the set of subschemes

which we obtain by adding a subscheme of length i supported in just one

point from U to a subscheme in A. As an illustration we prove the following

lemma

Lemma 4.1.

qi[pt]1 = [Mi(P )]:

qi[X]1 = [Mi]:

Proof. To explain the �rst equality, we observe that 1 is represented by the

empty set. Hence by (7) the class qi[pt]1 is represented by�
W 0 2 X [i]

�� ; �W 0; ; and W 0 di�er only in P
	
;

where P is any point in X, and this is clearly Mi(P ); we are just adding

subschemes supported at P to the empty set.

The second equality is similar. We add subschemes of length i supported

in one point to the empty set, but this time without any constraint on the

point.

We now come to the de�nition of the Nakajima annihilation operators

q�i[u], where i > 0. We shall, except for a sign factor, literally go the other

way around in the diagram (5). For any class � 2 H�(X [n+i]) we de�ne

q�i[u]� := (�1)ipn �
�
q �n+i � \Qn;i(u)

�
:

The geometrical interpretation of these annihilation operators is analogous to

that of the creation operators. If the class � is represented by a submanifold

B � X [n+i], then q�i[u]� will be represented by the subspace

(8)
�
W 2 X [n]

�� there is a W 0 2 B with W �W 0 such that they

di�er in just one point in U
	
:

In other words, the annihilation operator q�i[u] sends B to the set of the

subschemes we get by throwing away subschemes supported in one point in

U from subschemes in B. Of course this is possible only for some of the

subschemes in B.
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We will give one example. Let C � X be a smooth curve, and let � = [C]

be its fundamental class in H2(X). For every n � 0 the symmetric product

C(n) is naturally embedded in the Hilbert scheme X [n]. Put �n = [C(n)]. Let

C 0 be another smooth curve, and assume that hC;C 0i = a. Let �0 = [C 0].

Lemma 4.2.

q�i[�
0]�n = (�1)ia�n�i

Proof. We assume for simplicity that C and C 0 intersect transversally in just

one point. Because C is smooth, a subschemeW � C is uniquely determined

by the associated 0-cycle
P

P2C length (WP )P . Hence there is just one sub-

scheme W 0 of length i in C(i), whose support is C\C 0. Splitting o� W 0 from

the subschemes in C(n) containing it, obviously gives an isomorphism from�
W [W 0 2 C(n)

�� W 2 C(n�i)
	
to Cn�i. This concludes the proof.

The operators qi[u] and q�i[u] behave very well with respect to the inter-

section pairings on X [n] and X [n+i]:

Lemma 4.3. For classes � 2 H�(X [n]) and � 2 H�(X [n+i]) we have the

equality

(�1)i
Z
X[n]

� � q�i[u]� =

Z
X[n+i]

(qi[u]�) � �:

Proof. By the de�nition of the operators and the projection formula, both

are equal to Z
X[n;n+i]

p�n� � q
�
n+i� \Qn;i(u):

The following lemma is easily deduced from the de�nition of the Nakajima

operators

Lemma 4.4. The operator qi[u] is of bidegree (i;deg u+ 2(i� 1)).

5. The relations

The basic result of Nakajima in [13] is that his creation and annihilation

operators satisfy the relations of the current algebra. Below we shall sketch

a proof of that, closely following the proof that Nakajima gave in [14].

Theorem 5.1. (Nakajima, Grojnowski) For all integers i and j and all

classes u and v in H�(X) the following relation holds�
qi[u]; qj [v]

�
= i�i+jhu; viid:
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The proof is in two steps. The �rst is to establish

Proposition 5.2. There are universal non-zero constants ci such that�
qi[u]; qj [v]

�
= ci�i+jhu; viid:

Here by universal we mean that the ci's neither depend on u or v nor on

the surface X. A sketch of the proof of this proposition, will occupy section

6. The next step is | naturally enough | to establish

Proposition 5.3. ci = i.

The last proposition can be proved in two di�erent ways. The constants ci
have a natural interpretation as intersection numbers on the Hilbert scheme.

Recall that dimMi = i+1 and dimMi(P ) = i�1. Therefore Mi and Mi(P )

are of complementary dimension, and their intersection gives a number.

However Mi(P ) �Mi so they do not intersect properly and
R
X[i] [Mi(P )][Mi]

is not entirely obvious to compute. By induction one may prove (see [5]):

Proposition 5.4. (Ellingsrud{Str�mme)Z
X[i]

[Mi(P )][Mi] = (�1)i�1i:

The following lemma then proves Proposition 5.3.

Lemma 5.5. If i > 0 then ci = (�1)i�1
R
X[i] [Mi(P )][Mi].

Proof. Recall that by Lemma 4.1 we have [Mi(P )] = qi[pt]1 and [Mi] =

qi[X]1. The Nakajima relation for the operators q�i[X] and qi[X] reads

qi[X] q�i[pt]� q�i[pt] qi[X] = ci � id:

When we apply this to the vacuum vector, we obtain

q�i[pt] qi[X]1 = �ci

because any annihilation-operator kills the vacuum. Now, by Lemma 4.3,

we get Z
X[i]

[Mi(P )][Mi] =

Z
X[i]

qi[pt]1 � qi[X]1 =

= (�1)i
Z
X[0]

1 � q�i[pt]qi[X]1 =

= (�1)i
Z
X[0]

(�ci)1 = (�1)i�1ci:
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There is also another and very elegant approach to Proposition 5.3 due to

Nakajima where he uses vertex operators. We shall give this later on.

The main consequence of the Nakajima-Grojnowski theorem is the follow-

ing:

Theorem 5.6. The space H (X) and the Fock-space F (H�(X)) are isomor-

phic as S(H�(X))-modules.

Proof. There is a map as S(H�(X))-modules from F (H�(X)) to H (X) de-

�ned by sending u 
 ti to qi[u]1. The two spaces have the same Poincar�e

series, and F(H�(X)) is an irreducible S(H�(X))-module.

6. Indication of how to get the relations

In this section we explain in a sketchy way why the commutation relations

in Theorem 5.1 hold.

We will �rst treat the case when i and j have the same sign, for exam-

ple both are positive. This is the case of the composition of two creation-

operators.

Then �i+j = 0, and we have to prove that qi[u] and qj[v] commute up to

the correct sign. For simplicity we also assume that u = [U ] and v = [V ]

where U and V are submanifolds of X intersecting transversally.

In the de�nition of the Nakajima operators we made use of the subvariety

Zn;i � X [n] �X [n+i]: Recall that it was given as

Zn;i =
�
(W;W 0)

��W �W 0 di�er in one point
	
:

We are going to compare the two operators qj[v]qi[u] and qi[u]qj[v], which

both map the cohomology of X [n] to the cohomology of X [n+i+j]. The natu-

ral place to describe the operator qj[v]qi[u], which is the composition of two

correspondences, is on the productX [n]�X [n+i]�X [n+i+j]: In the description

the following subvariety of this product will play a role:

Z1 = p�112 (Zn;i) \ p
�1
23 (Zn+i;j):(9)

It consists of triples (W;W 0;W 00) of nested subschemes | i.e., W � W 0 �

W 00 | such that W and W 0 just di�er in one point which we call P , and

at the same time W 0 and W 00 are di�erent only in one point that we call

Q. The quotient IW =IW 0 has support fPg and satis�es length IW =IW 0 = i:

Similarly, the quotient IW 0=IW 00 has support fQg and is of length j.

There is a map f1 : Z1 ! X �X sending the triple (W;W 0;W 00) to the

pair (P;Q).
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In a similar manner we let Z2 � X [n]�X [n+j]�X [n+i+j] be the subvariety

given by

Z2 = p�112 Zn;j \ p
�1
23 Zn+j;i:(10)

Its elements are the triples (W;W 0;W 00) of nested subschemes with IW =IW 0

and IW 0=IW 00 both having one-point-support in, say, Q and P respectively;

the �rst one of length j and the other one of length i. As above there is

a morphism f2 : Z2 ! X � X, sending the triple (W;W 0;W 00) to the pair

(Q;P ).

Lemma 6.1. Let � be a class on X [n].

qi[u] qj [v]� = p3�
�
p�1� � f

�
2 (v � u) \ [Z2]

�
;(11)

qj[v] qi[u]� = p3�
�
p�1� � f

�
1 (u� v) \ [Z1]

�
;(12)

where pi denotes the restriction of the i-th projection to Z1 in the �rst line,

and of Z2 in the second.

Proof. This is just the formula for composing correspondences; the only point

to check is that the intersections in (9) and (10) are both proper.

Let Z 0
1 � Z1 and Z 0

2 � Z2 be the two open subsets where the two points

P and Q are di�erent. A typical element of Z 0
1, for example, may be drawn

as

�
�
�
�

��
�
�
�
�

��
��

����W

W’ W’’Q

P

It has a 'central' part W and two 'fuzzy' ends, one in P and one in Q.

The 'fuzzy' end at P is a subscheme of length i supported there, and the

other 'fuzzy' end is a subscheme supported at Q of length j. The subscheme

W 0 is the union of the 'central' part and the 'fuzzy' end at P . Of course P

or Q may belong to the central part, but still the above statement makes

sense if interpreted in the right way.

The drawing above might as well represent a typical element in Z 0
2. The

only di�erence being that in that case the 'fuzzy' part of length j at Q would

belong to W 0 instead of the one of length i at P . Hence to any nested triple

(W;V;W 00) in Z 0
1 we may associate the triple (W;V 0;W 00) where we get V 0
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from V by swapping the 'fuzzy' parts at P and Q. With a little thought one

may convince oneself that this swapping is well de�ned even if the 'central'

part touches P or Q. In this way we get an isomorphism g : Z 0
1
�= Z 0

2:

Clearly this isomorphism respects both p1 and p3 | it doesn't change the

extreme subschemesW andW 00 | and up to permutation of the two factors

of X �X, it respects f1 and f2. By the projection formula we therefore get

the following equality

g�
�
p�1� � f

�
1 (u� v) \ [Z 0

1]
�
= (�1)deg udeg vp�2� � f

�
2 (v � u) \ [Z 0

2]:

The sign comes from the following: u � v = pr�1u � pr
�
2v and via g� this is

mapped to pr�2u � pr
�
1v = (�1)deg u deg vv � u.

It only remains to see that there is no contribution from the boundaries,

i.e., when P = Q. The easy case is when U \ V = ;, then the boundary is

empty | indeed P 2 U and Q 2 V .

In general, a dimension estimate will show that all components of the

boundary are | with good margin | of too small dimension to contribute.

We shall need

dimZ 0
1 = dimZ 0

2 = 2n+ i+ j + 2:

Indeed, the n points in the 'central' part each have 2 degrees of freedom,

and we are free to choose the 'fuzzy' ends from Mi and Mj, and these two

varieties are of dimension i+ 1 and j + 1 respectively.

By the transversality of U and V we know that

dimR U \ V = dimR U + dimR V � 4

We now give the dimension count for f�1(U � V ) \ (Z � Z 0), where we

have suppressed the indices and only write f , Z, Z 0; the suppressed index

can be either 1 or 2. The 'central' part is of length n and gives a contribution

of 4n to the (real) dimension. Now P = Q, so the two 'fuzzy' parts live at

the same point. If they could be chosen independently, their contribution to

the dimension would be

dimR(Mi(P )�Mj(P ) = 2(i� 1) + 2(j � 1)

as long as P is �xed, and P can only move in U \V . As this gives an upper

bound of their contribution, we get

dimR(f
�1(U � V ) \ (Z � Z 0)) � dimRMi(P )�Mj(P ) + dimR U \ V

� 4n+ 2i+ 2j + dimR U + dimR V � 8

< 4n+ 2i+ 2j + dimR U + dimR V � 4:
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The class f�(u� v) \ [Z] lives in Hr(Z) where

r = dimR Z � (4� dimR U)� (4� dimR V )

= 4n+ 2i+ 2j + dimR U + dimR V � 4:

After the dimension count, we know that the map Hr(Z � Z 0) ! Hr(Z)

induced by the inclusion is an isomorphism. Hence

g�f
�
1 (u� v) \ [Z1] = (�1)deg u deg vf�2 (u� v) \ [Z2];

and we are done.

Now we shall treat the perhaps more interesting | at least more subtle

| case of the composition of one creation and one annihilation operator.

That is, the composition of one operator of the form q�i[u] and one of the

form qj[v] where i � 0 and j � 0.

We have to explain why

q�i[u] qj[v] + (�1)deg u deg vqj[v] q�i[u] = �ihu; vi�j�iid;

and we start by examining the composition q�i[u] qj [v]: For any n � 0 it

induces a map from H�(X [n]) to H�(X [n+j�i]): As in the preceding case, it

is natural to look at the subvariety

Z1 = p�112 Zn;j \ p
�1
23 Zn+j�i;i � X [n] �X [n+j] �X [n+j�i]:

It may be described as the variety of triples (W;W 0;W 00) 2 X [n] �X [n+j] �

X [n+j�i] with W � W 0 and W 00 � W 0 | this time the one in the middle is

bigger than the two on the sides | such that W 0 and W 00 di�er in just one

point, and at the same time W 0 and W 00 also di�er only in one point. Call

those points P and Q respectively.

The picture now looks like

��
��
��
��

��
�
�
�
�

��

����

��

W

W’’W’

Q

P

This time the big one in the middle | W 0 | is the whole subscheme.

The one to the left | W | is the whole except the 'fuzzy' part at P , and

the one to the right | W 00 | is the whole except the 'fuzzy' part supported

at Q. As before there is a map f1 : Z1 ! X �X sending a triple to the two

points (P;Q) and there is the lemma
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Lemma 6.2.

q�i[u] qj [v]� = p3�
�
p�1� � f

�
2 (v � u) \ [Z1]

�
:

To understand the composition q�i[u] qj [v]; we introduce the subvariety

Z2 = p�112 Zn�i;i \ p
�1
23 Zn�i;j � X [n] �X [n�i] �X [n+j�i]:

This time the points in Z2 are triples (W;W 0;W 00) of subschemes withW 0 �

W and W 0 � W 00 | the one in the middle is smaller than the other two

| and as usual W 0 and W are di�erent only at a point P and W 0 and W 00

di�er only at a point Q. The picture looks like

����
��
��

�
�
�
�

����

�
�
�
�

Q

P
W’’

WW’

The little one in the middle | W 0 | is the 'central' part, and the two

extremes | W andW 00 | are subschemes we get by adding the 'fuzzy' part

located at P respectively Q.

Just as before one checks that

dimZ1 = dimZ2 = 2n+ i+ j + 2;

for the complex dimensions, and there is the usual map f2 : Z2 ! X �X:

We follow the same track as in the creation-creation process, and de�ne

Z 0 � Z | where the missing index is either 1 or 2 | as the open subsets

where P 6= Q. Then there is an isomorphism g : Z 0
1
�= Z 0

2: Indeed we keep

the two extremes and exchange the smallest 'central' part with the whole.

Writing WP for the part of W supported at P and similarly for Q and W 0,

W 00, this amounts to sending the biggest one, W 0, to (W 0 nW 0
P nW

0
Q)[WP [

W 00
Q which has a meaning as long as P 6= Q. In the same way, it is easy to

write down the inverse of g.

Lemma 6.3.

g�
�
p�1� � f

�
1 (u� v) \ [Z 0

1]
�
= (�1)deg udeg vp�2� � f

�
2 (v � u) \ [Z 0

2]:

Now we come to the more subtle point of analyzing the boundaries where

P = Q. Because when we compute the composition, we apply p13�, what

really matters is the dimension of p13(ZnZ
0) | for missing index equal 1 and



80

2. In the case of p13(Z2 n Z
0
2) everything works as in the creation-creation

case, and there will be no contribution from the boundary, so let us turn

our attention to the subtle case p13(Z1 n Z
0
1). The case U \ V = ; gives

no boundary at all, but if U \ V = fPg something happens. If in addition

i = j we may take W = W 00. There always exists a subscheme of length

n+ j containing any subscheme of length n which is supported at p. Hence

in this case p13(Z1 nZ
0
1) will be supported along the diagonal in X [n]�X [n].

One may check by dimension count as before that this is the only possible

contribution from the boundary. It follows that�
q�i[u]; qi[v]

�
= � id

for some number �.

7. Vertex operators and Nakajimas computation of the

constants

For any class u 2 H�(X) and any sequence d = fdmgm�0 of numbers we

introduce the following operator, often called a vertex operator,

Ed;u(z) = exp
�X
m>0

dmqm[u]z
m
�
= exp(P (z)):

where P (z) =
P

m>0 dmqm[u]z
m. When we apply Ed;u(z) to the vacuum

vector, we obtain a sequence f�mgm�0 of classes in H (X), with �m of weight

m and �0 = 1, which are de�ned by the expressionX
m�0

�mz
m := exp

�X
m>0

dmz
mqm[u]

�
1 = exp(P (z)) � 1:

We have

Proposition 7.1. For any two classes u; v in H�(X), and any natural num-

ber i, the element exp(P (z)) � 1 is an eigenvector for qi[v] with eigenvalue

�cidi(
R
X
u � v)zi. That is, for m � 0, we have the equality

qi[v]�m = �cidi

�Z
X

u � v
�
�m�i:

In the proof of the proposition we shall need the following easy lemma:

Lemma 7.2. If A and B are two operators commuting with their commu-

tator, then for any p � 1

[A;Bp] = p[A;B]Bp�1:
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Furthermore

[A; expB] = [A;B] expB:

Proof. Exercise.

To prove Proposition 7.1 we do the following computation:

q�i[v] exp(P (z)) � 1 =
�
q�i[v]; exp(P (z))

�
1 ann. oper. kill vacuum

=[q�i[v]; P (z)] exp(P (z)) � 1 Lemma 7.2

=

�X
m>0

dm
�
q�i[v]; qm[u]

�
zm
�
exp(P (z)) � 1 de�nition of P (z)

=� dici(

Z
X

uv)zi exp(P (z)) � 1 Nakajima relations:

By the de�nition of f�mg, this completes the proof.

The property in Proposition 7.1 is very strong. In fact, it determines the

sequence �m completely.

Lemma 7.3. Let the two sequences f�mg and f�mg from H (X) be given,

with �m and �m both of weight m and �0 = �0 = 1. Assume that for any

i > 0 and any class v in H�(X), there is a number ei;v such that both �m
and �m satisfy the equation

qi[v]xm = ei;vxm�i

for all n � 0. Then �m = �m for all m � 1.

Proof. The proof goes by induction on m. We assume that �j = �j for

j < m. Then for any i � 0 and any class v on X we have

q�i[v](�m � �m) = ei;v(�m�i � �m�i) = 0

by induction. Hence S(H�(X))(�m � �m) will be a sub S(H�(X))-module

all of whose elements are of weight greater than or equal to m. Now if

m � 1, the vacuum, being of weight 0, cannot be in this module which

consequently must be trivial, since H (X) is an irreducible S(H�(X))-module.

Hence �m = �m, and we are done.

We shall need the following variant of the above lemma:

Lemma 7.4. Let f�mg and f�mg be two sequences in H (X) with �m and

�m both of weight m and �0 = �0. Assume that for all i � 0 and all classes

v in H�(X) there are numbers ei;v with ei;v = 0 if deg v < 2, such that the

following two conditions are satis�ed.
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1. q�i[v]�m = ei;v�m�i for all i � 0 and all classes v in h�(X),

2. deg�m = 2m and

q�i[v]�m = ei;v�m�i

whenever deg v � 2 and i > 0.

Then �m = �m for all m � 0.

Proof. Again we use induction on m and assume that �m�i = �m�i for all

i > 0. Just as in the proof above, it is su�cient to see that the vacuum

vector is not contained in the S(H�(X))-module spanned by �m � �m. In

other words we must check that any sequence of 'backwards' moves kills

�m � �m; to that end let

z = q�i1 [v1]q�i2 [v2] : : : q�ip [vp](�m � �m)

be the result of p 'backwards' moves applied to �m � �m. If one of the vi's

is of degree greater than or equal to 2, we know that z = 0. Indeed, this

follows by induction from two conditions in the lemma since the annihilation

operators involved all commute | we can move the annihilation qij [vj ] with

deg vj � 2 to the right in the 'backwards' sequence. Hence we may assume

that all the vi's are of degree less than 2. Then by condition 1. in the lemma,

we have q�i1 [v1]q�i2 [v2] : : : q�ip [vp]�m = 0 and hence

z = q�i1 [v1]q�i2 [v2] : : : q�ip [vp]�m:

We want to see that the case z = 1 cannot happen. Indeed, if z = 1, thenPp
j=1 ij = m. By computing the degree of z from the expression above, we

obtain

deg z =deg�m +
X

deg
�
vj � 2(ij + 1)

�
=

=2m+
X

(deg vj � 2)� 2
X

ij =

=
X

(deg vi � 2);

from which it follows that deg z < 0, and thus z = 0.

Let now C � X be a smooth curve whose class in H�(X) is �. Let �n
denote the class of the n-th symmetric power C(n) of C in X [n]. The classes

�n may be computed in terms of the Nakajima creation operators as in the

following theorem which appeared in [13] and [10].
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Theorem 7.5. (Nakajima, Grojnowski)X
n�0

�nz
n = exp

�X
m>0

(�1)m�1

cm
qm[�]z

m
�
� 1:

Proof. By Proposition 7.1 we know that the sequence f�mg de�ned by the

identity X
n�0

�nz
n = exp

�X
m>0

(�1)m�1

cm
qm[�]z

m
�
� 1

satis�es

qi[v]�m = (�1)i
� Z

X

�v
�
�m�i

for all i > 0 and all v 2 H�(X). From Lemma 4.2 we know that q�i[v]�
n =

(�1)ia�n�i for any curve class v satisfying
R
X
�v = a. It is also clear that if

v = [V ] for V a submanifold of X with C \ V = ;, then q�i[v]�
n = 0; hence

we know that

qi[v]�
n = (�1)i(

Z
X

v�)�n�i

holds for all i > 0 and all classes v on X of degree 2 or more. The theorem

then follows from Lemma 7.4.

Finally we will give the second computation | due to Nakajima | of the

constants ci as we promised. We start by computing derivatives in Theorem

7.5 to obtainX
n�1

n�nzn�1 =
� d

dz
expP (z)

�
1 =

� d
dz

P (z)
�
exp(P (z)) � 1 =

=
��X

m>0

(�1)m�1m

cm
qm[�]z

m�1
�
�

1X
n=0

�nzn
�
� 1:

From this we obtain

n�n =

nX
m=1

(�1)m�1m

cm
qm[�]�n�m:(13)

As the constants cm are universal, we may very well assume that X = P2

and that C is a line.
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Lemma 7.6. Let C and C 0 be two curves in X intersecting transversally in

one point; e.g., two di�erent lines in P2. ThenZ
X[n]

�n � �
0
n =

(
1 if n � 1

0 else

Proof. If t = 0 and t0 = 0 are local equations for C and C 0 at the common

point, a subscheme in C(n) supported at this point is necessarily of the form

C [t; t0 ]=(t; t0
n) and one in C 0(n) must be of the form C [t; t0 ]=(tn; t0). If a

subscheme W simultaneously is of these two forms, necessarily n � 1.

Finally we prove

Theorem 7.7.

ci = i:

Proof. The idea is to intersect (13) with �n. For n = 1 we get

1 =

Z
X

�� =
1

c1

Z
X

�1 � q1[�]�0

=
1

c1

Z
X

(�q�1[�]�1) � �0

=
1

c1

Z
X

�0 � �0 =
1

c1
:

This gives c1 = 1. Assume now that n � 2. Then we obtain

0 =

Z
X[n]

�n � �n =

nX
m=1

(�1)m�1m

cm

Z
X[n]

�n � qm[�]�n�m

=

nX
m=1

(�1)m�1m

cm
(�1)m

Z
X[n�m]

q�m[�]�n � �n�m

=

nX
m=1

(�1)m�1m

cm

Z
X[n�m]

�n�m � �n�m

=
(�1)n�1n

cn
+

(�1)n�2(n� 1)

cn�1
:

Hence

cn

n
=

cn�1

n� 1

from which we get cn = n.
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8. Computation of the Betti numbers of X [n]

As before, let X be a smooth projective surface over C . We will now show

formula (1) for the Betti numbers of the Hilbert scheme X [n] of points. We

needed it in the �rst part to show that

H (X) :=
M
n�0

H�(X [n])

is an irreducible representation of the Heisenberg algebra. There are at

least three possible di�erent approaches which have been used to prove this

result; using the Weil conjectures [8], using perverse sheaves and intersection

cohomology [9], or �nally one can use the so-called virtual Hodge polynomials

[3]. The last two approaches will in addition give the Hodge numbers of the

Hilbert schemes. In these notes we will use the second approach. It has the

advantage of leading to the shortest and most elegant proof, and to almost

completely avoid any computations. The disadvantage is that it requires

very deep results about intersection cohomology and perverse sheaves. We

will �rst brie
y describe these results and then show how one can use them

as a black box, which with rather little e�ort gives the desired result.

Let Y be an algebraic variety over C . In this section we only use the

complex (strong) topology on Y . We want to stress again that all the coho-

mology that we consider is with Q-coe�cients. In particular Hi(Y ) stands

for Hi(Y;Q). There exists a complex ICY of sheaves on Y (for the strong

topology), such that

IH�(Y ) := H�(Y; ICY )

is the intersection homology of Y (strictly speaking ICY is an element in

the derived category of Y ). Recall that the intersection cohomology groups

IHi(Y ) are de�ned for any algebraic variety and ful�ll Poincar�e duality (be-

tween IH�i(Y ) and IHi(Y )). ICY is called the intersection cohomology com-

plex of Y . If Y is smooth and projective of dimension n, then

ICY = QY [n];

is just the constant sheaf Q on Y put in degree n. Therefore IHi�n(Y ) =

Hi(X;Q). More generally, if Y = X=G is a quotient of a smooth vari-

ety of dimension n by a �nite group, then ICY = QY [n], and thus again

IHi�n(Y ) = Hi(X;Q).

Let now f : X ! Y be a projective morphism of varieties over C . Suppose

that Y has a strati�cation

Y =
a
�

Y�
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into locally closed strata. Let X� := f�1(Y�). Assume that f : X� ! Y� is

a locally trivial bundle with �ber F� (in the strong topology).

De�nition 8.1. f is called strictly semismall (with respect to the strati�-

cation), if, for all �,

2dim(F�) = codim(Y�):

We will use the following facts:

: Fact 1. Assume that f : X ! Y is strictly semismall, and that the F�
are irreducible, then

Rf�(ICX) =
X
�

ICY �
:

(see [9]). Here Rf� is the push-forward in the derived category, and

Y � is the closure of Y�. This is a consequence of the Decomposition

Theorem of Beilinson-Bernstein-Deligne [1].

: Fact 2. Let � : X ! Y be a �nite birational map of irreducible algebraic

varieties, then

R��(ICX) = ICY

(see [9]).

Now we want to see how these facts about the intersection cohomology

complex can be applied to compute the Betti numbers of the Hilbert schemes

of points.

Let � : X [n] ! X(n) be the Hilbert-Chow morphism. The symmetric

power X(n) is strati�ed as follows: Let � = (n1; : : : ; nr) be a partition of n.

We also write � = (1�1 ; 2�2 ; : : : n�n), where �i is the number of l such that

nl = i. We put

X(n)
� :=

nX
nixi 2 X

(n)
��� the xi are distinct

o
;

and X
[n]
� := ��1(X

(n)
� ). The X

(n)
� form a strati�cation of X(n) and similarly

the X
[n]
� form a strati�cation of X [n]. The smallest stratum

X
[n]

(n)
:=
n
W 2 X [n]

��� Supp(W ) is a point
o

is just the variety Mn. It is a locally trivial �ber bundle (in the strong

topology) over X(n) ' X, with �ber

F(n) :=Mn(P ):

In particular the �ber is independent of X. This is because �nite length

subschemes concentrated in a point depend only on an analytic neighborhood
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of the point. It follows that each stratum X
[n]

(n1;::: ;nr)
is a locally trivial �ber

bundle over the corresponding stratum X
(n)

(n1;::: ;nr)
, with �ber F(n1) � : : : �

F(nr).

By Theorem 1.3 Mn(P ) is irreducible of dimension (n� 1), which is half

the codimension of X
(n)

(n)
in X(n). It follows that � : X [n] ! X(n) is strictly

semismall with respect to the strati�cation by partitions. Therefore we ob-

tain by Fact 1. above

R��(QX[n] [2n]) = R��(ICX[n]) =
M
�

IC
X

(n)

�

:

We write

� = (n1; : : : ; nr) = (1�1 ; 2�2 ; : : : ; n�n);

and denote (�) := (�1; �2; : : : ; �n). Then there is a morphism

�� : X(�) := X(�1) � : : : �X(�n) ! X
(n)
�

(�1; : : : ; �n) 7!

nX
i=1

i � �i:

It is easy to see that �� is the normalization of X
(n)
� . Therefore Fact 2.

above implies

IC
X

(n)

�

= R(��)�(ICX(�)) = R(��)�QX(�)

�
2j�j

�
;

where j�j =
P

i �i. Putting this together, we get that

R��(QX [n] [2n]) =
M
�

R(��)�
�
QX(�)

�
2j�j

��
:(14)

Here the sum runs through all (�) = (�1; : : : ; �n) with
P

i i�i = n. Finally

we take the cohomology of relation (14). We recall that taking the coho-

mology of a complex of sheaves commutes with push-forward. Therefore we

obtain

Hi+2n(X [n]) =
M
�

Hi+2j�j(X(�)):

So with this we have completely determined the additive structure of the

cohomology of the Hilbert schemes X [n] in terms of that of the symmetric

powers X(k). The cohomology of the symmetric powers is well known. As

X(n) is the quotient of Xn by the action of the symmetric group Sn by

permuting the factors, we see that Hi(X(n)) = Hi(Xn)Sn is the invariant

part of the cohomology of Xn under the action of Sn.
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Now we want to turn this into a generating function for the Betti numbers

of the Hilbert schemes X [n].

Let p(Y ) :=
P

i dim(Hi+dim(Y )(Y ))zi be the (shifted) Poincar�e polyno-

mial of a variety Y . The description above of the cohomology of the sym-

metric powers leads, by Macdonald's formula [12], to a generating function

for their Poincar�e polynomials.
1X
n=0

p(X(n))tn =
(1 + z�1t)b1(X)(1 + zt)b3(X)

(1� z�2t)b0(X)(1� t)b2(X)(1� z2t)b4(X)
:

Here the bi(X) = dim(Hi(X)) are the Betti numbers of X. We are now able

to put all the ingredients together to get our desired generating function for

the Betti numbers of the Hilbert schemes.
1X
n=0

p(X [n])tn =

1X
n=0

X
�1+2�2+:::n�n=n

p(X(�1))p(X(�2)) : : : p(X(�n))t�1+2�2+:::n�n

=

1Y
k=1

 X
l

p(X(l))tkl

!

=

1Y
k=1

(1 + z�1tk)b1(X)(1 + ztk)b3(X)

(1� z�2tk)b0(X)(1� tk)b2(X)(1� z2tk)b4(X)
:

This (keeping track of the shift in the Poincar�e polynomial) is the formula

of Theorem 2.1.

9. The Virasoro algebra

The rest of these lectures is mostly based on the paper [11] of Lehn.

Before we got a nice description of the additive structure (+ the intersection

pairing) of the Hilbert schemes, which put all the Hilbert schemes together

into one structure. Our aim now is to get some insight into the ring structure

of the cohomology rings of the Hilbert schemes of points X [n]. We want to

see how the ring structure is related to the action of the Heisenberg algebra.

That is; for any cohomology class � 2 H�(X [n]) we can look at the operator

of multiplying by �. We want to try to express these operators in terms of

the Heisenberg operators. In particular we will be interested in the Chern

classes of tautological sheaves on the Hilbert schemes, which are useful in

many applications of Hilbert schemes.

As a �rst step we will construct an action of a Virasoro algebra on the

cohomologies of the Hilbert schemes. This is not such a surprising result:

There is a standard construction, which associates to a Heisenberg algebra a
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Virasoro algebra. This construction is essentially translated into geometric

terms. One of the main technical results will be a geometric interpretation

of the Virasoro generators.

We will, in the future, ignore all signs coming from odd-degree cohomology

classes.

De�nition 9.1. Let � : H�(X) ! H�(X � X) = H�(X) 
 H�(X) be the

push-forward via the diagonal embedding � : X ! X � X. If �(�) =P
i �i 
 
i, we write

qnqm�(�) :=
X
i

qn[�i]qm[
i]:

We de�ne operators Ln : H
�(X)! End(H (X)) by

Ln :=
1

2

X
�2Z

q�qn��� , if n 6= 0

L0 :=
X
�>0

q�q���:

The sums appear to be in�nite, but, for �xed y 2 H (X) and � 2 H�(X),

only �nitely many terms contribute to Ln[�]y.

Theorem 9.2. 1.
�
Ln[u]; qm[w]

�
= �mqm+n[uw].

2. �
Ln[u]; Lm[w]

�
= (n�m)Ln+m[uw]�

n3 � n

12

 Z
X

c2(X)uw

!
1:

Part 2. can be viewed as saying that the Virasoro algebra given by the

Ln[X] acts on H (X) with central charge c2(X).

The proof of the theorem is mostly formal. We will show part 1. in case

n 6= 0. Writing

�(u) =
X
i

si 
 ti;

we get�
q� [si]qn��[ti]; qm[w]

�
= q�[si]

�
qn�� [ti]; qm[w]

�
+
�
q� [si]; qm[w]

�
qn�� [ti]

= (�m)�n+m��qn+m[si]

 Z
X

tiw

!
+ (�m)�m+�

 Z
X

wsi

!
qn+m[ti]:

We sum this up over all � and i, to obtain

2
�
Ln[u]; qm[w]

�
= (�m)qn+m[Z];
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with

Z =
X
i

si

Z
X

tiw +
X
i

ti

Z
X

wui:

Each of the sums on the right-hand side equals uw. This shows part 1. Part

2. can easily be reduced to part 1.

10. Tautological sheaves

We can, in a natural way, associate a tautological sheaf F [n] on X [n] to

a vector bundle F on X. These sheaves are very important in geometric

applications of the Hilbert scheme X [n]. Let again

Zn :=
�
(W;x) 2 X [n] �X

�� x 2W	
be the universal family with the projections p : Zn ! X [n], q : Zn ! X.

Then the tautological sheaf

F [n] := p�q
�(F )

is a locally free sheaf of rank rn on X [n], where r is the rank of F . (This

is because p : Zn ! X [n] is 
at of degree n.) In particular F [1] = F .

By de�nition the �ber F [n](W ) of F [n] over a point W 2 X [n] is naturally

identi�ed with H0(W;F jW ).

If 0! F ! E ! G! 0 is an exact sequence of locally free sheaves, then

so is

0! F [n] ! E[n] ! G[n] ! 0:

Therefore ( )[n] : F 7! F [n] de�nes a homomorphism from the Grothendieck

group K(X) of locally free sheaves on X to K(X [n]).

The Chern classes of the tautological sheaves have interesting geometric

interpretations.

1. Let L be a line bundle on X. Then cn(L
[n]) 2 Hn(X [n]) is the Poincar�e

dual of the class of C [n] = C(n), where C 2 jLj is a smooth curve.

2. More generally cn�l(L
[n]) is the Poincar�e dual of the class of all W 2

X [n] with W � Ct for Ct a curve in a general l-dimensional linear

subsystem of jLj.

3. The top Segre class s2n(L
[n]) is by de�nition just the top Chern class

c2n(�L
[n]) (here (�L[n]) is the negative of L[n] in the K(X [n])). In

other words that means that s2n(L
[n]) is the part of degree 2n of

1=(1 + c1(L
[n]) + c2(L

[n]) + : : : ):
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The degree of s2n(L
[n]) is the number of allW 2 X [n], which do not im-

pose independent conditions on curves in a general (3n�2)-dimensional

sub-linear system of jLj.

All these identi�cations are under the assumption that L is su�ciently

ample. It is e.g. su�cient, but not necessary that L is the n-th tensor power

of a very ample line bundle on X. The identi�cations are proven by using

the Thom-Porteous formula ([7] Theorem 4.4), which gives the class of the

degeneracy locus of a map of vector bundles in terms of their Chern classes.

There is a natural evaluation map

evn : H
0(X;L) 
OX[n] ! L[n]; (s;W ) 7! sjW 2 H

0(Z;LjW ) = L[n](W )

from the trivial bundle with �ber H0(X;L) to L[n]. The assumption that

L is su�ciently ample ensures that evn is surjective. In this situation the

Thom-Porteous formula says that cn�l(L
[n]) is the class of the locus where

the restriction of evn to a trivial vector subbundle of rank l+1 is not injective.

Such a vector subbundle corresponds to an l-dimensional linear subsystem

M of jLj, and the locus where the map is not injective is easily seen to be

the locus of W 2 X [n] with W 2 C for a curve C 2M . This shows parts 1.

and 2.

Part 3 is similar. In this case we look at the dual map

(evn)
_ : (L[n])_ ! H0(X;L) 
OX[n] ;

and the locus we are looking for is the locus where (evn)
_ is not injective.

So we get in particularZ
X

s2(L) = #
�
base points in a pencil of jLj

	
= c1(L)

2:R
X[2] s4(L

[2]) is the number of double points of the map X ! P4 given by a

general 4-dimensional linear subsystem of jLj. The numbers s2n(L
[n]) are,

for instance, interesting from the point of view of Donaldson invariants.

11. Geometric interpretation of the Virasoro operators

Our aim is to give a more geometric interpretation of the action of the

Virasoro algebra, which was de�ned in section 9. We shall see that they are

related to the "boundary" of X [n], i.e. the locus of subschemes of X with

support less then n points. If we write @ for the operation of multiplying by

the cohomology class of the boundary, then Ln will turn out to be essentially

the commutator qn@ � @qn. In order to be able to prove this result we have
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to give another description of the class @, which relates it to tautological

sheaves. This is done by looking at the incidence scheme

X [n;n+1] :=
n
(Z;W ) 2 X [n] �X [n+1]

��� Z �W
o
:

As a special case of diagram (5) we have the diagram

X
�
 � X [n;n+1] pn+1

�! X [n+1]

pn

??y
X [n]:

(15)

In particular there is a morphism � := (pn; �) : X
[n;n+1] ! X [n] �X, which

sends a pair (Z;W ) of subschemes of X to Z and the residual point. It is

evident that � is an isomorphism over the open subset of all (Z; x) 2 X [n]�X

with x 6= Z, i.e. over the complement of the universal family

Zn :=
n
(Z; x) 2 X [n] �X

��� x 2 Zo:
More precisely we have the following theorem:

Theorem 11.1. [5] X [n;n+1] is the blowup of X [n] �X along the universal

family Zn.

Proof. Let � : Y ! X [n] � X be the blowup along Zn with exceptional

divisor E. On X [n] � X �X, let Wn be the pull-back of Zn from the �rst

and third factor. On Y �X, lete� := (� � 1X)
�1�; fWn := (� � 1X)

�1Wn:

Then the projection pY je� : e�! Y is an isomorphism, which maps e� \fWn

isomorphically onto the exceptional divisor E. Therefore eZn+1 := e� [fWn

is a 
at family of degree (n+ 1) over Y , and on Y �X we have a sequence

0!O
e�
(�E)! O

eZn+1
! O

fWn
! 0:(16)

The 
at family eZn+1 induces a morphism Y ! X [n+1], which together with

the projection Y ! X [n] gives a morphism Y ! X [n] � X [n+1] with im-

age X [n;n+1]. One checks that the induced morphism Y ! X [n;n+1] is an

isomorphism.

Let E be the exceptional divisor of the blowupX [n;n+1] ! X [n]�X. Then

E can be described as

E =
n
(Z;W ) 2 X [n;n+1]

��� supp(Z) = supp(W )
o
:
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Let F be a vector bundle on X. Then tensoring the sequence (16) with p�XF

and pushing down to Y = X [n;n+1] gives the exact sequence

0! ��F (�E)! p�n+1F
[n+1] ! p�nF

[n] ! 0(17)

which relates the tautological bundles F [n] and F [n+1]. This makes it pos-

sible to try to treat the tautological bundles via an inductive argument. In

particular we get

OX[n;n+1](�E) = p�n+1O
[n+1] � p�nO

[n]

in the Grothendieck group K(X [n;n+1]).

Let @X [n] be the closure of the stratum X
[n]

(2;1;::: ;1)
, i.e. the locus in X [n],

where the subscheme does not consist of n distinct points. The class of

[@X [n]] (i.e. the class Poincar�e dual to it) is related to the �rst Chern class

of the tautological sheaves.

Lemma 11.2. [@X [n]] = �2c1(O
[n]
X ).

Proof. @X [n] is the branch divisor of the projection p : Zn ! X [n], therefore

�2c1(p�OZn) = [@X [n]].

De�nition 11.3. Let d : H (X) ! H (X) be the operator of multiplying

by c1(OX[n]), i.e. for y 2 H�(X [n]) we have dy = c1(OX[n]) � y. For f 2

End(H (X)) the derivative f 0 of f is de�ned to be

f 0 := [d; f ]:

It is easy to check that

(fg)0 = f 0g + fg0; [f; g]0 = [f 0; g] + [f; g0];

which gives some justi�cation for calling it derivative.

We have the following geometric interpretation of the derivative in terms

of tautological sheaves. Let X [n;m] � X [n]�X [m] be the incidence variety of

pairs of subschemes (Z;W ) with Z � W (in particular n < m). Let pn and

be pm be the projections of X [n;m] to X [n] and X [m].

Then taking the derivative of f 2 End(H (X)) amounts to multiplying

with c1(p
�
mO

[m]
X )� c1(p

�
nO

[n]
X ).

Proposition 11.4. Let f : H�(X [n]) ! H�(X [m]) be a homomorphism

which is given by f(�) := pm �(p
�
n� \ u), for a suitable u 2 H�(X

[n;m]).

Then

f 0(�) = pm �

�
p�n(�) �

�
c1(p

�
mO

[m]
X )� c1(p

�
nO

[n]
X )
�
\ u
�
:
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In particular, in case m = n+ 1, we get

f 0(�) = pn+1 �

�
p�n(�) � (�E) \ u

�
:

Proof.

f 0(�) = df(�)� fd�

= c1(O
[m]
X ) � pm �(p

�
n(�) \ u)� pm �

�
p�n
�
� � c1(O

[n]
X )
�
\ u
�

Now we apply the projection formula.

X [n;n+m]�X carries two universal families Zn � Zm+n. The above result

can also be reinterpreted as saying that we multiply by the �rst Chern class

of the push-forward to X [n;n+m] of the ideal sheaf IZn=Zn+m .

Now we come to the most important technical result of Lehns paper. It

gives a geometric interpretation of the Virasoro operators Ln.

Theorem 11.5. 1.�
q0n[u]; qm[w]

�
= �nm

 
qn+m[uw] +

jnj � 1

2
�n+m

 Z
X

KXuw

!
1

!
:

2.

q0n[u] = nLn[u] +
n(jnj � 1)

2
qn[KXu]:

Part 2. Says that the Virasoro generators Ln[u] are essentially the deriva-

tives of the qn[u].

Proof. We show that 1. implies 2. By the Heisenberg relations for the qn
and from the formula

�
Ln[u]; qm[w]

�
= �mqn+m[uw] from Theorem 9.2, we

geth
nLn[u] +

n(jnj � 1)

2
qn[KXu]; qm[w]

i
= �nmqn+m[uw] +

n2(jnj � 1)

2
�n+m

 Z
X

KXuw

!
1:

Therefore the di�erence between the right-hand side and the left-hand side

in 2. commutes with all the qm[u]. Since H (X) is an irreducible Heisenberg

module, it follows by Schurs lemma that the di�erence is the multiplication

by a scalar. This scalar must be zero, because the di�erence has weight n

(i.e. sends H�(X [l]) to H�(X [l+n])).

The proof of part 1. requires a complicated geometric argument, and it

is also di�cult to keep track of the indices. The most di�cult part is the
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case n = �m (when the Theorem also has an extra term). We will sketch

the proof of �
q01[X]; qn[u]

�
1 = �nqn+1[u]1;

which illustrates some of the geometric ideas, without running into any of

the technicalities. In the application to Chern classes of tautological sheaves,

we mostly use q01[X].

Let U � X be the submanifold represented by u. Let

Mn(U) :=
n
Z 2 X [n]

��� supp(Z) is one point of Uo;
Mn;n+1(U) :=

n
(Z;W ) 2 X [n;n+1]

��� supp(Z) = supp(W ) is one point of U
o
:

By de�nition and by Proposition 11.4 we obtain

q01[X]qn[u]1 = q01[X][Mn(U)] = pn+1 �((�E) \ p
�
n[Mn(U)]):

We recall that

E =
n
(Z;W ) 2 X [n;n+1]

��� supp(Z) = supp(W )
o
:

Therefore, set-theoretically Mn;n+1 = Mn �X[n] E, but the map E ! X [n]

has degree n, and the map Mn;n+1 !Mn has degree 1. Therefore

pn+1 �((�E) \ p
�
n[Mn(U)]) = �pn+1 �(n[Mn;n+1(U)])

= �npn+1 �[Mn+1(U)]

= �nqn+1[U ]1:

On the other hand q01[X]1 = 0:

Corollary 11.6. d and the q1[u] for u 2 H�(X) su�ce to generate H (X)

from 1.

12. Chern classes of tautological sheaves

We de�ne operators on H (X) of multiplying by the Chern classes of the

tautological sheaves F [n] on X [n]. If we can understand how these commute

with the qn, this allows us to compute the Chern numbers of all tautological

sheaves, and to partially understand the ring structure of the H�(X [n]).

De�nition 12.1. Let u 2 K(X). We de�ne operators �c[u] 2 End(H (X))

by

�c[u]y = c(u[n]) � y for y 2 H�(X [n]):

So if u is the class of a vector bundle on X, then �c[u] just multiplies for each n

a class on X [n] with the total Chern class of the corresponding tautological
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sheaf F [n]. We also write �ck[u]y for ck(u
[n]) � y. Note that by de�nition

d = �c1[OX ]. Obviously the �c[u] commute among each other (and therefore

they also commute with d). We put

�C[u] := �c[u]q1[X]�c[u]�1:

We can use the operator �C[u] to write down the total Chern classes of the

tautological sheaves in a compact way.

Proposition 12.2. X
n�0

c(u[n]) = exp( �C[u])1:

Proof. We note that
q1[X]n

n!
1 = 1X[n] :

Therefore X
n�0

c(u[n]) = �c[u] exp(q1[X])1

= �c[u] exp(q1[X])�c[u]�11

= exp(�c[u]q1[X]�c[u]�1)1:

Now we express �C[u] in terms of the derivatives of the Heisenberg operator

q1 applied to the Chern classes of u. This establishes a relation between the

Chern classes of the tautological sheaves and the Heisenberg generators.

Theorem 12.3.

�C[u] =
X
�;k�0

�
r � k

�

�
q
(�)
1 [ck(u)];

(here q
(�)
1 [ck(u)] is the �-th derivative of q1[ck(u)]).

Proof. Let F be a locally free sheaf on X. Recall the incidence variety

X
�
 � X [n;n+1] pn+1

�! X [n+1]

pn

??y
X [n]

and the exact sequence

0! ��F (�E)! p�n+1F
[n+1] ! p�nF

[n] ! 0:
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This gives

p�n+1c(F
[n+1]) = p�nF

[n] �
X
�;k�0

�
r � k

�

�
(�E)���ck(F ):(18)

So, for y 2 H�(X [n]), we get

�C[F ]y = c(F [n+1]) � pn+1 �

�
p�n(y � c(F

[n])�1)
�

= pn+1 �

�
p�n+1c(F

[n+1]) � p�nc(F
[n])�1 � p�ny

�
:

We insert (18) into this formula and apply Proposition 11.4, which says that

multiplying by (�E) corresponds to taking derivatives.

At least in the case of a line bundle L on X, the results obtained so far

are enough for �nding an elegant formula for the Chern classes of L[n].

Theorem 12.4.X
n�0

c(L[n]) = exp

 X
m�1

(�1)m�1

m
qm[c(L)]

!
1:

Remark 12.5. Note that for the top Chern classes this gives the following.

Let D 2 jLj be a smooth curve, then cn(L
[n]) = [D[n]] = [D(n)]. Then the

theorem gives X
n�0

[D(n)] = exp

 X
m�1

(�1)m�1

m
qm[c1(L)]

!
1:

This is Theorem 7.5, which was used to determine the constant in the Heisen-

berg relations.

Proof. Let

U(t) :=
X
n�0

c(L[n])tn = exp( �C[L]t)1:

The second equality is by Proposition 12.2. Therefore U satis�es the di�er-

ential equation

d

dt
U(t) = �C[L]U(t); U(0) = 1:

Now let

S(t) := exp

 X
m�1

(�1)m�1

m
qm[c(L)]t

m

!
;
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we want to show that S(t)1 satis�es the same di�erential equation. By

de�nition
d

dt
S(t) = S(t) �

X
m�0

(�1)mqm+1[c(L)]t
m:

By the Lehns Main Theorem 11.5, we have�
q01[X]; qm[c(L)]

�
= �mqm+1[c(L)]:

As this commutes with qm[c(L)], we geth
q01[X];

qm[c(L)]
n

n!

i
=
qm[c(L)]

n�1

(n� 1)!
(�m)qm+1[c(L)]:

Therefore we obtain�
q01[X]; S(t)

�
= S(t) �

X
m�1

(�1)mqm+1[c(L)]t
m:

We recall from Theorem 12.3 that

�C(L) = q1[c(L)] + q01[X]:

So we �nally get by putting everything together

�C(L)S(t)1 =
�
q01[X]; S(t)

�
1+ q1[c(L)]S(t)

= S(t) �
X
m�0

(�1)mqm+1[c(L)]t
m:

Let L again be a line bundle on X. We want to compute the top Segre

classes

Nn :=

Z
X[n]

s2n(L
[n])

as polynomials in the intersection numbers L2, LKX , K
2
X , c2(X) on X. A

priory it is not clear that this should be possible. We rewrite

Nn =

Z
X[n]

c2n((�L)
[n]) =

Z
X[n]

�C[�L]n

n!
� 1:

By Theorem 12.3 we get

�C[�L] =
X
��0

(�1)�q
(�)
1 [c(�L)�+1]:

By the main theorem 11.5 we can express the derivatives of q1 in terms of

the Virasoro generators Ln and the Heisenberg generators qn. Applying the

de�nitions 9.1 of the Virasoro generators, we can express this in terms of

the Heisenberg generators. We can do all these computations explicitly to
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compute the Nn for su�ciently small n. The calculation shows that the

following conjecture is true until n = 7.

Conjecture 12.6. (Lehn) Let k be the inverse power series to

t =
k(1 � k)(1 � 2k)4

(1� 6k + 6k2)
:

Then X
n�0

Nnt
n =

(1� k)LKX�2K
2
X (1� 2k)(L�KX )2+3�(OX)

(1� 6k + 6k2)�(L)
:

(Here �(L) = L(L � KX)=2 + (K2
X + c2(X))=12 is the holomorphic Euler

characteristic of L.)
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