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NOTICE

Notice

x* Les grandeurs vectorielles sont indiquées en caractere gras.

x* [ existe en physique atomique et physique des plasmas de nombreux systemes

d’unités. Par souci de clarté, nous avons choisi, dans ce document, d’utiliser de

fagon systématique les Unités Atomiques (u.a.) a l'exception des énergies qui

seront exprimées en Rydberg (1 Ryd = 1/2 u.a.). Il y aura néanmoins quelques

mentions dans des unités plus usuelles, a échelle macroscopique, elles seront alors

précisées.
Quantité  Valeur de l'u.a. en quantités importantes en
unités courantes unités atomiques
Masse me = 9.108 10731 kg Masse de ’électron = 1
Masse du proton = 1836
Longueur ag = h/mee? Rayon de la premiere orbite de
= 0.52917 10~ %cm Bohr = 1
Densité  1/a} = 6.749 10**cm =3
Temps 0 = agh/e? Durée d’une révolution sur la premiere
=2.4189 107175 orbite de Bohr=27
Vitesse e?/h =2.1877108¢cm.s7! Vitesse de I’électron sur la premiere
orbite de Bohr = 1
Vitesse de la lumiere = ¢ = 137.037
Const. de structure fine = o = ﬁ
Moment A= h/27 Constante de Planck = h = 27
angulaire = 1.054410734J.s71
Energie e2/ag = 2Rydberg Energie d’ionisation de I’hydrogene
=27.21eV =4.3610"18J =1/2
Charge e =1.602210"C Charge de I’électron = -1
électrique 1/4meg =1
Champ e/a3 = 1.7152 107 statvolts/cm  Champ électrique sur la premiere
électrique = 5.1436 10%volts/cm orbite de Bohr =1
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Nous présentons ici quelques notations utilisées régulierement au cours de cet
ouvrage :

FE : Energie d’'un niveau ou d’un électron libre

£ : Champ électrique

g : Dégénérescence d’un niveau

k : Impulsion d’un électron libre

Ap : Longueur d’écran de Debye

N = Z*N; : Densité électronique

N; : Densité ionique

Q : Force de collision

P(€&) : distribution de microchamp ionique

R; = R;; = rys : Rayon de Wigner-Seitz ou rayon de la sphere ionique ou distance
interionique moyenne

< rqt > : Rayon moyen de I'ion ou atome

o : Section efficace

< ov > : Taux collisionnel

T, : Température électronique

T; : Température ionique

Z : Charge nucléaire de 'ion

Z* = Z : charge ionique ou ionisation moyenne du plasma

Enfin, les suffixes i et f indiquent que 1’élément suffixé appartient a ’état initial

ou final.
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Introduction

0.1 La fusion par Confinement Inertiel

L’essentiel des ressources énergétiques employées par les hommes a été jusqu’ici
fourni par le biais de réactions chimiques exothermiques. Des travaux menés durant
tout le siecle passé ont montré I'existence de réactions beaucoup plus énergétiques
(de 'ordre du Mev/nucléon soit environ 1 Million de fois I’énergie dégagée au cours
d’une réaction de combustion par exemple) que ce soit par dislocation d’un noyau
lourd en plusieurs morceaux (fission) ou par agrégation de plusieurs éléments légers
(fusion).

Meéme si les réactions de fission entretenues et naturelles sont quasi inexistantes
dans l'univers, a I'exception du ”réacteur” d’Oklo ayant ”fonctionné” il y a deux
milliards d’années au Gabon, la création de réacteurs artificiels a été trés tot envi-
sagée et mise en oeuvre des 1943 pour étre ensuite largement répandue. Elle compte
aujourd’hui pour plus de 70 % de la production d’électricité en France et plus du
tiers de sa consommation primaire d’énergie, tandis qu’a 1’échelle mondiale environ
7% de I'énergie primaire commerciale en est originaire, sans compter les multiples

applications divergentes qui en sont issues : médicales, armement ...

A l'inverse, les réactions de fusion, bien qu’omniprésentes dans 'univers et bien
visibles & travers toutes les étoiles, ont connu une utilisation beaucoup plus limitée ;
méme si de nombreuses équipes a travers le monde s’emploient a les étendre, ses
applications pratiques se résument a ’heure actuelle a des dégagements d’énergie
ponctuels et volontairement massifs depuis 1952. La difficulté de leur controle a pe-
tite échelle et donc la clef de leur emploi a des fins plus civiles est liée & la maitrise
des conditions extrémes de température et/ou de pression qui sont nécessaires pour
leur amorgage. Un résumé succinct permettra d’appréhender les contraintes qui s’im-

posent a l’expérimentateur.

La réaction de fusion la plus accessible et donc la plus courtisée, la réaction D-T,

s’écrit :
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Deuterium + Tm’tium - 4H€ +n+17.6 MeV.

Elle s’effectue de facon notable & partir de la température de seuil T=4.5 107 K
(nécessaire pour vaincre la barriere de répulsion électrostatique des noyaux). Il est
possible d’accéder brievement aux ordres de grandeur caractérisant la densité et le
temps de confinement requis simultanément pour parvenir a I'ignition et a ’entretien
de la réaction de maniere rentable. Le nombre de réactions par unité de temps et de

volume s’écrit :

3.1
NReaction(Cm S ) = Nrritium X NDeuterium X < o0 >

ol o est la section efficace de réaction et < ov > représente le taux moyenné sur la
distribution des vitesses (= 3.10'7em3s™1). Le critere de Lawson établit la fronticre
a partir de laquelle les réactions thermonucléaires dégagent deux fois plus d’énergie

qu’il n’en a fallu pour chauffer le milieu :

NReaction X EReaction XT2>2X (ND + NT) x T.

Pour T = 6.10’K ~ 5.5KeV et les conditions optimales de répartition, c’est-a-
dire I’équipartition du Deuterium et du Tritium, cette condition adopte la forme

simplifiée comme un produit de la densité par le temps de confinement :

N x T > 10"4em™3s.

Nous l'avons vu, les températures nécessaires sont élevées et ont tendance a
détendre le milieu d’autant plus vite qu’il est dense. I en résulte deux approches
opposées pour dominer cette difficulté :

— une voie faible densité (10%em=3), fort volume et des temps de confinement

inférieurs a la seconde dans les Tokamaks [17],

— une voie haute densité (1025cm=3) pour des temps de confinement extrémement
brefs, de I'ordre de quelques dizaines de picosecondes, dans la Fusion par Confi-
nement Inertiel (FCI).

Ce dernier programme met en jeu des conditions extrémes de la matiere, ou
les théories classiques reposant sur la mise a I'équilibre des différents parametres
caractérisant le milieu, appelé plasma, sont régulierement invalidées. Les distribu-
tions de ses trois especes constitutives (ions, électrons, photons) n’obéissent plus aux
regles de la statistique de 1’équilibre thermodynamique, ol seule intervient la no-
tion d’énergie, mais résultent d’une compétition entre divers processus microsco-

piques collisionnels ou radiatifs. Le détail et la compréhension de ces différents
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phénomenes dans les plasmas denses et chauds sont donc indispensables pour pou-
voir prétendre éclairer les nombreux aspects des expériences de FCI [20] et font
I’'objet de trées nombreuses recherches a ’heure actuelle; cette étude s’inscrit dans

ce cadre.

0.2 L’interaction Laser-Matiere

Il est bon de noter que ces travaux ont été fertiles dans d’autres domaines et en
particulier dans tous ceux ayant trait a la matiére chaude et dense, quel que soit
son mode d’apparition : interaction laser-matiere, plasmas produits par Z-pinch ou
plasmas astrophysiques.

Les plasmas chauds et denses présentent l'intérét d’étre fortement émissifs dans
les régions spectrales entre 100 eV et 10 KeV, ce qui permet de les caractériser ou
bien de les utiliser comme source sonde pour étudier les propriétés d’'un matériau
adjacent. Le développement des lasers de trés haute intensité (jusqu’a 102°W em=2)
et d’impulsion bréve (réduite a quelques centaines de Femtosecondes) a permis la
réalisation de sources X tres ponctuelles, résolues en temps et aux domaines d’ap-
plications variés. Quelques grands themes de recherche actuels s’ensuivent :

— la dynamique des réactions chimiques [69]

— la cristallographie [2],
la biologie [45], [49], [80],

— la médecine [78] et en particulier la radiographie [46].

Cette liste serait tres incompléte si elle ne mentionnait les nombreux travaux
sur le laser X-UV, sources cohérentes et tres brillantes, qui en plus de la fructueuse
comparaison entre la théorie et ’expérience, présentent comme domaines d’appli-
cation I'ensemble des themes précités, en y ajoutant la lithographie a des fins mi-
croélectroniques, la microscopie ou holographie de cellules biologiques... sans oublier
de nombreux diagnostics cruciaux en FCI, en élargissant les profondeurs accessibles
par interférométrie optique aux densités électroniques élevées, en permettant ’étude
de la croissance des instabilités hydrodynamiques qui s’y développent, de la densité...
[13]

0.3 Environnement

Toutes ces applications reposent sur des phénomenes extrémement brefs ot de
multiples processus sont en compétition. Ces processus sont essentiellement de deux
types : collisionnels et radiatifs, sans compter les interactions non linéaires entre le

plasma et le faisceau laser ou les phénomenes purement hydrodynamiques. Un pro-
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cessus radiatif correspond & 1’émission ou a ’absorption d’un photon par un ion du
plasma et a une modification du cortege électronique de cet ion. Une transition col-
lisionnelle résulte de I'impact d’une autre particule du plasma, le plus probablement
un électron, sur un ion, induisant chez lui une forte perturbation de ses électrons
liés.

Au cours de 'impact bref d’un laser de forte puissance avec un matériau, il se
forme un plasma qui, schématiquement, a trois zones successives. Celles-ci présentent,
en raison de leurs caractéristiques différentes de densité et de pression, trois mécanismes
distincts de peuplement de leurs niveaux ioniques (Figure en fin d’introduction).

En aval du milieu se trouve une zone treés chaude et de tres faible densité (zone
1) ot les niveaux fondamentaux sont prédominants, 1’état de leurs populations étant
gouverné par l'ionisation collisionnelle et la recombinaison radiative. Les niveaux
excités sont, eux, peuplés par excitation collisionnelle et se désexcitent essentielle-
ment radiativement en raison de la tres faible densité électronique. Un tel équilibre,
dominé par les transitions radiatives, est dit coronal.

Au contraire, totalement en amont, juste en deca de la zone non perturbée, se
trouve une zone sous choc (zone 3), trés comprimée et relativement froide. Les tran-
sitions collisionnelles, induites par la tres forte densité d’électrons libres thermalisés,
sont prépondérantes et menent le milieu a un état d’équilibre thermodynamique. Les
populations des niveaux ioniques y sont régies par les lois statistiques d’équilibre
thermodynamique dépendant seulement de quelques parametres macroscopiques :
température, pression...

La zone intermédiaire (zone 2) est caractérisée par de forts gradients de den-
sité et de température, ou les niveaux excités ne sont plus négligeables devant les
états fondamentaux et qui est donc particulierement émissive. Le peuplement de
ces niveaux résulte de la compétition entre I'ensemble des transitions radiatives et
collisionnelles, dont les excitations collisionnelles électron-ion qui sont ’objet
de ce mémoire.

Dans le cas de milieux denses et chauds, les particules présentes se perturbent mu-
tuellement et ne peuvent étre suivies individuellement du fait de leur grand nombre

023¢m 3 dans un solide). Une approche statistique qui caractérise glo-

(typiquement 1
balement ’ensemble des perturbations possibles et leurs effets est donc nécessaire.
Deux types de moyennes, de philosophies opposées, sont envisageables :

— soit une moyenne sur la cause de la perturbation (la position et la vitesse
des particules avoisinantes dans le cas de plasmas chauds et denses), suivie
du calcul de l'effet de cette moyenne ; cette méthode présentant ’avantage de
simplifier notablement la physique sous-jacente et donc les calculs, au prix

d’une réduction importante du nombre d’informations sur le milieu,
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— soit une moyenne sur les effets apres avoir observé configuration par configu-
ration l'effet des différentes causes ; la richesse des multiples situations pertur-
batives prises en compte ayant pour cout un traitement beaucoup plus lourd.

Dans le cas des plasmas chauds et denses, la cause est la densité et la grande proxi-
mité des nombreuses particules, les effets, multiples, se manifestant dans le décalage
des énergies, la modification des fonctions d’onde ainsi que des taux de transition.

La premiere approche, tres simplificatrice, regroupe les théories d’écrantage,

électronique ou ionique, tres adaptées lorsque les perturbations évoluent de nom-
breuses fois au cours du phénomene étudié. La seconde voie, qui échantilonne ’en-
semble des configurations des atomes les uns par rapport aux autres, avec plus
ou moins de particules prises en compte, a donné naissance aux approches quasi-
moléculaires et de microchamp. La non-isotropie de la distribution des particules
perturbatrices, due aux fluctuations thermiques, engendre ’apparition de champs
électriques. Cette méthode est pertinente lorsque les différentes particules respon-
sables du champ bougent peu et donc quand le champ reste sensiblement statique au
cours, par exemple, d’un processus collisionnel, ou 1’électron, tres véloce, n’interagit
que de maniere tres breve avec la cible. Elle est donc particulierement judicieuse
pour décrire les perturbations induites par les ions, peu mobiles, sur les phénomenes
faisant intervenir exclusivement des électrons, tres rapides.

C’est l'originalité de 'approche que nous avons choisie pour étudier I'influence

de la densité sur les excitations collisionnelles. Aucune étude détaillée de ce sujet

n’a été effectuée a ce jour.

0.4 Plan du travail

Cette these, effectuée au Commissariat & ’Energie Atomique (Bruyeres le Cha-
tel), porte sur la perturbation des sections efficaces d’excitation collisionnelle électron-
ion par l'environnement plasma, décrit par le microchamp ionique. Cette étude
théorique nous a permis de réaliser un code numérique autonome qui calcule les
forces de collisions dans l’approximation Distorted Waves (DW) en utilisant des
données atomiques précises et un microchamp reproduisant fidelement la réalité.

Ce mémoire est composé de cing parties relativement indépendantes :

— Le premier chapitre concerne le traitement général des densités élevées. Une
étude détaillée du plasma est cotiteuse, elle n’a donc d’intérét que dans la
mesure ou le plasma est hors équilibre et que I’étude de ses caractéristiques
spectrales nécessite la prise en compte des phénomenes collisionnels, trés gour-
mands numériquement. Les méthodes d’écrantage, qui conduisent & modéliser

le plasma par un potentiel central, ont permis d’étudier certains phénomenes
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moyennés en temps dans les plasmas denses, mais demeurent défaillantes pour
traiter les phénomenes tres brefs, tandis que 'approche microchamp est d’ores
et déja utilisée avec succes pour le calcul des profils des raies de couche K.
Le second chapitre est consacré a la description du microchamp. Les modeles de
Holtsmark et de Mayer, analytiques, sont adaptés a la description de plasmas
soit tres dilués soit tres dégénérés, une description plus générale s’impose. Le
lissage d’un ensemble d’expériences numériques par tirage aléatoire Monte-
Carlo développé par D. Gilles [30] a été adopté aprés une comparaison avec
les modeles précédents.

En troisieme partie, comme préparation a ’étude des sections efficaces d’exci-
tation collisionnelle sous champ, nous abordons I’influence du champ électrique
sur la structure atomique : l'effet Stark. Nous résolvons le Hamiltonien de
I’atome de fagon perturbative et présentons plusieurs calculs sur 1’énergie des
niveaux et le mélange des fonctions d’onde pour 'aluminium hydrogénoide et
héliumoide. Ceci nous permet de détailler les notations spectroscopiques em-
ployées ultérieurement. Quelques lois d’échelle en Z peuvent étre établies sur
les hydrogénoides puis nous réévaluons la limite d’Inglis-Teller qui définit les
derniers niveaux atomiques observables dans un plasma tres dilué, a I'aide du
modele de microchamp précédent.

Le quatrieme chapitre reprend les différentes méthodes existant pour le calcul
des excitations collisionnelles. L’approximation de Born, de mise en oeuvre
trés simple, reste trop réductrice et approximative, nous avons donc choisi
I’approximation Distorted Waves, qui dans un temps réduit et pour les ions
multichargés, permet d’accéder, a quelques pourcent pres, aux mémes résultats
que les théories les plus élaborées. Nous avons établi des équations pour le
calcul des forces de collision en présence de champ électrique pour des ions
multiélectroniques et avons réalisé un code numérique calculant simultanément
les forces de collision et les taux collisionnels en présence de microchamp. La
comparaison de nos résultats avec ceux de la littérature pour du Fer héliumoide
en ’absence de champ, ainsi qu’avec ceux d’une étude prospective sur du Néon
hydrogénoide en présence de microchamp, confirme la validité et la précision
de nos calculs.

Enfin, dans le dernier chapitre, nous démontrons que les excitations de couche
K des ions mono- et diélectroniques, en présence de microchamp, peuvent
s’écrire de fagon simple, comme la moyenne des forces de collision ou taux
collisionnels en ’absence de champ. Nous présentons, ensuite, une applica-
tion de notre code a de I’Aluminium hydrogénoide et héliumoide et des profils

de raies obtenus apres avoir réalisé un code Collisionnel-Radiatif élémentaire,
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n’intégrant que les transitions radiatives dipolaires électriques et les excitations
et désexcitations collisionnelles. La prise en compte du microchamp électrique
sur les sections efficaces d’excitation collisionnelle fait apparaitre notablement
les transitions des états issus des niveaux de moments angulaires élevés. En
particulier, les sections efficaces des transitions initialement interdites aug-
mentent de plusieurs ordres de grandeur en présence de champ électrique et
deviennent de 'ordre de celles des transitions autorisées. Cet effet, cependant,

n’élargit que légerement les raies Ly 3, v et He ~.
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Chapitre 1

Modeles de traitement des effets

de densité dans les plasmas

1.1 Introduction

Durant ces dernieres années, de nombreux efforts ont été effectués pour améliorer
notre connaissance des plasmas denses. Ces travaux sont régulierement présentés
dans les séries de conférences Radiative Properties of Hot Dense Matter ou Atomic
Processes in Plasmas et ont fait ’'objet de plusieurs monographies, par exemple celles
de Griem [33] et de Chabrier [16]. Le calcul de quantités qui caractérisent ces plasmas
comme 'opacité, ’émissivité spectrale ou 1’état d’ionisation, est central pour leur
modélisation. A mesure que le plasma s’éloigne de son état d’équilibre ou chaque
processus de peuplement des différentes populations du plasma est compensé par le
processus inverse, un détail plus précis des transitions microscopiques, responsables

des modifications de peuplement, s’impose.

Malheureusement, les capacités prédictives des modeles fondés sur des ions isolés
s’estompent quand ils deviennent plus corrélés. Il existe alors diverses méthodes
perturbatives pour représenter l'influence des particules avoisinantes sur la par-
ticule émettrice. Notons au passage que la notion particulaire n’est pas évidente
pour le traitement d’ensembles tres corrélés. En toute rigueur, un tel ensemble
nécessiterait d’étre décrit comme un systeme global. Cependant, 1’observation des
spectres expérimentaux émis par de tels milieux révele des structures de raies ca-
ractéristiques d’ions bien spécifiés par comparaison avec les spectres d’émission de ces
ions isolés. On en conclut que les structures ioniques persistent et que ces particules

peuvent étre traitées comme des entités isolables perturbées par leur environnement.
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1.2 Modeles d’équilibre dans les plasmas

1.2.1 Equilibre Thermodynamique Complet

Dans un plasma, les populations des différentes particules (électrons, photons
et divers ions) sont gouvernées par l’ensemble des phénomenes microscopiques pos-
sibles. Lorsque chacun de ces processus collisionnel ou radiatif est exactement contre-
balancé par son inverse, le détail de ces processus peut étre remplacé par des lois
statistiques simples reposant sur un tres faible nombre de parametres macrosco-
piques. Un tel état d’équilibre est dit complet (ETC). La température et la pression
suffisent a le définir. Elles y sont uniformes, le rayonnement est isotrope et homogene.
Les températures électronique, ionique et de rayonnement sont égales.

Cette situation se rencontre dans des milieux cloturés par des parois totale-
ment opaques au rayonnement : des corps noirs. Dans tout autre cas, les pertes,
radiatives ou de matiere, la non-stationnarité des populations... empéechent d’at-
teindre I'equilibre thermodynamique complet. Il est néanmoins possible de trouver
des états d’équilibre ou des grandeurs macroscopiques permettent toujours de décrire

le plasma.

1.2.2 Equilibre Thermodynamique Local (ETL)

Lorsque le systeme admet des pertes radiatives, il présente des gradients de
densité et de température et son rayonnement présente un ensemble de raies qui
contredit la répartition continue de I'intensité spectrale dans les milieux en ETC.

Cependant, si le systeme unique a la température T peut étre remplacé par un
ensemble de sous-systeémes a 'intérieur desquels la microréversibilité des transitions
radiatives et collisionnelles est assurée, il est possible de définir un équilibre thermo-
dynamique localement pour tout couple N, T de chaque sous-systeme. Cela suppose
que les flux d’énergie entre eux sont faibles et revient a considérer que le nombre
de transitions radiatives est négligeables devant le nombre de transitions collision-
nelles. C’est le cas dans un plasma dense et de faible température, les lois statistiques
de I’équilibre thermodynamique s’appliquent pour chaque sous-systeme, la densité

assurant la thermalisation en leur sein.

1.2.3 Lois statistiques d’équilibre

Ces lois permettent de donner tout le détail des populations et ne dépendent que
de I'énergie E de chaque élément considéré. Leur détermination se trouve dans tout
ouvrage de physique atomique des plasmas (ex Sobelman [76, 77| ou Pecker-Wimel

[56]) et ne sera pas reprise ici. Chacune de ces lois suppose que les particules qui com-
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posent le plasma sont indiscernables et indépendantes, ce qui réduit immédiatement
leur crédibilité lorsque le milieu est dense et les ions fortement couplés ou les électrons
plus ou moins dégénérés.

— Laloi de Maxwell qui établit la distribution des vitesses f(v) pour les différentes
particules est la plus vérifiée de toutes ces lois, lorsque les conditions expérimen-
tales s’éloignent de 1’ équilibre. Elle sera supposée valable dans le reste de cet
ouvrage pour la distribution des électrons libres. La pérennité de cette loi est
due a la haute valeur de la fréquence de collision électron-électron qui assure
la thermalisation en milieu dense et collisionnel. Elle s’écrit en fonction de

I'énergie (E = mcv?/2)

2
e EIT4E (1.1)

— La distribution de Boltzmann fixe les rapports de populations entre les différents
niveaux d’un méme ion.

— La loi de Saha donne la répartition des degrés d’ionisation des atomes.

— La loi de Planck régit la distribution de la densité de rayonnement en fonction

de sa fréquence et n’est valable que dans le cas du corps noir.

1.2.4 Limites

La formulation tres simple de ces lois est tres attirante mais elles présentent un
domaine de validité restreint. Dans un plasma supposé optiquement mince (ou tout
le rayonnement s’échappe), ’équilibre est principalement réalisé par les processus
collisionnels, mais disparait si la densité n’est pas suffisamment élevée. Mc Whirther

[53] donne comme condition d’équilibre thermodynamique entre deux niveaux i et
j:

1

2 1/2
(o) DBy = LT108 T 1 AB,S (1.2)

14
N, > 1.810"° 1T, (eV) (Ryd) (Ryd)

qui peut étre extrapolée a la condition d’équilibre entre deux états de charges
différentes en remplacant AE;; par le potentiel d’ionisation. Par exemple, dans I'ion
Al XIII, cette condition d’équilibre entre les états hydrogénoides et héliumoides
s’écrit :

1

N, > 45 1017Te(e/3)26 (1.3)

ou Z = 13. Nous présentons dans le tableau 1.1 des valeurs numériques de ces
limites d’ETL pour les éléments qui seront présentés dans le reste de cet ouvrage. La

température choisie est de 500 eV, elle est intermédiaire parmi celles qui apparaitront
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par la suite et n’influe guere sur les résultats, dans la plage qu’elle parcourt au cours

de ces pages (100 a 700 eV).

n=1/n=2|n=2/n=3|n=3/n=4|Xz/Xz

Ne X 4.310% 2.8 1022 1.2 102 7.10%4
Al XTIT 2.110% 1.3102%3 5.7 102! 3.710%
Ar XVIII 1.510% 9.4 1023 4. 1022 2.9 1026

TAB. 1.1 — Densités d’équilibre thermodynamique entre les différents niveaux hy-
drogénoides de Ne, Al et Ar ainsi qu’entre les états hydrogénoide Xz et héliumoide

X7_1 des mémes ions a T,=500eV.

Nous avons précisé dans le paragraphe précédent que toutes les distributions
électroniques utilisées dans le reste de cette étude seraient supposées maxwelliennes,
de fagon a pouvoir définir une température électronique. Dans le cas d’interac-
tions laser-matiére ultra-intenses (supérieures & 10'W cm~2), des mécanismes non
linéaires conduisent a 1’accélération d’une fraction non négligeable de cette popu-
lation d’électrons dits suprathermiques, mis en évidence par I’émission de raies K,
au coeur de zones denses et relativement froides du plasma [26]. Krol et al [46]
constatent que 10% de I’énergie du laser peut étre transférée aux électrons supra-
thermiques. Dans ces conditions, ’équilibre thermique des électrons libres n’est pas
réalisé et il perturbe aussi la distribution des électrons liés et donc celle des photons.

Enfin, tous ces processus d’équilibre reposent sur des temps de relaxation qui
permettent a la matiere, apres toute perturbation, de se stabiliser dans un état
stationnaire ou il est a nouveau possible de spécifier températures et densités. P.
Alaterre [4] calcule ces temps de relaxation 7 entre niveaux de Al XIII - qui cor-
respondent a l'inverse des taux de transition entre ces niveaux - pour T, = 500eV
(mais les résultats dépendent peu de la température) dans une gamme de densité
102em =3 < N, < 10%em =3 -

: 1 13 1 Ne
781n:2,;:10 +1.610 1070
1 N,
~sin=3,-=2510"%+1.210" =%
sin=3, = 5107 + 0 102
R 11 12 [ Ne
81n—4,7_—5.10 +4.10 107 )

Dans des expériences typiques d’interaction laser-matiere a tres haut flux [62] ou les
durées d’impulsion laser sont de ’ordre de la centaine de femtosecondes, la condition
en densité pour que le temps d’interaction entre le faisceau et la matiere soit de
l'ordre de deux fois celui de relaxation et qu’un équilibre stationnaire puisse s’établir
est alors : N, ~ 6 10%2¢m™3 pour n=2, N, ~ 1.5 10?2cm ™3 pour n=3 et N, ~

5102 em™3 pour n=4. Pour des temps d’interaction plus longs, I’état n = 2 est
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toujours en équilibre stationnaire du fait des phénomenes radiatifs et les états de n
supérieur sont dans le méme état & partir de N, ~ 10*Lem 3.

Les temps de relaxation des équilibres stationnaires d’ionisation entre ions hy-
drogénoide et héliumoide sont plus longs et correspondent a peu prés aux temps
de relaxation des couches n=1 pour Al XIII et Al XII. Ils valent environ, a N, =
10%2¢m ™3, 15 picosecondes pour les hydrogénoides et 1 ps pour les héliumoides.
Notons qu’état stationnaire ne veut pas dire équilibre thermodynamique, mais que
I’absence d’état stationnaire empeche 1’équilibre thermodynamique.

Nous retiendrons de tout ceci qu’il existe de nombreuses causes d’écart a I’équi-
libre, méme local. Les transitions possibles entre les couches n=1 et n=2 devront
étre détaillées pour les densités inférieures & N, =~ 10%5cm =3 (pour Al XIII) comme
pour celles entre n=1 et n=3. En revanche, celles entre n=2 et n=3, lorsqu’elles
seront traitées, pourront étre remplacées par la statistique de Boltzmann au dela
de N, = 10%3cm™3. En outre, plus les temps d’impact laser seront brefs et plus
les moyens d’étude du plasma créé permettront d’étudier de maniere rapide son
évolution, plus les calculs devront détailler avec précision chaque type de transition

pour reproduire I'expérience.

1.2.5 Résolution des systéemes Hors ETL : transitions élémentaires.

Avant d’aller plus loin, il convient de préciser ’ensemble des interactions micro-
scopiques qui conduisent & des transitions.

Les phénomenes d’excitation et d’ionisation dans les plasmas chauds sont en
général gouvernés par les photons et les électrons, les autres particules massives n’in-
tervenant que pour les transitions de tres faible énergie. Les processus prépondérants
sont au nombre de 12 (directs et inverses) radiatifs ou collisionnels :

— la photoexcitation et ’émission spontanée
Xz +hw= X5 (1.4)

I’émission induite

X}+hw—>XZ+hw+hw (1.5)

la photoionisation et la recombinaison radiative
XZ+ﬁcuﬁXZ+1+e (16)

la recombinaison radiative stimulée

Xzpi+hw+e— Xz + hw+ hw (1.7)
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— la capture diélectronique et 'autoionisation (ot X7* est un état doublement
excité)
Xzgpit+tea=2 X7 — X+ hw (1.8)

— Pexcitation et la désexcitation collisionnelles
Xz+e= X5 +e (1.9)
— l'ionisation collisionnelle et la recombinaison a trois corps
Xz+e=2Xz1t+e+e (1.10)

Sobelman y adjoint Bremsstrahlung et Bremsstrahlung inverse (X7 + e & Xz +
e + hw : émission et absorption libre-libre) mais qui n’ont d’incidence que sur les
transferts d’énergie entre électrons libres et photons et ne jouent donc que sur leurs
populations et non sur celles des états internes ioniques (électrons liés).

Le calcul de tous ces taux n’est pas nécessaire, les taux inverses s’obtiennent
directement a partir des taux directs par le principe du bilan détaillé & 'ETL (mi-
croréversibilité). C’est pourquoi, des deux mécanismes intéressant cette these -i.e.
I'excitation et la désexcitation collisionnelles- nous n’étudierons que le premier, a

partir du quatrieme chapitre.

1.2.6 Equilibre Collisionnel Radiatif (CR)

Cette situation est celle ou ’ensemble des transitions élémentaires précédentes
nécessite d’étre pris en compte pour décrire les populations du plasma. L’évolution
temporelle de la population de chaque niveau de chaque ion est gouvernée par la
somme des processus de peuplement et de dépeuplement & partir de ou vers les

autres niveaux ou ions :

dNz;
dt

= Z Tz1j,2iNz 5 | — Z Tzizj | Nz (1.11)
2" 571 Z' j#i
ou les T'7/; z; sont les taux de transition du niveau j de I'ion Z’ vers le niveau i de
I'ion Z.
S’il y a état stationnaire, les peuplements et dépeuplements s’équilibrent pour

—dtZ’i = (. Dans le cas ol les évolutions temporelles de

la température et de la densité sont lentes, le plasma est appelé quasi-stationnaire,

chaque état atomique i :

la population des niveaux excités s’équilibrant quasi-instantanément avec celle des
états fondamentaux, qui seuls sont décrits de maniére instationnaire (typiquement
les plasmas nanosecondes, & comparer avec les temps de relaxation ioniques présentés

dans le paragraphe 1.2.4).
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Enfin, dans le cas des plasmas créés par impulsion laser sub-picoseconde, le
plasma est totalement instationnaire et le détail complet de chaque niveau et de

ses transitions est nécessaire.

1.3 Caractéristiques et définition des plasmas denses

Intuitivement, la notion de forte densité renvoie a celle de forte pression, de par-
ticules comprimées les unes sur les autres, se repoussant, bref, se perturbant mutuel-
lement en permanence. Il est possible, a partir de cette vision naive, d’appréhender
les limites a partir desquelles un plasma peut étre qualifié de dense. A cette fin, il
suffit de lister ’ensemble des situations qui peuvent conduire a de fortes perturba-
tions. Ceci revient & faire le détail des différentes particules présentes et des causes
de leurs répulsions et mouvements les unes vers les autres.

— Les électrons

Ce sont des particules tres légeres et mobiles. Leur vitesse est caractérisée
par leur énergie cinétique moyenne : la température électronique 7T,. Leur
densité N, permet de définir le volume disponible par électron comme son
inverse 1/N, ainsi que par extrapolation la distance interélectronique moyenne.
Lorsque celle-ci s’approche de la longueur d’onde de de Broglie thermique,
les électrons ressentent des effets quantiques et la distribution statistique de
Maxwell issue de 1’équilibre thermodynamique classique ne s’applique plus,
elle doit étre remplacée par une loi fondée sur une statistique quantique : la
distribution de Fermi-Dirac. La température de Fermi Tr =~ (37r2Ne)2/ 3 st
aussi une limite inférieure qui caractérise I’entrée dans ce régime.

— Les ions

Ces particules sont beaucoup plus massives (= 1830 fois plus pour I’hydrogene)

T.
et leurs vélocités caractérisées par |/ — est toujours tres inférieure a celle des
e
électrons dans les plasmas laser. Il est possible de définir deux dimensions
significatives pour les ions : le volume moyen disponible (1/N;) et la distance
interionique (R;;) ainsi que le rayon moyen de I'ion qui peut étre approximé
3n?
2(Z*—1)
ol n est le nombre quantique principal de l'ion considéré et Z* son degré

par celui de I’hydrogénoide équivalent dans I'état [ =0 : < r;, >=

d’ionisation.
La force de répulsion ou d’attraction coulombienne est la seule interaction entre
ces particules.
Deés lors, un certain nombre de parametres apparaissent naturellement par com-

paraison des grandeurs précitées.
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— Le parametre de couplage de Coulomb est le rapport de ’énergie poten-

tielle coulombienne d’une particule & son énergie cinétique (& un facteur 2/3
pres) :
L'y

*2 . A\ 1/3 %2
_ Z7/Ri _ <4WNZ> z*? 1.12)

T; 3 T’
R;; étant la distance interionique. Ce parametre de couplage peut étre étendu a
tous les types de particules. I' < 1 correspond a un plasma idéal : interactions
coulombiennes tres faibles entre les ions, I' > 1 a un couplage fort : les effets
coulombiens deviennent supérieurs a l’energie cinétique des particules. Les
plasmas fortement couplés sont donc des plasmas denses et plutot “froids”.
Le parametre de dégénérescence est le rapport de la température de Fermi
a celle des électrons :
Tr  (372N,)?/3

v = = 1T (1.13)
v < 1 correspond a un plasma classique, v > 1 a un plasma ou les effets
quantiques deviennent importants, les électrons sont alors dits dégénérés.
Le rapport entre la taille de I’ion et la distance interionique moyenne.
Murillo et Weisheit [55] considerent que les fonctions d’onde s’étendent effec-
tivement jusqu’a cinq fois le rayon ionique. Lorsque le rapport de ces deux
longueurs est supérieur a 1, les fonctions d’onde des deux ions se superposent
et sont notablement perturbées, il n’est plus possible de les affecter & un
ion spécifiquement. C’est le phénomene d’ionisation par pression qui limite le
nombre de niveaux présents. Notons que cette situation n’est pas spécifique des
plasmas denses mais est aussi responsable de la création de bandes d’énergies
dans les métaux.
Le critére d’influence des électrons libres sur 1’atome qui compare les
volumes occupés par les électrons liés (le volume de 'atome) & celui occupé
par les électrons libres (1/N,). Si ce rapport dépasse 1, il existe au moins un
électron libre présent au sein de la structure ionique, ce qui réduit la liaison
entre les liés et le noyau. Ceci conduit au décalage des niveaux, généralement
calculé avec un modele d’écrantage électronique.
Le décalage des niveaux et l'ionisation par pression sont regroupés sous l'ap-

pellation générique d’abaissement du continuum.

1.4 Les écrantages

Nous avons jusqu’ici rappelé I'influence de la densité comme une contrainte sur

I’équilibre, conditionnant ou non une étude détaillée collisionnelle-radiative. Les

modeles utilisés jusqu’ici étaient a particules indépendantes type gaz parfait. Dans
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la réalité, les densités élevées font prendre en compte les effets de corrélation entre
particules, en particulier I'interaction coulombienne dans les plasmas d’ions multi-
chargés. Largement utilisé en astrophysique ou en FCI, I’écrantage des particules
chargées par les particules voisines, initialement développé pour des gaz fortement
dilués, a été extrapolé a des plasmas beaucoup plus condensés [16].

On ne prétend pas reprendre ici la totalité des multiples travaux existant sur le
sujet, mais seulement un certain nombre de ceux qui peuvent permettre de mieux
étudier les effets de densité sur les excitations collisionnelles. L’essentiel du calcul
de ces dernieres (voir le chapitre IV qui leur est consacré) repose sur 'interaction
coulombienne entre deux électrons. L’approche la plus simple est donc d’essayer
d’évaluer au mieux les potentiels vus par les différentes particules et c’est ce qui

explique I'intérét porté aux écrantages.

1.4.1 Modele de Debye-Hiickel

Dans la limite des faibles densités et hautes températures, ’énergie cinétique
moyenne des particules est beaucoup plus importante que leur énergie d’interaction
et les effets de corrélation peuvent donc étre considérés comme une perturbation par
rapport au comportement du gaz parfait.

Dans ces conditions I’énergie cinétique des électrons est tres élevée et largement
supérieure a la température de Fermi du systeme, ils peuvent donc étre assimilés a
des particules classiques. La présence de particules autour d’une charge de référence
Z; modifie le potentiel coulombien et la densité N;(r) des particules perturbatrices
peut étre obtenue a l’aide de la statistique de Maxwell-Boltzmann en présence du
champ moyen ®(r) résultant :

Z;®(r)

Ni(r) = N;e=Z®0/T  N; (1 -t ) (1.14)

La linéarisation est justifiée car I’énergie potentielle est tres faible devant la tempé-
rature.

De I’équation de Poisson et de la nécessaire neutralité du milieu sans perturbation

(Z niZZ- = 0) .

_ _ (7~ —ar 2 S
V20(r) = —4nq(r) = —4772]\71(7“)Zz ~ —Am T ZNZZZ2 (1.15)

il se déduit facilement la forme du potentiel autour d’une charge 7 :

®(r) = Z /2o (1.16)

r

ol Ap est la longueur d’écran de Debye :
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T 1/2
= — 1.1
AD <4W2niZi2> ’ (1.17)

la sommation portant sur toutes les especes ioniques et électroniques.
Enfin, le potentiel chimique de ’espece ¢ s’écrit :
72
i = ——* (1.18)
’ 2\p

et s’obtient en dérivant I’énergie libre par rapport au nombre de particules de cette

espece.

Cette théorie offre I'avantage de présenter une formulation tres simple du po-
tentiel mais suppose que le nombre de particules dans la sphere de Debye (le nuage
d’écran) est trés grand, soit Ap > a, la distance interparticulaire moyenne, ce qui
correspond & I'Z*? < 1 ot I est le parameétre de couplage de ces particules. De
nombreuses méthodes ont donc été proposées pour étendre son domaine de validité

a des couplages plus intenses.

1.4.2 A plus haute densité

La théorie de Debye-Hiickel peut étre étendue a de plus fortes densités en résolvant
I’équation de Boltzmann non linéarisée, ce qui permet d’accéder a des parametres
de couplage de l'ordre de 1/2 mais fait perdre la représentation exponentielle simple
du potentiel.

Il existe aussi quelques formules simples pour les situations plus dégénérées :
lorsque la distance interélectronique devient de ’ordre de la longueur de de Broglie,
la statistique de Maxwell-Boltzmann doit étre remplacée par celle de Fermi-Dirac

pour la distribution électronique ; la longueur d’écran est (Thomas Fermi linéarisé) :

1/2
Arp = <T1/2I_1/2(H/T)> (1.19)

ou I,(x) = /0 - % est l'intégrale de Fermi et u le potentiel chimique qui
s’obtient de maniére autocohérente avec la densité électronique (il en existe des
valeurs interpolées pour toute température électronique, par ex Dharma-Wardana
et Taylor [24]).

De facon plus pratique, a la limite des basses températures, la longueur d’écran

Thomas-Fermi a température nulle vaut :

1/ T\
ATF T=0 = §< > (1.20)
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Il faut malgré tout noter que tous les modeles avec constante d’écran reposent sur
la linéarisation de 1’équation de Boltzmann et conservent donc les mémes limites :
une constante de couplage tres faible. Toute amélioration passe par la perte de
linéarisation des équations et ’accroissement important de la complexité de leurs
solutions : elles perdent leur caractere analytique.

Lorsque le plasma est tres corrélé : a haute densité et basse température, un
modele d’écrantage couramment employé et de forme analytique simple est celui de
la sphere ionique. Dans sa version la plus simple, les électrons libres sont distribués
uniformément dans une sphere ayant pour rayon la distance interionique moyenne

0
R; : ?Rg’Ni = 1. Pour la neutralité du milieu, la spheére ionique elle-méme est

4
neutre : —R?Ne = Z* ou Z* est l'ionisation moyenne du plasma et N, la densité

d’électrons libres. Le potentiel résultant autour d’une charge Z est :

zZ Z r2\?
-z _ _ <R,
Vi) =5 3R <3 R?) rs ki (1.21)

=0 7“>Ri.

Ce modele permet de créer un volume d’exclusion des ions voisins, ce qui est assez
compatible avec des calculs de structure spatiale détaillés qui mettent en évidence
ce phénomene lorsque le couplage dépasse 1'unité.

Toutes ces théories d’écrantage ont été largement utilisées et continuent de 1’étre
pour anticiper les modifications de la structure atomique et des différents taux col-
lisionnels et radiatifs d’un ion plongé dans un milieu dense. Nous présentons par la
suite quelques-uns de ces résultats comme références et points de comparaison par
rapport a notre étude sur les excitations collisionnelles en présence de microchamp

ionique.

1.4.3 Influence sur la position des niveaux

Les calculs portant sur la modification des niveaux et des fonctions d’onde
sont nombreux. Concernant les écrantages de Debye-Hiickel et de Thomas-Fermi,
il n’existe malheureusement pas de formule analytique pour caractériser 'influence
de la densité sur les niveaux, sauf pour les écrantages tres faibles ou I’énergie de
liaison des niveaux diminue de 2Z/X , A étant la longueur d’écran. Néanmoins,
les études numériques (voir par exemple Rogers et al [68]) montrent que ce modele
décale et sépare les niveaux des hydrogénoides et qu’il induit aussi un décalage des
raies vers le rouge lorsque la densité s’accroit.

G. Massacrier [52] a effectué une longue étude en utilisant le modele de la sphere

ionique et propose un résultat simple pour le décalage des niveaux des ions hy-
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drogénoides :

Z <r?>0
B ~Eo+ 5 (3 - %) (1.22)

qui semble plus adapté pour la description de plasmas tres denses, olt < 72 >9Ll:
n2
272 o
et R; le rayon de la sphere ionique présenté plus haut.

[5n2 +1 — 31(1 +1)] est la moyenne du carré du rayon de lion & densité nulle

1.4.4 Ionisation par pression et réduction du nombre de niveaux

Nous avons noté, lors de notre tentative de définition des fortes densités, qu’elles
équivalent a rendre comparable le volume disponible par ion ou par électron libre a
celui occupé par 'atome étudié.

La trop grande proximité entre deux ions écréte les niveaux supérieurs, qui ne
sauraient étre physiquement attachés a un atome tout en étant inclus dans le volume
d’un autre. Il s’agit de Iionisation par pression.

De facon similaire, lorsque le volume de I'atome est supérieur au volume dispo-
nible par électron libre, il en existe au moins un au coeur de 'atome ; la liaison entre
les électrons liés et le noyau est alors écrantée et ’énergie de liaison réduite.

La résultante de ces deux effets conduit a ’abaissement du continuum : la dispari-
tion des niveaux les plus excités. Ce processus tres important permet, par exemple,
de limiter la somme des niveaux dans les fonctions de partition et de les rendre
convergentes, ce qui détermine parallelement le degré d’ionisation moyen du plasma
a ’ETL. Il permet aussi de restreindre le domaine de cette étude a des états ioniques
pertinents dans des situations HETL.

Dans le cadre du modele de Debye-Hiickel, Rogers et al [68] obtiennent numéri-
quement le dernier niveau existant pour un hydrogénoide : N0 = \/W , ce

qui correspond a la densité de disparition :

Z
N, = 3.32 1022T(6V)m em ™3, (1.23)

De son co6té, Massacrier propose, dans le cadre du modele de la sphére ionique :

Z4
Ne ~ 6107 =¢ cm™. (1.24)
n

Nous présentons au tableau 1.2 les densités de disparition obtenues par ces formules
pour les 4 premiers niveaux de Al XIII :

Dans la mesure ou toutes ces densités de disparition atteignent des valeurs
extrémes, il paralt pertinent de retenir celles obtenues avec un modele de sphere

ionique, le modele de Debye-Hiickel étant fondé sur des plasmas chauds et dilués.
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Debye 100eV | Debye 500 eV | Sphere Ionique
n=1 4.310% 2.210%6 1.710%7
n=2 1.110% 5.4 10%° 2.710%°
n=3 4.810% 2.410%° 2.310%
n=4 2.710%* 1.310% 4.210%3

TAB. 1.2 — Densités de disparition des niveaux de I’Aluminium hydrogénoide (en

em™3) suivant les modeles d’écrantage.

Massacrier mentionne que cette limite n’est qu’approchée, spectroscopiquement par-
lant, car de nombreux phénomenes d’élargissement confondent peu a peu les raies
entre elles et avec celles du continuum, a mesure qu’elles s’approchent de leur dis-
parition.

B. d’Etat [23], & la suite d’une étude avec deux centres ioniques, note aussi que ces
limites de disparition sont tres sensibles aux positions des différents ions du plasmas
et donc qu'une étude fondée seulement sur des modeles a symétrie sphérique pour

les distributions ioniques est forcément limitée.

1.4.5 Influence sur les transitions radiatives

Davis et Blaha [21] ont étudié la transition 2p — 1s du Néon hydrogénoide, a
I’aide du modele d’écrantage de Thomas-Fermi, incluant les corrections d’échange
et de corrélation de Dharma-Wardana et Taylor. Ils notent, a des densités élevées
(N. = 6 10**em™3), que ni la modification des fonctions d’onde ni le décalage des
énergies en raison de I’écrantage n’ont d’influence importante sur les taux radiatifs
(au plus 15% ).

Massacrier étend cette étude a un plus grand nombre de transitions a l'aide
de son modele de sphere ionique. Les transitions dipolaires électriques intra-couche
(n = n') se déplacent vers le bleu lorsque la densité croit et leur intensité dépend
essentiellement du décalage des niveaux : elle varie donc fortement pour les sous-
niveaux hydrogénoides initialement dégénérés. Les transitions inter-couche évoluent,
elles, vers le rouge, la variation étant dominée par celle du niveau le plus excité.
Leur probabilité décroit et ce, de maniere importante a la limite de disparition de
I’état supérieur. La probabilité de ces transitions est beaucoup plus sensible a la

modification des fonctions d’onde qu’a celle des énergies.

1.4.6 Influence sur les transitions collisionnelles

Concernant les transitions collisionnelles, nous allons nous intéresser exclusive-

ment aux excitations collisionnelles électron-ion car elles sont 'objet de cette these.
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Néanmoins, nombre des constatations faites a leur sujet valent aussi pour les autres
transitions.

L’étude initiale des effets de I’écrantage sur les excitations collisionnelles est un
travail de Hatton et al [38] qui mentionne immédiatement 1’ensemble des résultats
majeurs de cette approche :

— D’écrantage réduit 'interaction entre I’électron libre et les électrons liés et en

conséquence réduit systématiquement les taux d’excitation,

— les ondes partielles d’ordre élevé (c’est a dire les électrons libres ayant un grand
moment angulaire [) qui ne peuvent sonder que les régions de rayon r > [/k,
sont plus affectées que celles de faible moment angulaire (k est la quantité de
mouvement de 1’électron),

— en conséquence, les transitions permises (Al = +1), reposant sur des
interactions a longue portée, subissent la plus forte réduction de
leur force de collision, car ces dernieres sont a convergence lente et de tres
nombreuses ondes partielles doivent étre utilisées dans le calcul.

Son étude repose sur 'approximation de Born et un écrantage de Debye-Hiickel.

Whitten et al [81] adoptent des méthodes de calcul plus précises (Distorted
Waves et Close coupling) en comparant des calculs réalisés avec un écrantage de
Debye-Hiickel et un modele de sphére ionique. Ces calculs plus avancés gomment
partiellement les lois d’échelle prévues par Hatton mais montrent que les sections
efficaces sont tres sensibles aux détails de la modélisation de la collision et méme
plus qu’aux effets plasma dans le cas des transitions interdites. Enfin, I’écrantage dia
a la sphere ionique est beaucoup plus important que celui de Debye et les taux de
transitions résultants sont approximativement deux fois plus diminués.

Des constatations similaires peuvent étre effectuées sur les résultats de Davis et
Blaha obtenus avec un modele d’écrantage affiné (Thomas-Fermi ...) et un calcul
Distorted Waves. Néanmoins, les réductions de forces de collision restent faibles,
ceci d’autant plus que ’énergie du libre perturbateur est élevée.

Cette remarque est développée par Blancard et Dubau [12] dans une des rares
études effectuées sur des ions ayant plusieurs électrons (Fer sodiumoide) : alors que
les excitations collisionnelles sans écrantage sont non nulles au seuil d’excitation, du
fait des interactions coulombiennes a longue portée, la discontinuité est gommeée dans
les modeles avec écrantage et ’excitation & proximité du seuil est largement
réduite. A l'inverse, a haute énergie, I’écrantage réduit peu les sections efficaces.
Par conséquent, les taux d’excitation collisionnelle, qui integrent les sections
efficaces sur I’ensemble du spectre des vitesses des électrons libres, sont d’autant
plus réduits que la température est basse et inférieure a I’énergie de seuil

de ’excitation.
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Toutes ces études se fondent sur un écrantage global de la cible : noyau et
électrons liés créant un potentiel central dont le noyau est l'origine, méme pour
I'interaction entre 1’électron lié et 1’électron libre. Gutierrez et Diaz-Valdés [35, 25]
montrent que 'asphéricité de ’écrantage pour I'interaction électron-électron conduit
a une réduction notable de I'effet d’écran, qui n’apparait, toujours pour I’écrantage
e~ — e, que pour des longueurs d’écran tres courtes, quel que soit le modele
d’écrantage utilisé.

Dans le prolongement de cette remarque, il faut s’interroger sur la pertinence
d’un modele d’écrantage statique qui conserve la méme constante d’écran, quelle
que soit la vélocité des particules étudiées. Murillo et Weisheit [55], dans une étude
récente sur l'ionisation collisionnelle, montrent dans une approche dynamique que
I’approximation statique est tres restrictive : en effet, si les électrons lents subissent
un écrantage statique classique, les électrons libres ou liés (en couche profonde)
rapides, beaucoup plus véloces que les électrons du plasma et ne pouvant porter leur

propre nuage d’écran, ne voient quasiment aucun écrantage. L’énergie d’oscillation

47 N,

’ . [ . . . N by
plasma électronique hwpe = constitue approximativement une frontiere a

Me
cet égard.

1.4.7 Pour conclure sur 1’écrantage...

Les différents modeles d’écrantage ont fait de nombreux progres depuis l'ap-
proche classique de Debye-Hiickel. Ils permettent de couvrir une bonne part de
I’ensemble des situations de plasma denses. Les prédictions qui en sont issues sur
I’abaissement du continuum ont permis d’améliorer notablement les modeles d’opa-
cité.

Cependant, ils supposent toujours que les potentiels quasi statiques ont une
symétrie sphérique. Les ions, dont la vitesse est tres faible devant celle des électrons
responsables des différentes transitions, produisent de tels potentiels quasi-statiques.
Il parait alors fort peu probable qu’un nombre entier, limité, de ces ions, puisse
produire un potentiel a symétrie sphérique. Sans remettre systématiquement en
cause les résultats précédents, il semble utile d’étudier les conditions et 'importance

des effets de la levée de la sphéricité.

1.5 Influence du Microchamp Ionique

Le traitement des collisions dans un plasma dense par l’écrantage repose sur
I’approximation que l'on peut remplacer ’ensemble des situations électrostatiques

particulieres dues & chaque configuration spatiale des ions ou des électrons par l'in-
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teraction produite par la moyenne des distributions possibles. Cette approximation
est fondée tant que les temps de collision sont trés supérieurs au temps de réponse
du plasma et/ou que les fluctuations autour de I’état moyen sont tres limitées. Dans
la plupart des situations de plasmas chauds et dans l'esprit de la théorie standard
de I’élargissement de raies, les collisions doivent intégrer le microchamp & créé par
le plasma et le moment relatif de 1’électron libre k. La fonction de distribution du
microchamp reflete toutes les configurations ioniques probables. Ultérieurement, il

convient de faire la moyenne des sections efficaces sur les distributions de £ et k.

1.5.1 Domaine d’application

Il existe deux causes de mouvement pouvant affecter les différentes transitions

atomiques :

— le mouvement collectif d’oscillation des charges a la suite d’une pertur-
bation électrostatique. Il est caractérisé par la fréquence plasma wp. L’inverse
de cette fréquence, 7p, représente donc bien le temps nécessaire pour que les
ions ou les électrons effectuent un mouvement collectif, cyclique dans I’espace.

2w TMe

Tpe = = pour les électrons, 1.25
¢ Wpe Ne ( )

27 ™m; ™m; m; los i (1.26)
TP, = =,/ — = = T, our les ions. .
Pi Wp Z*QNz Z*Ne Z*me Pe P

— les fluctuations thermiques de 1’édifice ionique ou électronique dont le

temps caractéristique, 7, peut étre approximé par le rapport de la distance

interparticulaire moyenne a la vitesse thermique de ces mémes particules :

TTe = Fe  _ < 3 >1/3 e pour les électrons, (1.27)
\/ Te/me 41N, Te

i B (32N i s [T les
T = \/m = (47rNe> \/;Z = me T, Tre pour les ions.
(1.28)
Remarquons que les temps caractéristiques obtenus pour les électrons sont beau-
coup plus brefs que ceux des ions ( 4 /% = 42.8 pour 'atome d’hydrogene et 223
e

pour I’Aluminium).
Quant au temps de collision, il peut étre considéré comme le rapport de la lon-
gueur d’interaction sur la vitesse électronique. La longueur d’interaction peut étre

simplement assimilée au rayon moyen de ’atome, dans un modele de sphere dure,
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si le potentiel est & courte portée (dans le cas d’un atome neutre). Il est par contre
beaucoup plus difficile de la définir pour un ion chargé, le potentiel coulombien étant
a longue portée. La longueur d’écran peut en donner une indication dans un modele

écranté.

A

\/Te/me'

Concernant I'influence des électrons, il est difficile de tirer une conclusion générale.

o~ (1.29)

Les temps de collision sont inférieurs aux temps caractéristiques d’oscillation du
plasma électronique, quelle que soit la longueur d’écran choisie, mais de moins d’un
ordre de grandeur. La condition pour que le temps de collision soit tres supérieur
au temps caractéristique des fluctuations thermiques revient a ce que la longueur
d’écran soit tres supérieure a la distance interélectronique moyenne. Dans un plasma
trés condensé et a fort couplage, le modele de la sphere ionique est bien adapté car la
distance interionique est nécessairement supérieure a la distance interélectronique.
Dans le cas opposé (un plasma idéal : v < 1), la condition pour privilégier ’écrantage
de Debye par rapport au microchamp électronique est que la sphere de Debye

contienne plusieurs électrons...

Le cas des ions est beaucoup plus clair, leur masse rallongeant considérablement

les temps caractéristiques de fluctuation.
1 1
TC aut respectivement ~ —— pour un écrantage de Debye et vaut envi-
TPi Zm; 803
NS (3/4m)'3 1078 <Ne(cm_3)
T2 A2V T T2 (Ryq) \ 6.76 104
et T, = 100eV') pour un écrantage type sphere ionique, les valeurs numériques étant

1/6
> (soit 3.9107% si N, = 10%5cm =3

celles de 'aluminium hydrogénoide. Le temps de collision est en fait systématique-
ment tres inférieur au temps caractéristique de déplacement collectif des ions dans
un plasma méme peu condensé (il faudrait N, = 2 102¢m ™3 pour que ce rapport

vaille 1 dans un plasma d’hydrogene ionisé a 1 Rydberg).

La comparaison des temps de collision et du temps de fluctuation thermique io-
1/2 1
nique mene & une conclusion similaire : leur rapport vaut — =

N/ (4)1/6(32)1/3m 2

8.7 10747}/

(N./6.76 1020176 (>0it 48 107%si T; = 1KeV et N = 10*°cm™?) pour la sphere de

i
ey
En conséquence, nous déduisons que 'influence des plasmas denses sur les méca-

Debye et (soit 4.5 1073 si T, = T}) pour la sphere ionique.

nismes collisionnels sera plus précisément décrite par I'intermédiaire du microchamp

ionique et de I’écrantage électronique que par ’écrantage ionique.
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1.5.2 Quelques effets connus du microchamp

L’analyse spectrale des gaz ionisés a révélé tres tot des structures ou des profils
de raies qu’'une théorie exclusivement fondée sur des particules isolées ou écrantées
ne permettait pas d’expliquer.

En premier lieu, la présence, méme dans des plasmas d’hydrogene faiblement
ionisés, de raies interdites (Al # 1) qui se justifient par le mélange des fonctions
d’onde atomiques induit par le microchamp. A titre d’exemple [56], dans le spectre
d’émission d’un gaz d’hélium tres faiblement ionisé, au voisinage de la raie 4d3D —
2p 3 P° apparaissent les transitions interdites 4f 3F° — 2p3P° 5f3F° — 2p3P°,...
qui ne présentent pas de changement de parité car les fonctions d’onde des niveaux

les plus excités sont mélangées.

On note aussi ’éclatement de certaines raies en plusieurs composantes, qui corres-
pond a une levée de dégénérescence des divers sous-niveaux et moments magnétiques
d’une méme couche, effet particulierement manifeste sur des ions hydrogénoides,
dont les niveaux sont totalement dégénérés a l'intérieur d’une méme couche. Cet
effet de séparation des niveaux a pour conséquence un élargissement des raies spec-
trales, en raison de la distribution étalée du microchamp. De nombreux travaux ont
été publiés ou sont en cours qui concernent I’élargissement Stark des raies [33, 31, 41]
et permettent de déterminer plus précisément la température et la densité du plasma
en ajustant sur les profils de raies de couche K, obtenus expérimentalement, des pro-

fils théoriques calculés pour différentes valeurs de ces parameétres macroscopiques.

Nous présentons dans le paragraphe suivant un autre aspect de ’éclatement des

niveaux.

1.5.3 Limite d’Inglis-Teller

Inglis et Teller [42] ont constaté que les plasmas denses présentent des spectres
de raies normaux jusqu’a un nombre quantique principal limite, au dela duquel
les raies s’estompent et se fondent dans un continuum. Cette limite correspond
schématiquement a l'instant ol le microchamp ionique moyen, séparant suffisamment
les niveaux d’une méme couche, amene ses niveaux les plus perturbés a se superposer
a ceux de la couche supérieure. Physiquement, les fonctions d’onde de ces divers
niveaux se recouvrent et il se forme un continuum d’états quasi-liés, au voisinage de
la limite d’ionisation. Cette limite peut étre employée pour caractériser la densité
ionique par comparaison avec la limite calculée théoriquement.

La limite d’Inglis-Teller, calculée a partir d’'un modele d’écrantage simplifié dans

un plasma d’hydrogene tres dilué vaut, dans ces conditions :
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logg N; = 23.26 — 7.51og;yn (1.30)

mais peut étre extrapolée simplement & des plasmas d’ions plus lourds [4] :

loglo Ne = 23.26 + 410g10 Z>f< — 7.510g10 n. (131)

La formule présentée ici differe 1égerement de celle de Griem [33] (4log;, Z* au
lieu de 4.5logq Z*), cet auteur considérant le microchamp électronique et nous le
microchamp ionique. Nous verrons au chapitre suivant que cette limite, calculée dans
des conditions de couplage tres faible, peut étre adaptée a des cas beaucoup plus

corrélés.

1.5.4 Influence du microchamp sur les transitions collisionnelles :

la recombinaison diélectronique

Il existe tres peu d’études portant sur les transitions collisionnelles perturbées
par le microchamp ionique, elles portent toutes sur la recombinaison diélectronique.
Elles ont par contre été tres avancées, en lien avec des études sur les plasmas de fusion
magnétique [34, 5, 66, 37]. Les densités y sont tres peu élevées, mais la recombinaison
diélectronique s’effectue en passant par des états transitoires dont un des électrons
est dans un état de Rydberg tres excité, il est donc tres sensible au moindre champ
électrique.

Deux effets orchestrés par le microchamp sont alors en compétition :

— l'ionisation des électrons les moins liés en raison du champ électrique, avant
que le systeme ait pu se stabiliser radiativement. Ceci a pour effet de réduire
le nombre de voies possibles pour la recombinaison.

— en 'absence de champ, les états de nombre quantique orbital [ élevé ont de
faibles taux d’autoionisation et, par le principe de la balance détaillée, de
faibles taux de capture. Leur influence sur la recombinaison diélectronique
est donc négligeable. Les champs électriques mélangent les [ élevés avec les
plus faibles qui ont de forts taux d’autoionisation, cela accroit ainsi le nombre
d’états participant a la recombinaison diélectronique.

La "redistribution” des voies possibles vers les niveaux moins élevés mais de fort

moment orbital est tres favorable. Les expériences réalisées donnent désormais des
résultats raisonnablement comparables avec la théorie, a savoir un accroissement

significatif des taux de recombinaison diélectronique en fonction de la densité [7].
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1.6 Conclusion

En résumé, la création de fortes densités (N, < 10?4 — 10%c¢m™3) de maniere
tres fugace conduit la matiere dans un état hors équilibre thermodynamique qui ne
peut étre décrit qu’en détaillant I’ensemble des transitions élémentaires qui peuplent
le plasma. Or ces densités élevées se définissent aussi par les perturbations qu’elles
induisent sur les particules du plasma et par conséquent sur leurs transitions.

La théorie traditionnelle pour représenter l'influence de la densité, I’écrantage,
ne peut étre valable que pour traiter les perturbations induites par les électrons
libres et fournit alors d’intéressants résultats sur 1’état d’ionisation du plasma... Sur
les transitions collisionnelles (électron-ion), I'influence des ions (quasi-statiques) ne
peut étre abordée qu’en faisant des calculs séparés pour diverses valeurs du micro-
champ ionique. Ce dernier est caractérisé par une fonction de distribution qui permet
de réaliser, ensuite, des moyennes.

Le seul mécanisme collisionnel étudié en présence de microchamp, la recombinai-
son diélectronique, présente des taux de transition significativement accrus lorsque la
densité croit, il est par conséquent légitime d’attendre une influence non négligeable
de la méme perturbation sur les taux d’excitation collisionnelle.

Nous détaillerons dans les parties suivantes le traitement du microchamp, ainsi
que son influence sur la structure atomique, 'effet Stark, avant d’en aborder I'impact

sur les excitations collisionnelles.



Chapitre 2

Le microchamp ionique

2.1 Introduction

La grande proximité des particules entre elles dans un plasma dense peut modi-
fier considérablement leurs propriétés radiatives ou collisionnelles. Une description
microscopique de cet environnement distingue deux types de particules interagissant
avec un émetteur. Elles se différencient par leur vélocité et leur masse : les électrons
légers et rapides, abordés en général par la théorie des impacts ou des collisions, et les
ions perturbateurs supposés quasistatiques durant le temps d’émission ou d’impact

électronique.

Le microchamp ionique résulte de la fluctuation thermique de la position des
ions autour d’un émetteur particulier. L’énergie totale et la structure atomique de
ce dernier s’en trouvent modifiées, avec en particulier le mélange des états propres
de I’hamiltonien non perturbé, autorisant du méme coup des transitions interdites.
La distribution étalée des énergies des niveaux résultante entraine un élargissement
des raies tandis que le mélange des fonctions d’onde de moments orbitaux différents
entraine une variation de la force de la raie. Il en résulte une perturbation importante
du spectre d’émission et probablement de la répartition des populations des différents
niveaux. Les modifications spectrales par élargissement Stark ont été trés étudiées
et continuent de I’étre (voir par exemple [31, 72]), I'influence du microchamp sur
les populations, la troncature des fonctions de partition et plus généralement sur
I’ensemble des processus microphysiques de peuplement est un sujet d’étude toujours
d’actualité. Il apparait donc nécessaire de connaitre la distribution statistique ou
probabilité de distribution du champ P(g ). Celle ci se définit comme la probabilité
d’observer le champ £ au point rg créé par N particules et peut se mettre sous la

forme :
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.1 - -
PE) =2 /eV(r071‘17"‘71‘N)/kT5(5 &N+ (2.1)

=1

ou EZ est le champ créé au point rg, par la particule i située au point rj, V est
I’énergie associée a la position et la vitesse des particules les unes par rapport aux
autres et C' une constante de normalisation.

Il existe de nombreuses théories permettant de calculer cette distribution, di-
verses par leur approche analytique ou numérique ou encore par leur domaine de
validité. D Gilles [30] en discute plusieurs avec précision. Nous nous sommes large-
ment inspiré de son travail pour en présenter un certain nombre, non pas de maniére
exhaustive, mais essayant de fournir au lecteur quelques références, valables dans
des conditions particulieres de température et de pression mais d’emploi aisé, ainsi
que la méthode de calcul utilisée dans cet ouvrage et dont nous justifierons le choix

en la comparant aux autres approches.

2.2 Modeles théoriques

Le champ électrique £ créé en un point est le gradient du potentiel généré en
ce point par les ions situés a sa proximité. Potentiel qui peut étre coulombien ou
écranté, de type Yukawa; il sera supposé additif, tout comme le champ, méme si
cette hypotheése n’est vérifiée que pour des potentiels coulombiens. Les équations
caractérisant la distribution du microchamp s’obtiennent par un calcul autoconsis-
tant du hamiltonien total du systeme a la limite thermodynamique. La résolution
exacte de ce systeme d’équations est celle du probleme a N corps et est donc im-
possible de maniére analytique. Il convient donc d’en donner des approximations
fondées sur des hypotheses d’environnement (domaine de température, densité...)
ou encore d’envisager des simulations numériques pour approcher la réalité. Dans
tous les cas, le microchamp sera supposé uniforme (P(g ) = P(£)) méme si dans des
conditions de densité tres élevée les inhomogénéités du champ ne peuvent plus étre
omises et devraient conduire a l'introduction d’un gradient du microchamp & dans
la distribution.

On a volontairement exclu les méthodes semi analytiques type APEX ou Dharma-
Wardana et Perrot de cette présentation car elles ne sont pas utilisées ici, ainsi que
la méthode numérique de dynamique moléculaire, pour la méme raison.

Il nous faut mentionner, d’ores et déja, les limites d’ionisation par champ et
d’Inglis-Teller, qui seront étudiées dans le chapitre suivant mais qui requierent la

connaissance, pour 'une de la valeur du champ électrique la plus probable et pour
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I’autre la valeur du champ a mi-hauteur de la distribution. Elles seront donc précisées

et ces résultats permettront une comparaison des différents modeles.

2.2.1 Définitions et parametres

On utilise deux parametres sans dimension pour caractériser le degré de corré-

lation des particules du plasma :

— le parametre de corrélation Ion-Ion I';; : & un facteur 2/3 pres, le rapport de
I’énergie coulombienne de 2 ions, situés a la distance interionique moyenne (ou
rayon de Wigner-Seitz : ry), & 'énergie cinétique thermique des ions et qui a
déja été mentionné au chapitre précédent. Il peut varier de plusieurs décades,
typiquement [107°; 102].

— le parametre d’écrantage électronique Uje : rapport de la distance interio-
nique moyenne a la longueur d’écran électronique. Il reste, lui, assez centré

([0.1; 2.5]) :

Z'"" N
Use = ’“;’S = (36m)1/6Z e (2.2)

e
Cette expression correspond au cas de I'écrantage électronique de Debye-Hiickel.
D. Gilles mentionne que cette longueur d’écran peut s’appliquer au dela de son
critere de validité - a savoir un grand nombre de particules dans la sphere de Debye
- pour les situations physiques caractéristiques de cette étude, c’est a dire denses et
chaudes.
Enfin, une valeur de référence du champ est couramment employée, celle créée

par deux ions situés a la distance interionique moyenne :

Z 4m 2/3—1/3 2/3 —1771/3 7r2/3 -3
o = =(— ZVUNZC =7271107 Z NP (emT?). (2.3)

= TTU,S 3
Le champ est en général donné dans cette unité et noté . La fonction de distribution
du microchamp électrique s’écrit P(3) et est normalisée, le milieu est ionisé mais
globalement neutre : N, = ZNj.

Lorsqu’il s’agit de quantifier le champ, la plupart des auteurs choisissent d’em-
ployer le V em™! ou le Statvolt cm™! = 300V e¢m™!, par cohérence avec le reste

de cet exposé nous resterons en Unités Atomiques : 1 w.a. = 5.1423 10°V em™! =
1.7141 107 Statvolt em™".

2.2.2 Distribution de Holtsmark

Holtsmark a élaboré des 1919 une théorie dans le cadre d’un plasma d’hydrogene

totalement ionisé et dilué. Il s’applique donc pour un environnement peu ionisé et
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non corrélé (I';; — 0), par exemple les plasmas de faible densité et forte température.

La fonction de distribution s’écrit :

Pu(p) =2 /0 " cap(—y*?)y sin(By)dy (2.4)

™

et équivaut a deux expressions approchées aux limites :

Py(p) T 0.4244 3 (2.5)
et
P () —— 1.49687°/2 4 7.63957* + 21.605~1/2, (2.6)

B—o0

Le maximum de cette distribution correspond a § = 1.61 soit un champ le plus
probable £ = 4.18 71/ 3 NeQ/ 3 tandis que la valeur du champ a mi-hauteur de la
distribution est £ = 7.66 2"/ N¥? (5 = 2.95).

Il convient de noter que cette approche ne convient plus lorsque les corrélations

ne sont plus négligeables, la probabilité des grands champs est alors surévaluée.

2.2.3 Distribution Plus Proche Voisin

La méthode PPV (Plus Proche Voisin) ou NN (Nearest Neighbour), est une
simplification de celle de Holtsmark en ne prenant en compte pour le calcul du mi-
crochamp que 'ion le plus proche. Elle est calculée a I'aide d’un potentiel coulombien

non écranté, la position des ions est évaluée de maniere statistique :

Pppy(8) = ;ﬁ_s/ze_g%/?_ (2.7)

3\ %3 . =1/3 1,2/3
La valeur la plus probable du champ est 3 = = =0.71s0it £E=1.8572""Ng

et sa valeur & mi hauteur : € = 3.78 Z/° N? /3 (8 = 1.456) soit approximativement
deux fois celle du champ le plus probable.

Cette distribution, comme celle de Holtsmark, est réservée a des plasmas peu
corrélés. Elle gomme la participation des ions plus éloignés au microchamp et le

sous-évalue donc lorsque la densité est faible.

2.2.4 Distribution de Mayer

Le modele de Mayer reprend celui de Holtsmark en incluant un facteur de Boltz-

mann qui prend en compte les interactions Ion-Ion :
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2 1/2 2 3/2 *621_‘"/2
Pu(@)= () BTy T, (2.8)

2 TN\ '? \
Le champ le plus probable vaut g = T soit & = 2.89 > et sa valeur a
i

. 1/2
mi hauteur : £ = 4.74 (%) (B =1.644/ I’i)

C’est une approximation bien adaptée aux plasmas denses et froids, tres forte-

ment corrélés, ou I’écrantage électronique est devenu négligeable, situations obtenues

en général pour des matériaux de Z élevé.

2.2.5 Méthode de Monte Carlo

Les distributions employées dans la suite de cet ouvrage sont issues de simula-
tions numériques effectuées par D. Gilles [30]. La technique utilisée consiste en un
ensemble d’expériences numériques sur des systemes finis de particules, en cellules
périodiques, a l'intérieur desquelles sont traitées de facon aussi exacte que possible
I’ensemble des interactions particulaires ainsi que celles avec leurs images dans les

cellules limitrophes (méthode de Monte Carlo).

Un lissage analytique a été effectué a partir d’un grand nombre de calculs Monte
Carlo représentant une grande diversité de situations possibles. L’expression de la
distribution du microchamp est extrapolée a partir d’'un ensemble de points issus
de ce lissage et obtenus a l’aide de fonctions analytiques simples et de coefficients

prétabulés.

Il convient d’ajouter que ce lissage n’est en principe utilisable que pour des plas-
mas & un seul constituant (constitués d’une seule espece d’ion de charge égale & 7).
Ceci convient aux distributions de charge assez piquées autour de Z, mais nécessite
un aménagement lorsqu’il s’agit de plasmas de type FCI ou une impureté lourde
(Néon, Argon ionisés en couche K ou encore Krypton) est intégrée dans un micro-
ballon rempli d’hydrogene totalement ionisé. D. Gilles mentionne que ses lissages
sont toujours fonctionnels, mais avec un Z plus élevé, rendu artificiellement plus
proche de celui de 1’élément le plus lourd. A titre d’exemple, la distribution de mi-
crochamp d’un plasma composé d’1% d’Argon hydrogénoide dans 99% d’hydrogene
totalement ionisé est correctement rendue par le lissage en employant Z = 5, dans
des conditions de température et de densité caractéristiques de la FCI. Pour une

concentration plus raréfiée (0.2%), le choix Z = 3 est recommandé.
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2.3 Cas pratiques avec la méthode de Monte Carlo

Nous présentons ici quelques situations correspondant a celles étudiées ultérieu-
rement dans cet ouvrage.

Nous avons choisi d’effectuer nos calculs principalement sur I’Aluminium dans le
cadre de I'interaction laser matiére. Les transitions de couche K y sont communément
observées, c’est pourquoi nous avons choisi un Z = 12 supposant ainsi 'ion quasi
hydrogénoide. Nos calculs d’excitation collisionnelle portent aussi sur les héliumoides
mais il apparait que le choix de Z = 11 n’a qu'une influence limitée (le champ créé
par une particule située a la distance interionique moyenne est proportionnel a 71/ 3,
la variation est donc 121/3 — 11/3 ~ 0.065 ). Les densités rencontrées atteignent
quelques 10%*¢/cm? (aluminium sous choc) et les températures environ 500 eV,
nous avons donc choisi de présenter la distribution du microchamp jusqu'a N, =
10%¢e/cm? et T, ~ 600eV .

Les figures 2.1, 2.3, 2.4 font apparaitre une assez bonne corrélation entre le
pic de microchamp et la densité, le logarithme de la valeur la plus probable du
microchamp étant proportionnel au logarithme de cette derniere pour des densités
allant jusqu’a environ 10%2e/cm?, 4 500 eV. Au del, il y a un affaissement progressif
du microchamp en raison des corrélations croissantes.

11 est plus difficile d’établir un comportement général pour la température (figure
2.2). Dans le cas de densités élevées, le comportement est linéaire en température
jusque vers 300 eV & 10%°¢/cm3, s’affaissant légerement ensuite. A plus basse densité,
la distribution de microchamp devient quasiment indépendante de la température
et voisine de la valeur classique 0.42&y; pour la valeur de champ la plus probable.

Dans toutes les figures présentées ici, la température électronique a été supposée
égale a la température ionique. Hors équilibre thermodynamique, cette condition
n’est plus vérifiée. Une étude rapide montre une réduction du microchamp si la
température ionique décroit (environ un facteur 2 entre T; = 100eV et T; = 500eV

pour T, = 500eV et N, = 10%¢/cm?), mais cet effet s’estompe & plus basse densité.

2.4 Comparaisons

Nous avons tracé sur les figures 2.3 et 2.4 les valeurs des parametres de couplage
T';; et d’écrantage électronique Uj;e pour des situations qui encadrent approximati-
vement celles qui seront traitées dans le reste de ce mémoire : un plasma chaud
et dense d’Aluminium, de température comprise entre 100 et 500 eV et pour uns
large gamme de densités au dela de N, = 10"e¢m™3. Les valeurs de ces paramétres

varient notablement autour de 'unité. Nous tracons également les valeurs du champ
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le plus probable pour les différentes distributions présentées. Cette comparaison ne
dit rien sur la forme des courbes, en particulier aux champs élevés, mais donne
une assez bonne indication des champs les plus représentatifs qui seront subis par
I’atome excité. Il faut noter que les courbes obtenues pour Holtsmark et PPV sont
indépendantes de la température.

Lorsque le plasma est peu corrélé (I" faible), les approximations de Holtsmark et
Plus Proche Voisin encadrent les résultats plus précis obtenus avec la méthode de
Monte Carlo, et ces derniers sont d’autant plus proches de ceux de Holtsmark que
la température est élevée et que 'on se rapproche donc du domaine de validité de
cette théorie, mais en dega de 500eV, le champ le plus probable de Holtsmark est
supérieur d’au moins 50% par rapport a celui de Monte Carlo. La valeur obtenue
par PPV reste systématiquement sous-évaluée par rapport a celle de Holtsmark d’un
facteur de I'ordre de 2. Le champ le plus probable obtenu par Monte Carlo devient
inférieur a cette valeur lorsque le parametre de couplage I';; dépasse 1, ce qui peut
constituer une limite approximative a la validité des théories de Holtsmark.

Les résultats issus des distributions de Mayer sont toujours largement surévalués
par rapport a ceux de D. Gilles (Monte Carlo) dans le domaine de température et
de densité considéré. Le couplage peut y devenir tres intense a haute densité, mais
I’écrantage y est alors élevé, ce qui est contraire aux conditions d’application de cette
théorie. Les résultats deviennent comparables lorsque I’écrantage est faible, mais ces
conditions ne sont réunies que pour des Z élevés, dans le cas des plasmas chauds
et denses. Typiquement, ces conditions sont rencontrées dans des interactions laser-
matiere avec des métaux lourds, par exemple, l'or de la cavité (Hohlraum) en FCI
par voie indirecte. L’ensemble des calculs présentés ultérieurement ne présenteront
jamais ces caractéristiques.

Cette étude succincte montre qu’une description approchée du microchamp avec
des expressions limites ne couvre qu’une partie étroite du domaine que nous envisa-

geons de traiter et qu’une distribution précise du microchamp est nécessaire.

2.5 Conclusion

En résumé, il apparait pertinent de choisir une description raffinée de la distri-
bution de microchamp, en particulier lorsque la densité croit et plus encore dans les
situations Hors ETL. A plus faible densité, lorsque le parametre de couplage est tres
inférieur a 1, la description classique reprend ses droits et il est alors possible d’em-
ployer l'expression analytique de Holtsmark. Le choix d’une distribution obtenue
par lissage analytique de simulations Monte Carlo, dépendant seulement de deux

parameétres, intégrant les 4 variables 7., T;, N,, Z permet d’envisager d’extrapoler
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les résultats de sections efficaces obtenus pour un élément a ’ensemble des autres,
pourvu que l’on choisisse des lois d’échelle adaptées pour ces parametres.

Les quelques graphiques présentés montrent que des champs électriques attei-
gnant une dizaine d’unités atomiques peuvent exister dans un plasma d’Aluminium
trés dense et tres chaud. Il conviendra donc d’effectuer des calculs de sections effi-

caces jusqu’a ces valeurs, si tant est que les niveaux calculés existent encore.
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Fonction de distribution du microchamp
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F1G. 2.1 — Distributions du Microchamp électrique créé par un plasma d’Aluminium de Z = 12
a la température T. = T; = 500eV pour différentes valeurs de la densité (de gauche & droite) :
1019, 10%°, 102!, 10?2, 10?3, 10%* et 10256/cm3 (les distributions ne sont pas normalisées). Il faut
noter que les ”1égers” accidents autour du maximum refletent le caractére bruité de la simulation

Monte Carlo initiale.

Fonction de distribution du microchamp
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F1G. 2.2 — Distribution du Microchamp électrique créé par un plasma d’Aluminium de Z = 12
pour une densité N. = 10%°¢/cm? et a différentes valeurs de la température (de gauche & droite) :
100, 250 puis 625 eV.
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Valeur du Microchamp la plus probable a T=1000eV
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F1G. 2.3 — Champ le plus probable obtenu pour différentes distributions pour un plasma d’Alu-
minium Z = 12, & la température T. = T; = 1000 eV : distribution de Mayer en trait fin, de
Holtsmark en pointillés, distribution Plus Proche Voisin en trait épais et distribution de Monte
Carlo en carrés. Les variables I';; parametre de couplage ionique (en losanges) et U;. parametre

d’écrantage électronique (en croix) sont présentées simultannément.

Valeur du Microchamp la plus probable a T=100eV
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F1G. 2.4 — Méme légende que précédemment mais pour T, = T; = 100 eV.



Chapitre 3

Influence du champ électrique

sur la structure atomique

3.1 Introduction

Nous avons présenté au chapitre précédent I’émergence de champs électriques
quasi-statiques, croissants & mesure que le plasma se densifie et /ou voit sa températu-
re augmenter ; ces champs étant quasi-statiques a ’échelle des processus collisionnels
et radiatifs. La description de ces corpuscules perturbés conduit a modifier leur ha-
miltonien. Un traitement exact du microchamp et des fonctions d’onde nécessiterait
d’en chercher leurs formes en trois dimensions, ce qui n’est guere envisageable, en
particulier pour la structure atomique, si 'on espere pouvoir effectuer ensuite des
moyennes sur toutes les situations de microchamp et calculer les taux collisionnels
qui sont 'objet de cette étude. A titre d’exemple, Ruder et al [70] ont calculé I'in-
fluence de l'effet Zeeman a fort champ sur divers atomes en employant une base de
300000 fonctions d’onde pour décrire précisément 1’asphéricité des fonctions d’onde
résultantes. Il est donc nécessaire d’admettre certaines approximations si ’on désire
rendre le probleme soluble.

Nous supposons le champ uniforme (les gradients possibles, a ’échelle de la
structure atomique, sont négligés), comme cela a été mentionné dans les pages
précédentes. Ce choix parait pertinent en comparant la distance interionique moyenne
(rus), caractéristique des domaines de variation du champ, au rayon moyen de

2_J(1+1
latome (< 7y >= Sn—(—i-)

dans le cas d’un hydrogénoide, n et 1 étant les
nombres quantiques principal et orbital). Ce rapport s’exprime comme un multiple
de Z4/3/]\761/3 et, dans le cas d’un plasma de densité 10%*e/em?, pour un ion hy-
drogénoide excité en couche n=2, il vaut environ 6 pour I’Aluminium et 11 pour

I’Argon. L’uniformité du champ apparait donc raisonnable et est supposée avec
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profit par la majorité des auteurs car elle permet de reproduire avec une précision
correcte les situations expérimentales. Néanmoins, cette approche est plus discutable
dans le cas des densités tres élevées et des travaux récents ajoutent un gradient a la
valeur du champ [22]. Ce raffinement ne sera pas pris en compte ici.

Le champ modifie fortement les fonctions d’onde et transforme leur symétrie
sphérique en une symétrie de révolution. Il est possible d’effectuer un changement de
référentiel en passant en coordonnées paraboliques [10] pour résoudre le Hamiltonien.
Cette approche n’est rigoureusement exacte que dans le cas des ions hydrogénoides et
nous avons préféré I’éviter pour traiter de facon similaire tous nos ions, en particulier
des systemes multiélectroniques.

Nous rappelons succinctement la théorie nécessaire au calcul avant de détailler
les énergies et fonctions d’onde de I’Aluminium hydrogénoide et héliumoide pour les
états issus des couches n=2 et n=3, ce qui permettra d’interpréter les modifications
des forces de collision présentées au chapitre 5 tout en présentant simultanément les
notations spectroscopiques utilisées ultérieurement pour caractériser les niveaux hy-
drogénoides sous microchamp. Puis nous discutons les lois d’échelle en Z, de facon a
pouvoir extrapoler plus aisément nos résultats numériques d’excitation collisionnelle
a I'ensemble des éléments atomiques. Enfin, nous définissons le domaine de travail
en densité par le biais de la limite d’Inglis-Teller, présentée au premier chapitre et

recalculée avec le modele de Monte-Carlo précédent.

3.2 Théorie de l’effet Stark

Nous avons repris les notations utilisées par R. D. Cowan [19] ainsi que, par
conséquent, la structure atomique qu’il décrit. Il s’agit d’un couplage LSJ ot 'ordre
de couplage généalogique est respecté (la sous couche la plus profonde - 1s - est la

mere de la suivante -2s -, elle méme mere de celle qui lui succede...) :
{. .. (l}”lalLlsl, l;uzazLQSQ)EQSQ, l§”3a3L353)[,383, .. .}EquJqu (31)

ou w; correspond au nombre d’électrons de moments orbitaux [; dans la sous couche
i de moment orbital total L; et de moment de spin total S;. Les « représentent les

éventuels nombres quantiques supplémentaires (nombre de séniorité...).

3.2.1 Eléments de matrice généraux

L’influence du champ électrique g , parallele a Oz, est prise en compte par un

terme d’interaction au niveau de I’Hamiltonien atomique. A I'approximation dipo-
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laire, ce terme s’écrit :

Hyee = —£.) _er; = —€£.PW (3.2)

ott P est le moment électrique dipolaire de Patome. L’élément de matrice non

diagonal qui s’y rattache s’écrit, en Rydbergs, d’apres le théoreme de Wigner-Eckart :

< VIM|Heooly M’ > = —28 < v JM|PP W I M >
J 1 J
= -28(-1)"M <AJ|IPD|y T >
(-1 (_M . M,) 1IIPD
(3.3)
L’élément de matrice réduit (indépendant de M) < || || > se simplifie car 'opérateur

de moment dipolaire électrique commute avec le spin :

L S J

< I[Py T >= §gg/(~1)ETHH ], J’]W{ Jo1 L

} < yLS||PW |y LS > .

(3.4)
Ce dernier élément de matrice est détaillé en appendice pour le cas général. Il contient

I’élément de matrice de transition

pO

nl,n’l’ =

< nl|[rO 7 >—<zuc<1)|yz'>/ Pou(r) Py () 7 dr
0

/ o0 (3.5)
— (—1)l[l,l/]1/2 ( b1 ) /0 Pnl(r)Pn’l’(T) rdr

0 0 O

Le moment angulaire total J nlest plus un bon nombre quantique et seule sa
projection J, commute avec le hamiltonien. Dans le cas d’un couplage LSJ pur, le
spin commute aussi avec le hamiltonien. De plus, les états vJM et ~'J M’ doivent

étre de parité opposée et donc appartenir a deux configurations différentes.

3.2.2 Cas hydrogénoide

Dans le cas d’ions a un seul électron, ces éléments de matrice adoptent des formes

simples :

y l j ©
< nlsj||7“(1)||n/l/sj, >= 5[’,li1(_1)l>+J +3/2[jaj,]1/2(l>)1/2 { j/ j lj/ } / Pann’l’ rdr
0
(3.6)

ou I~ = max(l,1’), et sans couplage spin-orbite L.s :

< nlmlms|HeleC\n'l'm;m; >= _2851/,li15mlms,m;m’8(_1)l>_ml(l>)1/2

I1 v o
X / TPann/l/ dr
-m 0 m 0

(3.7)
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L’effet Stark sépare les états de nombre quantique principal n et initialement
dégénérés de [19] :
AE = 3nkE/Z (3.8)

ou k (& ne pas confondre avec M) prend toutes les valeurs entieres de —(n — 1)
an— 1. A mesure que £ grandit, il est nécessaire d’introduire plus de niveaux
dans la diagonalisation du hamiltonien et, du fait de l'interdiction de croisement
des niveaux de méme M, le décalage devenu linéaire retourne dans un état tres non

linéaire quadratique, puis oscillant par segments.

3.3 Résultats et notation

Pratiquement, nous avons effectué la résolution du hamiltonien pour chaque | M|
individuellement, & ’aide d’'un programme numérique de diagonalisation pour des
matrices comprenant tous les états de la couche n=2 (hydrogénoides ou héliumoides
1s21) et pour des matrices comprenant tous les états des couches n=3 et 4. Un tel
choix résulte de la tres grande séparation des niveaux 2 et 3 et de la petitesse de
leurs couplages par le champ.

Nous présentons dans les figures 3.1 a 3.4 des exemples de calculs d’énergies et
de fonctions d’onde obtenus pour de I’Aluminium Hydrogénoide et Héliumoide. Les
énergies initiales sont présentées en appendice et les états initiaux sont supposés
en couplage LSJ pur : un état propre |LSJM > de 'Hamiltonien non perturbé
vérifie : Ho|BLSJM >= Egrs;|3LSJM > et un état propre |agM(E) > du systeme
ionique en présence de champ : (Ho + Hejee) |asM (E) >= Eqgm(E) |asM(E) >.

Le vecteur propre de I’Hamiltonien perturbé est obtenu par la diagonalisation

de sa matrice dans la base des états non perturbés :

asM (&) >= > C§785(€) BLSIM > . (3.9)
B,L,S,J

Nous appellerons dans les pages suivantes les gf %(8 ) les coefficients de mélange
de I'état propre |agM(E) >.

Pour réduire les temps de calcul des sections efficaces d’excitation collisionnelle
présentées aux chapitres suivants, nous avons traité simultanément les états de méme
|M]. Tl faut mentionner que les coefficients de mélange de deux états similaires mais
de M de signes opposés sont les mémes en valeur absolue mais peuvent voir leur
signe changer. Pour les déterminer, on compare les signes de < vJ M |Hjee|y'J' M >
et de <~vJ — M|Hge|y'J — M >.

Dans le cas des hydrogénoides, la résolution de I’équation de Dirac-Pauli meéne
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aux énergies :

Enj(Ryd) = —

Z? oz2Z4[ 4n } (3.10)

n?  dnt [j4+1/2
ou « est la constante de structure fine. La levée de dégénérescence est effectuée sur j,
mais les états de méme j et de 1 différents restent dégénérés. En présence
de champ électrique, I’état d’énergie la plus élevée (la plus proche de 0)

sera nommé |nj+ > et celui d’énergie la plus basse |nj— >.

o nli >+ n(l+1) 5>

V2

o nlj > —n(l+1)7 >

V2

nj+(€ = 0) > L Inj—(E=0)>

Le comportement quadratique puis linéaire est bien respecté aux champs faibles
pour les hydrogénoides (figure 3.1) mais aussi pour les héliumoides (figure 3.2).
Néanmoins, cette linéarité n’est pas respectée indéfiniment et une étude détaillée fait
apparaitre des répulsions de niveaux qui correspondent a des échanges de fonctions
d’onde (figures 3.1, 3.3 et 3.4). Nous représentons sur ces figures I'anticroisement
de n=4 J+3/2- M=3/2 et de n=3 J=5/2 M=3/2 en 3.7 u.a. qui correspond & un
échange des deux fonctions d’onde, comme nous 'expliquons dans le cartouche des
figures 3.3 et 3.4 méme si les deux fonctions d’onde ne serecouvrent pas exactement.
Ceci est du a la progressivité de 'anticroisement qui s’étire approximativement entre
3.3 et 4.1 w.a.. Des anticroisements plus brefs (en terme de champ électrique) existent
notamment n=4 J=1/2- M=1/2 et n=32Dj; , M=1/2 en 2 u.a. ol les deux fonctions
d’onde s’échangent tres précisément. Nous avons choisi de ne pas les présenter en
raison du tres grand nombre de fonctions de base présentes dans les fonctions d’onde
(5 pour n=3 + 7 pour n=4 si M=1/2) et préjudiciable & la lisibilité des figures.

Notons que les fonctions d’onde entre deux évitements restent tres stables, ce qui
permettra de restreindre le nombre d’évaluations des sections efficaces en fonction

du champ entre ces points.

3.4 Généralisation

Nous avons vu (formule 3.8) que des lois simples existent pour caractériser les
énergies des états en présence de champ. Il est manifeste que ces lois s’exercent tant
que les états ne se croisent pas.

En raison du 3j présent dans les éléments de matrice d’interaction avec le champ,
les déplacements des états sont d’autant plus intenses que |M| est faible. Les états
de | M| maximal & l'intérieur d’une couche ne sont pas affectés par le champ.

On peut noter que les intégrales radiales présentes dans les éléments d’interaction

sont proportionnelles & 1/Z et, donc, que le mélange des états décroit en importance
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en 1/7 le long d’une séquence isoélectronique. Cowan mentionne que la séparation
des niveaux crolt au minimum en Z, on en déduit que le mélange des niveaux se fera
pour des intensités de champ électrique de plus en plus élevées, de 'ordre de Z2Ex.

Les hydrogénoides présentent une tres bonne régularité en Z tant en énergie
que pour leurs fonctions d’onde. Le croisement des couches étant fonction de la loi
en 1/7Z (formule 3.8) et du décalage des couches en Z2, les évitements de niveaux
et échanges de fonctions d’onde se font & des champs caractérisés par Z3Ex. Plus

précisément,
7Z3 2n +1
=" 3.11
3 720+ D2k — (0 + Dlonya) (3.11)

Les énergies des héliumoides correspondent approximativement a celles des hy-
drogénoides avec Zg. = Z — 1, ceci est d’autant plus vrai que le nombre quantique
principal n est élevé. Les transitions se font donc pour des champs ((Z —1)/2)3 fois
plus faibles, soit 0.79 dans le cas de ’Aluminium (les anticroisements adviennent
vers 2 u.a. et 3.7 w.a. dans la figure 3.1 pour Al XIII et vers 1.6 u.a. et 2.9 u.a. dans
la figure 3.2 pour Al XII).

Dans les faits, les croisements prédits sont d’autant plus décalés par rapport a
la réalité que le champ est élevé (les transitions mentionnées dans le paragraphe
précédent vaudraient 1.98 u.a. et 3.24 u.a. pour Al XIII et 1.56 u.a. et 2.55 u.a. pour
Al XII) ce qui signifie que les interactions de n=3 avec la couche supérieure n=4
ne sont plus négligeables et que la diagonalisation du hamiltonien doit se faire en
incluant les états des deux couches.

Nous avons mentionné au premier chapitre un effet spectral dii au microchamp
qui restreint la possibilité d’observation des raies issues des niveaux les plus excités

en les fondant dans un continuum : la limite d’Inglis-Teller.

3.5 Limite d’Inglis-Teller

Elle correspond a la limite de disparition d’une raie spectrale dans le continuum
dans un spectre de raies, ce qui se produit lorsque la largeur de raies de deux couches
voisines devient tellement importante qu’elles se recouvrent et qu’il n’est plus pos-
sible de les distinguer 'une de 'autre.

Sans que ce soit précisé clairement par Inglis et Teller [42], il apparait que la
largeur choisie est la largeur a mi-hauteur de la raie élargie par un microchamp Plus
Proche Voisin, ce qui correspond au décalage obtenu par le champ a mi-hauteur
de la distribution. A I'aide des valeurs du microchamp & mi-hauteur obtenues pour
les différentes distributions au chapitre précédent, nous recalculons cette limite. I1

est nécessaire de préciser que cette limite n’étant pas définie de maniere stricte, les
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valeurs numériques proposées par les différents auteurs different un peu [33].
L’éclatement d’un niveau n en raison du champ électrique a été énoncé en 3.8 et
vaut pour les sous-niveaux les plus perturbés : AEZ = +3n(n — 1)£/Z. Le rappro-

chement entre deux couches n et n + 1 s’écrit donc :

|AE5|ma:r: + |AE5+1‘max = 6n25/Z (3.12)

La séparation entre deux couches non perturbées valant :

AEZHZZ_QZ_( z )2 :(22n+1)?22
ot (3.13)
N — sin>1
n

Il y a superposition lorsque ces deux valeurs s’égalisent :

73 1/5
Nmas N <%> (3.14)

Pour une valeur de £ a mi hauteur, on retrouve avec le modele PPV la limite
d’'Inglis-Teller (formules 1.30, 1.31) et, pour la distribution de Holtsmark, la limite

de disparition se fait a des densités un peu plus élevées :

131 29 \ 2/15
n>nll —~ 7815 <LO)> : (3.15)

max Nc(em=3
De méme que pour l'ionisation par champ, il apparait sur la figure 3.5 que les
densités de disparition obtenues a ’aide d’un microchamp MC sont plus élevées que
celles définies précédemment lorsque le couplage grandit et dépasse 1 et tendent vers
le méme résultat que la formule 3.15 obtenue a 'aide du microchamp de Holtsmark

lorsque la température est tres élevée et la densité faible.

3.6 Conclusion

Cette partie nous a permis de présenter la théorie employée pour réaliser nos
calculs de structure atomique en présence de champ électrique, base des calculs
ultérieurs de section efficace d’excitation collisionnelle en présence de microchamp.
Les notations utilisées par la suite ont été posées et 1’étude des croisements évités
de niveaux ainsi que le calcul de la limite d’Inglis-Teller permettent de déterminer
les champs électriques en deca desquels le mélange des différentes couches n=3 et

n=4 n’est pas nécessaire, permettant ainsi une plus grande simplicité de calcul.
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Energie des niveaux n=3 et 4 de Al XIII
} J=3/2— M=3/2 S a _
16 / 29 v"‘%‘mﬁ,ﬁ:ﬁ;%é%ééééé
Ryd gL -
= a
-20
=22 n=3 .
J=5/2M =3/2 +
=24 -
1 1 | |
0 1 2 3 4 )

Champ électrique (u.a.)

F1G. 3.1 — Energie des différents niveaux issus des couches n=3 (en trait fin) et n=4 (en trait

épais) de I’Aluminium Hydrogénoide, en fonction du champ électrique. Des croisements évités entre

les différents niveaux apparaissent clairement, en particulier entre les niveaux de n=3 d’énergie

la plus élevée et ceux de n=4 d’énergie la plus faible vers 2 u.a. (pour M=1/2) et vers 3.7 u.a.
(pour M=3/2). Les fonctions issues de n=4 J=3/2- M=3/2 () et n=3 J=5/2 M=3/2 (+4) sont

représentées en superposition.

-178
-180
-182
-184
Ryd
-186
-188
-190

-192

Energie des niveaux 1s3l et 1s41 de Al XII (Héliumoide)

1s31 - i

2

3

Champ électrique (u.a.)

F1G. 3.2 — Energie des différents niveaux issus de 1s31 (en pointillé) et 1s4l (en trait continu fin)

de ’Aluminium Héliumoide en fonction du champ électrique. Les croisements évités équivalents &

ceux de la figure précédente ont lieu vers 1.6 u.a. et 2.9 u.a. L’aspect dédoublé des courbes est di

aux états triplet et singulet de chaque niveau.
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Coefficients de mélange de la fonction d’onde issue de n=4 J=3/2- M=3/2 de Al XIII
1 T T

' n=4 2D, —

n=4 2D3/2 B
n=3 2Dg5,y ——
( /

0.5 I n=3 2D3/2 ..... "
n=3 2Py /5 ——
\n=42F5,5 -

Champ électrique (u.a.)

F1G. 3.3 — Coefficients de mélange (au sens de la formule 3.9) de la fonction d’onde issue de n=4
J =3/2—, M = 1/2 de ’Aluminium hydrogénoide, en fonction du champ électrique. La légende
en est explicitée sur la figure. L’anticroisement s’effectue autour de 3.7 u.a. En 3.1 u.a., la fonction
d’onde vaut approximativement 0.6 n=4Ds 5 - 0.56 n=4?Py ;5 - 0.33 n=4?F; )5 + 0.3 n=4’Dj 5 -
0.23 n=3"P3/> + 0.21 n=4F3 5 et en 4.3 u.a., aprés 'échange avec la fonction d’onde issue de n=3
J=5/2, M =3/2,-0.76 n=3P3 5 - 0.52 n=3>D5 5 - 0.26 n=3"D3 5 - 0.25 n=4>F%».

Coefficients de mélange de la fonction d’onde issue de n=3 J=5/2 M=3/2 de Al XIII
1 | |

o S AN
n:42D3/2.... . —
n=3 2D; /5 ;

05 L n=3 2D3/2 ...... . _|
n=32Pyy —
n=4 2F5/2 o
n=42F; 5 ——
-1 n=42Py5 | .. ... | | |
0 1 2 3 4 )

Champ électrique (u.a.)

F1G. 3.4 — Coefficients de mélange de la fonction d’onde issue de n=3 J = 5/2, M = 1/2 de
I’Aluminium hydrogénoide, en fonction du champ électrique. La 1égende, explicitée sur la figure, est
la méme que dans la figure précédente. L’anticroisement s’effectue autour de 3.7 u.a. En 3.1 u.a., la
fonction d’onde vaut approximativement 0.72 n:32P3/2 + 0.6 n:32D5/2 + 0.3 n:32D3/2 + 0.14
n:42F7/2 et en 4.3 u.a., aprés 1’échange avec la fonction d’onde issue de n=4 J = 3/2—, M = 3/2,
0.57 n=4%D5 5 - 0.55 n=4?P5 )5 + 0.33 n=3>D5 5 + 0.29 n=4?Dy3 5 - 0.25 n=4?F ) - 0.24 n=3>P 5.



58 EFFET STARK

10000 : 0'6 T T T |0|5| T IOI4I T 1T || T 03 T T 17T ||| T 3| T T T 1T I:
C n=3 —— 1
L n=H —— |
L _ n=e ------ i
| ' Holtsmark ¢ |

PPV +

classique ®
1000 =
T(eV) | N\ :
100 2 E

le+421 le+4-22 le+23 le+24 le+25

Densité (em™3)

F1G. 3.5 — Limite d’Inglis-Teller des différents niveaux de Al XIII calculée avec le microchamp
Monte-Carlo en fonction de la densité électronique et de la température (T = T. = T;), le degré
d’ionisation vaut Z = 12. n=3 est en trait continu fin, n=4 en pointillé fin, n=5 en trait continu
épais et n=6 en pointillé épais. Les limites calculées a I’aide des formules de Holtsmark et PPV sont
indépendantes de la température. Nous calculons la limite a partir de la formule exacte de 3.13 et
3.15 pour le microchamp de Holtsmark () et pour le champ Plus Proche Voisin (+) ainsi que la
limite classique d’Inglis-Teller (®) (formule 1.31 obtenue & partir de la forme approchée de 3.13 et

du microchamp PPV). Le numéro de la couche est indiqué & proximité de chaque sigle.



Chapitre 4

Etude théorique du calcul des
sections efficaces et des forces

de collision

4.1 Introduction

Les excitations collisionnelles sont un des processus majeurs de peuplement des
niveaux en physique des plasmas et font 'objet de nombreuses études pour obtenir
des bases exhaustives de sections efficaces concernant les ions qui intéressent en
particulier la communauté des astrophysiciens ou encore celle des physiciens de la
fusion magnétique et inertielle. Les excitations collisionnelles ne se limitent pas a
peupler les niveaux excités des ions, elles jouent aussi un réle important dans les
phénomenes d’ionisation collisionnelle par le biais d’excitations successives [40]. La
détermination de leur section efficace est donc une tache incontournable mais ardue
aussi bien expérimentalement que théoriquement.

Pour les plasmas chauds, les expériences ne donnent acces qu’a des résultats
globaux qu’il faut ensuite réanalyser pour extraire les taux d’excitations collisionnelle
des populations des différents niveaux, elles-mémes déduites des propriétés radiatives
du milieu étudié. Les mesures directes existantes de sections efficaces ne couvrent
principalement que les atomes et molécules neutres ainsi que quelques ions faiblement
ionisés [82]. L’obtention de résultats concernant des ions moyennement ou fortement
ionisés passe donc obligatoirement par une étude théorique.

Une excitation collisionnelle est un processus complexe, méme en ’absence de
champ électrique. Elle met en jeu un ion, composé d’un noyau et d’au moins un
électron lié, et un électron libre. C’est donc un probleme & au moins trois corps,

non soluble exactement, que ce soit de maniere classique ou de maniere quantique.
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Comme nous I’avons mentionné, de nombreuses équipes travaillent a déterminer, de
la fagon la plus précise possible, ces sections efficaces et de nombreuses théories et
méthodes de calcul ont été élaborées. Henry [39, 40], Sobelman [77], Fano [27] ou
encore Carthy et Weigold [15] en font des présentations détaillées. Nous limiterons
notre étude aux deux approches envisageables en présence de champ électrique :
I’approximation de Born et la méthode Distorted Waves.

Apres les avoir présentées, nous détaillerons les différentes méthodes que nous
avons essayées pour prendre en compte le microchamp et les comparerons pour jus-
tifier notre choix d’une approche Distorted-Waves avec un modele d’ion en couplage
LSJ pur. Nous présenterons simultanément la méthode que nous avons développée
pour réduire les temps de calcul des sections efficaces & convergence lente. Enfin, nous
expliquerons le fonctionnement du code numérique réalisé. Il calcule de maniere au-
tonome les forces de collision de ’ensemble des transitions possibles entre chaque
état (|yM >) ainsi que les taux collisionnels correspondants. Notre programme est
validé par comparaison avec des travaux similaires, hors champ électrique, pour du

Fer Héliumoide.

4.2 Principes généraux sur la diffusion

Parmi toutes les réactions possibles qui surviennent lors de collisions entre par-
ticules, on nomme diffusions celles pour lesqueslles I’état final est constitué des
mémes particules que ’état initial.

Lorsqu’il existe un flux incident F; de particules (nombre de particules par unité de
surface et de temps) qui interagit avec un centre diffuseur, le nombre de particules

diffusées dans 'angle solide d) autour de la direction (6, ) s’écrit :

dn = F;o(0,)d) (4.1)

ou o(0,p) est la section efficace différentielle de diffusion dans la direction

(0, ). La section efficace totale de diffusion o est définie par :

o= /U(O,«p)dQ. (4.2)

Cette partie étudie les diffusions inélastiques et plus spécifiquement les excitations
collisionnelles électron-ion. L’ionisation collisionnelle et la recombinaison diélectro-
nique mettent en oeuvre des techniques similaires et peuvent en étre extrapolées.
Il existe, pour leur calcul, une grande variété de méthodes a la précision croissante
mais dont les difficultés théoriques et surtout numériques augmentent notablement.

Elles sont présentées successivement.



4.3 LES EXCITATIONS COLLISIONNELLES PAR LA THEORIE DES PERTURBATIONS 61

4.3 Les excitations collisionnelles par la théorie des per-

turbations

4.3.1 Rappel sur les méthodes perturbatives

La résolution exacte des problemes de mécanique quantique n’est en général
possible que dans des cas tres simples et les tentatives de solutions numériques de
I’équation de Schrodinger en trois dimensions se heurtent aussi tres rapidement aux
limites des calculateurs, en particulier lorsqu’il y a plus d’un électron.

Lorsque 'environnement est tres légerement modifié par rapport a une situation
microscopique soluble exactement, la théorie des perturbations propose de calculer
initialement ces solutions exactes puis de calculer approximativement les corrections
qui leur sont imposées par la perturbation [48, 8, 18]. L’une des applications ma-
jeures de cette théorie est le calcul des probabilités de transitions collisionnelles ou
radiatives dans le spectre continu sous l'influence d’une perturbation constante.

Le systeme (électron libre + ion, par exemple) est régit par 1’équation de Schrodin-
ger :

ov

2i%s = (Ho+V(0)¥ (4.3)

ou Hy est le Hamiltonien non perturbé, V' le potentiel perturbateur et ¥ la fonction

d’onde totale qui peut étre développée sur la base des états propres non perturbés :
0
v =3ty (4.4)
k
Cette notation est discrete. Si le spectre des états propres est continu :

U= / a, () dy. (4.5)

Les conditions de normalisation sur les coefficients a, sont équivalentes aux précé-

D laP=1 - /|a,,|2du =1 (4.6)

k

dentes :

néanmoins, la normalisation des fonctions propres & 'unité n’est plus possible, elle

s’écrit pour le cas continu [48] :

/wl,/wlqu =6 —v) et /6(u’ —v)dv = 1. (4.7)
Si le systeme est initialement dans l'état n (ax(t = Okn), les coefﬁments
Vi
de chaque fonction propre valent au premier ordre  ay,(t) = —i / kn(t =

/ e e En=EOl2qt ot Vi, (t = [V () Yndr = Vige!En=Ert/2 et I'élément

de matrlce de perturbation.
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La probabilité de transition par unité de temps de ’état initial vers les états
compris dans U'intervalle [vy; vy + dvg] vaut :

2
kl2d
AW, ), = ’ak‘% - 7r|vnk|25(E,§°) — EOYdy, (4.8)

si le spectre des états dégénérés est continu sur v et avec la normalisation 4.7.

4.3.2 La formule de Born

Lorsque les interactions responsables de la diffusion sont assimilables a des per-
turbations, il est possible d’obtenir des formules simples de sections efficaces a I'aide
de la théorie précédente sans effectuer de développement compliqué (i.e. en ondes
partielles) des fonctions d’onde (cf. [19, 77]).

Cette méthode est adaptée au cas ou les électrons libres sont rapides par
rapport aux électrons atomiques (en particulier les électrons mis en jeu
dans la transition). Dans cette limite “hautes énergies”, il est possible de négliger
les effets d’échange entre 1’électron libre et les liés (du fait de la grande différence
d’énergie entre les électrons libres et liés, leurs intégrales de recouvrement sont tres
faibles).

La probabilité d’une transition par excitation collisionnelle entre les états atomiques
Yao M, €t Yanr associés aux électrons libres ¢g, et ¢ respectivement s’écrit au pre-

mier ordre de la théorie des perturbations (4.8) :

/QOZi (T) <¢U«iMi
(4.9)

E;, = E, + k? et By = Eq, + k]% ou ks est I'impulsion de I’électron libre et la

N 2

Y
lr—ry| 7

i=1

dW ==

3(E; — Ey)dky.

T/Janf> Py (T)dr

fonction d’onde libre finale, développée en ondes planes, proportionnelle & /" est

normalisée par la condition 4.7, ce qui implique que g, (r) = (27) —3/2¢iksr,
D’apres la formule 4.1, la section efficace différentielle d’excitation collisionnelle

correspond & cette probabilité de transition pour un flux incident d’électrons libres
égal & 1 (soit op, (1) = ™7/ \Jv; = k; /2ekiT),

L’intégration sur ky s’effectue en écrivant :

§(Ef — Ej)dkg = 6(k7 — [k + Eq, — Eq,]) k—Qf dk? dS) (4.10)

k
ce qui permet de remplacer ces termes par %dQ ol la valeur de ky est fixée par

k= (k} + E,, — E, f)l/ 2 et la somme sur les états atomiques finaux et la moyenne
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sur les états initiaux conduisent a la formule de Born :

/ —ilki—ky)r <wal

2
2Z

r

dQ

B _ _1 ki Z
do T 1672 kig;
M;M;

¢anf> dr

(4.11)
ou g; est le poids statistique de l'etat a;.
Il est possible d’en donner une formulation plus compacte en effectuant 'intégration

sur r qui transforme do® en :

N 2
8 iqrs dq

do” = 5 3 |(Waian, [T ayary )| 7 (4.12)
i M; My i=1 q

ou q = k; — ky, I'interaction avec le noyau atomique, monoélectronique, s’annulant
pour des états atomiques distincts.

Le développement de I’exponentielle complexe [19] :

o
e = (2t + 1)i~ ji(qrs) Z Cc”(@).c () (4.13)
t=0 m=—t
on CW(q) = 2t th( 7) est ’harmonique sphérique renormalisée et le théoreme

de Wigner-Eckart permettent de simplifier la somme en :

8T (t) dgq
doB = ——N "2t +1) <a;Ji|| Y ji(qri)C|asJp >2 = (4.14)
ou I’élément de matrice central peut étre séparé en parties angulaire et radiale a
I'instar des éléments de matrice électriques multipolaires, seule la partie radiale

< Ii||r*C®||1; > étant modifiée en :

. _ Li t 1 o0 .
< 1i)ljelqr)CON|1y >= (=1) 1, 1])1/? ( 0 . (’)” ) / By, (r)jelar) Py (r)dr
0
(4.15)
avec [; et [y correspondant aux électrons liés actifs dans la transition.
p_ 8m - (t) 2 > . ? dgq
do =~ 20 Z(Qt—i— 1) < a; Jil|CV|asJr > Py, (r)ji(qr) Py, (r)dr el
920 0
(4.16)
et la section efficace totale a donc pour expression :
B S N Riths 2dg
0B = 1 > @t+1) < aiil|CW|ag s > /k ) [R:(q)] el (4.17)
t=0 i—ky
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ou Ry(q) est I'intégrale radiale précédente.

4.3.3 La formule de Bethe

Les valeurs admissibles de ¢ sont contraintes par le 3j de 4.15 : t = |l;—l¢|, li—{ s+
2,...,l;+1y et correspondent successivement a des interactions électron-atome multi-
polaires. Il est souvent suffisant de s’en tenir & la multiplicité minimale ¢, = |l;—! f\
dans la mesure ou les éléments successifs de ¢ dans 4.17 décroissent rapidement. Il
n’est pas possible d’en donner une formulation analytique simple, mais un calcul
numérique montre, qu’en général, la section efficace multipolaire o419 est 5 a 10 fois
inférieure a oy.

De plus, il est possible de simplifier les fonctions de Bessel au premier ordre du
développement :

. 2it1qt
Ji(qr) 'rt. (4.18)

-, =1
qr—0 (Qt + 1)
Dans le cas des transitions dipolaires (i.e. optiquement permises), Al = +1,

t =1 , les deux approximations précédentes transforment 1’élément de matrice de
4.14 en :

[e%s) 9 9
) t q 1 ayg
1) < aidill Y gulard O llay Iy >*= Tl < aidil| Yo rClag Ty > P = 5 fuses
t=0 i i
(4.19)
OU fa;a, est la force d’oscillateur dipolaire électrique :
AE (1) 2
faiaf = 3—91‘ < a;Ji| Z:Tci HafJf > |°. (4.20)

L’approximation résultante s’appelle formule de Bethe et s’écrit en unités a% :

Ry ki +k s 4F; 8w In4X
Bethe ¢ f L
— war 1 ~ warl -~ | = a;a

(4.21)
a forte énergie (F; >> AF), X représentant le rapport de l'énergie incidente a

énergie de seuil.

4.3.4 Quelques remarques sur les sections efficaces de Born

Un certain nombre de caractéristiques générales sur les sections efficaces de Born
(et aussi de Bethe) peuvent étre dégagées. Ainsi pour les transitions sans changement
de spin (AS =0) :
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a forte énergie (E; >> AF)

In E;
— pour les transitions optiquement permises : Al = £1 , B a ’
i
1
— pour les transitions interdites optiquement : Al # +1 , 0% o
i

a faible énergie (E; ~ AFE)

A k= VE; — AE
Il faut noter, en outre, la loi d’échelle en fonction de la charge du noyau pour un
hydrogénoide :
oz =oy/Z% (4.22)

Ces formules donnent de bons résultats comparées a I’expérience pour les énergies
élevées (2 10AF) mais se montrent beaucoup plus approximatives en dega.
Du fait qu’elle ne prend pas en compte 'attraction coulombienne de I’ion, la méthode
de Born donne une section efficace nulle a ’énergie du seuil, ce qui reste valable pour
un atome neutre mais pas dans le cas d’ions multichargés.
Les limites de cette approximation apparaissent aussi dans son incapacité a traiter
des transitions avec changement de spin (d’aprés 1’élément de matrice angulaire de
4.17), a tenir compte de la modification des orbitales libres dans le potentiel de

I'ion...

4.3.5 Quelques raffinements possibles

Pour échapper aux limites intrinseques de ’approximation de Born, tout en
conservant ’approche simple de la théorie des perturbations, il existe essentielle-
ment trois axes qui premettent d’améliorer les résultats et les rendre plus conformes
a ceux de ’expérience.

— La distortion des ondes incidentes et sortantes par le champ de
P’atome. L’attraction coulombienne fait croitre le flux d’électrons libres a
proximité du noyau, ce qui mene a un accroissement notable de la section effi-
cace au seuil de réaction, désormais non nulle. L’approximation la plus simple
consiste a perturber I’électron libre par un champ coulombien créé par une
charge égale au degré d’ionisation de I'ion et donc a remplacer les fonctions de
Bessel par des fonctions de Coulomb dans la formule de Born (approximation
Coulomb-Born). L’étape suivante, appelée Distorted Waves (DW), remplace
ce champ par le potentiel créé par l'ion.

— La prise en compte des effets d’échange entre 1’électron libre et 1’ion.
L’antisymétrisation de 1’électron libre avec les électrons liés de I'ion, déja an-

tisymétrisés, permet de traiter les transitions d’intercombinaison (AS = 1).
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— La renormalisation des sections efficaces pour assurer la conservation
du nombre total de particules diffusées. L’approximation de Born suppose
que 'ensemble des transitions qui peuvent advenir au cours de la collision
sont négligeables devant les diffusions élastiques qui ne modifient pas I'état de
I'ion. Il existe néanmoins un certain nombre de ”voies” possibles de réactions
qui peuvent devenir résonnantes pour une énergie donnée et étre extrémement
favorisées au détriment des diffusions élastiques, déséquilibrant ainsi largement
le bilan de conservation (par exemple, les transitions autorisées a 'intérieur
d’une méme couche).

Remarquons que ces effets s’estompent tous a forte énergie, ou ’approximation de
Born redevient pertinente.

Ces développements ne peuvent étre effectués qu’en acceptant un développement
en ondes partielles des fonctions d’onde libres, la représentation simple en q = k¢ — kj
n’étant plus utilisable. Nous développons dans le chapitre suivant la méthode que
nous avons employée et qui prend en compte distortion des fonctions d’onde libres

et échange lors de la collision.

4.4 L’approximation Distorted Waves (DW)

4.4.1 Développement en ondes partielles distordues

Il est possible d’accéder aux équations Distorted Waves par la théorie des per-
turbations en remplacant dans la probabilité de transition 4.9 les ondes planes, qui
vérifient une équation de Schrédinger sans potentiel perturbateur ((—V —k2)pr(r) =

0), par des ondes distordues par le potentiel de I'ion émetteur :
(=V +2V(r) — k*)pr(r) = 0. (4.23)

Sachant que toute fonction de carré sommable peut étre développée sur la base des

harmoniques sphériques, nous pouvons écrire pour la fonction d’onde sortante :
kg
2 1 B ) ) .
Pry (1) = \/;E > U= Yiym (7)Y, () (4.24)
ly,myg
ot les fonctions F¥(r) vérifient

@ Ui+1)
dr? 7r2

— 22U () + kQ} FF(r)=0 (4.25)

et dont 'amplitude est prise égale a 1 pour r grand. On montre qu’avec ces coeffi-
cients, la fonction d’onde finale atteint bien la condition de normalisation requise :

< Pk (r)|cpk} (r) >= d(kys—k%). (Voir la formule 18.26 de la référence [19](Cowan) :
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/FfFf’dr = 1VE§(E —E'), §(E—E') = §(k—k')/2k et la formule VI D.26 de la
référence [18](Cohen-Tannoudji) : Z Yim(k Ylm(k: ) =00k — O01)0(dr — d1r)/ sinby.)

lm
La section efficace différentielle d’excitation collisionnelle s’obtient a partir de

la probabilité de transition 4.9 lorsque le flux d’électrons incidents est unitaire. En

remarquant que les ondes planes incidente (e’%"/\/k;) et sortante (¢'*7/(27)%/?)
(27.‘.)3/2

different d’un facteur tout en admettant le méme développement 4.13 que

i
les ondes distordues :

!
it kr jl (kr)
RN B D ST (4.26

ou kr j;(kr) a aussi une amplitude de 1 aux r grands, nous pouvons écrire la fonction

d’onde distordue entrante :

Phi 3/2 Z’ Yz o (P)Y o, (Fei) (4.27)

i lim;

ou Fl]jl est normalisée a 1 a U'infini et vérifie la méme équation différentielle 4.25 que
k
Flff avec Ug,nr, (1) et k2.
La moyenne sur ’angle d’incidence de 1’électron libre initial et la somme sur celui
de I’électron sortant simplifient les harmoniques sphériques dépendantes de kAf et k;

apparues dans do :

N 1
[ [ 50 Yo RV G Yi (R Vi (B9) = 5818 Bt
(4.28)
et meénent a la section efficace :
47
UaiMimf,anfm; = k k Z
fhi Le,myg,ls,mg
ky
lil 27 Flf
/T,Yljml Ya; M —— - ¢anf> TYlfmfdr

(4.29)

ou m; et m‘} représentent les spins des électrons libres.

Nous allons donner une autre forme a cette section efficace de maniere a fournir

au paragraphe suivant une formule trés simple de la force de collision. Les fonctions

—-1/2 —-1/2
k; et k:f

. k ., N N . . N
Fﬁ’ et Flff sont normalisées a 1 a 'infini, nous les renormalisons a
1

et multiplions donc la formule précédente par k¢k;, moyennons le spin de ’électron



68 EXCITATIONS COLLISIONNELLES

incident et sommons le spin de I’électron libre final :

9 lfmfm; )
™
O-CLiMi,(lfo = ? E ‘<\IlaiMi7kilimimSi H/interaction| \I’anf,k‘flfmfmfp>‘ (430)

vtolymymg

ol <\IjaiMi7kilimimf |Vinteraction| ‘ljankaflfmfm;> représente I’élément de matrice d’in-
teraction de 4.29 entre les systemes initial ¥; et final ¥ composés de I’onde partielle

“YimOms et de l'ion 14y antisymétrisés.

En toute rigueur, il est possible d’établir les formules de section efficace DW
précédentes a l'aide des équations Close Coupling, plus générales et rigoureuses
[73, 74, 77, 28], et non plus par la voie perturbative précédente. En résumé, la
méthode Close Coupling établit un systeme intégro-différentiel complet soluble de
maniere itérative pour le calcul des états du systeme ion-électron. Le nombre des
états possibles est variable mais peut comprendre ceux résultant de réactions ”para-
sites” telles I'ionisation collisionnelle, 'effet Auger ou encore la création de complexes
temporaires... Des temps de calcul prohibitifs et une grande complexité de program-
mation sont les colits induits par la grande précision de cette méthode. L’approche
DW les réduit drastiquement en supposant que le couplage entre tous les différents
états possibles est tres faible, ce qui permet de réduire le nombre de canaux de
réaction & 2 [67, 54, 75]. La précision reste tres acceptable, en particulier pour les
ions multichargés [82, 39, 36].

Notre approche correspond a celle développée par Pindzola [63, 11]
et Peyrusse [61], sans effets relativistes ni états atomiques multiconfigu-
rationnels (mais ces derniers apparaissent lorsque nous superposons le
champ électrique dans la partie suivante) ni normalisation des sections
efficaces, mais comprenant les effets d’échange ainsi que deux potentiels
distincts (V;, et V;,) pour la distortion des électrons incident et sortant.
Notre choix de cette méthode a été déterminé par son usage fréquent, sa mise en
oeuvre relativement simple et plus précisément, par souci de cohérence avec le code
Collisionnel Radiatif de O. Peyrusse : TRANSPEC [59, 60] qui permettra d’obser-
ver les effets spectraux induits par la modification de ces sections efficaces due au

microchamp.
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4.4.2 Forces de collision {2

Une quantité sans dimension nommée force de collision peut étre utilisée a la

place de la section efficace :
gik?
Oif (4.31)
™

Qi =

ou g; correspond a la dégénérescence du niveau initial. Elle a avantage d’étre

symétrique par rapport aux processus direct et inverse (excitation et désexcitation) :
Qiy(kis k) = Qpilky, ki), (4.32)

est additive en regard des différents niveaux atomiques (Q4q = Z QoM /M’ DAr

MM
exemple), enfin, a forte énergie, en raison de ce qui a été noté sur les sections efficaces

de Born au paragraphe 4.3.4, elle est quasi indépendante de k; et ky (pour les tran-
sitions interdites optiquement) ou croit lentement (logarithmiquement) (transitions

optiquement permises).

Qp=2 Y ‘/¢i‘/ij¢jdr|2 (4.33)

limimf,lfmfm?

ol [ ¢;V;j¢; représente les éléments de matrice diélectroniques antisymétrisés, aussi
N+1

notés < Vg, m, Gi(ki, li)| Z T—M|wanf¢f(kf,lf) > ou les ¢ représentent les ondes
k<l

k
partielles FTlYlm(Sms. Les termes d’interaction électron-noyau sont monoélectroniques
et s’annulent donc car l'ion et 1’électron libre sont tous deux différents entre 1’état

initial et I’état final.

4.4.3 Calcul des éléments de matrice diélectroniques

Le résultat précédent ne présente aucun couplage entre 1’électron libre et 1’ion ou
bien de couplage spin orbite ou LS de I'ion. Dans la réalité, on cherche a déterminer
des forces de collision entre niveaux atomiques de moments cinétiques totaux J;, Jy
bien spécifiés. Elles s’obtiennent en utilisant les coefficients de Clebsch-Gordan et

leurs propriétés :

ijamama >="> " C(jijamama; jm)|jijajm > (4.34)
im
et
Z C(jrjamama; jm)C (jrjamama; j'm') = 6; j16m - (4.35)

mima
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Ce qui donne simplement pour les électrons libres :

N+1
1
Qp=2 Y | <a,dillijimi)| > —|vha; b5 (lpipmys) > | (4.36)
Jimg,Jgmy k<l Tkl

et dans le cas ou le calcul est effectué sur tous les moments magnétiques de 'atome :

N+1

1
Qip=2> (2 +1)| < Dy,5,JM| Z y<I>Jf¢]fJM > 2 (4.37)
Jiggd k<l

les éléments de matrice étant présentés en détail dans I’appendice D. Les sommes sur
les moments cinétiques totaux des électrons libres j; et j; contiennent implicitement
les sommes sur les moments orbitaux l; = j; £1/2 et Iy = jr £ 1/2.

Dans le cas ou I’on ne considére pas des transitions détaillées mais des transitions
totales entre configurations nq1}" nyl&e nglgjﬂ*lan%N et n 1} nalgaflnglg)ﬁ nniNY,
Pindzola [63] et Peyrusse [61] donnent une version plus pratique des forces de col-
lision a partir de la formule 4.33 et en décomposant le systeme électronique en
déterminants de Slater (chaque électron est affecté de nombres quantiques bien
déterminés Imm?®). Leurs formules trés générales se retrouvent simplement pour
des transitions dans des alcalins (un seul électron appartenant & une couche non
complete). Nous nous y restreindrons, les formules que nous établissons ultérieurement
pour des transitions en présence de champ électrique a 'aide de cette formule n’étant

valables que pour ces configurations électroniques.

(k) 2 (k) 2 (k) (k)
=82 Qk [ aig)” + (Qaigp)” — QaiprFai o (4.38)
Lilgk
ou
QW5 =RY) < callC®| 15 >< clif W) |1y >, (4.39)
QW 5= RY) 5 < clal|CW|ly >< cli||CW| |l >, (4.40)
(k) otk Ak ) la lg K
Pits=(2k+1) Z(—l) Quits Lo w0 (4.41)
k! 7 f

R®) est lintégrale radiale double classique sur les orbitales radiales P :

o0 27”
mu / / kH r1)Pj(r2) P(r1) Py (r2)dridrs (4.42)
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et

< i |O®||dly >= (~1)l[1;, 1]/ ( ikl ) (4.43)
0 0 O
ou [l] =20+ 1.

Diverses méthodes existent pour la détermination numérique des fonctions d’onde
libres, plusieurs sont proposées par C. Froese-Fischer [29] et de plus récentes ont été
développées, en particulier par Sapirstein et al [71], qui emploient des fonctions
splines, ou encore ’approche Phase-Amplitude de Bar-Shalom [6].

La voie choisie ici est une intégration par la méthode de Numerov avec un pas
exponentiel puis arithmétique pour s’accorder avec les codes ATHF (Hartree-Fock)
et ATKS (Kohn-Sham) de Perrot [57] (énergie moyennée sur une configuration) qui
ont fourni la base des fonctions atomiques numériques de ces travaux ; son détail est

fourni dans I'appendice C

4.4.4 Orthogonalisation des fonctions d’onde libres dans les intégrales

d’échange

Les fonctions d’onde monoélectroniques sont évaluées dans un potentiel autocon-
sistant par le code Hartree-Fock de Perrot, elles sont donc orthogonales entre elles et
avec les fonctions d’onde libres calculées a partir de ce potentiel. Néanmoins, dans
le cas des hydrogénoides, si les fonctions d’onde liées sont purement hydrogéniques
et les fonctions d’onde libres sont calculées dans le potentiel total de 'ion (noyau
+ électron 1ié), ces fonctions d’onde ne sont plus orthogonales entre elles (I'une
calculée dans un potentiel en Z/r, Pautre, dans un potentiel en (Z — 1)/r pour r
grand). Ceci induit une forte erreur numérique dans le calcul des intégrales radiales
d’échange (mais qui se réduit & mesure que ’état de charge - Z - croit). L’orthogona-
lité est assurée pour des orbitales de [, et [; distincts par les parties angulaires ; dans
le cas contraire, il est possible d’y remédier par une orthogonalisation au premier

ordre dans les intégrales d’échange concernées :

O, = b= < 6ulPu, > b, (1.44)

¢lf = gblf— < ¢lf|PLi > -PLi-(SlfLi- (4.45)

L’intégrale d’échange s’écrit :

& oo 00 2,r.k " "
R - /0 /0 S PG r2) (1) Pyra)dradre (4.46)
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4.5 Excitations collisionnelles en présence de champ électrique

En présence de champ électrique, les forces de collisions précédentes doivent étre
recalculées. Nous présentons dans les paragraphes qui suivent le seul modele réalisé
jusqu’ici ainsi que les deux que nous avons essayés, avant de les comparer.

Mentionnons que, dans tous les cas présentés, I’axe de référence, pour ca-
ractériser la direction de I'impulsion des électrons libres comme pour la

projection des moments cinétiques totaux, est ’axe du champ électrique.

4.5.1 Etudes antérieures

Quelques travaux sur les mécanismes collisionnels en présence de champ ont
déja été présentés dans la littérature. Ils concernent essentiellement le phénomene
de Recombinaison Diélectronique, tres affecté par la présence de champs électriques,
méme modestes, car ce processus engage des niveaux peu liés et donc de nombre
quantique principal n élevé, extremement sensibles a toute perturbation.

Des études théoriques ont été présentées des 1976 [43] suivies en 1983 par des
comparaisons expérimentales [9]. Elles se continuent et semblent de plus en plus
cohérentes [5, 7, 66]. De maniere plus récente ont commencé des études portant sur
d’autres mécanismes collisionnels dont les excitations électron-ion. A notre connais-
sance, I’étude de F. Perrot (1988)[58] dans le cas du Néon hydrogénoide, pionniere
dans ce domaine, suivie en 1996 par un travail plus général de Krsti¢ et Hahn [47]
sur I’ensemble des mécanismes radiatifs et collisionnels sont restées isolées.

Le calcul de Perrot était prospectif et cherchait essentiellement & donner un
ordre de grandeur de 'influence du microchamp sur les sections efficaces d’excita-
tion collisionnelles. Le modele est une approximation de Born adaptée a l’'ion
monoélectronique du Néon dont le Hamiltonien d’interaction prend en compte
effet Stark et écrantage statique de Debye-Hiickel en suivant le modele de

Hatton [38];

A 1
U(Tl, 7”‘2) = ——e_rl/AD — 521 + —6_”2/)\17 (4.47)
™ 12

L’amplitude de diffusion de Born se simplifie :

A 1 )
fig (ki key) :—E//drldrzez(kf_kf)'”U(rl,rg)\I/}(rz)\I/f(m)

. (4.48)
K T2

= — d’!‘z‘ll* (’l"z)\l’i(’l"z)i
/ f K2+ )2

ou K représente la différence d’impulsion entre 1’électron incident et 1’électron libre

final : K = k;—kj sachant que I’énergie totale du systeme est conservée : kf /2+E; =
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k‘J% /2 + E¢. Finalement, le développement des états perturbés sur la base des états

propres non perturbés :
Wim(r) = Y api'(€) Rt ()Y (7)
" (4.49)
¥1ulr) = 2 S ERANVE)

et la moyenne sur la direction du champ électrique donnent ’expression compacte

de la section efficace :

(k ) 3972 /ki+k.f KdK «
0; i) — (K2 £ )2)2
! kP kg (K2 4 23)2
i | 2| (4.50)
> 1D S e CUm A L p—m) I ()

L=X—1l | v,\ n,l

ou Iy, est ’élément de matrice radial :
o
I u(K) = / r2dr Ryx(r) Ry (r)jL(K) (4.51)
0

et jr la fonction de Bessel sphérique d’ordre L et C(Im, Au; L u—m) est un coefficient
de Clebsch-Gordan.

Il est important de noter que l'approche de Perrot emploie un modele d’ion
monoélectronique sans couplage spin-orbite, mais introduit un écrantage plasma
au coeur de I'édifice atomique. Cet écrantage est spécifique d’une situation
donnée en densité et température et limite par conséquent I'extrapolation des
résultats acquis & des cas ”extrémes” (Te=500 eV, Ne=1.09 10%*¢/cm? pour A\p =
3.u.a.). Néanmoins, cette constante d’écran permet de lever la dégénérescence des
niveaux (séparant 2s et 2p de 0.1 Ryd) et de continuer de les nommer avec la
notation spectroscopique usuelle (2s et 2p) en présence de champ. Sans écrantage,
les niveaux seraient restés dégénérés et le traitement aurait di se faire a 'aide des
états paraboliques.

Son étude se restreint aux excitations 1s — 2s, 1s — 2p et 2s — 2p mais fait
apparaitre la grande sensibilité des sections efficaces au champ électrique, parti-
culierement dans le cas des excitations entre niveaux proches ou la variation peut

atteindre plusieurs ordres de grandeur.

4.5.2 Modele Distorted Waves sans couplage spin-orbite

Sans donner tout le détail des calculs, non nécessaire ici, nous avons développé

une formulation compacte de la force de collision adaptée aux hydrogénoides, dans
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la lignée de celle établie par Pindzola [63] ou Peyrusse [61] déja présentée dans la
section précédente.
Nous reprenons le developpement de Perrot 4.49 de 1’état ionique perturbé sur

la base des états non perturbés :

Vo pm@ET) = D al I E) Ve o pynim (T, (4.52)
(o ou B)n,l

sans modifier le développement en ondes partielles des fonctions d’onde libres présenté
en 4.24, 4.25, 4.27. Nous supposons ici, comme dans le modele suivant, que les
électrons libres sont peu perturbés par la présence du champ électrique. Cette hy-
pothese est acceptable lorsque leur énergie est élevée et dans la mesure ou le micro-
champ électrique existe dans un volume restreint (caractérisé par les distances inter-
ioniques). La trajectoire de I’électron est alors peu modifiée. A plus basse énergie,
en particulier & proximité de ’énergie du seuil d’excitation, 1’électron libre sortant
est beaucoup plus sensible au microchamp et notre traitement est stirement plus
discutable. La prise en compte du champ électrique sur les électrons libres peut étre
réalisée en résolvant leur Hamiltonien en coordonnées paraboliques, comme Bracher
et al [14] ou C. Valli [79] I'ont effectué récemment, mais au prix d’une complexité
beaucoup plus élevée.

La moyenne de la force de collision sur 'orientation des électrons libres 4.28

Qp=2Y > > > Dy (4.53)

lol; moma MsyMsy msime

conduit a :

ol D;y est I'élément de matrice diélectronique de 4.30 modifié par la présence du

(o

0 et 1 représentant respectivement les ondes partielles ¢; et ¢ de 4.33.

champ électrique :
D me ()al" (€ 2
if = Y i, (E)ay ) (€) | (a0]-=
af

12

2

12

15>} , (4.54)

Nous retrouvons la forme compacte 4.38 :

_ 1 (k) \2 _ k) plk) (k) 2
s 8zzl:k 2k +1 <(Qi0f1) - QiOfIPz’Olf + (Pi[)lf) ) (4.55)
0,01,

mais avec les éléments de matrice intermédiaires 4.39, 4.41 modifiés par le micro-

champ :

imy; m gk la k l
Qo =D (=1)lal; (£)a)" (5)( g >Qg:}m, (4.56)

of —my; mi—mf mf
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k l / la l k K
zOIf _ Zaaaﬁ < B8 > (Qk —+ 1) Z(—l)k-‘rk { lf 1 }ngiﬁa

—m; m;—myp My P lo
(4.57)

les éléments restants correspondant a ceux du développement de Pindzola en 1’ab-

sence de perturbation électrique 4.39, 4.40, 4.42 :

Qg]})ﬁl = Raop1 < clo||CP||d15 >< clo||C®)||ly >
ngm Rao1p < clo||CH |y >< clo||CP||l5 > (4.58)

aom // k+1 (1) Po(r2) Pa(r1) Pr(r2)dridrs.

4.5.3 Modele Distorted Waves en couplage LSJ

Nous reprenons, pour la structure atomique, l’ordre de couplage généalogique de
R. D. Cowan [19] présenté au début du chapitre 3 sur l'effet Stark (3.1). Les états

perturbés sont développés de la méme facon qu’en 3.10 et 4.52 :

Iy M >= Zaa MVaLaSaJaM > (4.59)

(dans le cas des hydrogénoides, la notation LSJM n’a pas de sens et nous reprenons
la notation [nJL M >).

En effectuant le méme développement qu’au paragraphe précédent, nous trou-
vons 'expression de la force de collision lorsque les électrons de ion v; M; et vy My

ne sont pas couplés avec I’électron libre k;l;jim; et kylyjpmy (j =1+£1/2)

Q= 2 Z 0300 Ay Z X

a,B,a,8 Ll Jisgpsmi,my
N
>

r
i—1 i, N+1
N

>

T
7 i, N+1

<7aLaSaJaMikilijimi

’YBLBSBJﬁMfkflfjfmf> X

Yo' LO/ Sa/ Ja/ Mi kll,]ZmZ

<75’Lﬂ’SB’JB’Mfkflfjfmf

(4.60)

Néanmoins, cette présentation compacte de la force de collision masque beaucoup

les difficultés de son usage pratique. Les éléments de matrice diélectroniques sont
difficilement programmables sous cette forme si ’on désire pouvoir étudier des ions
de structure tres générale (plusieurs électrons répartis sur plusieurs couches, non-
nécessairement completes). Nous avons choisi d’employer les formules développées
par R. D. Cowan [19] pour les éléments de matrice diélectroniques. Nous couplons

les électrons libres a la structure ionique de facon a obtenir un couplage du type
H(Limu llibre)L7 (Siona Slibre)s] JM >.
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Une transformation en couplage jjJM puis LSJM modifie €2 en :

Qif: 2 Z aZaﬂaa/aZ/ Z X
a,B,a/,8' Ll Jigpomimy
NN Y Y CWagiMimi, JaMa)C (g Mypmy, TsMg)x
Jan JﬂMﬂ Ja,MO/ JB/MﬂI
C(Ja/jiMimi,ja/Ma/)C(Jg/ijfmf,ngM@/)X

N
(WﬁLﬁS/@Jg, lfjf)jﬁ./\/l/g> X

2

r:
i—1 i, N+1

<('7aLaSaJou liji)JaMa

(Va’Lo/ So/ Jo/» liji)jo/Mo/

(4.61)

<(WLﬁ'5ﬁ/Jﬁulfjf)jﬂ/Mﬁ’ 2

7
i—1 i, N+1

puis

Qip= 2 Z U300/ Ay Z X

a,B,a' .8 Lisly,gisgpomamy

YD D D CuCsCaCyx

TaMa .7[3/\/(,3 Ja’Mo/ JBIMB/

E E Z Z Tr0SadadiTesss a5 TS Juii TLy Sy T g5 X
LoSa LpSs LorSar LS

N
EasajaMa L3S j M X
< ;Tz‘,NH S 5>
A
,C /S /j/_/\/l / ‘Ca’Sa’ja’MO/ s
< propJpvip ;Ti,NH >
(4.62)
ou Tgs jj est 'opérateur de modification du couplage :
L I L
Trs.g;=[L.8.J,5]'*¢ S s S (4.63)
J i T

Enfin, comme l'interaction coulombienne conserve LS J M et est indépendante de

J M (car c’est une force interne a 1’édifice ionique) :

Qi = 2 Z Up 0500 Ay Z X

a7ﬂ7a/7ﬂl li,lf,£,87£l,s/

N
<’Ya(LOn ll)£7 (SOH S)S

2
; Ti,N+1
i\’: 2

T
i—1 i, N+1

v8(Lga: lf)L, (Sp, S)S> X

<W<Lﬁ/,zf>c', (S, 58 o (L, 1) <Sa"8)5/> ”
128,70 18,055,008 ,0,05, 108 054 Z CaCarCpCpr.
NEVARIN T MM mmg
(4.64)
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La derniere somme peut en étre extraite et simplifiée a ’aide de Yutsis [83] ( p.152,

A.75):

S ClajiMimi, TM)C(JujiMimi, T' M)

./\/l,./\/l’,mi,mf
[T, T'|(—1)2T +3i+is)+MitMy w6
a J T a
. ) X
Jﬁ’ Jr Jo Jo i
J a/ a JB Jﬂ/ a
M, —M; 0 My —M; 0 .

De cette facon :

Qip = 2(—1)MitM;

% % Ja Jal a J@ Jg/ a
X ay,a30q a
2 i BZH(Mi —Mi())(Mf —M; 0)

a7ﬁ7a/7ﬁ/ a

N
x ) <’7a(Lavli)»Cv(Sa75)S > - ’Yﬂ(Lﬁ,lf)ﬁ,(Sﬁ,S)S>
lily, L,8,L",8 =1 BN+
Y9
v (L, 1)L (S 9)S| D Yor (Lary 1)L, (Sar, 8)S'
i [LN+1

27 +ji+ /
X Z (=0T TN 28 gaii Tes i Tersr g Tersr a0,

NAVARINT
Jﬁ ']5’ .7f Jo Jor Ji
(4.66)

Les éléments de matrice diélectroniques sont détaillés dans I'appendice D Ils corres-
pondent & ceux calculés par Cowan pour des structures atomiques multiconfigura-

tionnelles, adaptés pour le cas particulier des excitations collisionnelles.

4.5.4 Convergence des forces de collision partielles aux grands mo-

ments angulaires

Les sommes apparaissant dans la force de collision totale (4.66) s’entendent pour
la totalité des électrons libres possibles et nécessiteraient, en toute rigueur, d’étre
menées sur tout 'ensemble des entiers pour l;, Iy, £, L', J, J', ji et jf, en notant
néanmoins que ces nombres quantiques sont contraints les uns par les autres par

le biais des 35 et 6j. En pratique, seul un calcul analytique permet de mener la
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sommation a son terme, ceci n’étant possible que pour l'approximation de Born
sans échange. Dans les autres cas, une approche numérique s’impose et, méme si
les moyens informatiques, en évolution constante, ont considérablement repoussé les

limites calculatoires, une troncature précoce est inéluctable dans les sommes.

A titre d’exemple, en limitant le nombre quantique orbital des électrons libres &
60 - ce qui contraint la valeur des autres nombres quantiques précités -, le calcul de
la force de collision d’une excitation 1s2s — 1s2p de 'aluminium héliumoide, pour
un champ électrique 1 u.a. et une énergie du libre initial de l'ordre de 100 Ryd,
prend actuellement plusieurs dizaines de secondes pour chaque transition aJM —
o/ J' M’ sur un calculateur rapide et n’atteint pas la convergence malgre la troncature
tardive... (On notera que la formule compléte de €2 en présence de champ contient 15
sommes imbriquées, sans compter le calcul de chaque élément de matrice, ensemble

qui finit par occuper une place mémoire démesurée.)

Dans de nombreuses situations, les sommes partielles convergent a grande vitesse
et le reste s’amenuise de plusieurs ordres de grandeur a chaque nouvelle itération.
Ceci est particulierement vrai pour les transitions interdites entre des niveaux tres
différents (deux couches distinctes bien éloigneés), ex : 1s — 2s, 1s — 3d... ou une
dizaine d’ondes partielles sont largement suffisantes. La situation se complique dans
le cas des transitions permises, des transitions entre niveaux proches et encore a
énergie incidente croissante. De nombreux calculs effectuent une troncature pure et
simple et mentionnent que ceci a pour effet de réduire plus ou moins notablement la
valeur de la section efficace par rapport a sa valeur exacte [3, 51]. Certains auteurs
ont néanmoins remarqué la forme tres lissée des forces de collision partielles, quelle
que soit la transition, pourvu que 'indice de sommation soit convenablement choisi.
C’est en général le moment angulaire total (£ ou J suivant le couplage choisi).
Les forces de collision partielles se comportent comme une simple suite géométrique

décroissante, dont il suffit de trouver le rapport pour en extrapoler la somme totale.

La formulation choisie ici pour les forces de collision ne permet pas de choisir les
moments angulaires totaux comme indices de sommation de maniere aisée ( dans la
mesure ou ils sont contraints par tous les moments angulaires précédents et sont au
nombre de 2 : £; et L ou J; et Jy). La solution la plus pratique consistait a choisir
le moment angulaire orbital maximal des électrons libres pour conserver la forme

générale de I’équation et limiter ainsi le temps de calcul.

o0

Qiotate = Z leaz (467)

Imaz=0
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ou
Imaz—1 Imaz—1
leaz = E : Qli»lf:lmaz + § Qlfyli:lmaz + Qlf:lz:lmaz (468)
1;=0 1;=0

Il reste & chercher le coefficient de décroissance de §2;, . :
leax"'l ~ anma:c' (469)

Dans les faits, ceci est bien valable pour les sommes partielles sur £ ou J mais
un peu moins pour les sommes partielles sur l,,,q,. Néanmoins, les fluctuations du
rapport « ne ’empechent pas de conserver ”globalement” une allure assez stable.

On a donc choisi de moyenner ce coefficient sur plusieurs ) partielles :

Q Q1+ e+
Oélmax — lmaz + lmaz 1 + lmaz 2 + lmaz 3 (470)
Qpao—1 + Yoo —2 + Qo —3 +

max max max max —4

(il faut remarquer que dans le cas d’une suite géométrique parfaite, la définition de

« est bien conservée). oy, 1 et oy, . o sont définis de la méme fagon en décalant

max max

les indices, finalement :

— almaw + almax_l + alTYLaQﬁ'_Q

3

(4.71)

Il est alors manifeste que que la moyenne a été réalisée sur les forces de collision par-
tielles entre €2, et € 4 tout en essayant de conserver une certaine pertinence
aux coefficients intermédiaires, en tachant de les stabiliser par une moyenne sur 4
sommes partielles.

La somme totale s’écrit :

ltrone o0 ltrone oo
Q - Z leaz + Z leaz - Ql + Z Qltronc O/—ltronc (472)
lmaz=0 Imaz=ltronc+1 =0 I=ltronc+1
soit :
ltronc
—_ o
Q=Y U+, (4.73)
P 1l -«

ol l¢rone est la valeur maximum de [ a la troncature et €2, . est une valeur lissée

de la force de collision partielle & la coupure :

6 6
Z Qltronc'ail = Z Qltronc_i' (474)
=0 =0

Nous présentons dans les figures suivantes divers cas ou il faut faire appel a

une extrapolation qui démontrent que celle ci est pertinente, méme dans les cas
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requerrant une grande robustesse (transitions autorisées, a haute énergie incidente,
entre des états tres proches en énergies).

La convergence des forces de collision partielles est directement liée a la portée
des éléments de matrice d’interaction. Hatton [38] détaille les cas des transitions
permises (portée en 1/r2) et interdites (portée en e~ pour 1s — 2s) dans le cas des
transitions hydrogénoides impliquant les couches n=1 et n=2. La convergence est
d’autant plus lente que la portée est longue. Cette remarque peut étre réemployée
dans le cadre des transitions en présence de champ électrique. L’effet Stark mélange
les différents états et mene la plupart des éléments de matrice d’interaction vers des
longues portées, l'interaction la plus forte entrainant la forme générale de I'élément
de matrice. La figure 4.2 correspond a la situation opposée ol une transition permise
1525351 M = 0 — 152p3P,M = 0 dans Al XII & champ nul devient interdite pour
des champs compris entre 0.3 et 0.5 u.a. car 3P, effectue un évitement de niveau
avec 1Sy qui se traduit par un échange de fonctions d’onde (voir figure 3.2 dans
le chapitre sur leffet Stark). Un nouvel évitement avec 3P, et 3Py vers 0.6 u.a.
rend & nouveau la transition permise mais moins favorable. Néanmoins, dans de
nombreux cas, ’allongement de la portée des interactions, du fait du mélange des
fonctions d’onde, n’est pas suffisant pour empécher la convergence rapide des forces
de collision, en particulier pour les transitions entre deux couches distinctes (figure
43,1s M = 0.5 — 3d*Dy5M = 1.5 dans Al XIII). Dans ce cas, l'allongement se
traduit par une modification générale de 'amplitude des forces de collision partielles,
sans en changer le coefficient de décroissance a.

Dans le cas des électrons libres de forte énergie, les ondes partielles d’ordre
élevé qui ne peuvent sonder que des régions de r > [/k, se rapprochent du coeur
et participent de plus en plus a la transition (figure 4.1). Néanmoins, les sommes

partielles €; d’ordre élevé convergent vers une limite a grande énergie.



4.5 EXCITATIONS COLLISIONNELLES EN PRESENCE DE CHAMP ELECTRIQUE 81
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F1G. 4.1 — Forces de collision partielles Q;,,,. (Formule 4.68) pour la transition 1s2s *$; M=0
— 1s2p *P» M=0 de Al XII pour plusieurs énergies incidentes : 3.34 Ryd (losanges), 10.5 Ryd
(4+), 44.5 Ryd (carrés) et 198 Ryd (Xx) et & champ électrique nul.
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0.001*%§%DDDDDDDDDDDD e
DDDDDDD

0.0001+4 * e

16—05[]_ AN XXX x X x I
Ql + XXX %y XXXk wy ‘

le-06 T A XXX %
N 0.uwa. o

1e—07A— + AAAA 04 uwa. |
o 0.6 w.a. 0O

1e-08 AAAAA 1.6 ua. x|
A

1e-09 L + AAAA 10 v.a. |

AAAAA
1e-10 | I | | 1 &
0 5 10 15 20 25 30
lmax

F1G. 4.2 — Forces de collision partielles €, ,, (Formule 4.68), en échelle logarithmique, pour la
transition entre les états 1s2s 351 M=0 et 1s2p 3P, M=0 de Al XII, perturbés par le champ électrique
pour une énergie incidente de 'ordre de 96 Ryd et 5 valeurs du champ électrique : champ nul
(losanges), 0.4 u.a. (+), 0.6 u.a. (carrés), 1.6 u.a. (x) et 10 u.a. (triangles).
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F1G. 4.3 — Forces de collision partielles (Formule 4.68), en échelle logarithmique, pour la transition
1s 3815 M=0.5 — 3d 2D5.5 M=1.5 de Al XIII pour une énergie incidente de 'ordre de 608 Ryd
et 8 valeurs du champ électrique : champ nul (losanges), 0.001 u.a. (+), 0.0025 u.a. (carrés),
0.005 u.a. (x), 1 u.a. (triangles), 2.5 u.a. (x), 5 u.a. (petit o) et 10 u.a. (grand o).
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F1G. 4.4 — Forces de collision partielles (Formule 4.68) pour la transition 1s3s 38) M=0 — 1s3p
3P, M=0 de Al XII & une énergie incidente de 95 Ryd et & champ électrique nul (losanges). En
pointillé est représentée la fonction (du type a * bl) employée pour ajuster les forces de collisions

partielles & grand moment angulaire a ’aide des formules de convergence.
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F1G. 4.5 — Forces de collision partielles (Formule 4.68) pour la transition 1s3s #S; M=0 — 1s4d
3D3 M=3 de Al XII & une énergie incidente de 102 Ryd et & champ électrique nul. Méme légende

qu’a la figure précédente.

4.5.5 Comparaison de ces modeles avec du Néon hydrogénoide

Etant donné le tres petit nombre d’études connues sur notre sujet, nous avons
essayé les deux approches présentées précédemment en les comparant entre elles et
avec les résultats de Perrot (figures 4.6 et 4.7), seuls présents dans ce domaine. Notre
choix s’est donc porté sur le Néon hydrogénoide, déja choisi par cet auteur, et sur
les transitions impliquant les couches n=1 et n=2.

La question de I’écrantage des interactions, qu’elles soient internes a ’atome ou
entre I’électron libre et ’atome, reste discutée, comme nous ’avons précisé dans le
premier chapitre de ce mémoire. Les énergies de liaison des électrons liés étudiés
ici (n=1 ou 2) sont en général égales ou largement supérieures a la température du
plasma, c’est aussi fréquemment les cas de celles des électrons libres impliqués dans
des transitions de couche K. Les autres électrons libres du plasma sont alors trop
lents pour créer un nuage électronique autour de ces particules rapides. Dans notre
approche purement perturbative, notre choix s’est donc porté vers un potentiel ato-
mique non écranté, a I'inverse de celui de F. Perrot. Les fonctions d’onde atomiques,
comme dans le reste de cet ouvrage, proviennent d’un programme Hartree-Fock non-
relativiste de Perrot. Les énergies des états relativistes sont celles issues de ’équation
3.10 ou la moyenne de 2P, /2 et ’p, 2 8'il 0’y a pas de couplage spin-orbite.

Sans interaction l.s, les résultats du modéle DW (paragraphe 4.5.2)

présentent le méme comportement que ceux de Perrot. A mesure qu’augmente le
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Perrot, avec sans potentiel écranté, sans potentiel écranté,
potentiel atomique sans couplage avec couplage
écranté spin-orbite spin-orbite
2s -18.99 -25.0416 2512 -25.0416
2p -18.89 -25.0194 2P1/2 -25.0416
’Pi5 -25.0083

TAB. 4.1 — Energies des états n=2 de Ne X (Ryd)

champ, la force de collision 4, croit, 152pm=0 décroit et elles tendent a se
confondre au dela d'un champ £ = 0.3u.a. (figure 4.8). On montre aisément que
cela correspond a une rotation dans ’espace des états n=2 - m=0, les fonctions

d’onde sous fort champ étant composées a parité des fonctions d’onde sans champ :

|2s >+ 2pm =0 >

lim |4+ >= 4.75
i > v .
I’énergie de ces états s’écrit :
E E Eys — B
B — 25"; oy D214 X (4.76)
. Pt A o
ou X = —— est le rapport des énergies de la perturbation induite par le champ
Eop — Eos

sur la différence des niveaux. v est I’élément de matrice Stark : v = % / - TPy Popdr,
|+ > correspond a ’état d’énergie la plus élevée (celui issu de [2pm = % >) et |— >
a celui d’énergie la plus basse (issu de |2s >).
La force de collision d’une excitation a partir du fondamental adopte la forme
simple :
1 1

ESVES ) 2$hsas + < 5 Q1s52po (4.77)
L () 1+ (i)

le\:l:> =

et les deux coefficients convergent bien vers 1/2 pour un champ infini.

On note aussi une diminution tres conséquente de la force de collision pour
les transitions a l'intérieur de la couche n=2, d’autant plus marquée que les états
possedent la méme valeur de m, projection du moment orbital [ sur 'axe Oz (figure
4.9, bien noter 1’échelle logarithmique). Cette décroissance trés importante marque
le passage d’une transition permise (2s vers 2p, Al = 1) vers une transition partiel-
lement autorisée dans le cas 2s vers 2p m=1 (ou il ne reste que 50% de 2s dans ’état
issu de 2s a fort champ : diminution de 50% de la force de collision) ou vers une

transition interdite pour 2s — 2p m=0 (force de collision réduite de 15 a 40 fois).
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Il faut néanmoins mentionner un fort décalage entre nos calculs et ceux de Perrot,
qui présentent une modification des forces de collision & beaucoup plus fort champ
(d'un rapport 3 environ). La formule 4.77 montre, pour le cas particulier 1s —
2l, que la modification de €2 en fonction de £ est inversement proportionnelle a
I'intervalle d’énergie séparant les niveaux (les deux coefficients valent respectivement
1/4 et 3/4 pour X = +/3). Ceux de Perrot, écrantés, sont séparés de 0.1 Ryd ; sans
écrantage, 1’écart se réduit a 0.0222 Ryd, soit un rapport de 4, ce qui correspond
approximativement au décalage (3) déja mentionné avec les résultats écrantés de
Perrot.

Sachant que la distribution de microchamp est centrée autour d’une valeur pro-
portionnelle a Nf /3 (a relativement faible densité, on peut utiliser I’approximation
de Holtsmark du champ le plus probable), nous pouvons en conclure que nos taux
collisionnels seront modifiés pour des densités électroniques 5 a 8 fois plus faibles
que celles de Perrot. Il apparait donc manifeste que le choix des énergies des niveaux
de départ influencera notablement les résultats ultérieurs. Une étude précise passe
donc par une modélisation tres fine de la structure atomique.

Dans le cadre du modele Distorted Waves avec interaction l.s (paragraphe
4.5.3), les états en l'absence de champ de moment angulaire total J=1/2 sont fort
différents de ceux sans interaction l.s (tableau 4.2). Par conséquent, les forces de
collisions en l'absence de champ sont distinctes de celles des états sans couplage

l.s, méme si ceci ne reflete qu'un changement de notation et non une modification

physique.
J=1/2— | J=1/24 | *P3),
251/2 1/v2 1/v2 0
2Pyjp | —1/V2 1/v2 0
*P3j5 | O 0 1

TAB. 4.2 — Coefficients des sous-niveaux n=2, M; = 1/2, de Ne X pour un champ

électrique infinitésimal (coefficients de mélange des fonctions d’onde).

J=1/2— | J=1/24 | *Py
2812 | ~0.7 ~ 0 ~ 0.7
2Py | ~—04 ~ 0.8 ~ 0.4
2Py | ~ =06 | ~—06 | ~0.6

TAB. 4.3 — Rotation des sous-niveaux n=2, M; = 1/2, de Ne X pour un champ

électrique > 0.3 u.a. : coefficients de mélange des fonctions d’onde.

Dans ces conditions (M = +1/2), la transition 1s - n=2, J = 1/2— varie au
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plus de 12% jusqu’a 0.04 u.a. puis revient vers sa valeur non perturbée & champ
électrique élevé car I'état J = 1/2— n’effectue qu’une rotation dans les états issus de
2p (tableau 4.3). La transition 1s - J = 1/2+4, équivalente a la précédente & champ
nul, subit une forte croissance vers la valeur de la transition autorisée 1s - 2p. A
l'inverse, la transition 1s - J = 3/2, équivalente & 1s - 2p & champ nul, décroit vers
la méme valeur que 1s - J = 1/2 non perturbé, cette modification s’opérant pour
des champs 1.5 fois plus élevés que pour les états non couplés (la différence d’énergie
valant dans le cas couplé 0.0333 Ryd au lieu de 0.0222 Ryd sans couplage).

Le comportement des forces de collision intra-couche s’explique de fagon simi-
laire : les transitions J =1/2—-J =3/2 |M|=1/2,J=1/24+-J =3/2 |M|=3/2
décroissent tres fortement vers des transitions interdites, tandis que J = 1/2— -
J=3/2|M|=3/2et J=1/24-J =3/2|M| = 1/2 varient peu et temporaire-
ment de la méme facon que 1s - J = 1/2—. Inversement, la transition J = 1/2— -
J = 1/2+ initialement interdite et peu favorable croit largement vers la valeur des
transitions non perturbées J = 1/2 - J = 3/2. Nous n’avons pas présenté de transi-
tions entre J = 3/2 |[M|=3/2 et J =3/2 |M| = 1/2 dont les forces de collision sont
problématiques a calculer en ’absence de champ, mais il semble logique d’attendre
des valeurs semblables a celles de J = 1/2— - J = 1/2+ a fort champ en raison de
la similitude des fonctions d’onde pour des champs supérieurs a 0.3 u.a.

En conclusion, nos résultats présentent les mémes tendances générales que ceux
de Perrot, mais avec des variations beaucoup plus précoces en fonction du champ.
Une étude en couplage l.s offre, outre une plus grande richesse spectroscopique,
quelques modifications importantes dans les transitions intra-couche. En effet, sans
couplage, la raie 1s - n=2 présentera assez peu de modifications dans les ailes du fait
des transitions intra-couches tres atténuées. En revanche, en présence de couplage
spin orbite, les états d’énergies les plus extrémes (J = 1/2— et J = 3/2 |[M| =1/2)
conservent ou atteignent des taux de transition élevés avec les états peu modifiés en
énergie (J = 1/24 et J = 3/2|M| = 3/2) qui correspondent au centre de la raie.
Comme ces états peu modifiés sont surreprésentés en raison des transitions a partir
du fondamental qui leur sont plus favorables, on peut attendre un affaiblissement du
centre de raie en faveur des ailes du fait de la redistribution opérée par les transitions
plus nombreuses vers les états largement modifiés en énergie. Pour ces deux raisons,

nous avons choisi d’effectuer nos calculs avec un couplage spin-orbite.
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Forces de collision 1s-2p et 1s-2s de F'. Perrot

0.05 l T T T T T T T
s = 2pm =0 ——
0.045 1s — 25

0.04 :
0.035 :
003_ j.‘..I —
"ol . i
el _:,»:"-’_ﬂ:_',:'ﬂ_ - ]
el R - l
0.01 - -
0.005 - / _

50 100 150 200 250 300 350 400 450 500
Energie (Ryd)

F1G. 4.6 — Forces de collision pour les différentes transitions entre les couches n=1 et n=2 (m=0),
sans couplage l.s, en fonction de 1'énergie, reprises de Perrot [58]. Les différentes courbes corres-
pondent & différentes valeurs du champ électrique : 0, 0.0625, 0.125, 0.25, 0.5 et 1 u.a. L’amplitude
générale des courbes 1s — 2p (en trait plein) décroit & mesure que le champ augmente et elles

convergent vers celles de 1s — 2s (en pointillé) dont amplitude s’accroit avec le champ.

Forces de collision 2s-2p de F'. Perrot

| | | | | | |
e e e N =
Q
0.1 1 -
: 2s—>2pm:0—:
2s = 2pm=1"
001 | | | | | | | | |

0 2 4 6 8 10 12 14 16 18 20
Energie (Ryd)

F1G. 4.7 — Méme légende pour des transitions intra-couche n=2 (Perrot [58]). Les amplitudes
des courbes de 2s — 2p m = 0 (en trait plein) et 2s — 2p m = 1 (en pointillé) décroissent quand le

champ électrique augmente. A champ nul, les courbes des deux transitions se superposent.
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0.045
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0.035
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0.015

001 7 -
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F1G. 4.8 — Forces de collision pour les différentes transitions entre les couches n=1 et n=2 (m=0),
sans couplage l.s, en fonction de 1’énergie. Les différentes courbes correspondent a différentes
valeurs du champ électrique : 0, 0.02, 0.04, 0.08, 0.16, 0.32 et 0.64 u.a. L’amplitude générale des
courbes 1s — 2p (en trait plein) décroit & mesure que le champ augmente et elles convergent vers

celles de 1s — 2s (en pointillé) dont ’amplitude s’accroit avec le champ.

2s > 2pm =0 ——
) 25 = 2pm =
Q - _
0.1 j/‘\ -
! ! ! ! ! ! ! ! ! !

0 10 20 30 40 50 60 70 80 90 100 110
E; (Ryd)

F1G. 4.9 — Méme légende pour des transitions intra-couche n=2. Les amplitudes des courbes de
2s — 2p m = 0 (en trait plein) et 2s — 2p m = 1 (en pointillé) décroissent quand le champ

électrique augmente.
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0.05 I I
0.045
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F1G. 4.10 — Forces de collision pour les transitions entre 1s 251/2, M = £1/2 et les états issus de 2s
et 2p J=1/2- et J=1/2+, M = +1/2, avec interaction spin-orbite, en fonction de 1’énergie. Les
différentes courbes correspondent a différentes valeurs du champ électrique : 0, 0.015625, 0.03125,
0.0625, 0.125 et 0.25 u.a. Les courbes 1s-J=1/2+ (en trait plein) et 1s-J=1/2- (en pointillé) se
superposent & champ électrique nul. L’amplitude générale des courbes 1s-J=1/2+ croit lorsque le
champ augmente (jusqu’a étre comparable & celle d’une transition 1s-2p) tandis que celle des courbes
1s-J=1/2- décroit tres légerement jusqu’a 0.04 u.a. puis revient vers sa valeur initiale. La transition

1s 2s est donnée a titre de comparaison (trait continu épais).

0.05 | |
0.045 -
0.04 |-
0.035 |-
0.03 |-
0.025 -
0.02 |-
0.015 -

0.01

0.005 | | | | | | |
0 200 400 600 800 1000 1200 1400 1600

F1G. 4.11 — Méme légende que précédemment mais pour la transition 1s - n=2 J=3/2 |M| = 41/2.
L’amplitude générale des courbes décroit quand le champ électrique augmente et se stabilise vers
€ = 0.5u.a.
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1.2
1 25— > 2p —
J=0.b— — J=15|M| = 0.5 décroit - - -
J=05-—J=15|M|=1.5
0.8 - 2pJ =0.5—2pJ = 1.5 « =+« - |

0ol )

0 10 20 30 40 50 60 70 80 90 100 110

F1G. 4.12 — Forces de collision pour les transitions intra-couches n=2 J=1/2- vers n=2 J=3/2
en fonction de I’énergie. Les différentes courbes correspondent aux différentes valeurs du champ
électrique : 0, 0.015625, 0.03125, 0.0625, 0.125, 0.25 et 0.5 u.a. L’amplitude générale des courbes
J=1/2- — J=3/2 M=3/2 (trait continu épais) décroit avec le champ jusqu’a 0.04 u.a. de 12% puis
retrouve sa valeur originale tandis que celle des transitions vers J=3/2 M=1/2 (pointillé léger)
décroit avec le champ de 50% et se stabilise & partir de 0.25 u.a. Les transitions 2s-2p (continu fin)

et 2p J=1/2- — 2p J=3/2 (pointillé épais) avec un champ nul, sont fournies pour comparaison.
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l l l 2|34>2p|
J=054+—J=15|M| =05 - - -
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F1G. 4.13 — De méme que précédemment pour les transitions J=1/2+ vers J=3/2. L’amplitude
générale des courbes de J=1/24+ — J=3/2 M=3/2 (trait continu épais) s’effondre lorsque le champ
augmente et converge vers celle de la transition interdite 2p — 2p (pointillé épais) deés 0.25 u.a.
L’amplitude des transitions vers J=3/2 M=1/2 (pointillé fin) régresse de 30% jusqua 0.04 u.a. avant

de revenir vers sa valeur initiale, & savoir la moyenne de 2s - 2p (trait continu fin) et de 2p - 2p.
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2s — 2p
J =0.5— — J = 0.5+ croit - -
1 F- 2pJ = 0.5 — 2pJ = 1.5 -

0.01 I | ! ! | ! “|""| L
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F1a. 4.14 — De méme que précédemment pour la transition J=1/2- vers J=1/2+ (trait pointillé),
dont Pamplitude générale, tres faible & champ nul, croit vers la moyenne de 2s - 2p (trait continu

fin) et 2p - 2p (trait continu épais) et se stabilise dés 0.25 u.a.

4.6 Taux de transition

La force de collision calculée précédemment se présente sous une forme ”com-
pacte” et offre deux avantages, la symétrie et l'additivité. Néanmoins, c’est une
quantité sans dimension difficilement utilisable dans sa forme brute pour des calculs
collisionnels radiatifs. Les variations de population d’un niveau donné prennent en

compte tous les taux de peuplement et de dépeuplement :

dN;
7t =—N; ; Ri.;+ ; R;_;N; (4.78)

ou R;; somme tous les taux de transition : R;; = E TZ-(]P ) en em3s™1, p représentant
P

chaque processus collisionnel ou radiatif.

4.6.1 Moyenne sur la distribution des vitesses

Le taux de transition par excitation collisionnelle est une moyenne sur la fonction

de distribution des électrons libres :
Tij = Ne <oij(v)v >= Ne/// oij(v)vf(v)dv
o (4.79)
= Ne /EOO oij(E)u(E)f(E)dE

seuil
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Dans le cas d’une distribution maxwellienne des vitesses,

F(E)E = 2 B2 ~EITqR (4.80)
= \/7_T T3/2 e , .
et
seutl
en unités atomiques : agT_l, g étant le poids statistique de ’état initial. Les taux

s’expriment, en général, en cm3s~ ! :

2171078 [>®
<ov> = 771/02/ QE)e P/TdE)T
gTRyd Eseuil

(4.82)

. 1 —6 o0
= % / QE)e PITdE)T.
gTK Eseuit

Par le principe de microréversibilité a 'ETL, le taux de désexcitation s’en déduit
aisément :
< 050 >= &(EESE“”/T < 00 > . (483)
gj

4.6.2 Moyenne sur la distribution du microchamp

Les taux de transitions doivent étre une moyenne en énergie mais peuvent aussi
I’étre en champ électrique dans le cas des fortes densités. Dans la mesure ou le
microchamp influe sur la force de collision mais aussi sur I’énergie du seuil, par
I'intermédiaire du déplacement des niveaux, il a paru pertinent de calculer un taux
de transition pour chaque valeur du microchamp, de fagon a éviter des situations
malaisées comme les transitions a l'intérieur d’une méme couche, ou des niveaux
peuvent se croiser, transformant une excitation en désexcitation.

L’axe du champ électrique est ’axe de référence, comme cela a été mentionné
en préambule de la section sur les excitations collisionnelles en présence de champ
électrique (4.5). La moyenne sur 'orientation du champ électrique vaut / / sin 0dfdy

=4

<ov > :///<aij(5)v>P(5)d35////P(S)d35

:/<Uij(5)v>P(5)d5 //P(E)dé’-

(4.84)
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4.7 Reéalisation numérique

4.7.1 Structure atomique

Nous avons remarqué, lors des comparaisons de modeles, combien le choix de la
structure pouvait avoir une influence importante, ainsi que la précision des énergies
employées. Nous avons donc décidé d’utiliser un schéma de couplage LSJ avec une
filiation directe entre chaque sous-couches (équation 3.1). Faute d’avoir réalisé nous-
méme notre propre programme de structure, et en ’absence des éléments de matrice
Spin-Orbite, notre modele est un couplage LSJ pur, ce qui dans un certain nombre de
cas multiélectroniques est préjudiciable a la pertinence des états atomiques étudiés.

Le calcul des fonctions d’onde est effectué par un programme Hartree-Fock réalisé
par Francois Perrot [57]. Les énergies de 'atome d’Aluminium Héliumoide ont été

calculées par Jean Bruneau avec un code de structure relativiste.

4.7.2 Fonctionnement du code

Nous avons taché de réaliser un outil de travail fonctionnant de maniere au-
tonome et ne nécessitant qu’un minimum de parametres d’entrée. Le fichier d’ini-
tialisation comporte le numéro atomique du corps a étudier, le nombre d’orbitales
considérées ainsi que leur liste puis le nombre de niveaux LSJ et leur liste avec
énergie. Deux éléments ont été ajoutés, I’énergie d’ionisation de 1’état de référence
(le fondamental) et le groupe auquel appartient chaque niveau et dans lequel sera
effectuée la diagonalisation du Hamiltonien, il s’agit, en I’occurence, de pouvoir res-
treindre la taille des matrices a diagonaliser. Nous avons déja précisé au chapitre
consacré a l'effet Stark que nous isolions trois ensembles pour les hydrogénoides
et les héliumoides en fonction de leur nombre quantique principal : le fondamental
(n=1), les états participant a la couche n=2 puis les états issus des couches n=3 et
n=4 ensemble.

L’énergie d’ionisation du fondamental est 1a pour permettre de définir une grille
de températures pertinente pour le calcul des taux collisionnels (ces températures
sont limitées a 1/4 de I’énergie d’ionisation, ce qui correspond approximativement
a la limite de l'existence de tous les niveaux considérés). Le choix des températures
définit aussi une grille d’énergies pour les électrons libres incidents. Nous avons choisi
de déterminer la force de collision pour des énergies s’étageant entre 1.06 et 20 fois
I’énergie du seuil, pour des transitions entre niveaux bien séparés, en surreprésentant
les énergies les plus faibles car elles sont statistiquement les plus importantes dans
la distribution et correspondent aussi a la zone ou la force de collision varie le plus.

Nous avons choisi de nous décaler de 6% du seuil pour le premier point en raison
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de problemes de stabilité pouvant advenir dans le calcul de fonctions d’onde de tres
faible énergie (pour le libre sortant, les fonctions oscillantes ont une période tres
grande devant les dimensions caractéristiques de I’atome, ce qui pose un probleme
de maillage radial). Dans le cas des transitions ou ’énergie du seuil est tres faible,
un tel maillage risquait d’échantilloner une trop faible portion de la distribution des
électrons thermiques et nous avons choisi de référencer notre grille d’énergies par
rapport a I’énergie d’ionisation du fondamental : nos valeurs s’échelonnent, au dela
de I’énergie du seuil entre 1.5% et 2 fois ’énergie d’ionisation.

L’utilisateur n’a & choisir que les configurations initiale et finale de la transition
qu’il désire étudier. Le programme liste initialement la totalité des sous-niveaux
LSJM en les classant par nombre quantique magnétique total M et par énergie
décroissante puis calcule pour chaque valeur de champ choisie les nouvelles structure
et énergie avant de chercher les forces de collision entre chaque sous-niveau de la
transition. Il en déduit ensuite les forces de collision effectives entre chaque sous-
niveau (moyenne de ) sur la température), puis les taux de transition (en cm3s—1)
entre sous-niveaux, tout ceci pour chaque valeur du champ. Nous avons aussi réalisé
un petit post-processeur qui permet de déterminer la valeur de ce taux en fonction de
la densité en effectuant la moyenne sur les microchamps, pour chaque température.

Ce code peut fonctionner sur des PC modernes pour des transitions ou un seul ni-
veau (initial ou final) est fortement perturbé par le champ. Lorsque les deux niveaux
sont “éclatés”, le nombre d’éléments de matrice angulaire devient tres important et
il est nécessaire de disposer d’'une mémoire vive conséquente (au moins 256 MegaOc-
tets pour des transitions 1s2s - 1s2p héliumoides). La méthode de convergence des
forces de collision partielles a permis de gagner plusieurs ordres de grandeur en vi-
tesse de calcul et ceux-ci passent désormais en quelques (dizaines de) minutes sur des
stations SUN Ultra 5 (400MHz), les transitions entre deux couches perturbées étant
plus lentes mais résolues en quelques dizaines de minutes sur les clusters Compaq a

2 Gigaflops du CEA.

4.7.3 Lissage des forces de collision et des taux collisionnels

Pour éviter le calcul d’'un trop grand nombre de forces de collisions en fonction
de I'énergie initiale, nécessaires pour effectuer leur intégration dans les taux colli-
sionnels, il est pratique de réaliser un lissage des forces de collisions a ’aide d’une
expression analytique. Une formule fréquemment utilisée pour ’ensemble des forces

d’oscillateur et de collision a été proposée par Goett et al [32] :

c d
Q(E;)) =aln(E;) +b .
(Ei) = aln(E;) + +e+E¢+(e+Ei)2

(4.85)
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Nous 'avons légerement adaptée pour obtenir une précision supérieure sur les

transitions collisionnelles en présence de champ électrique :

c d e f
QE)=aln(E)+b+ — + — + — + —.
(E;) = aln(E;) + +Ei+E?+E§+E?

(4.86)
Les coefficients a, b, ¢, d, e, f sont déterminés par la méthode des moindres carrés en
fonction des 10 valeurs de 1’énergie précisées au paragraphe précédent. L’incertitude
absolue vaut un millieme de la force de collision la plus élevée.

L’intérét d’une telle formulation est de permettre une intégration tres simple des

forces de collisions a 'aide des intégrales exponentielles :
et 1
E,.(z) = z”_l/ t—ndt, Enti1(z) = —(e7* —2z.Ep(z)) (n > 1), (4.87)
n
4

E, étant elle-méme obtenue & I’aide d’une formule analytique [1]. Ainsi, le taux de

collision s’écrit :

oo 217371078
ov = 75
1/2
gTeR/yd
_ _ Ei(X) | E)X)  E3(X) Ey(X)
In(E)e X + B1(X))+be X d
a(n(B)e ™ + E1(X))+be X ¢ 7 + TE. +6TeE§ +fTeE§,

(4.88)

T, étant la température électronique exprimée en Rydbergs.

4.7.4 Comparaison avec quelques résultats existants

Nous avons présenté quelques résultats concernant le Néon mais sans interac-
tion spin-orbite ni comparaison avec des modeles semblables hors champ. Nous al-
lons, ici, tacher de valider notre modeéle en champ nul dans le cas du Fer
héliumoide, par comparaison avec des résultats de Mann [51] et Kato et al [44].
Les calculs de Mann sont relativistes en Distorted Waves, ceux de Kato et al corres-
pondent & l'interpolation polynomiale de résultats obtenus par Pradhan [64, 65] &
Iissue d’un calcul DW incluant les résonances d’autoionisation et de recombinaison
diélectronique. Ces auteurs effectuent leurs travaux en couplage intermédiaire, ou
seul J est un bon nombre quantique. Nos calculs sont en couplage LSJ pur et les
corrections relativistes ne sont présentes que pour le calcul des énergies des niveaux
ioniques non perturbés.

Nous présentons quelques transitions 1s> — 1s2[ ainsi qu’une transition 1s2s —
1s2p.

Nos résultats concordent avec ceux de Mann & 10% prés pour les transitions de
1s% vers 1s2p' Py, 15255y et 15253S;. La comparaison avec les interpolations de

Kato et al est aussi satisfaisante pour les deux premieres transitions précédentes
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ainsi que pour les transitions vers 2P, et 3FPy. Néanmoins, du fait de leur forme
polynomiale, ces interpolations sont oscillantes et nos résultats présentent une plus
grande variabilité par rapport a eux (jusqu’a 20%). (voir figure 4.15)

Mann ne présente pas de résultats de 1s? vers 152p en couplage intermédiaire
mais seulement en couplage LS en tenant compte de I'interaction de configuration.
Nous avons donc effectué la somme des forces de collision correspondant a cette
transition et nos résultats sont tres inférieurs a ceux de Mann (non présentés ici).
Ceci est di a notre hypothese qui fait de L et S de bons nombres quantiques. De
méme, I’étude de la transition intra-couche 1s2s 3S; — 1s2p ' P, fait apparaitre
une forte divergence entre les résultats de Mann et les notres, au moins 5 fois plus
faibles. En admettant que L et S ne sont pas de bons nombres quantiques nous
avons donc recalculé les forces de collision pour I’état en couplage intermédiaire
' Plinter >= 0.962|1P1pw > +0.274|3P1pur > suivant les valeurs obtenues par le code
de O. Peyrusse. Nos résultats sont alors équivalents a ceux de Mann a basse énergie
a 5% pres et s’écartent progressivement ensuite (30% d’écart a 10 fois 1’énergie du
seuil soit 625 eV) (figure 4.16).
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FI1G. 4.15 — Forces de collision pour les différentes transitions 1s> — 152s et 1s2p comparées aux
résultats de Mann (carrés) ainsi que Kato et al (petits cercles) : 1s> — 'P; en trait continu fin,
1s?> — 3P, en trait continu épais, 1s> — 3S; en trait continu plus épais, 1s> — 1Sy en pointillé
léger, 15> — 3Py, en pointillé épais serré et 1s> — 3Py en pointillé épais élargi. Pour toutes ces

courbes, le champ électrique est nul.

L . o J
L o © Y 4 i
6 6 0 0 0 0000 00 °
0.01 .
Q i .
| Mann ¢ |
L 1P1 i
0.962' P, + 0.2743 P,
0.001 : : e : : :
1 10
X =E/AE

F1G. 4.16 — Force de collision pour la transition 1s2s%S; — 1s2p' Py en considérant L, S et J
comme de bons nombres quantiques (en pointillé), J seul bon nombre quantique (trait continu

épais), puis résultats de Mann (losanges). (Le champ électrique est nul.)
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4.8 Conclusion

Nous avons, dans cette partie, présenté le modele théorique choisi pour le cal-
cul des forces de collisions ainsi que les approximations effectuées pour rendre les
résultats plus précis et rapides. Notre programme numérique est un code Distorted-
Waves, incluant une orthogonalisation des fonctions d’onde ainsi qu’une extrapo-
lation des forces de collision pour améliorer la convergence aux grands moments
angulaires. Les résultats obtenus en ’absence de champ sont comparables a ceux de
la littérature et sont proches de ceux obtenus par les méthodes les plus élaborées.
Seule une différence subsiste pour des transitions inter-couches lorsque les éléments
de matrice spin-orbite deviennent importants. Nous supposons que cette difficulté
apparaitra aussi lorsque d’autres éléments de matrice négligés (interaction de confi-
gurations, spin-spin ...) seront grands. Néanmoins cette situation n’advient que pour
des corps relativement lourds (Z > 20).

Nos calculs seront donc effectués en couplage LSJ pur, tout en étant aisément
modifiables pour intégrer les éléments de matrice oubliés le jour venu.

En présence de champ électrique nous avons développé une formule générale,
indépendante de I’élément considéré ainsi que de son degré d’ionisation. Nous consta-
tons une modification notable des sections efficaces pour le Néon hydrogénoide, en
cohérence avec les résultats préliminaires de Perrot, mais pour un modele plus raf-
finé.

Nous présentons donc, dans le chapitre suivant, une étude plus générale portant

sur I’Aluminium hydrogénoide et héliumoide.
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Chapitre 5

Résultats

5.1 Introduction

Nous donnons dans ce chapitre quelques résultats représentatifs des calculs que
nous avons menés ainsi qu’'une étude plus globale des effets de la densité sur les
spectres d’émission a 1’aide d’un modele collisionnel-radiatif élémentaire.

Nous présentons de maniere graphique, en les analysant :

— quelques échantillons de forces de collision, fonctions du champ et de I’énergie

de 'ion incident, pour des transitions entre sous-niveaux yLSJ|M| et ' L'S"J' | M'|,

— quelques taux collisionnels, en fonction du champ et de la température, entre
sous-niveaux yLSJ|M| et ~'L'S"J'|M'|,

— quelques taux collisionnels moyennés en champ électrique, en fonction de la
densité a différentes températures ainsi que des coefficients de variation de
ces taux collisionnels en fonction de la densité par rapport a leur valeur non-
perturbée par le champ,

— P’ensemble des taux collisionnels moyennés en champ en fonction de la densité,
pour les transitions de couche K correspondant aux transitions radiatives,

— enfin, les profils spectraux des raies de I’Aluminium Lyc«, LyG, Ly, Hea, He(
et Hey pour plusieurs densités en comparant les spectres obtenus lorsque le
systeme est & 'ETL ou lorsque les taux collisionnels sont indépendants du
champ avec ceux issus de taux collisionnels variant avec le microchamp.

Nous avons focalisé nos calculs sur le cas de ’Aluminium, élément fréquemment
employé dans les expériences d’interaction laser-matiere [4, 52, 50, 26]. Il présente
I’avantage d’étre suffisamment commun et d’étre un élément léger. Comme cela est
présenté au premier chapitre, cette propriété fait qu’il s’ionise fortement a partir
d’une centaine d’eV si le matériau reste assez dense, devenant ainsi hydrogénoide

ou héliumoide, voire un peu lithiumoide. Ces ions présentent un spectre simple
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en couche K au sens ou les raies sont bien résolues et caractéristiques de niveaux
bien identifiables. L’étude des effets de densité dans ’aluminium hydrogénoide ou
héliumoide est donc facilement envisageable. Nous n’avons volontairement effectué
aucun calcul sur des lithiumoides, les transitions de couche K conduisant a des états
de type 1snln'l’ pour lesquels notre schéma de couplage est manifestement inadapté

tant qu’il ne comporte pas d’éléments de matrice d’interaction de configuration...

Nous présentons en outre quelques lois d’échelle en Z qui permettent d’extrapoler

les résultats obtenus pour I’Aluminium hydrogénoide a des éléments plus variés.

5.2 Transitions de couche K : quelques lois simples

Les transitions a partir de la couche n=1 présentent la particularité d’avoir un
niveau initial tres faiblement affecté par le champ électrique. Nous le considérons
donc non perturbé. Dans ces conditions la formule générale 4.66 se simplifie notable-
ment en éliminant les sommes sur « et o’. De plus, les états sous champ électrique
étant indépendants du signe de M, les forces de collision peuvent étre calculées entre
les états J|M| et J'|M’| directement. La sommation sur les M initiaux permet de

réduire encore la longueur de I’équation initiale a I’aide de (Cowan [19] 5.16) :

. . iy
i J J J .
> (~ym ( ) = 8;r 0[4]"/2.
— m —m 0

On montre ainsi que a s’annule, ce qui permet de simplifier nombre de coefficients.

Nous trouvons donc pour les transitions de couche K des hydrogénoides et

héliumoides la formule tres concise :

_ agap
Qijngy) pivay) = Z‘sLSJg,LSJB,[J—ﬂ] Z (£, S]
Ba’ Lils,S
1

2 1
<7(0, 1)L, (Si, _)S|—’75(Lﬂ’ lf)lia (Sf7 5)S > (5.1)
2 r12 2

1 2 1
< vg(Lg, )i, (S, §)S\a|’%(0, Li)li, (S, 5)5 >

avec L = [;.
S’il n’y a pas de mélange entre états de couches distinctes (n # n’), les contraintes

sur LS et J imposent que 3 = ' et par conséquent :
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_ 2
Qupnil finay) = D lasl Qs gy |- (5.2)
B

Les forces de collisions ne sont plus qu’une simple moyenne de forces de collisions
entre états non mélangés. De plus, comme les coefficients ag sont normés, la force de
collision totale entre deux niveaux n et n’ est conservée lorsque le champ électrique
varie.

Des formules équivalentes peuvent étre dérivées pour les taux collisionnels, mais
il est nécessaire de préciser les approximations effectuées. Les forces de collisions
précédentes devraient en toute rigueur étre calculées a chaque champ électrique, ce
dernier modifiant I’énergie de seuil de la transition (Eg — FEg + dE(£)). Une étude
des forces de collision en fonction de I’énergie du seuil montre qu’elles décroissent
lorsque § E augmente, mais dans une proportion tres réduite : au seuil, la variation
est égale a la moitié de la variation en énergie pour les transitions interdites et est
similaire pour les transitions permises; a haute énergie, cette variation disparait.
Or les variations en énergie restent restreintes : quelques pourcents au plus pour les
valeurs admissibles du champ.

Dans ces conditions, nous pouvons traiter la variation des taux collisionnels de
maniere perturbative :

oo oo

/ QE)e BITAE T ~ e /T / Q(u)e T du/T. (5.3)
Es+d0E Es

Les variations de I’énergie de seuil des transitions restant toujours trés inférieures a la

température, les modifications des taux de transition occasionnées par les variations

d’énergie de seuil sont de 'ordre du pourcent.

Il est donc licite d’admettre la formule simplifiée des taux collisionnels :

2
< oing i) 0 >= > lagl® < o gy v > - (5.4)
5

5.3 Quelques exemples pour I’Aluminium hydrogénoide

Les taux collisionnels de Al XIII présentent les mémes caractéristiques que ceux
de Ne X. Nous les avons présentées au chapitre précédent pour les transitions vers la
couche n=2 et nous les rappelons succinctement : (Figure 5.1) la force de collision 1s

- n=2 J=1/2- fléchit légerement (12%) jusqu’a 0.16 u.a. puis revient vers sa valeur
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initiale a la suite d’une rotation dans l’espace 2P1/2, 2P3/2 (la répartition 2s/2p
est conservée) ; la transition 1s vers n=2 J=1/2+ croit fortement vers la transition
permise 1s — 2p tandis que la transition 1s vers n=2 J=3/2 |M| = 1/2 décroit
inversement de 1s — 2p vers 1s — (2s+2p)/+v/2. De méme, les forces de collision des
transitions intra-couche (pas de figure) n=2 J=1/2- — n=2 J=3/2 |M| = 1/2 et n=2
J=1/2+ — n=2 J=3/2 |M| = 3/2 décroissent tres fortement vers des transitions
interdites tandis que n=2 J=1/2- — n=2 J=1/2+, initialement interdite, croit tres
fortement vers 1’équivalent a champ nul de n=2 J=1/2 — n=2 J=3/2. Enfin n=2
J=1/2- - n=2 J=3/2 |M| = 3/2 et n=2 J=1/2+ — n=2 J=3/2 |M| = 1/2 varient
peu et temporairement de fagon similaire & 1s — n=2 J=1/2-.

Pour les transitions de 1s vers les états |[M| = 1/2 de la couche n=3 (Figures 5.4,
5.5 et 5.6), la force de collision de 1s — n=3 ?Ds /5| M| = 1/2 reste quasi constante
jusqu’a 1.25 10 3u.a. puis croit fortement (x10) et se stabilise entre 0.08 et 2 u.a.
(équivalent & la transition 1s — (0.36 3s + 0.52 3p + 0.12 3d)) puis, du fait de
I’évitement avec les états issus de la couche n=4, décroit jusqu’a 2. u.a. La transition
1s vers n=3 J=3/2+ |M| = 1/2 décroit des 3. 10~ %u.a. jusqu’a 10~ %u.a. (1s — (0.9
3d + 0.1 3p)) puis se rétablit et se stabilise vers 0.2 w.a. (1s — (0.55 3p + 0.45 3d)).
La transition 1s vers n=3 J=3/2- |M| = 1/2 croit des 3. 10 *u.a. jusqu’a 510 3u.a.
puis chute jusqu’a 810 2u.a. La transition 1s — n=3 J=1/2+ |M| = 1/2 décroit &
partir de 210~ 2u.a. progressivement jusqu’a 2.5 u.a. Enfin la transition 1s vers n=3
J=1/2- reste quasi constante jusqu’a 0.64 u.a. puis décroit (devient équivalente &
une transition vers n=3 J=3/2 |M| = 1/2 sans perturbation). Les transitions vers
les états de |M| = 3/2 adoptent un comportement général équivalent a celui des
transitions équivalentes (méme J, méme signe) avec |M| = 1/2.

Les forces de collisions obtenues, & champ nul, sont équivalentes a 1% pres avec
celles de Aggarwal et al [3] calculées avec un code R-Matrix, & I’exception des tran-
sitions vers n,]I=0 qui sont supérieures chez nous d’une dizaine de pourcent.

Les taux collisionnels qui en sont issus suivent la méme orientation générale
hormis aux tres forts champs électriques qui induisent une variation de I’énergie
de seuil non négligeable. De méme, la dépendance en densité des taux collisionnels
conserve ces tendances : les transitions vers la couche n=2 (Figure 5.2) commencent
a varier des N, = 102'e — /em? : 1s — n=2 J=1/2+ croit au plus de 20%, 1s —
J=3/2 |M| = 1/2 décroit en proportion inverse tandis que 1s — J=1/2- reste quasi
constante, sauf & forte densité (supérieure & 10%*e — /em?) ou la réduction d’énergie
de seuil entraine une croissance de 5% environ.

Notons sur les figures 5.2, 5.3, 5.5 et 5.6 que les courbes varient d’autant plus
faiblement et pour des densités plus élevées que la température du milieu est basse :

une plus forte agitation des ions favorisant des microchamps plus élevés.
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Les transitions vers la couche n=3 (Figures 5.5 et 5.6) varient notablement des
10'8e— /em? pour 1s — n=3 J=3/2+ |M| = 1/2 qui croit de 30 % avant de s’affaisser
et 1s —» n=3 J=3/2- |M| = 1/2 qui décroit de 55% avant de retourner vers sa valeur
initiale (figure 5.5). La transition 1s — n=3 J=5/2 |M| = 1/2 croit tres fortement a
partir de 10%%e — /cm? et atteint 8 & 10 fois sa valeur initiale dés 102! — 10?2e — /em3
(figure 5.6). Les transitions 1s — n=3 J=1/2+ et 1s — n=3 J=1/2- varient moins
et pour des densités plus élevées (10%te — /em?).

Nous présentons sur la figure 5.6 une comparaison entre des taux collisionnels
calculés “exactement” & l’aide de la formule 4.66, ou les couches n=3 et n=4 sont
prises en compte simultanément pour la diagonalisation du hamiltonien et dont les
énergies de seuil dépendent du champ électrique, et des taux collisionnels “approxi-
matifs” obtenus a I'aide des formules 5.2 et 5.4 ou seule la couche n=3 est prise en
compte et 1’énergie de seuil est ou non modifiée avec le champ électrique. L’état n=3
J=5/2 |M| = 1/2 est le premier a étre mélangé avec des états de la couche n=4
lorsque le champ croit ; néanmoins, ce mélange n’a quasiment aucune incidence sur
les résultats. Les différences qui apparaissent entre le calcul “exact” et les formules
simplifiées sont dues a un trop petit nombre de points calculés en fonction du champ
électrique pour la formule exacte, ce qui pése sur la précision du taux collisionnel
moyenné sur le microchamp. Il apparait une variation de quelques pourcents a tres
haute densité (10%4e — /em3) lorsque 1’énergie de seuil n’est pas modifiée en fonction
du champ électrique. Nous en concluons que nos formules simplifiées (5.2) et (5.4)
donnent des résultats conformes a la réalité et que les forces de collision et taux

collisionnels de couche K peuvent étre calculés tres aisément par ce biais.

5.4 Lois d’échelle

Les énergies des niveaux hydrogénoides obtenues en résolvant 1’équation 3.10
présentent un décalage proportionnel & Z% entre niveaux d’une méme couche. De
plus, les éléments de matrice d’interaction avec le champ électrique sont propor-
tionnels & £ et / Py Py v dr est proportionnel & 1/Z (formules 3.3 & 3.5). Deux
niveaux se mélangent lorsque 1’élément de matrice d’interaction entre eux devient
proche de la différence d’énergie qui les sépare : AEyZ* ~<r >y £/Z. Les mo-
difications des forces et des taux collisionnels s’effectuent donc pour des

champs électriques proportionnels & Z° :
Oz (Z2°£,72°F) =~ Z2°Qy (£, E) (5.5)

car la loi d’échelle entre les forces de collision en I’absence de champ électrique s’écrit
O7(Z°E) =~ Qg (E).
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Ainsi, pour "Aluminium Z=13, les mémes variations se produisent pour des
5

microchamps o) = 3.71 fois supérieurs & ceux du Néon Z=10 (ainsi 1s - n=2

J=0.5- décroit jusque vers 0.16 u.a. avant de revenir vers sa valeur initiale pour Al
XIII tandis que cette inversion s’effectue vers 0.04 u.a. pour Ne X).

Dans la mesure ol les forces de collision sont proportionnelles & 1/Z2 et les
taux collisionnels & 1/Z3 (avec d’autant plus de précision que Z est élevé), I'étude
d’un seul élément en fonction du champ électrique est suffisante pour caractériser
avec précision 'ensemble des forces de collision et des taux collisionnels des autres
éléments (pour une énergie ou une température proportionnelle & Z2).

A faible densité, la distribution de Holtsmark est une bonne approximation et le
microchamp est proportionnel & Z/3N,, les taux collisionnels moyennés en champ
électrique suivront donc une loi d’échelle en densité proportionnelle & Z16/3. Du fait
des contraintes en densité sur cette distribution, cette loi ne sera vérifiée que pour
les niveaux n=3 et supérieurs, dont les sous-niveaux sont plus rapprochés (en 1/n?).
Ainsi les modifications s’effectuent des 10'%e — /em? pour Al XIII dans n=3 tandis

qu’elles apparaissent & partir de 102'e — /em? pour n=2 (figures 5.2, 5.3 et 5.5).

5.5 Spectres Collisionnels-Radiatifs

Nous présentons dans ce paragraphe une étude spectroscopique préliminaire des
effets de la prise en compte des taux d’excitation collisionnelle modifiés par le mi-
crochamp.

A cet effet, nous avons réalisé un calcul collisionnel-radiatif élémentaire en ne pre-
nant en compte que les excitations et désexcitations collisionnelles et les transitions
radiatives dipolaires électriques (E1).

Dans la mesure o1 aucun mécanisme d’ionisation n’est inclus, nous avons traité
distinctement les hydrogénoides et les héliumoides. Nous voulions présenter des
spectres de couche K : Ly «, 3, v et He a, 3, v, nous avons donc pris en compte
tous les états de type 1s, 21, 31 ,41 pour les hydrogénoides et 152, 1521, 1s31 et 1s4l
pour les héliumoides.

Comme nous ’avons indiqué dans les parties précédentes, nous avons réduit le
nombre de niveaux yLSJM étudiés en traitant simultanément yLSJM et yLSJ—M
lorsque M est non nul (voir paragraphe 3.3 “Résultats et notation” dans L’ef-
fet Stark). Avec cette restriction, nous avons 30 niveaux yLSJ|M| pour les hy-
drogénoides et 74 pour les héliumoides (voir Appendice A, B) En calculant simul-
tanément les taux d’excitation collisionnelle et les désexcitations correspondantes,

il reste 435 taux collisionnels a évaluer pour les hydrogénoides et 2701 pour les
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héliumoides, ceci pour chaque valeur du microchamp de la distribution. Chaque
taux requiert, en outre, ’évaluation de plusieurs forces de collision, pour chaque va-
leur du champ électrique. Il n’est donc pas envisageable de calculer en ligne chaque
force de collision séparément, sachant que nombre d’entre elles nécessitent plusieurs
minutes de calcul sur des ordinateurs performants. Ce temps étant d’autant plus
long que les niveaux de départ et d’arrivée se mélangent avec de nombreux autres

niveaux en présence de champ électrique.

5.5.1 Forces de collision

Nous avons réitéré 'approximation présentée dans le paragraphe 5.2 pour les
transitions de couche K en 'adaptant aux cas plus complexes. Les simplifications
apparaissant lorsque I'un des niveaux n’est pas perturbé par le champ n’ont plus
cours. Néanmoins, il est possible de présenter chaque force de collision entre deux
niveaux perturbés par le champ comme la somme de plusieurs forces de collision
partielles.

En reprenant la formule 4.66, nous pouvons 1’écrire sous la forme :

Qienm,, frm, = Z 50800y Qaar M), B8 £M, (5.6)
a’57a,’5/

ou les forces de collision partielles /411, 35+ M, valent :

Qaa’iMi,ﬁﬁ’:I:Mf = 2 Z [CL] Z Z (—1)Mi+Mf signea(Mi) signea/(MZ-)
+M; My

Jo I J, Jg
x signeg(My) signeg (My) ¢ ) ( g g @ )

M,; —Mi 0 My —My 0
X Z <7a(Laalz) )

N
Uil LS, LS

S

r
1 i, N+1

B Lﬁv lf)£7 (Sﬁa 3)8>

N

<75’(L,3’7 lf)£/7 (Sﬁ’u S)Sl 7&’(La’7 li)£/7 (Sa’a S)Sl>
1 Ti,N+1

x> (=0T TN 28 gaii Tes g Ters a5 Tersr d i,
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5.7)
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Les variables nommées signe(M;), signeg(My) sont incluses pour accorder la phase
des coefficients de mélange ay(_py,) et ag(—M;y) avec leurs correspondants aq (M;)

et ag(My) comme cela a été indiqué au paragraphe 3.3. :
ao(—M;) = an(M;) x signeqo(—M;) (5.8)

Notons toutefois que la notion de force de collision partielle n’est pas évidente. Elle
ne correspond pas a une transition entre deux états bien spécifiés comme cela pouvait
étre le cas dans la formule 5.2 (états i et 5) mais & un élément de matrice entre le
“produit” de deux états aa/ et B33.

Pour évaluer la structure d’un ion perturbé par le champ électrique, nous déter-
minons I’ensemble des états non perturbés qui y participent. Ces ensembles forment
des sous-groupes stables. Nous pouvons par exemple citer le sous-groupe de n=4 ,
M=3/2 :J=3/2-, J=3/2+, J=5/2-, J=5/2+ et J=7/2 de I’Aluminium hydrogénoide
ou encore celui de n=4, S=1 M=3 : 3Fy, 3F; et 3D5 de I’Aluminium héliumoide. Nous
présentons dans les Appendices A, B I’ensemble de ces sous-groupes. Ainsi, il n’est
nécessaire d’évaluer que les forces de collisions partielles dont « et o’ appartiennent
au méme sous-groupe et dont 3 et 3’ réalisent la méme condition. Le calcul de
I’ensemble de ces forces de collision partielles permet de déterminer ensuite la totalité
des forces de collision. Nous supposons ici, comme dans le cas des transitions de
couche K, que la modification des énergies de seuil des excitations par le champ
électrique n’a quasiment pas d’influence sur les forces de collision et a plus forte
raison sur les taux collisionnels. Par conséquent, la totalité des forces de collision
partielles ont été calculées avec un champ électrique nul, I’énergie des niveaux étant
prise comme la moyenne de celle de tous les niveaux non-perturbés du sous-groupe.

Nous évaluons ces forces de collision partielles en utilisant la méme méthode de
convergence que celle que nous avions développée pour la force de collision totale
4.66. 1l faut cependant noter que la valeur maximum de [, moment angulaire des
électrons libres, doit étre au moins égale a 45 pour pouvoir traiter I’ensemble des
transitions a haute énergie. En particulier, les transitions autorisées entre les couches
n=3 et n=4 convergent tres lentement et imposent cette valeur tres élevée du moment
angulaire.

Les éléments de matrice angulaires étant de tres loin les plus longs a calculer,
nous avons choisi d’évaluer préalablement les éléments de matrice radiaux a toutes
les énergies désirées avant d’effectuer le produit de I’élément de matrice angulaire
avec tous ces éléments radiaux. L’échantillonnage en énergie est celui présenté au
paragraphe 4.7.2 avec 10 valeurs pour les hydrogénoides et 7 pour les héliumoides en
raison des limites de mémoire de I'ordinateur. Cette méthode a permis de réduire les

temps de calcul d’un facteur 10 pour les hydrogénoides et de 7 pour les héliumoides.
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Avant de pouvoir calculer les forces de collision totales, nous avons donc di
calculer et enregistrer sur un fichier I’ensemble de ces forces de collision partielles.
Pour calculer les forces de collision totales, il ne suffit plus que d’effectuer la lecture
du fichier et de déterminer la structure des ions initial et final de la transition, sous
champ électrique. Nos fichiers contiennent ainsi 103950 forces de collision partielles

pour les hydrogénoides et 445137 pour les héliumoides.

5.5.2 Taux radiatifs

Les transitions dipolaires électriques sont les transitions radiatives les plus in-
tenses et nous avons choisi de nous limiter a celles-ci. Le taux radiatif entre deux
niveaux v; M; d’énergie E; et vy My d’énergie E; inférieure s’écrit en unités atomiques
(Cowan [19]) :

o (E; — Ef)?

c > | < By My > 2 (5.9)

q=0,%+1

aif =
ol « est la constante de structure fine, les énergies sont exprimées en Rydbergs et

I’opérateur P Z TZC(D . La probabilité de transition radiative par seconde

entre les niveaux % j: M; et vy & My s’écrit alors :

2.67710°(E; — E
A5ty = 2B BT S 5 S <Py > P (5.10)
gi q=0,%£1 +M; +M;

ou g est le poids statistique du niveau initial, a savoir : 1 si M; = 0, 2 sinon. Ces
mémes poids statistiques sont utilisés pour le calcul des taux collisionnels (formules
4.82, 4.83).

Le calcul de I’élément de matrice < v;M; |P |’ny ¢ > est similaire a celui des
éléments de matrice Stark au chapitre 3. Il faut préalablement développer les états
viM; et vy My sur la base des états non perturbés par le microchamp électrique :
iM; >= " alYaLaSataM; > et |yg My >=> " BlysLSsJsMy > et les éléments
de matrice élémentaires s’écrivent :

Jo 1 Jg

<7LSJaMi|Pq(1)WL5JﬁMf>=(—1)Ja_Mi( M, 0 M
Y ;

) <ol |PW ||y J5, >

(5.11)

ce dernier élément se développant de fagcon semblable aux formules 3.3 et 3.4 :

< YLSJ,||PMD||yLSJ5 >=

La Sa Ja
050,55 (—1) Pt St ot g, 5] 2 { } < YLSa|[PD||YLS5 >
Jg 1 Lg

(5.12)

et I’élément de matrice réduit rémanent est détaillé dans I’Appendice E.
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5.5.3 Emissivité et populations
L’émissivité d’une raie i — g s’écrit :
. Eig
Jv = EAngzf(Elg - hl/) (513)

ou E;4 est I'énergie de la transition, A;, est le taux de transition radiative du niveau
i vers le fondamental g, N; est la population du niveau i et f(E;; — hv) est une
fonction caractérisant 1'élargissement. L’émissivité totale sur la distribution P(€) de

microchamp s’écrit :

Jv= / Eii,](-‘-g)Aig(g)N’i(g)f(Eig(g) — hv)P(E)dE (5.14)

Les populations NV;(€) sont déterminées en supposant I’état stationnaire % =0
et en diagonalisant la matrice des taux. Dans la mesure ou aucun processus d’ionisa-
tion n’est considéré et ou la température du milieu que nous choisissons (T, = T; =
500V ici, soit 36.76 Ryd) est assez inférieure aux énergies d’excitation a partir du
fondamental, d’apres la loi statistique de Maxwell-Boltzmann, la population de ce
niveau reste peu perturbée par les processus de peuplement vers les niveaux excités.
Nous choisirons donc le niveau fondamental comme niveau de référence pour les
populations : No(€) = P(£), la distribution de microchamp étant normalisée.

Pour calculer les populations des niveaux excités, en fonction du champ électrique,
deux logiques sont possibles :

— Calculer les taux collisionnels et radiatifs moyennés en fonction de la distri-
bution de microchamp, puis en diagonalisant ces taux moyennés, obtenir une
population moyenne de I’état N ; la population utilisée pour calculer le profil
de raie précédent 5.14 valant : N(£) = N.P(£). Il n’y a alors qu'une seule
diagonalisation.

— Calculer la population de chaque niveau, pour chaque champ électrique, en
diagonalisant la matrice des taux pour chaque valeur du champ.

La premiere approche suppose que le microchamp, quasi-statique a 1’échelle des
processus collisionnels ou radiatifs, varie rapidement entre deux transitions subies
par l'ion. Par conséquent, la mémoire du champ électrique de la population est
perdue et elle s’accorde avec la distribution de microchamp.

La seconde approche considere que les variations du champ électrique entre la
transition qui peuple un niveau et celle qui le dépeuple restent négligeables. Il n’y a
donc pas de transfert de populations entre des champs électriques distincts, mais
seulement entre les différents niveaux, en conservant la méme valeur de champ

électrique.
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Il suffit donc de comparer les temps caractéritiques de modification du micro-
champ a ceux séparant deux transitions. En premiere approximation, on peut assimi-

ler le temps de variation du microchamp au temps nécessité par un ion perturbateur

r 37+ 1/3 ) 1/2
our traverser la sphere ionique de 'ion perturbé : 7¢ = —= = i
pour traverser la sphere ioniqu ion perturbé : 7¢ " <47TN6) (BkT :

temps caractéristique déja mentionné au premier chapitre (formule 1.28). On ob-

1.68 1077

tient alors 7¢(s) = ﬁ pour T, = T; = 500eV = 36.76 Ryd, valeur de la
-

température que nous avons choisie pour le calcul des spectres. Les taux radiatifs les

plus forts sont de 'ordre de 1013571

pour les transitions de la couche n=2 vers le fon-
damental, plus faibles sinon ; les taux collisionnels sont inférieurs systématiquement

4 1078 x N, (em3s™1). Les temps caractéristiques séparant deux transitions sont
I'inverse de ces taux.

Ainsi, pour 10* < N, < 10**¢ — /em?, le temps caractéristique de variation du
microchamp est systématiquement inférieur a celui séparant deux transitions. Il est
donc plus pertinent de supposer que le microchamp moyenne les taux de transition
et donc les populations.

Dans ces conditions, les taux collisionnels se récrivent simplement a partir de la
formule 4.82 :

/ < ov> (E)P(E)dE = = 1;11/02 i / £)de / ) FITaET

seuzl

~ 22 1?2 6/ Y Qapap (B (/aﬁaﬂ P(€ )d5> e BITdp)T

9euzl aﬁa’ﬂ’

(5.15)

soit,
/ <ov> (E)P(E)dE ~

6 o (5.16)
3 < / aﬂa’ﬁ’P(E)dE) S / Qs (B)e E/TdET.
afBal B gl Escuil
Le taux collisionnel est une simple somme de taux collisionnels partiels et I’on peut
choisir approximativement 1’énergie du seuil de réaction comme la moyenne sur le

microchamp des énergies de seuil dépendantes du champ :

Eseuit ~ / Eyeut(6)P(€)dE (5.17)

5.5.4 Elargissement collisionnel électronique

La fonction d’élargissement f des formules 5.13 et 5.14 comprend ’ensemble des

phénomenes d’amortissement, mais qui sont composés largement d’amortissement
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par impact collisionnel avec les électrons dans les plasmas denses et chauds ainsi que
dans une moindre mesure de 1’élargissement Doppler lorsque les densités sont peu
élevées. Nous nous restreindrons donc a ces deux-ci. La fonction f adopte un profil

Lorentzien :

C
(hv — Eig)? + Av?

ol Av est la largeur de raie. Nous avons choisi de prendre la plus grande des largeurs

f(Eig(€) —hv) = (5.18)

électronique Avg et Doppler Avp. Avg a pour ordre de grandeur (Alaterre [4]) :

0—23 ”_4 Ne(em™®)

A d)~261 1
vie(Ryd) ~ 2.6 72 T (Ryd) (5.19)
et la largeur Doppler vaut :
Avp(Ryd) = 121074/ Z3T.(Ryd). (5.20)

Notons que la formule utilisée pour évaluer 'amortissement collisionnel électronique
repose sur des simplifications massives et suppose en particulier que I’élargissement
est du aux collisions faibles (i.e. distantes), ce qui est d’autant moins vérifié que la
densité s’accroit. Les élargissements seront donc fortement surévalués a forte densité.
Cette approche permet néanmoins d’échapper a un traitement, certes plus précis,

mais beaucoup plus lourd [4, 31].

5.5.5 Aluminium hydrogénoide

Nous tragons dans les figures 5.15 a 5.22 les profils obtenus pour les raies Ly
a, B3, v de 'Aluminium a T, = T; = 500eV pour des densités électroniques variant
entre 102 et 10%e¢ — /cm3. Nous présentons simultanément les résultats obtenus
pour des taux collisionnels dépendant du champ électrique < ov > (£) et des taux
indépendants < ov >= cte ainsi que le spectre émis par un milieu a I’Equilibre
Thermodynamique Local . Les émissivités sont données dans les graphiques en unités
arbitraires et nous avons choisi de les superposer, masquant ainsi les éventuelles
différences de hauteur entre les raies (tres faibles néanmoins).

Comme nous allons le voir, les différences entre les profils apparaissent a rela-
tivement faible densité, c’est a dire, en général, Hors Equilibre Thermodynamique
Local, a proximité de I’Equilibre Coronal. Nous avons donc choisi de présenter, pa-
rallelement aux spectres, les taux collisionnels qui peuplent les niveaux a partir du
fondamental, en nous restreignant aux niveaux décroissant radiativement vers le fon-
damental (figures 5.7 & 5.11). Dans le cas des hydrogénoides, les regles de sélection
imposées par les transitions dipolaires électriques sont peu contraignantes et n’ex-
cluent que les niveaux dont |M| > 3/2 (AM = 0,=£1), tous les autres niveaux excités

se mélangent avec 2P /2 €t ’p, /2 en présence de champ électrique.
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— La raie Lyman « (figures 5.15 et 5.16) montre que le milieu est a 'ETL des
N, = 10%22¢ — /em3. Les profils sont quasiment indépendants des modifications
des taux collisionnels par le champ électrique, hormis & N, = 10?2e— /em? ou la
raie 2P, /2 est 6% plus faible lorsque les taux collisionnels sont indépendants du
champ. L’absence de modifications plus marquées s’explique par la tres faible
variation des taux collisionnels en fonction de la densité (figure 5.7). Nous
notons aussi que les ailes lointaines de raies, a cette densité, sont plus étroites
d’environ 3%. Cet effet a été anticipé en conclusion du paragraphe 4.5.5 lors
de la comparaison entre les différents modeles sur du Néon hydrogénoide, il
est du a une redistribution des populations vers les états les plus modifiés en
énergie.

— La raie Lyman f (figures 5.17, 5.18 et 5.19) est en quasi-ETL des N, =
3.210% — /em3. La raie dont les taux collisionnels dépendent du champ
électrique s’élargit légerement & partir de 10'%e — /em? par rapport a celle dont
les taux sont fixes, la différence étant maximale entre N, = 3.2 102% — /cm?
et 10%2le — /em3, de l'ordre de 4% & mi-hauteur. Mais il est important de no-
ter que cet élargissement s’effectue essentiellement vers les énergies les plus
élevées et que l'ensemble de la raie se déplace vers ces énergies par rapport
a la raie dont les taux collisionnels ne sont pas perturbés. Les transitions de
1s vers n=3 2Dy 5, |M| = 1/2 ou 3/2 initialement 6.7 fois inférieures & celles
vers J = 3/2+ et 10 fois plus faibles que celles vers J = 1/2+ deviennent
supérieures aux premieres entre 102 et 10%'e — /em? et de l'ordre des se-
condes vers 10%'e — /em? (figures 5.8 et 5.9). Les ions dans ’état initial 2D5/2
dont I’énergie augmente lorsque le champ croit voient leur population deve-
nir significative et engendrent un élargissement de la raie vers les plus hautes
énergies.

— La raie Lyman ~ présente un comportement similaire a Lyman 3, néanmoins
plus marqué et pour des densités légerement plus faibles (figures 5.20, 5.21 et
5.22). L’élargissement a mi-hauteur est au maximum de 'ordre de 6% entre
3.210' et 10%% — /em? et il s’effectue au profit des énergies les plus élevées.
Les niveaux responsables de cet élargissement sont J = 5/24+, |M| = 1/2 ou
3/2 et surtout 2F; o, [M| =1/2 et 3/2 (figures 5.10 et 5.11).

5.5.6 Aluminium héliumoide

Nous présentons dans les figures 5.23 a 5.22 les mémes profils qu’au paragraphe
précédent. Les raies Hélium « (figures 5.23 et 5.24) et Hélium 3 (figures 5.25, 5.26

et 5.27) ne présentent aucune modification apparente entre un calcul collisionnel
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dépendant du champ électrique et un calcul qui en est indépendant. Les raies Hélium
v présentent, elles, des différences modestes, mais qui changent avec la densité (fi-
gures 5.22, 5.22et 5.22). Ainsi, entre N, = 102%¢— /cm? et 3.2102%¢— /cm? ’ensemble
de la raie dont les taux collisionnels sont fonction du microchamp est décalée vers les
énergies plus basses en regard de celle dont les taux sont indépendants du champ (de
1.5 1073 Ryd), tandis qu’a 10%'e — /cm?, un rétrécissement (de 4%) de la raie, dont
les taux collisionnels sont fonction du champ, s’effectue exclusivement aux énergies
les plus élevées.

Pour interpréter ces résultats nous présentons les taux collisionnels des transi-
tions depuis le fondamental. Les regles de sélection des transitions dipolaires électri-
ques sont plus contraignantes pour les héliumoides et réduisent le nombre de taux a
étudier :

- AS=0

~ AL =0,%£1, L; = Ly = 0 étant interdit

- AJ =0,%1, J; = J; = 0 étant interdit

- AM =0,+1.

Le niveau fondamental étant 'Sy, seuls les niveaux mélangés avec 1’état ' P par le
champ électrique seront présentés.

Pour la raie Hélium «, les taux collisionnels sont indépendants du champ (figure
5.12) et les profils ne se distinguent pas.

Les taux collisionnels de la raie Hélium 3 (figure 5.13) varient plus notablement,
en particulier pour la transition vers le niveau issu de 'Ds, |[M| = 1. Néanmoins,
ces taux ne deviennent significatifs qu’a “haute densité”, au dela de 10%%2e — /em?3,
lorsque le milieu est totalement a 'ETL.

Le profil de la raie Hélium ~ est régi par les taux collisionnels les plus forts (figure
5.14) qui sont, aux densités que nous avons déjd mentionnées, 'P1 |[M| = 0,1, ' F3
|M| = 1,1Dq |M| = 1. Nous oublions volontairement 1Sy dont 1’énergie est beaucoup
plus faible et qui n’interagit pas avec la raie centrale aux densités inférieures & N, =
3.210%'e— /em3. Les énergies de ces états se répartissent selon : 1 p, > FEip, > Eip,,
par conséquent, ’énergie des niveaux 'P; |[M| = 0,1 croit avec le champ électrique
et la densité, celle de ' F3 | M| = 1 reste quasi-stable et celle de ! Dy | M| = 1 décroit.
Comme les taux collisionnels de ! P; décroissent et ceux de ! Dy |[M| = 1 augmentent,
les populations d’énergie la plus élevée se réduisent, a I'inverse de celles d’énergie la
plus faible. A 10%'e — /em3, la décroissance forte des niveaux 'P; d’énergie la plus
élevée est essentiellement compensée par I'augmentation des taux collisionnels de
LFy [M| = 1, d’énergie stable en dépit de la variation de densité. La modification de
profil se fait donc essentiellement par une réduction des populations d’énergies les

plus élevées.
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5.6 Conclusion

Nous avons déterminé dans ce chapitre quelques formules simples qui permettent
d’évaluer les taux collisionnels en fonction de la densité, de fagon rapide, sans avoir
a calculer de forces de collision directement pour chaque valeur du champ électrique.
Pour limiter les temps de calcul, nous avons choisi de ne pas mélanger de niveaux de
couches différentes. En conséquence, il n’y a pas de modification des taux globaux
entre deux couches.

Les modifications des taux collisionnels s’effectuent pour des densités d’autant
plus faibles que les niveaux qui se mélangent ont des énergies proches, ce qui explique
que les transitions vers des couches de n élevé ont des taux collisionnels modifiés pour
des densités tres faibles.

Les transitions initialement interdites et que le champ rend partiellement auto-
risées par mélange des différents niveaux ont leurs taux collisionnels tres fortement
majorés, parfois de plusieurs ordres de grandeur. A l'inverse, les transitions auto-
risées a champ nul dont les niveaux se mélangent avec le champ voient généralement
leurs taux collisionnels étre minorés. Globalement, le champ électrique a tendance a
rapprocher les différents taux collisionnels.

Nous avons réalisé un code Collisionnel Radiatif simple, intégrant les excitations
et désexcitations collisionnelles modifiées par le microchamp ainsi que les transitions
radiatives dipolaires électriques. En supposant le milieu en équilibre stationnaire, les
raies Ly o, He « et He 3 restent inchangées lorsque les taux collisionnels dépendent
du champ électrique, tandis que les raies Ly [ et surtout Ly « s’élargissent légerement
vers N, = 10?0 — 10%'e — /em3, se décalant vers les énergies plus élevées. La raie He
~ se resserre, elle, faiblement, pour les mémes densités, se décalant vers les énergies
plus réduites.

Néanmoins, ces modifications restent tres faibles, quelques pourcent tout au plus
et a des densités moyennes. A plus haute densité, 'Equilibre Thermodynamique

Local est systématiquement atteint.
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F1G. 5.1 — Forces de collision pour les transitions entre 1s 251/2 et les états issus de 2s et 2p J=1/2-
, J=1/24 et J=3/2, |M| = 1/2, en fonction de I’énergie. Les différentes courbes correspondent &
différentes valeurs du champ électrique : 0, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64 et 1.28 u.a. Les courbes
1s-J=1/2+ (pointillé) et 1s-J=1/2- (trait continu épais) se superposent & champ électrique nul.
L’amplitude générale des courbes 1s-J=1/2+ croit lorsque le champ augmente (jusqu’a étre compa-
rable & celle d’une transition 1s-2p) tandis que celle des courbes 1s-J=1/2- décroit tres légérement
jusqu’a 0.16 u.a. puis revient vers sa valeur initiale. L’amplitude générale des courbes 1s-J=3/2 (en
trait continu fin) décroit inversement de 1s-J=1/2+ lorsque le champ augmente et se stabilise vers
1 u.a.(Al hydrogénoide)
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F1G. 5.2 — Coefficients de variation des taux collisionnels pour les transitions entre les couches
n=1 et n=2 (|]M| = 0.5) en fonction de la densité électronique (1s-J=1/2+ en trait continu fin, 1s-
J=1/2- en pointillés et 1s-J=3/2 en trait épais). Les différentes courbes correspondent a différentes
valeurs de la température (7. = T;) : 97.5, 134.8, 209.2, 321., 395.5, 507.2, 618.9 et 693.4 eV.(Al
hydrogénoide)
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F1G. 5.3 — Taux collisionnels pour les transitions entre les couches n=1 et n=2 (|M| = 0.5) en
fonction de la densité électronique (1s-J=1/2+ en trait fin, 1s-J=1/2- en pointillé et 1s-J=3/2 en
trait épais). Les différentes courbes correspondent & différentes valeurs de la température (T. = T5) :
de bas en haut 321., 395.5, 507.2, 618.9 et 697.4 ¢V.(Al hydrogénoide)
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F1G. 5.4 — Taux collisionnels pour les transitions entre les couches n=1 et n=3 (|M| = 0.5) en
labsence de champ électrique en fonction de la température T. = T;. La transition 1s-J=1/2 est
en pointillé fin, 1s-J=3/2 en pointillé épais et 1s-J=5/2 en trait continu trés épais (1s-J=1/2+ et
1s-J=1/2- sont confondus ainsi que 1s-J=3/2+ et 1s-J=3/2-). Les courbes 1s-3s en trait continu fin

et 1s-3p en trait continu épais sont présentées pour comparaison.(Al hydrogénoide)
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F1G. 5.5 — Variation des taux collisionnels pour les transitions entre les couches n=1 et n=3
(|M] = 1/2)(sauf 1s - n=3 J=5/2) en fonction de la densité électronique par rapport & leur valeur
pour un ion isolé. La transition 1s-J=3/2+ est en trait continu fin, 1s-J=3/2- en pointillé fin, 1s-
J=1/2+ en trait continu épais et 1s-J=1/2- en pointillé épais. Les différentes courbes correspondent
a différentes valeurs de la température (T. = T;) : 97.5, 134.8, 209.2, 321., 395.5, 507.2, 618.9 et 697.4

eV : plus la température est élevée, plus la courbe varie pour des densités faibles.(Al hydrogénoide)
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F1G. 5.6 — Méme légende pour les transitions entre les couches n=1 et n=3 J=5/2 (|]M| = 1/2).
La courbe en trait épais correspond & un calcul exact mélangeant les couches n=3 et n=4 avec le
champ électrique. Les autres courbes ne mélangent que des états de la couche n=3. La courbe en
trait fin correspond & une moyenne sur le champ ou chaque énergie de seuil dépend du microchamp
(formule 5.3). La courbe en pointillé suppose que I’énergie du seuil de la transition est indépendante

du microchamp (formule 5.4). (Al hydrogénoide)
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FI1G. 5.7 — Taux collisionnels moyennés en champ électrique pour les transitions entre les couches
n=1 et n=2 (|M| = 1/2) en fonction de la densité électronique. 1s->Ps > est en trait continu fin,

1s-J=1/2+ en pointillé et 1s-J=1/2- en trait continu épais. (Al hydrogénoide)
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F1G. 5.8 — Taux collisionnels moyennés en champ électrique pour les transitions entre les couches
n=1 et n=3 (|M| = 1/2) en fonction de la densité électronique. 1s-J=1/2- est en trait continu
fin, 1s-J=1/2+ en pointillé fin, 1s-J=3/2- en trait continu épais, 1s-J=3/2+ en pointillé épais et
1s->D5 5 en trait continu trés épais. (Al hydrogénoide)
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F1G. 5.9 — Taux collisionnels moyennés en champ électrique pour les transitions entre les couches
n=1 et n=3 (|M]| = 3/2) en fonction de la densité électronique. 1s-J=3/2- est en trait continu

fin, 1s-J=3/2+ en pointillé fin et 1s-*Ds 5 en trait continu épais. (Al hydrogénoide)
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F1G. 5.10 — Taux collisionnels moyennés en champ électrique pour les transitions entre les couches
n=1 et n=4 (|M| = 1/2) en fonction de la densité électronique. 1s-J=1/2- est en trait continu
fin, 1s-J=1/24+ en pointillé fin, 1s-J=3/2- en trait continu épais, 1s-J=3/2+ en pointillé épais, 1s-
J=5/2- en trait continu trés épais, 1s-J=5/2+ en pointillé épais espacé et 1s->Fy /2 en trait continu
fin (valeur la plus faible & basse densité). (Al hydrogénoide)
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FI1G. 5.11 — Taux collisionnels moyennés en champ électrique pour les transitions entre les couches
n=1 et n=4 (|M| = 3/2) en fonction de la densité électronique. 1s-J=3/2- est en trait continu
fin, 1s-J=3/2+ en pointillé fin, 1s-J=5/2- en trait continu épais, 1s-J=5/2+ en pointillé épais et

1s—2F7/2 en trait continu treés épais. (Al hydrogénoide)
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FI1G. 5.12 — Taux collisionnels moyennés en champ électrique pour les transitions entre les couches
n=1 et n=2 en fonction de la densité électronique. 1s* — 1s21* P;|M| = 0 est en trait continu fin
et 15 — 1521'So| M| = 0 en pointillé fin. (Al héliumoide)
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F1G. 5.13 — Taux collisionnels moyennés en champ électrique pour les transitions entre les couches
n=1 et n=3 en fonction de la densité électronique. 15> — 1s3I' P{|[M| = 1 est en trait continu
fin, 1s®> — 1s3I'P|M| = 0 en pointillé fin, 1s*> — 1s31*Sp|M| = 0 est en trait continu épais,
1s? — 1s31'Do|M| = 1 en pointillé épais et 1s® — 1531 Do|M| = 0 en trait continu tres épais.
(Al héliumoide)

16—14 - . -."_.-.‘.». e . ]
......................... n:41P1M =1 — i

6 _ -0 ... ...
cm /‘ﬁe-lf)E ﬁ:i 115(1)% :8_7E
r n=4 'Dy|M|=1"----- .

i n=4 1 Do| M| =0 —— 1

I n=4 'F5|M|=1- -

n=4 'F3|M| =0 ——

le-16 =
...|...|...|...|...|...|...:

le+16  1le+17 le+18 1le+19 1le+20 1le+21 le+422 le+23
Densité (cm™3)

F1G. 5.14 — Taux collisionnels moyennés en champ électrique pour les transitions entre les
couches n=1 et n=4 en fonction de la densité électronique. 1s* — 154l Pi|M| = 1 est en trait
continu fin, 1s® — 1s4l' P{|M| = 0 en pointillé fin, 1s*> — 1s4l'So|M| = 0 est en trait continu
épais, 1s* — 1s4l' D2| M| = 1 en pointillé épais, 15> — 1s4l' D2|M| = 0 en trait continu trés épais,
15% — 1s4l' F3| M| = 1 en pointillé épais espacé et 1s* — 1s4l' F3| M| = 0 en trait continu fin (valeur

la plus faible & basse densité).(Al héliumoide)
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Raie Lyman « de Al XIII, N, = 10%e¢~/em3
1 T

" HETL, Q(§) ——
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HETL, 2 = cte
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Energie (Ryd)

FI1G. 5.15 — Profil de la raie Lyman « de I’Aluminium hydrogénoide a la température T, =
T; = 36.76 Ryd = 500eV et & la densité électronique N, = 10%%e — /cm37 Z* = 12. En trait continu
fin, le profil collisionnel radiatif dont tous les taux sont calculés en fonction du champ électrique ; en
pointillé épais, le profil collisionnel radiatif dont les taux collisionnels sont indépendants du champ
électrique, en pointillé fin, le profil obtenu en supposant le milieu en Equilibre Thermodynamique

Local. Les émissivités sont en unités arbitraires et en échelle logarithmique.

Raie Lyman « de Al XITI, N, = 3.2 10*2¢~ /em?

1: ]
F ' ! ! ' " HETL, Q(§) —— ]
r ETL - 1
i HETL, Q2 = cte T
0.1

0.01

0.001 | | | | | | | |
126.6 126.7 126.8 126.9 127 127.1 1272 1273 1274 1275

Energie (Ryd)

F1G. 5.16 — Méme légende que pour la figure précédente, pour une densité électronique N, =
3.210%%e — Jem?®.
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F1G. 5.17 — Profil de la raie Lyman 8 de I’Aluminium hydrogénoide & la température T, =
T, = 36.76 Ryd = 500eV et & la densité électronique N, = 10*°¢ — /cm®, Z* = 12. En trait continu

fin, le profil collisionnel radiatif dont tous les taux sont calculés en fonction du champ électrique ; en

pointillé épais, le profil collisionnel radiatif dont les taux collisionnels sont indépendants du champ

électrique, en pointillé fin, le profil obtenu en supposant le milieu en Equilibre Thermodynamique

Local. Les émissivités sont en unités arbitraires.
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F1G. 5.18 — Méme légende que pour la figure précédente, pour une densité électronique N, =

10*te — /em?®.
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Raie Lyman 3 de Al XIII, N, = 3.210%'e~ /em?

1
| | | HETL, Q(§) ——
09 [ ETL ]
0.8 : HETL, 2 = cte

0.7
0.6
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F1G. 5.19 — Méme légende que pour la figure précédente, pour une densité électronique N, =
3.210% e — /em?.

Raie Lyman v de Al XIII, N, = 102%~ /em?
1 T

| HETL, Q(§) ——
ETL -
0.8 / HETL, 2 = cte
0.6
0.4
0.2
0 ‘ | | T
158.7 158.75 158.8 158.85 158.9

Energie (Ryd)

F1G. 5.20 — Profil de la raie Lyman v de I’Aluminium hydrogénoide 4 la température T. =
T; = 36.76 Ryd = 500eV et & la densité électronique N, = 10*°¢ — /em®, Z* = 12. En trait continu
fin, le profil collisionnel radiatif dont tous les taux sont calculés en fonction du champ électrique ; en
pointillé épais, le profil collisionnel radiatif dont les taux collisionnels sont indépendants du champ
électrique, en pointillé fin, le profil obtenu en supposant le milieu en Equilibre Thermodynamique

Local. Les émissivités sont en unités arbitraires.
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Raie Lyman vy de Al XIII, N, = 3.210%%~ /cm3

1 =
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F1G. 5.21 — Méme légende que pour la figure précédente, pour une densité électronique N. =
3.210%% — Jem?®.

Raie Lyman v de Al XIII, N, = 3.210%'e™/cm3

1
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F1G. 5.22 — Méme légende que pour la figure précédente, pour une densité électronique N, =
3.210%e — Jem®.
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Raie Helium a de Al XII, N, = 3.210%%¢~ /em?

HETL, Q(€) —— '

r ETL - b

- HETL, 2 = cte .

0.1 .
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0.001 E
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F1G. 5.23 — Profil de la raie Hélium a de I’Aluminium héliumoide 3 la température T, = T; =
36.76 Ryd = 500eV et & la densité électronique N, = 3.2 10%%e¢ — /cm3, Z* = 12. En trait continu
fin, le profil collisionnel radiatif dont tous les taux sont calculés en fonction du champ électrique ; en
pointillé épais, le profil collisionnel radiatif dont les taux collisionnels sont indépendants du champ
électrique, en pointillé fin, le profil obtenu en supposant le milieu en Equilibre Thermodynamique

Local. Les émissivités sont en unités arbitraires et en échelle logarithmique.

Raie Helium « de Al XII, N, = 3.210%2¢~ /em?
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F1G. 5.24 — Méme légende que pour la figure précédente, pour une densité électronique N, =
3.210%%e — Jem?®.
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Raie Helium 3 de Al XII, N, = 10%%¢~ /em?

1 I I I I T
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Fi1G. 5.25 — Profil de la raie Hélium 3 de ’Aluminium héliumoide & la température T, = T; =
36.76 Ryd = 500eV et & la densité électronique N. = 10*°e — /em®, Z* = 12. En trait continu fin,
le profil collisionnel radiatif dont tous les taux sont calculés en fonction du champ électrique; en
pointillé épais, le profil collisionnel radiatif dont les taux collisionnels sont indépendants du champ
électrique, en pointillé fin, le profil obtenu en supposant le milieu en Equilibre Thermodynamique

Local. Les émissivités sont en unités arbitraires.
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F1G. 5.26 — Méme légende que pour la figure précédente, pour une densité électronique N, =

10*te — /em?®.
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Raie Helium 3 de Al XII,

N, = 10%%¢~ Jem3
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F1G. 5.27 — Méme légende que pour la figure précédente, pour une densité électronique N, =

10*2e — /em?®.

Raie Helium +y de Al XII, N, = 10%%¢ — /em?
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F1G. 5.28 — Profil de la raie Hélium v de I’Aluminium héliumoide & la température T, = T; =
36.76 Ryd = 500eV et & la densité électronique N, = 10?%¢ — /em?®, Z* = 12. En trait continu fin,

le profil collisionnel radiatif dont tous les taux sont calculés en fonction du champ électrique; en

pointillé épais, le profil collisionnel radiatif dont les taux collisionnels sont indépendants du champ

électrique, en pointillé fin, le profil obtenu en supposant le milieu en Equilibre Thermodynamique

Local. Les émissivités sont en unités arbitraires.
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Raie Helium v de Al XII, N, = 10*'e™/em3
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F1G. 5.29 — Méme légende que pour la figure précédente, pour une densité électronique N, =

10%*e — /em?®.

Raie Helium ~y de Al XII, N, = 3.210%'e™ /em?
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F1G. 5.30 — Méme légende que pour la figure précédente, pour une densité électronique N, =

3.210%e — /cmg. Les émissivités sont en échelle logarithmique.
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Conclusion

De nombreuses données collisionnelles et radiatives sont nécessaires pour modéli-
ser I’émission X des plasmas hors ETL, qu’ils soient astrophysiques ou de laboratoi-
re. Ces derniers atteignent fréquemment des densités élevées ot les sections efficaces
classiques, calculées pour de faibles densités, s’averent inaptes & reproduire précisé-
ment 'ionisation et le profil des raies spectrales obtenues expérimentalement. Notre
étude s’est attachée a observer 'influence de la densité et de la température sur les
excitations collisionnelles électron-ion, par l'intermédiaire du microchamp ionique,
sujet qui n’avait été qu’effleuré, a deux reprises, jusqu’ici.

Nous avons, dans un premier temps, rappelé différentes théories de diffusion
inélastique et de microchamp avant d’établir les équations des sections efficaces d’ex-
citation d’un ion perturbé par le champ électrique. La méthode Distorted-Waves
choisie offre un bon compromis entre temps de calcul et précision en vue de la
réalisation d’une étude numérique. Mais elle ne permet pas d’accéder aux résonances
(proches du seuil), qui sont essentiellement le fait de captures diélectroniques peu-
plant des ions doublement excités. L’effet des résonnances reste néanmoins limité
lorsque 'on integre toute une section efficace pour obtenir un taux. Nous avons
laissé 1’électron libre indifférent au champ électrique perturbateur, ce qui est proba-
blement inadapté & proximité du seuil ; la trajectoire de 1’électron le moins véloce est
fortement perturbée par le champ. De plus, dans ces conditions, le temps de collision
s’allonge, devenant comparable a celui des fluctuations thermiques des ions pertur-
bateurs, mettant la théorie en défaut, comme elle peut I’étre dans la description du

centre des raies dans les calculs d’élargissement par effet Stark.

Notre seconde étape a consisté a réaliser un code numérique appliquant la théorie
précédente a des ions en couplage LSJM pur. Cette limite est imposée par le code
de structure atomique et non par celui d’excitation, qui peut étre adapté natu-
rellement a des états multiconfigurationnels. Les taux collisionnels en ’absence de
champ électrique sont comparables a ceux de la littérature, tandis que la seule étude
existante en présence de microchamp présente les mémes tendances, ce qui valide

simultanément notre approche théorique ainsi que le code de calcul.



132 CONCLUSION

Enfin, dans un troisieme temps, nous avons mis en oeuvre une méthode per-
mettant de calculer un tres grand nombre de ces sections efficaces en présence de
champ, dans un temps restreint, tout en conservant une tres bonne précision pour
les taux collisionnels. Ce support de calcul nous a permis de réaliser une ébauche de
code Collisionnel-Radiatif incluant les excitations et désexcitations collisionnelles,
ainsi que les transitions radiatives dipolaires électriques pour la totalité des niveaux
jusqu’a n=4 de I’Aluminium Hydrogénoide et Héliumoide. Le programme géneére les
spectres des raies Ly «, (3, v et He «, 3 et v a ’équilibre stationnaire.

Nous disposons désormais d’une base complete de forces de collision en présence
de champ électrique et donc de taux collisionnels dépendant de la densité pour toutes
les transitions précitées. Les transitions interdites, dont les niveaux se mélangent, du
fait du champ électrique, avec des niveaux de transitions autorisées, sont accrues tres
fortement et deviennent de l'ordre des transitions les plus favorables. Ces dernieres
voient leur intensité décroitre pour respecter la conservation des taux globaux entre
les groupes de niveaux couplés par I'effet Stark. Ces changements sont beaucoup plus
importants, différents et adviennent pour des densités plus faibles, que ceux induits
par I’écrantage électronique, responsable d’une réduction systématique des forces de
collision, d’autant plus forte que 'interaction est a longue portée. De méme que pour
la recombinaison diélectronique, ces variations sont d’autant plus conséquentes que
n et [ sont élevés pour les ions hydrogénoides.

Néanmoins, ces effets sont peu visibles sur les profils de raies, dans notre ap-
proche, les densités élevées établissant rapidement 1’équilibre thermodynamique lo-
cal. L’élargissement ou le décalage des raies reste tres modéré, a proximité des den-
sités de I’équilibre coronal mais augmente d’autant plus que la couche observée a un
nombre quantique principal élevé. A haute densité, nous atteignons systématiquement
I’équilibre thermodynamique local a I’'intérieur de la raie étudiée, gage de la cohérence
de nos sections efficaces.

Nous avons restreint la taille mémoire nécessaire et nos temps de calcul des sec-
tions efficaces, en limitant le couplage par effet Stark aux seuls niveaux appartenant
a la méme couche n. Cette contrainte impose que le taux collisionnel global entre
deux couches reste indépendant de la densité et ne permet pas de rendre compte des
modifications du rapport des hauteurs des différentes raies lorsque le microchamp
augmente. Or les couches se mélangent d’autant plus que n est élevé et 'on peut
légitimement attendre d’une nouvelle étude adaptée qu’elle mene a un transfert entre
leurs populations.

Un tel travail, comportant un grand nombre de couches et de niveaux est hors
de propos en couplage LSJM et n’apporte aucune précision supplémentaire dans le

calcul des profils de raies au dessus de n=2, en raison de I’élargissement électronique.
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Le passage a un couplage LSM Mg ou quasi hydrogénoide (a I'image du travail de
Gilles et Peyrusse [31]) nous émancipera des contraintes numériques et permettra
d’évaluer la modification des taux globaux entre couches. Notons que nous avons
d’ores et déja développé les calculs théoriques nécessaires a cette étude pour le cas
hydrogénoide (formules 4.55 & 4.58).

Ces quelques remarques concernent les améliorations aisément envisageables sur
notre code. Nous pourrions y ajouter 'utilisation d’un meilleur modele d’élargissement
électronique ([31] par exemple), la prise en compte d’autres transitions collisionnelles
ou radiatives ainsi que 1’étude d’atomes plus complexes, lithiumoides ou néonoides,
fréquemment rencontrés a des densités relativement élevées.

De facon plus générale, de nombreux sujets de recherche restent a aborder
pour mieux rendre compte des changements de hauteurs de raies. En particulier
I'intégration des phénomenes d’écrantage de 1’électron libre dans le calcul des exci-
tations collisionnelles en présence de microchamp ainsi que ’extrapolation de cette
étude aux ionisations collisionnelles pour obtenir a terme un code collisionnel-radiatif

dont tous les taux dépendent de la densité et de la température.
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Annexe A

Niveaux de I'Aluminium

Hydrogénoide

Nous présentons dans cette annexe les différents niveaux de I’Aluminium hy-
drogénoide pris en compte dans nos calculs. Nous indiquons, en outre, leur énergie,
calculée a I’aide de I’équation de Dirac-Pauli, ’énergie de leur transition radiative
vers le fondamental ainsi que le sous-groupe de niveaux employé pour leur diagona-

lisation en présence de champ électrique.

N°¢ Couche Configuration |M| N groupe Energie AE/

n= Stark (Ryd) fondamental
1 4 2Frp  7/2 1 -10.5640 158.8162
2 4 *Frj 5/2 2 -10.5640 158.8162
3 4 ’F5;5  5/2 2 -10.5660 158.8142
4 4 *Dsjp 5/2 2 -10.5660 158.8142
5 3 ’D5jo 5/2 3 -18.7824 150.5978
6 4 2Frpy  3/2 4 -10.5640 158.8162
7 4 ’F5;p  3/2 4 -10.5660 158.8142
8 4 ’Ds/p  3/2 4 -10.5660 158.8142
9 4 ’D3/p  3/2 4 -10.5699 158.8103
10 4 2Py 3/2 4 -10.5699 158.8103
11 3 ’Ds/p  3/2 5 -18.7824 150.5978
12 3 ’D3js  3/2 5 -18.7918 150.5884
13 3 *P3jp  3/2 5 -18.7918 150.5884
14 2 ’Pyp  3/2 6 -42.2738 127.1064
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N° Couche Configuration |M| N groupe  Energie AE/
n= Stark (Ryd) fondamental
15 4 2Frp 1/2 7 -10.5640 158.8162
16 4 ’Fsp  1/2 7 -10.5660 158.8142
17 4 *Ds;p  1/2 7 -10.5660 158.8142
18 4 *Dsjp  1/2 7 -10.5699 158.8103
19 4 Py 1/2 7 -10.5699 158.8103
20 4 2Py 1/2 7 -10.5818 158.7984
21 4 2S12 1/2 7 -10.5818 158.7984
22 3 Ds;n  1/2 8 -18.7824 150.5978
23 3 *Dsjp  1/2 8 -18.7918 150.5884
24 3 Py 1/2 8 -18.7918 150.5884
25 3 2Py 1/2 8  -18.8200 150.5602
26 3 2S12 1/2 8  -18.8200 150.5602
27 2 2Py 1/2 9  -42.2738 127.1064
28 2 2Py 1/2 9  -42.3688 127.0114
29 2 2512 1/2 9  -42.3688 127.0114
30 1 2S12 1/2 10 -169.3802



Annexe B

Niveaux de I’Aluminium

Héliumoide

De méme que dans ’annexe précédente, nous présentons les différents niveaux
de I’Aluminium héliumoide pris en compte dans nos calculs. Leur énergie a été
aimablement calculée par Jean Bruneau sur son code MCDF (Multi Configuration
Dirac Fock).

N° Couche Configuration |M| N groupe  Energie AE/

n= Stark (Ryd) fondamental
1 1541 3Fy 4 1 -178.3542 144.1021
2 1s41 1Ry 3 2 -178.3540 144.1024
3 1541 3Fy 3 3 -178.3542 144.1021
4 1s4l 30y 3 3 -178.3556 144.1007
5 1541 3Ds 3 3 -178.3589 144.0974
6 1531 3Ds 3 4 -185.3626 137.0937
7 1541 LFy 2 5 -178.3540 144.1024
8 1541 3Fy 2 6 -178.3542 144.1021
9 1s41 1Dy 2 5 -178.3547 144.1016
10 1s4l 3Fy 2 6 -178.3554 144.1009
11 1s4l 30y 2 6 -178.3556 144.1007
12 1s41 3Ds 2 6 -178.3589 144.0974
13 1s4l 3Dy 2 6 -178.3609 144.0954
14 1s41 3p, 2 6 -178.4194 144.0369



138 NIVEAUX DE L’ALUMINIUM HELIUMOIDE

N° Couche Configuration |M| N groupe  Energie AE/

n= Stark (Ryd) fondamental
15 1s31 1D, 2 7 -185.3549 137.1015
16 1s31 3Ds 2 8 -185.3626 137.0937
17 1531 3Dy 2 8 -185.3676 137.0887
18 1s31 3P, 2 8 -185.5100 136.9464
19 1s21 3p, 2 9 -205.8844 116.5720
20 1s4l 1p 1 10 -178.3377 144.1186
21 1s41 1Ry 1 10 -178.3540 144.1024
22 1s41 3Fy 1 11 -178.3542 144.1021
23 1s41 1Dy 1 10 -178.3547 144.1016
24 1s41 3F, 1 11 -178.3554 144.1009
25 1s4l 3py 1 11 -178.3556 144.1007
26 1s41 3Ds 1 11 -178.3589 144.0974
27 1s4l 3Dy 1 11 -178.3609 144.0954
28 1s41 3Dy 1 11 -178.3612 144.0951
29 1s41 3p, 1 11 -178.4194 144.0369
30 1s41 3P 1 11 -178.4253 144.0311
31 1s41 39, 1 11 -178.5351 143.9212
32 1s31 1p 1 12 -185.3124 137.1439
33 1531 1D, 1 12 -185.3549 137.1015
34 1s31 3Ds 1 13 -185.3626 137.0937
35 1s31 3Dy 1 13 -185.3676 137.0887
36 1s31 3D, 1 13 -185.3681 137.0882
37 1s31 3P, 1 13 -185.5100 136.9464
38 1531 3P 1 13 -185.5237 136.9326
39 1s31 39, 1 13 -185.7912 136.6651
40 1s21 1p 1 14 -205.1693 117.2870
41 1s21 3p, 1 15 -205.8844 116.5720
42 1s21 3P, 1 15 -205.9309 116.5254
43 1521 38, 1 15 -206.9047 115.5516
44 1s41 1p 0 16 -178.3377 144.1186
45 1s41 LFy 0 16 -178.3540 144.1024
46 1s41 3F, 0 17 -178.3542 144.1021
47 1s41 1D, 0 16 -178.3547 144.1016
48 1s4l 3F, 0 17 -178.3554 144.1009
49 1s4l 30y 0 18 -178.3556 144.1007
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N° Couche Configuration |M| N groupe  Energie AE/

n= Stark (Ryd) fondamental
50 1s41 3Ds 0 17 -178.3589 144.0974
51 1s41 3Dy 0 18 -178.3609 144.0954
52 1s41 3Dy 0 17 -178.3612 144.0951
53 1s4l 1S, 0 16 -178.4176 144.0387
54 1541 3p, 0 17 -178.4194 144.0369
55 1s41 3p 0 18 -178.4253 144.0311
56 1s41 3P, 0 17 -178.4268 144.0295
57 1s41 39, 0 17 -178.5351 143.9212
58 1s31 1p 0 19 -185.3124 137.1439
59 1s31 1D, 0 19 -185.3549 137.1015
60 1s31 3Ds 0 20 -185.3626 137.0937
61 1531 3Dy 0 21 -185.3676 137.0887
62 1s31 3D, 0 20 -185.3681 137.0882
63 1s31 1S, 0 19 -185.5051 136.9512
64 1s31 3p, 0 20 -185.5100 136.9464
65 1s31 3P 0 21 -185.5237 136.9326
66 1531 3p, 0 20 -185.5273 136.9290
67 1s31 39, 0 20 -185.7912 136.6651
68 1521 p 0 22 -205.1693 117.2870
69 1521 15, 0 22 -205.8374 116.6189
70 1s21 3P, 0 23 -205.8844 116.5720
71 1s21 3p 0 24 -205.9309 116.5254
72 1521 3P, 0 23 -205.9422 116.5141
73 1521 38, 0 23 -206.9047 115.5516
74 152 1S, 0 25 -322.4563
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Annexe C

Fonctions d’onde libres

La détermination numérique des fonctions d’onde du continu est fondée sur
le méme principe que celle des fonctions d’onde liées avec quelques spécificités
supplémentaires dues a leur caractere oscillatoire et & leur normalisation.

Nous avons développé les aspects théoriques de leur calcul au paragraphe 4.4.1
, retenons leur amplitude a l'infini qui vaut ! ainsi que I’équation différentielle

4.25 qui les décrit :

El/4

2 I(+1)

3 HE-U@|EEr) =0 (C.1)

ou E est I’énergie cinétique (en Ryd) de I’électron libre et U(r) le potentiel créé par
Iion cible.

En raison du comportement exponentiel initial (similaire & celui des électrons liés)
et ultérieurement oscillant, la résolution de cette équation nécessite deux maillages
successifs : exponentiel puis arithmétique.

L’équation est du type y” = f(r)y qui peut étre résolue a laide de la méthode

d’intégration de Numerov [19] :
1—ih2f =1 1+3h2f — 1—ih2f (C.2)
Yn+1 12 nt+l | = 12 n | Yn 12 n—1 ] Yn—1 .

avec une tres bonne précision de I'ordre de h% ot1 h est le pas d’intégration.

En pas exponentiel, cette équation s’écrit :

u'(z) = [(1 +0.5)% + (V(r) — E)r?|u(x) (C.3)

avec u(x) = ,7=¢e" h=Axzetdonc: f, = (I+0.5)*+ (U(r,) — E)rz.

n

En pas arithmétique :

(1+1)
712

P'(r) + (E —U@r) - > P(r) =0 (C.4)
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1(1+1)

2
r?’l/
Il faut au minimum cing points par arche lors de I'intégration de la partie oscil-

on h=Aret f,=U(r,) — E+

lante, de fagon a conserver une précison satisfaisante. Nous avons calculé les forces
de collision pour des énergies atteignant 20 fois ’énergie du seuil de 'excitation.
Dans ces conditions, a I’aide de I’équation précédente, le pas minimum d’intégration
arithmétique vaut :

T > T
5 V 20Eseuil ™25 \% Eionisation

ot Eionisation €st I'énergie d’ionisation du fondamental.

Armin =

(C.5)

Le changement du pas exponentiel au pas arithmétique s’effectue lorsque r(n4,) —

r(Ngr — 1) & Arpin, c’est a dire pour le pas :

nar 2+ hieln (W) (C.6)

ou h. est le pas exponentiel fixé par le code de structure atomique et h, & Ary, le
pas arithmétique.

Une détermination précise des fonctions d’onde a l'origine (les deux premiers
pas) conditionne leur précision ultérieure. Nous avons repris la méthode utilisée
pour le calcul des fonctions d’onde liées. D’apres I’équation C.3 le comportement

1+1/2

initial de la fonction u est du type u(x) —— ot . Nous pouvons donc effectuer
r—

son développement limité :
u(fﬂ) = [po + agr + a37“2 + a4r3 + O(T3)]T‘l+1/2 (C7)

ainsi que celui du potentiel :

U(r) = —g + p1 + por + p3r® + par® + O(r?). (C.8)
Le développe%lent de I’équation C.3 permet de déterminer ces coefficients :
—4pPo
=T
g = (p1 — E)po — 2Zay
41+ 6
P 73 +(p1 — E)as — 2Zas
60+ 12
B - (U(Tg)—i—?Z/Tg)—(U(Tl)—i-QZ/T'l)TQ
ne T =T
B - (U(?“l)—QZ/Tl)—(U(Tg)—i—QZ/T'Q)
p2 =~ F—

p3 et py n’intervenant pas.
De méme que pour lorigine, la détermination précise de 'amplitude a 'infini
conditionne beaucoup la précision des calculs. La fonction d’onde peut s’écrire pour

un grand rayon :
A(r, E)

Pp(r) ~ F1/4

cos(VE 7+ 6) (C.9)
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ou ¢ est un terme de déphasage et A(r, E) est 'amplitude normalisée a 'infini de la
fonction d’onde dont Cowan [19] donne I’expression assymptotique :

Z. {1_ 52, z<z+1)] |

2Er 4Er  2Z.r

A(r,E)~1— (C.10)

Z,. est la charge ionique vue par I’électron libre. Cette expression assymptotique est

vérifiée au dela d’un rayon minimum que Cowan caractérise par :

10Z. 51(1+1) extension maxi- ) . (C.11)

To > max y,————,Tc =
( E Ze mum des e~ liés
Dans ces conditions, numériquement, la fonction Pg(r) normalisée s’obtient suivant :

A(T’O E) Pgon normalisée(r)
E1/4 Amplitude(PEon normalisée (TO)) ’

Pr(r) = (C.12)

I'amplitude de Ppon normalisée (1) gtant déterminée en interpolant deux points proches

de 7 : y1 et y2 obtenus numériquement, par une sinusoide de fréquence :

I(l+1
freq:\/E—U(r)— (:; ) (C.13)
L’amplitude vaut alors :
Amplitud (Pnon normalisée( )) _ 2 + Y1 cos(freq htl) — Y2 2 (C 14)
prneey )= sin(freq hq) '

ou h, est le pas arithmétique de l'intégration.
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Annexe D

Eléments de matrice
coulombiens : excitation d’ions

complexes

Ces pages sont tres largement inspirées de Cowan [19] (Chapitre 13), les éléments
de matrice coulombiens caractérisistiques des excitations collisionnelles électron ion
étant les mémes que les éléments coulombiens employés pour la détermination de la
structure atomique dans une approche multiconfigurationnelle.

Nous rappelons la structure de couplage employée dans le reste de cet ouvrage :
{ [(l}”lalLlSl,SlGl, 1120205211252) /8262, s l;UququSq] Squ} 3quq.

Sous peine de rentrer dans un catalogue fort long et fastidieux de toutes les
situations, il faut, ici, se restreindre au seul cas des excitations collisionnelles.

Les électrons liés sont distribués dans les sous-couches 1 a ¢ — 2 et les électrons
libres attachés a ¢ — 1 et ¢. L’état initial correspond a un électron libre dans la
sous-couche ¢ et aucun dans la ¢ — 1€, I’état final inverse cette situation.

Deux classes traitées par Cowan sont a extraire, les 6 et 10 (Chapitre 13-10, Fig 13-5
et formules 13-83, 13-84 et 13-91, 13-92).

Dans le cas traité, le lié initial est dans 1’état fondamental p tandis que le libre, tres
énergétique, est dans I’état o ; le 1ié final est excité, indicé p’ et le libre ¢’ est moins
énergétique.

Pour des transitions entre configurations distinctes, un classement énergétique des
orbitales donne p < p’ < ¢’ < o, soit le cas 10b de Cowan. Dans le cas d’états
mélangés par exemple par le champ électrique, le classement n’est pas modifié mais il
existe des éléments de matrice tels que p = p’ < o’ < o (classe n°6 en intervertissant

les orbitales ' et non’) et p’ < p < 0’ < o (classe n°10a, de méme, en intervertissant
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les orbitales ’ et non ’).

L’élément de matrice coulombien peut s’écrire :

27"k k k
<@ YN S5l .cl ey >
i<j k T>

= > 3 [rhRE oy lylor) + TERE (ol Lorly) |
pop'o’ k
Les coefficients R%(I,ly,ly15r) et RE(Lyly,151,) sont les intégrales radiales doubles,
directe et d’échange 4.42. Les coefficients angulaires 7“5 et ¥ sont calculés comme le
produit de plusieurs facteurs élémentaires. Quelques coefficients intermédiaires sont
nécessaires pour expliciter ces facteurs :

les coefficients de recouplage :
- déplacement (shift)

Ry(j1ged’s g3 d, J") =< [(Jrg2)Jd’, 33 |[d1, (F233)T"]T >
— (_1)j1+j2+j3+J[Jl,J//]1/2 jl j2 J’!
jgs J J"

- saut (jump)
R;(j1g2Jd’, 33, J") =< [(9172)d’, 33|31, (G352) " ]J >

— (=) I [ g7, L/ Ji g2 J’
g J J”

- échange (exchange)
Ry (j1g2d’s 33 J, J") =< [(J132) ", sl I |[(J1d3)T" s g2] T >
.. ,
— (—1)datdst I+ g grpi/2 ) 201 J
gz J J”
(Ces trois termes valent 1 si js ou js est nul ainsi que R, si j; est nul.)

les opérateurs de découplage :

si T®) et W) agissent sur les électrons 1 et 2 respectivement :

AN AN Y )

< arfianad|TW]| o i abghi’ >= Ocrsjoayjy Ua(d15273 K5 713") < arji | T® a1 >,

2
< arjiajaj|WH |1 10djhi’ >= Ga,j, a5, Us(riads ki j2i") < anjal| W™ abh >,
ou

o PRI E N Ji J2 J
Ua(j1d2ds k3 313") = (=1)7+2H +k[3,3']1/2{ ik g }
1
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(opérateur de découplage 74 droite” qui permet de ”s’affranchir” de la couche succédant
a j1)
et

g VIR Ji J2 J
Us(j12ds ks 355) = (—1)’1+J2+J+’°[J,J']1/2{ kg }
2

(permet de ”s’affranchir” de la couche précédant ja).

Enfin, le découplage de deux opérateurs agissant sur des électrons distincts s’écrit :

! e

< arjranfof|TEWW® |l jlabibs’ >

v ) g1 g2 J . . . & )

= Gjm g (1)1 2T 00 < ot |[TW|af i >< agjal[WW|abhgh > .
Ja ok

Le premier facteur des coefficients angulaires 7"5 et r¥, résultant de I’orthonor-

malité des fonctions d’onde et de la conservation des quantités de mouvement, est

un produit de fonctions delta :

m ] m#pop o’

X [H 080 &m,m G'm]
m

B1 = 43,3, [H Ot Lum, S yotly, Ly, Sy,

m<p,m>max(o,o’)

Le second prend en compte phase et nombres d’occupation :

[wp(wo — 6p,0)w, (W, — 8.00)] /2
(1 + 6/7’0'6[7,90'/)

By = (—1)27

o o/
— , ’
avec Ap = dp0 — 0y o7 + Z wj — Z w;.
j=p+1 j=p'+1
Il faut encore ajouter les coefficients de parentage fractionnel issus des sauts

d’électrons d’une sous-couche a l’autre :

By = (I3 o LiSi{ |1}~ o} L}S)) i=petjouno

ou
By; = (l;ui_laiLiSi{ﬂ:Uia;L;S;) 1= p et/ouo’.

Il existe deux possibilités de recouplage principales :
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— soit faire passer un électron d’une sous-couche p vers une autre moins profonde

i =min(p’,0). Si p <1, il est nécessaire d’adjoindre & r* le facteur :

Bs = [5p1 + (1 = 8p1) Re(€po1 L)), 1,8, L)

1—1
X | ] Re(€h_1lpCm—1,Lm€m, L)
m=p+1

[ termes de spin équivalents, en

remplagant les I, £, L par s, S, S.

(Le premier facteur correspond au recouplage des w, — 1 électrons de la sous-
couche p, non impliqués dans la transition, avec les électrons des couches plus
profondes, le deuxieme terme ”fait passer” I’électron actif "au dessus” de la
couche qui lui succede ; cette opération transforme :

{1€0-1, 1" L) L) Lol - Lima } i, 1 i -

en

{1 1" A LS, 1 apn - 1 i L a Y21, L} i, [ ).

— soit transférer le plus ”extérieur” des électrons (supposé appartenir a o’) vers la
sous-couche j = mazx(o, p’). Si j < o/, de méme que précédemment, il s’ajoute

un facteur :

By =Rj(£,_ylo€or_1,Lor L, L)
o’ —1

X | JI Re(€p1Lm€hleSms Lm_1)
m=j+1

y termes de spin équivalents, en
remplagant les I, £, L par s, S, S.

Soit le couplage de

/Wi / / / wyr—1 !t /
{(’Sj’ lj-ij-l aj+1Lj+1) j+1° 7 20/—17 [la/g Qo' Ligt lo'/]aO'/LO'/}SU/ e

avec

j r—1
{[(2_\,‘/]7 lO”)£j, l;u—i]_‘i’la‘/]+1L;+1 P LJ/_l]SU/_l’ Z/U aU/LJ/}’QU/ e,

(Dans le cas ou 'électron le plus extréme se trouve dans o et non dans o, il
est nécessaire d’inverser les termes primés et non-primés dans Bj, qui devient

Bs.)
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-p<p <o <o
Les configurations initiales et finales peuvent s’écrire (en laissant cachés les nombres

quantiques de spin) :

(' ot (*Qp—l? l}:”apr),Qp, Linter)gz'nte'm lj:lyp, O‘p’Lp’)gp’a Lpeel)£fpeel,
lwf’, Oéa’La")Sa" ’ Lfin)sfin, l?" ao'La')»co-

o

et

W, N ar ’ w;, -y ’ ’
(- . (Qp_:l,lp apr)gp, LinteT')Sinter’ lp/ ap/Lp/);gp/,Lpeel)Speel7
w;,

17 ol LL )LL) Lgin) Lpins 1270l L)) L0

o’ o

ou inter, peel et fin rassemblent les électrons intermédiaires n’intervenant pas
directement dans l'interaction.
L’action des facteurs B3,B3, B4y Bis B5Bgs permet de transformer ces configu-

rations en :

Wy gy / / Wyt
(' o (Spfla lp papr)Spa Linter)smtem lp) inter» lp/p Qpr Lp’)£p’7 Lpeel)£peel7

erU’U/O‘U’LU/)SU’al0)£;’>Lfin) ! w;a/O'L:T)'QU

fin> Yo

et
(' o (£P*1’ lqpupa;L;))’Q;)? Linter) ;mte'rv (lsz/ aﬂ'LP/7 ZPI)L;/)S;J” Lpeel)sgyeeb
(127" Qg Lot Ly ) Ly ) hyr, L) i 187 ol L) L.
Soit :
(- (’%’—1; lp)):;’—lv lszl O‘P’Lp’)gp’y T Lo’fl)ﬁo’flv lfff" O‘U’Lo’)soﬂ ls) ;'
et

w ,/

(- . (2;)’—17 (lp,p ap/Lp/, lp/)LlIo/)E;)/, te Lg/_l)f.‘,;/_l, (lgf’/ag/Lgl, lgl)L/U/)EZ,/.

Dans la configuration initiale, I'opérateur d’échange permet de sortir les sous-

couches lZ],pl ap/Lp/Sp/ et lgf’/ gt L1 Syr
Rx(Sg,fll,Jsz_l, Lplﬂp/, 2).Rx(20/_1LU/£J/, lo-/ggl, Sl) X [Sp’L'TLS]
transforme la configuration initiale en :

(' e (2;/_1, lsz/ ap/Lp/)S, lp)ﬂp/, ce LU’—I)£0”—17 10)2/, lz),"’aU/La/),Q’ ’e

g
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De facon similaire, sur la configuration finale, les opérateurs de déplacement et
de saut permettent d’isoler les derniers électrons de p’ et o’ de leurs sous-couches

meres en expulsant ces dernieres :

Ry(€, Ly, 1y L) Ri(Lh e L&, L) X [spins]

génere la configuration finale :

w1

(o (S L A Ly )L,y ) Sy Lior1) Sy L) & (18 01 Ly ) 1.

Mais ces recouplages doivent étre menés pour tous les moments résultants de

2;,_1 et L, et aussi pour tous ceux de £,/_1 et I, ou £, | et I,/ (et spins).
Il ne reste plus, des lors, qu’a calculer :
rE =< (2 00) Epr - Lor1, L) g P 12, L)y -+ Sy o] >

ot ¢%) est 'opérateur angulaire difectronique g = C((S).C((f)).

Il est courant d’employer les opérateurs unitaires u® et v(kD) ainsi que leurs géné-

ralisations U®) et V1 pour mettre en forme les coefficients directs et indirects :

ri =< LICW Ly >< 1o]|CW 1y > I
1
rh = =5 <LICP e >< 1|0V, >

» l, ly r » ”
x> (—1) [r]{ l" ’ N }[I;,g +4I(7V].

Ly

/7
I#) = (—1)%-atlet? {sa/_l I, s}

lO'I ;_[_1 k
o’ —1
X | J] Ua€m-1Lm€msiks £, _1£,)
m=p'+1

X [8e0+ (1= 6e.0)Ub(Llp0s ki Ly L))

X < lo||lu® iy >< 1p||u®||l,, >
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(ces deux derniers éléments valent 5lgkl[,/ et 5lpk.lp/ car ul®) est unitaire) : le pre-
mier terme découple les électrons I, et [, de I’ensemble, le second fait ”disparaitre”
les électrons intermédiaires et ’avant dernier isole les électrons [, et [, de £.

Le calcul du coefficient angulaire de 1’élément de matrice d’échange doit prendre
en compte la présence des spins et génere 'apparition d’un facteur dont les différents

termes ont la méme signification que ceux du coefficient direct :

10D = (—1)Sera e FEHEL,_ Foo 6
po

v 20-/_1 lo- ! 60-/_1 So (G
lo o—1 T So’ o—1 1
o/ —1

X | J] Ua(€m-1Lm€m;rs L, 1L WUa(Sm-15mGm;1;6,,_ &)
m=p'+1

X [526,0 + (1 — (526,0)Ub(£lp£p/; ] lplﬂi,,)Ub(GSp@p/; 1; Splefo,)}

X < pspllv|[lysy >< lose||v™||lor 00 >

(ces deux derniers éléments valent \/3/251[)”/3, et \/3/261_,r1, )-
Les termes angulaires complets r(*¥) s’écrivent alors :
r(*) = By B2Bj3,B35 B4y Bio BsBg

X Z Rw(E:,,_ll,,Sp/_l, LyLy, S)RS(SL/_IL,J'S, lp/,Q:,,, L;,) X [spins]
£6

/

X Y Ri(L,, 412 Lo L, L )Re(Lo'—1L0/ €0, 1oL, £) X [spins]
L

r®,

En fait, pour une excitation collisionnelle, tout ceci peut étre légerement simplifié
en notant que £ = £, =85, 6 =6, =6y, wo =w, =1 et w, = wy =0.

Les coefficients modifiés sont :
/

o
By = (—1)2P(wyw, ) /% avec Ap = Z wj,
Jj=p+l
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B3y = Bigr = 1,

Bg=1eti=p dans Bj et

T(k) = BlBngpB4p/B5

. k
X ZRx(ﬁg,_llpﬂp,_l,LP/SP,,S)RS(E;),_le/S,lp/,Q’p,,Lfol) X [spins] x 7«2( )
£6



Annexe E

Forces d’oscillateur d’ions

complexes

De méme que pour I'annexe précédente concernant les éléments de matrice cou-
lombiens d’ions complexes, cette annexe est largement inspirée de Cowan[19] (cha-
pitre 14).

La transition la plus générale est du type : li”l...l?...lffl...l;”q - ! ...lffl...lé?...léuq
ol w, k et n représentent le nombre d’électrons des sous couches de moment angulaire

l;. La force d’oscillateur se présente aussi sous la forme d’un produit de facteurs :

< Wy|| >k, CON Wy >= D1 Dy...D7 < Li||[F*'CP||1; >

ou I’élément de matrice réduit final vaut :

, lLi t 1 o0
< lz||’rtc(t)||l] >= ‘PI(Z = (_1)11 [llv lj]1/2 ( X ) / P’flili (T)Pnjlj (T)dT.
‘ 0 0 O 0

Notons que nous avons conservé la forme la plus générale ou t est un entier. Le reste
de cet ouvrage ne fait mention que de transitions dipolaires électriques ou d’effet
Stark pour lesquels ¢ = 1. Une programmation plus ouverte a été effectuée pour
accéder ultérieurement aux transitions multipolaires.

Dy rend compte des différentes permutations pour 'antisymétrisation :

Dy = (=1)2P(n.k)"/?
j—1
oulAp=k—1+ Z Wy,

m=i+1
Dy correspond aux coefficients de parentage fractionnel des sous-couches parti-

cipant a la transition :

Dy = (I ou LiSi{ |1} of LiS}) (15~ e L S5 }E s LS.
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D3 est le découplage de &, avec £, et 2; :

o £ S, 3
Dy = 56463(_1>£q+6q+dq+t[\1q,J;]l/z ~,q q ? )
Jg t £

Dy est le découplage successif de Ly, Ly—1, ... Ljj18iqg>j:

q
S+ Lo+ 4t
Dy = H S LonSma L1 81 0, @ (—1)=m-1HEmTEmt

m=j+1
% [£ 2/ ]1/2 2mfl Lm £m
mo ~m o + / :

m—1

Dj est le recouplage de ;"7 (1771;) vers (177101l sii > 1

i1
D5 = (H 6amLmSm,a;ﬂLinS§n5£m6m,2§n6;n) Ro(Li1Li&5, 1;L5, Ly)

m=1
X Rs(6;-15;6},5:6;,5;)
les coefficients de déplacement R étant détaillés dans I’annexe précédente.
Dyg correspond au déplacement successif de 1’électron [; entre les couches i et m
non-comprises (si i < j—1):

j—1

Dg = H Ocvm Ln S, L, 51 R (L0 11i€m—1, Lin &m, £1,)
m=i+1
X Ry (&, _15iCm-1, SnGpm, &1,).

Enfin, Dy simplifie I’élément de matrice rémanent, transformant :
¢ _
< (L) 16)_1,1)85-165-1, L;S})€;6,|rk CR L) 1 &y, (1571 L;85, 1) L} S)) €6 >

en < [£] 4, (lei)L]EjHrvaJ(\?H[ 1, (Ljlj)L5]€5 > ot L est un moment orbital in-
termédiaire, puis < [;[|rt{CW||1; > :
Dr = de0Ri(6) 156, 1,56}, 5))
L &y b
x(~n)kithitlie, ph e e1V2 L Lo
g Lt
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