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ABSTRACT

SUBSIDENCE CAUSED BY AN UNDERGROUND
NUCLEAR EXPLOSION

by

W. W. H a k a l a

An underground nuclear detonation creates a cavity, which
may be followed by the formation of a rubble chimney and possibly
by a surface subsidence crater. A knowledge of the mechanisms of
surface and subsurface subsidence is valuable not only because of
the potential engineering uses of the chimneys and craters that
may form, but also for the prevention of surface damage.

Some of the parameters that are of interest in the subsi-
dence phenomenon are the height and volume of the chimney, the
porosity of the chimney, the crater size (depth and radius) and
shape, and the time required after detonation for formation of
the chimney or crater. The influence of the properties of the
subsidence medium on the geometry of the subsidence crater must
be considered. The conditions under which partial or complete
subsidence is prevented must also be studied.

The applicability of the relations that have been developed
for the flow of bulk solids for relatively small masses and low
pressures to the subsidence problem associated with nuclear ex-
plosions is examined. Rational modifications are made to describe
the subsidence problem. Sensitivity of the subsidence parameters
to material properties and the prevailing geometry is shown. Com-
parison with observed results at the Nevada Test Site is made and
the variations encountered are found to be within reasonable
limits .

The chimney size and subsidence crater dimensions are found
to be a function of the bulking characteristics of the medium,
the strength parameters, the dimensions of the subsurface cavity,
and the depth of the cavity. The great influence of the strength
parameters on the collapse times is shown. For a given medium,
the prevention of subsidence is dependent on the cavity size.
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The utility of subsidence craters for engineering purposes is
questionable, since greater efficiency in producing surface de-
pressions can be obtained with ejecta craters. Still, if contain-
ment of radioactivity is mandatory, subsidence craters may provide
a solution for certain problems. Subsurface subsidence (e.g.,
permeable chimneys) does have immediate application in the Plow-
share program. Independent of the engineering applications, it is
necessary to determine the extent of surface subsidence for safety
reasons. A knowledge of the subsidence mechanisms may even permit
the control of subsidence to some degree.

This paper is a study of the subsidence associated with the
collapse of underground spherical cavities (which were produced
by underground nuclear detonations). The results are based on
the work of Jenike and his colleagues, who have developed many
of the concepts for the flow of bulk solids (bin-flow theory).
Homogeneity, isotropy, and steady-state flow are usually assumed in
Jenike's work.

Although deviations from homogeneity and isotropy are present
in most of the subsidence cases, it is assumed that these effects
are small. Of course, the presence of layered earth media having
widely varying strength properties would affect the results sig-
nificantly, and would require individual consideration.

In contrast to the fixed outlet dimensions in bin-flow theory,
the material adjacent to the assumed spherical cavity is subject
to collapse. However, it is assumed that the flow boundaries are
close to the cavity walls and thus the outlet dimensions can be
expressed in terms of the cavity radius, Rc.

This work also requires the cavity pressure to be approxi-
mately atmospheric. While the time to collapse will be dependent
on the cavity pressure, it is not believed that the potential flow
patterns will be affected significantly by this assumption. Be-
cause the type of subsidence being considered may involve vertical
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movements of several hundred feet, it is quite likely that the
steady-state flow patterns are reached in many instances.

The stresses and dimensions used in bin-flow theory are ap-
proximately, two orders of magnitude less than those in the sub-
sidence problem. However, the fundamental relations (equilibrium
equations and yield criterion) remain valid.

A large portion of Jenike's work is'concerned with the shape
of the yield surface at small compressive stresses. Variations
in the yield surface caused by consolidating pressures, tempera-
tures, moisture, and time have been carefully examined, and a
corresponding vocabulary of bulk solids flow has been developed.
Jenike (1961) has provided strong physical arguments for a curved
yield surface at small stress values. Because of the assumptions,
the large pressures, and a lack of known material properties (in
general), the present study does not warrant such refinement.
Therefore, the linear Mohr-Coulomb yield criterion is assumed.
Bin-flow theory is applied directly, if applicable, or modified
to represent the physical situation.

THEORY OF SUBSIDENCE

Yield Criteria

Most of the stresses and strains encountered in the subsi-
dence problem are compressive. Thus, it is convenient to assume
compressive values as being positive and tension values as being
negative. The collapsing medium has both cohesion (c) and in-
ternal friction (f6) , and for purposes of analyses, is also assumed
to be homogeneous, isotropic, and compressible.

The selection of the Mohr-Coulomb yield criterion as the
failure mechanism requires only a knowledge of the major and minor
principal stresses {<j\ and (73, respectively), and is independent
of the intermediate principal stress {02) • Recent experimental
work has found that the intermediate principal stress does affect
the stress values at failure to a certain degree. However, this
effect is quite small and will be neglected in this discussion,
(it can also be argued that the selection of an angle of internal
friction, f6, has taken into account the effect of 02)

The yield surface corresponding to the Mohr-Coulomb hypothe-
sis in the principal stress space is shown in Figure 1. Neglect-
ing the effect of o"2 o n yield results in a yield surface with
sharp corners, which seems to violate one's intuition of expecting
smooth transitions in physical processes. However, the rate of
change of curvature at the edges is very large and thus the yield
surface can be represented by a pyramid.
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The usually assumed "open" yield surface used in soil me-
chanics was modified by Jenike and Shield (1959) to agree with the
concept of normality and physical observations. This modification
is the addition of a base that is perpendicular to the line equally
inclined to each of the three principal stress axes. The position
of the base depends on the mean stress, c^ = (ci +02 + ^3)/^?
during flow.

The concept of normality requires that the strain-rate vector
(e) be perpendicular to the yield surface. Inclusion of a base
not only permits compression under a hydrostatic stress, but also
allows either expansion or contraction if the stress state corre-
sponds to a corner of the base, e.g., point "A" (the corresponding
strains being plotted on the same axes as the stress). This model,
then agrees with physical observations that either expansion or
contraction takes place during flow. For failure stress states
corresponding to points on the faces or edges of the pyramid, the
normality requirement dictates material expansion.

Jenike (1961) found from laboratory tests on numerous ma-
terials that during "flow" (after incipient failure) the ratio of
the principal stresses remains constant for a given material. The
significance of this finding can be seen in a normal stress (cr)
vs. shear stress (T) plot (Figure 2). From the geometry it is
readily seen that

1 + sin1̂ -
0*3 ~ T" - sin 6 , (1)

where 6 is called the effective angle of friction. The envelope
to the stress circles is called the effective yield locus (EYL).
Because the stress circles at failure must also be tangent to the
yield surface (or the yield locus, YL in Figure 2), it is then
necessary for the yield surface to change in size as the principal
stresses vary in the flowing medium (unless the yield locus coin-
cides with the effective yield locus, i.e., no cohesive strength).

The linear Mohr-Coulomb yield locus together with a stress
circle at failure are given in Figure 3. It is apparent from the
geometry that the angle between the failure planes and the di-
rection of the major principal stress is

^ = 45° - t/2 . (2)

The locus of points (in a plane) lying on the failure planes are
called sliplines.

For the axially symmetric subsidence problem, it is con-
venient to work in the meridian plane and use either rectangular
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FIGURE 1. YIELD SURFACE IN PRINCIPAL STRESS SPACE

•r
FIGURE 2. CHANGE OF YIELD LOCUS (YL) WITH CONSOLIDATION PRESSURE
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or polar (or spher ical ) coordinates . Figure 4 shows these coordi
nate systems in the meridian p lane .

The yield c r i t e r i o n in Figure 3 can be expressed as

2i/>)2 , (3a)

or

where i/> = c ctn }6.

Fundamental Relations

The two non-trivial differential equations of equilibrium
for the stress state shown in Figure 5 expressed in spherical
coordinates are (Sokolnikoff, 1956):

1 STr9 i f 1
+ — SQ + — 2crr-o

,Q-<7Q>+Trectn9 + ycos9 = 0 9

(4a)

(CT9-OQ/)ctn9+3Tr9 I -ys in9 = 0 ,
^T r9 1 ^CTfl 1 [ 1
- ^ - + r S9~ + r | ( ^ e - o a ) c t n 9 + 3 T r 9 - Y s i

where

°"r 5^9 ?°"cy ? Tr9 = s t r e s s components

rj^gjQ, = spherical coordinates

Y = density of medium.

If expressed in rectangular coordinates

= YSy y
(4b)

xy o u y uy UQ- _ n
ix 9y y ~
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FIGURE 3. MOHR-COULOMB YIELD CRITERION FIGURE 4. COORDINATE SYSTEMS IN MERIDIAN PLANE



FIGURE 5. EQUILIBRIUM OF AN ELEMENT IN AXIALLY SYMMETRIC FLOW (SPHERICAL COORDINATES)
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Assuming that every point in the collapsing material is in a
state of limiting equilibrium, relations (3) and (4) provide three
equations containing five unknowns (crr, GQ , oa, TXy, y) . During
flow of bulk solids, Jenike (1961) found by experiment that the
density could be expressed as a function of the mean stress in the
meridian plane, cm = (ar + o§)/2 = (GX + o"y)/2, i.e.,

Y = Yo(l + °mV (5a)

where yo and P are constants for a given material. If <7m is ex-
pressed in pounds per square foot (psf), then Jenike found that
3 did not exceed .10 for any material that he tested. One would
anticipate greater density changes than this for media containing
large blocks. However, it can still be assumed that y is a
function of the mean stress, i.e.,

Y = Yo f(CTm) • (5b)

The remaining relation is found from the Haar-von Karman
hypothesis, which states that the circumferential stress, o^, is
equal to the major principal stress in converging flow,

<J(y = CT-J_ (converging flow), (6a)

and the equal to the minor principal stress in diverging flow,

Gg = (J3 (diverging flow) . (6b)

Subject to the boundary conditions, it is theoretically
possible to solve the subsidence problem from relations (3), (4),
(5), and (6). The number of variables in these relations can be
reduced by the substitution

a = <// + Gm . (7)

If uo is the angle between the vertical axes and the direction of
the major principal stress (Figure 4 ) , the stresses at failure
can be expressed as (see Figure 3)
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( 8 )

Replacement of UD by T] r e s u l t s in s imi lar r e l a t i o n s for cT, CTQ, and
Tr9 ( s e e Figure 4) .

Characteristics

The stress characteristics (lines along which an infinity
of solutions are possible) can be found by substituting equations
(8) into (4b):

|£

= v -2.
y

(9)

2£ +2asin^cos2ao | ^

-— = — sine^( l+cos2cu)
9y y v '

Sokolovsky (1960) found it convenient to define the quantity

S = £EJ^£ in -5L (10)
2 CTO

where a o is an arbitrary stress. Therefore,

ay
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After replacement in equations (9) and some algebraic and trigono-
metric manipulations, the equilibrium equations become

Bx By

where

(
S+a>

) + iIS±«Itan( «)+/*) = A ,

Bx By
 v

 '
(12)

) M ^ ) tan(u)-M) = B

y

A = ysin((jp-M) cos (cu+u) +cos (OJ-
2 i ^ (co+M) 2ycos(cu+M)

_ ysin( (JUH-μ) cos (OO-μ) +cos (cu+M)

2 i ^ (CD-M) 2ycos(u)-/i)

Since

d(S±cu) = 5(S±u))
 d x
 + 3(S±<D)

 d y

Bx By

the four equations [(12), (13)J can be solved for the derivatives,

d(S±u))/dx, B(S±(u)/By. It is found that these derivatives have an

infinity of solutions when

^ = tan (U)±M) , (14)

dx

and the two families of curves defined by these slopes are called

the stress characteristics. Thus, the stress characteristics

coincide with the sliplines for incipient failure (see Figure 4 ) .

During flow (assuming the validity of equation (1)) the

stress characteristics have the slopes,

^Z = tan [ci)±(45-8/2)] , (15)

and, in general, do not coincide with the sliplines.

The velocity field for steady flow is also found by deter-

mining its characteristics. If u and v are the velocity components

in the x and y directions, respectively, the continuity equation

for axi-symmetric flow becomes
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33T (Y u y) + |p. (Y v y) = 0 . (16)

After differentiating,

(17)

Assuming the collapsing medium to be isotropic requires that
the directions of the principal strain rates coincide with those
of the principal stresses. Since the normal strain rates (ex,ey)
and the shear strain rates (eXy)

 a r e given by

then

Sx dy

Equations (17) and (19) together with the total differentials
du and dv, are solved for the derivatives, du/dx,du/dy,dv/dx,dv/dy
It is found that the characteristic directions are defined by the
slopes

|j = tan (co±45°) . (20)

The velocity characteristics are orthogonal and coincide with the
stress characteristics only if ̂ or 8 = 0 . Coincidence with the
sliplines occurs only when / = 0.

The above analyses show that the stress field can be com-
puted independently of the velocity field.

Because of the isotropic requirement, the lines of maximum
shear strain rate coincide with velocity characteristics. Physical
conditions dictate that a line of infinite shear strain rate is
possible only if the cohesion and internal friction are fully
mobilized. Thus, lines of infinite shear strain rates must coin-
cide with the sliplines. These lines are referred to as velocity
discontinuities. A velocity discontinuity also includes jumps in
the velocity magnitude.
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The continuity equation in spherical coordinates is

Fγ u
r
 r(r sin 9)1 + ̂ Jγ u

Q
(r sine) = 0 , (21)

while the isotropic condition is

dr r

For radial flow, u^ = 0 , and the equations above reduce to:

f u
r
 I tan 2T1 = 0 . (24)

Jenike (1961) has shown that the solution to these equations re-

quires that 7] be only a function of 0, i.e.,

71 = 7] (0) . (25)

Jenike has also shown that the radial velocity is zero and

the rate of change of velocity with respect to 0 is zero or

infinite when T| = TT/4, 3rr/4. Thus it is unlikely that a flow

channel will develop beyond these limits. Observations of flow

seem to verify this hypothesis. These limits happen to be

velocity characteristics.

Radial Stress Fields

The equilibrium equations (4a) in spherical coordinates are

useful in examining the stress state. Assuming the origin at

the vertex of a converging flow channel, Jenike (1961) assumes

that the mean stress (during flow, cr
m
 = a) can be expressed as

c = r Y(r,9) s(r,9). (26)
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Because a variable density has little influence on the results,
Y = Y O . Using analytical arguments and experimental observations
of flow, Jenike finds that s is independent of r. Thus,

c = r Y o s(9) . (27)

This result means that cr is linearly proportional to r along a
ray from the vertex. This is called a radial stress field since
it is compatible with a radial velocity field.

It is obvious that equation (27) is not valid up to a stress-
free boundary. However, Johanson (1964) has shown that this stress
field is valid to the near vicinity of such a boundary.

The limits placed on the boundaries of the flow channel by
the radial velocity field require the walls of the channel to be
both a velocity characteristic and a slipline. This requires that
the wall yield locus pass through the point of maximum shear stress
(see Figure 3 ) . Therefore, the angle of friction at the wall (j£c)
must be lower than the effective angle of friction (8), or (see
Figure 3)

tan ^ c = sin 8 . (28)

From numerical solutions of the stress and velocity fields,
Jenike found that the angle of the flow channel cannot exceed the
values in Table I.

TABLE I

8 = 30° 40° 50° 60° 70°

Max. 9^ = 15° 8.1° 4.4° 2.2° 0.5°

The values of 8 in this table cover the normal range en-
countered in bulk solids.

Arching or Doming

Jenike and Leser (1963) determined the lower bound for the
dimensions of an outlet opening that would prevent the formation
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of a stable dome in the flow channel. This "critical" opening
size, expressed in terms of the cavity radius, Rc, is given by

(R c) d = J(0C) CO/2Y , (29)

where Co is the unconfined compressive strength of the medium,
and J(6C) depends upon the angle of the flow channel. For the
limits of the flow angle given in Table I, J(9c) varies from
2.00 to 2.25 (for circular outlets). Within the limits of the
approximations,

(Rc)d =

Piping or Chimneying

A common occurrence in the flow of bulk solids is for a
vertical cylinder (or well) to develop within the material, a
phenomenon known as "piping." Jenike and Yen (1963) have per-
formed an analysis similar to that for doming, resulting in the
relation (the symbols modified for the subsidence problems)

(Rc)p = CoM(^)/2Y , (31)

where

(Rc) = minimum cavity radius to prevent piping,

= piping function.

For the typical range of fi values, equation (31) takes the range
of values

(Rc)p = (1-2 to 6) C O/Y . (32)

Comparison of equations (30) and (32) shows that, for most
values of $, if the cavity radius is large enough to prevent
piping, then doming will not occur.

In a homogeneous material, one then might anticipate that for
very small cavity radii (i.e., Rc < ~ C O / Y ) no subsidence crater
would form. With increasing cavity radius, a transition zone in
which piping or "normal" flow may exist is reached. A range in
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slope angles might be expected. At cavity radii larger than that
given in equation (32), the slope should reach a constant value.

Excessive Bulking

In geologic materials where doming does not take place, sur-
face subsidence may still be prevented if the material increases
in volume upon collapse (bulks) so that the volume of the cavity
is accounted for before the chimney propagates to the surface.
The ratio of the bulked volume to the initial volume is called the
bulking factor, N. It was shown by Berry and Hakala* that the
maximum height to which a conically-shaped chimney will rise (H)
can be found from the cubic equation (see Figure 6):

taneo £ . 1 £1 t a n2 9 c = 0 . (33)

This equation is valid for (1) H < depth of burial, DOB, if
0 C 0, and (2) Rc/H > RC/DOB > -tan 9C if 9C < 0.

Subject to these inequalities, the maximum chimney height
results when 9C is negative. However, for most contained ex-
plosions, 9C algebraically must be larger than about -8° in order
for the chimney to reach the surface.

For a vertical flow channel (i.e., 9C = 0°), the expression
(33) reduces to the simple relation (horizontal chimney top)

H 2 \N+1 ' ^ 3 4 )

or

H = 2 / W \ (Rc) (35)
3 \N-1 I K c' . K '

The bulking factor (N) is not a constant for a given material,
but depends on the initial porosity of the medium, the particle
size produced during the initial yielding, and probably the energy
absorbed by the solids, during collapse. In general, the bulking
factors for rock will be much larger than for soil. This is due

*This work is contained in a classified report to the U.S. Atomic
Energy Commission and is available to those with the proper
access clearance and a need to know.
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^ HEMISPHERICAL TOP
AVERAGE N FOR ROCK TYPE

GRANITE-LIMESTONE

COMPETENT TUFF

1.0 1.3 1.4

BULKING FACTOR, N

FIGURE 6. DIMENSIONLESS CHIMNEY HEIGHT AS A FUNCTION OF THE BULKING FACTOR
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to the large fragments that are produced upon fracturing, resulting
in a large percentage increase; in the voids. Soils, on the other
hand, have relatively lower bulking factors.

Graphical solutions of equation (33) are given in Figure 6.
It can be seen that it is essential that an accurate value of N
be found if the prediction of the chimney height for the excessive
bulking condition is to be successful.

COMPARISON OF SUBSIDENCE AT THE NEVADA
TEST SITE (NTS) WITH THEORY

A large number of contained underground nuclear detonation
experiments have been conducted in the various test areas at the
Nevada Test Site (NTS). Many of the explosions have produced
subsidence craters, for which the cavity radius, and the radius,
depth, volume, and time to collapse of the subsidence craters
have been recorded. This information was compared with the theo-
retical principles discussed in the preceding sections. The
assumed simplified geometry of a subsidence crater is shown in
Figure 7. Very limited data are available for chimneys that do
not reach the surface.

Subsidence Crater Radii

With the assumption of a conical-shaped chimney, the measured
crater radius (Rcr) and cavity radius (Rc) can be used to compute
the slope angle, (0 C).

tan e c =
 R c r " Rc . (36)

DOB

The procedures used in determining Rcr and Rc are given by Hakala.*
Experimental verification of at least one conical-shaped chimney
was found by Rawson and Rohrer.*

Values of 0 C obtained by equation (36) are plotted against
the cavity radius in areas 2, 3, 9, and 10 at NTS in Figure 8.
For classification purposes, the cavity radii have been reduced
to dimensionless numbers. It appears that a tendency for piping
(i.e., 0 C « 0°) exists for cavity radii less than about 1.0. For
several events, 9C is less than zero degrees. Numerous events with

*This work is contained in a classified report to the U.S. Atomic
Energy Commission and is available to those with the proper
access clearance and a need to know.
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FIGURE 7. SUBSIDENCE CRATER GEOMETRY

O NO SUBSIDENCE)

m SUBSIDENCE I
SURFACE

20c

DOMING

PIPING

V , .

NORMAL FLOW

••

0.4 0.8 1.2 1.6 2.0 2.4

CAVITY RADIUS (DIMENSIONLESS)

MAXIMUM 0 C FOR

8 =40°

5 =50°

8 = 6 0 °

8 = 7 0 °

2.8 3.2

FIGURE 8 ANGLES OF FLOW CHANNEL ( #c) vs CAVITY RADII IN ALLUVIUM IN AREAS 2, 3, 9, AND 10.
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cavity radii less than about 0.6 (in all test areas) produce no
surface subsidence., indicating the possibility of doming.

Approximate values of unconfined compressive strengths (C o),
as obtained from equations (30) and (32), are reasonable for the
media being considered. A few observations of 9C in rocks (not
shown in Figure 8) indicate larger cavity radii at which piping
results, which is to be expected for higher strength materials.

The scatter in Figure 8 is probably due to variations in the
effective angle of friction,8. However, almost all quantities lie
within the theoretically predicted values for a normal range of
8(i.e., 30°-70°), and all slope angles 9C are less than 17°.
There is a predominance of data points between 8 = 30° to 40°.
This is less than the most common value of 50° observed for com-
mercially handled materials (Johanson, 1964). [jenike (1969) has
recently found that the maximum slope angle for conical flow
given in Table I can be exceeded for certain stress fields. Also,
if the lower boundaries of the flow channel exceed the diameter
of the cavity, this would appear in Figure 8 as larger 9c's for
the smaller radii (since Smaller radii are usually associated
with shallow depths.)]

Assuming no doming or piping, if the value of 8 is known,
the slope angle (9C) can be found from Table I. The crater
radius can then be predicted from (assuming Rc can be accurately
predicted):

Rcr = Rc + DOB tan 9C (37)

Subsidence Crater Volumes

It was shown by Berry and Hakala* that the volume of a sub-
sidence crater, V c r, can be determined from

V r r = ill D0B3(N + 1)cr 3 v ; - H DOB3(N - 1)

(38)

(V c r > 0)

*This work is contained in a classified report to the U. S. Atomic
Energy Commission and is available to those with the proper
access clearance and a need to know.
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which is based upon an assumed conical chimney above the cavity.
Graphical solutions of Equation (38) are given in Figures 9 through
11 . It is obvious from these curves that the crater volumes are
very sensitive to the bulking factor, N, and to the angle of the
flow channel, 9C. These parameters, in turn, are functions of the
material properties.

Berry and Hakala* used the measured values of V c r and 9C

and relation (38) to evaluate bulking factors for the various test
areas. The results are plotted in Figure 12 as a function of a
dimensionless cavity radius. Figure 12 indicates that the com-
puted bulking factor decreases with increasing cavity radius,
approaching an asymptotic value of about unity at a cavity radius of approxi-
mately 1.0. (Bulking factors less than unity are unlikely in dense materials.
Errors in volumes of craters, cavity radii, etc, would contribute to the
scatter.)

A flow channel having 9C = 0° is the boundary between con-
verging and diverging flow. Because there is a tendency for the
intermediate principal stress (<JQ>) ̂° fluctuate between a^ and
a^ under these conditions [see equations (6)], the flow is erratic
and unsteady. This could produce variations in the bulking factors
and, in general, give larger bulking factors. A cavity radius of
about 1.0 does seem to agree with the upper limit of piping in
Figure 8.

Subsidence Crater Depths

If the shape of the profile of a subsidence crater is known,
the maximum depth of the crater, d, can be determined from a
knowledge of the volume (Vcr) and the radius (R c r).

For radial flow, Jenike (1961) found that the velocity u r

in an incompressible medium under axially symmetric conditions
was

9

o -3 / tan 27) <3e ,™x

"r = ur° e J , (39)

where ur° is the velocity along the axis of symmetry. Although
the velocity field may not be unique, Equation (39) indicates
that the radial velocity decreases from the axis of symmetry

*This work is contained in a classified report to the U. S. Atomic
Energy Commission and is available to those with the proper
access clearance and a need to know.
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FIGURE 9. DIMENSIONLESS PLOT OF SUBSIDENCE CRATER VOLUMES (0 c = 0°)



FIGURE 10. DIMENSIONLESS PLOT OF SUBSIDENCE CRATER VOLUMES (0c - 5°)
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toward the walls of the flow channel. (Cases do exist where a
cylinder of material drops intact as a "plug.")

An approximate value for the maximum crater depth can be
found from the relation:

(40)
TT

where V c r = V c r (DOB, Rc, 6C, N) , Rcr = R c r (DOB, Rc, 0C) , and m
is a shape factor defining the? profile. Restricting the crater
profile to be concave upward, m can vary within the range,
1 < m < 3 (for a cylinder, m = 1 ; paraboloid, m = 2 ; cone, m = 3 )
For craters at the Nevada Test Site, it has been found that m
decreases with increasing depths of burial (DOB) (Hakala, 1968).*
[Using a stochastic model, Sw€?et and Bogdanoff (1965) determined
that the profile for a small subsidence should be V-shaped in a
dimensional model of a cohesionless soil, which was verified in
laboratory tests .]

Substituting equations (37) and (38) into (40) gives

d = m DOB

3 — + tan 9C1 DOB

2 r \ DOB/ v ' \ DOB

(41)

-2(N-1) tan 9C [ gg- / -(N-l) tan
2 0C

If the cavity radius is large enough to prevent piping, and
RC/DOB a* tan e c, then for this case

_ m DOB
12

Making the additional assumption that the bulking factor (N) is
near unity,

d = f (Rc) . (43)

*This work is contained in a classified report to the U.S. Atomic
Energy Commission and n's available to those with the proper
access clearance and a need to know.
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Thus, the crater depth for low-bulking materials should l ie
in the range

3 Rc < d < Rc . (44)

For craters that are concave upward, relation (44) has been
verified (Hakala*).

Collapse Times

As discussed earlier, flow in vertical or nearly vertical
channels is erratic because of the fluctuation of the circum-
ferential stress. Jenike (1961) has also shown that zones of
zero velocity are possible in steep flow channels if the velocity
characteristics and sliplines do not coincide. It would then be
anticipated that collapse times associated with subsidence in
axially symmetric flow would be subject to large variations.

Approximate analyses by Hakala* have also shown the extreme
sensitivity of the collapse time to the physical and mechanical
properties of the medium. These analyses show that for a given
scaled burial depth the time to collapse should increase with the
size of the cavity. Although large deviations from a mean curve
were found, there is a general increase in the collapse time as
the cavity radius, yield of the explosion, and the depth of
burial increases. (In general, all three of these parameters in-
crease simultaneously.)

CONCLUSIONS

The subsidence associated with the collapse of an underground
spherical cavity has been considered. Although the subsidence
for many events has been controlled by geologic imperfections
(faults, lineaments, etc.), most of the subsidence at NTS in-
volves axially-symmetric conditions.

The fundamental equations and many of the concepts from
bin-flow theory are applicable to the subsidence problem con-
sidered here. However, a knowledge of the strength properties,
flow properties, and bulking characteristics is essential for
the accurate prediction of subsidence values.

*This work is contained in a classified report to the U.S. Atomic
Energy Commission and is available to those with the proper
access clearance and a need to know.
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