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Preface

When I graduated at the University of Dortmund, Germany, I had favoured fluid 
dynamics and process control during my course of study. I clearly preferred these 
subjects, as their problems are well-structured and formulated logically in a clean 
mathematical manner.

During a summer job in 1998 at Norsk Hydro ASA in Porsgrunn, Norway, I 
came in contact with Tore Haug-Warberg, who later became my main doctoral advi
sor. Impressed by his well structured view towards equilibrium thermodynamics, I 
began to understand the background of what was so difficult to assimilate during my 
undergraduate study.

I liked the challenge of utilising this structure in practical problems, and to com
bine this effort with my affection for software development. Being a student on a 
Norwegian university, I spent my first semester as a ’foreign’ student at Lehrstuhlfur 
Profiesstechnik, RWTH Aachen, Germany. There, I was introduced to the European 
CAPE-OPEN project. With insight into the software design of process modelling 
tools, it was a good starting point for my investigations.

The initial objective was to develop methods and tools for the energy and ex- 
ergy efficiency analysis of industrial processes. Although this direction disclosed a 
different aspect of process modelling to me, the focus on second law thermodynam
ics moved increasingly into the background, while process modelling on a canonical 
basis became the main subject of my research. Having developed a fully functional 
process simulator called Yasim, a consistent and natural exergy analysis method falls 
naturally into place, easy to integrate into this environment.
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Abstract

Based on an equation oriented solving strategy, this thesis investigates a new ap
proach to process modelling. Homogeneous thermodynamic state functions represent 
consistent mathematical models of thermodynamic properties. Such state functions 
of solely extensive canonical state variables are the basis of this work, as they are 
natural objective functions in optimisation nodes to calculate thermodynamic equi
librium regarding phase-interaction and chemical reactions. Analytical state function 
derivatives are utilised within the solution process as well as interpreted as physical 
properties.

By this approach, only a limited range of imaginable process constraints are con
sidered, namely linear balance equations of state variables. A second-order update 
of source contributions to these balance equations is obtained by an additional con
stitutive equation system. These equations are general dependent on state variables 
and first-order sensitivities, and cover therefore practically all potential process con
straints. Symbolic computation technology efficiently provides sparsity and deriva
tive information of active equations to avoid performance problems regarding robust
ness and computational effort.

A benefit of detaching the constitutive equation system is that the structure of the 
main equation system remains unaffected by these constraints, and a priori informa
tion allows to implement an efficient solving strategy and a concise error diagnosis. 
A tailor-made linear algebra library handles the sparse recursive block structures ef
ficiently.

The optimisation principle for single modules of thermodynamic equilibrium is 
extended to host entire process models. State variables of different modules interact 
through balance equations, representing material flows from one module to the other. 
To account for reusability and encapsulation of process module details, modular pro
cess modelling is supported by a recursive module structure.

The second-order solving algorithm makes it possible to retrieve symbolically 
obtained derivatives of arbitrary process properties with respect to process param
eters efficiently as a post calculation. The approach is therefore perfectly suitable 
to perform advanced process systems engineering tasks, such as sensitivity analysis, 
process optimisation, and data reconciliation.

The concept of canonical modelling yields a natural definition of a general exergy 
state function for second law analysis. By partitioning of exergy into latent, mechani-

v



vi

cal, and chemical contributions, irreversible effects can be identified specifically, even 
for black-box models.

The calculation core of a new process simulator called Yasim is developed and 
implemented. The software design follows the concepts described in the theoretical 
part of this thesis. Numerous exemplary process models are presented to address 
various subtopics of canonical modelling.
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Chapter 1

Introduction

1.1 Basics of process modelling

During the last four decades, computer aided process modelling has evolved into a 
broad, indispensable and ever extending discipline of process engineering. The range 
of applications has expanded into process design, control, optimisation and safety. 
Each of them is of significant importance to industry, and increasingly sophisticated 
models must be developed to be competitive in process plant operation. Today’s 
process engineering software must provide the engineer with a wide range of func
tionality, but at the same time enable an efficient work flow. Berger and Perris (1979) 
have formulated the following criterion for the design of a process simulator:

The minimum total expenditure of manpower and computing resources to de
rive a satisfactory solution to the problem, within the timescale dictated by the 
project.

This criterion involves three main aspects to guide the development of process mod
elling tools, namely technology, scope and paradigm.

1. The technological aspect covers the user interface and data handling, but most 
importantly the way of solving the mathematical model of the process. Differ
ent solution strategies are discussed in Section 1.2.

2. The scope defines the range of applications that is handled or addressed. The 
solution of a problem must be within scope of the software tool used. The 
scopes of all existing tools are limited, and these limits must be accepted by 
both users and developers. The challenge is to cover a wide scope, but provide 
the functionality as efficiently as it would be possible within tailor-made tools. 
In many cases, flexibility is hard to combine with usability and computational 
efficiency.

3. The paradigm defines the structural mapping of the real or hypothetical pro
cess equipment towards a computer model. Early models were hard-coded in

1



2 Chapter 1. Introduction

existing programming languages, such as FORTRAN, and hence followed a 
procedural paradigm. Before graphical interfaces became available, input lan
guages were invented to describe process models. For MASSBAL (Shewchuk, 
1987), this language is mainly logic-based, i.e. the user defines a set of rules, 
which define the problem. A rule can be an equation, but also a topological 
specification, such as a material coupling. At the same time, the MASSBAL 
input language includes aspects of a module-based paradigm. Parallel to the 
evolution of software design paradigms, process modelling paradigms are fur
ther developed. Marquardt (1996) identifies the challenge of modelling non
standard process equipment and maintenance of models. His object oriented 
paradigm of modelling methodology yields a clean hierarchically defined topo
logical structure and a breakdown of mathematical models into reusable build
ing blocks.

Object oriented modelling tools must define an interface language, which defines 
the functionality and available information of user-defined objects. If the elements of 
this language are mainly equations and variables as in gPROMS (Oh and Pantelides, 
1996), the tool offers a very flexible scope, and virtually any physical system can 
be described. With a more specialised interface language, including thermodynamic 
models and material ports as basic data types, process models can be established 
more effectively. A process model can be understood as a mathematical model of a 
chemical process. Terms are introduced more precisely in Section 2.3. Additional 
structural knowledge can then be utilised for efficient solving and informative error 
diagnosis.

1.2 Fundamental solving strategies

There are two fundamental strategies to solve process model equations (Biegler etal., 
1997): (i) sequential modular, and (ii) equation-based. In the sequential modular 
approach, each unit operation is solved sequentially, based on given input streams. 
Outer iterations are inevitable to handle process models with recycle streams. Most 
common equation-based solvers collect the linearised equations of each unit opera
tion and the connecting streams. These equations are then solved simultaneously, and 
iterations are performed for non-linear process models.

As indicated in Table 1.1, both methods have their advantages and drawbacks. It 
needs to be noted that this table is a general comparison, and that individual software 
tools might overcome some of the drawbacks of the applied solution method. The 
term coupled equation is used to describe equations that cause state variables of a 
calculation unit to be influenced by changes (e.g. of specifications) downstream to 
this unit. The effect of such a coupled equation is similar to that of a recycle stream.

As early as 1979, Evans et al. recognised the potential of equation-based meth
ods, but followed the sequential modular approach in their tool ASPEN (Advanced



1.2. Fundamental solving strategies 3

Table 1.1: General comparison of sequential modular and equation-based solving 
strategies.
Sequential modular solver 
+ The calculation path follows material 

streams.
^ An intuitive error analysis is possible. 
The failing calculation unit is often 
clearly identified. Tailor-made solu
tion methods for individual calculation 
units allow for a detailed error diagnostics. 

+ The solution method is efficient with few 
recycles and coupled equations.

+ Initial values are only required for a small 
fraction of all state variables.

+ Tailor-made calculation methods for each 
unit operation can be applied.

Equation-based solver 
+ The solution method is robust with 

recycles and coupled equations.
+ Second-order equation solvers converge 

quadratically close to the solution.
^ The approach is more suitable for 
dynamic simulation.
^ The approach is more suitable for all 
kinds of optimisation.

+ A linearly specified model is solved 
exactly if it contains recycle streams or 
coupled equations.

- The approach is inefficient for strongly 
coupled process models.

- Process optimisation is dependent on 
derivatives that, using this approach, are 
not analytically available. The common 
use of numerical approximations reduces 
the usability of sequential-modular solvers 
for such tasks.

- A linearly specified model is not solved 
exactly, if it contains recycles or coupled 
equations.

- A global DOF (degree of freedom) 
analysis creates more problems to balance 
equations and variables.

- A general equation solver is inefficient for 
large process models

- The initialisation of every state variable is 
essential.

- Highly non-linear thermodynamic 
equations cause problems, if solved 
simultaneously with the process model 
equations. For instance, a sequential- 
modular approach uses specialised 
solution methods to calculate phase 
equilibrium.

- An error analysis difficult to carry out, if 
the solving step is performed by a gen
eral equation solver that either fails or suc
ceeds.
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System for Process Engineering) for legacy reasons and a general lack of expe
rience with equation-based solvers regarding industrial systems. Still today, the 
disadvantages of equation-based solvers inhibit their range of application. Aspen 
Plus® (Evans et al., 1979) and Hysys® (Mahoney and Santollani, 1994), the most 
successful commercial process systems engineering tools, are based on the sequential 
modular approach.

1.3 Concept of canonical modelling

The concept of canonical variables is defined by the natural variable set of a ther
modynamic state function. Primarily, this is temperature and mole-numbers, fur
thermore volume for HELMHOLTZ-models (or residual models), or pressure for Gibbs- 
models (or excess models). Transformations can be utilised to reach other sets of 
canonical variables, such as entropy, volume and mole numbers. The canonical mod
elling approach is based on thermodynamic models transformed to state functions 
with suitable sets of canonical variables. The entire process model can then be based 
on constrained optimisation programs for thermodynamic state functions.

The flexibility of this method applied to single-stage flash calculations was 
discovered by Dluzniewski and Adler (1972), but restricted to Gibbs coordinates, 
hence restricted to material balance at constant temperature and pressure. By use 
of Legendre and Massieu state function transformations (Callen, 1985), Brendsdal 
(1999) extended the set of possible constraints.

Balance equation sets describe the constraints for energy, volume, and material 
flow between and within the unit operations. By selecting transformations towards 
a set of solely extensive canonical variables, these constraints form a well defined 
structure, which can be exploited efficiently in a canonical flowsheet solver.

This way of solving process models has certain technical advantages compared to 
the traditional approaches of sequential modular and equation-based solution strate
gies:

• Though basically equation-based, this approach allows for a priori partitioning 
of equations according to process topology, thus allowing for more specific 
error diagnostics and in many cases a better performance of the solver.

• The thermodynamic state function represents a common framework for all 
thermodynamic models. This allows for a clean interface between a process 
model and underlying thermodynamic models. There is no problem to ex
change the thermodynamic model used by a process model, or to reuse a ther
modynamic model for different process models.

• Complex thermodynamic models do not affect the size or structure of the equa
tion system. The state function and its derivatives are evaluated at given state 
variables, and the result serves as input to the equation system of the process
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model. The computational effort to evaluate the thermodynamic model is sub
ject to its complexity, but in general small compared to the necessary effort to 
solve the process model.

While the most dominant available process modelling software today has already 
existed for many decades, the opportunity to build a prototype for a new tool from 
scratch raises further topics regarding scope and paradigm:

• How to account for the wide range of requirements to a modern process mod
elling tool, i.e. how to minimise the effort and maintenance to provide the func
tionality required by modern engineering problems, such as optimisation, data 
reconciliation and parameter fitting in a steady-state or dynamic context.

• How to achieve maximal reusability of the developed process models to avoid 
redundant modelling efforts.

• How to preserve the amount of knowledge for increased performance, but - 
even more importantly - for an engineer to pick up previously started work 
or a project of a colleague. In particular, equation-based models tend to be 
difficult to maintain, since equations and variables are defined in one large 
system without or with little human-readable meta information.

The canonical approach in its pure form yields a large equation system, and solv
ing this with conventional methods would require excessive computational effort. 
Identification of various matrix types within the sparse block-structure of the coeffi
cient matrix, as well as an advanced block-pivoting algorithm can clearly enhance 
performance towards a level that is comparable with available process modelling 
tools.

1.4 Thesis overview

This work explores the potential of canonical modelling to a wide range of process 
modelling applications. The approach is to combine the use of topological infor
mation as in sequential modular methods within an equation-based solving strategy. 
The objective is to combine the advantages of both of the standard methods, while 
eliminating their drawbacks. The main focus is placed on steady-state process sim
ulation, but aspects of optimisation, data reconciliation, model parameterisation, and 
dynamic simulation and control are addressed as well.

Chapter 2 is an introduction to the field of process modelling. In particular, a 
number of terms are defined as a basis for subsequent chapters. Following a short 
overview over various process systems engineering disciplines, the concept of pro
cess models and the two most common solving strategies for such models are de
scribed. This work is strongly based on a uniform representation of thermodynamic 
models. A section about thermodynamic state functions and mathematical transfor
mations on these state functions completes this chapter.
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Chapter 3 explains the mathematical models for the smallest possible building 
blocks, which then are assembled into composite modules and entire process models. 
Various combinations of the canonical and well structured equation system with a 
second system of constitutive equations are discussed.

In Chapter 4, the scope is extended from steady-state process simulation to ad
vanced process systems engineering disciplines. With the help of symbolically ob
tained derivatives of constitutive equations, the subjects of sensitivity analysis, pro
cess optimisation and data reconciliation are addressed. Exergy analysis is another 
discipline, which is easily embraced in terms of the canonical modelling approach.

The process simulation tool Yasim has been developed and implemented in this 
work. The main aspects of software design are described in Chapter 5. The subse
quent chapter discusses performance issues, such as convergence properties, quality 
of symbolically obtained derivatives, and the condition number of coefficient matri
ces.

1.5 Contribution of this work

In many cases, a research project is based directly on the results of recent advances in 
the particular field. The basis of such work is somehow naturally limited in scope, and 
there is often a well-defined goal to achieve. However, that kind of foundation was 
not available as such in this case, even though Haug-Warberg (1988) and Brendsdal 
(1999) provided a solid basis from a thermodynamic viewpoint.

The subject of steady-state process modelling received no particular attention for 
the last 20 years, and no specific goal guided the direction of research in this work. 
The abstract goal however is to develop and investigate the potential of canonical 
modelling in various fields of process systems engineering.

Basis for this work is the previously known approach to perform calculations 
on phase equilibria and equilibrium reactions by optimisation on the basis of exten
sive canonical thermodynamic state variables. An algorithm is developed to extend 
this concept to handle arbitrary process constraint equations. The solution scheme is 
based on the Newton-Raphson method, and second-order convergence is preserved 
in the overall algorithm. Two equation systems are used, namely a well-structured 
canonical equation system to perform the original optimisation, and an equation sys
tem consisting of constitutive equations, which defines the source contributions of 
selected constraint equations in the canonical system. Such modified constraint equa
tions are from now on denoted as released.

The concept is then extended to be applied on entire process models. A process 
model is defined by a hierarchical structure of local optimisation nodes, which are 
linked by balance equations. A library of basic optimisation nodes is defined in the 
framework of canonical modelling. These nodes describe the most common oper
ations in chemical engineering and build therefore a solid basis to establish a wide 
range of process models.



1.5. Contribution of this work 7

This approach provides clear advantages to the existing process modelling tech
niques known by the author:

• The structure of the coefficient matrix of the canonical equation system is a 
direct mapping of the process topology. Each diagonal block in the matrix is 
associated with one module in the process model, and each off-diagonal block 
represents one material stream.

• All diagonal blocks of the canonical coefficient matrix are invertible and, on 
the lowest hierarchical level, minimal in size. With the available structural 
information, a new tailor-made equation solver can be developed. Such a solver 
will potentially be more efficient than any other solver, which does not use this 
a priori structural input.

• The non-ambiguous association between constitutive equations and released 
constraint equations eliminates the common user problems regarding degree of 
freedom analysis. The number of active equations is always balanced to the 
number of independent variables, and the interconnection between a particu
lar constitutive equation and a released constraint equation conserves valuable 
information to maintain larger process models.

• The association between constitutive equations and released constraint equa
tions is observed to initiate a gain of thermodynamic understanding to the users 
of the prototype implementation (Yasim) of this concept. This educational as
pect allows a novice user to work efficiently with the process modelling tool 
after a short period of familiarisation.

It is shown that the canonical process modelling approach is a solid basis for 
advanced process system engineering disciplines, such as sensitivity analysis, pro
cess optimisation, and data reconciliation. Reliable derivative information can easily 
be generated on the basis of symbolic algebra. A detailed exergy analysis can be 
performed and combined with the previously named tasks. A brief study of the fea
sibility to calculate on dynamic process models is carried out with positive results. 
The concept of process modelling on a canonical basis is easily extensible towards 
dynamic process simulation.

A software implementation of the concept is completed, resulting in the prototype 
of a new steady-state process modelling tool: Yasim. Yasim provides the functionality 
to nearly all concepts described in this work, and has been tested by conducting 
process simulation, optimisation, and data reconciliation of several medium-sized 
processes.
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Chapter 2

Process systems engineering

2.1 Introduction

2.1.1 Hierarchical modelling approach

In order to establish a detailed process model of an entire plant, it is a strong require
ment to structure this model into smaller units. Process models based on an entirely 
flat approach are not maintainable, and reuse of model parts in other process mod
els is virtually impossible. Traditional tools, like e.g. Aspen Plus® (Evans ef al., 
1979) define one layer of pre-defmed process units, which then can be instantiated 
and supplemented by process topology information into a process model.

Fertiliser chain

Ammonia Urea Nitric acid NPK 

HP Synthesis MP recovery LP recovery Dry section

Compressor Reactor CCF stripper Condenser

Top Pipe Bottom 
I

Pipe segment (theoretical tray)
I

Steam Wall Process side 
/ \

Liquid film Vapour

Boundary layer Bulk

Figure 2.1: The fertiliser process chain represented in the context of hierarchical 
process modelling.

A more flexible approach is described by Marquardt (1996). A process flowsheet 
model can be decomposed into modules and interconnections. As shown in Fig
ure 2.1, a module can be a part of a unit operation (e.g. column tray, heat exchanger

9
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shell side or a discrete volume in a plug-flow reactor), a unit operation itself, or a 
collection of interconnected unit operations (e.g. a plant section or an entire plant), 
hence a sub process flowsheet. An interconnection can be a flow of material, or any 
other physical interaction such as heat exchange, or a pure mathematical dependency 
such as product quality specifications.

A process model can be defined as the stand-alone flowsheet module on the top- 
level. Any flowsheet module shown in Figure 2.1 can assume this role. The CO2 

stripper interacts with other flowsheet modules within the high pressure synthesis 
part of the urea process. As a stand-alone module with fixed input flows and given 
environmental conditions, it represents a process model in itself, and can be used to 
investigate the stripping process in detail. The bulk phase of the vapour is a primi
tive, but valid process model. Its purpose can be to determine the properties of the 
stripping gas at a given state.

2.1.2 Paradigms in process modelling

A flowsheet solver is the executive instance to generate results of a given problem. 
On this level, the process model, as part of the problem definition, is represented 
by sets of equations. But a process model is established at a more abstract level by 
the engineer. For example, a flowsheet module is defined as a reacting two-phase 
equilibrium between given sets of chemical species in both phases. Predefined ther
modynamic models are applied for the calculation of properties in each phase. The 
process modelling tool must translate these specifications into a suitable mathemati
cal model to be taken care of by the solver. Figure 2.2 shows a possible categorisation

Phenomenon Phase transition Chemical reaction

StoichiometryCharacterisation Equilibrium Transport

descriptivepredictive

Figure 2.2: Building blocks as a basis for atomic flowsheet modules.

of suitable building blocks, which describe a flowsheet module. The physical phe
nomena phase transition and chemical reaction can be characterised by three main 
approaches, namely equilibrium, transport and stoichiometry. In general, stoichio
metric characterisations tend to be of descriptive nature, while equilibrium and trans
port based characterisations are predictive, with a wide field of research dedicated to 
each of them.

Numerous methods to calculate phase equilibrium properties have been devel
oped with emphasis on isothermal and isobaric conditions, reviewed recently by
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(Wakeham and Stateva, 2004). The main approaches are the direct substitution 
method by Boston and Britt (1978), improved by Michelsen (1982), and minimisation 
of Gibbs energy, first utilised by White et al. (1958). Michelsen (1994) formulates a 
minimisation approach, which also considers chemical reactions.

Constraints other than isothermal and isobaric are addressed by Michelsen in 
1987 and 1999. Methods to exploit the mathematical structure of thermodynamic 
state functions are investigated by Haug-Warberg (1988) and Brendsdal (1999). In 
this work, the basis for process modelling is the utilisation of Legendre and Massieu 

transformations (Callen, 1985) in order to obtain a suitable set of canonical variables.

2.2 Process systems engineering disciplines

The scope of process systems engineering disciplines increases proportionally to the 
available calculation capacity of modern computers. This section gives a definition of 
the main branches. Sensitivity analysis, data reconciliation, fit of thermodynamic pa
rameters, and process optimisation are disciplines, which built on process simulation. 
Process simulation is the task of solving a mathematical model of a process.

A vector of state variables x is an unambiguous description of the state. In gen
eral, two classes of state variables are distinguished: Accumulated states x (e.g. as 
the content of a tank), and flows X (e.g. the water flow rate through a heat exchanger). 
More specifically, only extensive state variables are subdivided into flows and accu
mulated states. A similar grouping of intensive variables, like pressure, temperature, 
or concentration, is not preferable.

The objective in this work is to examine the principles and potentials of canonical 
modelling, and emphasis is put on steady-state problems, for which no accumulated 
states are considered.

Let X be the domain of feasible states X e X of a steady-state process model. 
The state vector X represents a unique description of the state, for instance in terms 
of molar flows, enthalpies, and pressures. U is the set of possible model parameters 
u eU, typically a specified valve position, compressor heat duty, or a heat exchanger 
surface. C is the domain of thermodynamic parameters c e C, as for example a critical 
temperature or heat of formation of a pure species, or binary interaction coefficients. 
Generally, the mathematical representation of a steady-state process model can be 
described as

r(X, U, C) = 0 and y = y(X, u), (2.1)

where y represents process properties as a function of X and u. Examples are a phase 
split fraction in a thermal separator, a heat transfer value in a heat exchanger, or 
the calculated isentropic efficiency of a turbine. The following sections describe 
process system engineering disciplines in a steady-state context with small examples 
illustrated in Figure 2.3.
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Ti, pi, ni Ap T2

(a) descriptive simulation
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(f) process optimisation

Figure 2.3: Concise overview of applications of various process modelling disciplines 
in a steady-state context.

At this point, a number of symbols are introduced: Here, the intensive variables 
pressure p and temperature T are flow properties. The differences of enthalpy flows 
AH and pressures Ap are derived flow properties. As they are in this case defined 
on input and output flows of a specific FM (the valve), these variables can as well be 
interpreted as flowsheet module properties. Flows are defined on the basis of molar 
quantities (n), mass (m), or volume (V). F0 is the cross-section of an open valve, and 
z the valve position, here defined as a linear characteristics to determine the cross
section at valve position z: F = zF0. Because work W and heat Q are always defined 
as flows, the dotted notation is omitted in this case.

All the disciplines invoke the sub-task to obtain one or more solutions of the 
process simulation problem. Therefore, solving r(x, u, c) = 0 efficiently is essential 
for all disciplines.

Though there is no sharp definition, it is possible to characterise process models 
as descriptive (Figure 2.3a) or predictive (Figure 2.3b). The purpose of a purely 
descriptive process model is to back-calculate an observed state with a minimum of 
process knowledge included into the model. Typically, one would formulate the mass 
balance equations, and directly specify pressures, temperatures, and enough streams 
to obtain a unique solution. As a rule of thumb, the calculated state is not affected 
by thermodynamic models. The process parameters u do not reflect the degrees of 
freedom (DOFs) and process constraints of the real process. As shown in Figure 2.3a, 
the molar flow is specified, though in the real process, the amount is the consequence 
of the valve equation (cf. Figure 2.3b).

A predictive process model contains a maximum amount of process knowledge. 
Suitable thermodynamic models are applied to determine fluid properties, phase equi
libria, and the extent of chemical reactions. Detailed performance characteristics of 
process equipment are included, such as compressor curves, valve equations, and 
heat transfer laws. The process parameters u reflect the actual parameters of the real
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process.
in practice, a process model is never completely predictive, but always includes 

descriptive parts.
A descriptive process model can be the starting point for the refinement towards 

a predictive process model.

2.2.1 Process simulation

r(x, u, c) = 0 is solved for x at constant thermodynamic parameters c and constant 
process parameters u. With regard to the different types of process models, the at
tributes descriptive and predictive can be assigned to the simulation as well. De
scriptive process models contain fewer or none non-linear equations, such that a 
descriptive process simulation is robust, and a solution can be obtained efficiently. 
Predictive process models contain a high number of non-linear equations, potentially 
even non-differentiable or discontinuous. Subsequently, there might exist multiple or 
no solutions of Equation (2.1), or it can be difficult to obtain the desired solution nu
merically. Results of a descriptive simulation are suitable starting values to simulate 
a predictive version of the process model.

2.2.2 Sensitivity analysis

Equation (2.1) can formally be written as a function y = y(u, c), i.e. each vector of 
process parameters and thermodynamic parameters is assigned a vector of calculated 
properties. Sensitivity analysis describes the process of discussing the effect of pro
cess parameters u on the process properties y, in particular the derivative dy/du at 
constant c. The effect of the valve opening z to the mass flow m is the question of 
interest in Figure 2.3c.

Sensitivity analysis is an excellent tool to align the results of a predictive process 
model qualitatively with the results expected by the engineer. The explanation of any 
discrepancy either improves the understanding of the process, or it reveals a weakness 
of the process model, if the predicted effect was not physical.

An alternative to focus on process parameters is to investigate the effect of ther
modynamic parameters c to process properties y at constant u. The limitation of ac
curacy of process simulation results due to uncertainty of thermodynamic parameters 
can be revealed through such a study.

2.2.3 Data reconciliation

The purpose of data reconciliation is to minimise a defined norm of deviation be
tween redundant measurements ymeas and calculated properties y. One approach is 
to remove some the constraints represented by Equation (2.1), such that some state 
variables represent the independent variables in the minimisation problem.
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A more concise approach is to include the entire process model represented by 
Equation (2.1), but select a subset of process parameters u e Usub C U as indepen
dent variables, hence solve the program

mjn A(y, ymeas) s.t. r(x, u, c) = 0. (2.2)

Here, A is a general objective function, approaching its global minimum at y = 
ymeas. The most common definition of A yields the least squares method:

A(y, ymeas) = (y — ymeas) W (y — ymeas) • (2.3)

The diagonal matrix W contains weight factors to compensate for different scaling 
of elements of y, and to give room to incorporate the expected standard deviations of 
individual measurements.

The advantages and drawbacks of various objective functions are described by 
Ozyurt and Pike (2004). A main aspect here is gross error detection, the process of 
filtering out faulty measurement values of non-statistical distribution, such as defect 
measuring equipment or interrupted signals.

The example of Figure 2.3d provides like the base case (b) 5 DOFs, of which 
only 2 (namely AH = 0 and the pressure-flow relation) are to be fulfilled exactly. The 
deviation of 5 measurements plus valve position z to calculated process properties is 
minimised on the three remaining DOFs. The independent process parameters u in 
equation (2.2) can be selected e.g. as m, T1, and p1.

2.2.4 Fit of thermodynamic parameters

A common task in the field of thermodynamic modelling is to determine the set of 
thermodynamic parameters c to obtain an optimal agreement between experimental 
data yexp and calculated properties y of a process model. One part of the experimental 
data is used as process parameters uexp, the other to be compared with calculated 
properties yexp. The problem can be formulated as

nun A(y, yexp) subject to (s.t.) r(x, u@xp, c) = 0 with c e Csub CC. (2.4)

As for data reconciliation, the most common objective function A(y, yexp) is the 
geometric sum as given in Equation (2.3).

Typically, a large number of experimental data sets are utilised, and each set adds 
a contribution to the overall objective function. The process model itself is kept sim
ple, as e.g. shown in Figure 2.3e with a single material flow from a reservoir. For 
each data set, the density q is measured for a given T, p, and n. Thermodynamic pa
rameters related to the prediction of molar volumes might represent the independent 
variables to minimise the deviation of measured and calculated density.
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2.2.5 Process optimisation

Given a predictive process model, the task of finding an optimal set of process pa
rameters u by minimising an objective function A(y), here solely as a function of 
calculated properties y, is called process optimisation:

nunA(y) s.t. r(x,u,c) = 0 with u e Usub CU• (2.5)

In Figure 2.3f, the temperature of stream 1, T1, represents the independent variable 
in the optimisation of the total energy required to achieve a specified outlet pressure 
p2. The lower T1, the more cooling effort is necessary to reach this temperature, but 
the less energy is required to compress the gas to p2.

In practice, the result of a process optimisation is often influenced or even de
termined by additional inequality constraints \p(u, y) > 0. In the example above, T1 
might have a lower constraint to avoid icing problems. In other cases, the material 
properties of process equipment pose upper constraints in temperature and pressure.

Inequality constraints represent a major challenge in process optimisation, and 
the development of general and tailor-made methods to solve specific problems rep
resent a major field of research today. An introduction to this field is given by No- 
cedal and Wright (1999). With focus on the subject of canonical modelling, however, 
the scope of this work regarding process optimisation is limited to the discussion of 
Equation (2.5).

2.3 Concept of process models

The structure of mathematical models in process systems engineering can be defined 
in many ways with respect to various aspects. So long in this work, the concept 
of a process model has been used on a rather abstract level (cf. Equation (2.1)). The 
following terms and collaborations give a refined definition of a process model within 
the scope of this work.

Terms and definitions 2.1
Flowsheet module (FM) A self-contained mathematical model of a process or a part 
of a process. Self-contained means in this context that given all incoming material 
flows, there is a configuration and parameterisation of the model, which is sufficient 
to calculate the outgoing material flows.

Composite flowsheet module A FM, which can be further decomposed into a set of 
child FMs. The CO2-stripper as shown in Figure 2.1 is an example, as it can be 
decomposed into the pipes, the top, and the bottom, each represented by another 
FM.

Atomic flowsheet module Any FM, which is not a composite FM. Assuming the bot
tom of the CO2-stripper to be represented by an ordinary two-phase flash, this is an 
example for an atomic flowsheet module.
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Input port The interface of a FM representing a distinguishable incoming material 
flow. Examples of different input ports of a FM are feed flows to a column on 
different trays. Multiple flows into one common control volume (e.g. a tank) are 
regarded as entering through one single input port.

Output port The interface of a FM representing an outgoing material flow.

Coupling A material flow between two FMs. The start-point is the output port of 
the upstream FM, and the end-point is the input port of the downstream FM. From 
a composite FM point of view, couplings represent the topology of the described 
process. Next to child FMs, couplings are therefore a part of a composite FM.

Process model A composite FM, which is no child of another composite FM in the 
current context. The FM called HP Synthesis in Figure 2.1 is a process model, if 
the high pressure synthesis part of the urea production is investigated as an isolated 
model. Any process model can be degraded to a composite FM, if it is used within 
a wider context (in the given example the complete urea production process).

Figure 2.4 gives an overview over the concepts introduced at this point. A short 
introduction to UML (Unified Modelling Language) according to OMG (2003) is 
given in Appendix F.2.

is not aggregated in another 
'' composite flowsheet module

Coupling

Input port

Output port

Process model

Flowsheet module

Constitutive equation

Atomic flowsheet module

Composite flowsheet module

Figure 2.4: UML static structure diagram of the general Bowsheeting concept.

2.3.1 Process topology

A process model consist of FMs and couplings, and can be represented by a directed 
graph1. Let M be a set of FMs representing the vertices of the graph, and C the set 
of couplings representing the edges. The edge Ci j is part of the graph, if there is a 
material flow from Mi e M to Mj e M.

In the context of the hierarchical modelling approach, the entire graph represents 
not necessarily the process model, but possibly a FM in the parent context, hence a

'For an introduction in graph theory see Appendix F.3 and the book by Trudeau (1993)
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single vertex in a super graph. On the hierarchy level [g], This vertex is then defined 
as

M[g] = (M[g], C[g]). (2.6)

Here, 7Vl[g] is the set of child FMs A/|h<-1, and Clgl the set of couplings C’j:1.

Figure 2.5: Hierarchical topology graph of a simplified urea synthesis process. 

Figure 2.5 shows an example of such a topology graph. In this case:

M[2] = |m[1] , M^1], M^1], m|j1] J,

= and M[» = (2.7)

Furthermore

/^>[2] _ fz^[2] /HX\ /HX\ /^[2]1 
u ~~ iv12 ’ v23 ’ v34 ’ v42 j ’

^[1] _ fr[l] r[l] 1 and nV 1] _ r[l] 1
U1 iL'l,12’L'l,23| ’ dnU U2 lL'2,12’V2,23| ' (2.8)

Two important phenomena can be described on the basis of this type of graph:

Terms and definitions 2.2
Recycle Any circle2 R c A/1-"1. Physically, a recycle allows material to flow in a 

circle.

2In terms of graph theory. See Appendix F.3
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Circulation A recycle R e M[g], such that no path P = [Mi,..., Mj} exists with 
Mi & R, Mj & R, but P n R + 0. Physically, a circulation forces material to flow 
in a circle.

The effects of recycles on the complexity of process models is a crucial decision 
factor when selecting the solving strategy. Basically, a recycle prevents the system 
from being partitioned, yielding bigger sub-systems to solve simultaneously.

Little attention, in particular related to steady-state 
process models, has been paid to the numerical treat
ment of a circulation, which can be desired e.g. in 
cooling systems, but as well occur as part of a design 
or modelling fault, e.g. if material is locked in a cir
cle. In both cases, the engineer and the program ought 

to identify the phenomenon. Engineers often prefer dynamic process models in this 
case. A hold-up volume combined with a bleed stream avoids the linear dependency 
of the balance equations. However, if the process dynamics are not of major interest, 
the effort to establish and maintain a dynamic process model is hardly justified.

The simple case of interconnected valve and pump shown in Figure 2.6 repre
sents a typical case of a circulation. Both the pump and the valve provide the same 
balance equations, namely n = n2 and ri2 = n1, which are obviously linear de
pendent. Furthermore, there are no DOFs left to define the actual flow conditions, 
such as composition. The approach chosen for the canonical solver is described in 
Section 3.9.2.

Figure 2.6: Common case 
of a circulation.

2.4 Steady-state process simulation solvers

To solve a process model efficiently, one has to exploit the structural information of 
the equation system. There are two distinct approaches to do this: (i) partitioning 
of the system on the basis of topological information, and sequentially to solve each 
partition (Biegler et al., 1997), or (ii) application of methods for solving sparse ma
trices on the linear algebra level (Stadtherr and Wood, 1984; Zitney and Stadtherr, 
1988). These approaches correspond to the sequential-modular and equation-based 
solution strategies respectively.

There are numerous approaches to enhance robustness and performance of the 
solution process, some of them on a higher level, such that they can be applied to 
both strategies. As an example, material balance equations can be relaxed during 
the first iterations. This yields a pseudo-dynamic simulation, iterating along a phys
ically meaningful path, which is more likely to stay within the domain of involved 
equations.
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2.4.1 Sequential-modular approach

The sequential-modular approach is strongly based on the topology graph M[k] de
fined in Equation (2.6). Hernandez and Sargent (1979) describe the strategy of parti
tioning and tearing:

Terms and definitions 2.3
Partitioning The program to determine a sorted list of the k smallest possible disjoint 

subsets Mi C M, i e {1,..., k}, with i1 > i2 ̂  (Mi1 x Mi2) nC = 0. The result
of this operation is a set of sub-graphs M[k] = (Mi, Ci) with Ci = C n (Mi x Mi).

Tearing The program to determine a subset Ct c Ci for each Partition i, such that 
the modified graph M'[k] = (Mi, Ci \ Ct) is free of circles, and an objective A(Ct) is

minimised. A common choice is A(Ct) := |Ct|. The couplings in Ct are commonly 
referred to as tear streams.

The partitioning step splits the tearing problem into smaller sub-problems, which 
practically removes the problem due to the complexity of the subsequent tearing al
gorithm, which is exponential in problem size. The result of these two algorithms is 
a recursive structuring as shown in Figure 2.7. After M® is pre-calculated, the tear 
streams are estimated, and an iteration is conducted on the calculation of M0k], before 
M[k] can be treated in a post-calculation. M[k+1] might be the process model itself, or 
it is part of the same structure on level k + 1 with i e {-1,0,1}. The representation of 
the structure shown in Figure 2.7 allows for a straightforward complexity analysis.

Let the complexity denoted by 
cmp(M[0]) represent a metric for 
the effort to evaluate M[0] with 
M[0] ~ cmp(M[0]) Vi according to 
Appendix F.1.

The number of necessary iter
ations to converge a group of tear 
streams at level k is assumed to be 
constant and described by the symbol q. The recursion

M1-1 M[ M[

fear streams

Figure 2.7: A Process model structured for se
quential solving.

cmp(M[k+1]) ~ (2 + q) cmp(M[k]) (2.9)

then yields the explicite equation

cmp(M[k]) ~ (2 + q)k cmp(M[0]) (2.10)

for a process model of size |M[k]| ~ 3k|M[0]|. Hence

3 | M[0]|
(2.11)
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Thus, a major advantage of the sequential modular approach is that the computational 
effort grows only linearly3 in problem size |M[k]|. But in particular for the common 
case q > 1, the computational effort is exponential to the number of nested recycles, 
which is the main drawback of this approach. External constitutive equations add 
further complexity to the model, but Perkins (1979) developed a method to solve 
those equations simultaneously with the tear stream equations, so that the effective 
overhead is minimised.

2.4.2 Equation-based approach

The pure equation-based approach is solely based on the mathematical solution of 
Equation system (2.1). This is a very efficient approach for linear systems described
by

r(j, M, c) = J(M, c) j + T-Q(M, c) = 0 ^ j = -J-1(M, c) rQ(w, c). (2.12)

Solving the general equation system representing a process model M is of complex
ity 0(|M|3) (Golub and Loan, 1996), even though recycles and external constitutive 
equations have no further impact. The essential need to utilise the sparse structure of 
J was soon recognised. Markowitz (1957) presented a pivoting sequence to obtain a 
kind of LU-decomposition under the objective to preserve sparsity in this operation. 
Various improvements have been developed regarding different objectives:

• Integration of stability criteria into the objective to find an optimal pivoting 
sequence (Zlatev, 1980)

• Guarantee to not let the pivoting problem dominate the computational ef
fort (Gilbert and Peierls, 1988)

• Prevention of time-consuming dynamic memory allocation (George and Ng, 
1985)

• Utilisation particular hardware architectures, like e.g. vector processing (Zit- 
ney and Stadtherr, 1993)

• Handling of model hierarchy to presort variables and equations (Abbott et al, 
1997)

Today’s process models are rarely linear. Non-linear equations result from even prim
itive thermodynamic models such as the ideal gas law, and constitutive equations 
such as even the simplest description of heat transfer. With Equation (2.12) no longer 
valid, a linearisation can be conducted as follows:

r( j, M, c) = J( j0, M, c) (j - jq) + #( j0, M, c) + 0(( j - jq)2) = 0. (2.13)

This results in three new challenges in process simulation arise:

3This is optimal, as no program can exhaustively process data in less time than proportional to its
size.
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Terms and definitions 2.4
Initialisation A scheme to provide a feasible state x0 e X as close to the solution as 

possible. Zitney and Stadtherr (1988) review schemes of different complexity.

Differentiation A method to obtain the non-zero elements of J(j0, u, c). The dif
ferent approaches such as hand-coded derivatives, finite-difference approximation 
of derivatives, symbolic differentiation, reverse polish notation (RPN) evaluation 
of derivatives and automatic differentiation are exemplified by Tolsma and Barton 
(1998). Appendix A. 1 describes the design of a slim data type, utilised among other 
things for symbolic differentiation in this work. Another aspect discussed by Tolsma 
et al. (2002) and Li et al. (2004) is the smooth integration of external models into a 
simulation environment.

Solving Strategy An iteration scheme to improve the state vector towards the fulfil
ment of Equation (2.1). Zitney and Stadtherr (1988) point out three aspects, namely 
the correction step formulation (Chen and Stadtherr, 1981; Bogle and Perkins, 1988; 
Cofer and Stadtherr, 1996), sparse Jacobian evaluation, and hybrid Jacobian meth
ods. Wilhelm and Swaney (1994) present a robust algorithm that prevents violation 
of domain boundaries and implements a back-tracking mechanism.

The following chapter addresses these items in the context of canonical process mod
elling, but rather than accepting the equation system (2.1) as is, the main focus is 
put on the formulation of the mathematical model. The objective is to reduce the re
quired effort on the items above. For instance, a major part of the required derivatives 
can be provided by the implementation of the thermodynamic models. Furthermore, 
the equation system is generated with a large amount of a priori structural informa
tion. This reduces the problems in the solution process encountered by less structured 
model equations.

This work deliberately does not engage in the research of robust methods for the 
solution of general equation systems. The application of algorithms, such as that 
by Wilhelm and Swaney (1994), is likely to improve the robustness significantly, but, 
at this stage, it is important to use a straightforward solution method in order to judge 
the properties of the equation system.

2.5 Representation of thermodynamic models

2.5.1 Thermodynamic state functions

A thermodynamic state function P is a property of a system, which depends only on 
the current state of the system. The synonym thermodynamic potential for energy 
functions emphasises the attribute of path-independence and the necessity of a refer
ence state for each independent argument. This work utilises homogeneous first-order 
state functions of the extensive parameters jg and intensive parameters xg (Callen, 
1985). As shown in Appendix C.1, the property of first-order homogeneity expressed
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by

P(^ jg' j^) = ^P( jE, j^) , ^ e ^ (2.14)

yields Euler’s 1st and 2nd theorem:

P(jg'jg) -— xg , and subsequently
O jg

d2P
djg djg

jg = 0. (2.15)

The homogeneity of thermodynamic state functions has never been proven4, but 
observed and postulated. The further work is therefore based on the following postu
late (Callen, 1985; Brendsdal, 1999):

The internal energy U of a homogeneous phase is a first-order homogeneous 
function of its entropy S, volume V and mole numbers n

Note the unrelated concepts of homogeneity regarding mathematical functions as de
fined in Equation (2.14), and physical phases. Both concepts appear in this postulate.

2.5.2 State function transformations

The approach in canonical modelling in general is to utilise a state function with 
canonical variables natural to the constraints of the given system. For instance the 
Gibbs energy G(T, p, n) is suitable to describe configurations at specified T and p, 
while a dynamic tank constrained in U and V is described by the entropy function:
S (U, % n).

A typical thermodynamic model can be represented analytically by one, at most 
by two different state functions, namely Helmholtz energy A(T, V, n) and Gibbs en
ergy G(T, p, n). Other state functions are obtained applying two transformations, 
namely the Lagrange and the Massieu transformations, which both are described by 
Callen (1985) and Brendsdal (1999). The Legendre transformation of a state function 
P with respect to the variable x, is defined as

P(j) = Lj[P(j)] := P(j) -
dP(j)
d j,- ji* j

v-, dP( x)
with x = 2j-hO + -^— eJ- (2-16)

i*j
j

Hence, the Legendre transformation exchanges information between the state and the 
gradient vector. The variables x, and j j are called conjngated variables.

In terms of group theory, the Legendre transformation is a permutation of fourth 
order:

Lj[Lj[P(j)]] = P(j) with j, = - j, and Lj[Lj[Lj[Lj[P(j)]]]] = P(j). (2.17)

4A disproof however would invalidate the first law of thermodynamics with all its conclusions, 
therefore solving all world’s energy problems
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It is therefore practical to define the inverse LEGENDRE-transformation

P(x) = L-1[P(X)] P(X) -
d^

Xj with
xitj

% = ) Xj gj - '

i*j
gj (2.18)

instead of applying P(x) = Lj[Lj[Lj[^(J^)]]].
The Massieu transformation swaps an extensive canonical variable Xj and the 

state function. With the subspace E c Rdim x containing the extensive components 
of x, the definition is given as

Xj = Mj[P(x)] := Pi!)~
ie6\( j} d Xi

, dP(x) -v-n- witfii = 2] (219)
ie6\( j}

The Massieu transformation is self-inverse, i.e. Mj[Mj[P(x)]] = P(x) or 
M-1 = Mj.

All state functions used in this work can be obtained through (inverse) Legendre 

and Massieu transformations originating in U(S, V, n) as follows:

, % p) — , p, p) — G(T, p, p) JL A(T, % p)

1% 1% (2.20)
' ' fi;1

^ % p) ^ (//, p, p) W y/r, p)

Postulated only for U, a simple proof for the preservation of homogeneity through 
these transformations is given in Appendix C.2. The property of homogeneity is 
therefore ensured for all state functions used in this work. Furthermore, Callen (1985) 
and Tester and Modell (1997) prove the preservation of the extremum principle for 
selected systems and state functions.

State functions with only extensive canonical variables (U(S, V, n), S (U, V, n) and 
W(H, V/T, n)) are of special interest in this work, as they allow one to map the topo
logical structure of the model towards the structure of the equation system. Two basic 
examples are given at the beginning of the next chapter.

The equations of thermodynamic models are originally represented in Helmholtz 

or Gibbs coordinates. The transformations are then used to obtain the desired state 
functions. This approach plays an essential role in the implementation of the canoni
cal process modelling tool Yasim, which is described in detail in Chapter 5.
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Chapter 3

Canonical process modelling

3.1 Introduction

The concept of canonical process modelling is to base the mathematical description 
of a process model on the natural state variables of thermodynamic state functions 
as introduced in Section 2.5.1. Each flowsheet module (FM) consists of building 
blocks. These blocks are formulated as local optimisation nodes, and sets of bal
ance equations represent couplings between these blocks. The well defined structure 
of the resulting equation system directly reflects the process topology. This way, a 
priori structural knowledge can be exploited to achieve efficient equation solving. 
Furthermore, this equation system only contains stoichiometric constraints and ther
modynamic information, but no coefficients that depend on geometric information or 
any other process parameter. From now on, this will be referred to as the canonical 
equation system.

In practice, some canonical balance equations are not actually used in the actual 
process model, as for instance the enthalpy balance over an isothermal storage tank. 
These balance equations are therefore released, in other words: a constitutive equa
tion provides a source term to this balance equation. The modified balance equation 
then yields a solution, which fulfils the constitutive equation. This additional consti
tutive equation system is rather unstructured. All process parameters are part of this 
equation system. Additionally, the Lagrange multipliers of the optimisation nodes 
can be interpreted as canonical conjugated variables, and therefore be included.

The overall problem formulation is large in size and can easily exceed 1000 vari
ables for a process model with 30 FM and 10 chemical species in each flow. But 
the well-structured canonical system can be solved efficiently, while the unstructured 
constitutive equation system is typically by a factor of 10 smaller, and therefore does 
not require significant calculation time. Several ways to formulate an algorithm to 
solve these two systems are discussed in Section 3.3.

A priori process topology knowledge is used to gain performance of the solu
tion process. The framework also gives full control to associate degrees of freedom

25
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(DOFs) and constitutive equations for maintainability of process models. This hap
pens automatically by releasing canonical constraints in favour of constitutive equa
tions in a one-to-one relationship. The occurrence of singular matrices can at any 
point be assigned to one particular FM for efficient error diagnosis (see Section 3.9).

The concept of canonical modelling applies to both material flows and accumu
lated states. The description of building blocks in the following section is based on 
accumulated states. Material flows are introduced in Section 3.4. However, this work 
focuses on steady-state process models, and the interaction between flows and ac
cumulated states is therefore not considered. In a dynamic context however, most 
dynamic behaviour is contained within the modelling of this kind of interaction. A 
brief discussion of the extension to dynamic simulation is given in Appendix D.

3.2 Building blocks

3.2.1 Calculation of phase equilibria

Consider an insulated storage tank, constrained by U, V and n, the contained medium 
being split in a liquid (l) and a vapour (v) phase. With x = (U, V, n) as the canonical 
state vector of the entropy function, the program to solve is

max S = S(l)(X(l)) + S (v)(f(v)) s.t. 6 = Xinitial - (X(l) + X(v)) = 0. (3.1)
X(l)'X(v)

The residual expression 6 vanishes, if the total tank content X(l) + X(v) is equal to the 
initial feed Xinitial.

A standard solving method described by Jungnickel (1999) and Biegler et al. 
(1997) is to formulate a Lagrange function

A(x(l)> x(v), = S (l) + S (v) 3 • 6 (3.2)

and find the stationary point of A. With

g(i)
dS®

and H(i) =
d2s (i)

d X(i)d X(i)
i e {l, v}, (3.3)

further symbols can be defined, namely the gradient l and the Hessian matrix B of the 
Lagrange function:

l=
dA

d(X(l), X(v),3)

'g(l) + 3'
g(v) + 3

V -6 ,
and

d2A
d(X(l), X(v),3)2

0 n
0 H (v) 1

11 J 0j
(3.4)

Note that a stationary point is found, if 6 = 0 and g(l) = g(v) = -3. The condition g(l) = 
g(v) can be interpreted physically as the equality of the intensive state (temperature 
T, pressure p, and chemical potential y):

T(l) = T(v), p(l) = p(v), and #(l) = #(v) . (3.5)
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In an updating scheme, the update-vector A at iteration k is introduced as follows:

AX(l)' AX(l) = x(k+1) x(k)
= Xa>+1)

x(v) x(v) .Ax(v) with Ax(v) (3.6)
AA J AA = A(k+1) “ A(k)

The Newton-Raphson method suggests B A = -l:

r^(l) n
H (v) 1

'AX(l)'
Ax(v) =

'g(l) + 
g(v) + A . (3.7)

11 I l AA J . “A /

By adding A to the first and second block-rows of the equation system, the result is 
(zero-blocks 0 omitted)

1 1 |X
J__

^

AX(l)
t „ \
-g(l)

#(v) 1
3 ~

Ax(v) = -#(v)

i
) A(k+1)

V ~ )
6

V )

or, after introducing A and b as abbreviations,

(3.8)

B- A = b. (3.9)

The matrix B is block-invertible, i.e. for a given block-structure, there is at least one 
complete sequence of invertible pivoting blocks, which can be utilised in a block- 
inversion by Gaussian elimination.

A row and column pivoted LU-decomposition of B with pivot elements as marked 
in Equation (3.9) yields

r^(l) i i
B = (P row L )(U P col) = i i

11 ) , H(l) + H(v)
(3.10)

Hence, identity pivot blocks can be found almost through the whole solution process. 
The only exception is the block H(t) + H(v) that requires the solution of a non-trivial 
subsystem. The update A is therefore obtainable, iff Hfl) + H(v) is non-singular.

A trivial solution emerges, if the state vectors of the two phases differ only by 
a scaling factor: X(p = ^X(v). As a consequence of Equation (2.15), the singular 
directions of H(t) and H(v) fall together, and H(t) + H(v) becomes singular.

From this point of view, critical points are special cases of trivial solutions, be
cause only one phase actually exists at the critical point. The attempt to solve for
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the conditions of a critical point by a phase equilibrium calculation can not succeed. 
Specialised techniques have been developed to solve the task of critical point calcu
lations (Michelsen and Mollerup, 2004).

Azeotropic conditions do not yield a singular coefficient matrix. Even though the 
chemical composition is equal in both phases, entropy and volume assume distinct 
values. The calculation of phase equilibria for an azeotropic mixture is similar to an 
equilibrium calculation of a pure substance. The equation system becomes singular, 
if only intensive variables are specified (e.g. temperature and pressure).

Multiphase equilibria

for a system of O phases, Equation (3.1) can be generalised to 

n n
max S = ^ S (i) s.t. 5 = Xjnitiai — ^ X(i) = 0 , (3.11)

and the Lagrange function takes the form

n
^(x(1), 1 1 1 , x(i), : : : , x(O)) ^ \ S i — ' 5 :

i=1

The equation system B • A = b results to

(i. :)
/ \ ( • )

B =
' Hi) I AX(i) =

••• I ••• 0 < 5 ,

(3.12)

(3.13)

Again, it is possible to decompose B as (Prow L) (U Pcoi), using the boxed blocks as 
pivot elements for back-substitution:

I

—H(1)

I

—H(1)

H(1) + H(2)

H(1)+H(n—1)

(3.14)

The solution of the total system (3.9) is obtained by solving O — 1 subsystems of the 
size of one phase each. The computation time of a multiphase-flash is therefore linear
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in the number of phases. For the special case O = 1, the system becomes linear and 
the solution x = xjnjtjai and fi = —g.

A necessary requirement for a converged solution of Equation (3.9) is that Ax© = 
0, Vi. Hence g© = —fi Vi demonstrates that the conjugated variables at the converged 
solution are represented by the LAGRANGE-multipliers.

3.2.2 Calculation of chemical equilibria

Consider the same storage tank as in the previous section, but this time filled with a 
reacting phase, for instance a mixture of NO2 and N2O4. The complete set of species 
balance equations would disallow any chemical reaction, but a chemical reaction still 
fulfils the balance equations of energy, volume, and chemical elements. In a reacting 
system, the number of elements is lower than the number of species, such that the 
constraint matrix A is no longer square and invertible. For one phase, the program is

max S (x) s.t. 5 = A (xinitial — x) = 0- (3.15)

For the system NO2 - N2O4, the state vector is given as x = (U, V, nNo2, nN2o4)- 
The balance equations for oxygen and nitrogen are linear dependent in this case. The 
row-reduced constraint matrix becomes

1

A = 1

\

12

U-balance 
V-balance. 

N/O-balance
(3.16)

Equation (3.9) now is modified to

HA7(1)=(7):
(3.17)

At the converged solution, the condition Ax = 0 yields g = —AT fi, implying that the 
equilibrium condition for the chemical potentials is jUNO2 = 2 jUN2O4.

Chemical equilibrium in a multi-phase system

The generalisation to reactive systems with many phases does not require a common 
A over all phases, since different species sets might occur in different phases. The 
program is

max ^ S (i) s.t 5 = -Ainitial ^tinitiai — ^^ -A(i)x(i) = 0- (3-18)
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The matrix Ajnitial projects the set of initial species into the space of elements. The 
equation system becomes

/

# (0 

4(0

^ %

\ . ..'

= -g(0

/ , A , < 8 ,

(3.19)

In spite of each single A(i), the total balance equation system (..., A(i), ...) must be 
reduced to full row rank in order to obtain a non-singular matrix B and therefore a 
solvable system.

Unfortunately, B is not block-invertible for a general reacting system, since it 
contains no single invertible block. Naturally, the computational effort is high in 
the general case, in which no structural information can be utilised directly, but B 
must be decomposed on a scalar level, at least considering the a priori information 
about the location of zero-blocks. More efficient approaches for particular systems 
are discussed in Appendix E.2.

3.3 Non-canonical specifications

In practical cases, there is often no state function with canonical state variables avail
able, so that the constraints are only linear combinations of these variables. This is for 
instance the case, if intensive variables are constrained (T, p). Let us consider a stor
age tank filled with pure vapour at a fixed temperature, but allowing energy exchange 
with the environment. One obvious approach would be to obtain the Helmholtz en
ergy by Legendre transformation of U, namely A(T, V, n). The canonical deriva
tives of A contain all thermodynamical obtainable properties, see Appendix C.3.

This approach is convenient for an isolated calculation, but as there is no con
servation equation for the intensive variable T, the structure of the coefficient matrix 
would be destroyed in real applications, namely the integration into a process model. 
Without the balance equation, the canonical equation system is reduced in size, and 
the temperature needs to be determined externally, for instance by direct specifica
tion. However, the state vector x of the canonical system no longer contains T, and 
many thermodynamic properties, such as entropy, heat capacity, and expansitivity 
(see Appendix C.3), would require add-on calculations.

It is therefore most generic to formulate the canonical equation system in solely 
extensive coordinates, as for instance Equations (3.8) and (3.17). The modelling tool 
Modeller (Westerweele et al, 1999) is based on balance equations as well, and as in 
this case, extensive state variables help to structure the equation system.

The scope of the methods described in the following subsections are actually not 
limited to the single equilibrium nodes introduced in the last section, but are equally 
applicable for entire process models including material streams between different 
FMs, as described in Section 3.4.
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3.3.1 Direct substitution of Lagrange multipliers

A special case occurs, if the non-canonical constraints are direct specifications of 
conjugated variables, namely the gradient of the state function with respect to its 
canonical state variables. Such constraints can be interpreted as specifications of 
parts of A. In order to specify the temperature instead of fulfilling the internal energy 
balance, the first column of the second block column in Equation (3.17) is removed. 
The missing term Au in the first row of the left hand side is accounted for on the 
right hand side according to Au = -gu = -1/T with T = Tspec. Simultaneously, the 
first row of the second block row is removed, since conservation of u is no longer 
desired:

H

A

At
\ / \ /

Ax

A
/ X ) V

-g - AT 1/Tspec

5

A = (o A a

with A = (0 /) A . (3.20)

5 = (0 /) 5

The advantage of this method is the reduction of system size, but again at the expense 
of structure. A is not invertible even for non-reacting systems, and methods described 
in Appendix E.2 must be applied. The restriction to specifications of conjugated vari
ables only requires combination with other methods, if arbitrary constraint equations 
should be applicable. For this reason, the direct substitution of Lagrange multipliers 
cannot be applied practically in a flexible process modelling tool.

3.3.2 Constitutive equation system

The concept of this approach is to substitute selected balance equations of canonical 
state variables by arbitrary equations depending on x, A, and the process parameters 
u:

h(x,A, u) = 0 . (3.21)

The equations of this system are called constitutive equations, as they constitute the 
behaviour of a particular FM or the entire process model. Examples are not only 
direct specifications, such as T - Tspec = 0, but as well heat transfer laws, pressure- 
flow equations, and characterisation of kinetic reactions.

Each balance equation of the canonical equation system (3.9), which is selected 
to be replaced by a constitutive equation, represents one DOF. The use of any con
stitutive equation requires one such DOF, so that the number of state variables is 
balanced with the number of active equations. From now on, such selected balance 
equations are referred to as released.

Integrating the constitutive equations in a linearised form into the canonical equa
tion system is not an attractive approach, as the block structure would be negatively 
affected.
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Therefore, each released balance equation remains as is in the equation system, 
but its right hand side 5 is replaced by a new variable a.

The objective is to obtain a value for a, such that the solution of the modified 
canonical equation system (3.9) fulfils also the constitutive equation system (3.21). 
Substituting the energy balance by a temperature specification, the right hand side of 
Equation (3.17) is supplemented by a = a e1 to

/H AT\ /Ax\ / -g '
W W + Aa, (3.22)

with 5 = Xi+1 5i ei and Aa = a(k+1) - a(k). As B is calculated at x(k), the homogeneity 
Equation (2.15) allows to substitute Ax by x(k+1). Hence, it follows that

(k+1)
=B 1 -g d(x,A)(*+^

d(Z
= B-1 *a

(x-A)(k)
(3.23)

The matrix Ea represents a set of unity column vectors. Multiplied from the right, 
it selects the columns of B-1, which correspond to the released balance equations. 
Considering x and A as a function of a, the derivative of h can be obtained by chain- 
rule. Typically, only a small subset of canonical variables are used in any constitutive 
equation. The Jacobian matrix dh/d(x, A) therefore contains only a few columns with 
non-zero elements, and it becomes practical to introduce also a selection matrix Ex, 
consisting of unity row vectors. Multiplied from the left, it selects rows in B-1 ac
cording to the canonical variables that appear in the constitutive equations (x, A):

dh(x,A, u)
da

dh

(x,Ayk) d(x'
B-1 E a =

dh

d(x,A)
Ex B 1 Ea (3.24)

Application of the Newton-Raphson method suggests an update Aa as

dh dh _.
— A a = —h => ------— EXB 1 Ea A a = —h.
dg - d(J^,A)" " ' -

Equation (3.22) can be decomposed as

(A.1=(AT)+(Af)=b-1 (-g)+b- (AL).

(3.25)

(3.26)

The partial solution (x1,A1) is the solution of the canonical constrained optimisation 
problem (3.17), but assuming the released balance equations to be fulfilled at x(k). 
Hence, the LAGRANGE-multipliers Ai can be interpreted physically as the canonical 
conjugated variable set at xtk+"-> = xtk> + Axi. The determination of A a is therefore 
based on this pair. Subsequently, B should be updated based on xtk+"-x but the high
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computational effort to obtain Btk+<-' is not justified, as Btk+<-' ~ Btk>. The complete 
solution scheme including a relaxation y becomes as follows:

1 k := 0
2 while not converged
3 determine B, g and 8 at x(k) by state function evaluations
4 solve #0 = (f)

5 (%(*+&),:= + A%i,Ti)
6 determine h(k+^ and [dh/d(x, T)](*+5)

7 solve [dh/d(x, A) Ex B-1 E a] A a = -h

8 solve b (A|) = (9)

9 Ax := Y (AxT + Ax2) with y e]0 : 1]

10 x(k+1) := x(k) + Ax
11 k := k + 1 ~
12 end while

This concept of alternating updates is complementary to the concept of nested iter
ations in an outer and an inner loop. There is no need to converge an inner system 
in order to perform one step in the outer loop. Instead, this approach is more simi
lar to using a predictor-corrector step when integrating ordinary differential-algebraic 
systems. The relaxation strategy to obtain y is further described in Section 3.8.

The simulation tool Yasim, as described in Chapter 5, implements this algorithm, 
and performance characteristics are discussed in Chapter 6.

Though this approach incorporates the use of a structured B and additionally 
requires only the solution of a rather small equation system of constitutive equa
tions, the main disadvantage is the demand for the explicit evaluation of B-1, which 
causes numerical problems and performance loss for larger systems, compared to 
solution strategies based on decomposition and back-substitution only (Golub and 
Loan, 1996). The next section therefore introduces a method that avoids the use of 
B-1.

3.3.3 Augmented equation system

The algorithm described in the previous section can be modified to avoid an explicit 
evaluation of B-1. Lines 1-6 are left unchanged, while Equation (3.25) can be com
bined with the canonical equation system to calculate (Ax2, AA2) as follows:

H A T \ 'Axz' 0
A

dh/d x dh/dA
-E a

dh/da,
AA2 

v Aa,
= 0

v-h/
. (3.27)

In this case, Ea is defined more narrowly in order to select specific balance equations 
from the entire canonical system. The algorithm continues at line 9, and only Ax2
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is actually used further on. A disadvantage of this method is that two large equation 
systems need to be solved in each iteration. Still, the total numerical effort to solve 
the canonical system and the augmented system can be expected to be lower than 
the explicit evaluation of B-1. A row and column pivoted LU-decomposition of the 
augmented coefficient matrix is conducted in analogy to Section 3.2.

Furthermore, it is now natural to consider a direct dependency of h on a, i.e. con
stitutive equations can contain source-terms for canonical balance equations directly: 
h = h(x, A, a). With regards to advanced process engineering disciplines described 
in Chapter 4, it is suitable to express all process model parameters u in constitu
tive equations rather than using Xinitiai as in Equation (3.1). For stand-alone building 
blocks, all balance equations are released, hence Ea = I.

Example

Consider a temperature controlled storage tank of an unknown quantity gaseous am
monia, but with specified volume and pressure. Let the current set (x, A) be a solution 
of the canonical system based on entropy S (U, V, n):

H1 (H=(7 (3.28)

In this case, all balance equations are released, such that 8 = 0. For any choice of 
the state x, the update Ax is a zero-vector. x can therefore be chosen arbitrary, while 
A = -g. Given specifications of temperature Tspec, pressure pspec, and volume Vspec 
as process parameters, the constitutive equation system is

h= Al + , A2 Pspec A\, #2 Tspec
Tspec

with % = - (3.29)

The physical interpretation of A1 = -g1 and A2 = -g2 is developed in Appendix C.3. 
The last line in Table C.1 describes the gradient of the used entropy function as g1 = 
T-1 and g2 = p/T. Subsequently

dh dh 1 0 0 <9A 0 0 0

—pspec 1 0 0 0 0
1 0 0 oj lo 1

0j and Ea = I. (3.30)

Evaluation of Equation (3.27) with A = I gives
aA aA 
a%'3g

H
I Ax2 = h, hence

H11 H12 H13 A\ + y^~T spec
H12 — pspecH11 H22 — Pspec H12 H23 — pspec H13 II A2 — pspec A1l0 — 1

0j
, a2 — Vspec ,

(3.31)

It can be seen that the volume correction Ax2,2 is independent of the thermodynamic 
model: AV = Vspec-Vlk+"->, while the temperature and the pressure specifications are
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coupled and therfore model dependent. For an ideal gas with constant heat capacity 
cp, and a convenient reference state AfH0 = cp T0, the Hessian matrix is

H =
a(i/,%»)2

i
T2 cy n

0

Tn

0

TV
R
V

J_ \
Tn
R
V n

Cy +R 
n '

(3.32)

The updates An and AU are calculated as follows:

An = Fspec
V

+ Pspec T 
p Tspec

2 n AU = cV T 1 -
T

Tspec
n + An (3.33)

Table 3.1: Calculation of an ideal gas storage tank by evaluation of the augmented 
equation system.
Starting point Initialisation Specification After 1st step After 2nd step
T0 = 298.15 K U0 = n0 cV T0 Fspec =400 K T= 302.8 K T(2) = 319.0 K
V0 = 0.1 m3 V0 = V0 Vspec = 1 m3 V(1) = 1 m3 < s II

p0 = 1 bar no- RTo pspec = 10 bar p(1) = 1.67 bar p(2) = 8.0 bar
= 4.03 mol = 300.7 mol «4) = 66.4 mol ft(2) = 300.7 mol

Table 3.1 shows the result of a numerical experiment. Obviously, the solution can 
easily be obtained analytically, but the example shows the capabilities of this generic 
method.

As expected, the correct volume is calculated in one step. Subsequently, the 
update An reduces to An = pspec Vspec/(R Tspec) - n, such that n2 = nM. Due to the 
ideal gas law, temperature and pressure consequently assume the same relative error. 
According to the definition given by Nocedal and Wright (1999), the convergence 
rate is quadratic, that is, with p(k) as the numerical value of pressure or temperature 
after step k,

ln ||p(k+1)/tpspec - 1|| = 2 ln ||p(k)/Pspec - 1|| + const. with p e {T, p}. (3.34)

3.4 Process modelling

The previous section concentrated on the mathematical description of atomic building 
blocks in canonical process modelling. This section focuses on the interconnection of 
these blocks by balance equations of canonical variables and constitutive equations.

3.4.1 Mathematical framework for process models

Referring to Section 2.3, and in particular Figure 2.4, the introduced concepts can 
now be substantiated by a mathematical framework.
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Terms and definitions 3.1
Atomic flowsheet module An assembly of at least one phase in restricted physical 

and chemical equilibrium, represented by a suitable building block described in 
Section 3.2. An atomic FM has exactly one set of constraint equations, consisting 
of balance equations supplemented by additional constraints. The coefficient matrix 
B of any FM is square and is generally invertible.

Input port A frame for one set of constrained equations in a FM. An Input port de
fines one constraint vector for each flow of a canonical quantity from an upstream 
FM. This vector defines the contribution to the constraint equations.

Output port A complete set of canonical variables of one physical phase within a 
FM. Not all phases within a flowsheet module represent output ports, although at 
least one phase in each atomic flowsheet module does.

Coupling A set of constraint vectors defined by the downstream FM input port ac
cording to the canonical variables of the upstream FM output port agglomerated 
into a coupling matrix. Coupling matrices are in general of rectangular shape and 
sparse.

Constitutive equation One equation of h = 0 as hi(x, A, a) = 0. In particular, mass
less transfer of heat or work between two flowsheet modules are represented by 
constitutive equations, not couplings.

The coefficient matrix B[k+1] of a composite flowsheet module couples the blocks 
B[k] of child flowsheet modules with coupling matrices C j+1]. With B[k] arranged on
the block-diagonal, df.+1] is positioned in block-column i and block-row j, indicating 
a coupling between module Mi and Mj.

3.4.2 Process model topology

The left side of Figure 3.1 shows the flowsheet representation of a simplified urea 
synthesis process, the so-called Snamprogetti process (UNIDO and IFDC, 1988). As 
illustrated in the right side of the figure, the adjacency matrix of the process topology 
graph directly reflects the block-structure of the coefficient matrix. It also becomes 
clear that material sinks (stream 8 and 12) are not explicit flowsheet modules, but 
only representations of otherwise non-coupled output ports.

The sequence of FMs in the coefficient matrix is arbitrary. When sorted by list
ing upstream FMs before downstream FMs, process models without recycles yield a 
lower triangular block matrix. It becomes evident how an efficient solver can exploit 
the topological information. By block elimination, the process model can be solved 
in linear time regarding the number of FMs.

For each recycle introduced into the process, one coupling block is necessary to 
be positioned on the other side of the diagonal, as stream 5 in the example of Fig
ure 3.1. These recycle streams are conforming with the tear-streams in sequential- 
modular approaches (see Section 2.4.1), and as they require iterations in that ap-
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Figure 3.1: Snamprogetti urea synthesis process and structure of process model co
efficient matrix.

proach, they also require a non-trivial matrix decomposition in the canonical solution 
strategy. As shown in Section 3.9.2, the increase in model complexity due to occur
rence of recycles is inevitable.

Hierarchical process model structure

A large number of process modelling tools implement the concept of hierarchical 
model structures, such as Modeller (Westerweele ef al., 1999), ModKit (Bogusch 
et al, 2001), gPROMS (Pantelides and Barton, 1992), Modelica (Mattsson ef al., 
1998), and MODEL.LA (Stephanopoulos et al., 1990).

Consider the reactor model in Figure 3.1 to be a composite FM representing 50 
vertically arranged discrete volumes. Furthermore, the compressors are arranged 
in three stages with inter-cooling. The complete reactor model and the complete 
compressor train are still represented by only one main diagonal block each, and the 
coupling blocks still remain in the same position. However, it is possible to open the 
compressor train diagonal block and find a similar structure on lower level. In this 
context, the compressor train represents an independent process model in itself.

This approach of encapsulation allows one to exchange FMs of same functional
ity, but at different levels of detail. Using first principle models for process equipment 
or entire process sections, a process model can quickly be developed on a high level. 
In order to enhance model predictivity, more detailed FMs can later be substituted in.
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3.4.3 Material couplings

A coupling represents a material flow from an output port of an upstream FM Mi to 
an input port of a downstream FM M2. Let Xi be the state vector representing the 
outlet stream of M1, and x2,i the state vectors representing the outlet streams of M2. 
The canonical balance equations to conserve the state variables are

Ai xi = ^ A2,i x2,i. (3.35)

The constraint matrices are determined by the downstream FM with regard to the 
actual species set of x1. The building blocks introduced in Section 3.2 only contain 
the right hand side of Equation 3.35, and the left hand side adds a further contribution. 
This contribution substitutes the source term Xinitial in the particular definitions of 8.

Without a coupling in between, the canonical equation systems of two FMs are 
completely independent, and can be arranged as square blocks in the overall coeffi
cient matrix. The left hand side of Equation (3.35) generates an off-diagonal element. 
The canonical equation system is

.. . .

B1 A1 h

C12 B2 A 2 h

, ..,

(3.36)

The coupling block C12 is sparse and well-structured, since there is no direct link 
from either LAGRANGE-multipliers or downstream equilibrium equations.

Example

Mi

Figure 3.2: Example pro
cess model with a single 
coupling.

Figure 3.2 shows a small process model. The reser
voir Mi is coupled to a two-phase flash M2. Assuming 
equal sets of chemical species in both FMs, the coupling 
matrix C12 contains only one none-zero block:

Ci2

' 0 0' 
0 0 

-i 0,
(3.37)

The complete canonical equation system is (81 = -Xc1 and 82 = Xc1 - x2,(i) - x2,(v))

(Hi l\ )
i i

' AX1 '
4 1

' -g1

81 + a 1

i#2,(l) 1 A^2,(l) = -g2,(l)
i #,(v) ^ AX2,(v) -g2,(v)

l ^2 j , 82+#2

(3.38)
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Coupling equations are balance equations of canonical variables and can be released 
as described in Section 3.3.2. The contributions 8i therefore only contain the right 
hand side of non-released canonical balance equations.

As applied in Equation (3.38), the initial state vector Xinitia| can be omitted even 
for M1. The reservoir flow is then given by a1 that is determined by constitutive 
equations. As a consequence of releasing all balance equations in M1, 8 = 0.

3.5 Atomic flowsheet modules

An interesting idea is to design one generic atomic FM that can serve as a basis for all 
possible combinations of physical and chemical equilibrium. This FM would always 
perform a full phase stability test and allow for chemical reactions as well. Output 
ports of FMs are defined at runtime, and a clever distribution feature defines how 
to distribute phases to these output ports. Rules define which chemical species they 
include and how constraints are dependent on the current set of phases.

Apart from the complexity of the task to implement such a general FM, there 
are incompatible requirements for different FMs. Trusting the thermodynamic model 
and equilibrium conditions in a phase separation can be desirable in one FM, but 
have negative side effects in a first principle phase separation if the stability of phases 
is better known by the user than the thermodynamic model. Therefore, a small set 
of atomic FMs is suggested in the following subsections. This set can easily be ex
tended, for instance towards multiphase equilibrium calculations, but is still sufficient 
for most practical applications in steady-state process modelling.

3.5.1 One-phase module

The most primitive FM is that with one physical phase and no reactions enabled. The 
canonical equation system

11 (AX, 8 % with 8 = - x (3.39)

is linear in X, which means that AX = a - X(k) yields the exact canonical update x(k+1) 
in each iteration. Furthermore, the decomposition B = (Prow L) (Pool U) is trivial with 
Prow L = B and Poo| U = I. In other words, the inverse matrix B-1 can be obtained 
without any numerical effort:

* I
-1

(3.40)

The dim(X) canonical balance equations can be released and serve as DOFs for 
constitutive equations.

This module can be applied to: (i) collect multiple streams under mass-balance 
and two further constraints and obtain a uniform set of canonical conjugated vari
ables, if it is certain that only one phase exists, (ii) implement a material source,
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which exactly requires all dim(x) DOFs to be specified by constitutive equations, and 
(iii) represent any one-phase calculation, such as pumps and simplified models of 
compressors and valves. A source module to represent a two-phase flow or a flow 
at chemical equilibrium is obtained by combining a one-phase source module with a 
subsequent flash or reactor module into a composite FM. The canonical variables of 
that particular module can be used in constitutive equations to specify the DOFs of 
the source module.

At least one input stream is expected if the one-phase module is not used as a 
source module. In this case, the state vector of every input stream is added to the 
residual vector, thus 5 = -x + £z Xjn,j. From now on, the sum of all input streams is 
combined to the total input stream Xjn = £z Xjn,z.

3.5.2 Two-phase equilibrium flash

The case of a stream splitting into two physical phases with equal chemical species 
sets without reaction is worth being considered as a distinct FM, because it represents 
a very common operation in practical cases, and as derived in Section 3.3.2, the 
equation system

#(2) J = -#(2)
l J J l <1 J v5 + a,

(3.41)

provides valuable structural information. Under conservation of material flow, there 
are two potential DOFs left for constitutive equations. Among most common spec
ifications used for this are those of temperature, pressure, heat duty, vapour fraction 
and target concentration of species in one of the phases.

Stand-alone, this module can be used to represent a flash tank or a simple model 
of partial evaporators and condensers. Applications in a composite context are trays 
of non-reactive columns and heat exchangers with phase transition.

3.5.3 Reactor modules

To find an intuitive and consistent modelling approach of chemical reactions is a chal
lenge in process modelling, in particular in the combination of equilibrium, stoichio
metric and kinetic reactions. Conventional software often requires distinct modules 
for each type, thus combined reactions are not easily mapped into a process model.

As a motivation, consider the conditions in a urea synthesis reactor. To begin 
with, the following equilibrium reaction is considered:

CO2 + 2 NH3 ^ NH2COONH4 (ammonium carbamate). (3.42)

The actual synthesis reaction is approaching equilibrium inhibited by kinetic effects: 

NH2COONH4 ^ NH2CONH2 (urea) + H2O . (3.43)
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Furthermore, a stoichiometric relation describes the formation of the undesired by
product biuret:

2 NH2CONH2 ^ NH2CONHCONH2 (biuret) + NH3 . (3.44)

In a conventional approach, the equilibrium reactions would probably be described by 
fast kinetics, and the biuret formation would be performed in a subsequent stoichio
metric reactor. The consequence is increased numerical effort due to the additional ki
netic reactions. Furthermore it is difficult to incorporate the effect of biuret-formation 
on the main reactions.

Description of chemical reactions

There are two basic approaches to describe chemical reactions, both of them de
scribed by Michelsen and Mollerup (2004). A common approach is to define each 
possible reaction through a vector vt of stoichiometric coefficients. Starting from 
an initial molar vector njnjtjai, each reaction represents a dimension of the space of 
possible states n:

n = njnjtjai + ^ i^tyt with e R and n > 0. (3.45)
i

This approach seems to be a good choice for large sets of species with few reactions, 
and it reflects the traditional way to describe chemical reactions as reaction equations, 
such as (3.42), (3.43), and (3.44). However, the user, who defines the reactions, is 
required to provide consistent stoichiometric coefficients, which conform to the bal
ance equations of chemical elements. A subsequent validation is required to ensure a 
consistent mathematical model. Only stoichiometric vectors vt in the right null space 
of the formula matrix R are allowed: R vt = 0. The formula matrix is the chemical 
part of the constraint matrix A in reactor FMs:

1

A=
V

\
1

R
(3.46)

The direct creation of the formula matrix is a much more intuitive approach. The 
element balance equations represents the immutable basis for the description of any 
reacting system. Hence the starting point is to describe a reactive system at complete 
chemical equilibrium.

To obtain R, the element balance equations based on the chemical formulae of the 
involved species are established and row-reduced to a linearly independent set. For 
a simplified urea-synthesis system (CO2, NH3, H2O, NH2COONH4, NH2CONH2), 
the balance equations for C, N, O and H yield

1 1 1

1 2 2
raw = 2 1 2 1

, 3 2 6
4J

C
N
O
H

(3.47)
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In this case, the element balance equations yield a rank-deficient matrix Rraw. Using 
this matrix directly in Equation (3.46) and subsequently in Equation (3.22) yields a 
singular equation system.

The row-reduced matrix R indicates that only inert groups CO2, NH3 and H2O 
are recombining, not the four elements in general:

1

R = 1
11 

2 2 
1 -1)

CO2
NH3

H2O
(3.48)

Section 3.2.2 describes the general calculation of chemical equilibria. Depending 
on the number of phases, Equation (3.17) or Equation (3.19) is used. The following 
paragraphs describe the approach to obtain suitable formula matrices R(i) considering 
inert and restricted species, and phases with different sets of species.

Multi-phase reactor

The simplest multi-phase reactor considers equal sets of species in all phases. The 
balance equations can be formulated with one common formula matrix R for all 
phases:

R jn njn - R^nt = 0 • (3.49)
i

In practice, being able to assign different sets of chemical species to individual 
phases can drastically improve the robustness of the solution method and avoid phase 
stability problems. If the balance equations force a certain species into a particular 
phase, the existence of this phase is assured. Furthermore, most likely, there might 
not be a thermodynamic model for all species in all phases. Ions and species with high 
molecular weight will not occur in the vapour phase, and no considerable amounts of 
light gases might be dissolved in the liquid phase. Eliminating species from particular 
phases also decreases the size of the canonical equation system.

As an example, consider the set of balance equations for the urea synthesis as 
in the previous section, but including N2 to represent the passivation air (see Fig
ure 3.1). During the vapour liquid equilibrium calculations, N2 is only considered 
in the vapour phase, while ammonium carbamate (subscripted as ^carb) and urea are 
restricted to the liquid phase. In order to apply Equation (3.19) for this system, the 
matrices R(l) and R(v) are defined through the balance equations of elements. For a 
feed consisting of CO2, NH3, H2O, and N2, the element balances are

nc 1 1 1
nN 1 2 2
nH 3 2 6 4

nO jn ,2 1 2 1,

nNH3

nH2O
ncarb

Vnurea/

1

12

32
21

nNH3

nH2O

nN2
(l)

(v)

+ (3.50)
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Note that these constraints not only force N2 into the vapour phase, but also disal
low any chemical reaction including this species. As a consequence of the element 
balance equations, N2 is an inert species in this system.

Inert and stoichiometrically restricted chemical species

Reacting systems often contain inert chemical species. In some cases, as for nitrogen 
in the previous example, this is a consequence of element balance equations.

In other cases, the inertness of a species is a consequence of thermodynamic 
prohibition, and it needs to be specified by an explicit modification of the formula 
matrix. This is performed by adding a balance equation to conserve the quantity of 
the inert species to the reaction matrix.

Considering only element balance constraints, a gas phase containing CO2, NH3, 
H2O, N2, and O2 allows for the oxidation of ammonia:

2 NH3 + 3 O2 ^ 2 N2 + 6 H2O • (3.51)

To exclude this reaction, an additional constraint equation to conserve N2 is added to 
the formula matrix, represented by the last row of R.

'nc' 1

nN 1

nH = 3
nO 2

nN2 jn X

\ 'nCO2^
2 nNH3

2 nH2O
1 2 nN2

1 J nO2

(3.52)

The same modification is done to the formula matrix R, if a species is reactive, 
but not supposed to achieve chemical equilibrium. In this case, the species balance 
equation is added to the formula matrix, but subsequently released (see Section 3.3.2). 
The DOF can be used for any kind of constitutive equation, specifying for instance 
the extent of reaction as a direct specification or as an empirical correlation, such as 
a description of the reaction kinetics.

To complete the urea synthesis example, the byproduct biuret is included into 
the reaction system (see Equation (3.44)). A species balance equation is added and 
released, such that a constitutive equation to describe the reaction kinetics can be 
applied. Equation (3.50) is extended to

nc 1 1 1 2 'nCO2 ' 1 \

nN 1 2 2 3 nNH3 1 2

nH 3 2 6 4 5 nH2O +
3 2

nO 2 1 2 1 2 ncarb 2 1 2

nN2 nurea 1

<nbiuret, jn X 1, nbiuret (l) X /

MCO,'

nNH3

nH2O

nN2

nO2 (v)

+

0

0

0

0

0

(a)

(3.53)
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The constitutive equation to determine the extent of biuret formation can be defined 
by a temperature and concentration dependent reaction rate:

fibiuret,(l) — hbiuret.in = ^ j • (3.54)

This example illustrates the canonical approach to define a consistent reactive system 
including species in chemical and phase equilibrium, inert species, and kinetically 
restricted reactions. The required input to define such a system is minimal and in 
particular not redundant to the material conservation constraints.

Species categories in a reactive system

Considering the element balance equations and additional constraints to the reactive 
system, all species involved can easily be categorised into different groups as indi
cated in Figure 3.3. The arrows indicate the possible transitions of the species from 
one group into another. Transitions along solid arrows are triggered by the modelling 
engineer, while transitions along dashed arrows are a consequence of this. Figure 3.3

ammonium carbamate, O2, H2O
CO2, nh3 _____________ = explicit assignment 

= consequenceurea, biuret

Inert species

Locked species

Restricted species

Equilibrium species

Figure 3.3: Groups of chemical species in a reactive system.

includes the species of the urea synthesis example in the previous section. In this 
configuration, the urea synthesis reaction (3.43) is restricted by a kinetic expression, 
as it is suitable to describe the chemistry of the carbamate condenser (see Figure 3.1).

The formula matrix R determines the affiliation of each species to a specific 
group. This is done by analysis of the null space N of R. N is the stoichiometric 
matrix of the system, as the rows of N are a set of linear independent stoichiometric 
vectors vi of all enabled reactions.

The following definitions ensure a consistent description of any reacting system. 
No input information redundant to the element balance equations is required.

Terms and definitions 3.2
Equilibrium species are species i with N eA + 0, thus species i is included into at 

least one reaction. Species of this group can be explicitly changed to inert or re
stricted species. Doing this will possibly trigger other species of this group to be 
stoichiometrically locked.

Inert species are defined by a particular species balance equation in A. If A is a 
system containing an equilibrium species i, the species balance will not be linearly
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dependent on the original rows in A, as the null space is definitely reduced by one 
dimension.

Restricted species are generated in the same way as the inert species, just that the 
species balance equation is released in favour of a constitutive equation as described 
in section 3.3.2. This constitutive equation describes the relationship between the 
formation of a key species and operation conditions in terms of canonical and con
jugated state variables.
Specifications of kinetic reactions also belong to this class, as the reaction rate is 
not more than a function of operating conditions.

Locked species are species i with N ei = 0, which are not key species in definitions 
of inert or restricted species. These species cannot actively be reassigned to another 
group. The affiliation to this group is a consequence of other balance equations.

Figure 3.3 contains the assignment for the urea synthesis example. To define the 
reactions as introduced in the beginning of this section, N2 is defined as inert, biuret 
and urea as restricted. With this, ammonium carbamate is still in equilibrium with 
NH3 and CO2, but O2 and H2O are locked. Here, O2 happens to be inert, while the 
amount of H2O follows the synthesis reaction defined with urea as key component, 
influenced by the formation of biuret.

Complete conversion reactor

In some cases, one would like to disregard some of the reactants in the product 
stream. These species are assumed to disintegrate to full extent. Though thermo
dynamically not motivated, this approach is practical for avoiding large species sets 
in the downstream sections. A typical example is the combustion of hydrocarbon 
fuel. In ordinary cases, only CO2, H2O, excess O2, and maybe CO (and CH4 for very 
precise calculations or reducing conditions) are considered as product species. The 
concentrations of heavier hydrocarbons in the tail-gas are negligible. Any number of 
non-product input species can be included, if the constraint vector ajn, which maps 
this species to the set of balance equations, does not increase the rank of R. Consider 
H2 and O2 reacting to H2O, leaving excess O2 but no H2. The element balances yield 
the formula matrices for the incoming stream Rjn and the reactor outlet R:

Rin = |0 0) and R = (% 0) ' (3.55)

If the excess oxygen is of a negative amount, the molar flow vector with positive 
and negative entries is most likely not covered by the mathematical domain of the 
thermodynamic model. In this case, the system is generally not solvable.

However, considering only H2O in the product stream causes structural prob
lems. In this case, A cannot be row-reduced without disregarding information in Ajn, 
hence the remaining A is not of full rank and the FM is not solvable. If an exact stoi
chiometric match is desired, this represents an additional constraint, which has to be
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associated with a DOF elsewhere in the process model. To achieve this, inconsistent 
rows of the balance equation set can be removed from A and provided as an ordinary 
constitutive equation. However, use of this equation might still be redundant to other 
material balance equations.

Hydrogen

Hydrogen Water

Oxygen Water

Water Oxygen

(a) Stoichiometry must determine (b) Stoichiometry is already determined
inlet flow ratio by material balance

Figure 3.4: Process with and withoutredundant stoichiometric constitutive equation.

Figure 3.4 shows the two different cases. In (a), the reactor module can only 
ensure the preservation of either hydrogen or oxygen. A constitutive equation repre
senting the other element balance must be used to determine the flow ratio between 
the inlet streams. Case (b), however, provides hydrogen and oxygen at the correct 
stoichiometric ratio. One of the element balances determines the outlet flow of water, 
while the other is linearly dependent on the material balance equations of the first 
reactor.

3.5.4 Chemical species separator

A first principle separator is a general FM for separating the incoming material stream 
into two individual outlet streams, only constrained by the total material balance 
equations.

The modelling approach is based on a restricted two-phase equilibrium calcula
tion. By adding one more constraint for each species that is common to both phases, 
the phase split can be fully controlled independently of the thermodynamic model. 
Subsequently, there are four groups of constraints: (i) balance equations for canonical 
variables common to both phases, (ii) + (iii) balance equations for canonical variables 
occurring only in the first or second phase respectively, and (iv) constraints on split
ting behaviour for canonical variables common to both phases. The constraints of 
group (iv) serve as DOFs for constitutive equations.

Instead of distinguishing the four groups as such, and handling the combinatorial 
number of combinations, the categorisation can be simplified: (i) all canonical vari
ables of one phase, and (ii) all canonical variables of the other phase. A constraint
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matrix A completes the formulation of balance equations:

X1

\X2/i,

ft
with aij = -

0

variable i in phase 1 is
same as j in phase 2; (3.56)
variables are not identical.

Note that a molar flow of an incoming species occurs twice on the left hand side if 
that species is considered in both outlet streams. For each non-zero aij, the equation 
in the first row represents a real balance equation. The corresponding equation in the 
fourth row is therefore released by a j to represent a DOF. The belonging constitutive 
equation specifies the split factor of the state variable j between both output ports. 
Such state variables include the first two elements of x, for instance S and V. These 
two DOFs are typically used to specify a correlation between the temperatures and 
pressures in the outlet streams.

A local optimisation node is defined to obtain the intensive properties through the 
canonical equation system. The objective function

A(Xt, X2) = -Pt(Xt) + P2CX2) * 1 
A

i A (3.57)

yields the following canonical system:

(H1 I 1 'A^Xr '-#1'
H2 AT I A^2 -#2

I * 1 <51
/ I *2 ,62 + a,

(3.58)

There are sufficient identity matrix blocks to solve this system by back-substitution: 

X2 = X2,in + a, Xt = Xt,in - A X2 *1 = -#1, and *2 = AT #1 - #2. (3.59)

3.5.5 Flow splitter

A flow splitter is a special case of the first principle separator. The outlet flows con
tain identical sets of chemical species and are described by the same thermodynamic 
model. Their intensive states are equal, and their extensive states only differ by a 
scaling factor. As with the two-phase non-reacting equilibrium (see Section 3.5.2), 
the LAGRANGE-multipliers are shared between both phases. However, the flow splitter 
seeks the trivial solution, such that H(1)+H(2) is singular. To solve the system, one ad
ditional constraint, which provides the DOF to hold one more constitutive equation, 
is necessary. This DOF is used to determine the split ratio of the outlet flows.

The Lagrange function given in Equation (3.2) for a two-phase flash is modified 
to

MX(1> X(2), *, *split) = P(1) + P(2) - * (Xin - X(1) - X(2)) - *split a (X(1) - X(2)) . (3.60)
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The constraint vector a can be an arbitrary non-zero vector, but in order to avoid 
rank loss not orthogonal to any feasible state x. Application of the Newton-Raphson 

method yields the following equation system:

—a \ l [Am) ' -g(l) "

= # (2) ad Ax(2) —g(2)
-a ; a ;0 4sPlit AsPlit + ®sPlit

( l \ l 0; J l 4 J l ^ + g J

(3.61)

At the solution point, Tspiit is zero due to the homogeneity of state functions. Still, 
with suitable starting values, the flow splitter can be triggered to predict a restricted 
actual phase equilibrium and solve for a non-trivial solution. In this case, Tspiit + 0, 
and a defines the direction, in which the equilibrium constraints are violated in order 
to fulfil the third constraint. This case is of little practical value and can easily be 
avoided by choosing starting values suitable to favour the trivial solution. Possible 
applications like membranes and partial equilibria are better implemented using the 
first principle separator described in the previous section.

3.5.6 Saturation node

The calculation of a state vector at the exact phase boundary, namely the boiling point 
or the saturation point, is often desirable. Experimental data as a basis to adjust and 
validate thermodynamic models is often available at such saturated conditions. A 
process model of a heat exchanger needs to identify the saturation point in order to 
consider changes in the heat transfer characteristics. An ordinary flash calculation 
with a specified vapour fraction close to 0 or 1 is practically feasible, but not appeal
ing for numerical reasons caused by extremely different scales of the state vectors.

The saturation node contains a main phase and a trial phase. The main phase is 
constrained by a complete set of canonical constraints, of which one must be made 
available as a DOF to find the saturation point. Figure 3.5 shows an intersection plane 
of the multidimensional state space with the state functions of the trial and the main 
phase. Due to the homogeneity of thermodynamic state functions (see Section 2.5.1), 
the tangent plane to the state function is in any point x0 defined as the scalar product 
x g0. As necessary requirement for equilibrium, the tangent planes must coincide. 
The distance between the tangent planes is defined as

AP — P(xtrial) Xtrial gmain — (gtrial gmain) xtrial • (3.62)

The minimisation of AP at constant gmain must be subject to at least one constraint in 
extensive variables to determine the trial phase size: ax — b. The formulation of the 
LAGRANGE-function is

A — P(xtrial) xtrial gmain 4trial(b a xtrial) (3.63)
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x gmain

Figure 3.5: Tangent planes of the state functions of two phases in an intersecting 
plane (Xj# = const.).

with

dA
d xtrial

= gtrial gmain ^-trial a • (3.64)

Thus at the solution point, the difference of the gradient vectors points into the direc
tion of a, and Atrial is a measure for the distance. A constitutive equation to specify 
Atrial = 0 is required to obtain the equilibrium condition gtrial = gmain. The DOF to 
host this equation is provided by the main node.

The canonical equation system to obtain a Newton update is

j^rnain l \ Axmain ' gmain '
I - main Amain + a

/ Htrial a AXtrial “gtrial
{-fl a J < Atrial / < Atrial /

(3.65)

In this case, the constraint vector a ensures a similar size of the main and trial phases. 
In order to avoid a singularity caused by the homogeneity property of the state func
tion in the trial system, a must not be orthogonal to any feasible state vector.

3.6 Specialised composite flowsheet modules

To minimise low-level maintenance work, a main objective of the modelling concept 
is to keep the number of atomic flowsheet modules as small as possible. The set intro
duced in the previous section serves as the basis for a more extensive set of composite 
flowsheet modules to represent heat exchangers, membranes, turbines, columns and 
other more complex process equipment.
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3.6.1 Limited heat and mass transfer

y

y

y
\

Process equipment is commonly operated on the edge of its capacity limits. 
It is therefore rarely possible to obtain an accurate model by assuming complete 
phase equilibrium. Furthermore, modern process designs apply membranes more 
frequently as an alternative to thermal separation. The exchange of heat and material 
is described by gradients of the intensive variables, such as temperature, concentra
tion, and chemical potential.

The approach uses a first princi
ple separator as shown in Figure 3.6.
The valves V1 and V2 represent triv
ial modules, which conserve the state 
and provide the composite flowsheet 
module with extensive and inten
sive properties of the two distinct 
input streams. The separator pro
vides all the properties of the outgo
ing streams and a sufficient number 
of DOFs to redistribute each exten-

1
1

?

•
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; V1 L

©
y:
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Chemical species

i
L
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z
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Figure 3.6: Layout of a general diffusion 
module as a composite FM. 

sive state variable independently. The heat and mass transfer can be described as a 
set of constitutive equations including the extensive and intensive properties of the 
incoming and outgoing streams.

The canonical equation system represents the FM as a very general composite 
implementation:

I

#2 I
I

-I

V

-A
-I

#3 I
#4 ATI 

I A
I

1 ( 1 ' -gl "

< i !?i

Ax? -g2

2 !^2

A4(3 -g3

Ax4 -g4

<3 & + # 3

/ l <^4 J „ <^4 + a4 ,

(3.66)

This equation system is composed of the atomic FMs described in Section 3.5.1 
(one-phase module) and Section 3.5.4 (chemical species separator). The off-diagonal 
blocks represent the material couplings as described in Section 3.4.3. The indices of 
state vectors are consistent with the stream numbers in Figure 3.6.

An identity matrix can be found for every pivot element, such that the canonical 
system is a set of explicit equations to determine the state. It provides thermody
namic properties and their derivatives in order to formulate and solve the constitutive 
equations. These freely configurable constitutive equations determine the entire heat
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and mass transfer.

3.6.2 Rotating process equipment

Isentropic efficiency modules

The performance of rotating process equipment, such as turbines and compressors, 
is often characterised by reference to a reversible change in state, like the isentropic 
efficiency. The ideal module is constrained by an entropy conservation equation and 
yields the reversible work Wrev. The actual work duty or delivery is obtained by 
multiplication with (turbine) or division by (compressor) a specified efficiency p. 
The surplus energy is added as process heat at constant pressure. Figure 3.7 shows

A p < 0
AS = 0

A p > 0 
AS = 0 REAS > 0

A p = 0
AS > 0 
Ap = 0

RE

HE HErev rev
Q

i Compressor Turbine [ W = n Wrrev

Figure 3.7: Process models of rotation equipment with isentropic efficiency.

the approach to incorporate isentropic efficiency into a composite FM. The split into 
a reversible and an irreversible part is directly reflected in the process topology. As 
indicated in Figure 3.7, constitutive equations describe the relationship between the 
reversible and the irreversible processes. With W = n Wrev, Aphe = 0, and AS re = 
0, the remaining of four DOFs can be used to specify outlet pressure, work load, 
delivery, or outlet temperature. The canonical system for both FMs is again just 
a framework to provide thermodynamic properties for the three states, namely the 
inlet, the reversible state, and the outlet state, each of them calculated by a one-phase 
module as described in Section 3.5.1. The indices of the state vectors are consistent 
with the stream numbers in Figure 3.7. The equation system is

( //, /; \ ( A% 1 ' "Si '
I i 41 #1

; h 21 A# -S2

-i ! i 4 2
= #2 + a 2 . (3.67)

H3 I A%3 -g3{ \ -i I J
, 23 , , !#3 + a3 ^
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Identity blocks can be found for each pivot block in the coefficient matrix of the 
following equation system:

A precarious issue is the definition of n- Theoretically, the efficiency is defined 
as above, but practically this makes n depend on the thermodynamic model used to 
calculate on the equipment. Performance data of compressors is often reported in 
terms of an efficiency under the assumption of an ideal gas. The process model will 
therefore give deviating results, if the the simulation is carried out based on a more 
sophisticated thermodynamic model, such as a cubic equation of state. Even more 
significant discrepancies might occur, if the saturation line is crossed within a turbine.

Polytropic efficiency

The efficiency of compressors 
ciency (Campbell, 1984):

_ k- 1 In Pout/ Pin 
?7poly“ k lnTout/Tin

is often reported in terms of a polytropic effi-

with K = £p_
Cy

(3.68)

Clearly, this formulation is based on the assumption of ideal gas behaviour and con
stant heat capacity. Therefore, npoly = 1 is not equivalent to the reversible process 
in general. Furthermore, the adiabatic exponent K is not the actual property of the 
gas within the compressor, but the value for K published together with the efficiency 
data, related to the medium the compressor is designed for. In spite of its inconsistent 
definition, the polytropic efficiency is widely used to characterise rotating equipment. 
This justifies the integration of this property as a constitutive equation, but clearly as 
an empirical measure, in particular not coupled with respect to the adiabatic exponent 
calculated by the underlying thermodynamic model.

3.6.3 Valves

A valve in this context is defined as a general isenthalpic process equipment. Without 
exchange of heat and work with the environment, irreversible effects generally cause 
a pressure drop. Purely descriptive valve models directly specify the outlet pressure 
or a constant pressure drop throughout the valve. The following paragraphs describe 
predictive approaches for incompressible and compressible fluids. In both cases, 
only full turbulent flows are considered, and effects due to variable flow pattern at 
low Reynolds numbers are not discussed. However, the constitutive equations can 
be refined to describe the dependency of effective cross-section with respect to the 
Reynolds number.

Incompressible fluids

If the fluid density does not change significantly, the assumption of an ideal diffuser 
yields a single constitutive equation, which can be used in combination with enthalpy
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conservation within a one-phase non-reacting module (cf. Section 3.5.1):

_ 1 2
Pin _ Pout - ^ Gv • (3.69)

The velocity v at the most narrow cross-section F is given by the linear relation 
Fv = V. The cross-section might be modelled as a function of the valve position z: 
F = Fopen ^(z) with z,$ e [0,1].

Compressible fluids

As a basis for a valve model with compressible fluids, the canonical system is identi
cal to those of compressors and turbines, shown in Equation (3.67). The decomposi
tion is trivial, and calculated properties serve as input for constitutive equations.

With increasing pressure drop, the compressibility of the gas has an increasing 
impact on the decrease of density in the the most narrow cross-section (Smith et ah, 
2001). Furthermore, the fluid’s change of kinetic energy causes a temporary decrease 
of thermodynamic enthalpy, lowering the fluid temperature in the nozzle. More pre
cise pressure flow relations are obtained by introducing a node to represent the nozzle. 
Assuming isentropic flow up to this point, the four DOFs are specified by those equa
tions marked by ★ in Figure 3.8. As in the simplified incompressible model, velocity

1 2 3
S 1 ★ S 2=S 1 S 3> S 2
H\ ★ H2=H\ — \ m v2 ★ Hj=H\
P1 P2<P1 A P3= P3,spec

Figure 3.8: Detailed model of a valve containing a compressible medium.

is a function of volume flow and cross-section. However, a pressure-flow relation is 
not yet established, and two cases have to be distinguished. For moderate pressure 
drop, v is below sonic velocity vsonic, in which case p2 = p3 is an active constraint. A 
compression shock takes place, if the assumption of equal pressures roughly yields 
a velocity v > vsonic. In such a case, p2 and p3 are uncorrelated with p2 > p3. The 
constraint p2 = p3 is replaced by v = vsonic to describe the sonic flow.

Speed of sound is a thermodynamic property and more precisely a function 
of some second-order derivatives of the canonical state function (Perry and Green, 
1997):

v2
sonic

dp dp /dp i _ y gp
dp s dV s s) " g ay

(3.70)
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The partial derivative can be substituted by the total molar flow N = £i hi, adiabatic 
exponent k, thermal expansitivity sT, and compressibility sp (see Appendix C.3):

V dp v (7 K
e av oa

.

1

%
 1

C
b

S @EP

Cy sTlKT^

Cp sp N Cp )
k

6 s p
=-----. (3.71)

Here, the last calculation step utilises the relation between the heat capacities as

(3.72)Cy = C
sT IK T

p IN sp

Thus, the speed of sound can easily be calculated, but it can not be used directly in 
the constitutive equations without the loss of the quadratic convergence properties or 
alternatively the necessity of third derivatives of thermodynamic state functions.

2Vsonic

3.6.4 Sub-cooled and super-heated fluids in heat exchangers

If the stable phases change within a heat exchanger, a common approach is to estab
lish a distributed model and conduct stability tests in each volume element. This is 
probably a necessary choice, if the heat transfer is strongly coupled with the local 
stream properties. However, a lumped heat exchanger model can be used in some 
cases and still support disbnct regions for different phase sets. Figure 3.9 shows a

0

shell
tube

0

HEla

A p = 0 

lj,AQ a = AQ b(= Qi)

Qi...........................

'A p = 0 
HElb saturated

HE2a

A p = 0 
A AQa = AQb(= Q2)

Q2
1

=2 Ap = 0
Fi + F2 = F spec

I
HE2b (3)

Process properties

ATi = / (Ti, T2, Tg, T?) 

AT2 = / (T2, T3/4, T5, Tg) 

ki = Z(,ti, j2, j6, j?)
^2 = Z(^2, ,j3, (4, ,(5, ,(6) 
Fi = Qi/(ti ATi)

F2 = QWk AT2)

Figure 3.9: Heat exchanger to condense from super-heated vapour.

composite FM to describe the process of partially condensing a super-heated vapour 
in a tube-shell counter-current heat exchanger. The process unit is divided into two 
sections HE1 and HE2, which describe the super-heated and the two-phase region. 
The distribution of physical surface area to these regions is a result of the computa
tion. HE1b is a saturation node (see Section 3.5.6) that, constrained by a pressure 
specification, does not offer further DOFs. HE1a and HE2a also are fully specified 
by pressure equations and one equation each to conserve heat flow in the systems
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(HE1a, HE1b) and (HE2a, HE2b), The only DOF remains in HE2b, used to specify 
the total surface Fspec = F\ + F2.

The canonical equation system is trivial on the shell-side (first two blocks), while 
the tube-side (last two blocks) contains equilibrium calculations:

' #6/ 
I

\ r A# i
4 6

' -#6
& + a 6

H1I j A xi -21
-I I i 41 &1 + a 1

| H2,main 1 Ax2,main —g2, main
! I 4 2,main = <^2,main + a 2,main
| 1 H2,trial a Ax2,trial -g2,trial
l -a a 42,trial a2,trial

H____I AX3 -g3
H4 I Ax4 -g4

V
1 -I I I J

, 43,4 , , <^3,4 + a 3,4

(3.13)

Note that only two streams indicated in Figure 3.9 are represented as couplings in 
the coefficient matrix, namely stream 2 and 6. Stream 1 and 5 are input streams, 
contributing to the balance equations of the first (1) and the third (5) block. Streams 
3, 4, and 1 are material sinks in this context, They are represented by the first column 
of the second block (1), and the first two columns of the fourth block (3,4). The shell 
and tube sides do not exchange material and appear therefore completely decoupled 
in the canonical equation system. Interaction only takes place through constitutive 
equations.

3.7 Initialisation

3.7.1 Approach for sequential-modular solvers

The initialisation of an arbitrary equation system to assure convergence to the correct 
solution - if there is any - is an unsolved problem. In general, there is a compromise 
between using a set of robust estimation equations, which solve the system rather 
inaccurately, and using the set of original equations of non-linear nature with limited 
mathematical domain and convergence radius. Furthermore, starting values of only 
a subset of variables have to be obtained, as the remaining ones can subsequently be 
calculated by the original system. This effect can be exploited in sequential-modular 
approaches, such that only tear streams and variables specified through implicit con
stitutive equations need to be initialised. A possible strategy to initialise an equation 
based process model is therefore to perform a sequential pre-execution, that is to
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exploit the process topology and to find a suitable calculation sequence for initialisa
tion (Zitney and Stadtherr, 1988). In general, a suitable set of robust model equations 
and estimation equations are solved in a proper sequence.

3.7.2 Equation of state thermodynamic models

The most common equations of state, as for instance the SRK equation by Soave 
(1912), often predict a rather inaccurate liquid density at given pressure. Due to the 
low compressibility, starting volumes far from the predicted density are likely within 
a non-physical region or entirely outside the domain of the model. Therefore, a robust 
and precise density correlation used to calculate a liquid volume, which later is to be 
predicted by an equation of state, is likely to fail despite (actually caused by) its high 
accuracy. The calculation of a starting value for the volume as an input to equation 
of state models must therefore be performed by a model-specific function outside the 
actual initialisation process.

Therefore, nodes calculated by equation of state models are to be initialised by 
xinitial = (T, p, n), even though volume, not pressure, is the canonical state variable. 
Once, xinitial e X, the model is able to calculate the complete set of thermodynamic 
properties (cf. Appendix C.3), and the ordinary solving process can be launched.

The development and testing of initialisation methods is not included in the main 
scope of this work, but a general approach suitable for the canonical solving approach 
is described in the next section.

3.7.3 Approach for the canonical flowsheet solver

This approach is based on the ideas of Zitney and Stadtherr (1988) and is referred to 
as the evolutionary approach. A large number of robust equations is collected from 
all calculating instances. For instance, a flash module might provide equations to 
estimate separation factors, and linear constitutive equations and balance equations 
can be utilised directly. A previously obtained solution or a linear approximation, 
taking into account the changes in model parameterisation u, represents a valuable 
set of initialisation equations. As a fallback, global default values for all (T, p, n) are 
available, for example as (298.15 K, 1 bar, 1 mol).

The objective of using the most reliable relationships for initialisation can be 
represented by a cost matrix, which maps equations to variables in a bipartite graph 
(see Appendix F.3). The solutions of assignment problems result in the optimal set 
of equations used to determine the required set of variables.

However, a simple example shows the devastating effects of an unfavourable 
combination of otherwise robust equations. Consider a mixture of three species with 
the molar flow vector n = (n1, n2, n3). Let n1 = 0.1 (1 ■ n) and (1 ■ n) = 1 mol/s be 
specification equations, which obviously are suitable for initialisation. A robust and 
therefore seemingly harmless estimation equation n1 = n2 yields the infeasible solu
tion n1 = n2 = 0.1 mol/s, and n3 = -0.4 mol/s. Therefore, inequality constraints
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(hi > 0) have to be incorporated into the initialiser, whose task is to find the optimal 
and most robust and reliable set of equations with a solution within given constraints. 
A suggestion for an initialisation algorithm is given in Appendix E.4.

3.8 Relaxation scheme

An iterative solving method, as suggested in Section 3.3.2, calculates an update Ax 
of state variables in each step. Since this update does not yield the solution directly 
for a general non-linear equation system, the updated state x(k+1) = x(k) + Ax is not 
necessarily within the domain X of the process model. In particular, the equations 
of thermodynamic models might require a positive temperature, pressure or volume, 
and a mole-vector n, for which each element is of the same sign.

Wilhelm and Swaney (1994) recommend the relaxation y e (0,1] of each itera
tion step to ensure x(k+1) = x(k) + y Ax e X by means of linear programming. For 
process models on a canonical basis, however, all state variables of the process model 
are state variables of thermodynamic models, and these thermodynamic models can 
be equipped with the functionality to restrict y for a given search direction Ax.

This section describes a systematic scheme to collect restrictions of y within a 
relaxation object R. This object is a representation of the feasible domain of y. Dur
ing the solving process, every thermodynamic model is given opportunity to restrict 
R based on the current state x(k) and the suggested direction Ax.

A sorted sequence of values yi is sufficient to describe the domain of feasible 
relaxation factors R, provided that y0 = 0 is a permitted step length, since x(k) e X. 
Then,

R = (Y0, Yt) U ■ ■ ■ U (yi, Yi+1) U ■ ■ ■ U (yn-1 , Yn) with i even and N odd. (3.14)

The solver defines a safety factor fy> 1 that defines the minimum distance between 
any selected relaxation factor Y e R and the domain boundary values Yi, such that

y e [J [fyYi,yi+1 /fy] . (3.15)
i even

The solver then initiates the relaxation object as R = (0, fy), such that, if no further 
restrictions are contributed, the maximal y e [0,1] is selected. With y = 1, this 
permits a full Newton step with quadratic convergence (Nocedal and Wright, 1999).

A good choice for the safety factor fy ~ 1.1, such that a certain distance to the 
domain boundaries is maintained, but the solution scheme converges still reasonable 
fast. If the solution really is close to the boundary, the convergence is linear, and the 
convergence factor (Nocedal and Wright, 1999) is:

H^+i) _ ^(°°)|| _ ^ _ 1

II#) - #°)|l /y
(3.16)
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Given the relaxation object initiated by the solver, each instance of a thermody
namic model can contribute contributes further relaxation objects, which can include 
positive infinity. Appendix E.3 describes an algorithm to calculate the representation 
of the union of two relaxation objects. The union of all relaxation objects is used to 
determine the maximal relaxation factor ymax from the domain that is described in 
Equation (3.75). With y1 > 0, there is always a feasible step size ymax > 0.

Figure 3.10 shows a non-convex domain in 
white, while the hatched areas represent the in
feasible regions. An arrow from the current 
state x(k) indicates the direction suggested by 
the Newton-Raphson step. Though the full 
step Ax is possible, the distance to the do
main boundaries is too small, and the safer 
step length ymax is selected.

It is important that all restrictions to the 
step length are determined through the relax
ation object. Once a relaxation factor ymax is 
determined, this factor should not be changed.
In particular, not all y e (0, ymax) yield state vectors within the mathematical domain 
of the process model. A further manual relaxation below the calculated ymax has a 
negative effect on the robustness of the method.

This relaxation method only considers the linearised effect of x towards calcu
lated properties y and internally calculated variables within the thermodynamic model 
including state function transformations. This method may fail if a highly non-linear 
domain constraint is active and fY is chosen too close to unity.

Example

Tmax Ax

Figure 3.10: Example iteration step 
in a non-convex domain.

nch4 = 50 mol/s 
nc3h8 = 50 mol/s

Q

n ch4 = 1 mol/s 
4 nC3H8 = 1 mol/s

Figure 3.11: Process model with a restricted domain.

Consider the process model shown in Figure 3.11. The total species flow spec
ification of methane in stream 4 requires a negative species flow in stream 5, if not 
enough methane is available. The state is not within the domain, if at the same time 
there is still a positive amount of butane. A state calculation is only feasible if the
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volume flow and the molar flows have a common sign, either positive or negative. 
Figure 3.12 shows a trajectory projected into the molar flow vector of stream 5. Points

60 
^C3H3

40

20 

0

-20

—40
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

«CH4

Figure 3.12: Molar flow trajectory dependent on the vapour fraction ff - feasible and 
infeasible regions.

close to the infeasible region can successfully be calculated. Approaching a molar 
vapour fraction of/f ~ 0.496 from below, «ch4 approaches zero, while «c3H3 is still 
positive. For jB > 1, both flows become negative, and calculations can be conducted 
even though the solution is not physical. The stipulated line within the infeasible 
region is calculated after removing the splitter, solving its material balance in a post
calculation.

If the model is calculated for an infeasible vapour fraction, ymax is restricted to 
nearly zero, thus the iteration stalls on the border of the domain. The variables of 
active domain constraints can be identified by error diagnosis.

Figure 3.12 also shows a limitation of this relaxation method. Both feasible 
branches enter the infeasible region with an angle such that a huge iteration step 
would be required in order to jump from one into the other feasible region. Prac
tically, even this rather small example will not converge, if the starting values and 
result are not in the same feasible region. Independent of the actual solving method, 
it is therefore important to provide reasonable starting values. Flowever, if the solu
tion can not be obtained, the relaxation factor approaches zero. Identification of the 
restricted variable (in this case zich4 or zic3h8) can help the user to understand and 
remove the problem.

1 1 is = 0:49
~ P = 0.496

z -'Infeasible region feasible region

/
ff= 1

feasible region

ffi = 1.3
infeasible region

______ i______ i___

3.9 Error reporting

Berger and Perris (1979) give a set of objectives for the design of their process sim
ulator, of which the first one deserves far more attention than is usual today - more 
than 25 years later:
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FLOWPACKII must be computationally both efficient and reliable. It must ei
ther solve the problem posed (which may or may not the problem which the user 
intended to pose!) or must fail ’gracefully’ for clearly identified reasons.

The feasible extent of error analysis depends on the solving strategy, but few pro
grams invest any effort in providing user-friendly error-messages. The user is forced 
to conduct a cumbersome procedure of changing starting values and design specifi
cations in the hope to achieve a converged solution. The actual origin of problems 
can be:

Terms and definitions 3.3
Linear dependent model equations: A heat exchanger is specified by temperatures 

of all streams, or a chemical species is captured within a circulation.

Non-existence of a solution in the mathematical domain of the model: Specified 
pressure drop greater than upstream pressure, or first principle specifications, for 
instance in species splitter, force values of different sign into the mole vector.

Non-feasible initial values: Typically, the pressure is above or below the stability 
pressure of the fluid, or the composition is outside the chemical stability region of 
the phase.

The following sections describe how these problems can be identified, and how this 
mathematical identification can be translated into a constructive advise for the user 
of the program.

3.9.1 Potential points of failure in the solving algorithm

A key feature of the modelling approach investigated in this work is the extensive 
use of structural information. As not only one large equation system is solved, the 
algorithm can fail in more distinct ways than just to report a general singularity. The 
following paragraphs describe distinct problems in the solution process, which can 
be identified individually.

Occurrence of a singular matrix in an atomic flowsheet module

Atomic FMs are guaranteed to be non-singular, if they are based on first principles, 
like the one-phase calculation node or a component splitter. FMs involving thermody
namic calculations, like equilibrium reactions and phase equilibrium, might become 
singular. A typical example is the occurrence of a trivial solution in phase equilib
rium. These singularities can usually be identified by the particular module, which in 
turn can give detailed failure information to the user, or even fix the problem.

Occurrence of a singular matrix in a composite flowsheet module

If all atomic flowsheet module coefficient matrices are decomposed successfully, the 
only reason for a singularity in a composite flowsheet module is a circulation. A
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deeper description of the problem and how to solve it is given in Section 3.9.2.

Occurrence of a rank-loss in the constitutive equation set

If the Jacobian matrix of the constitutive equation set h(x, A) = 0 is rank-deficient, 
some of these equations are linearly dependent. To help the user to overcome 
the problem, the left null space reveals the sets of linearly dependent equations. 
Consider three constitutive equations on a set of canonical variables (x, A) = 
(..., p1, T1, p2,...), and the following equations:

hi = pi - p1pec, h2 = P2 - p2PeC, h3 = Ti - T1spec, and h4 = p2 - pi . (3.77)

The Jacobian matrix is

<%,A)

( 0 . . 0! 10 00 . . 0 )
0. . 0! 0 0 10 . .0
0 . . 0; 0 1 0:0 . . 0
0. . 0; -1 0 10 . .0

(3.78)

The vector (1, -1,0,1) represents the left null space of dh/d(x, A), which means that 
h1 - h2 + h4 = 0. All involved elements of h represent a set of linear dependent 
equations. This information can be propagated to the user.

The most common constitutive equations are linear in canonical and conjugated 
variables. Even if non-linear equations are used, there are no significant conditioning 
problems regarding the constitutive Jacobian matrix. On this level, linear dependent 
equations are rarely a consequence of a numerical problem, but to a high degree of 
probability point to an erroneous process model formulation.

Occurrence of a singularity in the combined system

The update equation (3.25) represents an equation system to be solved in order to 
determine the correction of source-terms within the canonical equation system. The 
method described in the previous paragraph caught linearly dependent constitutive 
equations. At this point, the full rank of dh/d(x, A) is verified.

A rank loss of dh/d(x, A) Ex B-1 Ea indicates a linear dependency of a combina
tion of constitutive equations and the canonical equation system. Examples are the 
attempt to calculate a T, p-flash for a stream of a pure species or an azeotropic mix
ture, or the specification of both the input and outlet temperatures of a heat exchanger. 
As for the pure constitutive system, the left null space can be used to identify the con
stitutive equations involved in linear dependent constraints. However, the impact of 
the canonical equation system can cause problems at this stage. Actual linearly de
pendent equations cannot be distinguished easily from singularities caused by other 
reasons, as for instance general divergence, described in the next paragraph.
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General divergence

Unfortunately, even with a full rank equation system, a physical solution might not 
be found, either because there is none, or because the starting values are not within 
the convergence radius of the solution method. If the constraints force a solution out
side the mathematical domain of the thermodynamic models, the algorithm will not 
diverge, but as is described in Section 3.8, may stall on the domain boundary. Identi
fication of the troublesome variables, which are involved in active domain boundary 
constraints, offers valuable information to the user in order to solve the problem. This 
identification can be performed manually by the user, for instance by observing val
ues for temperature or molar flows close to zero. The functionality of the relaxation 
object (see Section 3.8) can be extended to record the most restrictive calculation 
module (e.g. a thermodynamic model).

3.9.2 Problem of circulations

A circulation is defined by a strict conservation of the flow of a chemical species 
or another canonical quantity within a recycle. In a sequential-modular approach, 
recycles themselves induce the need for partitioning and tearing, while equation- 
oriented solvers have the benefit of handling recycles directly. However, if quantities 
circulate, as material in a closed refrigerator system, the coefficient matrix becomes 
singular due to linearly dependent balance equations, and no solution can be obtained. 
Furthermore, no DOFs are available in the process model to actually define the flow 
and chemical composition. If the flow is specified through a pressure-flow equation, 
the absolute pressure level is not determined.

Currently available process modelling tools simply ignore this effect or even hide 
it from the user. Equation-based tools give either a general message to indicate a 
singularity, or they find an arbitrary solution within the solution space of the equation 
system. Sequential modular tools as e.g. AspenPlus® (Evans et al., 1979) generally 
enhance an estimation or even initial values to specifications and ignore the effect. If 
sources and sinks give no contribution to the circulating quantities, and if the system 
is numerically stable then the solver finds a solution based on these initial values. 
Otherwise, the solver diverges and terminates with an error extraneous to the actual 
problem.

This section shows, how the canonical approach allows one to identify singular
ities in the coefficient matrix on a composite FM level as circulations, in particular 
distinct from solving problems within a child FM, for example due to phase stability 
problems.
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Singularity in an hierarchically defined coefficient matrix

Consider the coefficient matrix of a simplified process model of a refrigerator cycle, 
which consists of a heated valve and a cooled compressor:

/ \

I -I

-I
H2 I
I \

^ Compressor 

<— Valve
(3.79)

Though all diagonal (child FM) blocks are invertible, the overall matrix is not, be
cause the second and fourth row contain linear dependent balance equations. Fur
thermore, there is no specification of the circulating state at any point.

To safely identify a circulation in the process model, it must be ensured that a 
singularity during the block decomposition of the process model coefficient matrix 
is always caused by such a circulation. The following two theorems are essential to 
map the singularity of a pivot block to the singularity of the entire process model.

Theorem 3.1 The coefficient matrix of a composite FM with invertible child coeffi
cient matrices yields a singular pivot block, iff the total matrix is singular.

Proof: The possibility of a singular child coefficient matrix is already excluded. 
Hence, further singularities must origin from a circulation, and any circulation yields 
a singularity. Therefore, it is possible to leave out any arbitrary coupling in an invert
ible coefficient matrix without loss of rank. Even more important is that supplement
ing new couplings to a singular coefficient matrix cannot restore the rank.

Let D-1 be the block-diagonal matrix of all pre-inverted child flowsheet module 
coefficient matrices. Consider the Gaussian elimination of (D-1 B) in row i. The 
next diagonal block (D-1 B)a is only influenced by recycle streams among the child 
modules of lower index. All couplings involving units with higher index are therefore 
disregarded. At the given stage of the elimination, the block-row i only consists of the 
diagonal block. From here, it is clear that this block is singular, iff the total coefficient 
matrix is singular. □

This is not obvious for arbitrary block matrices. For instance the coefficient ma
trix of a constrained optimisation problem (cf. equation (3.17)) is not singular, but at 
the same time not block-invertible.

Theorem 3.2 A pivoting block (D-1 B)i,i is block-invertible, if it is invertible.

Proof: The starting point is the identity matrix, which is obviously invertible. Since 
adding couplings never restores the rank, a complete matrix of full rank implies a 
matrix of full rank with any subset of couplings. From here, the influence of each 
output port involved in a recycle is added in steps. The influence of each output 
port only affects one column block in (D-1 B)i,i. Assuming that the previously
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Figure 3.13: The circulation module in a refrigerator cycle.

existing diagonal blocks in (D-1 B)i,i are invertible, they can be used to eliminate 
any off-diagonal block in the row j, when a contribution of another recycle is added 
to column j. Therefore, the diagonal block with index j is invertible, iff (D-1 B)i,i is 
invertible. This block can be used as a pivot block in the block-inversion. Induction 
shows that, beginning with the identity matrix, block-invertibility is preserved as 
long as (D-1 B)i,i is invertible. □

As a consequence of Theorem 3.1 and 3.2, circulations can be diagnosed in the 
canonical flowsheet solver as a singularity in the coefficient matrix, which is not 
caused by a singularity within a child FM coefficient matrix. The null space on the 
block level can be computed to determine the actual set of involved stream variables. 
As an important fact, it is inevitable to involve the user to resolve the problem. In spite 
of a simple recycle stream, a circulation provides DOFs in itself. The user needs to 
assign one constitutive equation to each of these DOFs in order to completely specify 
the model. A specialised FM is introduced in the next section to handle this problem.

Definitely, every recycle introduced into a process model potentially yields a cir
culation. Technically, a recycle produces a coupling block in the coefficient matrix, 
which forces modification of a pivot block during decomposition. This pivot block 
becomes singular due to the linear dependency of balance equations, iff the recycle 
is a circulation.

Circulation module

A circulation module is a pseudo FM to break up the linear dependent balance equa
tions and to provide the necessary DOFs. It must be inserted somewhere within 
the circulation. The substitute flowsheet is shown in Figure 3.13. Based on the 
one-phase FM as described in Section 3.5.1 and the concept of material couplings
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(Section 3.4.3), the coefficient matrix of the entire process is given as

/ -I

-I
#2 I 
I

V

-I
#3 I
I

#4 I
I

Compressor

Valve

Circulation module inlet node 

Circulation module outlet node

(3.80)

The circulation block as the last diagonal block is trivial to invert. With only uncou
pled sub-matrices, its insertion does not increase the complexity to decompose the 
coefficient matrix. Compared to an ordinary recycle stream, this formulation actu
ally reduces the complexity, as the recycle is opened up. However, dim x DOFs have 
to be filled by constitutive equations. With xjn and xout the incoming and outgoing 
stream of a circulation module, the set of equations Xjn = xout is available, but ap
plying the full set would just shift the linear dependency problem to the constitutive 
system. For each linearly dependent balance equation of xi, another constraint must 
be activated, e.g. a direct specification of xi at that point, or any suitable external 
constitutive equation. The circulation module must validate Xjn = xout at the solution 
point. No changes of state are permitted within this module.

3.9.3 Consistent stoichiometry in chemical reactors

In this work, all definitions of chemical reactions are based on the element balance 
equations (see Section 3.5.3). As this way to define reacting systems does not allow 
for the violation of conservation of chemical elements, this already eliminates a major 
source of error. Furthermore, the state-based approach requires no redundant and 
potentially inconsistent information about the enthalpy of reaction. Depending on 
the applied constitutive equations, the partial enthalpies of reacting species determine 
either the product temperature or the heat duty of the reaction process.

However, with reactions proceeding to their full extent, as described in Sec
tion 3.5.3, stoichiometric constraints might get linearly dependent (see Figure 3.4). 
This case can be detected as a singularity of the combined system (see p. 61). The 
identification of the involved constitutive equations helps to describe the actual prob
lem.
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Chapter 4

Advanced process systems 
engineering disciplines

4.1 Introduction

The previous chapter concentrates on a basic discipline of process systems engineer
ing (PSE), namely steady-state process simulation. Other PSE disciplines are largely 
built on the functionality of steady-state simulations, of which Figure 4.1 gives an 
overview. Case studies are basically a sequence of simulations, therefore posing

derivative
information

(e.g. exergy analysis)

time extension

underspecification 
+ objective

overspecification 
+ weighting

Case study

Optimisation

Data reconciliation

Sensitivity analysis
Dynamic simulation

Dynamic optimisation

Dynamic data reconciliation

Steady state process simulation Soft sensing, analysis & reporting

Figure 4.1: Process system engineering disciplines. The gray background represents 
the scope of this work.

no further challenges with respect to the canonical modelling approach. The same 
could be stated about the subject of soft sensing, analysis and reporting. However, a 
canonical approach yields an elegant way to define and discuss exergy, as is shown 
in Section 4.6.

The subject of dynamic process modelling generates a number of challenges that 
are not specific to the approach of canonical modelling, namely integration rneth-

67
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ods, discrete handling of events such as topology changes, initial value problem and 
identification of badly posed problems. A brief introduction to dynamic process mod
elling on a canonical basis is discussed in Appendix D.

An important extension from ordinary process simulation is the supply of reliable 
derivative information with various sets of dependent and independent variables. The 
next section describes how this information can be extracted from a solution of the al
gorithm described in Section 3.3.2. The subsequent sections show how to utilise this 
technique in process optimisation and data reconciliation. It must be noted that these 
fields pose many challenges by themselves. The purpose of the following sections is 
to investigate the potential of canonical modelling and prove its general suitability.

4.2 Process model derivatives

4.2.1 Computational methods

One common way to obtain derivative information from the result of an algorithm is 
to perturb the independent variables systematically and use the numerical approach 
of finite differences: d^/dx « [(^(x + Ax,) - ^(x - Axi))/2Axi] ej. Not only has
the algorithm to be executed 2 ■ dim x times to obtain the first derivative, but it also 
remains a problem to choose Ax, small enough to eliminate smoothening effects, but 
large enough to overcome numerical problems due to the precision of the algorithm's 
results. These two requirements are often irreconcilable in practice.

There are different approaches to obtain analytical derivatives of functions and 
algorithms. Automatic differentiation compiles existing code of a specific program
ming language into extended functions in the same language, which produce the re
quired derivative information (Mischler et al, 1995). This method is applicable, if 
the function and the set of selected dependent and independent variables are defined 
at compile time. A prime example is the generation of first- and second-order state 
function derivatives with respect to their state vector. However, in a dynamically con
figurable process modelling tool, much necessary information is added at runtime, 
such as

• Process topology and selection of FMs.

• Thermodynamic models and sets of chemical species.

• Sets of constitutive equations, partly first generated by user runtime, subse
quently parsed into computer memory.

• Selection of dependent and independent variables in the context of optimisation 
or reconciliation.

Based on the functional programming paradigm (Hudak, 1989), a general function 
can be represented by a symbolic algebra graph. Computer algebra systems (CASs)
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like Maple® (Cfzek ef ai, 1993) and Mathematica® (Fateman, 1992) and frame
works for symbolic computations like GiNaC (Bauer ef ah, 2002) utilise this tech
nology.

Elementary functions and operators and literal numbers are represented as nodes 
in a directed graph, in which the edges point from function and operator nodes to the 
respective arguments. Literal numbers represent the leaf nodes with zero outgoing 
cardinality. As shown in Figure 4.2, this symbolic representation not only allows for 
the calculation of analytical derivatives, but also for code optimisation, for evalua
tion of expressions with different data-types, and for automatic generation of code 
in different programming languages. Technical details about the symbolic algebra

Raw dump

Typeset formulae 
(LaTeX)

Exchangeable formats 
(e.g. MathML, CapeML)

Matlab ® / Octave

Rapid C code

Other programming 
languages

PrintoutAnalytical derivatives
Optimisation/
Simplification Evaluation with different datatypes

Simplification 
of automatically 
generated derivatives

Symbolic Algebra Graph

Error propagation

Implementation of 
thermodynamic models

Phase boundaries 
critical points

Sensitivity analysis

Optimisation and 
data reconciliation Physical unit propagation 

and consistency test

Dependency analysis

Propagation of bibliographic 
data

High precision calculations 
(e.g. rational numbers)

Complexity analysis by 
operation counting

Figure 4.2: Available functionality through symbolic algebra.

datatype developed and applied in this work are given in Appendix A. 1.
Flowever, the pure form of symbolic algebra only works with explicit functions. 

Iterative algorithms introduce circles in the representative graph that require special 
treatment. In particular, such a loop would in general not provide full robustness 
regarding convergence. The use of symbolic algebra is therefore limited to functional 
constructs and treat algorithms externally.

4.2.2 Symbolic derivatives from the canonical solver

This section follows the idea that if a second-order method terminates successfully 
with a solution, the first-order derivative information is also provided through the 
coefficient matrix used in the last iteration step.

Consider a non-linear program without inequality constraints, as described in 
Section 3.2, the optimisation of a state function P(x) subject to constraints <)(x) = 0. 
The update equation is based on a Taylor series of the first derivative of the Lagrange
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Function A being

A(x, A, p) = f (x, p) - A6(x, p). (4.1)

In this context, p is a vector of parameters, either of the process model (u) or the un
derlying thermodynamic models (c). With Z = (x, A) and l(Z) = dA/dZ, the truncated 
Taylor series for Z(k) in the neighbourhood of the solution Z(m) is

z(z^)=z(rv)+ a?(k) dl (Z- Z(k)) == 0. (4.2)
Z (k)

The sensitivities dZ/dp are to be obtained. The derivative of Equation (4.2) with 
respect to p is
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For a converged iteration at k ^ m, Z(m) = Z(k), while the other terms do not approach 
zero. Omitting the notation to indicate the iteration step at convergence, the limit is

dl dl dZ dZ dl
\ _1

dl
0 = — + — -— , and finally ---- — — — . —

Z
dp dZ

V p,
dip

(4.4)

Hence the derivative of Z with respect to ip can easily be found, if the solution vector 
Z(k) and the last calculated coefficient matrix B = (dl/dZ) is already LU-decomposed. 
The derivative of the right hand side dl/dp can be obtained by means of symbolic 
algebra as described in the previous section.

Application to one-phase chemical equilibrium calculations

An example should clarify the direct use of Equation (4.4). The objective is to obtain 
the derivative of the chemical potentials at chemical equilibrium with respect to the 
parameters of the thermodynamic model. At constant temperature and pressure, the 
objective function can be defined based on Gmss-energy G as

A(n , A) = G(n) _ A A(»jnitial _ »). (4.5)
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Subsequently,

Z
# + \ and ^

(4.6)

At the solution, the derivatives can be expressed as follows (see Equation (4.4)):

dp u
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n
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(4.7)

Furthermore, the derivatives of the chemical potential p can be obtained from A:

p = _AT A dy_
cliff

T dA
(4.8)

Derivative information can be obtained by this technique in order to implement pa
rameter optimisation.

Example

An ideal gas mixture of NO2 and N2O4 is considered. Under the assumption of 
constant heat capacity, the chemical potential is given as (the universal gas constant 
is defined as R = 8.3144 J/mol K, furthermore N = £i nf)

li = Af + T Cp,i \ 1 T ref j
ref + Rln^ +RlnN (4.9)

Table 4.1 shows the thermodynamic properties and the equilibrium quantities neq 
at T = 600 K and p = 1 bar. Using the equilibrium condition juNO2 = 2 juN2 O4, the 
equilibrium composition is calculated analytically from Equation (4.9). To investigate

Table 4.1: Ideal gas model parameters and equilibrium state of the one-phase system 
NOz - N2O4 at T = 600 K and p = 1 bar._____________________________

So [J/(mol K)] cp [J/(mol K)] Afh0 [kJ/mol] neq [mol]
NO2 204 45.8 33.1 0.31
N204 304 104 9.08 0.69

the sensitivity of the chemical equilibrium with respect to the standard state entropy 
Sref, Equation (4.7) can be substantiated as follows:

d
dsref

nNO2
/

nN2O4 =_
,_2 PNO2/ V

RT nNt _ N_')

-RT /N 
2

_RT /N
RT K04 _ N~0 
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(4.10)

The numerical outcome is

(4.11)

This calculated sensitivity is valid for the material constraint 2 nNO2 + «n2o4 = const. 
The chain-rule yields the correct sensitivity regarding the molar fraction of NO2:

d / mo2 
d/ef \nNo2 + un2o4

1 / «n2o4\T

(nNO2 + ^Oz,)2 \ -nNO2 /
d / «\()2

dsref \nN2O4

0.019567
-0.039133 mol K/J. (4.12)

As expected, increasing the standard entropy for NO2 stabilises this species and 
yields an increased equilibrium concentration. Furthermore, increasing sNO has ex
actly the same effect as decreasing by twice the amount. This is a consequence 
of the equilibrium condition pNO2 = 2 pn2o4-

4.2.3 Derivatives with respect to process parameters

For process simulation, the information about the derivative of state variables with 
respect to parameters in constitutive equations is of great value and accessible directly 
from the result of the 2nd order solver. A modelling task often involves variation of the 
process parameters to observe impact on the calculated state. In process optimisation 
(Section 4.4), and data reconciliation (Section 4.5), these derivatives are mandatory.

The derivative information obtained in Equation (4.4) was general and not re
stricted to parameters of the thermodynamic model. As described in Section 3.3, the 
canonical equation system is solved in combination with a set of constitutive equa
tions:

MZ (a), u) = 0. (4.13)

Vector a is a contribution to the right hand side l of the inner equation system. Fur
thermore, a is the only contribution in l, which is directly dependent on the process 
parameters u. Considering the sparse contribution of a to l by the selection matrix 
Ea as introduced in Section 3.3.2, Equation (4.4) can be interpreted as

d4 -1
— Ea or as a total differential dZ = - —

dor
Ea da. (4.14)

As mentioned above, only a is dependent on u, such that

d£
d u

( dl) 1 da
(4.15)
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The change of a with respect to u can be obtained from the total differential of h as 
defined in Equation (4.13). With one selection matrix Ex defined to map Z = ET Z, 
the total differential is:

dz dh , dh dz da dh
da+ —

1
'

fto•II --- = — ---
U ~ ^ Z - dZ u du du

(4.16)

Here, d<Z/da|u can be substituted by the differential quotient from Equation (4.14), 

such that

dh (dZ 1 -1 da dh
___ E x Ea ____ — ___

dZ a,u
IdZj du du Z

J

(4.17)

Matrix J already was computed within the solution method itself (see Section 3.3.2). 
As mentioned in Section 3.9.1, a singular matrix J indicates a linear dependency of 
constitutive equations in combination with the canonical system. With invertible J, 
the sensitivity of a with respect to the process parameters u is given as

da
du

dA
du

(4.18)

and can be substituted into Equation (4.15), hence

d£
du dZ

Ea J 1 dA
dg ^ '

(4.19)

dh/du|z is easy to obtain by means of symbolic algebra, while the other matrices

involved are already available for a solved process model. The equation obtained 
therefore provides valuable information with very little additional effort. Naturally, 
the derivatives of every set of derived quantities y(Z) can be obtained applying the 
chain-rule:

d? _ dy dZ dy
du dZ du du ,- 3 u - - Z

(4.20)

As an important fact, Equation (4.19) can be evaluated as a post-calculation. Com
pared to an ordinary process simulation, no computational overhead is required dur
ing the iterations to solve the model.

4.2.4 Derivatives with respect to thermodynamic parameters

In order to gain the derivative of state variables with respect to thermodynamic pa
rameters c, Equation (4.4) requires the derivative of the right hand side at constant
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Z. But in a relevant simulation, Z will consist of states transformed by state function 
transformations (see Section 2.5.2). The performed transformations are applied nu
merically and therefore only valid in the calculated point for a converged solution. 
With Z as the native1 state of a system, dl/dc\, is available instead. The objective of

this section is to find an explicit expression for dl/dc\^ based on dZ/dc|%.

Considering l as a function of | and c, whereas Z is a function of Z, for 
l = l(|(Z, c), c) the total differential is

dl
dl= — 
-

dA
at;

dc + — dc. (4.21)

As Z is constant, dZ = 0 and therefore

dl dl dl
H-----

% c* «. dc
(4.22)

To obtain the missing expression for the derivative d-/dc\^, the total differential of 

Z(|, c) can be utilised:

dZ dA
%

dc +
T -

dA d, = 0 => —
'»c \ 1

1^ rii

dc
c

A
c,

dc , ^ dc
z -

(4.23)

Furthermore, the total differential -(-) at constant c can be used to obtain d-/d-|c:

dl dl dl dl
dl = — dZT =: — JdZ ^ — — —

- c c c ^
1 (4.24)

These results can be substituted into Equation (4.22). Hence

dl dl dl dC
dc c*

(4.25)

All the terms on the right hand side of this equation can be easily obtained. However, 
the implementation of thermodynamic models in their native state function must have 
the functionality to provide derivatives with respect to thermodynamic parameters.

'regarding the underlying thermodynamic models
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4.3 Sensitivity Analysis

4.3.1 Motivation

The most fundamental utilisation of the derivatives obtained in the previous section is 
in sensitivity analyses, i.e. to interpret the direct physical meaning of the derivatives. 
A sensitivity analysis can therefore be a substitute or supplement for a case-study, 
giving valuable information to set up a meaningful optimisation.

In general, to understand the derivatives of process properties with respect to 
process parameters it is necessary to understand the process model and to check the 
rationale of selected process constraints. In contrast to a descriptive process model, 
a predictive model must deliver relevant sensitivity information correctly. This is a 
necessary requirement to conduct further disciplines as for instance process optimisa
tion. The effort to obtain a realistic set of process constraints is often underestimated. 
Unsuitable constraints yield non-optimal or even infeasible operating conditions.

4.3.2 Sensitivity analysis of an air compression process

Ti = 20 °C

1st stage
m = 200 t/h 
To = 100 °C 
P0 = 5 bar

& = 250 W/m2K 
Tew = 7... 9 °C

tH2O

A p - F Ap = 0.2 bar
nmech = 95%

0.45 s/m3 V(18 m3/s-V)
%°'y " 51 m3/s-V

3rd staged

Figure 4.3: A process air compression stage with inter-cooling.

As an example, the second stage of a process air compression train is con
sidered as shown in Figure 4.3. The pre-compressed air was originally saturated 
with water at 15 °C and 1 atm, and it is first cooled by cooling water. Con
densate is removed in a separator, before the actual compression takes place. A 
larger surface area F in the heat exchanger will provide a lower T1, but also in
crease pressure drop proportionally with a rate of 23 mbar/m2. These effects sug
gest the existence of an optimal surface regarding a minimal compressor work duty. 
The Schwartzentruber-Renon-Watanasiri equation of state (Schwartzentruber et al., 
1990; Schwartzentruber and Renon, 1989) as described in Appendix B is used to 
calculate the properties of air and water in this chapter.

The core of the process simulation tool Yasim (cf. Chapter 5) is used to gener
ate numerical results to the examples in this chapter. The process model topology 
is therefore defined as described in Section 3.4. All specifications shown in Fig
ure 4.3 are formulated as constitutive equations. The algorithm in Section 3.3.2 is 
used to obtain the simulation results shown in Table 4.2. Applied on the solution,
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Equation (4.20) yields the derivatives with respect to the process parameter T1. In

Table 4.2: Sensitivity study results of an intermediate compressor stage.
T\ [°C] F [mz] Pi [bar] Wei [MW] Tz [°C] m\i2o [t/h]

20 578.9 4.67 10.6 197.6 1.74
-24.4 0.0056 0.032 1.44 -0.046

10 1028.4 4.56 10.4 184.8 2.09
-100.6 0.023 -0.0042 0.87 -0.025

the example, the derivative of compressor duty with respect to T1 actually shifts sign, 
indicating an optimum within the range 10 °C < T1 < 20 °C.

Naturally, the derivatives and consequently the optimum will be highly dependent 
on those process parameters that remain constant, as for example the surface-specific 
pressure drop. Considering a constant pressure drop of 0.4 bar instead, the derivative 
dWe\/dT = 38.2 kW/K at T = 8 °C is completely different from the reference case 
shown in Figure 4.3. There is no longer an indication for the existence of an optimal 
finite heat exchanger surface. Other constraints and formulation of objective func
tions would become relevant, not least the investment costs for the heat exchanger.

4.4 Process optimisation

4.4.1 Comparison to data reconciliation

Even though the scope of this work is limited to steady-state process models, process 
optimisation of these models still covers a wide range of applications, with a smooth 
transition towards the discipline of data reconciliation. In both cases, an objective 
function of state variables is optimised with respect to an independent set of pro
cess parameters. However, in data-reconciliation, the objective is to match redundant 
measurements in an optimal way, i.e. to describe inconsistent state information by 
one consistent state as well as possible. Process optimisation aims for an unknown 
state that optimises a given objective function. Section 4.2.3 describes a suitable way 
to obtain the Jacobian matrix J = dy/du.

4.4.2 Selection of independent variables

Given a process model with a suitable set of process constraints, the actual set of in
dependent variables within an optimisation is of secondary importance, as long as the 
desired DOFs are addressed, i.e. J is not singular. Considering the example of Fig
ure 4.3, an optimisation can be performed on the temperature T1, on the heat removed 
in the cooler, or on the heat exchanger surface F with identical results. Obviously, 
it is a good choice to select independent variables for which most conceivability is 
given in terms of physically feasible domain and expected optimal value. Clearly, a 
prior sensitivity analysis can provide much of this inside knowledge.
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4.4.3 Substitution of independent variables

Inequality constraints potentially add significantly to the complexity of an optimisa
tion problem. The non-linear program is supplemented by a discrete set of conditions, 
converting it into a mixed integer non-linear program. With a suitable set of indepen
dent variables, many - in some cases all - inequality constraints can be hidden by 
substitution by bounded functions. The chain rule is applied to map dA/du to the 
sensitivity of the objective function with respect to the modified process parameter 
vector u:

dA dA du
(4.26)

Consider a process parameter u bounded by umin < u < umax. A suitable substi
tution can be

1 - cos n u . du
M = (Mmax — Mmin) % t Mmin With

2 du
§<«max umin) sin n u. (4.27)

Even if the solver overshoots into another period of the harmonic function, u still 
maps to a feasible value of u. However, du/du = 0 at u e Z, which is a singularity 
that has to be handled by the solver. As a positive side effect, such a substitution 
scales the independent variable into a defined and comparable dimensionless range, 
which is especially important for application of first-order optimisation methods.

Substitution of independent variables can also be used to reduce the problem 
dimension. Consider a separation column with individually heated/cooled stages. 
With ui as the heat duty of stage i, dim u is unnecessarily high, as a certain continuity 
will be expected for proximate stages. Especially for preliminary optimisations, a 
profile function can reduce the dimension significantly, for instance in a linear form 
as follows:

Ui = Ml + l U2 with —---—
d(M1, M2)

(1, i) . (4.28)

4.4.4 Optimisation of compressor intake temperature

For the process introduced in Section 4.3.2, the temperature derivatives listed in Ta
ble 4.2 indicate the existence of an optimal compressor inlet temperature T1. The 
existence of a minimum compressor duty is asserted at an intake temperature T1 be
tween 10 °C and 20 °C.

This example uses T1 as the only one independent variable. The derivative 
dWe\/dT1 can be used to apply a first-order method to minimise the compressor duty. 
The secant method (Nocedal and Wright, 1999) yields the following update formula:

T(&+1) = t (&) 
T1 = T1 (dWe|/dT1)W

T (&-1)
1

(dWe|/dT1f-1)

_ t& 1 1 (4.29)
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With T1(0) = 10 °C and T1(1) = 20 °C, the subsequent iterations result in

T^ = 11.16 °C, T13) = 10.39 °C, T14) = 10.29 °C, T15) = 10.31 °C, ... (4.30)

The optimal temperature is T1i0pt = 10.3 °C, and We\ = 10.42 MW, F = 998 m2 and
T2 = 185.1 °C.

This calculation is a practical example for the efficient use of analytical deriva
tives in process optimisation. The derivatives dy/du are calculated using Equa
tion (4.20).

However, this tiny example already indicates challenges, which are beyond what 
can be solved by providing the technical framework. The realistic replication of 
actual process constraints, as mentioned in the previous section, has a significant 
impact on the location and even existence of an optimal point.

No less important is the formulation of the objective function, in particular, if 
penalty contributions of different metrics are to be combined. With this, it becomes 
clear how important it is to perform sensitivity studies prior to process optimisation. 
In many cases, the optimal process parameter is bounded by technical feasibility. For 
instance the compressor inlet should not be cooler than 5 °C in order to avoid icing 
on the compressor blades.

The treatment of such inequality constraints is essential to process optimisa
tion, but decoupled from the canonical modelling approach. Edgar and Himmelblau 
(2001) give a comprehensive overview over the broad field of process optimisation.

4.5 Data reconciliation

4.5.1 Weighted least-squares method

As mentioned in Paragraph 4.4.1, data reconciliation is really a specialised case of 
process optimisation. The objective function measures the difference between calcu
lated properties y and measured properties ymeas. The simplest applicable approach 
is to define a sum of weighted least-squares without constraints outside the process 
model itself:

min ^Cy(n) - Jmeas) w (X(u)-ymeas) with W as diagonal weight matrix. (4.31)

Exactly one process parameter ui is selected as an independent variable for each 
DOF. As explained in Paragraph 4.4.3, inequality constraints of the process param
eters can potentially be eliminated by substitution to ease the optimisation scheme. 
An overview of different objective functions with respect to gross error detection in 
particular is given by Ozyurt and Pike (2004). The least-squares method yields a 
linear optimisation problem, but defect measurements contribute strongly. More ad
vanced formulations are based on so-called redescending influence functions. These 
objective functions assign low weight to gross error measurements.
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To solve the least-squares problem, Equation (4.31) is derived with respect to u. 
With J = dy/du from Equation (4.20), the zero-gradient condition becomes

J W(y(u) — ytarget) = 0 • (4.32)

Linearisation of y(u) in u(k) yields the well known equation for the weighted linear 
least-squares problem, which is an overdetermined equation system:

JT W J(u(k+1) - U(k)) = JT W (ytarget - y(u(k))) • (4.33)

Figure 4.4 shows the main strategy to implement data reconciliation based on the

,(0) (k)
Reconciliation

Process model
Process model 
simulation

Figure 4.4: Flow-diagram of a data reconciliation process.

canonical flowsheet simulation. The process model delivers y(u) and J(u) as a rep
resentation of a linearised process model. The reconciliation block evaluates the 
regression Equation (4.33) to update the independent process parameters u. The con
verged set of independent parameters u(ro) is applied to the process model to obtain 
the complete set of reconciled data y(ro). It is advisable to converge the process sim
ulation step before any reconciliation step. Not only is the derivative obtained by 
Equation (4.33) valid only at a converged simulation result, but even the intensive 
variables themselves only receive their physical interpretation at the solution point. 
For instance, the Lagrangian multiplier, which in the solution point is interpreted as 
pressure, can assume large negative values during the iteration procedure.

4.5.2 Data reconciliation of a compressor stage model

relative humidity /SWTWpE 
measured in QI /gS

H2O

k = 250 W/m2K 
F = 580 m2

— _

r -----------►

T —■—

IH2O nmech ~ 95%
 0.45 s/m3 V(18m3/s-V)

51 m3/s-V

3rd staged

^poly =

Figure 4.5: Process model of the compressor stage for data reconciliation.

Figure 4.5 shows the process flowsheet of the compressor train, slightly modified 
to suit the data reconciliation case. The relative humidity of air determines the split
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factor to supply dry and saturated air into the first compressor stage. Ambient air 
conditions (QI1, PI1 and TI1) and cooling water inlet temperature (TI4) are typically 
measured outside the actual process. The nominal compressor efficiency (both me
chanical and isentropic), and heat transfer in the heat exchanger are used as indirect 
measurements, i.e. the empirically calculated efficiency and heat transfer are used as 
if they were measurements. Weight factors can be employed to use the indirect mea
surements actively in order to reconcile the only flow measurement. Alternatively it 
is an option to just monitor heat transfer and compressor efficiency in order to observe 
operational problems (e.g. fouling and corrosion).

Originating from the base-case, a set of distorted potential measurements is cre
ated, adding a statistical error, a systematic error, and, for some quantities, a drift of 
the data to replicate real measurements as input for a data reconciliation run. How
ever, in order to concentrate on the general principles, no gross-errors have been 
generated within the measurements in this example. The volume flow measurement
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Figure 4.6: Reconciled data series of volume flow and compressor effect.

is redundant to the compressor energy duty and affecting temperature and pressure 
measurements. From Figure 4.6, a systematic error can clearly be identified. The 
volume flow is measured too low, and/or the compressor duty is measured too high. 
Trusting both measurements simultaneously, the reconciled values stay in between. 
Figure 4.7 shows typical data, which is not directly measurable, but calculated pro
cess properties as a result of the data reconciliation. Such data is of special interest for 
a process operator. With measured cooling water temperatures and heat exchanger 
surface, the heat transfer coefficient can be determined. In spite of dominant statis
tical errors, a slight trend towards lower conductivity can be observed, which might
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Figure 4.7: Reconciled data series of heat transfer coefficient and compressor effi
ciency.

indicate a fouling problem.
The compressor efficiency in this example stays approximately 1% below the 

nominal values, but does not show a deteriorating behaviour. The deviation can be 
caused by systematic measurement errors or a loss of performance on a larger time 
scale.

4.6 Exergy analysis

As is obvious from the problem formulations of the previous sections, process mod
elling is a key factor for improving chemical processes, during both the design phase 
and operation. Data reconciliation enhances accuracy through the appropriate inter
pretation of available measurements, allowing one to tune more precisely towards a 
target state of operation, while process optimisation actually determines an optimal 
target state. In this regard, exergy analysis can help to first identify inefficient pro
cess parts and then to estimate a potential improvement, based on the second law of 
thermodynamics.

4.6.1 Concepts of second law analysis

The literature often defines exergy solely considering temperature gradients (Callen, 
1985; Tester and Modell, 1997), while not considering chemical reactions or pressure 
changes. This special case yields the CARNOT-efficiency n = 1 - T0/T, while Wall
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(1986) uses a more general definition, namely:

Exergy is the totally convertible part of the energy, i.e. that part which may be 
converted into any other energy form.

However, since chemical potentials will be considered here, the definition of an am
bient chemical potential for each chemical species is required. For a consistent de
scription, one recipient species for each chemical element is sufficient, as it is shown 
below. Furthermore, the concept of exergy is often mixed up with that of available 
energy. This work uses therefore following definitions:

Terms and definitions 4.1
Exergy The totally convertible part of energy in a stream represented by a state x. 

Exergy is based on enthalpy as the conserved property regarding the first law of 
thermodynamics for adiabatic stream-based systems.

Available energy The totally convertible part of energy in an accumulated state rep
resented by x. Available energy is based on internal energy as the conserved prop
erty regarding the first law of thermodynamics for closed systems.

In particular, it is meaningless to define exergy on an accumulated state like the con
tent of a buffer tank, or to define available energy on a stream.

As in this work, the main focus is put on steady-state processes, exergy is the 
measure for second law analysis in this section.

4.6.2 Definition of exergy

E(XO = lim W
lXoH~

Xo

Figure 4.8: Process flowsheet to define the exergy of a process stream. The limit 
lXo| ^ to indicates aprocess ofinfinite size orinfinite time.

Given a stream of an arbitrary state X1, the exergy E is defined as the maximum 
amount of work that can be extracted by conforming the intensive properties towards 
the intensive state of a defined infinite reservoir (from now this will be referred to as 
environment). To archive the environmental state, species are reactants of chemical 
reactions. The product species are most stable in the environment, and constrained 
by the balance equations of chemical elements, there is exactly one such recipient 
species for each present chemical element.

Figure 4.8 shows a possible setup to obtain a suitable mathematical definition 
of exergy. The environmental intensive state is reached by infinitely diluting the

ReactorProcess stream Xi
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process stream with a stream of environmental state. Naturally infinite streams can 
not be evaluated by means of straightforward process simulation, but the following 
derivation describes a way to obtain exergy as a flow property.

All chemical species are converted by chemical reaction into recipient species. In 
spite of heat, work is allowed to be exchanged, such that S2 > So + S1, furthermore 
W = Ho + Hi — HH2.

Substituting the EuLER-integrated representation of H into the latter equation 
yields (note the mass balance n2 = no + Anq):

W = Ti S i + To So — T2 S2 + gi ni + go no — g2 «2

= Ti S i + To So — T2(So + S i) + gi ni + go no — g2 (no + A ni)
= (Ti — To) S i + (gi — A T go) ni

— (T2 — To)(So + S i) — (g2 — go)(no + Ani) . (4-34)

Here, the inequality for entropy is substituted by an equality, as any higher S 2 due 
to irreversibility would clearly reduce W by the positive product T2 AS irreversible- To 
calculate the limit at |.xo| — ro, T2 and g2 are approximated by linearisations around 
xo at constant S and p:

dT dT dg
r2 = To + —dn (H~*o)=gr

S , p -
Ani and g2 ~ —

,P ^
Ani . (4.35)

-S ,p
Using the symmetry of dg/dn, the work can be written as

w = (Ti—To) Si+(gi — at go) ni — Ani
dT . . dg
dn

(So + 5 i) + —
^ ,p

(no + ^ ni)
S ,p

(4.36)

With the homogeneity property of enthalpy d2H/d(S, n)2 ■ (S, n) = G, this equation 
simplifies to

W = (Ti — To) Si + (gi — A1 go) hi — Ani dT
dn -S, p

^1
A/q

-S ,p
(4.37)

The partial derivatives are reciprocally proportional to |_Xo|. The expression of exergy 
of a general stream x is therefore

E(x) = lim W = (T — To) ^ + (g — AT go) (I = H — To ^ — go An (4.38)
l-Xo|—

As an example, consider a stream of a pure species or azeotropic mixture within two- 
phase equilibrium conditions. Similar to a reservoir, adding heat will not influence 
its intensive state, in particular T and g. The change in exergy is therefore simply 
given by AE = (T — To) AS with AH = T AS, which yields the Carnot efficiency

_ A E To
nCarnot - TTT - 1 — •AH T

(4.39)
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Considering the EuLER-integrated representation of enthalpy, the definition of ex
ergy according to Equation (4.38) can be interpreted as the tangent plane distance 
of enthalpy. Due to the convexity of H this distance function is positive for all 
xo = (S, po, n), if xo is at chemical equilibrium, i.e. no spontaneous chemical reac
tions are possible in the environment.

However, pressures below po yield a negative exergy contribution, describing 
the work necessary to compress the stream to environmental pressure. The pressure 
dependency of exergy is

dE
d p S ,n

dH
d p S ,/n

V > o for n > o. (4.4o)

There is an important difference between exergy and available energy, as positive 
work can be extracted from an accumulated state at vacuum. Available energy is 
therefore always non-negative.

With a fixed To and go, the exergy defined as in Equation (4.38) is purely a func
tion of canonical variables, and can therefore be a contribution to constitutive equa
tions in the simulation context. With E being a process property y, Equation (4.2Q) 
can be applied, and exergy analysis can be combined smoothly with the tasks of sen
sitivity analysis and process optimisation.

4.6.3 Selection of an ambient state

The ambient state is in general different from the reference state of the underlying 
thermodynamic model. The latter one depends on the availability of data, hence 
most models are based on Tref = 298. I5 K and pref = i bar. Merely the chemical 
potential is easily converted to different recipient species by a linear enthalpy shift.

The ambient state could be selected freely depending on the environment of the 
considered process, but this selection poses a practical problem in many cases. In 
general, cooling water has a different temperature than ambient air. Selecting the 
air-temperature as To, the exergy of cooling water is found to be positive, which 
causes lower efficiency values for process parts dealing with cooling water. Select
ing cooling water temperature as To, process parts interacting with ambient air are 
disadvantaged. Even if only differences in exergy are evaluated, the non-linearity of 
exergy still yields a dependency of To for irreversible processes. For this reason, a 
suitable individual ambient temperature has to be selected for each process part in 
order to compare results of an exergy analysis. A possible way to couple process 
parts of different ambient conditions into one exergy analysis is discussed in the next 
section.

However, the chemical potential go does not contribute to the exergy balances, 
as long as the atom balance is fulfilled. Consider an isothermal reactor at To with 
an input stream Xi and a product stream Xi, where the reaction is constrained by
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n2 = Ai,2 h\. The change of exergy is

>-p 'T' t T T

AE = (ju2 - ^2 E0) n2 - (E1 - A1 Eo) 'll = (A 1,2 E2 - A 1 E0 - E1 + A1 Eo) 111

= (AT,2 E2 - E1) 11 . (4-41)

The selection of ambient pressure p0 affects E only indirectly by the pressure- 
dependency of the ambient chemical potential u0. Exergy differences are therefore as 
well independent of ambient pressure.

4.6.4 Processes of multiple ambient states

Most plants have access to more than one reservoir, typically water and air with 
different temperatures and chemical potentials of the recipient species. Generally, one 
could suggest to exploit the driving-forces in an infinitely sized engine, and thereby 
assign the zero efficiency to all finite processes. This strict criterion is obviously not 
suitable for real processes.

However, without entering the deep subject of finite-time thermodynamics, it 
can be observed that in order to combine two reservoirs within one process, at least 
one of them has to be acquired, e.g. by a material stream. The process must be 
separated into sub-processes with a definite ambient reservoir associated to each of 
them. This approach requires a minimum of process insight, namely which streams 
are exchanged between sub-processes within different environments. Within these 
sub-processes, the ambient conditions are used to define exergy. Consequently, the 
calculated value of exergy steps up or down on the interfaces between them.

A step downwards means that exergy, which could have been utilised in the 
source environment, is wasted into the other system, where it is less valuable - simi
larly to exporting goods to a country with lower prices for this article. Clearly, such 
a transition must be considered as a loss. A step upwards, however, indicates a po
tential for utilisation of a finite amount of exergy from one reservoir within another. 
The gain in exergy is clearly an input to the downstream process.

This approach does not require a process to utilise a potential difference in avail
able ambient states, but once a process acquires exergy from one environment within 
another, it is considered as input to the process - hence a loss if not exploited.

4.6.5 Relative exergy efficiency

It is in general a bad idea to define key performance indicators as quotients of energy 
figures, as the zero-level is arbitrarily chosen. For an oil-pipeline, an efficiency of 
nearly 100% is calculated, if the heat of formation of chemical species is considered. 
A more suitable approach then considers only the pressure drop, as the pipe does not 
(and is not supposed to) utilise the oil’s heat of combustion. The efficiency based on 
energy or exergy is therefore zero, which is typical for any kind of horizontal trans
port. Sorin et al. (2000) therefore introduces transiting exergy as the unaffected part,
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consumed exergy as the input exergy to be converted, and produced exergy as output. 
Considering complex processes, it is a challenge to assign these fractions correctly, 
and necessary information might not be available. Sorin et al. (1998b), Sorin et al. 
(1998a) and Siepmann et al. (2001) invested effort to provide a consistent basis for 
comparability. Hinderink et al. (1996) also suggest a split of exergy into different 
contributions, to which they refer to as mixing, chemical and physical exergy. How
ever, considering the canonical approach, it is more natural to consider contributions 
associated to canonical state variables, hence a thermal, mechanical and a chemical 
part based on changes in T, p andp:

E = (p(To,po)-ATpo))n + (p(To,p)-p(To,po))n + (T-To).$ +(p-p(To,p))n .

Ech(n) Emc( p, n) Eth(T, p, n)
(4.42)

Other decompositions are possible, e.g. E = Eth(T)+Emc(T, p)+Ech(T, p, n), but less 
practical, if the ambient chemical potential must be evaluated at process conditions, 
and a thermodynamic model must be available to perform such a calculation.

As an example to clarify the benefit of a decomposition as in Equation (4.42), 
a hydrogen burner to generate high pressure steam from condensate is considered.

Figure 4.9: Hydrogen burner to generate high pressure steam.

Table 4.3: Stream table of the hydrogen combustion process. In the scope of this 
table, Xj denotes the mole fraction of species i.__________________________

Condensate Ambient air Hydrogen Exhaust Steam
T [°C] 90.0 20.0 20.0 123.5 393.2
p [bar] 45.0 1.013 200.0 1.013 45.0
m [kg/h] 295.1 346.0 7.26 353.2 295.1
xN2 [%] 77.7 67.6
XO2 [%] 20.7 5.0
XH2 [%] 100

XH2 o [%] 100 1.6 27.4 100

E [kW] 8.8 0.0 250.3 7.5 105.6

The process is shown in Figure 4.9, supplemented by the stream table 4.3 from the
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process simulation. The total exergy figures are based on ambient air and evaluate 
to an absolute exergy loss of 146 kW with exhaust gas considered as a byproduct to 
be utilised later. A plain quotient of outgoing divided by incoming exergy suggests 
an efficiency of nmax = 44%, assuming all exergy being converted. Considering the 
process as a black box and only viewing the exergy figures, the assumption might 
be that no exergy is converted at all. The amount of 113.1 kW would be assigned 
to transiting exergy, and 259.1 kW accounted for as loss. This interpretation results 
into nmin = 0%. The true efficiency n is therefore constrained by nmin < n < nmax- 
However, the process gas and the steam systems are two decoupled material systems. 
Due to the second law of thermodynamics, the exergy increase in one material system 
can only be explained by internal exergy conversion, so it is possible to find a better 
lower limit: nmin = (E5 - E1)/(E3 + E2 - E4) = 40%. Decomposing the exergy values,

Table 4.4: Decomposed exergy E /kWj of the hydrogen combustion process.
System Type Input Output A E Comment

thermal 0.0 1.76 1.76 heat in exhaust gas
process mechanical 13.2 0.0 -13.2 pressure drop of hydrogen fuel

chemical 237.1 5.7 -231.4 heat of combustion
thermal 2.7 99.4 96.7 evaporation of water

steam mechanical 0.36 0.36 0.0 constant steam pressure
chemical 5.8 5.8 0.0 no chemical reactions

as defined in Equation (4.42), yields values as reported in Table 4.4. Input and output 
figures are balanced for each material system. In this example, the exergy of process 
input is delivered through the hydrogen feed, while the exhaust gas represents the 
output. Water and HP steam represent respectively the input and the output for the 
steam system.

Without any knowledge about the process, it is clear that differences in net values 
are consumed (negative) and produced (positive) fractions. Assuming all other ex- 
ergy to be transiting, ?7mjn can be recalculated as ?7min = h72+23i4 = 40.25%. Even if 
more exergy was converted in practice, this conversion would not be necessary to pro
vide the functionality of the process, such that n = 40.25% is a representative figure. 
The decomposed exergy figures also quantitatively indicate reasons for irreversible 
effects, e.g. the loss of 13.2 kW (5.4%) mechanical exergy due to non-utilised expan
sion of high pressure hydrogen gas.

This approach considers the exergy of the exhaust gas as a product. In fact, down
stream processes can utilise the temperature and composition difference to ambient 
air, and it is not a property of the considered hydrogen burner process whether this is 
done or not. However, one might include the stack into the process. The stack has 
zero efficiency, as no work is extracted, while the ambient state is approached. The 
efficiency in this case is ?7min = 13 |f237 l = 38.63%.

However, an exergy analysis of this kind requires some amount of logical and
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computational overhead compared to the basic process simulation. In order to ap
ply Equation (4.42), the chemical potentials in each considered stream have to be 
evaluated not only for (T, p), but as point calculations also for (T0, p0) and (T0, p). 
The available thermodynamic models might not be predictive at ambient conditions. 
Furthermore, even though the total exergy is a derived property of canonical state 
variables, this is not the case for its contributions. This detailed exergy analysis is 
therefore not easily applicable to process optimisation.

As a solution to the problem, a specialised FM can be implemented to evaluate 
the state not only at process conditions, but as well at (T0, p0) and (T0, p). Such a 
FM can evaluate the exergy figures required for the detailed analysis described in this 
section.



Chapter 5

Yasim

5.1 Introduction

In parallel to the development of methods and technologies as a basis for canonical 
modelling, an actual process simulator tool called Yasim has been designed and im
plemented in this work. The name Yasim is an abbreviation for Yara simulator, as 
its first industrial applications and therefore a significant driving force for develop
ment of a graphical user interface were simulation assignments of the international 
fertiliser producer Yara International ASA. In particular urea synthesis processes re
quire a strong flexibility regarding thermodynamic modelling and handling of nu
merous significant recycle streams and external constitutive equations. Despite high 
licence costs for commercial software, the required flexibility for this kind of mod
elling was not available. It is in particular problematic to find a flexible equation 
oriented process simulator, which supports tailor-made thermodynamic models in a 
consistent maintainable framework.

Yasim is therefore developed as a canonical process simulator also driven by in
dustrial needs instead of pure academic aspects. The aim of design is therefore in 
particular a suitable mix of flexibility and simplicity. The main concept can be de
scribed as follows:

Solve simple problems in a simple way, and make it possible to solve ad
vanced tasks.

Furthermore, three different levels of process knowledge are identified as shown in 
Figure 5.1. The computer requires a mathematical representation of a process model. 
This primary process information includes not more than a set of variables \pi and 
equations, as well as suitable initial values and numerical specifications of process 
parameters. Internally, a heat transfer equation has the form ip1 - ip2 ^3(^4 - ^5) = 0 
with ip5 = 298.15. However, this representation is of little value for the human 
engineer, and reverse engineering towards a more understandable form is difficult. 
A process modelling tool must therefore preserve e.g. the physical interpretation of

89
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the computer to obtain 
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Figure 5.1: Differentlevels ofprocess knowledge.

variables and equations as secondary information. In this case, we have a heat trans
fer equation formulated as Q - (kF)(T - T0) = 0 with T0 = 25 °C. The tertiary 
information is important to pick up and re-understand a process model, even with 
many weeks between the creation of the model and the continuation of the work. It is 
furthermore of high value for new engineers, who get involved into the development 
and maintenance of an existing process model. In today’s practice, this is typically 
put into reports besides the process model and easily yields inconsistencies between 
documentation and the actual process model. It is therefore desirable to enforce as 
much self-documentation as possible.

The analysis and maintenance of degrees of freedom (DOFs) is a central issue in 
process modelling. Most tools offer two big containers, one for equations and one for 
variables - simulation is possible if both containers are equally full. The canonical 
modelling basis in Yasim however allows for one-to-one mappings between DOFs 
and equations. This is very useful, in particular to comprehend the intentions and 
thoughts of the process model’s author.

Yasim consists of two main parts: An inner core that implements the administra
tion of thermodynamic models, process models, model parameterisation and all the 
calculations including the solution scheme described in Section 3.3.2. This kernel is 
written in the programming language C++ and provides a programmer’s interface as 
a set of libraries. The functionality available on this level covers the complete scope 
of Yasim.

The second main part is a graphical user interface, which has been developed 
using Microsoft Visio as a front-end. Through this interface, the basic functionality 
has been used efficiently in various projects within the research facilities of Norsk 
Hydro ASA and Yara International ASA in Porsgrunn, Norway.

This chapter concentrates on the main design aspects of the calculation core, 
which are based on the derived concepts of the previous chapters, but supplemented to 
enhance maintainability and ensure consistency of process models. Section 5.3 gives
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an overview over design features on the top level, after the basic concept is explained 
in the following section. In particular, a detailed and complete documentation of the 
entire software is not in scope of this work.

5.2 General process modelling approach

This section describes a general approach to establish a process model, which is not 
necessarily limited to the canonical approach. However, each step is naturally as
sociated to certain concepts of this work, such that a brief discussion will clarify 
the context of the following sections. As shown in Figure 5.2, the first sub-task for

process modelling task

available results

Execute calculation

Yasim determines the 
available DOF for each FM

Yasim determines the set of 
active process parameters

Assign numerical values 
to active process parameters

Constrain process model with 
constitutive equations by 
utilisation of available DOF

Yasim determines the solution 
of the process model or 
fails with an error message

Define/refine process topology, 
species sets, thermodynamic 
models and reacting systems

Figure 5.2: Interaction between user and Yasim to solve a process modelling task.

the user is to define the process topology, instantiating flowsheet modules (FM), es
tablishing couplings, defining sets of chemical species to be considered and reacting 
systems. This step determines the canonical equation system completely, while no in
formation is yet provided to start defining the constitutive equation system. However, 
Yasim identifies the available DOFs for each FM as described in Section 3.3.2. The 
next sub-task to establish the process model is to define process parameters, proper
ties and constitutive equations where necessary, and constrain the process model by 
one constitutive equation for each DOF. This step defines the constitutive equation 
system and Yasim determines the set of active process parameters. Finally, these pro
cess parameters are given numerical values and the calculation is executed. Each of 
the described three modelling steps can be refined, if Yasim does not find a solution 
or the model should be further modified or extended.

5.3 Software design

Figure 5.3 shows a typical representation of a process model in Yasim. The concept 
reflects the structure shown in Figure 2.4, enabling a hierarchical module structure.
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Process model Composite FM

O Process air ^Eh»Q Atomic FM

Atomic FM
O Cooling watepS AS=0

□ Output port □ Exported output port O Input port O Exported input port 
----------- ► Coupling W := 4 Wrev Process property AS =0 Constitutive equation

Figure 5.3: Example of a typical hierarchical process model structure.

Within the process model, the compressor appears as an ordinary FM with one input 
port and one output port. W - Wspec = 0 is a constitutive equation attached to this 
FM, and the user can adjust the value for the process parameter VFSpec- As described 
in Section 3.6.2, the compressor is a composite FM. The right side of Figure 5.3 
shows the inner topology with internal couplings, constitutive equations, and process 
parameters.

A key design requirement is to keep FMs maximally independent of their parent 
FM. The following sections describe the software design of various groups of func
tionality to a FM, which are designed to smoothly fit into this concept. The function
ality is grouped into equations and DOFs, continuous and discrete process param
eters and properties, thermodynamic models, chemical reactions, input and output 
ports and executive functionality, such as simulation and optimisation. A FM pro
vides these groups of functionality through various handlers as shown in Figure 5.4. 
Basic design ideas are inspired by the European CAPE-OPEN (computer aided pro-

PortHandler

EquationHandler

VariableHandlerFlowsheetModule

SensitivityHandler

ReactionHandler

ThermoGroupHandler

CompositeFlowsheetModule

CompositeFlowsheetModuleHandler

Figure 5.4: Functionality of flowsheet modules with its interfaces partitioned into 
handlers.
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cess engineering - open process environment) project (Braunschweig et al., 1999,
2000).

5.3.1 Handler for thermodynamic groups

As shown in Figure 5.5, a thermodynamic group in Yasim is defined as a tuple con
sisting of the following attributes:

Identifier: A textual name of the thermodynamic group. The identifier is unique 
within its scope, which it is defined for, i.e. the FM it is contained in.

Thermodynamic model: The implementation of a thermodynamic model, capable 
of performing point calculations on the given set of chemical species.

Set of chemical species: A set of identifiers of chemical species, which is used to 
gather relevant thermodynamic properties from the database, to test the valid
ity of couplings between two material ports, to collect stoichiometric data for 
establishing element balance equations within a reactor FM, and as secondary 
information (cf. Figure 5.1) for the engineer to be able to interpret species- 
specific data.

Key

Species

Formula

Identifier

SpeciesSet

PhysicalPhase ThermoGroup

FlowsheetModule

ChemicalElement

ThermoGroupMap

ThermoGroupHandler

ThermodynamicModel

Figure 5.5: Handling of thermodynamic models in Yasim.

The thermodynamic model itself provides a state function P(x) with first and second- 
order derivatives V and H, furthermore an interface to access the thermodynamic 
parameters. Symbolic derivatives of P, V and H with respect to parameters can be 
obtained as well. In order to utilise a thermodynamic model in Yasim, a series of state 
transformations is applied as described in Section 2.5.2.

Within the handler, thermodynamic groups are hosted in a map, of which the 
keys are used by actual physical phase objects to obtain the correct thermodynamic 
group. Consider a vapour liquid equilibrium of moist air over NaCl-solution. The 
liquid phase will seek for a key ’liquid, for which the handler will probably host 
an NRTL-model (Non Random Two Liquid) considering the chemical species H2O 
and NaCl. The vapour phase will find an SRK-model hosted under the key ’vapour’ .
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A more detailed example, demonstrating the application in a hierarchical context, is 
given at the end of this chapter on page 100.

5.3.2 Handler for process properties and parameters

The main focus of this handler is the definition of process properties y and process 
parameters u within the scope of a FM. All process variables consist of an identifier, 
which is unique in its scope, a numerical value and a physical dimension. The latter 
one is identified by a set of basic dimensions (currently length, time, mass, tempera
ture and quantity) associated with an exponent. The physical dimension of a heat duty 
Q is therefore represented by [Q] = mass1 ■ length2 ■ time-3. This approach allows for 
consistency checks and to obtain physical dimensions of successive expressions, but 
does not specify the actual unit of measurement, namely MW or kWh/s. The physi
cal dimension solely defines the set of valid units of measurement for a given process 
variable.

Basic process properties (e.g. n, p), which are available through the solutions x 
and A of the canonical equation system, process parameters (e.g. pspec), and derived 
process properties (e.g. g) are specialisations of process variables. As shown in Fig
ure 5.6, each process variable can be used within the definition of new process prop
erties and constitutive equations. These definitions are based on variable collectors,

restrictive
inheritance

collects

PhysicalPhase

ProcessVariableEquationHandler

ProcessParameter

ProcessProperty

FlowsheetModule

VariableCollector

VariableHandler

ConstitutiveEquation

PhysicalDimension

BasicProcessProperty

Figure 5.6: Design of process parameters and properties.

which link a symbol or a set of symbols within an algebraic expression to process 
variables within the scope of the defined object. Variable collectors represent an im
portant layer to separate definition and instantiation. Abstract expressions, e.g. for 
pressure drop from an upstream module, can be defined, before the upstream module 
is connected or even instantiated. Just before actual calculations are conducted, all 
expressions link to their symbols and generate a symbolic algebra graph. Symbols 
can point to process variables that are defined in the same FM, a direct child FM or 
based on a material flow between two child FMs.

Constitutive equations are a restricted specialisation of process properties. Like 
for other process variables, variable collectors are used to associate symbols within
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its definition to other process variables. A constitutive equation also needs to be 
consistent regarding physical dimensions. The value of a constitutive equation is 
actually the current residual during the solution process. However, in the context 
of process model parameterisation, it is not of particular interest. The restriction 
is therefore that a constitutive equation can not be included as a symbol inside the 
definition of another process property.

The approach to define properties as explicit expressions of already defined vari
ables avoids additional load to the solver. The canonical approach only allows for 
one implicit equation for each natural DOF. As proven so far in many applications 
of Yasim, process models do not require additional independent variables as a sup
plement to the canonical basis. However, Yasim is not a general equation solver, but 
clearly limited to physical systems, of which the state is completely described by the 
thermodynamic state vector % of physical phases.

5.3.3 Handler for equations and degrees of freedom

EquationSlot

FlowsheetModule EquationHandler

ConstitutiveEquation

EquationSpecificationExportedEquationSlot

Figure 5.7: Design of constitutive equations and DOFs.

The equation handler hosts objects to represent DOFs and constitutive equations. 
An equation slot is a released balance equation according to the concept described 
in Section 3.3.2, and represents a DOF. An equation is represented by an expression, 
which calculates the residual of the equation dependent on imported process variables 
as described in the previous section. The equation specification object works in the 
same way as the variable collector, as it represents a link to an equation, which is 
resolved just before actual calculations. As an important restriction, each defined 
equation can be used maximally once. An equation slot can be unused, so that the 
underlying canonical balance equation (e.g. conserving enthalpy) is used. Even if 
the equation specification links to an equation, the equation slot can still be exported. 
A constitutive equation defined in the parent FM can then be associated with this 
DOF. For exported equation slots, the locally linked equation will only be used, if the 
FM itself is the process model. Otherwise, the exported slot determines the actual 
equation used. Within nested FMs, equation slots can always be exported up to the 
global process model level.

However, like process variables, constitutive equations cannot be exported. If 
export of constitutive equations was enabled, the contained variable collectors would 
not necessarily have access to their target process variables within the parent FM. The
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data encapsulation, which prohibits this access, is an important paradigm to preserve 
maintainability of process models.

FMC Equation 2

Exported slot Exported slot

FM A

Equation 1

FM A

Equation 1

FM B

FM A

Equation 1

(a) (b) (0

Figure 5.8: The principle of equation slots and constitutive equations.

Figure 5.8 shows a typical configuration example in the context of a composite 
flowsheet module:

(a) FM A provides an equation slot and a constitutive equation (Equation 1) as
signed to the equation slot. Instantiated into FM B, Equation 1 is therefore an 
active constraint to the process model. In parallel to Equation 1, there might be 
other constitutive equations defined, which however, if not associated to other 
equation slots, are inactive.

(b) Composite FM B is configured to be instantiated as a child FM. For this pur
pose, the equation slot is exported in order to be visible in the parent FM con
text. The represented DOF can subsequently be utilised from there. FM B still 
can be executed as a process model. In this case, Equation 1 is still active.

(c) In the context of FM C, Equation 1 is no longer active. A new equation (Equa
tion 2) is defined, and contributions of process variables from various FMs next 
to FM B might be the motivation to define this equation at the outer level. If 
Equation 2 would only be contributed by process variables of FM B, the pro
cess model would be most maintainable with this equation being defined in FM 
B. Finally, Equation 2 is activated by assigning it to the exported slot.

5.3.4 Handler for input and output ports

Figure 5.7 shows the handling of objects related to material flow. Every FM hosts 
a port handler that defines input and output ports. As a composite FM contains 
child FMs, the composite FM handler holds coupling objects that represent a ma
terial stream from exactly one output port to one input port of another FM. An output 
port can only be linked to one coupling, but might as well remain unconnected if the 
material stream leaves the system boundaries. An input port must be connected at
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FlowsheetModule
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Figure 5.9: Design of material ports and couplings.

least once, but might retrieve many couplings, in which case all incoming material 
flows are considered. The FM implementation determines the boundary conditions 
of mixing, most commonly ntotal = Hi ni, Htotal = 2i H and ptotal = min Pi.

A coupling between an output port and an input port is valid, if the chemical 
species provided by the output port are accepted by the input port. In particular, not 
all species accepted by the input port have to be provided through a single coupling.

As shown in Figure 5.3, an output port can either be exported or coupled to the 
input port of another FM. An exported output port is hosted by a composite FM and 
represents an output port of a child FM. An exported input port however does not 
represent the input port of a child FM, as this would make it impossible to calcu
late a child FM as a stand-alone module. As it can be seen for the compressor in 
Figure 5.3, a source module, which in local context represents a material reservoir, 
can be exported as an input port in a global context. An outer process model will 
then disregard the local source module, and link the material flow directed to the 
exported input port to the input port downstream of the source module in the local 
context. This mechanism is further clarified by an example at the end of this chapter 
on page 100.

5.3.5 Handler for reactions

Reactions are only supported by a subset of FMs, therefore not all FMs host a reaction 
handler. The current implementation only allows for at most one reaction handler per 
FM, but composite FMs could host many, related to different child FMs. As shown 
in Figure 5.10, the reaction handler maintains a number of different species sets. 
Initially, the inert and key species set is empty, hence the constraint matrix for each 
physical phase and input port is generated as element balances respectively based on 
the species defined in phase and accepted species sets. According to the approach 
described in Section 3.5.3, additional balance equations are introduced for key and 
inert species. While the species balance for inert species is meant to be an active 
constraint, the species balance of a key species serves as a DOF for any kind of 
constitutive equation. Figure 5.11 shows the reactivity of a system containing N2, 
O2, NO2, and N2O4. Initially, all species are reactive, and two independent reactions
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Figure 5.10: Design of chemical reaction handling.
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Figure 5.11: Different stoichiometric constraints on the nitrogen - oxygen reactive 
system.
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are possible. Defining N2 as an inert species, there is no possible reaction involving 
O2. When NO2 is declared as inert, the entire system is locked and no chemical 
reaction is enabled. In the last step, N2 is again permitted to participate in chemical 
equilibrium. With this, O2 and N2O4 also become reactive again.

An important design limitation is the one-to-many relation between a reaction 
handler and physical phases. The union of chemical species in all phases determine 
the constraint matrix. The desirable association between definitions of reactions and 
thermodynamic groups is therefore not applicable.

5.3.6 Handler for composite flowsheet modules and optimisation

The composite flowsheet module handler is mainly responsible to host the flowsheet 
topology, i.e. child FMs and couplings. Because every well-defined composite FM is 
a functional process model in itself, a solver object and a sensitivity handler are cre
ated on demand. Figure 5.12 shows the structure diagram of this context. The solver

Solver

CouplingFlowsheetModule

SolverParameters

CompositeFlowsheetModule

CompositeFlowsheetModuleHandler

1

0..1

1

SensitivityHandler 
1ft

VariableCollectorSet
o

1
DependentVariableSet

1ProcessVariable1..*

1..* ProcessParameter

IndependentVariableSet

1..*
VariableCollector

Figure 5.12: Design of process topology and sensitivity handler.

object is generated prior to a simulation run. The separated solver parameters contain 
options to tune convergence criteria for the constitutive and canonical equation sys
tem, a tolerance limit for near-zero pivot elements to detect linear dependencies, and 
the relaxation parameter f according to Section 3.8. If defined, the sensitivity han
dler hosts a set of independent and dependent variables. Equation (4.20) is then used 
to obtain the desired Jacobian matrix, after the simulation is completed. The vari
able sets are implemented through variable collectors as introduced in Section 5.3.2. 
While every process variable can be declared as a dependent variable, only process 
parameters are candidates for independent variables. The trivial case of defining a 
process parameter as a dependent variable is not considered. However, the user can 
force this by defining a process property as y = u if desired.

Considering the example shown in Figure 5.3, Wspec and n are typical process 
parameters, therfore candidates for independent variables. The compressor outlet 
pressure and temperature are examples of process properties, which can represent 
dependent parameters in this context.
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As soon as the optimisation handler is activated, there must be at least one de
pendent and one independent variable declared in order to obtain a Jacobian matrix 
of non-zero size. The sensitivity handler provides functionality to set, get and update 
the independent variable vector, get the dependent variable vector and the Jacobian 
matrix.

5.4 A configuration example

The practical example given in this section clarifies the direct application and func
tionality. As one example can not be exhaustive, the intention is to substantiate the 
contents of the previous section. The objective of the example is to define a sim
ple process model for a heat exchanger. This composite flowsheet module should 
be usable from a parent context and provide standard constitutive equations for heat 
transfer. Naturally, different fluids are considered on the tube and shell side.

The first step to set up this process model is to define thermodynamic groups. 
Two identical pure water models are sufficient as place-holders for different groups 
when applied as a composite FM, named Shell and Tube. The keys within the map are 
not identical to the identifiers, but denoted by lowercase shell and tube. The next step

Composite FM
shell: Shell tube: Tube

(D Input Z' 'NOutput
Tubelnpu^J^T^Output
process: tube process: tube

pQlube - Gshell = 0
W Input Z' "'NOutputShe» mpuAtpu^HShe#

r.7,^77 X  process: she77 process: shell

(a)

Composite FM
shell: Shell tube: Tube
Tube
Input (D Input 'Xc

Tube Inpu^^upu^TTubf
Output

Tube
Output

process: tube ^ ^ process: tube
Glube - Gshell = 0

Shell
Input -------------V Inpu^^^^YSheliinpu^tput^Yhellr

r.7.^77 x—z

Output
Shell
Output

process: shell process: shell

(b)

Figure 5.13: Definition of process topology for a simple heat exchanger.

is to define the process topology as shown in Figure 5.13(a). A one-phase module is 
defined for both, shell and tube side, each fed by a source module. These child mod
ules inherit the thermodynamic groups from their parent context. The mechanism for 
the FM Shell Input to define and maintain its thermodynamic group is as follows: The 
map of the FM contains a key called process. The thermodynamic group addressed 
is a copy of Shell in the parent context, named after the key hosting it.

In Figure 5.13(b), the non-connected output ports are exported to the composite 
level and named as Tube Output and Shell Output. The source modules are as well 
exported and named Tube Input and Shell Input. Both actions have no impact on the 
process model as such, but define the interface, when later used as a child FM.
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The equation slots provided by the source modules are used to specify the flows 
for a local test-case. For pure water flows, there are three DOFs each, which might be 
specified as temperature, pressure and mass flow. The equations associated to these 
DOFs and the entire source modules will however only be used for local calculations, 
not if instantiated as a child FM.

The one-phase modules provide two DOFs each. The material balances stay 
constrained in the canonical system, but the balance equations of the first two state 
variables, for instance S and V, are released. For a simple model, both pressure drops 
are defined as zero, leaving two DOFs to define the heat transfer. The representing 
equation slots are both exported to the composite level. Both modules make their 
heat duty Q visible on the composite level as a process property. Here, the equation 
Gfube - QSheii = 0 is defined and plugged into one of the exported equation slots. 
Various heat transfer equations can now be defined on the composite level, including 
incoming and outgoing process properties, such as e.g. temperatures and flows. On

Composite FM
water: Water nitricAcid: NitricAcid

Cooling water/*
process: water

process: nitricAcid

Warm acid

shell: water 
tube: nitricAcid

Figure 5.14: Usage of the heat exchanger as a child FM.

instantiation as a child FM, these predefined equations can be offered to the user, 
selecting one of them to utilise the remaining DOF. Figure 5.14 shows the usage of 
the new heat exchanger model in a parent context. The instantiation is called HE 
and appears basically indistinguishable from atomic FMs. The exported input and 
output ports are visible, while the inner process topology is hidden. Furthermore, 
place-holders for two thermodynamic groups are defined, now filled with one group 
for water (shell) and the other for nitric acid (tube). When instantiated, the thermody
namic group water inserted into the shell placeholder will trigger the thermodynamic 
groups called shell in each child FM to be replaced by a copy of water recursively.

The heat exchanger offers its defined heat transfer equations and one DOF. How
ever, the parent FM might define and utilise additional equations or actually apply 
two heat transfer equations simultaneously - one physically motivated and one based 
on first principles - e.g. to determine the required temperature difference. This tech
nique requires the utilisation of DOFs external to the the heat exchanger.
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5.5 Software architecture of Yasim
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Figure 5.15: Yasim software architecture and programmers’ access points.

As shown in Figure 5.15, the core of Yasim is implemented as a framework in 
the programming language C++ on L/nwx-platforms. Most examples in this work 
have been programmed through direct access by C++ main-programs. The main 
functionality is made available through Swig (Swig, 2005) as a python-interface. The 
programming language python (Python, 2005) is much more suitable to adminis
trate process models than C++. Through the web application server Zope (Zope, 
2005), Yasim can be accessed remotely via XML-RPC (XML-RPC, 2005) on arbi
trary platforms. A graphical user-interface is developed using Microsoft Visio (MS 
Visio, 2003).

With this variety of access-points, Yasim can be utilised with high efficiency in 
industrial relevant projects. Typically, the process model is established using the 
graphical interface. A tailor-made python-script picks up that process model to exe
cute advanced tasks as described in Chapter 4. This approach combines the maintain
ability of larger process models through the graphical user interface, while the full 
flexibility of a programming language can be applied on the same process model.
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Performance characteristics

6.1 Introduction

This work does not provide the solution to a specific process modelling problem, but 
investigates the canonical approach as a formulation of process models in general. 
The actual implementation of Yasim, as described in the previous chapter, clearly is 
a practical outcome and serves as a basis for future work, both to extend the scope of 
Yasim and in combination to apply the existing functionality in industrial projects, as 
it is done in several cases already.

This chapter focuses on the performance of the solution methods and other nu
merical techniques used throughout this work in general. After a discussion of the 
solver properties, such as convergence rate and region, the numerical effort is inves
tigated for different types of process models. The consistent use of symbolic deriva
tives poses questions about the quality of differently obtained derivatives, which is 
the subject of Section 6.4. Scaling problems can occur when using the current imple
mentation of Yasim for large process models. This problem is addressed in the last 
section of this chapter.

6.2 Solver characteristics

Unlike conventional equation solvers, the algorithms described in Section 3.3 solve 
two equation systems simultaneously. The canonical equation system is well struc
tured and is only dependent on thermodynamic and stoichiometric data, while the 
constitutive equation system has no defined structure, and contains all geometric in
formation and process parameters.

6.2.1 Convergence rate

The challenge of implementing the solver is to find an iteration scheme that efficiently 
solves the combination of canonical and constitutive equation system. The availabil-

103
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ity of second-order derivatives makes it possible to obtain quadratic convergence, 
if the equation systems are updated correctly. The algorithms in Section 3.3 only 
interpret the Lagrange multipliers of the canonical system as mathematical deriva
tives of the objective function with respect to the constraints, when the constraints 
are fulfilled, which is a necessary requirement for quadratic convergence. A typical
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Figure 6.1: Convergence characteristics for the separator pressure p of the compres
sor example shown in Figure 4.3.

progression of a variable involved in non-linear equations is shown in Figure 6.1. 
Far from the final solution, the first iterations do not reduce the residual of the merit 
function. The step length is even reduced in order to remain within the domain of 
thermodynamic models (cf. Section 3.8). Shortly after full steps are taken, conver
gence is of second-order, such that the residual falls rapidly beneath the limit of nu
merical precision. The numerical precision depends on the solution method, and the 
process model, which influences the condition of coefficient matrices. Avoiding the 
calculation of the inverse canonical coefficient matrix, as described in Section 3.3.3, 
could further reduce this level, as less critical subtractions of numerical values are 
performed (Golub and Loan, 1996).

6.2.2 Convergence regions

The current implementation facilitates a trivial generation of starting values, only 
reading T, p and n for each thermodynamic phase from an ZML-file. Because the 
user will have some ideas about the approximate figures here, practical problems
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of finding suitable starting values are not significant. The problem of finding more 
intelligent initialisation routines is therefore not emphasised in this work. However, 
it is very effective to restart a modified process model using recent results as starting 
values.

Figure 6.2: Convergence of a single-phase node with varying starting values.

Figure 6.2 shows the number of necessary iterations to achieve convergence in 
a single-phase source module with atmospheric air containing N2, O2, Ar, H2O and 
CO2. The starting values are given by equimolar amounts of each species and varying 
temperature and pressure. The process model converges for a wide range of T and 
p around the solution marked by a white cross. Far-off starting values do not allow 
for proper thermodynamic calculations and cause immediate problems. There is a 
sharp separation line, at the left of which significantly more iterations are required. 
This is caused by the cubic equation of state model, which predicts only a liquid 
root at lower temperatures. The enthalpy jumps when iterating towards the desired 
solution into the vapour region, and this highly non-linear feature causes the effect. 
Another region of slow convergence occurs at high pressures between 500 K and 
1000 K around the critical point of the mixture. The repetitive structures at high 
temperatures and moderate pressures repeat within approximately one decade and 
are caused by the relaxation scheme (cf. Section 3.8). With the requirement T > 0, 
each temperature reducing step is restricted to change temperature no more than 90% 
of its current value. The two dotted polygons starting on the high temperature side 
show iteration paths constrained by this scheme.

Figure 6.3 shows a similar plot of convergence regions. This time, the starting 
values for each point calculation are fixed to atmospheric conditions, but the target 
specifications are altered. Most significant is the extended region of non-successful
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Figure 6.3: Convergence of a single-phase node with varying specifications.

calculations nearly covering the complete range, in which the solution is forced 
within the liquid root of the equation of state. While reducing the volume during 
iteration, the relaxation method does not prevent the state vector from entering the 
unphysical domain with dp/dV > 0. Once inside this region, the solver suggests an 
increase of volume to reach a higher pressure, such that the state oscillates between 
the unphysical and the vapour region. Only extreme compressed conditions allow 
the solver to overleap the unphysical region directly into the liquid root and solve the 
system. The first steps of the indicated example calculation with Tspec = 10000 K 
and p = 100 MPa are limited by the relaxation scheme, as the volume can not be 
reduced by more than 90% of its value in each iteration.

Within regions of ordinary process conditions, it can be concluded that conver
gence towards a liquid solution can not be obtained if the starting values suggest a 
vapour phase. But Figure 6.2 indicates no problems to predict vapour phase results 
with starting values suggesting a liquid phase. The first update then yields a clear 
vapour state, if the target state is not too close to critical conditions.

As described in Section 3.8, constitutive equations can generate similar effects. 
In both cases, the current implementation of the solver relies on starting values within 
the same feasible region.

6.3 Computational effort

The computational effort for one iteration is the sum of different contributions. The 
current implementation according to Section 3.3 requires the

1. Calculation of state function gradient and Hessian for each thermodynamic
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phase within the process model.

2. Calculation of inverse coefficient matrices for each single atomic FM and ar
ranging them in composite FM coefficient matrices.

3. Inversion of the composite FM coefficient matrix and solving the canonical 
system.

4. Evaluation of the Jacobian of constitutive equations and calculating updates of 
the right hand side.

For process models with some recycle streams, the main bottleneck is identified to 
be the inversion of the main composite FM coefficient matrix. In this section, three 
different process model structures are considered: (i) A linear process with no recy
cles, (ii) a counter-current column, and (ill) a particular strongly recycled structure. 
The species set chosen for this example is propane, n-butane and n-hexane. Each 
flash tank is specified to atmospheric pressure and a 50% vapour fraction. Figure 6.4

(i) linear

(ii) counter-current

(iii) strongly recycled

Figure 6.4: Different topological structures to analyse computational effort.

shows the process topologies and resulting coefficient matrices of these three struc
tures. Structure (i) contains no recycles. As can be seen in Figure 6.5, the sparse 
block matrix structure is exploited to reduce the complexity from order 3 for general 
matrix inversions to 1.85. The constitutive equation system for 100 flash modules 
is of size 205 and contributes to about 10% of the total calculation time. However, 
solving the canonical system of size 1500 could be performed in linear time, if the 
inverse matrix is avoided as in the approach discussed in Section 3.3.3.

Process models (ii) and (iii) generate similar performance characteristics. Most 
of the sparse matrix block structure is lost during explicit inversion, such that the
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1000
process model (i) + t ~ k 
process model (ii) x t ~ k 
process model (in) * t ~ k

10

0.001
1 10 Number of flash modules k100

Figure 6.5: Performance of the test implementation for different process types on a
ygx TM2.0 GHz Intel® XEON CPU.

computational effort is between quadratic and cubic with respect to the number of 
FMs. Still, process (ii) could be solved in linear time by avoiding explicit matrix 
inversion, and even though process (iii) yields a rather unstructured coefficient matrix, 
the sparsity still limits the necessary effort to solve the equation system in quadratic 
time, if the explicit inversion is avoided.

The current implementation is surely a prototype mainly to show capabilities of 
canonical modelling, but also to detect potentials such as those to increase efficiency 
and robustness in subsequent development. At to this phase of development, a com
parison of performance with similar process modelling tools is not representative for 
the potential of this approach.

6.4 Comparison of derivation methods

Within this work, a small symbolic algebra package is implemented as described in 
Appendix A.1. The two main benefits are: the possibility of runtime parsing of alge
braic expressions, but even more important: the availability of derivatives obtained 
by symbolic computations (as from now called symbolic derivatives). In this sec
tion, symbolic derivatives are compared to analytical and numerical derivatives in the 
context of the canonical flowsheet solver. A comparison of derivatives of analytical 
functions is trivial, as the symbolic derivatives are identical to the analytical ones. 
This section therefore concentrates on derivatives necessary to evaluate equations de
rived in Section 4.2.2, in particular Equation (4.20) used for process optimisation and 
data reconciliation.
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p = const.

=?

Figure 6.6: Process model to analyse differently obtained derivatives.

The purpose of the process model shown in Figure 6.6 is to represent a pair of one 
process parameter and one property with an analytical relationship. The example is 
chosen such that both constitutive equations and the thermodynamic model contribute 
to this relationship.

The total effect of the specified vapour fraction 8spec to the liquid enthalpy from 
the second flash can be obtained by means of symbolic calculations through Equa
tion (4.20). The same way, the derivatives dTfd/3spec and dn/d/3spec can be calcu
lated. The second derivatives of the thermodynamic state function are implemented 
as explicit analytical expressions. As shown in Appendix C.3, these include heat ca
pacity cp and partial entropy S. Interpreting enthalpy as H = H(T, p, n(8)) the total 
differential at constant pressure is

d T+f
pf dn T, p

dn dH 
dfi

dT
'48cp— + (P + T S) —

dn
48

0. (6.1)

This equation must hold, if the symbolic derivatives are correct, i.e. consistent with 
the analytically available information. Figure 6.7 shows a plot of the residual of 
Equation (6.1) over the accuracy of a representative process property, in this case the 
enthalpy of the liquid stream from the second flash. A linear relationship can clearly 
be identified, and in this case, the derivatives are well over one order of magnitude 
more precise than the property itself. With high vapour fractions (8spec ^ 1), the 
condition of the process model deteriorates, such that enthalpy can not be obtained 
with full precision. Even with a precision limit of 10-5, the observed derivative is 
still far more accurate, yielding a residual of only 10-10.

The traditional alternative to symbolic derivatives is the numerical approach, typ
ically central differences. 8spec is perturbed by ±A8 to obtain

dy
48

y(fi spec + A/?) yifi spec 4/1)
248

+ 0(482) with y = (H, T, n). (6.2)

Figure 6.8 shows the quality of numerical and symbolic derivatives for various pre
cisions obtained in the process simulation step. Obviously, the symbolic derivative is 
independent of A8, but at high precision calculations, fluctuations around a constant 
value due to the numerical precision limit of that process model become visible.

The precision of numerically obtained derivatives is limited by the precision of 
symbolical derivatives at low precision of the simulation, but otherwise not corre
lated. The deviation increases quadratically for large A8, as is expected according
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:Apec = 0.001 +
: fispec = 0.3 x 
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Figure 6.7: Precision of symbolic derivatives compared to process properties.

symbolical derivative

symbolical derivative

-12 -

_14- symbolical derivative

logio^

Figure 6.8: Comparison between symbolical and numerical derivatives.
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to Equation (6.2). For small Afi, the finite difference v(/lSpec + A/8) - vf^spec - A/8) 
develops a constant non-zero contribution, such that lim^^o dy/d/f = 0{Aj3~l). This 
limitation is equally visible in Figure 6.8.

6.5 Properties of the coefficient matrix

The main limitations to the obtainable numerical precision are the conditions of the 
coefficient matrices both of the canonical and the constitutive equation systems. With 
measures of various physical quantities such as pressure, energy, volume, etc. forced 
into one matrix, conditioning problems can become a limitation to the obtainable nu
merical precision. A gas separation process model of three pressure stages, contain-
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Figure 6.9: Eigenvalue distribution of scaled and original coefficient matrices.

ing 22 FMs, three recycles and vapour-liquid-liquid equilibria is established. Consid
ering 11 chemical species (Ci_6, i-C’4.5. H2O, N2, CO2), the canonical system is of 
size 997 X 997. The top diagram in Figure 6.9 shows the distribution of eigenvalues 
of the original matrix, identifying in particular 5 precarious eigenvalues of a mag
nitude below 10-8. All corresponding eigenvectors are linear combinations of state 
variables representing enthalpy, substantiating the hypothesis of this being caused by 
bad scaling. As enthalpy is represented in measures of Joule (J), rather big numbers 
(% 106) are produced compared to the conjugated measure in K-1 (~ 10-3). Thus, an 
eigenvalue of 10-9 is natural in this context. Extreme phase size ratios in separation 
modules enhance this situation. To generate the lower diagram in Figure 6.9, two
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scaling matrices S c0| and S row are obtained by repeated normalisation of columns 
and rows. This way, the condition1 * can be reduced significantly down to 105, no 
longer being a serious limit of numerical precision. This result is even more signifi
cant for the constitutive equation system, which in this case is of size 210 X 210. The 
condition number is here reduced from 108 down to 101'6.

However, the current implementation of Yasim as described in Chapter 5 does 
not use active scaling. The internal units of measurement are adapted in order to 
obtain a similar order of magnitude for the conjugated variables pressure and volume. 
With this, the numerical precision rarely becomes a problem in practical applications. 
As an example, Figure 6.7 indicates the precision limit for the specified split factor 
jS3peC = 1 - 10-3 to be in the order of 10-5. This represents a typical limitation, as 
values of j3spec closer to one yield increasingly unstable iteration paths and inaccurate 
results.

1For simplicity reasons, the norm of a matrix is defined here as the maximum ratio of the eigenval
ues' absolute values



Chapter 7

Discussion and Conclusions

A new process modelling tool emerged as the practical result of this work. This 
tool called Yasim has already been used in several projects within the Corporate Re
search Centre of Norsk Hydro ASA in Porsgrunn. Simulations and case studies are 
performed on models of different plant sections related to urea production. Within 
a data reconciliation project, Yasim generates linearised representations of the gas 
separation process on one of Norsk Hydro's offshore platforms.

The equation oriented approach made it a valuable tool for medium sized process 
models, strongly coupled by several material streams and constitutive equations.

Built on the fundament of thermodynamic state functions in transformed coor
dinates, the highly non-linear equations of thermodynamic models are encapsulated 
from the main (canonical) equation system. The complexity of these models there
fore hardly effects the performance in terms of calculation time and robustness. The 
Hessian matrices of the thermodynamic models are utilised in multiple ways:

• As a basis to evaluate thermodynamic properties, such as heat capacity, com
pressibility, thermal expansion coefficient, Joule-Thomson coefficient, and 
speed of sound (cf Table C.2 and Table C.3).

• In order to transform canonical state vectors between different state functions, 
as described in Appendix C.2.2.

• As Hessian matrices in local optimisation nodes, thus in the actual flowsheet 
solver (cf. Section 3.2).

The structure of the canonical equation system directly represents the process 
topology. Flowsheet modules (FMs) represent diagonal blocks, while couplings re
late to the off-diagonal block, which shares row and column with down- and upstream 
FM. This transparent structure supports the implementation of hierarchical FMs and 
error diagnosis. Not only is the sparsity in general known a priori, but also entire 
blocks of zeros and identity matrices are recognised, so that the solver can take ad
vantage of it. In a recursive manner, FMs contribute actively to solve the system,

113
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currently by inverting, but as suggested in Section 3.3.3, potentially by decomposing 
their own subset of equations.

Constitutive equations form a separated equation system of much smaller size. 
The use of symbolic algebra is essential to allow run-time defined user-equations and 
to obtain symbolic derivatives, reliable sparsity information of the resulting Jacobian 
matrix, and validation of physical dimensions to avoid consistency errors.

Clearly, as a result of continuous research, the current implementation does not 
represent the current state of knowledge presented in this work. A pure symbolic 
representation of thermodynamic models would have a significantly positive impact 
on the maintainability of these models without noticeable loss of performance. Fur
thermore, the use of the W(H, V/T, n) state function involves many more state trans
formations than U(S, V, n). Thanks to the constitutive equation system, individual 
coordinate systems for each FM turned out to be unnecessary and hard to maintain. 
Restricting all FMs to the system U(S, V, n) contributes only marginal to the size of 
the constitutive equation system, but avoids Massieu transformations.

Since Massieu transformations are currently used in Yasim, further reference state 
information contributes to the Hessian matrix through the chemical potential ju (cf. 
Table C.1) and therefore may amplify conditioning problems.

A general limitation is given by state functions, which assume volume as a canon
ical variable, conjugated to pressure in the gradient (e.g. the Helmholtz function). For 
incompressible fluids, the pressure is not defined though the state function, as a vol
ume change at constant temperature and pressure is not possible. Consequently, the 
Hessian matrix contains infinite values, and no calculations can be performed. As a 
consequence, all thermodynamic models must describe a nonzero compressibility in 
order to be used for canonical modelling. Appendix B.3 describes a suitable model 
contribution to ensure a nonzero compressibility.

The implementation of the augmented solver version that avoids explicit inverse 
matrices will improve performance significantly with respect to both calculation 
time and numerical stability in ill-conditioned systems. This applies especially to 
larger process models, exceeding 50 FMs, in particular those containing separation 
columns.

Automatic initialisation of process models is not yet implemented, but starting 
values are provided in XML-Files. As cumbersome as manual tweaking of these 
files sometimes can be, the direct access for the user to fill in the starting values is 
essential and can prevent from high work effort in terms of trial and error tweaking 
of the process model towards a converging equation system.

The same applies to the phase stability analysis. The current version of Yasim 
works on a constant topology with each material stream representing one physical 
phase. Implementation of phase stability tests and consequently considering multiple 
phase streams is desirable, especially for heat exchangers with phase transitions. The 
possibility to restrict possible phase sets must be preserved in order to utilise first 
principle FMs.

This work and the resulting tool Yasim is committed to steady-state process mod
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els. Still today, a wide range of relevant problems in process design, data reconcili
ation, optimisation and plant performance projects are performed using steady-state 
models. However, Appendix D demonstrates the general feasibility of dynamic pro
cess modelling on a canonical basis. The topological structure and the constitutive 
equations can be handled without any changes in the methodology.
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Appendix A

Software utilities

A.l Lazy evaluation datatype

An object oriented symbolic algebra datatype is developed in C++. An extensible 
set of algorithm classes provides functionality for a large variety of applications. 
Applied in particular to thermodynamic functions, the framework can be used for 
complex modelling tasks. E.g. a derivative algorithm is applied for tasks like auto
matic model implementation, parameter optimisation, data reconciliation, and phase 
boundary tracking.

A.1.1 General Software Design

doubleAlgorithms Symbolic Algebra Graph
«uses»

«uses»

is child of
ADT Mesh

Needle

CGenerator

Optimiser

SqrtNode

...Node

AddNode

TypeEvaluator

SourceNode

MatlabGenerator

Node {abstract}

Algorithm {abstract}

ADT can be any * 
algebraic data type

CodeGenerator DerivativeAlgorithm

+setValue(double): double

SourceMesh

inheritance 
emulated as 
double is not 
defined as a 
class in C++

Figure A. 1: UML class diagram of algorithm objects and symbolic algebra graph 
design.

The UML class diagram (OMG, 2001) of algorithms and representation of the 
symbolic algebra graph is shown in Figure A.l. The vertices of the symbolic algebra 
graph are objects of class Node. All operators and standard functions are represented
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by such a vertex. Via reference counting (Stroustrup, 1997), Node instances can be 
shared among other vertices or user objects called Needle. A Needle can contain any 
subset of existing Nodes, and provides a method to apply algorithm objects. A Mesh 
is a specialisation that carries exactly one Node. On Mesh, all common arithmetic 
operators and functions are defined, so it can be treated like the builtin C++ double 
datatype. One further specialisation is a holder of a single source node SourceMesh, 
to which a new value can be assigned without altering the graph.

The following code of simple assignment expressions generates the graph shown 
in Figure A.2:

1 SourceMesh a = 1.0, b = 3.0;
2 Mesh c = a + b;
3 Mesh d = sqrt(c) - (c + a * b);
Though graph optimising algorithms can be 
implemented, assignments are represented 
by shared nodes to preserve the benefit of 
manual coding, namely to avoid redundant 
evaluations. a and b can also be declared 
of type Mesh, if the values are not to be 
changed later in the program. In this case 
however, printing d will display -5 initially 
only. The subsequent line of code

4 a.setValue(6.0); // call setValue() on SourceMesh instance a

yields the output of -24. It becomes clear, how little effort is required to translate ex
isting function implementations into functions generating a symbolic algebra graph. 
Template-based numerical packages can often be utilised directly.

The operands of a symbolic node, represented by child nodes, are connected at 
construction for the whole lifespan of the node. Thus, the symbolic algebra graph is 
assured to be non-cyclic, which is a necessary requirement for algorithms to terminate 
in a finite number of steps.

A.1.2 Algorithms

The main concept of algorithms on symbolic algebra graphs is based on the idea to 
separate functionality from the actual function implementation. The UML sequence 
diagram (OMG, 2001) in Figure A.3 explains the application of an algorithm object. 
It’s illustrated, how the function object only creates the symbolic algebra graph and 
is subsequently not involved, when algorithm objects are executed.

It’s shown in Figure A.1 that all algorithm classes implement an interface called 
Algorithm, which defines methods for the following stages of application:

Initialisation: The algorithm object is created and given the necessary information 
to function. E.g. a derivative algorithm requires a set of independent variables.

sqrt

( ) = Mesh = Node

Figure A.2: Graph representation of a 
simple expression.
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Figure A.3: The role of a function object in the context of lazy evaluation.

Execution: The needle object executes the algorithm object. Each node in the needle 
is called recursively by the algorithm object. Intermediate data is created and 
temporarily saved in each node. The data belonging to the direct child nodes of 
the needle represents the result of the algorithm. This can for instance be other 
nodes in case of a derivative algorithm, or a string in case of an equation-filter. 
It is saved inside the algorithm object.

Deallocation: The intermediate data of each traversed node is released.

Result query: The specific result is requested from the algorithm object.

The node objects offer functionality for algorithms to traverse to child nodes and 
determine the type and value of each addressed node. Algorithms - as top layer code 
- can supplement the graph, but not modify or delete existing nodes.

Generation of Simplified Derivatives

Figure A.4 shows a simple example code and a belonging sequence diagram, whereas 
the belonging symbolic algebra graphs are visualised in Figure A.5. Line 1-3 define 
the variables a, b, and c = a-b. A derivative algorithm object is declared and a is 
given as the independent variable. The boxed line in the code executes the algorithm 
itself. As shown in the sequence diagram, node A3 is first processed. The algo
rithm then descends recursively to Ai and A2, generating their derivatives, before 
constructing its own, represented by A§.

The result of the algorithm is of type Needle, which in general can hold many 
nodes. The Needle class supports an STL1-style interface (Austern, 1998; Schildt, 
1999), such that the first and in this case only element is obtained by the front() 
method.

'Standard Template Library
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Figure A.4: Application of a derivative algorithm to a simple example.

The use of distinct nodes for exact 0 and 1 instead of using an ordinary source 
node of regarding value makes it possible to efficiently simplify the result by another 
algorithm. The algorithm class Optimiser is declared and used much like the previous 
one. By exploiting 1 • x = x, O x = 0, and 0 + x = x, it is found that AT itself 
represents dc/da. Considering this piece of code as a sub-function, which returns e, 
the user object d will run out of scope and release AT - AT.

Figure A.5: Symbolic algebra graphs for the example in Figure A.4: (i) line 3 com
pleted; (ii) line 7 completed; (iii) The optimiser algorithm has generated e in line 10, 
and with d running out of scope, AT - AT are released.
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A.2 Linear algebra package

A.2.1 Requirements

The canonical equation system contains a complete state vector for each physical 
phase and Lagrange multipliers for each distinct intensive state. A process model 
with typically 50 FMs of two extensive and one intensive state, considering 8 chemi
cal species, yields an equation system of size 1200 X1200. In order to benefit from the 
canonical modelling approach as described in the main part of this work, the linear 
algebra package must provide the following key functionality:

• Each scalar element of a linear algebra object can be either an ordinary float
ing point variable or an instance of the symbolic datatype as described in Sec
tion A.1.

• There are block structures, which are compatible to the elementary linear al
gebra objects. The algebra preserves the block structure in its operators. As a 
consequence, this block structure can be applied recursively, i.e. a block struc
ture contains child linear algebra objects, which again can be block structures.

• A limited number of special linear algebra objects are identified as such. Op
erators on these objects are implemented to efficiently exploit the additional 
information. In addition to full matrices and vectors, it is desirable to recog
nise the following special entities: zero matrix 0, zero vector 0, identity matrix 
I, and diagonal matrix D.

• Due to a significant amount of trivial operators, such as 0 + A or I • A, spe
cific data access objects are handled by reference to avoid extensive copying 
efforts. These accessors therefore implement reference counting technology 
(Stroustrup, 1997).

With this, the linear algebra package is in itself a significant part of the solver, with 
functionality exceeding the scope of freely or commercially available software on 
this field. On the other hand, the elementary matrices, i.e. those not represented as 
a block structure, are of moderate size, typically 10 X 10. Thus, there is no need for 
highly developed algorithms made to handle huge matrices efficiently.

A.2.2 General software design

Figure A.6 shows the main classes of the library according to the current design. With 
a floating ownership, accessors are at first accumulated in the user objects, which are 
Matrix and Vector. These user objects implement algebraic operators and provide 
further functionality to access and manipulate the underlying accessors. Instances of 
block structures always accumulate further accessors. Block matrices of symmetric 
block structure are treated distinct from general block matrices. They represent the
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Figure A.6: Static UML structure diagram of user objects, accessors and data con
tainers.

diagonal blocks in the canonical coefficient matrix and therefore assume a special 
role. The storage of actual floating point numbers is only required for a subset of 
linear algebra object types. Each instance of of these accessors accumulate one data 
container.

The current implementation supports a wide range of additional accessors, among 
others for symmetric matrices, matrices of constant value and dyadic matrices. How
ever, in praxis, the accessor types shown in Figure A.6 are most relevant to accom
plish an efficient implementation to solve the canonical equation system.

Figure A.7 shows a simplified sequence diagram of the inversion operation

#inv = with # = f0 , (A.1)

whereas A is square but not necessarily of same size as I. There is a table for each 
operation, which holds a reference to operator objects. Tables of unary operators 
contain one operator object for each type of linear algebra object, this operation can 
be applied to. For binary operators, this table contains an operator object for each 
possible combination, of which many are trivial as A + 0, while others are identical 
through the commutative law.

The operator object create a new accessor object, which is either processed on a 
higher block level operator, or as a result wrapped into the user classes Matrix and 
Vector.
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Figure A.7: UML sequence diagram of a execution of a typical operator.

A.2.3 Transposed and negated linear algebra objects

The computational effort of transposing or negating a matrix is quadratic in size and 
therefore not negligible. But obviously, A + (-B) = A-B, hence subsequent operators 
can often efficiently integrate these kind of modification steps by a simplified lazy 
evaluation technique. With this, it is

|( Ar)( g')| 1 i C1 lA' /i' l 1 i C1 |(/tA)' | 1 i C1 |(BA) '|T + CT 

= [(#A)-i + Cf (A.2)

such that only the multiplication, inversion and addition involve floating point opera
tions, while the transposing and negating could be avoided.

However, this technique’s drawback is the need for many new binary operators 
for matrices. The current implementation supports

A±g, A ± g', A A, A g', A^ g, A f g and A f /f. (A.3)

With 9 different binary operators and 23 different accessors implemented, the number 
of potentially possible operators is approaching 5000. Even though only a fraction 
of these is defined and some more are identical or trivial, this approach generates a 
maintenance problem.

A.3 Remarks

Handling a symbolic data-type within a linear algebra package represents a working 
solution for the purpose of this work. However, performance problems can occur, 
if systems with large number of chemical species are instantiated. Furthermore, the 
rudimental realisation of lazy evaluation techniques on linear algebra level, restricted
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to transposition and negation, generates a huge number of required different binary 
operators, which represents a maintenance problem for current implementation.

It is desirable to alter the approach towards a fully symbolic linear algebra pack
age with generalised operators. A standard linear algebra package can be utilised 
to represent the low level entities in order to ensure a validated and efficient pro
cessing. Operators can be generalised in many ways. For instance, multiplication 
of two diagonal matrices is identical to element-wise multiplication of the diagonal 
vectors. Other operators merely differ by different indexing of two-dimensional data- 
containers.

With such a symbolic linear algebra package, still fulfilling the requirements 
given in Section A.2.1, the canonical system could be symbolically decomposed and 
simplified. Significant amounts of maintenance in each iteration step can be avoided 
this way. Bauer et al. (2002) have developed a framework for symbolic computation, 
probably suitable to be extended towards block structure handling.
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Thermodynamic models

B.l Implemented contributions of thermodynamic models

A(T,V,n)

IdealGas

Margules IdealGas Soave Redlich Kwong

ConstantCompressibility

Schwartzentruber Renon Watanasiri

CpBerman CpDippr CpPoly3 CpShowmate

Figure B.l: Simplified structure of available thermodynamic models in Yasim.

Figure B.l shows a graph of thermodynamic model contributions that are avail
able in Yasim today. Grey shaded boxes indicate the contributions, which were used 
in the examples of this work. These contributions will be described more detailed 
in the following section. While FIelmholtz models necessarily need to describe a 
nonzero compressibility in order to define pressure, this is no general requirement 
for Gibbs models. In many applications, the compressibility of liquid phases is not 
of particular interest, but the canonical modelling approach relies on in in order to 
correlate volume and pressure as conjugated variables. The simplest way to describe 
a nonzero compressibility is implemented into the model contribution ConstantCom
pressibility and further described in Appendix B.31.

'The following sections contain model equations with many mathematical symbols. To maintain 
readability, some symbols receive a local interpretation in the scope of this appendix.
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B.2 Schwartzentruber-Renon-Watanasiri equation of state

The thermodynamic model described in this section is used for all Yasim calculations 
within this work, in particular Chapter 4 and 6.

B.2.1 Pure species contributions

The reference state chemical potential ju[ef at reference conditions (Tref, pref) is given 
by

p|ef = AfA|ef - Ts^. (B.1)

Here, Af h;ref is the molar reference state heat of formation, and sjef the molar reference 
state entropy. The next contribution is related to the ideal gas heat capacity, given as 
a third degree polynomial:

Cf,i(T) = c[0] + (T - T'ef)cP,] + (T2 - T'ef2)cg] + (T3 - T'ef3)cg]. (B.2)

This heat capacity contributes as follows to the pure species chemical potential:

W(T) = ^;ef
T T

+ r cp,i(^d ^ - T r
Tref Tref f

d T. (B.3)

B.2.2 Helmholtz ideal gas state function

The ideal gas model contribution incorporates the effect of ideal mixing, and the 
pressure dependency given by the ideal gas law pV = NRT with N = £ini and R 
the universal gas constant:

+ (B.4)
i Po V

The Helmholtz energy is a state function given as A = G - pV:

A(T, %nf = ^^(T,P,n)ni - NRT. (B.5)

B.2.3 Schwartzentruber-Renon-Watanasiri residual contribution

The Schwartzentruber-Renon-Watanasiri equation of state (Schwartzentruber and 
Renon, 1989; Schwartzentruber et al., 1990) is an extended version of the well-known 
Soave-Redlich-Kwong (SRK) equation of state (Soave, 1972). The Penelaux contri
bution C allows for a more precise description of liquid volumes (Peneloux et al., 
1982). Asymmetric interaction coefficients L and polar parameters pi are introduced
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to enhance the model for polar species and at supercritical temperatures. The equa
tion of state is formulated as

NRT
p= with N = ni

v + c - a (V + C)(V + c + a)

Furthermore:

A = riiiij yjaiUj |l - ka,ij - — kj(rii - nj)

a — ^ jy ninj(bi + bj){ 1 kb,i j) C — CiTii

R2 T2 1 i/3 1
^ ^ ^ with ^ = -(2^3 - 1)-1 « 0.427480..

pc,i 9
R Tc,i 1% = % —^ with % = -(2i/3 _ i) _ 0.086640...
Pc,i 3

ci = c0,i + c1,i Tr,i + c2.i Tr,i with Tr,i = TlTc,i

f1 + mi(1 - Tr1j'2) - (1-Tr,i)(p1,i + p2,i Tr,i + p3,i Tr2)]

a =

mi = 0.48508 + 1.55171 w - 0.15613 w2

Aa.i/ =- ta, =ka°],.+^a^-T+^a^-iT

k6,ij '=f- k^, -i = t[0], + kl^l.T + #]/T

t[2]ka,lj'
[2]

hi A=' -hi = l[0] + £] T + B/T.ji ij

(B.6)

(B.7)

(B.8)

(B.9)

(B.10) 

(B.11) 

for Tri < 1 

for Tri > 1

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

The parameters are critical temperatures Tc,i, critical pressures pc,i, acentric factors 
wi, polar parameters p1 i, p2i, and p3 i, interaction coefficient matrices k[0]), k[1]., k[2].,a ij a ij a ij
kf], k^]., kf], l[0], l[1], and /[2], and liquid volume parameters C0,i, cpi, and C2,i.

The residual Helmholtz state function is then obtained by integration of residual 
pressure over volume as

A™ = / NRT
p-----— dV = NRT In

V A , V + C 
— + — In ■

V+C-a a v+C+a
(B.17)

The complete Helmholtz energy state function is given as

A(T, V n) = A'g + A™ . (B.18)
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B.3 Constant compressibility model contribution

This model contribution describes a phase with constant compressibility epi, thermal 
expansion coefficient eTji, and a given reference molar volume vzref.

Compressibility and the thermal expansion coefficient are defined as follows:

1 dV \_dV_ 
V dp '

(B.19)

These definitions can be formulated also on the partial volume vi, such that sTti and 
sPi are interpreted as pure species properties. The calculated compressibility of a 
mixture is then a consequence of these properties and possible mixing effects:

1 dvi
and epi = —

' (B.20)

Integration and combination gives

Vi(T, p) = f'ef, p'ef) exp [er,i(T - T'ef) - ep,i(p - p'ef)] . (B.21)

Furthermore

p Vref(Tref pref\
AMi = Vidp =  ---------------- exp [sT,i(T - 7ref)] (l - exp \-ep,i(p - pref)]).

ep,ipref
(B.22)

With a realistic parameterisation for condensed phases, moderate pressures and tem
peratures do not yield a significant contribution to calculated thermodynamic proper
ties, in particular regarding phase equilibrium calculations. However, the contribution 
ensures a consistent correlation between pressure and volume.



Appendix C

State functions and 
transformations

C.1 Properties of homogeneous state functions

Theorem C.1 A state function P(xg, xg) of extensive canonical variables xg and in
tensive canonical variables xg can be represented in the EuLER-integrated form, iff it 
is first-order homogeneous:

dP
# P(xg, x^) ^f(^xg,xg) ybr^O. (C.1)

Proof (<=): Let xg = ^ xg and derive with respect to

(c2)

Multiplication with f 2 and back-substitution of f xg = xg yields the EuLER-integrated 
form. □
(^): Integration of the differentiated form in (^) to f yields

1
- P(^ ^8, %) = P(^8, %) . (C.3)

In particular, P is not dependent on f, but a yet unknown function of all canonical 
variables (xg, xg). The equation must still hold for all f + 0 including f = 1, 
concluding P = P. □

Furthermore, derivation of the EuLER-integrated form with respect to xg yields

dP(xg, xg) d2P dP(xg, xg) d2P
% + xg = 0 (C.4)

dxg dxgdxs dxg dxgdxg

as a necessary, but not sufficient property of first-order homogeneous state functions.
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C.2 State function transformations

C.2.1 Preservation of homogeneity

The Legendre and Massieu transformations are used to obtain a state function rep
resentation from another. The homogeneity of thermodynamic state functions is an 
important feature in the concept of canonical modelling. The preservation of homo
geneity throughout transformations is therefore proven here.

Theorem C.2 Any Legendre transformed state function P = Lj[P] of a given a ho
mogeneous first-order state function P is also first-order homogeneous.

Proof: For the case xj e g, the subtracted term in Equation (2.16) is identical to the 
contribution to be removed from the EuLER-integrated form. xj e g does not give 
a new contribution. If xj e g, consider the implicit formulation of Equation (2.16). 
With dP/dxj = Xj and xj = -dP/dXj, it is

dP(x)
f(i) = f(%) + —i,. (C.5)

The added term is identical to the term to be added to the EuLER-integrated form, 
since JCj e g. As proven for theorem C.1, this is sufficient condition for a homoge
neous state function. □

Theorem C.3 Any Massieu transformed state function P = Mj[P] of a given a ho
mogeneous first-order state function P with xj e g and dP/d xj + 0 is likewise first- 
order homogeneous.

Proof: Consider the total differential of P at constant xg, separating out the term
containing Xj and divide by and solve for dxj to obtain the total differential of
Mj[P]:

dPdp on | iii.

dP = — dxj + Yj — d-i, o dxj = —dP- ^ "B" dxi • (C-6)
j ieg\{ j} ie£\{;] dxj

In transformed notation regarding the differentials, this is
dP
dx;

dx: ie£\{dx: J dx: dx:
for i ^ j. (C.7)

Based on the partial derivatives obtained, the EuLER-integrated form is

^ -§r
dP

, 1 n XT' dxiXi or xj - -QfP~ 2j WXi’
dxi ie£\{;'} dxi

dP_
dXf

dx/
(C.8)

which is equivalent to the presumed EuLER-integrated form of P.
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C.2.2 Jacobian matrices

With different state functions applied simultaneously within one process model, the 
sensitivity of a transformed state x with respect to the original state x is required to 
calculate consistent updates. The Jacobian matrix for a chain of transformations can 
be subdivided by chain-rule into the product of jACOBiAN-matrices for single transfor
mations.

For the Legendre transformation, it is

dX/ d2P
xj = gj , therefore — = -----

dx dx, x
(C.9)

Accordingly, the inverse Legendre transformation yields

dx,- d2P
xj = -gj , therefore — = --------.

dx dx, x
(C.10)

As in a Massieu transformation, xj = P(x), therefore dx.j/dx = dP/dx.

C.3 State functions and thermodynamic properties

The columns xt, xm and xc in Table C.1 show the canonical variable sets of some 
selected state functions, followed by the physical interpretation of first and second- 
order derivatives of that state function with respect to the canonical variables. 
Horizontal lines separate groups of state functions, which can be transformed into

Table C.1: Thermodynamic state functions P and physical interpretation of the 
derivatives with respect to their canonical variables.
p xt Xm Xc Pt Pm Pc ptt Ptm Ptc 1*111111 Pmc

G T p m -S V hi T V st -Si —V Sp Vi
A T V m -S -p hi T

_£L
Sp

_±_
V sp Vep

U S V m T -p hi T
Cy

erT
Sp Cy

1 + 4T
e, V Cy

T sT(S iSp-sTVi) Vi
Cy e.,2 e, V

H S p m T V hi T
Cp

vrer
cP

TSi
Cp

<

1 c Vi Cp
S H p m T

V
T -Pi

T
1

T2 cp
yq-rer) A+rS,

w H V
T m T p -Pi

T

s U V T
P
T

-Pi
T

1
T2Cy

eT T-£„p
PCpCy

each other by Legendre transformations. A Massieu transformation is necessary to 
reach from one group into another (see Section 2.5.2). The Hessian elements of 
MASsiEU-transformed surfaces S and V can be physically interpreted, but the com
plexity of their analytical expressions in many cases prohibits a practical use. There
fore, second-order information of these state functions is used solely as the sensitivity
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of the gradient with respect to the canonical variables. The first Hessian elements of 
S (U, V, n) are shown in Table C.1.

Table C.1 can also be used to extract MAxwELL-relations, as for example

dXm \ dxt Xm ,Xc

d / df

Xt ,Xc d xA d X] Xt,Xc Xm,Xc

dV
e.g.

dS_
dp

. (C.11)
T,nt

Further interpretations are available with help of the EuLER-integrated form of state 
functions:

G=pn, A = -pV+p n,
U = T S - pV + p n, and H = T S + p n.

As an example, using the EuLER-representation of H, the following non-canonical 
derivative can be analysed:

dH_
dp T,ni

= S T d(-S)
p,ni dT

+
p,ni dT

n = T d(-S)

p,% dT
= Cp ■

p,ni
(C.12)

Table C.2 can be used to back-calculate heat capacities Cp and CV, thermal expansion

Table C.2: Thermodynamic properties as a function of canonical derivatives.

p xt xm xc Cp Cy st Si sp Vi

G T p m -Gtc Gmc

A T V m i 7 Atm Atm Amc ~Amm A tc l
^ Amm Amm V Amm Amm

coefficient sT, compressibility ep, partial entropy S i and partial volume Vi from given 
derivative information. Heat capacity at constant p (Cp) and at constant V (CV) are 
linked by CV = Cp - TVsT/sp. Combining these quantities, a set of dependent 
thermodynamic properties can be obtained. The symbols introduced in Table C.3 are 
not consistent with the main part of this work.
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Table C.3: Derived thermodynamic properties - Mj is the molar weight of species i.
Quantity Formula Quantity Formula
Total molar quantity N = Yjini Molar fraction %=/%/#
Total mass M = ni Mass fraction wi = MiUi/M
Concentration Ci=ni/V Average molar mass M = M/N
Density q = M/V Partial enthalpy Hi = Pi + T S i
Molar heat capacities Cp/v = Cp/v/N Adiabatic exponent K = Cp/Cy
Joule Thomson coefficient JT = y/Cp(Ter-l) Speed of sound f sonic = sjK/iQEp)
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Appendix D

Dynamic simulation

The main scope of this work is focused on canonical process modelling, in this ap
pendix exploring the feasibility to perform process modelling tasks beyond steady- 
state simulation. Dynamic process simulation definitely holds more challenges then 
those which can be addressed in this appendix. Some of them are consistent initiali
sation, stiffness, event handling, and a wide range of index problems. This appendix 
therefore only sketches the basic approach, how dynamic behaviour can be described 
within the framework of canonical modelling.

In order to explore the feasibility of dynamic simulation based on a canonical 
process model representation, it is necessary to define different forms of dynamic 
simulation. The data-reconciliation example in Section 4.5 is generally not consid
ered as dynamic, even though the process state is calculated as a function of time. 
Hence, if the process model itself has no memory, but only time-dependent process 
parameters give variations of state in time, the process model is called quasi-steady- 
state. On the other hand, a dynamic process model contains some kind of memory, 
represented by an accumulated (or integrated) state. In the context of canonical pro
cess models, there are two distinct kinds of potential dynamic elements: (i) canonical 
(thermodynamic) dynamics (in x), as for instance a buffer tank or a pipe hold-up, and 
(ii) non-canonical dynamics (in y), as for instance any control structures and limited 
valve-opening rates:

X2(t) = X2(t0) +

t
^XfiiAdt (i)

t
y2(t) = y2(to) + Tyr(t)df (ii). (D.1)

to

An example is a buffer tank with the difference in state variables of incoming and 
outgoing streams Xu, and the accumulated state X2 inside the buffer tank. However, 
the integrands can depend on the accumulated variables, for instance if the outgoing 
flow is dependent on the liquid level in the tank. This dependency can be direct or 
indirect through canonical or constitutive process constraints.

The second case requires integration not only of state variables (see Xu(t) in
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Equation (D.1), but of calculated properties y1(t) as well. As an example, the actual 
valve position is no longer a process parameter u, but the integrated actuator speed.

With this, the integrated properties y2(t) become non-canonical state variables 
as well. State variables other than those of thermodynamic nature are an inevitable 
consequence of the fact that non-canonical dynamic effects, such as control structures 
are considered.

D.1 Transition from steady-state to dynamic simulation

Even though material flows described by state vectors X are supplemented by time 
derivatives of accumulated states dX/dt, the interface between two FM remains re
stricted to couplings of streams. Interactions of accumulated states with each other 
always is described by either material streams between them, or constitutive equa
tions. This restriction is not limiting the flexibility of the simulation tool, but greatly 
improves maintainability, as the collaborations are not changed from figure 2.4.

In a traditional switch from steady-state to dynamic simulation, all FM are sup
plemented with dynamic features instantaneously, i.e. hold-up volumes are assigned 
to every flash tank and even valve, and constitutive equations are exchanged by oth
ers more suitable for dynamic simulation automatically. As a result, the dynamic be
haviour of the system is immediately very complex, and the origins of high-frequency 
oscillations can hardly be understood. Extensive use of default geometric parameters 
yields a process model, which looks much more predictive than it really is.

As the interface between dynamic FMs can be kept compatible with steady-state 
FMs, the strategy to switch from steady-state to a dynamic simulation from a user’s 
point of view can be designed as a continuous transition:

1. Originally, there is a steady-state process model. The simulation can be 
interpreted as a single point calculation.

2. Without changes in the process model, an integrator can be started. As there is 
no accumulated state, and all process parameters are independent of time, the 
calculated properties are constant in time and still represent the steady-state 
solution.

3. Time-dependent process parameters are defined. There is still no dynamic 
behaviour (accumulated states), and the calculation results represent a series 
of point calculations of the steady-state process model.

4. Individual FMs are replaced with a dynamic equivalent, for instance a rel
evant buffer tank. From now, the process model shows its own dynamic effects.

5. Accumulated and stream-based variables are used in constitutive equations. 
The pressure of a liquid outlet from a tank is set into an algebraic relationship 
to the liquid level and the pressure in the tank.

6. The explicit integration and differentiation of process properties is used, e.g. to 
implement control structures and limited valve opening rates. This technique 
requires the maintenance of non-canonical state variables.
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D.2 A sketch example

Consider the example process shown in Figure D.1. To emphasise the paradigm of

T = 4 °C 

LNG feed

= 2 bar

m = ft(t)

p = 1.1 bar 
T = 15 °C
________42
Storage tank

43 z :44
p = 1 atm

Control
valve

Figure D.1: Dynamic process with PID control.

only considering relevant dynamics, only the storage tank holds an accumulated state 
42, of which pressure and temperature are even specified. The feed stream enters with 
constant temperature and pressure, but time-variant flow. The valve with constant 
outlet pressure utilises a pressure-flow relation as described in Section 3.6.3.

The canonical system is not entirely different from that of a steady-state process:

r#i /! 1
1 A41 -g1

I ! 1
1 * 1 #1 + a 1

TH2 I T
1 A(dx2/dt) -g2

-I ! I I i *2/3 62 + a 2
......... !...... I H3 a j A43 -g3

1
1

a 1 ~ 1 *3 a3
1
1 H41 A44

1L 1
-I 1 I~ 1 ~ J *4 64 + a4

LNG feed

Storage tank (hold-up) 

Storage tank (outlet) 

Valve

(D.2)

The indices of the state variable vectors are consistent with the stream numbers in 
Figure D.1. Both valve and source module are identical, while the tank coefficient 
matrix reminds one of that of a flow splitter (cf. Section 3.5.5). Actually, as the 
flow splitter shares a single intensive state for both of its physical phases, the same 
applies to the storage tank. The outlet stream 43 is split from the derivative of the 
accumulated state x2.

The constitutive equation system is modified only by including two new opera
tions, namely integration and differentiation. The integrator is necessary to include 
non-canonical dynamic effects, such as limited changes in valve position, while the 
differentiator mainly is applied for process control equipment. In this example, the 
immediate valve position is determined by the flow control (FIC), implemented as a
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PID controller as follows:

z = zo + k [(V4 - V4,sp) +— f (V4 - V4,sp) dt +?Diff ~~t~ I ■L-------.-------' Ant J dt J
V-Vsp diff(V)

int(V-Vsp)

(D.3)

The expressions beneath the braces indicate a possible syntax for the parser of con
stitutive equations. The PID control is simply coded as a constitutive equation:

z® + k ((V — Vsp) + int(V — Vsp)/Tint + T^iff diff(V)) — z = ®. (D.4)

The internal implementation of the int and diff operations are dependent on the 
actual integration method.

As an important fact, H2 and g2 are naturally calculated from x2. For an explicit 
solving strategy, these derivatives are therefore constant during iterations of one time 
step. In this case, constitutive equations must be based on the state x2 of the previous 
time-step in order to obtain correct derivatives to maintain second-order convergence. 
For an implicit solution method, H2 and g2 are to be evaluated on the next time step.
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Numerical methods and matrix 
computations

E.1 Block LU-decomposition

In order to solve equation systems related to canonical process models efficiently, 
the sparse block-structure of linear algebra objects is exploited to avoid redundant 
floating point operations. The LU-decomposition is conducted using the following 
algorithm on a block-matrix B: 

for k = 1 : n — 1

for r = k + 1 : n
solve for Br,k: Br,k Bk,k = Br,k 
Br,k := B r,k

end for
for c = k + 1 : n

for r = k + 1 : n
Bk,c := Br,c — Br,k Bk,r

end for 
end for 

end for

This version without pivoting requires B to contain invertible diagonal blocks, which 
is the case for solvable composite flowsheet module coefficient matrices.

However, building blocks of equilibrium flowsheet modules contain singular 
HESsiAN-matrices of thermodynamic state-functions and zero-matrices. In order to 
decompose these matrices on block-level, it is therefore necessary to pivot both 
rows and columns, even though row-pivoting is sufficient to perform a scalar LU- 
decomposition on a non-singular matrix (Golub and Loan, 1996). A typical example 
is given in Section 3.2.1. Still, the number of atomic flowsheet modules is limited and 
their internal structure fixed, such that an appropriate permutation can be performed 
prior to the application of the non-pivoting algorithm above.
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E.2 Solution strategies for non-blockinvertible systems

E.2.1 One-phase systems of chemical equilibrium

The non-singularity of a matrix does not imply block-invertibility. A common exam
ple is any reactor coefficient matrix as given in Section 3.2.2:

(E.1)

According to Equation (2.15), H is singular, while A is not even square, hence no 
pivot block can be found. Furthermore, no LU-decomposition exists, since

(E.2)^ L1,1 U 1,1 = H -

As H is singular, either of L1,1 and U1,1 must be singular, which can not be a result 
of a successful decomposition.

Repartitioning

Repartitioning can be an efficient strategy for a one-phase reactor, if the number of 
reactions is small compared to the number of chemical species involved. Utilising the 
full row-rank of A, the contained balance equations can be recombined to partition 
A = (I A). System (E.1) then becomes

(E.3)

with

(E.4)

and can be solved by using the boxed elements as pivot blocks in the indicated se
quence.

System modification

Preserving the structure to the cost of efficiency, Equation (E.1) can be modified by 
multiplication as follows:

l (E.5)
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Since A is of full row rank, AAT is non-singular. The balance equations can be 
rearranged to obtain A orthonormal, thus A AT = I. Still, a sub-system of size dim H 
must be solved, which is the drawback of this method.

E.3 Domain restrictions in a relaxation object

Given a relaxation object R1 with its representation as a sorted sequence of values y1,i 
(see Section 3.8), the object describes a currently permitted domain for a relaxation 
factor 7 as

7 e R1 = [71,0,71,1] U---U [71,i,71,i+1] U---U [71,w-1,71,w ] - (E.6)

Open intervals can be described by the formal notation 71,N = ro. The following 
algorithm determines the relaxation object R = R1 n R2:

R := R1

for k = 1:2: N - 1 
R := R
(6, e) = (72k ,72k+t)
Remove all 7j with b < 7j < e from R 
if b e R then insert b into R. 
if e e R then insert e into R

end for

Example:

Let R1 = [0:3] U [6 : 9] and R2 = [0:2] U [5:8]. The representing coefficients are
(71,i) = (3,6,9) and (72,,) = (2,5,8).

The first pair of R2 to consider is (b, e) = (2,5), such that 71 = 3 is to be removed 
from R := R1, which yields R = [0:6] U [9 : ro]. Since b = 2 e R, we modify 
R = [0:2] U [6 : 9]. As e = 5 £ R, no further modification is taken in this step.

The second pair of R2 is (b, e) = (8, ro). 73 = 9 e [b, e] must be removed: 
R = [0:2] U [6 : ro]. Now, b = 8 e R, such that the final result is

R = R1 n R2 = [0:2] U [6:8]. (E.7)

E.4 A suggestion for an initialisation algorithm

The input to the algorithm is a set of robust (mostly linear) equations, a set of inequal
ity constraints, and the complete set of canonical and canonical conjugated variables. 
Each equation is associated to a non-negative cost value, which describes its degree 
of reliability. Furthermore associated to the equation are all involved canonical vari
ables. Each inequality constraint points to an equation, which - if applied - forces
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the constraint to be fulfilled. For example the constraint T > 0 points to an equation 
T - 298.15 K = 0. Most variables do not really need to be initialised. Therefore, 
obligatory variables are specially marked as part of the algorithm input, that is tem
perature T, pressure p, and molar vector n of each phase in the process model (see 
Section 3.7.2).

The algorithm framework can be described by the following work-flow:

1. Find an optimal set of robust equations (a square system) to determine all oblig
atory variables.

2. Detect linear dependent equations and modify equation cost attributes, such 
that a new solution of step 1 does not include these singularities.

3. Solve equation system.

4. Test for non-fulfilled inequality constraints. If there are any, lower the cost of 
the equation, this inequality points to. Goto step 1.

5. With no singularities and non-fulfilled inequality-constraints, the solution from 
step 3 represents a feasible set of initial values.

E.4.1 Obtaining a minimal structural invertible sub-system

The core of the algorithm is to solve assignment problems as described in Sec
tion E.4.2, which however requires a matching number of equations and variables. 
In our case, dummy variables can be added to the system. These variables do nei
ther appear in any equation, nor are they required for initialisation. The cost cij of a 
matching between equation i and variable j is set to the cost-value of the equation, if 
the variable appears within the equation, an infinite value else.

Theorem E.1 A small modification of the assignment problem algorithm finds not
only one, but all optimal matchings, i.e. {Mi | c( Mi) = min c(Mj)}. As a fact, exactlyMj
all possible perfect matchings in the last iteration k of the algorithm are optimal.

Proof: It is trivial to see that all these matchings are optimal, since they are found 
on the same cost-reduced matrix C(k). To prove that no others are optimal, consider 
an optimal matching M2, for which 7(k) = 2 cj + 0, then 7(k) > 0 because

eyeM2 j
cj > 0 Vi, j. But the distance 7(0) - 7(k) is due to the reduction of complete rows and 
columns only depending on k, but not the matching M. Hence c(M2) > min c(Mi),Mi
M2 is not optimal. □

All optimal matchings can therefore found by subsequent disallowing of all 
matching edges recursively until no perfect matching exists for C(k).
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Theorem E.2 With all optimal matchings Mi and the most reduced sub-matchings 
Mi, such that Mli contains all necessary variables xi, there is no non-optimal matching 
Mn with c(Mn) < c(Mi), i.e. all optimal sub-matchings are among sub-sets of the 
optimal matchings:

Proof: Let M1 be an optimal matching with the sub-assignment M1 3 xi. Mn is a 
non-optimal matching, but c(Mn) < c(M{). Since Mn is per definition a structural 
solvable sub-system, the graph G = (X U F, E) can be partitioned by defining Xn and 
Fn, such that Mn c (Xn U Fn, Xn X Fn), as shown in Figure E.1. It is obvious that

= Mn
= Mn \ M 
= E \ Mn

Figure E.1: Partitioning of the bipartite graph to isolate an optimal sub-assignment.

there exists no complete optimal matching Mi in G with Mi n Xn X (F \ Fn) + 0, since 
|X„| = |F„| and cij > copt for {(i, j)|Xi £ Xn A Fj e F„}. Hence, both partial graphs 
Gn = (Xn U Fn, Xn X Fn) and Gn = G \ Gn are decoupled. It is

G is optimal # Gn is optimal A Gn is optimal. (E.8)

It can be assumed w.l.o.g. that Mn is optimal, hence selection of an optimal supple
menting matching generates an optimal matching M2 d Mn. □

The important conclusion of this is that there exists a polynomial algorithm to 
find the optimal set of equations to determine all required variables.

E.4.2 Assignment Problem Algorithm for Square Systems

The algorithm to solve the assignment problem includes an algorithm called ’’Hun
garian method” to obtain a maximum matching and a minimum vertex cover for a 
bipartite graph:

The Hungarian method

Given a bipartite graph G = (U U W, E) and an initial (not necessary maximum) 
matching M of G, the maximum matching and minimum vertex cover can be obtained 
as follows:

1. Marking vertices:

(a) Every u e U \ M is marked by ’0’

(b) If all marks are processed, goto step 3. Else select a non-processed v e 
U U W. Goto step 1c, if v e U, or to step 1d, if v e W.
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(c) Processing a v e U: Each unmarked w e W with vw e E \ M is marked 
with v. Goto step 1b.

(d) Processing a v e W: If v £ M, goto step 2. Else select matching partner 
u e U with vu e M and mark u with v. Goto step 1b.

2. There is an M-prolonging path P from a vertex u e U \ M to v e W \ E as 
follows: The first vertex is v, which is marked with u. P starts with v u e E. If 
the mark of u is ”0”, P is complete and used to extend M, afterwards clearing 
all marks and going to step 1a. Else, u is marked with w e W, Pis extended by 
u w e E. w is marked also and P follows the marks.

3. M is a maximum matching. The non-marked points of U and the marked points 
of W represent a minimum vertex cover.

The weighted matching problem

A cost matrix C(0) is provided as input to the algorithm. To find the least-cost match
ing in a complete bipartite graph G = (U U W, E) with E = U X W, the following 
steps are carried out:

1. Obtain a cost-reduced matrix from C(0) by subtracting the minimum of each 
column from the regarding column, and the minimum of each row from the 
regarding row:

c(1/2) _ c(0)cij = cij
(0)min ci j c(1) = c(1/2) cij = cij min c(1 /2)

j ij
(E.9)

Now, c(j) > 0 V; 3i c(j) = 0 Vj and 3 ; c(j) = 0 Vi. Set the iteration counterij ij ij
k = 1 .

2. Construct a bipartite graph G(U U W, E) with U = (ui>, W = (w;> and u wj e 
E ^ cj = 0. Use the Hungarian method to find a maximum matching and a 
minimum vertex cover X U Y with X c U and Y c W. The reduction number 
m is defined as

m = min{c(k)|ui e X A wj e Y}. (E. 1 0)ij ij

The assignment problem is solved as soon as the obtained matching is com
plete. The matching edges represent the assignment.

3. Add m/2 to all rows i with ui e X, subtract m/2 from all other rows. Add 
m/2 to all columns j with wj e Y, subtract m/2 from all other columns. The 
resulting matrix is C(k+1). Increment k and goto step 2.

The algorithm terminates latest in n2 iterations, but much faster for problems with 
many edges of same costs.



Appendix F

Notation

F.1 Landau symbols

In this work, asymptotic notation is used in two different contexts, namely to describe 
the precision of approximate functions and to characterise computational effort solv
ing a particular problem. Latter one can be measured in terms of memory or runtime. 
If not stated otherwise, computational effort describes the runtime aspect within the 
scope of this work, more precise: the asymptotic number of floating point operations 
(flop) necessary to perform a particular task.

Literature offers various ways to define the Landau symbols (e.g. von Bronstein 
et al., 1999; Gilbert and Peierls, 1988). A consistent definition, which can be used 
for complexity analysis, but as well for error estimations of approximate functions is 
the following:

Let ^(f) and 02 (f) be two arbitrary positive functions of a variable f, and f0 e 
R U {±ro} an agreed limit, typically f0 = ro for complexity analysis, f0 = 0 for error 
estimations. We define:

^2 e O(^1)

^2 e o(^)

^2 e (%1)
^2 e o(^1)
^2 -

lim 02(f)/02(f) = v with v e R*°
f^fQ
lim ^2(fWt(f) = 0

^t e OW 
^t e o(^2)
^2 e O(^1) A e O(^2)

(F.1)

F.2 Unified modelling language

A complete description of the Unified Modelling Language (UML) can be found 
in OMG (2001), but only a small subset is used within the main part of this work, 
namely exclusively static structure diagrams. Due to different versions and dialects, 
some notation conventions might be deprecated in the future. Figure F. 1 contains the
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0..10

is
registered

loans,

Book

L Journal

Cardbox

Library

Database

Customer

Literature

only some journals 
can be loaned

Figure F.1: Example of a UML static structure diagram

elements used in this work, which are:

Terms and definitions F.1
Class A box filled by a noun indicates a class of objects, e.g. Book. There might be 
many instances of type Book, and the common set of properties defines the class.

Inheritance The non-filled arrowheads on lines connecting Book and Journal with 
Literature indicate an inheritance relationship. The sub-classes Book and Journal 
inherit properties from the base-class Literature, which might be an abstract object, 
i.e. all instances of this class are represented by a sub-class. In most cases, the 
arrow can be read as an “is a”-relationship: “A book is a [piece of] literature”.

Association Any solid line, which does not represent an inheritance, expresses an 
association, which is further specified by cardinality.

Cardinality The cardinality is indicated by numbers or ranges of numbers, including 
the symbol * for an arbitrary number. Customer can loan between zero and ten 
instances of Literature. Vice versa, an instance of Literature can be loaned out only 
to zero or one customer at a time. The Library contains at least one instance of 
Literature.

Description For clarification, a solid triangle can give a short description of a partic
ular relationship, usually expressed by a verb. This directed indicator can be read as 
a sentence, e.g. “A customer loans literature”.

OR-Block The block indicating that an instance of Literature is either registered in 
Cardbox or Database is a simplification to avoid the necessity to display numerous 
classes. Alternatively, both Cardbox and Database could inherit from a new class 
called Register, to which they would be associated instead.

Accumulation A black rhombus on the end of an association line indicates an own
ership relation. The class next to the rhombus is the owner of the counterpart class. 
Library is the owner of both, Literature, Cardbox and Database.

Annotation If there is relevant information, which can not be expressed by any other 
notation, a dashed line can connect any symbol mentioned above to a text-box with 
a dog-ear on the upper right corner.
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However, in the appendix, a broader subset of UML is utilised for documentation (cf. 
Appendix A). On these occasions, it is referred to literature for further documentation 
of UML.

F.3 Graph theory

Graph theory is a suitable discipline to describe the field of discrete mathematics. 
This work utilises graph theory to describe process topology as well as mappings 
between equations and variables for initialisation purposes (cf. Appendix E.4).

A

D

C

F

Figure F.2: An example graph

The following terms related to graph theory are used within this work. Figure F.2
shows a simple example of a graph to illustrate these definitions. Trudeau (1993)
gives an introduction to graph theory.

Terms and definitions F.2
Graph A set of vertices {A, B,..., F} and edges {a, b....... e}. One edge connects two
vertices. Vertices can be endpoints of zero, one, or many edges.

Path An alternating sequence of vertices and edges, starting and ending with a ver
tex. A path contains each edge not more than once. In Figure F.2, (F, c, A, a, D, e, C) 
is an example for a path.

Circle A path, in which the starting vertex is identical to the ending vertex.

Bipartite graph A graph, in which the set of all vertices can be partitioned into two 
subsets, such that no edge connects two vertices of the same subset. In Figure F.2, 
the vertices can be partitioned into a bipartite graph as follows: {A, B, C} n {D, E, F}.

Matching A subset of edges in a graph, which do not share any vertices, as {c, e} in 
the example.

Maximum matching A matching, such that any further inclusion of an arbitrary edge 
does not yield a new matching. In the example, {b, e} is a maximum matching.

Perfect matching A (maximum) matching, which covers all vertices of a graph, as 
{c, d, e} in the example.
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