CEA-R 2553 - AUCHAPT Jacqueline

DOSAGE DES PRODUITS DE FISSION DANS LES EFFLUENTS DU TRAITEMENT DES COMBUSTIBLES IRRADIES (METHODE RADIOCHIMIQUE).

Sommaire. - Les méthodes de dosage présentées concernent les produits de fission à vie relativement longue présents dans les effluents de traitement des combustibles irradiés (Sr - Cs - Ce - Zr - Nb - Ru - I).

Elles sont toutes basées sur le même principe :

- addition dentrameur,
- séparation chimique en plusieurs stades de purification,
- détermination du rendement chimique par calorimétrie,
- comptage d'une aliquote liquide.

1966

23 p.

Commissariat à l'Energie Atomique - France

CEA-R 2553 - AUCHAPT Jacqueline

DOSAGE OF FISSION PRODUCTS IN IRRADIATED FUEL TREATMENT EFFLUENTS (radio-chemical method)

Summary.— The dosage methods presented here are applicable to relatively long-lived fission products present in the effluents resulting from irradiated fuel treatment processes (Sr-Cs-Ce-Zr-Nb-Ru-I).

The methods are based on the same principle:

- addition of a carrying-over agent
- chemical separation over several purification stages,
- determination of the chemical yield by calorimetry
- counting of an aliquot liquid portion

1966

23 p.

Commissariat à l'Energie Atomique - France

PREMIER MINISTRE
COMMISSARIAT A
L'ÉNERGIE ATOMIQUE

DOSAGE DES PRODUITS DE FISSION DANS LES EFFLUENTS DU TRAITEMENT DES COMBUSTIBLES IRRADIES (Méthode radiochimique)

par

Jacqueline M. AUCHAPT

Rapport CEA - R 2553

CENTRE DE PRODUCTION DE PLUTONIUM DE MARCOULE

Les rapports du COMMISSARIAT A L'ENERGIE ATOMIQUE sont, à partir du nº 2200, en vente à la Documentation Française, Secrétariat Général du Couvernement, Direction de la Documentation, 16, rue Lord Byron, PARIS VIIIème. The C.E.A. reports starting with no 2200 are available at the Documentation Française, Secrétariat Général du Gouvernement, Direction de la Documentation, 16, rue Lord Byron, PARIS VIIIème.

Centre de Production du Plutonium de Marcoule Services d'Extraction du Plutonium Section de Traitement des Effluents

DOSAGE DES PRODUITS DE FISSION DANS LES EFFLUENTS DU TRAITEMENT DES COMBUSTIBLES IRRADIES (Méthode radiochimique)

par

Jacqueline M. AUCHAPT

TABLE DES MATIERES

т		Dakaantatian	٠	nmahlama
Ι .	_	Présentation	au	propreme

- II Choix des méthodes chimiques
- III Choix des méthodes de comptage

IV - Détail des dosages des différents éléments

- A Ce
- B Zr
- C Nb
- D Ru
- E Cs
- F Sr
- G I

DOSAGE DES PRODUITS DE FISSION DANS LES EFFLUENTS DU TRAITEMENT DES COMBUSTIBLES IRRADIES

(Méthode radiochimique)

I - PRESENTATION DU PROBLEME

Les dosages de produits de fission ont donné lieu à de nombreuses publications, et se font par les méthodes les plus variées. Mais elles sont presque toutes conçues pour des mélanges très complexes. Dans le cas des effluents de traitement des combustibles irradiés où le temps de refroidissement a permis à tous les radioéléments de vie courte de décroître jusqu'à devenir négligeables devant ceux de vie longue, on n'est plus en présence que de six ou sept corps, tous de groupes différents, ce qui doit permettre de simplifier certaines des méthodes originales.

Classification périodique des éléments

I	II	III	IV	v	VI	VII	VIII
Cs	Sr	Ce	Zr	Nb		I	Ru

C'est ce but de simplification qui a été poursuivi dans le présent travail, ainsi que d'homogénéisation : la similitude des méthodes pour les différents produits à doser évite la spécialisation excessive des opérateurs et facilite l'évaluation et la comparaison des résultats dans tous les cas où l'on veut faire un bilan ou une mesure relative en pourcentage.

II - CHOIX DES METHODES CHIMIQUES

Les méthodes usuelles se scindent en deux groupes :

a) celles où l'on ajoute un entraîneur de même nature que le radio-élément cherché. Dans ce cas, le dosage se termine par l'isolement d'un précipité pur que l'on pèse et que l'on compte,

b) celles où l'on procède à un échange d'ions ou à une extraction, et où l'on considère que la séparation est quantitative.

Dans le premier cas, les dosages sont longs, extrêmement minutieux et donnent lieu à des difficultés de comptage β (auto-absorption dans la masse du précipité).

Dans le deuxième cas, on n'a aucun moyen de contrôle si une erreur de manipulation ou une cause interne (ions gênants, par exemple) ont faussé le résultat.

La variante choisie consiste à ajouter un entraîneur et à terminer les opérations en phase liquide sur laquelle on fait le comptage β ou γ et le rendement par colorimétrie (la facilité de manipulation est plus grande et les risques de contamination plus faibles que lorsqu'on opère sur une rondelle de papier filtre qui supporte 20 à 40 mgr de produit actif pulvérulent).

III - CHOIX DES METHODES DE COMPTAGE

Lorsqu'on fait l'analyse complète d'une solution, il est insuffisant d'exprimer l'activité de chaque élément dosé, il faut aussi s'assurer que la somme de ces activités correspond à l'activité globale du mélange.

Ceci ne peut être fait qu'en additionnant les coups β où les coups γ donnés directement par le compteur pour des prises d'essais équivalentes (sans tenir compte du rendement propre du détecteur, différent pour chaque élément).

Le bilan de dosage γ (comptage facile et pratique sous forme liquide dans un scintillateur puits) ne tient malheureusement pas compte du strontium, émetteur β seul.

Le bilan de dosage β n'est pas valable avec tous les types de détecteurs β : les compteurs à fenêtre (Geiger - Scintillateurs solides - Circulation) éliminent pratiquement le zirconium et surtout le niobium dont les rayons β d'énergie très faible sont absorbés par la fenêtre et l'air.

Ce bilan est possible avec un scintillateur d'un type spécial qui détecte les β de faible énergie : le détecteur à scintillations en milieu semi-liquide. Dans cet appareil (type DMSL 1 fabriqué par SAIP sous licence CNRS), on imprègne une rondelle de papier filtre avec la solution active, on la sèche, on la trempe dans un scintillateur liquide et on l'applique avec un poids réflecteur contre la photocathode d'un photomultiplicateur. La géométrie est reproductible et le rendement est excellent (plus de 60 pour cent) pour tous les émetteurs β , même les plus faibles.

On peut ainsi effectuer un bilan qui a un sens vis-à-vis de tous les constituants du mélange, et obtenir facilement une précision égale à 5 pour cent dans le cas le plus défavorable.

IV - DETAIL DES DOSAGES DES DIFFERENTS ELEMENTS

A - DOSAGE DU CERIUM

Principe:

Le cérium, précipité en présence d'entraîneur sous forme de fluorure, est séparé des autres terres rares et du zirconium par oxydation et précipitation en iodate de ${\sf Ce}^{{\sf IV}}$, par réduction et maintien en solution du ${\sf Ce}^{{\sf III}}$ en présence d'iodate de Zr précipité.

Après isolement sous forme d'hydroxyde, le cérium est dissous en milieu chlorhy-drique et l'on effectue sur la solution obtenue le comptage β ou γ et la colorimétrie à l'alizarine sulfonate pour avoir le rendement chimique de la séparation.

Mode opératoire :

1° - Prendre 1 à 10 cm³ d'échantillon à doser, compléter à 10 cm³ avec de l'eau si nécessaire, ajouter 2 cm³ d'entraîneur de Ce, 2 cm³ d'entraîneur de La et 2 cm³ d'entraîneur de Zr. Bien agiter. Ajouter 2, 45 cm³ de NO₃H concentré d = 1,38 et 2,9 cm³ de HF concentré.

Centrifuger immédiatement et laver soigneusement avec 10 cm³ de HF M. Centrifuger immédiatement.

2° - Mettre en suspension le précipité de fluorure de terres rares dans 1 cm³ de solution saturée de BO₃H₃. Laver le tube avec 8 cm³ de NO₃H concentré et agiter pour dissoudre complètement le précipité en chauffant si nécessaire. Refroidir ensuite.

Ajouter 10 gouttes de BrO $_3$ Na M ou 0,1 à 0,2 g de BrO $_3$ K solide, mélanger et ajouter 20 cm3 de IO_3 H, 0,35 M.

Laisser reposer quelques minutes dans la glace. Centrifuger, laver le précipité avec 20 cm³ d'eau.

3° - Dissoudre le précipité dans 1 goutte de HCl concentré, 1 goutte de ${\rm H_2^0}_2$ à 30 pour cent (écraser le précipité), 8 cm³ de NO $_3$ H concentré et 2 cm³ d'eau. Agiter et chauffer pour obtenir la dissolution complète. Refroidir.

Ajouter 2 cm 3 de BrO $_3$ Na M ou 0,5 g de BrO $_3$ K solide, jusqu'à coloration en rouge Ajouter 20 cm 3 de IO $_3$ H, 0,35 M. Centrifuger et laver avec 10 cm 3 d'eau.

 4° - Dissoudre le précipité dans 1 goutte de HCl concentré, 3 gouttes de ${\rm H_20_2}$ à 30 pour cent, 8 cm³ de NO₃H concentré et 2 cm³ d'eau. Agiter. Chauffer si nécessaire. Refroidir.

Ajouter 1 cm³ d'entraîneur de Zr.

Ajouter 20 cm 3 de ${\rm IO_3H}$, 0,35 M pour précipiter le Zr. Laisser reposer 5 minutes. Centrifuger et rejeter le précipité.

 5° - Précipiter le Ce (OH)₃ par addition ménagée d'un excès de soude 12 M (10 à $11~{\rm cm}^3$).

Centrifuger et dissoudre le précipité dans 2 cm 3 d'HCl 6 M. Diluer à 10 cm 3 . Faire passer SO_2 jusqu'à décoloration de la solution (réduction de IO_3 en IO_3 en IO_3).

Précipiter le Ce (OH)3 par un excès d'ammoniaque concentrée.

Centrifuger et laver 2 fois avec 10 cm³ d'eau.

6° - Dissoudre l'hydroxyde dans 1 cm³ de HCl 6 N, étendre à 20 cm³ dans une fiole avec de l'eau.

Comptage:

Prélever 2 cm 3 pour comptage γ liquide ou 0,1 cm 3 pour comptage en scintillateur β semi-liquide.

Rendement par colorimétrie :

Faire une dilution 1/10 de la solution obtenue au paragraphe 6°

Prélever 2 cm³ de cette solution dans une fiole de 25 cm³.

Ajouter 10 cm³ d'eau et 1 goutte de rouge de phénol.

Ajouter NaOH, 0,2 N jusqu'à virage au rouge.

Ajouter HCl, 0,03 N jusqu'à virage au jaune.

Ajouter 1,25 cm³ de solution tampon et 5 cm³ d'alizarine sulfonate à 0,1 pour cent. Diluer à 25 cm³ avec de l'eau, mélanger, attendre 5 mn, mesurer à 533 m μ .

Etalon:

Prendre 2 cm³ d'entraîneur de Ce, ajouter 1 cm³ d'HCl 6 M.

Etendre à 200 cm³ en fiole jaugée avec de l'eau (cette dilution peut être conservée et servir plusieurs fois).

Prélever 2 cm³ dans une fiole de 25 et préparer la colorimétrie comme pour le dosage.

Rendement chimique = Déviation dosage Déviation étalon

Réactifs

1° - Entraîneur du cérium : dissoudre 31 g de $(NO_3)_3$ Ce, 6 H_2 0 dans 1 litre d'eau distillée.

2° - Autres réactifs.

Entraîneur de lanthane :

Dissoudre 31 g de $(NO_3)_3$ La, 6 H_2O dans 1 litre d'eau distillée.

Entraîneur de zirconium :

Dissoudre 30 g de $(NO_3)_4Zr$, 4 H_2O dans 1 litre d'eau distillée (Produit Serlabo de préférence).

- NO₃H concentré
- HF concentré
- HCl concentré
- HCl 6 N
- Solution saturée de $\mathrm{BrO_3H_3}$ 1 N ou $\mathrm{Br0_3K}$ solide
- Eau oxygénée à 30 pour cent
- NH,OH concentrée
- Soude 12 N
- SO₂ gazeux (siphon) ou solution de SO₂ à 6 pour cent
- Glace

3° - Colorimétrie

- Rouge phénol à 225 mg/l dans l'eau
- Soude 0,2 N
- HC1 0,03 N

Tampon : solution aqueuse 2 N en acide acétique + 2 N en acétate d'ammonium. Solution aqueuse d'alizarine sulfonate à 0,1 pour cent.

B - DOSAGE DU ZIRCONIUM

Principe:

Après addition d'entraîneur, le zirconium est précipité par l'acide mandélique. Le mandélate est transformé en hydroxyde puis solubilisé en milieu acide.

La précipitation mandélique est répétée une 2ème fois, puis la solution acide obtenue à partir du mandélate sert au comptage et à la colorimétrie par l'alizarine sulfonate qui donne le rendement chimique de la séparation.

Mode opératoire :

- 1° Prendre 1 à 10 cm³ de solution à doser
 Ajouter de l'eau pour avoir 10 cm³
 Ajouter 5 cm³ d'HCl concentré et 2 cm³ d'entraîneur de Zr
 Porter à ébullition
 Ajouter 10 cm³ d'acide mandélique à 15 pour cent
 Chauffer presque à ébullition. Laisser refroidir
 Centrifuger et rejeter la solution surnageante
 Laver avec 10 cm³ de solution de lavage. Centrifuger
- 2° Mettre le précipité en suspension dans 20 cm³ NaOH N Centrifuger. Rejeter la solution surnageante

Laver avec 10 cm 3 de NaOH $\frac{N}{10}$. Centrifuger

3° - Dissoudre dans 5 cm³ HCl concentré et 10 cm³ d'eau.

Porter à ébullition

Ajouter 10 cm³ d'acide mandélique

Porter presque à ébullition. Laisser refroidir. Centrifuger. Rejeter la solution.

Laver avec 10 cm³ de solution de lavage. Centrifuger

- 4° Mettre le précipité en suspension dans 20 cm³ NaOH N Centrifuger. Rejeter la solution surnageante Laver avec 10 cm³ de NaOH $\frac{N}{10}$. Centrifuger.
- 5° Dissoudre dans 2 cm³ d'HCl 6N (par portions de 0,5 cm³)

 Mettre en fiole jaugée de 20 cm³ et ajuster avec HCl 6 N.

Rendement par colorimétrie :

Faire une dilution 1/5 avec HCl 6N de la solution destinée au comptage

Prendre 2 cm³ dans une fiole de 100 cm³

Ajouter 3 cm³ de HCl 6N

10 cm³ d'eau

10 cm³ d'alizarine sulfonate

Mélanger

Laisser 5 mn immergé dans un bain-marie à 70-80°

Laisser reposer 20 mn à température ambiante

Diluer à 100 cm³ avec de l'eau

Mesurer à 524 mµ.

Témoin:

Même mode opératoire sur 2 cm³ HCl 6N au lieu de la solution active

Etalon

Même mode opératoire sur 2 cm³ d'une dilution 1/50 de l'entraîneur avec HCl 6 N (qui peut être conservée et servir plusieurs fois).

Rendement de dosage = Déviation dosage Déviation étalon

Réactifs:

1° - Entraineur de zirconium

Dissoudre 32,2 g de $\rm ZrOCl_2$, 8 $\rm H_2O$ 'Merk' dans l'eau et ajuster à 1 litre

2º - Autres réactifs

- Acide mandélique à 15 pour cent
- Solution de lavage : acide mandélique à 5 pour cent dans HCl à 20 pour cent
- HCl concentré
- HCl 6N
- NaOH N
- NaOH $\frac{N}{10}$
- HCl N
- Alizarine sulfonate de sodium à 0,15 pour cent. Peser 1,5 g. Dissoudre dans 300 cm³ d'eau chaude. Filtrer. Diluer à 1000. Filtrer encore.

C - DOSAGE DU NIOBIUM

Principe:

Après addition d'entraîneur, on forme le complexe oxalique du niobium, puis on le détruit par le chlorate de potassium et on précipite Nb₉O₅.

On redissout le précipité en le complexant par l'acide oxalique et on le précipite à nouveau comme précédemment.

On redissout le précipité en milieu fluorhydrique-tartrique et on effectue sur cette solution le comptage β ou γ liquide et la colorimétrie par le sulfocyanure pour avoir le rendement chimique de la séparation.

Mode opératoire :

 1° - Prendre 1 à 10 cm³ de solution à doser

Ajouter 1 cm³ d'entraîneur de Zr

- un volume égal de NO_3H concentré
- $-1 \text{ cm}^3 \text{ de HCl } 6 \text{ M}$
- 1 cm³ d'acide oxalique saturé. Agiter
- 2 cm³ d'entraîneur de Nb

Chauffer presque à ébullition. Ajouter une spatule de ClO₃K par petites portions en faisant bouillir après chaque addition. Centrifuger. Rejeter la solution.

Mettre en suspension dans 3 cm 3 de NO $_3$ H 6M, 2 cm 3 de NH $_4$ OH 6M, 5 cm 3 d'eau Chauffer presque à ébullition. Centrifuger.

2° - Dissoudre le précipité en le chauffant avec 6 cm³ d'acide oxalique saturé.

Après dissolution, ajouter 5 cm³ de NO₃H concentré et chauffer à ébullition. Ajouter ClO₃K comme précédemment et centrifuger. Laver aussi comme précédemment et centrifuger.

3° - Dissoudre le précipité dans 2 à 3 gouttes de FH concentré. Ajouter 2 cm³ d'eau et de l'acide tartrique à 10 pour cent. Mettre en fiole de 20 cm³ et ajuster avec l'acide tartrique.

Comptage : Compter 2 cm 3 en γ liquide ou 0,1 cm 3 en scintillateur β semi-liquide.

Mode opératoire

: en fiole de 50 cm³

général

(10 cm³ HCl concentré

(1 cm³ acétone (10 cm³ acétone

Refroidir

($10~{\rm cm}^3$ d'acide tartrique ($1~{\rm cm}^3$ de solution contenant le Nb ($10~{\rm cm}^3$ de SCNK

Complèter à 50 avec de l'eau

Attendre 5 minutes

Préparer 3 essais :

1° - un témoin sans Nb pour réglage du colorimètre

2° - un étalon :

avec 1 cm³ de solution tartrique de Nb étalon

3° - le dosage : avec 1 cm³ de la solution obtenue en faisant une dilu-

tion 1/20 de la solution à compter avec de l'acide

tartrique

Lecture à 385 mu

Rendement = déviation dosage déviation étalon

REACTIFS POUR DOSAGE Nb

Entraîneur de Nb

1° - Dissoudre 26 g d'hexaniobate de potassium $K_8Nb_6O_9$, 16 H_2O dans 200 cm³ l'eau.

Chauffer à ébullition et ajouter lentement 15 cm³ de NO₃H concentré en agitant 2 à 3 mn, centrifuger.

Laver 3 fois avec 50 cm³ de NO₃NH₄ chaud à 2 pour cent.

Ajouter 500 cm³ d'acide oxalique saturé et chauffer en agitant à douce ébullition.

Rajouter par petites portions de l'acide oxalique cristallisé jusqu'à dissolution complète (action très lente).

Refroidir, diluer à 1 litre et filtrer. La solution peut rester légèrement opalescente

Solution tartrique étalon de Nb pour calorimétrie

Pipeter 5 cm³

Ajouter 30 cm³ de NO₃H 6 M et ClO₃K comme ci-dessus, centrifuger longuement.

Dissoudre dans 6 à 8 gouttes de FH concentré ajouter quelques cm³ d'eau, chauffer si nécessaire.

Etendre à 1000 avec de l'acide tartrique à 10 pour cent, conserver en flacon poly thène.

Autres réactifs :

- entraîneur de Zr à 10 mg Zr/cm³
- NO₂H concentré
- NO₃H 6 M
- HCl 6 M

- Acide oxalique saturé
- Acide oxalique cristallisé
- Chlorate de potassium ClO₂K cristallisé
- NH₄OH 6 M
- HCl concentré
- Cl_2Sn à 45 g de Cl_2Sn , $2\,\text{H}_2\text{O}$ dans 100 cm³ d'HCl 6N Filtrer
- SCNK à 29 $g/100 \text{ cm}^3$
- Acétone
- Acide tartrique à 10 g/l.

D - DOSAGE DU RUTHENIUM

Principe:

En présence d'entraîneur, le ruthénium est soumis à une distillation oxydante en milieu perchlorique.

Le distillat est reçu dans une solution de chlorhydrate d'hydroxylamine et cette solution sert au comptage et à la colorimétrie du ruthénium par l'o-phénanthroline.

Mode opératoire :

 1° - Dans le ballon de l'appareil à distiller (voir croquis), mettre 1 à 5 cm 3 de prise d'essai.

Ajouter 2 cm³ d'entraîneur de Ru 10 cm³ d'acide perchlorique quelques anneaux de Rashig

- Dans le ballon récepteur, mettre 22,5 cm³ d'HCl 0,2 M et 3 cm³ de chlorhydrate d'hydroxylamine à 5 pour cent
- Dans le flacon de garde, mettre 7,5 cm³ d'HCl 0,2 M et 1 cm³ de chlorhydrate d'hydroxylamine à 5 pour cent.
- 2° Distiller jusqu'à décoloration et fumées blanches, avec précaution, en évitant les retours.

Mettre en fiole de 50 cm³ le contenu du ballon récepteur et du flacon de garde, rincer et ajuster avec la solution de lavage.

Prélever 0,1 cm 3 pour le comptage β par scintillation semi-liquide ou 2 cm 3 pour le comptage γ .

Colorimétrie:

Prélever 5 cm3 de la solution précédente et les diluer à 20 cm³ avec la solution de lavage.

Dans un bécher, prendre 2 cm³ de cette dilution, ajouter :

- 15 cm³ d'o-phénanthroline
- 5 cm³ de chlorhydrate d'hydroxylamine
- 10 cm³ de NaCl

Amener le pH à 6 avec NaOH 6 M et HCl

Mettre en fiole de 100 cm³ et ajuster avec de l'eau

Laisser 2 heures exactement au bain-marie à 100°

Refroidir instantanément sous l'eau courante jusqu'à température ambiante Lire à 448 m μ

Faire le blanc avec 2 cm³ de la solution de lavage et le témoin avec 2 cm³ de la dilution suivante :

1 cm³ d'entraîneur de Ru

étendre à 100 avec la solution de lavage (cette solution pour témoin peut être conservée pour plusieurs dosages).

Réactifs

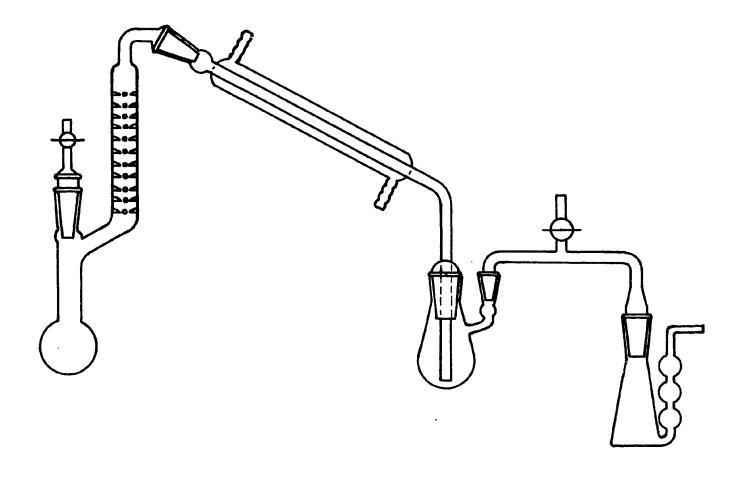
Dosage:

- Entraîneur de ruthénium : dissoudre 26 g de trichlorure de ruthénium commercial dans 1 litre de HCl 0,1 N.
 - Acide perchlorique (de préférence "Merk" d = 1,67)
 - HCl 0,2 M
 - Chlorhydrate d'hydroxylamine à 5 pour cent
 - Solution de lavage : 30 vol. d'HCl 0,2 M

4 vol. de chlorhydrate d'hydroxylamine à 5 pour cent.

Colorimétrie:

- O-phénanthroline dans l'eau $\frac{M}{100}$


E - DOSAGE DU CESIUM

Principe

Après addition d'entrasneur la solution est purifiée par précipitation d'hydroxyde ferrique en milieu ammoniacal.

Puis le césium est précipité sous forme de perchlorate en milieu alcoolique et le précipité, isolé et lavé, est redissous dans l'eau.

La solution obtenue sert au comptage et à la détermination du rendement chimique par colorimétrie du perchlorate de phénanthroline ferreuse dans le butyronitrile.

Appareil à distiller ${
m RUO_4H}$

Mode_opératoire

1° - Prendre 1 à 10 cm³ de solution à analyser

Compléter à 10 cm³ avec de l'eau si nécessaire

Ajouter 2 cm³ d'entraîneur de cesium, chauffer à ébullition et ajouter

2 cm³ de fer entraîneur

Précipiter l'hydroxyde par un léger excès de NH₄OH, N

Centrifuger, rejeter le précipité

Chauffer à ébullition et ajouter encore 2 cm³ de fer entraîneur

Précipiter par NH₄OH, 6N

Filtrer sur un petit filtre sans cendres imbibé d'eau et rejeter le précipité.

2° - Ajouter au filtrat 5 cm³ d'acide perchlorique concentré
Evaporer au bain de sable jusqu'à fumées blanches épaisses
Laisser refroidir et plonger le tube dans la glace
Ajouter 15 cm³ d'alcool absolu. Refroidir encore en agitant
Filtrer sous vide sur un entonnoir à disque fritté n° 4 en évitant d'entraîner le précipité
Laver le précipité 25 fois par 5 cm³ d'alcool absolu afin de le débarrasser de tout acide perchlorique en excès
Filtrer chaque lavage sur le verre fritté.
Après le dernier lavage, rincer l'entonnoir, dessus et dessous la plaque frittée, avec un jet de pissette d'alcool et sécher le précipité sur l'entonnoir à l'étuve.

3° - Redissoudre le précipité dans 3 fois 5 cm³ d'eau distillée chaude Refroidir et ajuster à 20 cm³.

Comptage

Prélever 2 cm³ pour comptage γ liquide ou 0,1 cm³ pour comptage β semi-liquide.

Rendement colorimétrique

Prélever 1 cm³ de solution finale dans un petit flacon à bouchon rodé.

Ajouter 1 cm³ d'eau distillée

1 cm³ de sulfate de 1.10 phénanthroline ferreuse

3 cm³ de tampon pH5

4 cm³ exacts de butyronitrile

Boucher (sans graisser les bouchons rodés)

Agiter 1 minute environ

Laisser décanter les deux phases

Dans une fiole jaugée de 25 cm³, prélever 2 cm³ de la phase solvant (avec beaucoup de précautions pour ne pas entraîner de gouttes d'eau)

Ajuster à 25 cm³ avec de l'acétone

Attendre 15 mn et lire à 510 mu

Comparer à un étalon fait avec une dilution identique d'entraîneur de cesium, par rapport à un blanc.

La densité optique suit la loi de Beer entre les concentrations 1/10 et 1/100 de l'entraîneur

Réactifs

1° - Entraîneur de cesium

Solution à 1,2 pour cent de ClO_4 Cs dans l'eau

Préparation de ClC₄Cs

Prendre 5 g de ClOs R.P. "Prolabo"

Dissoudre dans 10 cm³ d'eau

Attaquer au bain de sable par $10~{\rm cm}^3$ de ${\rm ClO}_4{\rm H}$ concentré, jusqu'à fumées blanches

Refroidir lentement dans la glace et filtrer sur verre fritté

Laver à l'alcool absolu (d'abord froid puis à t° ambiante) jusqu'à disparition de l'acidité à l'indicateur coloré

Sécher à 100° et conserver en flacon émeri.

2° - Autres réactifs

- Entraîneur de fer : solution à 2,5 mg Fe³⁺/cm³
- Ammoniaque 6 N
- Acide perchlorique à 70 pour cent
- Alcool absolu

Solution 0,01 M de ferroïne (ou 1,10 phénanthroline ferreuse)

- Mélange à volume égal d'une solution 0,02 M de ${
 m SO_4Fe}$, ${
 m 7H_2O}$ et d'une solution 0,06 M de 1.10 phénanthroline
- Tampon pH5: solution 0,1 M en acide acétique et 0,1 M en acétate de so-dium
- n. butyronitrile : produit "Eastman" imposé.

F - DOSAGE DU STRONTIUM

Principe:

Après addition d'entraîneur, on fait une double précipitation nitrique du strontium.

Après solubilisation, on procède à un entraînement des impuretés sur de l'hydroxyde ferrique.

Le strontium est finalement précipité sous forme d'oxalate puis redissous en milieu nitrique dilué et cette solution sert au comptage β et à la colorimétrie de l'oxalate par réduction à l'hydroxylamine en présence d'éthylène glycol et de chlorure ferrique.

Mode opératoire :

1° - Prendre 1 à 5 cm³ de solution
Ajouter 2 cm³ d'entraîneur de strontium
Ajouter 30 cm³ d'acide nitrique fumant

Refroidir sous l'eau courante, agiter 1 à 2 minutes et centrifuger. Rejeter la solution surnageante.

2° - Dissoudre le précipité dans 2 cm³ d'eau, en chauffant si nécessaire, et reprécipiter par 15 cm³ d'acide nitrique fumant. Refroidir.

Centrifuger et rejeter la solution surnageante.

- 3° Dissoudre le précipité dans 5 cm³ d'eau. Ajouter 2 cm³ de fer entraîneur à 2 mg 5/cm³, et précipiter l'hydroxyde ferrique par 2 cm³ d'ammoniaque 6 M. Centrifuger et conserver la solution surnageante dans un tube propre. Rejeter le précipité.
 - 4° Ajouter 2 cm³ d'ammoniaque concentré. Porter presque à ébullition.

 Ajouter lentement en agitant 5 cm³ d'oxalate d'ammonium saturé chaud.

 Porter presque à ébullition

 Laisser reposer 10 mm

 Centrifuger

 Laver 3 fois avec 10 cm³ d'eau chaude.
 - 5° Redissoudre le précipité dans 1,5 cm³ de NO_3HN Mettre en fiole de 10 cm³ en ajustant avec $NO_3H\frac{N}{10}$ Prélever 0,1 cm³ pour comptage en scintillation semi-liquide. Faire le comptage $^{1)}$ Prélever 0,5 cm³ pour le rendement par colorimétrie Faire la colorimétrie $^{2)}$.

1) Comptage

Si l'on considère la courbe de formation de 90 Y à partir de 90 Sr, on voit qu'au bout d'une heure il s'est formé environ 2 pour cent d' 90 Y par rapport au 90 Sr initial.

Dans les conditions où nous opérons, cette précision est suffisante et on peut considérer qu'en comptant la source moins de 1 heure après la précipitation d'oxalate, le résultat obtenu représente le strontium seul.

Dans le cas où l'on a le mélange des 2 isotopes, la séparation peut en être faite en effectuant un second comptage par scintillation semi-liquide après une période de 24 h exactement après la précipitation.

Après 24 h , il y a 23,5 pour cent d'⁹⁰Y par rapport au ⁹⁰Sr initial. Par contre, la décroissance du ⁸⁹Sr est négligeable. On a donc à résoudre le système de 2 équations à 2 inconnues qui donne les taux de comptage respectifs de ⁸⁹Sr et ⁹⁰Sr.

Comptage 0 h =
89
Sr + 90 Sr
Comptage 24 h = 89 Sr + 90 Sr + 23,5 90 Sr

Nota

Pour les traitements ou les rejets dans lesquels la nuisance de cet élément seul compte, on exprime l'activité du 90 Sr seul et non du couple à l'équilibre 90 Sr + 90 Y.

Par contre, dans le bilan global β de l'analyse complète, il faut adjoindre une activité égale à celle du 90 Sr pour tenir compte de l' 90 Y qui était en équilibre avec lui et qui n'est pas dosé individuellement.

2) Colorimétrie

- Prendre dans un bécher 0,5 cm³ de la solution obtenue au paragraphe 5, ajouter 2 cm³ d'éthylène glycol acide et mélanger. Chauffer 3 mn au bain-marie à 95-98° et refroidir immédiatement sous l'eau courante.

Ajouter 3 cm³ d'hydroxylamine. Mélanger.

- Préparer 10 cm³ de chlorure ferrique acide dans une fiole de 20 cm³. Y ajouter la solution du bécher. Rincer. Ajuster à l'eau. Agiter. Laisser reposer une heure sans bouchon. (il peut y avoir dans le fond de la fiole un léger précipité. Prélever la solution surnageante à la pipette sans mélanger).

Lire à 490 mµ, en même temps qu'un blanc préparé avec 0,5 cm³ de NO $_3^{}H\frac{N}{10}^{}$ et qu'un témoin préparé avec 0,5 cm³ d'une dilution 1/5 de l'entraîneur avec NO $_3^{}\frac{N}{10}^{}$.

Le rendement chimique de dosage = $\frac{\text{d.o. dosage}}{\text{d.o. témoin}}$

Réactifs

Dosage:

- Entraîneur de strontium : dissoudre 22,1 g de $\rm C_2O_4$ Sr, $\rm H_2O$ dans 600 cm de $\rm NO_3HN$

- Ajuster à 1000
- NO₃H fumant
- NO₃H N
- $NO_3H \frac{N}{10}$
- Fer entraı̂neur à 2,5 mg/cm 3
- Ammoniaque concentrée
- Ammoniaque 6 M
- Oxalate d'ammonium saturé

Colorimétrie:

- SO_4H_2 1/1 en volume
- NaOH 4,5
- Chlorhydrate d'hydroxylamine : sol à 10 pour cent dans l'eau
- Ethylène glycol acide ($30 \text{ cm}^3 \text{ d'éthylène glycol}$ ($4 \text{ cm}^3 \text{ de SO}_4 \text{H}_2$ 1/1 en vol.

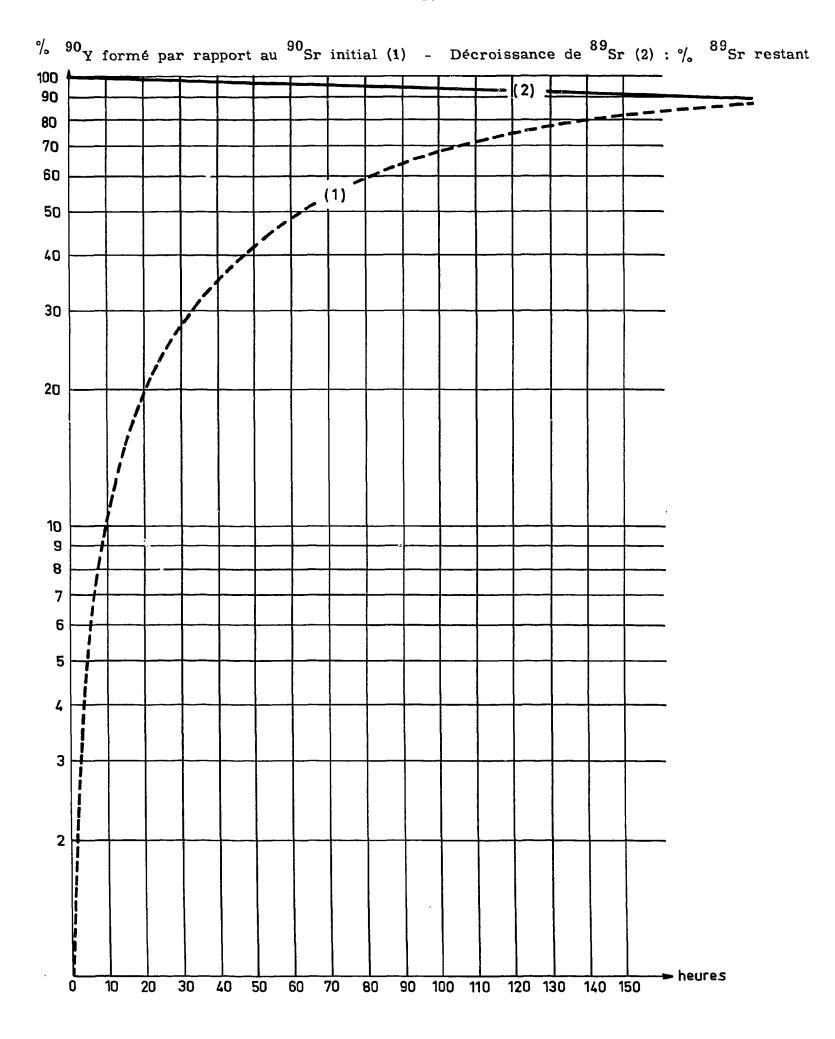
à préparer chaque jour

- Hydroxylamine (5 cm³ de chlorhydrate à 10 pour cent (20 cm³ de soude 4,5 N

à préparer juste avant l'emploi

(20 gr de $\rm Cl_3Fe$, $\rm 6H_2O$ dans 500 cm 3 d'eau - Chlorure ferrique acide (20 cm 3 de $\rm SO_4H_2$ concentré (Diluer à 1000

G - DOSAGE DE L'IODE


Principe:

Après addition d'entraîneur, les composés iodés sont transformés en iodates par ClONa puis en iode par l'hydroxylamine et l'iode est extrait par le chloroforme. Il est ensuite réduit en iodure et extrait par une solution de bisulfite, puis à nouveau oxydé en iode par le nitrite et extrait par le chloroforme.

La solution chloroformique sert au comptage et à la détermination du rendement chimique par colorimétrie directe.

Mode opératoire:

1° - Prendre 1 à 10 cm³ d'échantillon à doser dans une ampoule à décanter de 60 cm³

Amener au voisinage de la neutralité. Ajouter $10~\rm{cm}^3$ de $\rm{CO_3Na_2}$ 2M et 0,2 cm³ d'entraîneur d'iode, puis 1 cm³ de ClONa à 5 pour cent.

Agiter longuement

Acidifier très lentement avec 3 cm³ de NO₃H concentré

Ajouter 9 cm³ de chlorhydrate d'hydroxylamine N et extraire l'iode avec 10 cm³ de chloroforme

Rejeter la phase aqueuse.

- 2° Extraire le chloroforme avec $10~{
 m cm}^3$ d'eau contenant quelques gouttes de bisulfite ${
 m SO}_3{
 m HNa}$ M jusqu'à ce que les 2 phases soient incolores et rejeter ${
 m CHCl}_3$
- 3° Ajouter 1 cm 3 de NO $_3$ H 6M, quelques gouttes de NO $_2$ Na M et extraire l'iode dans 10 cm 3 de CHCl $_3$

Séparer les deux phases

Recueillir le chloroforme dans une fiole de 20 cm³.

Rincer l'ampoule avec 5 cm³ de CHCl₃, verser dans la fiole et compléter avec CHCl₃. Boucher de suite.

Comptage : Compter 2 cm 3 en γ liquide en tube bouché ou 0,1 cm 3 en scintillateur β semi-liquide.

Rendement par colorimétrie :

Colorimétrie directe à 510 mµ en cuve bouchée

Etalon: prendre 0,2 cm3 d'entraîneur d'iode dans une ampoule.

Ajouter 1 cm 3 de NO $_3$ H 6 M, 10 cm 3 d'eau et quelques gouttes de NO $_2$ Na M Extraire 3 fois de suite avec 5 cm 3 de chloroforme

Mettre en fiole jaugée les 3 extraits et compléter à 20 cm³ avec du chloro-

forme

Le rendement chimique = d. optique du dosage d. optique de l'étalon

Réactifs

1° - Entraîneur d'iode

Dissoudre 13 g de IK dans 1 litre d'eau contenant quelques milligrammes de CO₃H Na.

2° - Autres réactifs

- $-CO_3Na_2^2$
- ClONa à 5 pour cent
- NO₃H 6 N
- NO₃H concentré
- Chlorhydrate d'hydroxylamine N
- Chloroforme

- Bisulfite de sodium M
- Nitrite de sodium M.

Manuscrit reçu le 22 juin 1964

#