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Abstract

Let X[ be the Hilbert scheme of n points on a smooth projective surface
X over the complex numbers. In these lectures we describe the action of the
Heisenberg algebra on the direct sum of the cohomologies of all the X ™,
which has been constructed by Nakajima. In the second half of the lectures
we study the relation of the Heisenberg algebra action and the ring structures
of the cohomologies of the X" following recent work of Lehn. In particular
we study the Chern and Segre classes of tautological vector bundles on the
Hilbert schemes X .
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1. INTRODUCTION

In these notes X will be a smooth and projective surface over the complex
numbers. The object of our interest will be the Hilbert scheme of points on
X. For any nonnegative integer n there is such a Hilbert scheme X ™ which
parameterizes finite subschemes of X of length n.

If W C X is a finite subscheme of length n, we shall also denote the
corresponding point in X n] by W

There is a universal subscheme Z, C X[ x X whose underlying set is
given as Z, = {(W, P) ‘ P € W}. The first projection from Z,, C X x x
onto X[ induces a finite and flat map 7 : Z, — XM Let O := 7,(04,).
It is a locally free sheaf on X[ of rank n.

The Hilbert scheme X [ enjoys several nice geometric properties, the most
basic one being:

Theorem 1.1. The Hilbert scheme XM is smooth, connected and of dimen-
sion 2n.

The first proof of this result was given in [6]. Once connectedness is
established, that the dimension of X is 2n, is clear: Each of the n points
has two degrees of freedom.

Any subscheme W € X ] can be written as W = U; Wi where the W;
are mutually disjoint subschemes each having support in just one point. If
Supp W; = {P;}, we may define the 0-cycle

p(W) = (length W;)P; = Y (length Ow,p)P.
3 weX

This O-cycle is an element of the symmetric power X" := X"/&,; the
quotient of X™ by the symmetric group &,, acting on X" by permutation.
In this way we get a map p : XM 5 X which turns out to be a morphism
(see [6]). It is called the Hilbert-Chow morphism.

Contrary to X[™ the symmetric power X is singular. Along the diago-
nals, where two or more points come together, the action of the symmetric
group has nontrivial isotropy, and because this happens in codimension two
or more, the quotient will be singular.

It is easy to see that the Hilbert-Chow morphism is birational; indeed it
is an isomorphism between the set of reduced subschemes in X™ and the
subset of X (™) consisting of 0-cycles all whose points are different.
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Theorem 1.2. The Hilbert-Chow morphism is a resolution of the singular-
ities. In fact it is even a semismall resolution; which means that

codim{z| dim p~*(z) > r} > 2r
for any natural number .

For any point P € X we let the closed subscheme M, (P) C X™ be the
set of subschemes whose support is the single point P. In other words

My, (P) = {w € X" | Supp (W) = {P}}.

This is set-theoretically the same as p~!(nP), and M, (P) is indeed closed.
We also give a name to the closed subset of X" whose elements are the
subschemes with support in one (unspecified) point, and define

M, :={W € x ‘ Supp (W) contains just one point}.

There is an obvious map M, — X which sends a one-point-supported
subscheme to the point where it is supported. The following is a basic result
which now has several proofs. The first one was given by Briangon in [2],
For other proofs see [4] or [5].

Theorem 1.3. M, (P) is irreducible of dimension n — 1, and M, is irre-
ducible of dimension n + 1.

When studying the Hilbert schemes X (] of points, it is often a good
idea to look at all the X™ at the same time, because they are all related
and therefore there is hope that a new structure emerges. One instance
of this is the fact that there is a nice generating function for all the Betti
numbers of all the X[™. We shall see that this is a reflection of the fact
that the direct sum of all the cohomologies of all the X[ has an additional
structure. It is an irreducible module for a Heisenberg algebra action. This
has been shown by Nakajima [13]. This Heisenberg action is constructed
by means of correspondences between the Hilbert schemes, and the varieties
M,, and M, (P) play a big role. In fact the idea is that one can go from
the cohomology of X! to that of X[¥*7l by adding subschemes of length n
supported in one point of X.

In the second part of these lecture notes we will investigate how this
Heisenberg action is related to the ring structure of the cohomology rings
of the Hilbert schemes. Here we follow the work [11] of Lehn. We are
particularly interested in the Chern classes of so-called tautological vector
bundles on the Hilbert schemes. For every vector bundle V on X one has
an associated tautological vector bundle V™ on X" whose fibers over the
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points W € X[ are naturally identified with H°(W, V|y). In particular, if
V has rank r, then V[ is a vector bundle of rank nr. The Chern classes and
Chern numbers of these tautological bundles have interesting geometrical
and enumerative interpretations.

We study the operators of multiplication with the Chern classes of the
tautological sheaves, and express them in terms of the operators of the
Heisenberg algebra action. It is easy to see that the Heisenberg algebra
action induces an action of a Virasoro algebra and an important step in the
argument is a geometric interpretation of the Virasoro operators. Finally, we
restrict to the case of tautological vector bundles associated to a line bundle
L on X. We find a generating function for all the Chern classes in terms of
the Heisenberg operators and, at least conjecturally, a generating function
for the top Segre classes of the L.

2. THE BETTI NUMBERS OF X[

If one is interested in the cohomology of X ] the first question to ask is
what are the Betti numbers of X["); i.e., what are the dimensions b;(X") :=
dim H*(X[))? (In these notes we will only be interested in homology and
cohomology with coefficients in Q, so for any space Y we write H*(Y) for
H(Y,Q) and H;(Y) for H;(Y,Q).)

The Betti numbers of the Hilbert schemes X ™ were determined in [8].
There the following generating series for the Betti numbers was obtained:

Theorem 2.1.
S nx)dgr= T (- (m1)igmigmy O,
n>0,i>0 m>0,i>0

There are several proofs of this formula. The original proof is by using
the Weil-conjectures and counting subschemes over finite fields. A second
proof, based on intersection cohomology, was given by Gottsche and Soergel
in [9], and finally in [3] Cheah gave a third proof using the so-called virtual
Hodge polynomials. In addition to the Betti numbers, the last two proofs
also give the Hodge numbers of the Hilbert schemes.

If one puts £ = —1 in Theorem 2.1, one gets an expression for the topo-
logical Euler characteristic e(X[) of the spaces X[

Y e(xtygr=[[0—qm) ™

n>0 m>0
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and by putting ¢ = 1 one gets the generating series for the total dimensions
of the cohomology of X[ :

(1) Y dimg B (XM ¢" = ] (14:%.

n>0 m>0

Here d_ and d4 are respectively the dimensions of the even and odd part of
H*(X), ie.,

dy =) dimH*(X), d_=)_ dimH*"(X).

Later in these notes we shall come back to these formulas and give indi-
cations on how one can prove them.

One should note that we got nice generating functions for the Betti num-
bers and Euler numbers by looking at all the Hilbert schemes X™ at once.
This is a first indication that one should also look at all the cohomologies of
the Hilbert schemes at the same time.

3. THE FOCK SPACE AND THE CURRENT ALGEBRA

Let

H(X) = @ H*(x™)

n>0

be the direct sum of all the cohomologies of all the Hilbert schemes X ™.
This is a bigraded vector space over Q whose homogeneous parts are the
cohomology groups H*(X™) for n > 0 and i > 0. For any class o € H*(X™)
we will call n the weight of o and ¢ the cohomological degree or for short the
degree of c. Sometimes we will write deg a = (n, ).

The Hilbert scheme X is just one point — the empty set is the only
subscheme of length zero. Hence H*(X!")) 2 Q in a canonical way. We let
1 denote the fundamental class [X[?)]. Tt corresponds to 1 € Q, and we call
it the vacuum vector.

The space H(X) has a parity structure, or a super structure as many call
it: There is a decomposition

H(X) = HN(X) o H (X)
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where H (X) and H (X) are respectively the sums of the even and odd
part of the cohomology H*(X™); that is

HY(X)= @ H¥(XM),

n>0,i>0

H-(X)= @ =¥ (xM).
n>0,i>0

The intersection form

induces an intersection form on H(X) which respects the parity structure,
which means that it is symmetric on Ht (X) and antisymmetric on H (X),
and that the two spaces H' (X) and H™ (X) are orthogonal.

The Poincaré series of H(X) with respect to the weight-grading is given
by Gottsche’s formula with ¢ = 1 as in (1):

Zdim@fP(X[n})q” — H (l—_i_i)d__

n>0 m>0

This series also appears naturally in a construction in the theory of Lie
algebras: Let V' be a Q-vector space with a parity structure, or a super
space if you want; that is a decomposition V = VT & V= of V into an odd
and an even part. Assume that V' comes equipped with a bilinear form ( , )
respecting the parity structure. The cohomology H®(X) with the pairing
[x « - B is our prototype of such a V.

Associated to V' one constructs the Fock space F(V') in the following way:
First we take a look at V ®qt Q[t]. A typical element of this space looks like
S v @t Let T be the full tensor algebra on V ®g ¢t Q[t]. To construct
F(V') we impose in T' the (super-)commutation relations:

2) uothvot]:=wet)(vet)— (=1)PWP0 4ot (uet) =0

where v and v are any homogeneous elements in V| i.e., elements either in
V* or V-, and where ¢ > 1 and j > 1 are any integers. By p(w) we mean
the parity of a homogeneous element w, i.e., p(w) = 0 when w € VT and
p(w) = 1 when w € V™. In order not to get confused with having two
different ®-signs around, one from V ®q ¢t Q[t] and one from T, we have
suppressed the ®-signs from the tensor algebra T in equation (2).
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The formal way to impose the relations above, is to divide T' by the two-
sided ideal generated by the relations in (2). Clearly F(V') is an algebra.
The unit element 1 € FO(V) is called the vacuum vector.

There is a natural grading on V ®qt Q[¢] for which the degree of v®#* is i.
This grading induces, in an obvious way, a grading on the tensor algebra 7.
As the relations (2) are homogeneous of degree i + j, the Fock space F(V')
is graded.

The elements of F(V') are linear combinations of monomials of the form

(01 ® 1) (v ® 1) ... (v, @ tP)

where each vy, is either an even or an odd element. The degree of such a
monomial is ) j,,. The Fock space also has a parity structure. A monomial
as the one above is even (resp. odd) if the number of odd v,,’s is even (resp.
odd).

One may then easily check that there is an isomorphism of graded vector
spaces

F(V)= Q) S(VTat™ oAV @t™).
m=0
Here
SV):=EPSsi(v), AV)=EA V),
i>0 i>0
are the symmetric and alternating algebra on V.
From this the Poincaré series of F(V') is readily found to be

) _ (1 +qm)dimV_
> dimgF" (V) = [] (1 — gm)dmv*"
m>0 m>0

There is another algebra one may associate to V' called the current algebra.
To construct this we start by setting V[t,t~!] = V ® Q[t,#~!]. The elements

of V[t,t~!] are linear combinations of the elements ¢;[v] := v ® ¢ for v € V
and ¢ € Z.

Let now T be the full tensor algebra on V[t,t 1]. Elements of T" are linear
combinations of monomials g;, [v1] g;,[v2] . .. ¢i,[vp] Where we again suppress
the ®-signs.

By declaring the degree (or weight) of g;[v] to be i, we get a grading on
T. There is also a parity structure on 7: We declare ¢;[v] to be even if v
is even and odd if v is odd; and a monomial g;, [v1] g;,[ve] . .. gi,[vp] is even
(resp. odd) if it contains an even (resp. odd) number of odd g;[v]’s.
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We get the current algebra S(V') by imposing the following relations in 7"
(3) [gi[u], gj[v] = idi1j(u,v)e
where e is the unit element in 7°V[t,t+~!] = Q, and where u and v are any
elements either in V* or in V' ~. The bracket is the supercommutator
[A,B] = AB — (—1)PAP(Bl g4,
We also use the convention that d,, = 0 if m # 0 and §y = 1.

The current algebra S(V) acts on the Fock space F(V') in the following
way. Recall that the Fock space is an algebra.

If i > 0, we let the element g;[u] act as multiplication by u ® ' in the
algebra F(V), ie., ¢ulw = (v ® t*)w for any w € F(V). In particular
Gl =u @t

For i = 0, we simply put go[u] w = 0 for any u and w.

To define the action of the operators g_;[u], with ¢ > 0, it is sufficient to
state that ¢g_;[u]1 = 0 for any ¢ > 0 and any u. Indeed by the relations (3)
we get

q-i[u] (v @ ') = q_i[u] g;[v]1
= +q;[v] ¢_i[u]l —id;_;(u,v)1
= —id;_i(u,v)1.
Thus the action is given by the formula
(4) g ifu] (v @) = —id; ;(u,v)1.

We call the operators g¢;[u] creation operators if i« > 0 and annihilation
operators if ¢ < 0. One has the following lemma:

Lemma 3.1. If the pairing (, ) is non-degenerate, the S(V)-module F(V') is
irreducible, i.e., there is no proper, nonzero subspace invariant under S(V).

Proof. Tt is clear that the vacuum vector 1 is a generator for F(V') as a
module over S(V'). On the other hand, by applying an appropriate sequence
of annihilation operators ¢_;[u] to any element w of F(V'), we may bring it
back to the vacuum 1. Indeed if {ve} and {v,} are dual bases for V, then
by equation (4) above we get

iy [0}, ] amip 1 [07, ] - qoin [0], ) (03, @) (viy @ 872) ... (v, @ E77) =
= (_l)pil'ig-...-ipl
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where the v;’s and the v’s are elements from the bases {ve} and {v,}. The
operator

q—i, (Wi, |q—i,_i [Wi,_,] - - qi;[u] kills any other monomial made from ele-
ments in {ve}, again by the relation (4). Hence any nonzero and invariant
subspace contains the vacuum, and consequently equals F(V') because the
vacuum generates F(1) as an S(V')-module. O

4. THE NAKAJIMA OPERATORS

We now come back to our space H(X). It has the same Poincaré series
as the Fock space modelled on the cohomology H®(X) of X. The aim of
this section is to define an action of the current algebra S(H*®(X)) on the
space H(X) in a geometric way, making H(X) and F(H*(X)) isomorphic as
S(H*(X))-modules.

We need to define operators ¢;[u] for i € Z and v € H*(X) satisfying
the relations (3). The operator g;[u] changes the weight by 4, hence is given
by a map H*(X[M) — H*(X[*) for any n > 0. In order to define these
maps, we introduce the incidence scheme X+l ¢ Xl x X+l where
now % > 0. It is defined as

Xt = LW, W) | W c W, W € X" and W' € X"}

Here, as also in future W C W' means that W is a subscheme of W’. This is
easily seen to be a closed subset of the product, and we give it the reduced
scheme structure.

The two projections induce two maps p, : XM+l — X and Qn+i -
Xlnntil 5 X+ There also is a morphism p : X™" 1 — X which is a
variant of the Hilbert-Chow-map. If W C W', then for the ideals Iy and
Iy of Iy and Iy, we do have the inclusion Iy C Iy, and the quotient
Iy /Iy is an Ox-module of finite length which is supported at the points
where the two subschemes W and W' differ. We define

p(W, W' := Z length(Iy /Iy) P € X,
Pex

One may show that p is a morphism.

Inside X(® there is the small diagonal A = {z'P ‘ P e X } which is
isomorphic to X.



Hilbert schemes and Heisenberg algebras 71

We have the following diagram:
X= A c x0O

J—

(5) Zn,i C X[n,n+z'} q”_Jr; X[n+z}
]
xnl

where Z,, ; is the component! of

p~HA) = {w,w") ‘ W C W', Iy /Iy is supported in one point }
which is the closure of the subset where Supp (I /Iyy) is disjoint from W.
We give it the reduced scheme structure.? One easily checks that
(6) dimZ,; =2n+i+1,

indeed W is arbitrary in X", but W’ — W is confined to M,;.

We may pull back any class v € H*(X) along f to get a cohomology
class f*u on Z, ;. Applying this to the fundamental class [Z,, ;], we get the
homology class f*uN[Zy,;]. This in turn we may push forward to X [nn+i]
via the inclusion j : Z,,; — X [+l and in this way we get the homology
class

Qn,i(u) = 4. (ffun [Zn,])
on X[n,n-l—i].

Now we are ready to define the Nakajima creation operators; i.e., the
operators ¢;[u] withi > 0. We define their action on an element v € H* (X ™)
by

gilu] @ 1= g (py, N Qni(u)),

which we regard as an element in H*(X™*) by Poincaré duality.

This definition is similar to the classical way of defining the correspondence
between X[ and X[+ agsociated to a class on their product — if one insists
on g;[u] being a correspondence, one has

gilu] @ = pro.(pri o N v.Qpi(u))
where v : Z,; =+ X ] % X[+ ig the inclusion map, and where pry and pro

are the two projections.

'To our knowledge it is unknown whether p~!(A) is irreducible or not.
2The scheme-theoretical inverse image p~'(A) is not reduced.
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In order to get some geometric feeling for what these operators do, we
assume that v and « are represented by submanifolds U ¢ X and A ¢ X",
Then g;[u] a is represented by the subspace

(7) {w' e X" | there is a W € A with W C W/,
W and W' such that they differ in one point in U}.

To put it loosely, the creation operator ¢;[u] sends A to the set of subschemes
which we obtain by adding a subscheme of length ¢ supported in just one
point from U to a subscheme in A. As an illustration we prove the following
lemma

Lemma 4.1.

gi[pt]1 = [M;(P)].
@[ X]1 = [M;].

Proof. To explain the first equality, we observe that 1 is represented by the
empty set. Hence by (7) the class g;[pt]|1 is represented by

(W' e X g c W, 0 and W’ differ only in P},

where P is any point in X, and this is clearly M;(P); we are just adding
subschemes supported at P to the empty set.

The second equality is similar. We add subschemes of length ¢ supported
in one point to the empty set, but this time without any constraint on the
point. ]

We now come to the definition of the Nakajima annihilation operators
q—i[u], where i > 0. We shall, except for a sign factor, literally go the other
way around in the diagram (5). For any class § € H*(X["*]) we define

q—i[u]ﬁ = (_l)ipn * (qyt_m' BN Qn,i (u)) .
The geometrical interpretation of these annihilation operators is analogous to

that of the creation operators. If the class [ is represented by a submanifold
B c X[+ then g—i[u]B will be represented by the subspace

8) {w e X" | thereisa W’ € B with W C W' such that they
differ in just one point in U}.

In other words, the annihilation operator g_;[u] sends B to the set of the
subschemes we get by throwing away subschemes supported in one point in
U from subschemes in B. Of course this is possible only for some of the
subschemes in B.



Hilbert schemes and Heisenberg algebras 73

We will give one example. Let C' C X be a smooth curve, and let o = [C]
be its fundamental class in H?(X). For every n > 0 the symmetric product
O™ is naturally embedded in the Hilbert scheme X[, Put o™ = [C(™)]. Let
C’ be another smooth curve, and assume that (C,C’) = a. Let o/ = [C"].

Lemma 4.2.
4-4lo'lo" = (~1)ao™"

Proof. We assume for simplicity that C and C’ intersect transversally in just
one point. Because C' is smooth, a subscheme W C C'is uniquely determined
by the associated 0-cycle ) p. - length (Wp)P. Hence there is just one sub-
scheme W' of length i in C'?), whose support is CNC". Splitting off W’ from
the subschemes in C(™) containing it, obviously gives an isomorphism from
{W uw' e cm ‘ W e C(”*i)} to C™ . This concludes the proof. O

The operators ¢;[u] and g_;[u] behave very well with respect to the inter-
section pairings on X™ and X1+l

Lemma 4.3. For classes o € H*(X[™) and 8 € H*(X"*) we have the
equality

V[ aadus= [ (@lua)- s

X[n+z]

Proof. By the definition of the operators and the projection formula, both
are equal to

/ . PnC - GpyilB 0 Qni(u).
X[n,n+1]
O

The following lemma is easily deduced from the definition of the Nakajima
operators

Lemma 4.4. The operator g;[u] is of bidegree (i,degu + 2(i — 1)).
5. THE RELATIONS

The basic result of Nakajima in [13] is that his creation and annihilation
operators satisfy the relations of the current algebra. Below we shall sketch
a proof of that, closely following the proof that Nakajima gave in [14].

Theorem 5.1. (Nakajima, Grojnowski) For all integers i and j and all
classes u and v in H*(X) the following relation holds

[gi[u], qj[v]] = i6;j(u,v)id.
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The proof is in two steps. The first is to establish
Proposition 5.2. There are universal non-zero constants ¢; such that
[gilu], gj[v]] = ciditj(u,v)id.

Here by universal we mean that the ¢;’s neither depend on u or v nor on
the surface X. A sketch of the proof of this proposition, will occupy section
6. The next step is — naturally enough — to establish

Proposition 5.3. ¢; = .

The last proposition can be proved in two different ways. The constants c;
have a natural interpretation as intersection numbers on the Hilbert scheme.
Recall that dim M; = i +1 and dim M;(P) = i — 1. Therefore M; and M;(P)
are of complementary dimension, and their intersection gives a number.
However M;(P) C M; so they do not intersect properly and [ [M;(P)][M;]
is not entirely obvious to compute. By induction one may prove (see [5]):

Proposition 5.4. (Ellingsrud-Stromme)
[ e = (-1
Xl
The following lemma then proves Proposition 5.3.
Lemma 5.5. Ifi > 0 then ¢; = (—1)"" [, [Mi(P)][M;].

Proof. Recall that by Lemma 4.1 we have [M;(P)] = ¢;[pt]1 and [M;] =
¢i[X]1. The Nakajima relation for the operators ¢_;[X] and ¢;[X] reads

¢i[X] q—i[pt] — q—i[pt] ¢:[X] = ¢; - id.

When we apply this to the vacuum vector, we obtain

q-ilpt] :[X]1 = —c;
because any annihilation-operator kills the vacuum. Now, by Lemma 4.3,
we get

/ [M;(P)][M;) 2/ ¢[pt]1 - ¢[X]1 =
X[ X1i]
N (_1)i/ (0] 1-q-i[ptlg;[X]1 =
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There is also another and very elegant approach to Proposition 5.3 due to
Nakajima where he uses vertex operators. We shall give this later on.

The main consequence of the Nakajima-Grojnowski theorem is the follow-
ing:

Theorem 5.6. The space H(X) and the Fock-space F(H® (X)) are isomor-
phic as S(H*(X))-modules.

Proof. There is a map as S(H®*(X))-modules from F(H* (X)) to H(X) de-
fined by sending u ® t to ¢;[u]l. The two spaces have the same Poincaré
series, and F(H* (X)) is an irreducible S(H*(X))-module. O

6. INDICATION OF HOW TO GET THE RELATIONS

In this section we explain in a sketchy way why the commutation relations
in Theorem 5.1 hold.

We will first treat the case when ¢ and j have the same sign, for exam-
ple both are positive. This is the case of the composition of two creation-
operators.

Then 6;1; = 0, and we have to prove that ¢;[u] and ¢;[v] commute up to
the correct sign. For simplicity we also assume that v = [U] and v = [V]
where U and V are submanifolds of X intersecting transversally.

In the definition of the Nakajima operators we made use of the subvariety
Zni CX ] w X[+l Recall that it was given as

Zni={(W,W') | W c W' differ in one point}.

We are going to compare the two operators g;[v]g;[u] and g;[u]g;[v], which
both map the cohomology of X™ to the cohomology of X[ +i+7l The natu-
ral place to describe the operator ¢;[v]g;[u], which is the composition of two
correspondences, is on the product X" x X+l x xn+i+i] I the description
the following subvariety of this product will play a role:

(9) 7y = piz (Zni) N 0oy (Znyig)-

It consists of triples (W, W', W") of nested subschemes — i.e., W C W' C
W" — such that W and W’ just differ in one point which we call P, and
at the same time W' and W" are different only in one point that we call
Q. The quotient Iy /Iy has support { P} and satisfies length Iy /Iy = i.
Similarly, the quotient Iy /Iy~ has support {@Q} and is of length j.

There is a map f1 : Z; — X x X sending the triple (W, W', W") to the

pair (P, Q).



76

In a similar manner we let Z C X x X["+7] x X[+i+i] e the subvariety
given by
(10) Z3 = P13 Zng P33 Znsiie
Its elements are the triples (W, W', W") of nested subschemes with Iy /Iy
and Iy /Iy both having one-point-support in, say, @ and P respectively;
the first one of length j and the other one of length i. As above there is
a morphism f : Zy — X x X, sending the triple (W, W', W") to the pair
(@, P).
Lemma 6.1. Let o be a class on X",
(11) gilu] gj[v]a = p3« (pie- f5 (v x u) N [Z2)),
(12) gj[v] gi[ula = ps. (plo- 1 (u x v) N[Z1]),

where p; denotes the restriction of the i-th projection to Zi in the first line,
and of Zs in the second.

Proof. This is just the formula for composing correspondences; the only point
to check is that the intersections in (9) and (10) are both proper. O

Let Z] C Zy and Z C Z3 be the two open subsets where the two points
P and @ are different. A typical element of Z], for example, may be drawn
as

It has a ’'central’ part W and two ’fuzzy’ ends, one in P and one in Q.
The ’fuzzy’ end at P is a subscheme of length ¢ supported there, and the
other ’fuzzy’ end is a subscheme supported at ) of length j. The subscheme
W' is the union of the ’central’ part and the ’fuzzy’ end at P. Of course P
or (Q may belong to the central part, but still the above statement makes
sense if interpreted in the right way.

The drawing above might as well represent a typical element in Z). The
only difference being that in that case the 'fuzzy’ part of length j at ) would
belong to W' instead of the one of length i at P. Hence to any nested triple
(W, V,W") in Z] we may associate the triple (W, V', W") where we get V'
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from V' by swapping the 'fuzzy’ parts at P and (). With a little thought one
may convince oneself that this swapping is well defined even if the 'central’
part touches P or ). In this way we get an isomorphism ¢ : Z| = ZJ.

Clearly this isomorphism respects both p; and p3 — it doesn’t change the
extreme subschemes W and W” — and up to permutation of the two factors
of X x X, it respects f; and fo. By the projection formula we therefore get
the following equality

ge(pia- fi(ux v)N[Z]]) = (~1)*E T8 pia - f3 (v x u) N[Z3].

The sign comes from the following: w X v = priu - prjv and via g* this is
mapped to priu - priv = (—1)degudegv
It only remains to see that there is no contribution from the boundaries,

v X U.

i.e., when P = Q. The easy case is when U N'V = (), then the boundary is
empty — indeed P € U and QQ € V.

In general, a dimension estimate will show that all components of the
boundary are — with good margin — of too small dimension to contribute.
We shall need

dimZ{ = dim Z, = 2n +i + j + 2.

Indeed, the n points in the ’central’ part each have 2 degrees of freedom,
and we are free to choose the 'fuzzy’ ends from M; and M;, and these two
varieties are of dimension ¢ + 1 and j + 1 respectively.

By the transversality of U and V' we know that

dimpr U NV =dimr U + dimgp V' — 4
We now give the dimension count for f~1(U x V)N (Z — Z'), where we

have suppressed the indices and only write f, Z, Z’; the suppressed index

can be either 1 or 2. The ’central’ part is of length n and gives a contribution

of 4n to the (real) dimension. Now P = @, so the two ’fuzzy’ parts live at

the same point. If they could be chosen independently, their contribution to

the dimension would be

dimg (M;(P) x M;(P)=2(i—1)+2(j —1)
as long as P is fixed, and P can only move in U N'V. As this gives an upper
bound of their contribution, we get
dimg (f 1 (U x V)N (Z = Z")) < dimg M;(P) x M;(P)+dimp U NV

<4dn+2i+ 2j +dimgp U 4 dimg V — 8
<4dn+ 21425 +dimgp U + dimg V — 4.
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The class f*(u x v) N [Z] lives in H,(Z) where
r=dimp Z — (4 — dimg U) — (4 — dimg V)
=4dn+2i+ 27 +dimp U 4+ dimg V' — 4.

After the dimension count, we know that the map H,(Z — Z') — H,(Z)
induced by the inclusion is an isomorphism. Hence

gefi(ux v) N [Z1] = (=1)48HIE £ (u x v) N [Zo],

and we are done.

Now we shall treat the perhaps more interesting — at least more subtle
— case of the composition of one creation and one annihilation operator.
That is, the composition of one operator of the form ¢_;[u] and one of the
form g;[v] where ¢ > 0 and j > 0.

We have to explain why

g il gslo] + (~1) 3198 0] g 4[] = —iu, 0} sid,
and we start by examining the composition ¢_;[u]gj[v]. For any n > 0 it
induces a map from H*(X™) to H*(X[t7=). As in the preceding case, it
is natural to look at the subvariety

Zy = 13 Znj O Pgz- Znyjii C XM x x il o xlndi=il,

It may be described as the variety of triples (W, W', W") e X[l x Xn+il x
Xn+7=1 with W € W' and W"” C W' — this time the one in the middle is
bigger than the two on the sides — such that W’ and W" differ in just one
point, and at the same time W' and W also differ only in one point. Call
those points P and @ respectively.

The picture now looks like

This time the big one in the middle — W' — is the whole subscheme.
The one to the left — W — is the whole except the 'fuzzy’ part at P, and
the one to the right — W" — is the whole except the ’fuzzy’ part supported
at . As before there is a map f; : Z7 — X x X sending a triple to the two
points (P, Q) and there is the lemma
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Lemma 6.2.
q—i[u] gj[v]la = pa (pia - f5(v x u) N [Z1]).
To understand the composition ¢_;[u] g;[v], we introduce the subvariety
Zo = pra Zn—ii O\ Poz Zn—ij C XM s xIn=i 5 xlnti=il,

This time the points in Zy are triples (W, W', W") of subschemes with W' C
W and W' € W"” — the one in the middle is smaller than the other two
— and as usual W' and W are different only at a point P and W’ and W"
differ only at a point (). The picture looks like

The little one in the middle — W' — is the ’central’ part, and the two
extremes — W and W' — are subschemes we get by adding the *fuzzy’ part
located at P respectively Q.

Just as before one checks that

for the complex dimensions, and there is the usual map fy: Zo — X x X.

We follow the same track as in the creation-creation process, and define
Z' C Z — where the missing index is either 1 or 2 — as the open subsets
where P # Q. Then there is an isomorphism ¢ : Z] = Z!. Indeed we keep
the two extremes and exchange the smallest ’central’ part with the whole.
Writing Wp for the part of W supported at P and similarly for Q and W',
W, this amounts to sending the biggest one, W', to (W'\ Wp\W5)UWpU
Wé which has a meaning as long as P # Q. In the same way, it is easy to
write down the inverse of g.

Lemma 6.3.
ge(Pia- fi(ux v) N[Z]]) = (-1)%B" Y8 piar - f5 (v x u) N [Z5)].

Now we come to the more subtle point of analyzing the boundaries where
P = (). Because when we compute the composition, we apply pi3+, what
really matters is the dimension of p13(Z\ Z’) — for missing index equal 1 and
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2. In the case of p13(Z2 \ Z}) everything works as in the creation-creation
case, and there will be no contribution from the boundary, so let us turn
our attention to the subtle case pi3(Z; \ Z]). The case UNV = () gives
no boundary at all, but if U NV = {P} something happens. If in addition
i = 7 we may take W = W". There always exists a subscheme of length
n + j containing any subscheme of length n which is supported at p. Hence
in this case p13(Z; \ Z!) will be supported along the diagonal in X" x X[,
One may check by dimension count as before that this is the only possible
contribution from the boundary. It follows that

lq—i[u], gi[v]] = pid

for some number pu.

7. VERTEX OPERATORS AND NAKAJIMAS COMPUTATION OF THE
CONSTANTS

For any class v € H*(X) and any sequence d = {d,, }m>0 of numbers we
introduce the following operator, often called a vertex operator,

Fau(2) = exp( 3 dngm[u]z™) = exp(P(2)).
m>0

where P(z) = > o dmgm[u]z™. When we apply Eq,(z) to the vacuum
vector, we obtain a sequence {ay, }m>o of classes in H(X'), with o, of weight
m and o = 1, which are defined by the expression

Z am 2™ = exp(z dmz"qm[u])1 = exp(P(z)) - 1.
m>0 m>0
We have
Proposition 7.1. For any two classes u,v in H*(X), and any natural num-

ber i, the element exp(P(z)) - 1 is an eigenvector for ¢;[v] with eigenvalue
—cidi ([ u- v)zt. That is, for m >0, we have the equality

gi[v]om, = —Cz‘di</ u - v) Qlypy—i-
X

In the proof of the proposition we shall need the following easy lemma:

Lemma 7.2. If A and B are two operators commuting with their commu-
tator, then for any p > 1

[A, B”] = p[A, B|BP L.
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Furthermore
[A,exp B] = [A, B]exp B.
Proof. Exercise. O
To prove Proposition 7.1 we do the following computation:

q_i[v]exp(P(z)) - 1 = [q_;[v],exp(P(2))]1 ann. oper. kill vacuum

=[q—i[v], P(z)]exp(P(2)) - 1 Lemma 7.2

:<Z A [q—i[V], gm[u]] zm> exp(P(z)) -1 definition of P(z)

m>0
=— diCi(/Y uv)zi exp(P(z)) - 1 Nakajima relations.

By the definition of {a,;,}, this completes the proof.
The property in Proposition 7.1 is very strong. In fact, it determines the
sequence «,, completely.

Lemma 7.3. Let the two sequences {cy,} and {Bpn} from H(X) be given,
with oy, and By, both of weight m and ag = By = 1. Assume that for any
i > 0 and any class v in H*(X), there is a number e;, such that both o,
and By, satisfy the equation

qi[v]xm = € vTlm—i

for all n > 0. Then «,, = By, for all m > 1.

Proof. The proof goes by induction on m. We assume that o; = (3, for
j < m. Then for any 7 > 0 and any class v on X we have

Q—i[v](am - ﬁm) = €jw (am—i - ﬁm—z) =0
by induction. Hence S(H®*(X))(m — Bm) will be a sub S(H*(X))-module
all of whose elements are of weight greater than or equal to m. Now if
m > 1, the vacuum, being of weight 0, cannot be in this module which
consequently must be trivial, since H(X) is an irreducible S (H*(X))-module.
Hence «,,, = §,,, and we are done. O

We shall need the following variant of the above lemma:

Lemma 7.4. Let {ap,} and {Bn} be two sequences in H(X) with ay, and
Bm both of weight m and oy = By. Assume that for all i > 0 and all classes
v in H*(X) there are numbers e;, with e;, =0 if degv < 2, such that the
following two conditions are satisfied.
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1. q—i[v]Bm = €ipPBm—i for all i > 0 and all classes v in h*(X),
2. deg ay, = 2m and

Q—i[v]am = € pwQm—

whenever degv > 2 and i > 0.
Then oy, = By for all m > 0.

Proof. Again we use induction on m and assume that a,,—; = B,—; for all
1 > 0. Just as in the proof above, it is sufficient to see that the vacuum
vector is not contained in the S(H*(X))-module spanned by «a,, — By. In
other words we must check that any sequence of 'backwards’ moves kills
A — Bm; to that end let

z = q-iy[v1]q-iy[va] - - q—i, [vp](m — Brm)

be the result of p 'backwards’ moves applied to o, — 3,,. If one of the v;’s
is of degree greater than or equal to 2, we know that z = 0. Indeed, this
follows by induction from two conditions in the lemma since the annihilation
operators involved all commute — we can move the annihilation g;, [v;] with
degw; > 2 to the right in the ’backwards’ sequence. Hence we may assume
that all the v;’s are of degree less than 2. Then by condition 1. in the lemma,
we have q_;, [v1]q_i,[v2]. .. q—i,[vp]Bm = 0 and hence

z=q iy [v1]q-iy[ve] ... q i, [vplam.

We want to see that the case z = 1 cannot happen. Indeed, if z = 1, then
Z?Zl ij = m. By computing the degree of z from the expression above, we

obtain
deg z =deg a;, + Zdeg(vj —2(i; + 1)) =
=2m + Z(degvj —2) — ZZij =
= Z(degvi —2),
from which it follows that degz < 0, and thus z = 0. O

Let now C' C X be a smooth curve whose class in H*(X) is 0. Let oy,
denote the class of the n-th symmetric power C(® of C' in X", The classes
op, may be computed in terms of the Nakajima creation operators as in the
following theorem which appeared in [13] and [10].
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Theorem 7.5. (Nakajima, Grojnowski)
=y )
n __ m
Z op2" = exp(Z - amlolz 1.
n>0 m>0

Proof. By Proposition 7.1 we know that the sequence {a,,} defined by the
identity

Za ZTLZGXP(Z ﬂq [O’]Zm>1
n cm m
n>0 m>0

satisfies

altlon = (<1 ( [ ov)an

for all 7 > 0 and all v € H*(X). From Lemma 4.2 we know that ¢_;[v]oc™ =
(—1)’ac™" for any curve class v satisfying [, ov = a. It is also clear that if
v = [V] for V a submanifold of X with C NV =0, then ¢_;[v]o™ = 0; hence
we know that

Gilvlo™ = (—1)i( /Y vo)on =

holds for all ¢ > 0 and all classes v on X of degree 2 or more. The theorem
then follows from Lemma 7.4. O

Finally we will give the second computation — due to Nakajima — of the
constants c¢; as we promised. We start by computing derivatives in Theorem
7.5 to obtain

Zna”z”fl :<% exp P(z))l :(diz P(z))exp(P(z)) - 1=

n>1
(5 2 i) $5om)
n=0

m>0 m

From this we obtain

n

_ mflm
(13) now =3 %qm[a]an_m.
m=1 m

As the constants c,, are universal, we may very well assume that X = P?
and that C is a line.



84

Lemma 7.6. Let C and C' be two curves in X intersecting transversally in
one point; e.g., two different lines in P2. Then

/ , 1 ifn<l1
Op 0, =
xIn] e 0 else

Proof. If t = 0 and ¢’ = 0 are local equations for C' and C” at the common
point, a subscheme in C™) supported at this point is necessarily of the form
Clt,#']/(t,#™) and one in C'™ must be of the form C[t,#]/(t",#). If a
subscheme W simultaneously is of these two forms, necessarily n < 1. O

Finally we prove
Theorem 7.7.
C; = 1.

Proof. The idea is to intersect (13) with o,,. For n =1 we get

1
1:/002—/01-q1[0]00
X C1Jx

1

= (—q-1lo]o1) - o0
c1Jx
1 1

= — 0g-0pg = —.
C1Jx C1

This gives ¢; = 1. Assume now that n > 2. Then we obtain

n
Sy
0 — . e . —
/X["] Op " Op Z o i On Qm[g]gn m

m=1

_ - (_1)m—1m _1\m .
_Z—( 1) /X[n_m] q—m|[0]on - Opn—m

TTL

m=1
- m 'm gh—m
e / "
(=D e 1)

+
Cn Cp—1
Hence
Cn _ Cn-1
n n-—1

from which we get ¢, = n. O
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8. COMPUTATION OF THE BETTI NUMBERS OF X[

As before, let X be a smooth projective surface over C. We will now show
formula (1) for the Betti numbers of the Hilbert scheme X[ of points. We
needed it in the first part to show that

H(X) = @) H*(XM)
n>0

is an irreducible representation of the Heisenberg algebra. There are at
least three possible different approaches which have been used to prove this
result; using the Weil conjectures [8], using perverse sheaves and intersection
cohomology [9], or finally one can use the so-called virtual Hodge polynomials
[3]. The last two approaches will in addition give the Hodge numbers of the
Hilbert schemes. In these notes we will use the second approach. It has the
advantage of leading to the shortest and most elegant proof, and to almost
completely avoid any computations. The disadvantage is that it requires
very deep results about intersection cohomology and perverse sheaves. We
will first briefly describe these results and then show how one can use them
as a black box, which with rather little effort gives the desired result.

Let Y be an algebraic variety over C. In this section we only use the
complex (strong) topology on Y. We want to stress again that all the coho-
mology that we consider is with Q-coefficients. In particular H*(Y') stands
for H'(Y,Q). There exists a complex ICy of sheaves on Y (for the strong
topology), such that

IH*(Y) := H*(Y,ICY)
is the intersection homology of Y (strictly speaking ICy is an element in
the derived category of Y'). Recall that the intersection cohomology groups
TH!(Y) are defined for any algebraic variety and fulfill Poincaré duality (be-
tween TH *(Y') and TH'(Y")). ICy is called the intersection cohomology com-
plex of Y. If Y is smooth and projective of dimension n, then

ICy = QY [n]a

is just the constant sheaf Q on Y put in degree n. Therefore TH'™"(Y) =
H(X,Q). More generally, if Y = X/G is a quotient of a smooth vari-
ety of dimension n by a finite group, then ICy = Qy [n], and thus again
IH~"(Y) = H(X,Q).

Let now f : X — Y be a projective morphism of varieties over C. Suppose
that Y has a stratification

Y =[]
o
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into locally closed strata. Let X, := f 1(Y,). Assume that f: X, — Y, is
a locally trivial bundle with fiber F, (in the strong topology).

Definition 8.1. f is called strictly semismall (with respect to the stratifi-
cation), if, for all
2dim(Fy) = codim(Yy,).

We will use the following facts:

: Fact 1. Assume that f: X — Y is strictly semismall, and that the F,
are irreducible, then

Rf.(ICx) =) ICy. .

(see [9]). Here Rf, is the push-forward in the derived category, and
Y, is the closure of Y,. This is a consequence of the Decomposition
Theorem of Beilinson-Bernstein-Deligne [1].
: Fact 2. Let k : X — Y be a finite birational map of irreducible algebraic
varieties, then
Rk.(ICx) = ICy
(see [9]).

Now we want to see how these facts about the intersection cohomology
complex can be applied to compute the Betti numbers of the Hilbert schemes
of points.

Let p : X" — X be the Hilbert-Chow morphism. The symmetric
power X (™) is stratified as follows: Let v = (ny, ... ,n,) be a partition of n.
We also write v = (191,292, ... n%"), where «; is the number of | such that
n; =t. We put

X,E”) = {Z niz; € XM

and X, ,Ln} = p_l(Xgn)). The Xﬁ”) form a stratification of X (™ and similarly
the X ,Ln} form a stratification of X™. The smallest stratum

[n] [n]
xp={wex

is just the variety M,. It is a locally trivial fiber bundle (in the strong
topology) over X(") ~ X, with fiber

Flyy := My(P).

the z; are distinct},

Supp(W) is a point}

In particular the fiber is independent of X. This is because finite length
subschemes concentrated in a point depend only on an analytic neighborhood
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n
Nyeer N

of the point. It follows that each stratum X ) is a locally trivial fiber

—~—

bundle over the corresponding stratum X((gl),...,nr)’ with fiber Fi,, ;) x ... X
F(TLT)'

By Theorem 1.3 M, (P) is irreducible of dimension (n — 1), which is half
the codimension of X ((z)) in X" It follows that p : X" — X®) ig strictly
semismall with respect to the stratification by partitions. Therefore we ob-

tain by Fact 1. above
Rp.(Qx1[2n]) = Rp.(IC y 1) EB IC—(n)

We write
V= (nla"' ,717-) = (1(11’2(12"” 7nan)7

and denote («) := (a1, a9,... ,a,). Then there is a morphism

Kot X(@ = X (@) 5 x x(on) —>Y,(jn)

(Eryeeesn) = Y i
i=1

It is easy to see that k, is the normalization of 7,(/”). Therefore Fact 2.
above implies

IC ) = R(Ka)+(ICx@) = R(ka)+Qy e [2]ed],
where |a| = ), ;. Putting this together, we get that
(14) Rp.(Qym1[2n]) @R a)s (Qx@ [2]a]]).

o)

Here the sum runs through all (o) = (ov,... ,ay) with ) ia; = n. Finally
we take the cohomology of relation (14). We recall that taking the coho-
mology of a complex of sheaves commutes with push-forward. Therefore we
obtain

Hz+2n(X[n]) — @HH_Z‘O"(X(O‘)).

«

So with this we have completely determined the additive structure of the
cohomology of the Hilbert schemes X[ in terms of that of the symmetric
powers X(®) The cohomology of the symmetric powers is well known. As
X(™) is the quotient of X™ by the action of the symmetric group G,, by
permuting the factors, we see that H*(X(™) = H*(X™)®" is the invariant
part of the cohomology of X™ under the action of &,,.
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Now we want to turn this into a generating function for the Betti numbers
of the Hilbert schemes X ™,

Let p(Y) := 3, dim(H" ™) (Y))2" be the (shifted) Poincaré polyno-
mial of a variety Y. The description above of the cohomology of the sym-
metric powers leads, by Macdonald’s formula [12], to a generating function
for their Poincaré polynomials.

(14 2= 1) (1 4 24)bs(X)
Zp T (L= e 2 X) (1 — () (1 — 2)pa(X)”

Here the b;(X) = dim(H*(X)) are the Betti numbers of X. We are now able
to put all the ingredients together to get our desired generating function for
the Betti numbers of the Hilbert schemes.

Zp(X[n})tn = Z Z p(X@yp(x (@) p(x(@n))per+2azt..nan
n=0

n=0 a1 +2a2+...na,=n

T (]

(1 + 2 1F)r () (1 4 z¢k)bs(X)
H (1—=z th bo(X) (1 — th)b2(X) (1 — 22¢k)ba(X)

This (keeping track of the shift in the Poincaré polynomial) is the formula
of Theorem 2.1.

9. THE VIRASORO ALGEBRA

The rest of these lectures is mostly based on the paper [11] of Lehn.
Before we got a nice description of the additive structure (+ the intersection
pairing) of the Hilbert schemes, which put all the Hilbert schemes together
into one structure. Our aim now is to get some insight into the ring structure
of the cohomology rings of the Hilbert schemes of points X[, We want to
see how the ring structure is related to the action of the Heisenberg algebra.
That is; for any cohomology class aw € H®(X [”]) we can look at the operator
of multiplying by a. We want to try to express these operators in terms of
the Heisenberg operators. In particular we will be interested in the Chern
classes of tautological sheaves on the Hilbert schemes, which are useful in
many applications of Hilbert schemes.

As a first step we will construct an action of a Virasoro algebra on the
cohomologies of the Hilbert schemes. This is not such a surprising result:
There is a standard construction, which associates to a Heisenberg algebra a
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Virasoro algebra. This construction is essentially translated into geometric
terms. One of the main technical results will be a geometric interpretation
of the Virasoro generators.

We will, in the future, ignore all signs coming from odd-degree cohomology
classes.

Definition 9.1. Let § : H*(X) — H*(X x X) = H*(X) ® H*(X) be the
push-forward via the diagonal embedding § : X — X x X. If §(a) =
> i Bi @i, we write

Indmd(@) == ulBilam[yi].
We define operators L, : H*(X) — End(H(X)) by

1 .
Ly := 5 ngVQnu(s ,ifn#0

Ly := Z qvq—v0.

The sums appear to be infinite, but, for fixed y € H(X) and o € H*(X),
only finitely many terms contribute to Ly[a]y.

Theorem 9.2. 1. [Ly[u], ¢ w]] = —mgmin[uw].
2.

nd—n
[Ly[u], Ly [w]] = (n — m)Lyjm[uw] — 3 (/XCZ(X)uw> 1.

Part 2. can be viewed as saying that the Virasoro algebra given by the
L,[X] acts on H(X) with central charge c3(X).

The proof of the theorem is mostly formal. We will show part 1. in case
n # 0. Writing

Su) = s @t;,

)
we get

[qu[si]Qn—u[ti]a Qm[w” = qu[si] [Qn—u[ti]a dm [w” + [QV[Si]a dm [w” Qn—u[ti]

= (_m)5n+m—VQn+m[3i] (/Xtiw> + (_m)5m+u (/sti> Qn—l—m[ti]-

We sum this up over all v and 7, to obtain

2 [L”[u]’ qm[w” = (—m)qn+m[Z],
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with
Z:ZSi/ tiw+zti/ wu;.
i X i X

Each of the sums on the right-hand side equals uw. This shows part 1. Part
2. can easily be reduced to part 1.

10. TAUTOLOGICAL SHEAVES

We can, in a natural way, associate a tautological sheaf FInl on X[ o
a vector bundle F on X. These sheaves are very important in geometric
applications of the Hilbert scheme X!, Let again

Zp = {(W,z) e X" x X |z e W}

be the universal family with the projections p : Z, — X", ¢ : Z, — X.
Then the tautological sheaf

FI":= p.q*(F)

is a locally free sheaf of rank rn on X" where r is the rank of F. (This
is because p : Z, — X™ is flat of degree n.) In particular Fll = F.
By definition the fiber FI"/(W) of FI™ over a point W € X is naturally
identified with H°(W, F|y).
If0 - F - F — G — 0 is an exact sequence of locally free sheaves, then
SO is
0— FIM - EM 5 gl 0.

Therefore ()™ : F s F defines a homomorphism from the Grothendieck
group K (X) of locally free sheaves on X to K (X™).

The Chern classes of the tautological sheaves have interesting geometric
interpretations.

1. Let L be a line bundle on X. Then ¢, (L) € H"(X[M) is the Poincaré
dual of the class of C!" = C(™) where C € |L| is a smooth curve.

2. More generally ¢,_;(L™) is the Poincaré dual of the class of all W €
XM with W C; for Cy a curve in a general /-dimensional linear
subsystem of |L|.

3. The top Segre class so,, (L") is by definition just the top Chern class
con(—L™) (here (—L[) is the negative of L[ in the K(X[)). In
other words that means that so,(L™) is the part of degree 2n of

1/(1+ e (L) 4 o (L) 4- ...
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The degree of so,(L™) is the number of all W € X" which do not im-
pose independent conditions on curves in a general (3n—2)-dimensional
sub-linear system of |L|.

All these identifications are under the assumption that L is sufficiently
ample. It is e.g. sufficient, but not necessary that L is the n-th tensor power
of a very ample line bundle on X. The identifications are proven by using
the Thom-Porteous formula ([7] Theorem 4.4), which gives the class of the
degeneracy locus of a map of vector bundles in terms of their Chern classes.
There is a natural evaluation map

evn : HY(X,L) ® Oxm — LM (s, W) = slw € HY(Z, L|w) = LM(W)

from the trivial bundle with fiber H9(X, L) to LI". The assumption that
L is sufficiently ample ensures that ev,, is surjective. In this situation the
Thom-Porteous formula says that ¢,_;(L™) is the class of the locus where
the restriction of ev,, to a trivial vector subbundle of rank /41 is not injective.
Such a vector subbundle corresponds to an [-dimensional linear subsystem
M of |L|, and the locus where the map is not injective is easily seen to be
the locus of W € X" with W e C for a curve C € M. This shows parts 1.
and 2.
Part 3 is similar. In this case we look at the dual map

()" (L") = H(X, L) © Oy,

and the locus we are looking for is the locus where (ev,)" is not injective.
So we get in particular

/ so(L) = #{base points in a pencil of |L|} = ¢; (L)%
X

Jx s4(LP) is the number of double points of the map X — P, given by a
general 4-dimensional linear subsystem of |L|. The numbers so, (L) are,
for instance, interesting from the point of view of Donaldson invariants.

11. GEOMETRIC INTERPRETATION OF THE VIRASORO OPERATORS

Our aim is to give a more geometric interpretation of the action of the
Virasoro algebra, which was defined in section 9. We shall see that they are
related to the ”boundary” of X, ie. the locus of subschemes of X with
support less then n points. If we write 0 for the operation of multiplying by
the cohomology class of the boundary, then L, will turn out to be essentially
the commutator ¢,0 — dq,,. In order to be able to prove this result we have
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to give another description of the class d, which relates it to tautological
sheaves. This is done by looking at the incidence scheme

X1 .- {(Z, W) e XM x xr+1] ‘ Zc W}.
As a special case of diagram (5) we have the diagram

X & xhnt1] Prtd xndtd]

(15) . \[
Xxlnl,

In particular there is a morphism 7 := (p,, p) : X"+ — X7 x X which
sends a pair (Z, W) of subschemes of X to Z and the residual point. It is
evident that 7 is an isomorphism over the open subset of all (Z,z) € X )y X
with x # Z, i.e. over the complement of the universal family

Zni={(Z,2) € X x X ‘ vez}.
More precisely we have the following theorem:

Theorem 11.1. [5] X" 1 s the blowup of X™ x X along the universal
family Z,,.

Proof. Let 7 : Y — X" x X be the blowup along Z,, with exceptional
divisor E. On X[ x X x X, let W,, be the pull-back of Z, from the first
and third factor. On Y x X, let

A= (rx1x)7'A, Wy, = (7 x 1x) "' W,,.

Then the projection py|z :A =Y isan isomorphism, which maps AN Wn
isomorphically onto the exceptional divisor F. Therefore §n+1 =AU Wh
is a flat family of degree (n + 1) over Y, and on Y x X we have a sequence

(16) 0 =0x(—F) — (”)Zn+1 — Oy, — 0.

The flat family Zn—l—l induces a morphism Y — X[+ which together with

the projection ¥ — X[ gives a morphism ¥ — X[ x X[+ with im-
age X"+ One checks that the induced morphism ¥ — X7+ is an
isomorphism. O

Let E be the exceptional divisor of the blowup X"+l — X[l % X Then
FE can be described as

E = {(Z, W) e Xt supp(2) = supp(W)}.
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Let F be a vector bundle on X. Then tensoring the sequence (16) with p% F

and pushing down to Y = X [nn+l1]

(17) 0= p*F(—E) — pf FI"H — pr pinl 5 0

gives the exact sequence

which relates the tautological bundles FI") and FI"*1. This makes it pos-
sible to try to treat the tautological bundles via an inductive argument. In
particular we get

O xtnon+1] (—FE) = p*+10[n+1] - pZO[”}

n
in the Grothendieck group K (X[n+1),

Let X" be the closure of the stratum X([;,]l,...,l)’ i.e. the locus in X"
where the subscheme does not consist of n distinct points. The class of
[0X[)] (i.e. the class Poincaré dual to it) is related to the first Chern class

of the tautological sheaves.
Lemma 11.2. [0X["] = —201((’)&?]).

Proof. X™ is the branch divisor of the projection p : Z, — X[, therefore
—2¢1(p.Oyz,) = [0X "], O

Definition 11.3. Let d : H(X) — H(X) be the operator of multiplying
by ¢1(Oxm), ie. for y € H*(XM) we have dy = ¢1(Oym)) - y. For f €
End(H(X)) the derivative f' of f is defined to be

f=1d, fl.
It is easy to check that

(f9) =flg+rds [f.9) =19 +1f.d,

which gives some justification for calling it derivative.

We have the following geometric interpretation of the derivative in terms
of tautological sheaves. Let X < X" x XMl be the incidence variety of
pairs of subschemes (Z, W) with Z C W (in particular n < m). Let p, and
be p,, be the projections of Xml o Xl and X7,

Then taking the derivative of f € End(H(X)) amounts to multiplying
with ¢ (p, O¥") = 1 (3 O%).

Proposition 11.4. Let f : H*(X") — H*(X!™) be a homomorphism

which is given by f(@) := pm«(pia Nw), for a suitable u € Hy(X™™M).
Then

1(@) = e (P2(@) - (11 OF) = 1 0%) M)
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In particular, in case m =n + 1, we get

fl(a) :Pn+1*(p;;(a) : (—E) N u)

Proof.
f'(a) = df(a) - fda
= c1(OF) - P (@) (1) = prns (P (- 1 (OF))) 1)
Now we apply the projection formula. O

X[nn+m] o X carries two universal families Zn C Zm+n. The above result
can also be reinterpreted as saying that we multiply by the first Chern class
of the push-forward to X "™l of the ideal sheaf T2,z

Now we come to the most important technical result of Lehns paper. It

n+m"*

gives a geometric interpretation of the Virasoro operators L.

Theorem 11.5. 1.
n|l—1
(g, [u], g [w]] = —nm (qn+m[uw] + %(Lﬁm (/ Kxuw> 1).
X

n(ln| - 1)
2

Part 2. Says that the Virasoro generators Ly, [u| are essentially the deriva-
tives of the g, [u].

qnlu] = nLnfu] + qn[K x u].

Proof. We show that 1. implies 2. By the Heisenberg relations for the ¢,

and from the formula [Ln [u], gm [w]] = —Mm(gp+tm[uw] from Theorem 9.2, we
get
n(jn| —1
[nLn[u] + %qn[Kxu], qm[w]}

n?(ln| — 1
= —NMGp4m|[uw] +¥6n+m / Kxuw |1.
X

Therefore the difference between the right-hand side and the left-hand side
in 2. commutes with all the g,,[u]. Since H(X) is an irreducible Heisenberg
module, it follows by Schurs lemma that the difference is the multiplication
by a scalar. This scalar must be zero, because the difference has weight n
(i.e. sends H*(XM) to H*(XU+ny).

The proof of part 1. requires a complicated geometric argument, and it
is also difficult to keep track of the indices. The most difficult part is the
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case n = —m (when the Theorem also has an extra term). We will sketch
the proof of
[qll [X]a qn [U” 1= _nQn-H[u]la
which illustrates some of the geometric ideas, without running into any of
the technicalities. In the application to Chern classes of tautological sheaves,
we mostly use ¢}[X].
Let U C X be the submanifold represented by u. Let

M, (U) = {Z e x)

supp(Z) is one point of U},

Myn1(U) = {(Z, W) e xnntl]

supp(Z) = supp(W) is one point of U}.
By definition and by Proposition 11.4 we obtain
01[X]an[u]l = qo[X][My (V)] = prs1((=E) N [My (U)]).
We recall that
E= {(Z, W) € xmn+l]

supp(Z) = Suzvp(W)}-

Therefore, set-theoretically M, ,11 = M, Xy E, but the map £ — Xln]
has degree n, and the map M, ;1 — My, has degree 1. Therefore
Prt1x((=E) N py[Mn(U)]) = —ppt1«(n[Mn ni1(U)))
= —npn+1[Mp41(U)]
= —ngn+1[U]1.
On the other hand ¢}[X]1 = 0. O

Corollary 11.6. d and the qi[u] for u € H*(X) suffice to generate H(X)
from 1.

12. CHERN CLASSES OF TAUTOLOGICAL SHEAVES

We define operators on H(X) of multiplying by the Chern classes of the
tautological sheaves F[" on X[, If we can understand how these commute
with the g, this allows us to compute the Chern numbers of all tautological
sheaves, and to partially understand the ring structure of the H*(X ™).

Definition 12.1. Let v € K(X). We define operators clu] € End(H(X))
by

culy = c(u™)y .y for y e HH (X)),
So if u is the class of a vector bundle on X, then ¢[u] just multiplies for each n
a class on X with the total Chern class of the corresponding tautological
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sheaf F["l. We also write &[u]y for cz(u™) -y. Note that by definition
d = ¢|Ox]. Obviously the ¢[u] commute among each other (and therefore
they also commute with d). We put

Clu] = clulgr [X]e[u] ™.

We can use the operator C[u] to write down the total Chern classes of the
tautological sheaves in a compact way.

Proposition 12.2.

S c(ul™) = exp(CTu))1.

n>0

Proof. We note that
a[X]"

1=1,
n!

Therefore

Y c(u™) = efu] exp(q[X])1

= clu] exp(qu[X])elu] 71
= exp(eluq1 [X]e[u] 1)1
O

Now we express C'[u] in terms of the derivatives of the Heisenberg operator
q1 applied to the Chern classes of u. This establishes a relation between the
Chern classes of the tautological sheaves and the Heisenberg generators.

Theorem 12.3.

Clu) =3 ( , ’“) at” e (w)],

v,k>0
(here qgu) [ck(u)] is the v-th derivative of qi[ck(u)]).
Proof. Let F be a locally free sheaf on X. Recall the incidence variety

X & xhetl] Pt xint]

.|

x[n]
and the exact sequence

0= p*F(—E) — pi FITH = pr Finl 5 0,
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This gives

* n * [n r—k vk
18) e =g S (T ) cErptadn)
v,k>0

So, for y € H*(X["]), we get

CIFly = c(F Y ppir  (0E(y - c(FIM) 1)
= a1 s (Dh i c(FT) - pre(FIMY 71 pry).

We insert (18) into this formula and apply Proposition 11.4, which says that
multiplying by (—FE) corresponds to taking derivatives. O

At least in the case of a line bundle L on X, the results obtained so far
are enough for finding an elegant formula for the Chern classes of L.

Theorem 12.4.

nl)y _ (G
ZC(L ) = exp Z - gmlc(L)] ) 1.

n>0 m>1
Remark 12.5. Note that for the top Chern classes this gives the following.

Let D € |L| be a smooth curve, then ¢, (L) = [DM] = [D(™]. Then the
theorem gives

S D] = exp<z %qm[cl(m) 1.
n>0 m>1

This is Theorem 7.5, which was used to determine the constant in the Heisen-
berg relations.

Proof. Let
U®t) =Y (L") = exp(C[L]H)1.
n>0
The second equality is by Proposition 12.2. Therefore U satisfies the differ-

ential equation

d _
U@ =CILU®,  U©) =1

Now let

_1\ym—1
S(t) == exp (Z %qm[c(L)]tm> :

m>1
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we want to show that S(¢)1 satisfies the same differential equation. By

definition p
L5ty = () 3 (1) gL,

dt
m>0
By the Lehns Main Theorem 11.5, we have

[01[X], gm[c(L)]] = —mgm-1[e(L)]-
As this commutes with gp,[c(L)], we get

, mle(L)]™ mlc(L)]" 1
i 40 i

(=m)gm+1[c(L)].
Therefore we obtain

[ [X], 5(1)] = S(t) - 2(—1)mqm+1[c(L)]tm-
We recall from Theorem 12.3 that -

C(L) = q[e(L)] + ¢4 [X].

So we finally get by putting everything together

C(L)S(H)1 = [q1[X], S(O)]1 + a[e(L)]S ()

= S(t) - Z>U(_1)QO+1[C(L)]tm-

O

Let L again be a line bundle on X. We want to compute the top Segre

classes
N, := / son (LIM)
XIn]

as polynomials in the intersection numbers L?, LKx, K%, c(X) on X. A
priory it is not clear that this should be possible. We rewrite

[ ey = [ ClELM
Nn—/X[n] Zn(( L) ) /X["] n! L.

By Theorem 12.3 we get
Cl-L] = 3 (=1)"a e~ L)1),
v>0
By the main theorem 11.5 we can express the derivatives of ¢; in terms of
the Virasoro generators L, and the Heisenberg generators ¢,. Applying the

definitions 9.1 of the Virasoro generators, we can express this in terms of
the Heisenberg generators. We can do all these computations explicitly to
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compute the N, for sufficiently small n. The calculation shows that the
following conjecture is true until n = 7.

Conjecture 12.6. (Lehn) Let k be the inverse power series to

k(1 —Ek)(1 —2k)*

(1 — 6k + 6k2)
Then
N (1— k)LKX*QKg((l _ Zk)(L*KX)2+3X(OX)
7;0 S (1 — 6k + 6k2)x(L)

(Here x(L) = L(L — Kx)/2 + (K% + ¢2(X))/12 is the holomorphic Euler
characteristic of L.)
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