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THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS
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Sujet de la thèse :
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D Eléments de matrice coulombiens : excitation d’ions complexes 145
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Notice

∗∗ Les grandeurs vectorielles sont indiquées en caractère gras.

∗∗ Il existe en physique atomique et physique des plasmas de nombreux systèmes

d’unités. Par souci de clarté, nous avons choisi, dans ce document, d’utiliser de

façon systématique les Unités Atomiques (u.a.) à l’exception des énergies qui

seront exprimées en Rydberg (1 Ryd = 1/2 u.a.). Il y aura néanmoins quelques

mentions dans des unités plus usuelles, à échelle macroscopique, elles seront alors

précisées.

Quantité Valeur de l’u.a. en quantités importantes en

unités courantes unités atomiques

Masse me = 9.108 10−31kg Masse de l’électron = 1

Masse du proton = 1836

Longueur a0 = ~/mee
2 Rayon de la première orbite de

= 0.52917 10−8cm Bohr = 1

Densité 1/a3
0 = 6.749 1024cm−3

Temps τ0 = a0~/e
2 Durée d’une révolution sur la première

= 2.4189 10−17s orbite de Bohr=2π

Vitesse e2/~ = 2.1877 108cm.s−1 Vitesse de l’électron sur la première

orbite de Bohr = 1

Vitesse de la lumière = c = 137.037

Const. de structure fine = α = 1
137.037

Moment ~ = h/2π Constante de Planck = h = 2π

angulaire = 1.0544 10−34J.s−1

Energie e2/a0 = 2Rydberg Energie d’ionisation de l’hydrogène

= 27.21eV = 4.36 10−18J = 1/2

Charge e = 1.6022 10−19C Charge de l’électron = -1

électrique 1/4πε0 = 1

Champ e/a2
0 = 1.7152 107statvolts/cm Champ électrique sur la première

électrique = 5.1436 109volts/cm orbite de Bohr = 1
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Nous présentons ici quelques notations utilisées régulièrement au cours de cet

ouvrage :

E : Energie d’un niveau ou d’un électron libre

E : Champ électrique

g : Dégénérescence d’un niveau

k : Impulsion d’un électron libre

λD : Longueur d’écran de Debye

Ne = Z∗Ni : Densité électronique

Ni : Densité ionique

Ω : Force de collision

P (E) : distribution de microchamp ionique

Ri = Rii = rws : Rayon de Wigner-Seitz ou rayon de la sphère ionique ou distance

interionique moyenne

< rat > : Rayon moyen de l’ion ou atome

σ : Section efficace

< σv > : Taux collisionnel

Te : Température électronique

Ti : Température ionique

Z : Charge nucléaire de l’ion

Z∗ = Z̄ : charge ionique ou ionisation moyenne du plasma

Enfin, les suffixes i et f indiquent que l’élément suffixé appartient à l’état initial

ou final.
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Introduction

0.1 La fusion par Confinement Inertiel

L’essentiel des ressources énergétiques employées par les hommes a été jusqu’ici

fourni par le biais de réactions chimiques exothermiques. Des travaux menés durant

tout le siècle passé ont montré l’existence de réactions beaucoup plus énergétiques

(de l’ordre du Mev/nucléon soit environ 1 Million de fois l’énergie dégagée au cours

d’une réaction de combustion par exemple) que ce soit par dislocation d’un noyau

lourd en plusieurs morceaux (fission) ou par agrégation de plusieurs éléments légers

(fusion).

Même si les réactions de fission entretenues et naturelles sont quasi inexistantes

dans l’univers, à l’exception du ”réacteur” d’Oklo ayant ”fonctionné” il y a deux

milliards d’années au Gabon, la création de réacteurs artificiels a été très tôt envi-

sagée et mise en oeuvre dès 1943 pour être ensuite largement répandue. Elle compte

aujourd’hui pour plus de 70 % de la production d’électricité en France et plus du

tiers de sa consommation primaire d’énergie, tandis qu’à l’échelle mondiale environ

7% de l’énergie primaire commerciale en est originaire, sans compter les multiples

applications divergentes qui en sont issues : médicales, armement ...

A l’inverse, les réactions de fusion, bien qu’omniprésentes dans l’univers et bien

visibles à travers toutes les étoiles, ont connu une utilisation beaucoup plus limitée ;

même si de nombreuses équipes à travers le monde s’emploient à les étendre, ses

applications pratiques se résument à l’heure actuelle à des dégagements d’énergie

ponctuels et volontairement massifs depuis 1952. La difficulté de leur contrôle à pe-

tite échelle et donc la clef de leur emploi à des fins plus civiles est liée à la mâıtrise

des conditions extrêmes de température et/ou de pression qui sont nécessaires pour

leur amorçage. Un résumé succinct permettra d’appréhender les contraintes qui s’im-

posent à l’expérimentateur.

La réaction de fusion la plus accessible et donc la plus courtisée, la réaction D-T,

s’écrit :
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Deuterium + Tritium → 4He+ n+ 17.6MeV.

Elle s’effectue de façon notable à partir de la température de seuil T=4.5 107 K

(nécessaire pour vaincre la barrière de répulsion électrostatique des noyaux). Il est

possible d’accéder brièvement aux ordres de grandeur caractérisant la densité et le

temps de confinement requis simultanément pour parvenir à l’ignition et à l’entretien

de la réaction de manière rentable. Le nombre de réactions par unité de temps et de

volume s’écrit :

NReaction(cm−3s−1) = NTritium ×NDeuterium× < σv >

où σ est la section efficace de réaction et < σv > représente le taux moyenné sur la

distribution des vitesses (≈ 3.1017cm3s−1). Le critère de Lawson établit la frontière

à partir de laquelle les réactions thermonucléaires dégagent deux fois plus d’énergie

qu’il n’en a fallu pour chauffer le milieu :

NReaction × EReaction × τ ≥ 2 × (ND +NT ) × T.

Pour T = 6.107K ≈ 5.5KeV et les conditions optimales de répartition, c’est-à-

dire l’équipartition du Deuterium et du Tritium, cette condition adopte la forme

simplifiée comme un produit de la densité par le temps de confinement :

N × τ ≥ 1014cm−3s.

Nous l’avons vu, les températures nécessaires sont élevées et ont tendance à

détendre le milieu d’autant plus vite qu’il est dense. Il en résulte deux approches

opposées pour dominer cette difficulté :

– une voie faible densité (1014cm−3), fort volume et des temps de confinement

inférieurs à la seconde dans les Tokamaks [17],

– une voie haute densité (1025cm−3) pour des temps de confinement extrêmement

brefs, de l’ordre de quelques dizaines de picosecondes, dans la Fusion par Confi-

nement Inertiel (FCI).

Ce dernier programme met en jeu des conditions extrêmes de la matière, où

les théories classiques reposant sur la mise à l’équilibre des différents paramètres

caractérisant le milieu, appelé plasma, sont régulièrement invalidées. Les distribu-

tions de ses trois espèces constitutives (ions, électrons, photons) n’obéissent plus aux

règles de la statistique de l’équilibre thermodynamique, où seule intervient la no-

tion d’énergie, mais résultent d’une compétition entre divers processus microsco-

piques collisionnels ou radiatifs. Le détail et la compréhension de ces différents
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phénomènes dans les plasmas denses et chauds sont donc indispensables pour pou-

voir prétendre éclairer les nombreux aspects des expériences de FCI [20] et font

l’objet de très nombreuses recherches à l’heure actuelle ; cette étude s’inscrit dans

ce cadre.

0.2 L’interaction Laser-Matière

Il est bon de noter que ces travaux ont été fertiles dans d’autres domaines et en

particulier dans tous ceux ayant trait à la matière chaude et dense, quel que soit

son mode d’apparition : interaction laser-matière, plasmas produits par Z-pinch ou

plasmas astrophysiques.

Les plasmas chauds et denses présentent l’intérêt d’être fortement émissifs dans

les régions spectrales entre 100 eV et 10 KeV, ce qui permet de les caractériser ou

bien de les utiliser comme source sonde pour étudier les propriétés d’un matériau

adjacent. Le développement des lasers de très haute intensité (jusqu’à 1020W cm−2)

et d’impulsion brève (réduite à quelques centaines de Femtosecondes) a permis la

réalisation de sources X très ponctuelles, résolues en temps et aux domaines d’ap-

plications variés. Quelques grands thèmes de recherche actuels s’ensuivent :

– la dynamique des réactions chimiques [69]

– la cristallographie [2],

– la biologie [45], [49], [80],

– la médecine [78] et en particulier la radiographie [46].

Cette liste serait très incomplète si elle ne mentionnait les nombreux travaux

sur le laser X-UV, sources cohérentes et très brillantes, qui en plus de la fructueuse

comparaison entre la théorie et l’expérience, présentent comme domaines d’appli-

cation l’ensemble des thèmes précités, en y ajoutant la lithographie à des fins mi-

croélectroniques, la microscopie ou holographie de cellules biologiques... sans oublier

de nombreux diagnostics cruciaux en FCI, en élargissant les profondeurs accessibles

par interférométrie optique aux densités électroniques élevées, en permettant l’étude

de la croissance des instabilités hydrodynamiques qui s’y développent, de la densité...

[13]

0.3 Environnement

Toutes ces applications reposent sur des phénomènes extrêmement brefs où de

multiples processus sont en compétition. Ces processus sont essentiellement de deux

types : collisionnels et radiatifs, sans compter les interactions non linéaires entre le

plasma et le faisceau laser ou les phénomènes purement hydrodynamiques. Un pro-
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cessus radiatif correspond à l’émission ou à l’absorption d’un photon par un ion du

plasma et à une modification du cortège électronique de cet ion. Une transition col-

lisionnelle résulte de l’impact d’une autre particule du plasma, le plus probablement

un électron, sur un ion, induisant chez lui une forte perturbation de ses électrons

liés.

Au cours de l’impact bref d’un laser de forte puissance avec un matériau, il se

forme un plasma qui, schématiquement, a trois zones successives. Celles-ci présentent,

en raison de leurs caractéristiques différentes de densité et de pression, trois mécanismes

distincts de peuplement de leurs niveaux ioniques (Figure en fin d’introduction).

En aval du milieu se trouve une zone très chaude et de très faible densité (zone

1) où les niveaux fondamentaux sont prédominants, l’état de leurs populations étant

gouverné par l’ionisation collisionnelle et la recombinaison radiative. Les niveaux

excités sont, eux, peuplés par excitation collisionnelle et se désexcitent essentielle-

ment radiativement en raison de la très faible densité électronique. Un tel équilibre,

dominé par les transitions radiatives, est dit coronal.

Au contraire, totalement en amont, juste en deçà de la zone non perturbée, se

trouve une zone sous choc (zone 3), très comprimée et relativement froide. Les tran-

sitions collisionnelles, induites par la très forte densité d’électrons libres thermalisés,

sont prépondérantes et mènent le milieu à un état d’équilibre thermodynamique. Les

populations des niveaux ioniques y sont régies par les lois statistiques d’équilibre

thermodynamique dépendant seulement de quelques paramètres macroscopiques :

température, pression...

La zone intermédiaire (zone 2) est caractérisée par de forts gradients de den-

sité et de température, où les niveaux excités ne sont plus négligeables devant les

états fondamentaux et qui est donc particulièrement émissive. Le peuplement de

ces niveaux résulte de la compétition entre l’ensemble des transitions radiatives et

collisionnelles, dont les excitations collisionnelles électron-ion qui sont l’objet

de ce mémoire.

Dans le cas de milieux denses et chauds, les particules présentes se perturbent mu-

tuellement et ne peuvent être suivies individuellement du fait de leur grand nombre

(typiquement 1023cm−3 dans un solide). Une approche statistique qui caractérise glo-

balement l’ensemble des perturbations possibles et leurs effets est donc nécessaire.

Deux types de moyennes, de philosophies opposées, sont envisageables :

– soit une moyenne sur la cause de la perturbation (la position et la vitesse

des particules avoisinantes dans le cas de plasmas chauds et denses), suivie

du calcul de l’effet de cette moyenne ; cette méthode présentant l’avantage de

simplifier notablement la physique sous-jacente et donc les calculs, au prix

d’une réduction importante du nombre d’informations sur le milieu,
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– soit une moyenne sur les effets après avoir observé configuration par configu-

ration l’effet des différentes causes ; la richesse des multiples situations pertur-

batives prises en compte ayant pour coût un traitement beaucoup plus lourd.

Dans le cas des plasmas chauds et denses, la cause est la densité et la grande proxi-

mité des nombreuses particules, les effets, multiples, se manifestant dans le décalage

des énergies, la modification des fonctions d’onde ainsi que des taux de transition.

La première approche, très simplificatrice, regroupe les théories d’écrantage,

électronique ou ionique, très adaptées lorsque les perturbations évoluent de nom-

breuses fois au cours du phénomène étudié. La seconde voie, qui échantilonne l’en-

semble des configurations des atomes les uns par rapport aux autres, avec plus

ou moins de particules prises en compte, a donné naissance aux approches quasi-

moléculaires et de microchamp. La non-isotropie de la distribution des particules

perturbatrices, due aux fluctuations thermiques, engendre l’apparition de champs

électriques. Cette méthode est pertinente lorsque les différentes particules respon-

sables du champ bougent peu et donc quand le champ reste sensiblement statique au

cours, par exemple, d’un processus collisionnel, où l’électron, très véloce, n’interagit

que de manière très brève avec la cible. Elle est donc particulièrement judicieuse

pour décrire les perturbations induites par les ions, peu mobiles, sur les phénomènes

faisant intervenir exclusivement des électrons, très rapides.

C’est l’originalité de l’approche que nous avons choisie pour étudier l’influence

de la densité sur les excitations collisionnelles. Aucune étude détaillée de ce sujet

n’a été effectuée à ce jour.

0.4 Plan du travail

Cette thèse, effectuée au Commissariat à l’Energie Atomique (Bruyères le Cha-

tel), porte sur la perturbation des sections efficaces d’excitation collisionnelle électron-

ion par l’environnement plasma, décrit par le microchamp ionique. Cette étude

théorique nous a permis de réaliser un code numérique autonome qui calcule les

forces de collisions dans l’approximation Distorted Waves (DW) en utilisant des

données atomiques précises et un microchamp reproduisant fidèlement la réalité.

Ce mémoire est composé de cinq parties relativement indépendantes :

– Le premier chapitre concerne le traitement général des densités élevées. Une

étude détaillée du plasma est coûteuse, elle n’a donc d’intérêt que dans la

mesure où le plasma est hors équilibre et que l’étude de ses caractéristiques

spectrales nécessite la prise en compte des phénomènes collisionnels, très gour-

mands numériquement. Les méthodes d’écrantage, qui conduisent à modéliser

le plasma par un potentiel central, ont permis d’étudier certains phénomènes
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moyennés en temps dans les plasmas denses, mais demeurent défaillantes pour

traiter les phénomènes très brefs, tandis que l’approche microchamp est d’ores

et déjà utilisée avec succès pour le calcul des profils des raies de couche K.

– Le second chapitre est consacré à la description du microchamp. Les modèles de

Holtsmark et de Mayer, analytiques, sont adaptés à la description de plasmas

soit très dilués soit très dégénérés, une description plus générale s’impose. Le

lissage d’un ensemble d’expériences numériques par tirage aléatoire Monte-

Carlo développé par D. Gilles [30] a été adopté après une comparaison avec

les modèles précédents.

– En troisième partie, comme préparation à l’étude des sections efficaces d’exci-

tation collisionnelle sous champ, nous abordons l’influence du champ électrique

sur la structure atomique : l’effet Stark. Nous résolvons le Hamiltonien de

l’atome de façon perturbative et présentons plusieurs calculs sur l’énergie des

niveaux et le mélange des fonctions d’onde pour l’aluminium hydrogénöıde et

héliumöıde. Ceci nous permet de détailler les notations spectroscopiques em-

ployées ultérieurement. Quelques lois d’échelle en Z peuvent être établies sur

les hydrogénöıdes puis nous réévaluons la limite d’Inglis-Teller qui définit les

derniers niveaux atomiques observables dans un plasma très dilué, à l’aide du

modèle de microchamp précédent.

– Le quatrième chapitre reprend les différentes méthodes existant pour le calcul

des excitations collisionnelles. L’approximation de Born, de mise en oeuvre

très simple, reste trop réductrice et approximative, nous avons donc choisi

l’approximation Distorted Waves, qui dans un temps réduit et pour les ions

multichargés, permet d’accéder, à quelques pourcent près, aux mêmes résultats

que les théories les plus élaborées. Nous avons établi des équations pour le

calcul des forces de collision en présence de champ électrique pour des ions

multiélectroniques et avons réalisé un code numérique calculant simultanément

les forces de collision et les taux collisionnels en présence de microchamp. La

comparaison de nos résultats avec ceux de la littérature pour du Fer héliumöıde

en l’absence de champ, ainsi qu’avec ceux d’une étude prospective sur du Néon

hydrogénöıde en présence de microchamp, confirme la validité et la précision

de nos calculs.

– Enfin, dans le dernier chapitre, nous démontrons que les excitations de couche

K des ions mono- et diélectroniques, en présence de microchamp, peuvent

s’écrire de façon simple, comme la moyenne des forces de collision ou taux

collisionnels en l’absence de champ. Nous présentons, ensuite, une applica-

tion de notre code à de l’Aluminium hydrogénöıde et héliumöıde et des profils

de raies obtenus après avoir réalisé un code Collisionnel-Radiatif élémentaire,
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n’intégrant que les transitions radiatives dipolaires électriques et les excitations

et désexcitations collisionnelles. La prise en compte du microchamp électrique

sur les sections efficaces d’excitation collisionnelle fait apparâıtre notablement

les transitions des états issus des niveaux de moments angulaires élevés. En

particulier, les sections efficaces des transitions initialement interdites aug-

mentent de plusieurs ordres de grandeur en présence de champ électrique et

deviennent de l’ordre de celles des transitions autorisées. Cet effet, cependant,

n’élargit que légèrement les raies Ly β, γ et He γ.
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Chapitre 1

Modèles de traitement des effets

de densité dans les plasmas

1.1 Introduction

Durant ces dernières années, de nombreux efforts ont été effectués pour améliorer

notre connaissance des plasmas denses. Ces travaux sont régulièrement présentés

dans les séries de conférences Radiative Properties of Hot Dense Matter ou Atomic

Processes in Plasmas et ont fait l’objet de plusieurs monographies, par exemple celles

de Griem [33] et de Chabrier [16]. Le calcul de quantités qui caractérisent ces plasmas

comme l’opacité, l’émissivité spectrale ou l’état d’ionisation, est central pour leur

modélisation. A mesure que le plasma s’éloigne de son état d’équilibre où chaque

processus de peuplement des différentes populations du plasma est compensé par le

processus inverse, un détail plus précis des transitions microscopiques, responsables

des modifications de peuplement, s’impose.

Malheureusement, les capacités prédictives des modèles fondés sur des ions isolés

s’estompent quand ils deviennent plus corrélés. Il existe alors diverses méthodes

perturbatives pour représenter l’influence des particules avoisinantes sur la par-

ticule émettrice. Notons au passage que la notion particulaire n’est pas évidente

pour le traitement d’ensembles très corrélés. En toute rigueur, un tel ensemble

nécessiterait d’être décrit comme un système global. Cependant, l’observation des

spectres expérimentaux émis par de tels milieux révèle des structures de raies ca-

ractéristiques d’ions bien spécifiés par comparaison avec les spectres d’émission de ces

ions isolés. On en conclut que les structures ioniques persistent et que ces particules

peuvent être traitées comme des entités isolables perturbées par leur environnement.
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1.2 Modèles d’équilibre dans les plasmas

1.2.1 Equilibre Thermodynamique Complet

Dans un plasma, les populations des différentes particules (électrons, photons

et divers ions) sont gouvernées par l’ensemble des phénomènes microscopiques pos-

sibles. Lorsque chacun de ces processus collisionnel ou radiatif est exactement contre-

balancé par son inverse, le détail de ces processus peut être remplacé par des lois

statistiques simples reposant sur un très faible nombre de paramètres macrosco-

piques. Un tel état d’équilibre est dit complet (ETC). La température et la pression

suffisent à le définir. Elles y sont uniformes, le rayonnement est isotrope et homogène.

Les températures électronique, ionique et de rayonnement sont égales.

Cette situation se rencontre dans des milieux clôturés par des parois totale-

ment opaques au rayonnement : des corps noirs. Dans tout autre cas, les pertes,

radiatives ou de matière, la non-stationnarité des populations... empèchent d’at-

teindre l’equilibre thermodynamique complet. Il est néanmoins possible de trouver

des états d’équilibre où des grandeurs macroscopiques permettent toujours de décrire

le plasma.

1.2.2 Equilibre Thermodynamique Local (ETL)

Lorsque le système admet des pertes radiatives, il présente des gradients de

densité et de température et son rayonnement présente un ensemble de raies qui

contredit la répartition continue de l’intensité spectrale dans les milieux en ETC.

Cependant, si le système unique à la température T peut être remplacé par un

ensemble de sous-systèmes à l’intérieur desquels la microréversibilité des transitions

radiatives et collisionnelles est assurée, il est possible de définir un équilibre thermo-

dynamique localement pour tout couple N,T de chaque sous-système. Cela suppose

que les flux d’énergie entre eux sont faibles et revient à considérer que le nombre

de transitions radiatives est négligeables devant le nombre de transitions collision-

nelles. C’est le cas dans un plasma dense et de faible température, les lois statistiques

de l’équilibre thermodynamique s’appliquent pour chaque sous-système, la densité

assurant la thermalisation en leur sein.

1.2.3 Lois statistiques d’équilibre

Ces lois permettent de donner tout le détail des populations et ne dépendent que

de l’énergie E de chaque élément considéré. Leur détermination se trouve dans tout

ouvrage de physique atomique des plasmas (ex Sobelman [76, 77] ou Pecker-Wimel

[56]) et ne sera pas reprise ici. Chacune de ces lois suppose que les particules qui com-
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posent le plasma sont indiscernables et indépendantes, ce qui réduit immédiatement

leur crédibilité lorsque le milieu est dense et les ions fortement couplés ou les électrons

plus ou moins dégénérés.

– La loi de Maxwell qui établit la distribution des vitesses f(v) pour les différentes

particules est la plus vérifiée de toutes ces lois, lorsque les conditions expérimen-

tales s’éloignent de l’ équilibre. Elle sera supposée valable dans le reste de cet

ouvrage pour la distribution des électrons libres. La pérennité de cette loi est

due à la haute valeur de la fréquence de collision électron-électron qui assure

la thermalisation en milieu dense et collisionnel. Elle s’écrit en fonction de

l’énergie (E = mev
2/2)

f(E)dE =
2√
π

E1/2

T 3/2
e−E/TdE (1.1)

– La distribution de Boltzmann fixe les rapports de populations entre les différents

niveaux d’un même ion.

– La loi de Saha donne la répartition des degrés d’ionisation des atomes.

– La loi de Planck régit la distribution de la densité de rayonnement en fonction

de sa fréquence et n’est valable que dans le cas du corps noir.

1.2.4 Limites

La formulation très simple de ces lois est très attirante mais elles présentent un

domaine de validité restreint. Dans un plasma supposé optiquement mince (où tout

le rayonnement s’échappe), l’équilibre est principalement réalisé par les processus

collisionnels, mais disparâıt si la densité n’est pas suffisamment élevée. Mc Whirther

[53] donne comme condition d’équilibre thermodynamique entre deux niveaux i et

j :

Ne ≥ 1.8 1014 Te
1/2
(eV ) ∆Eij

3
(eV ) = 1.7 1018 Te

1/2
(Ryd) ∆Eij

3
(Ryd) (1.2)

qui peut être extrapolée à la condition d’équilibre entre deux états de charges

différentes en remplaçant ∆Eij par le potentiel d’ionisation. Par exemple, dans l’ion

Al XIII, cette condition d’équilibre entre les états hydrogénöıdes et héliumöıdes

s’écrit :

Ne ≥ 4.5 1017Te
1/2
(eV )Z

6 (1.3)

où Z = 13. Nous présentons dans le tableau 1.1 des valeurs numériques de ces

limites d’ETL pour les éléments qui seront présentés dans le reste de cet ouvrage. La

température choisie est de 500 eV, elle est intermédiaire parmi celles qui apparâıtront
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par la suite et n’influe guère sur les résultats, dans la plage qu’elle parcourt au cours

de ces pages (100 à 700 eV).

n = 1 / n = 2 n = 2 / n = 3 n = 3 / n = 4 XZ / XZ−1

Ne X 4.3 1024 2.8 1022 1.2 1021 7. 1024

Al XIII 2.1 1025 1.3 1023 5.7 1021 3.7 1025

Ar XV III 1.5 1026 9.4 1023 4. 1022 2.9 1026

Tab. 1.1 – Densités d’équilibre thermodynamique entre les différents niveaux hy-

drogénöıdes de Ne, Al et Ar ainsi qu’entre les états hydrogénöıde XZ et héliumöıde

XZ−1 des mêmes ions à Te=500eV.

Nous avons précisé dans le paragraphe précédent que toutes les distributions

électroniques utilisées dans le reste de cette étude seraient supposées maxwelliennes,

de façon à pouvoir définir une température électronique. Dans le cas d’interac-

tions laser-matière ultra-intenses (supérieures à 1015W cm−2), des mécanismes non

linéaires conduisent à l’accélération d’une fraction non négligeable de cette popu-

lation d’électrons dits suprathermiques, mis en évidence par l’émission de raies Kα

au coeur de zones denses et relativement froides du plasma [26]. Krol et al [46]

constatent que 10% de l’énergie du laser peut être transférée aux électrons supra-

thermiques. Dans ces conditions, l’équilibre thermique des électrons libres n’est pas

réalisé et il perturbe aussi la distribution des électrons liés et donc celle des photons.

Enfin, tous ces processus d’équilibre reposent sur des temps de relaxation qui

permettent à la matière, après toute perturbation, de se stabiliser dans un état

stationnaire où il est à nouveau possible de spécifier températures et densités. P.

Alaterre [4] calcule ces temps de relaxation τ entre niveaux de Al XIII - qui cor-

respondent à l’inverse des taux de transition entre ces niveaux - pour Te = 500eV

(mais les résultats dépendent peu de la température) dans une gamme de densité

1020cm−3 ≤ Ne ≤ 1023cm−3 :

– si n = 2,
1

τ
= 1013 + 1.6 1011

(
Ne

1021

)

– si n = 3,
1

τ
= 2.5 1012 + 1.2 1012

(
Ne

1021

)

– si n = 4,
1

τ
= 5. 1011 + 4. 1012

(
Ne

1021

)
.

Dans des expériences typiques d’interaction laser-matière à très haut flux [62] où les

durées d’impulsion laser sont de l’ordre de la centaine de femtosecondes, la condition

en densité pour que le temps d’interaction entre le faisceau et la matière soit de

l’ordre de deux fois celui de relaxation et qu’un équilibre stationnaire puisse s’établir

est alors : Ne ≈ 6 1022cm−3 pour n=2, Ne ≈ 1.5 1022cm−3 pour n=3 et Ne ≈
5 1021cm−3 pour n=4. Pour des temps d’interaction plus longs, l’état n = 2 est
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toujours en équilibre stationnaire du fait des phénomènes radiatifs et les états de n

supérieur sont dans le même état à partir de Ne ≈ 1021cm−3.

Les temps de relaxation des équilibres stationnaires d’ionisation entre ions hy-

drogénöıde et héliumöıde sont plus longs et correspondent à peu près aux temps

de relaxation des couches n=1 pour Al XIII et Al XII. Ils valent environ, à Ne =

1022cm−3, 15 picosecondes pour les hydrogénöıdes et 1 ps pour les héliumöıdes.

Notons qu’état stationnaire ne veut pas dire équilibre thermodynamique, mais que

l’absence d’état stationnaire empèche l’équilibre thermodynamique.

Nous retiendrons de tout ceci qu’il existe de nombreuses causes d’écart à l’équi-

libre, même local. Les transitions possibles entre les couches n=1 et n=2 devront

être détaillées pour les densités inférieures à Ne ≈ 1025cm−3 (pour Al XIII) comme

pour celles entre n=1 et n=3. En revanche, celles entre n=2 et n=3, lorsqu’elles

seront traitées, pourront être remplacées par la statistique de Boltzmann au delà

de Ne = 1023cm−3. En outre, plus les temps d’impact laser seront brefs et plus

les moyens d’étude du plasma créé permettront d’étudier de manière rapide son

évolution, plus les calculs devront détailler avec précision chaque type de transition

pour reproduire l’expérience.

1.2.5 Résolution des systèmes Hors ETL : transitions élémentaires.

Avant d’aller plus loin, il convient de préciser l’ensemble des interactions micro-

scopiques qui conduisent à des transitions.

Les phénomènes d’excitation et d’ionisation dans les plasmas chauds sont en

général gouvernés par les photons et les électrons, les autres particules massives n’in-

tervenant que pour les transitions de très faible énergie. Les processus prépondérants

sont au nombre de 12 (directs et inverses) radiatifs ou collisionnels :

– la photoexcitation et l’émission spontanée

XZ + ~ω � X∗
Z (1.4)

– l’émission induite

X∗
Z + ~ω → XZ + ~ω + ~ω (1.5)

– la photoionisation et la recombinaison radiative

XZ + ~ω � XZ+1 + e (1.6)

– la recombinaison radiative stimulée

XZ+1 + ~ω + e→ XZ + ~ω + ~ω (1.7)
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– la capture diélectronique et l’autoionisation (où X∗∗
Z est un état doublement

excité)

XZ+1 + e � X∗∗
Z → X∗

Z + ~ω (1.8)

– l’excitation et la désexcitation collisionnelles

XZ + e � X∗
Z + e (1.9)

– l’ionisation collisionnelle et la recombinaison à trois corps

XZ + e � XZ+1 + e+ e (1.10)

Sobelman y adjoint Bremsstrahlung et Bremsstrahlung inverse (XZ + e � XZ +

e + ~ω : émission et absorption libre-libre) mais qui n’ont d’incidence que sur les

transferts d’énergie entre électrons libres et photons et ne jouent donc que sur leurs

populations et non sur celles des états internes ioniques (électrons liés).

Le calcul de tous ces taux n’est pas nécessaire, les taux inverses s’obtiennent

directement à partir des taux directs par le principe du bilan détaillé à l’ETL (mi-

croréversibilité). C’est pourquoi, des deux mécanismes intéressant cette thèse -i.e.

l’excitation et la désexcitation collisionnelles- nous n’étudierons que le premier, à

partir du quatrième chapitre.

1.2.6 Equilibre Collisionnel Radiatif (CR)

Cette situation est celle où l’ensemble des transitions élémentaires précédentes

nécessite d’être pris en compte pour décrire les populations du plasma. L’évolution

temporelle de la population de chaque niveau de chaque ion est gouvernée par la

somme des processus de peuplement et de dépeuplement à partir de ou vers les

autres niveaux ou ions :

dNZ,i

dt
=


 ∑

Z′,j 6=i

TZ′j,ZiNZ′,j


−


 ∑

Z′,j 6=i

TZi,Z′j


NZ,i (1.11)

où les TZ′j,Zi sont les taux de transition du niveau j de l’ion Z’ vers le niveau i de

l’ion Z.

S’il y a état stationnaire, les peuplements et dépeuplements s’équilibrent pour

chaque état atomique i :
dNZ,i

dt
= 0. Dans le cas où les évolutions temporelles de

la température et de la densité sont lentes, le plasma est appelé quasi-stationnaire,

la population des niveaux excités s’équilibrant quasi-instantanément avec celle des

états fondamentaux, qui seuls sont décrits de manière instationnaire (typiquement

les plasmas nanosecondes, à comparer avec les temps de relaxation ioniques présentés

dans le paragraphe 1.2.4).
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Enfin, dans le cas des plasmas créés par impulsion laser sub-picoseconde, le

plasma est totalement instationnaire et le détail complet de chaque niveau et de

ses transitions est nécessaire.

1.3 Caractéristiques et définition des plasmas denses

Intuitivement, la notion de forte densité renvoie à celle de forte pression, de par-

ticules comprimées les unes sur les autres, se repoussant, bref, se perturbant mutuel-

lement en permanence. Il est possible, à partir de cette vision näıve, d’appréhender

les limites à partir desquelles un plasma peut être qualifié de dense. A cette fin, il

suffit de lister l’ensemble des situations qui peuvent conduire à de fortes perturba-

tions. Ceci revient à faire le détail des différentes particules présentes et des causes

de leurs répulsions et mouvements les unes vers les autres.

– Les électrons

Ce sont des particules très légères et mobiles. Leur vitesse est caractérisée

par leur énergie cinétique moyenne : la température électronique Te. Leur

densité Ne permet de définir le volume disponible par électron comme son

inverse 1/Ne ainsi que par extrapolation la distance interélectronique moyenne.

Lorsque celle-ci s’approche de la longueur d’onde de de Broglie thermique,

les électrons ressentent des effets quantiques et la distribution statistique de

Maxwell issue de l’équilibre thermodynamique classique ne s’applique plus,

elle doit être remplacée par une loi fondée sur une statistique quantique : la

distribution de Fermi-Dirac. La température de Fermi TF ≈ (3π2Ne)
2/3 est

aussi une limite inférieure qui caractérise l’entrée dans ce régime.

– Les ions

Ces particules sont beaucoup plus massives (≈ 1830 fois plus pour l’hydrogène)

et leurs vélocités caractérisées par

√
Ti

mi
est toujours très inférieure à celle des

électrons dans les plasmas laser. Il est possible de définir deux dimensions

significatives pour les ions : le volume moyen disponible (1/Ni) et la distance

interionique (Rii) ainsi que le rayon moyen de l’ion qui peut être approximé

par celui de l’hydrogénöıde équivalent dans l’état l = 0 : < ri,n >=
3n2

2(Z∗ − 1)
où n est le nombre quantique principal de l’ion considéré et Z∗ son degré

d’ionisation.

La force de répulsion ou d’attraction coulombienne est la seule interaction entre

ces particules.

Dès lors, un certain nombre de paramètres apparaissent naturellement par com-

paraison des grandeurs précitées.
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– Le paramètre de couplage de Coulomb est le rapport de l’énergie poten-

tielle coulombienne d’une particule à son énergie cinétique (à un facteur 2/3

près) :

Γii =
Z∗2/Rii

Ti
=

(
4πNi

3

)1/3 Z∗2

Ti
, (1.12)

Rii étant la distance interionique. Ce paramètre de couplage peut être étendu à

tous les types de particules. Γ � 1 correspond à un plasma idéal : interactions

coulombiennes très faibles entre les ions, Γ ≥ 1 à un couplage fort : les effets

coulombiens deviennent supérieurs à l’energie cinétique des particules. Les

plasmas fortement couplés sont donc des plasmas denses et plutôt “froids”.

– Le paramètre de dégénérescence est le rapport de la température de Fermi

à celle des électrons :

γ =
TF

Te
=

(3π2Ne)
2/3

Te
(1.13)

γ � 1 correspond à un plasma classique, γ ≥ 1 à un plasma où les effets

quantiques deviennent importants, les électrons sont alors dits dégénérés.

– Le rapport entre la taille de l’ion et la distance interionique moyenne.

Murillo et Weisheit [55] considèrent que les fonctions d’onde s’étendent effec-

tivement jusqu’à cinq fois le rayon ionique. Lorsque le rapport de ces deux

longueurs est supérieur à 1, les fonctions d’onde des deux ions se superposent

et sont notablement perturbées, il n’est plus possible de les affecter à un

ion spécifiquement. C’est le phénomène d’ionisation par pression qui limite le

nombre de niveaux présents. Notons que cette situation n’est pas spécifique des

plasmas denses mais est aussi responsable de la création de bandes d’énergies

dans les métaux.

– Le critère d’influence des électrons libres sur l’atome qui compare les

volumes occupés par les électrons liés (le volume de l’atome) à celui occupé

par les électrons libres (1/Ne). Si ce rapport dépasse 1, il existe au moins un

électron libre présent au sein de la structure ionique, ce qui réduit la liaison

entre les liés et le noyau. Ceci conduit au décalage des niveaux, généralement

calculé avec un modèle d’écrantage électronique.

Le décalage des niveaux et l’ionisation par pression sont regroupés sous l’ap-

pellation générique d’abaissement du continuum.

1.4 Les écrantages

Nous avons jusqu’ici rappelé l’influence de la densité comme une contrainte sur

l’équilibre, conditionnant ou non une étude détaillée collisionnelle-radiative. Les

modèles utilisés jusqu’ici étaient à particules indépendantes type gaz parfait. Dans
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la réalité, les densités élevées font prendre en compte les effets de corrélation entre

particules, en particulier l’interaction coulombienne dans les plasmas d’ions multi-

chargés. Largement utilisé en astrophysique ou en FCI, l’écrantage des particules

chargées par les particules voisines, initialement développé pour des gaz fortement

dilués, a été extrapolé à des plasmas beaucoup plus condensés [16].

On ne prétend pas reprendre ici la totalité des multiples travaux existant sur le

sujet, mais seulement un certain nombre de ceux qui peuvent permettre de mieux

étudier les effets de densité sur les excitations collisionnelles. L’essentiel du calcul

de ces dernières (voir le chapitre IV qui leur est consacré) repose sur l’interaction

coulombienne entre deux électrons. L’approche la plus simple est donc d’essayer

d’évaluer au mieux les potentiels vus par les différentes particules et c’est ce qui

explique l’intérêt porté aux écrantages.

1.4.1 Modèle de Debye-Hückel

Dans la limite des faibles densités et hautes températures, l’énergie cinétique

moyenne des particules est beaucoup plus importante que leur énergie d’interaction

et les effets de corrélation peuvent donc être considérés comme une perturbation par

rapport au comportement du gaz parfait.

Dans ces conditions l’énergie cinétique des électrons est très élevée et largement

supérieure à la température de Fermi du système, ils peuvent donc être assimilés à

des particules classiques. La présence de particules autour d’une charge de référence

Zi modifie le potentiel coulombien et la densité Ñi(r) des particules perturbatrices

peut être obtenue à l’aide de la statistique de Maxwell-Boltzmann en présence du

champ moyen Φ(r) résultant :

Ñi(r) = Nie
−ZiΦ(r)/T ≈ Ni

(
1 − ZiΦ(r)

T
+ . . .

)
(1.14)

La linéarisation est justifiée car l’énergie potentielle est très faible devant la tempé-

rature.

De l’équation de Poisson et de la nécessaire neutralité du milieu sans perturbation

(
∑

niZi = 0) :

∇2Φ(r) = −4πq(r) = −4π
∑

Ni(r)Zi ≈ −4π
Φ(r)

T

∑
NiZ

2
i (1.15)

il se déduit facilement la forme du potentiel autour d’une charge Z :

Φ(r) =
Z

r
e−r/λD (1.16)

où λD est la longueur d’écran de Debye :
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λD =

(
T

4π
∑
niZ2

i

)1/2

, (1.17)

la sommation portant sur toutes les espèces ioniques et électroniques.

Enfin, le potentiel chimique de l’espèce i s’écrit :

µi = − Z2
i

2λD
(1.18)

et s’obtient en dérivant l’énergie libre par rapport au nombre de particules de cette

espèce.

Cette théorie offre l’avantage de présenter une formulation très simple du po-

tentiel mais suppose que le nombre de particules dans la sphère de Debye (le nuage

d’écran) est très grand, soit λD � a, la distance interparticulaire moyenne, ce qui

correspond à ΓZ∗2 � 1 où Γ est le paramètre de couplage de ces particules. De

nombreuses méthodes ont donc été proposées pour étendre son domaine de validité

à des couplages plus intenses.

1.4.2 A plus haute densité

La théorie de Debye-Hückel peut être étendue à de plus fortes densités en résolvant

l’équation de Boltzmann non linéarisée, ce qui permet d’accéder à des paramètres

de couplage de l’ordre de 1/2 mais fait perdre la représentation exponentielle simple

du potentiel.

Il existe aussi quelques formules simples pour les situations plus dégénérées :

lorsque la distance interélectronique devient de l’ordre de la longueur de de Broglie,

la statistique de Maxwell-Boltzmann doit être remplacée par celle de Fermi-Dirac

pour la distribution électronique ; la longueur d’écran est (Thomas Fermi linéarisé) :

λTF =

(
π

T 1/2I−1/2(µ/T )

)1/2

(1.19)

où Iα(x) =

∫ ∞

0

yαdy

1 + ey−x
est l’intégrale de Fermi et µ le potentiel chimique qui

s’obtient de manière autocohérente avec la densité électronique (il en existe des

valeurs interpolées pour toute température électronique, par ex Dharma-Wardana

et Taylor [24]).

De façon plus pratique, à la limite des basses températures, la longueur d’écran

Thomas-Fermi à température nulle vaut :

λTF T=0 =

√
1

2

(
T

3ne

)1/3

(1.20)
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Il faut malgré tout noter que tous les modèles avec constante d’écran reposent sur

la linéarisation de l’équation de Boltzmann et conservent donc les mêmes limites :

une constante de couplage très faible. Toute amélioration passe par la perte de

linéarisation des équations et l’accroissement important de la complexité de leurs

solutions : elles perdent leur caractère analytique.

Lorsque le plasma est très corrélé : à haute densité et basse température, un

modèle d’écrantage couramment employé et de forme analytique simple est celui de

la sphère ionique. Dans sa version la plus simple, les électrons libres sont distribués

uniformément dans une sphère ayant pour rayon la distance interionique moyenne

Ri :
4π

3
R3

iNi = 1. Pour la neutralité du milieu, la sphère ionique elle-même est

neutre :
4π

3
R3

iNe = Z∗ où Z∗ est l’ionisation moyenne du plasma et Ne la densité

d’électrons libres. Le potentiel résultant autour d’une charge Z est :

V (r) =
Z

r
− Z

2Ri

(
3 − r2

R2
i

)2

r ≤ Ri

= 0 r ≥ Ri.

(1.21)

Ce modèle permet de créer un volume d’exclusion des ions voisins, ce qui est assez

compatible avec des calculs de structure spatiale détaillés qui mettent en évidence

ce phénomène lorsque le couplage dépasse l’unité.

Toutes ces théories d’écrantage ont été largement utilisées et continuent de l’être

pour anticiper les modifications de la structure atomique et des différents taux col-

lisionnels et radiatifs d’un ion plongé dans un milieu dense. Nous présentons par la

suite quelques-uns de ces résultats comme références et points de comparaison par

rapport à notre étude sur les excitations collisionnelles en présence de microchamp

ionique.

1.4.3 Influence sur la position des niveaux

Les calculs portant sur la modification des niveaux et des fonctions d’onde

sont nombreux. Concernant les écrantages de Debye-Hückel et de Thomas-Fermi,

il n’existe malheureusement pas de formule analytique pour caractériser l’influence

de la densité sur les niveaux, sauf pour les écrantages très faibles où l’énergie de

liaison des niveaux diminue de 2Z/λ , λ étant la longueur d’écran. Néanmoins,

les études numériques (voir par exemple Rogers et al [68]) montrent que ce modèle

décale et sépare les niveaux des hydrogénöıdes et qu’il induit aussi un décalage des

raies vers le rouge lorsque la densité s’accroit.

G. Massacrier [52] a effectué une longue étude en utilisant le modèle de la sphère

ionique et propose un résultat simple pour le décalage des niveaux des ions hy-
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drogénöıdes :

E ≈ E0 +
Z

2Ri

(
3 − < r2 >0

nl

R2
i

)
(1.22)

qui semble plus adapté pour la description de plasmas très denses, où < r2 >0
nl=

n2

2Z2
[5n2 + 1 − 3l(l + 1)] est la moyenne du carré du rayon de l’ion à densité nulle

et Ri le rayon de la sphère ionique présenté plus haut.

1.4.4 Ionisation par pression et réduction du nombre de niveaux

Nous avons noté, lors de notre tentative de définition des fortes densités, qu’elles

équivalent à rendre comparable le volume disponible par ion ou par électron libre à

celui occupé par l’atome étudié.

La trop grande proximité entre deux ions écrête les niveaux supérieurs, qui ne

sauraient être physiquement attachés à un atome tout en étant inclus dans le volume

d’un autre. Il s’agit de l’ionisation par pression.

De façon similaire, lorsque le volume de l’atome est supérieur au volume dispo-

nible par électron libre, il en existe au moins un au coeur de l’atome ; la liaison entre

les électrons liés et le noyau est alors écrantée et l’énergie de liaison réduite.

La résultante de ces deux effets conduit à l’abaissement du continuum : la dispari-

tion des niveaux les plus excités. Ce processus très important permet, par exemple,

de limiter la somme des niveaux dans les fonctions de partition et de les rendre

convergentes, ce qui détermine parallèlement le degré d’ionisation moyen du plasma

à l’ETL. Il permet aussi de restreindre le domaine de cette étude à des états ioniques

pertinents dans des situations HETL.

Dans le cadre du modèle de Debye-Hückel, Rogers et al [68] obtiennent numéri-

quement le dernier niveau existant pour un hydrogénöıde : nmax =
√

1.27λDZ, ce

qui correspond à la densité de disparition :

Ne = 3.32 1022T(eV )
Z

n4
cm−3. (1.23)

De son côté, Massacrier propose, dans le cadre du modèle de la sphère ionique :

Ne ≈ 6 1022Z
4

n6
cm−3. (1.24)

Nous présentons au tableau 1.2 les densités de disparition obtenues par ces formules

pour les 4 premiers niveaux de Al XIII :

Dans la mesure où toutes ces densités de disparition atteignent des valeurs

extrêmes, il parâıt pertinent de retenir celles obtenues avec un modèle de sphère

ionique, le modèle de Debye-Hückel étant fondé sur des plasmas chauds et dilués.
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Debye 100eV Debye 500 eV Sphère Ionique

n=1 4.3 1025 2.2 1026 1.7 1027

n=2 1.1 1025 5.4 1025 2.7 1025

n=3 4.8 1024 2.4 1025 2.3 1024

n=4 2.7 1024 1.3 1025 4.2 1023

Tab. 1.2 – Densités de disparition des niveaux de l’Aluminium hydrogénöıde (en

cm−3) suivant les modèles d’écrantage.

Massacrier mentionne que cette limite n’est qu’approchée, spectroscopiquement par-

lant, car de nombreux phénomènes d’élargissement confondent peu à peu les raies

entre elles et avec celles du continuum, à mesure qu’elles s’approchent de leur dis-

parition.

B. d’Etat [23], à la suite d’une étude avec deux centres ioniques, note aussi que ces

limites de disparition sont très sensibles aux positions des différents ions du plasmas

et donc qu’une étude fondée seulement sur des modèles à symétrie sphérique pour

les distributions ioniques est forcément limitée.

1.4.5 Influence sur les transitions radiatives

Davis et Blaha [21] ont étudié la transition 2p → 1s du Néon hydrogénöıde, à

l’aide du modèle d’écrantage de Thomas-Fermi, incluant les corrections d’échange

et de corrélation de Dharma-Wardana et Taylor. Ils notent, à des densités élevées

(Ne = 6 1024cm−3), que ni la modification des fonctions d’onde ni le décalage des

énergies en raison de l’écrantage n’ont d’influence importante sur les taux radiatifs

(au plus 15% ).

Massacrier étend cette étude à un plus grand nombre de transitions à l’aide

de son modèle de sphère ionique. Les transitions dipolaires électriques intra-couche

(n = n′) se déplacent vers le bleu lorsque la densité crôıt et leur intensité dépend

essentiellement du décalage des niveaux : elle varie donc fortement pour les sous-

niveaux hydrogénöıdes initialement dégénérés. Les transitions inter-couche évoluent,

elles, vers le rouge, la variation étant dominée par celle du niveau le plus excité.

Leur probabilité décrôıt et ce, de manière importante à la limite de disparition de

l’état supérieur. La probabilité de ces transitions est beaucoup plus sensible à la

modification des fonctions d’onde qu’à celle des énergies.

1.4.6 Influence sur les transitions collisionnelles

Concernant les transitions collisionnelles, nous allons nous intéresser exclusive-

ment aux excitations collisionnelles électron-ion car elles sont l’objet de cette thèse.
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Néanmoins, nombre des constatations faites à leur sujet valent aussi pour les autres

transitions.

L’étude initiale des effets de l’écrantage sur les excitations collisionnelles est un

travail de Hatton et al [38] qui mentionne immédiatement l’ensemble des résultats

majeurs de cette approche :

– l’écrantage réduit l’interaction entre l’électron libre et les électrons liés et en

conséquence réduit systématiquement les taux d’excitation,

– les ondes partielles d’ordre élevé (c’est à dire les électrons libres ayant un grand

moment angulaire l) qui ne peuvent sonder que les régions de rayon r ≥ l/k,

sont plus affectées que celles de faible moment angulaire (k est la quantité de

mouvement de l’électron),

– en conséquence, les transitions permises (∆l = ±1), reposant sur des

interactions à longue portée, subissent la plus forte réduction de

leur force de collision, car ces dernières sont à convergence lente et de très

nombreuses ondes partielles doivent être utilisées dans le calcul.

Son étude repose sur l’approximation de Born et un écrantage de Debye-Hückel.

Whitten et al [81] adoptent des méthodes de calcul plus précises (Distorted

Waves et Close coupling) en comparant des calculs réalisés avec un écrantage de

Debye-Hückel et un modèle de sphère ionique. Ces calculs plus avancés gomment

partiellement les lois d’échelle prévues par Hatton mais montrent que les sections

efficaces sont très sensibles aux détails de la modélisation de la collision et même

plus qu’aux effets plasma dans le cas des transitions interdites. Enfin, l’écrantage dû

à la sphère ionique est beaucoup plus important que celui de Debye et les taux de

transitions résultants sont approximativement deux fois plus diminués.

Des constatations similaires peuvent être effectuées sur les résultats de Davis et

Blaha obtenus avec un modèle d’écrantage affiné (Thomas-Fermi ...) et un calcul

Distorted Waves. Néanmoins, les réductions de forces de collision restent faibles,

ceci d’autant plus que l’énergie du libre perturbateur est élevée.

Cette remarque est développée par Blancard et Dubau [12] dans une des rares

études effectuées sur des ions ayant plusieurs électrons (Fer sodiumöıde) : alors que

les excitations collisionnelles sans écrantage sont non nulles au seuil d’excitation, du

fait des interactions coulombiennes à longue portée, la discontinuité est gommée dans

les modèles avec écrantage et l’excitation à proximité du seuil est largement

réduite. A l’inverse, à haute énergie, l’écrantage réduit peu les sections efficaces.

Par conséquent, les taux d’excitation collisionnelle, qui intègrent les sections

efficaces sur l’ensemble du spectre des vitesses des électrons libres, sont d’autant

plus réduits que la température est basse et inférieure à l’énergie de seuil

de l’excitation.
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Toutes ces études se fondent sur un écrantage global de la cible : noyau et

électrons liés créant un potentiel central dont le noyau est l’origine, même pour

l’interaction entre l’électron lié et l’électron libre. Gutierrez et Diaz-Valdés [35, 25]

montrent que l’asphéricité de l’écrantage pour l’interaction électron-électron conduit

à une réduction notable de l’effet d’écran, qui n’apparâıt, toujours pour l’écrantage

e− − e−, que pour des longueurs d’écran très courtes, quel que soit le modèle

d’écrantage utilisé.

Dans le prolongement de cette remarque, il faut s’interroger sur la pertinence

d’un modèle d’écrantage statique qui conserve la même constante d’écran, quelle

que soit la vélocité des particules étudiées. Murillo et Weisheit [55], dans une étude

récente sur l’ionisation collisionnelle, montrent dans une approche dynamique que

l’approximation statique est très restrictive : en effet, si les électrons lents subissent

un écrantage statique classique, les électrons libres ou liés (en couche profonde)

rapides, beaucoup plus véloces que les électrons du plasma et ne pouvant porter leur

propre nuage d’écran, ne voient quasiment aucun écrantage. L’énergie d’oscillation

plasma électronique ~ωpe =

√
4πNe

me
constitue approximativement une frontière à

cet égard.

1.4.7 Pour conclure sur l’écrantage...

Les différents modèles d’écrantage ont fait de nombreux progrès depuis l’ap-

proche classique de Debye-Hückel. Ils permettent de couvrir une bonne part de

l’ensemble des situations de plasma denses. Les prédictions qui en sont issues sur

l’abaissement du continuum ont permis d’améliorer notablement les modèles d’opa-

cité.

Cependant, ils supposent toujours que les potentiels quasi statiques ont une

symétrie sphérique. Les ions, dont la vitesse est très faible devant celle des électrons

responsables des différentes transitions, produisent de tels potentiels quasi-statiques.

Il parâıt alors fort peu probable qu’un nombre entier, limité, de ces ions, puisse

produire un potentiel à symétrie sphérique. Sans remettre systématiquement en

cause les résultats précédents, il semble utile d’étudier les conditions et l’importance

des effets de la levée de la sphéricité.

1.5 Influence du Microchamp Ionique

Le traitement des collisions dans un plasma dense par l’écrantage repose sur

l’approximation que l’on peut remplacer l’ensemble des situations électrostatiques

particulières dues à chaque configuration spatiale des ions ou des électrons par l’in-
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teraction produite par la moyenne des distributions possibles. Cette approximation

est fondée tant que les temps de collision sont très supérieurs au temps de réponse

du plasma et/ou que les fluctuations autour de l’état moyen sont très limitées. Dans

la plupart des situations de plasmas chauds et dans l’esprit de la théorie standard

de l’élargissement de raies, les collisions doivent intégrer le microchamp E créé par

le plasma et le moment relatif de l’électron libre k. La fonction de distribution du

microchamp reflète toutes les configurations ioniques probables. Ultérieurement, il

convient de faire la moyenne des sections efficaces sur les distributions de E et k.

1.5.1 Domaine d’application

Il existe deux causes de mouvement pouvant affecter les différentes transitions

atomiques :

– le mouvement collectif d’oscillation des charges à la suite d’une pertur-

bation électrostatique. Il est caractérisé par la fréquence plasma ωP . L’inverse

de cette fréquence, τP , représente donc bien le temps nécessaire pour que les

ions ou les électrons effectuent un mouvement collectif, cyclique dans l’espace.

τPe =
2π

ωPe
=

√
πme

Ne
pour les électrons, (1.25)

τPi =
2π

ωPi
=

√
πmi

Z∗2Ni
=

√
πmi

Z∗Ne
=

√
mi

Z∗me
τPe pour les ions. (1.26)

– les fluctuations thermiques de l’édifice ionique ou électronique dont le

temps caractéristique, τT , peut être approximé par le rapport de la distance

interparticulaire moyenne à la vitesse thermique de ces mêmes particules :

τTe =
Re√
Te/me

=

(
3

4πNe

)1/3√me

Te
pour les électrons, (1.27)

τT i =
Ri√
Ti/mi

=

(
3Z∗

4πNe

)1/3√mi

Ti
= Z∗1/3

√
mi

me

Te

Ti
τTe pour les ions.

(1.28)

Remarquons que les temps caractéristiques obtenus pour les électrons sont beau-

coup plus brefs que ceux des ions (

√
mi

me
= 42.8 pour l’atome d’hydrogène et 223

pour l’Aluminium).

Quant au temps de collision, il peut être considéré comme le rapport de la lon-

gueur d’interaction sur la vitesse électronique. La longueur d’interaction peut être

simplement assimilée au rayon moyen de l’atome, dans un modèle de sphère dure,
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si le potentiel est à courte portée (dans le cas d’un atome neutre). Il est par contre

beaucoup plus difficile de la définir pour un ion chargé, le potentiel coulombien étant

à longue portée. La longueur d’écran peut en donner une indication dans un modèle

écranté.

τC ≈ λ√
Te/me

. (1.29)

Concernant l’influence des électrons, il est difficile de tirer une conclusion générale.

Les temps de collision sont inférieurs aux temps caractéristiques d’oscillation du

plasma électronique, quelle que soit la longueur d’écran choisie, mais de moins d’un

ordre de grandeur. La condition pour que le temps de collision soit très supérieur

au temps caractéristique des fluctuations thermiques revient à ce que la longueur

d’écran soit très supérieure à la distance interélectronique moyenne. Dans un plasma

très condensé et à fort couplage, le modèle de la sphère ionique est bien adapté car la

distance interionique est nécessairement supérieure à la distance interélectronique.

Dans le cas opposé (un plasma idéal : γ � 1), la condition pour privilégier l’écrantage

de Debye par rapport au microchamp électronique est que la sphère de Debye

contienne plusieurs électrons...

Le cas des ions est beaucoup plus clair, leur masse rallongeant considérablement

les temps caractéristiques de fluctuation.
τC
τPi

vaut respectivement
1√
Zmi

≈ 1

803
pour un écrantage de Debye et vaut envi-

ron
N

1/6
e

T
1/2
e

(3/4π)1/3

√
πmiZ1/6

≈ 10−3

T
1/2
e (Ryd)

(
Ne(cm

−3)

6.76 1024

)1/6

(soit 3.9 10−4 si Ne = 1025cm−3

et Te = 100eV ) pour un écrantage type sphère ionique, les valeurs numériques étant

celles de l’aluminium hydrogénöıde. Le temps de collision est en fait systématique-

ment très inférieur au temps caractéristique de déplacement collectif des ions dans

un plasma même peu condensé (il faudrait Ne = 2 1012cm−3 pour que ce rapport

vaille 1 dans un plasma d’hydrogène ionisé à 1 Rydberg).

La comparaison des temps de collision et du temps de fluctuation thermique io-

nique mène à une conclusion similaire : leur rapport vaut
T

1/2
i

N
1/6
e

1

(4π)1/6(3Z)1/3m
1/2
i

=

8.7 10−4T
1/2
i

(Ne/6.76 1024)1/6
(soit 4.8 10−2 si Ti = 1KeV et Ne = 1020cm−3) pour la sphère de

Debye et

√
Ti

Temi
(soit 4.5 10−3 si Te = Ti) pour la sphère ionique.

En conséquence, nous déduisons que l’influence des plasmas denses sur les méca-

nismes collisionnels sera plus précisément décrite par l’intermédiaire du microchamp

ionique et de l’écrantage électronique que par l’écrantage ionique.
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1.5.2 Quelques effets connus du microchamp

L’analyse spectrale des gaz ionisés a révélé très tôt des structures ou des profils

de raies qu’une théorie exclusivement fondée sur des particules isolées ou écrantées

ne permettait pas d’expliquer.

En premier lieu, la présence, même dans des plasmas d’hydrogène faiblement

ionisés, de raies interdites (∆l 6= 1) qui se justifient par le mélange des fonctions

d’onde atomiques induit par le microchamp. A titre d’exemple [56], dans le spectre

d’émission d’un gaz d’hélium très faiblement ionisé, au voisinage de la raie 4d 3D −
2p 3P o apparaissent les transitions interdites 4f 3F o − 2p 3P o, 5f 3F o − 2p 3P o,...

qui ne présentent pas de changement de parité car les fonctions d’onde des niveaux

les plus excités sont mélangées.

On note aussi l’éclatement de certaines raies en plusieurs composantes, qui corres-

pond à une levée de dégénérescence des divers sous-niveaux et moments magnétiques

d’une même couche, effet particulièrement manifeste sur des ions hydrogénöıdes,

dont les niveaux sont totalement dégénérés à l’intérieur d’une même couche. Cet

effet de séparation des niveaux a pour conséquence un élargissement des raies spec-

trales, en raison de la distribution étalée du microchamp. De nombreux travaux ont

été publiés ou sont en cours qui concernent l’élargissement Stark des raies [33, 31, 41]

et permettent de déterminer plus précisément la température et la densité du plasma

en ajustant sur les profils de raies de couche K, obtenus expérimentalement, des pro-

fils théoriques calculés pour différentes valeurs de ces paramètres macroscopiques.

Nous présentons dans le paragraphe suivant un autre aspect de l’éclatement des

niveaux.

1.5.3 Limite d’Inglis-Teller

Inglis et Teller [42] ont constaté que les plasmas denses présentent des spectres

de raies normaux jusqu’à un nombre quantique principal limite, au delà duquel

les raies s’estompent et se fondent dans un continuum. Cette limite correspond

schématiquement à l’instant où le microchamp ionique moyen, séparant suffisamment

les niveaux d’une même couche, amène ses niveaux les plus perturbés à se superposer

à ceux de la couche supérieure. Physiquement, les fonctions d’onde de ces divers

niveaux se recouvrent et il se forme un continuum d’états quasi-liés, au voisinage de

la limite d’ionisation. Cette limite peut être employée pour caractériser la densité

ionique par comparaison avec la limite calculée théoriquement.

La limite d’Inglis-Teller, calculée à partir d’un modèle d’écrantage simplifié dans

un plasma d’hydrogène très dilué vaut, dans ces conditions :
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log10Ni = 23.26 − 7.5 log10 n (1.30)

mais peut être extrapolée simplement à des plasmas d’ions plus lourds [4] :

log10Ne = 23.26 + 4 log10 Z
∗ − 7.5 log10 n. (1.31)

La formule présentée ici diffère légèrement de celle de Griem [33] (4 log10 Z
∗ au

lieu de 4.5 log10 Z
∗), cet auteur considérant le microchamp électronique et nous le

microchamp ionique. Nous verrons au chapitre suivant que cette limite, calculée dans

des conditions de couplage très faible, peut être adaptée à des cas beaucoup plus

corrélés.

1.5.4 Influence du microchamp sur les transitions collisionnelles :

la recombinaison diélectronique

Il existe très peu d’études portant sur les transitions collisionnelles perturbées

par le microchamp ionique, elles portent toutes sur la recombinaison diélectronique.

Elles ont par contre été très avancées, en lien avec des études sur les plasmas de fusion

magnétique [34, 5, 66, 37]. Les densités y sont très peu élevées, mais la recombinaison

diélectronique s’effectue en passant par des états transitoires dont un des électrons

est dans un état de Rydberg très excité, il est donc très sensible au moindre champ

électrique.

Deux effets orchestrés par le microchamp sont alors en compétition :

– l’ionisation des électrons les moins liés en raison du champ électrique, avant

que le système ait pu se stabiliser radiativement. Ceci a pour effet de réduire

le nombre de voies possibles pour la recombinaison.

– en l’absence de champ, les états de nombre quantique orbital l élevé ont de

faibles taux d’autoionisation et, par le principe de la balance détaillée, de

faibles taux de capture. Leur influence sur la recombinaison diélectronique

est donc négligeable. Les champs électriques mélangent les l élevés avec les

plus faibles qui ont de forts taux d’autoionisation, cela accrôıt ainsi le nombre

d’états participant à la recombinaison diélectronique.

La ”redistribution” des voies possibles vers les niveaux moins élevés mais de fort

moment orbital est très favorable. Les expériences réalisées donnent désormais des

résultats raisonnablement comparables avec la théorie, à savoir un accroissement

significatif des taux de recombinaison diélectronique en fonction de la densité [7].
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1.6 Conclusion

En résumé, la création de fortes densités (Ne ≤ 1024 − 1025cm−3) de manière

très fugace conduit la matière dans un état hors équilibre thermodynamique qui ne

peut être décrit qu’en détaillant l’ensemble des transitions élémentaires qui peuplent

le plasma. Or ces densités élevées se définissent aussi par les perturbations qu’elles

induisent sur les particules du plasma et par conséquent sur leurs transitions.

La théorie traditionnelle pour représenter l’influence de la densité, l’écrantage,

ne peut être valable que pour traiter les perturbations induites par les électrons

libres et fournit alors d’intéressants résultats sur l’état d’ionisation du plasma... Sur

les transitions collisionnelles (électron-ion), l’influence des ions (quasi-statiques) ne

peut être abordée qu’en faisant des calculs séparés pour diverses valeurs du micro-

champ ionique. Ce dernier est caractérisé par une fonction de distribution qui permet

de réaliser, ensuite, des moyennes.

Le seul mécanisme collisionnel étudié en présence de microchamp, la recombinai-

son diélectronique, présente des taux de transition significativement accrus lorsque la

densité crôıt, il est par conséquent légitime d’attendre une influence non négligeable

de la même perturbation sur les taux d’excitation collisionnelle.

Nous détaillerons dans les parties suivantes le traitement du microchamp, ainsi

que son influence sur la structure atomique, l’effet Stark, avant d’en aborder l’impact

sur les excitations collisionnelles.



Chapitre 2

Le microchamp ionique

2.1 Introduction

La grande proximité des particules entre elles dans un plasma dense peut modi-

fier considérablement leurs propriétés radiatives ou collisionnelles. Une description

microscopique de cet environnement distingue deux types de particules interagissant

avec un émetteur. Elles se différencient par leur vélocité et leur masse : les électrons

légers et rapides, abordés en général par la théorie des impacts ou des collisions, et les

ions perturbateurs supposés quasistatiques durant le temps d’émission ou d’impact

électronique.

Le microchamp ionique résulte de la fluctuation thermique de la position des

ions autour d’un émetteur particulier. L’énergie totale et la structure atomique de

ce dernier s’en trouvent modifiées, avec en particulier le mélange des états propres

de l’hamiltonien non perturbé, autorisant du même coup des transitions interdites.

La distribution étalée des énergies des niveaux résultante entrâıne un élargissement

des raies tandis que le mélange des fonctions d’onde de moments orbitaux différents

entrâıne une variation de la force de la raie. Il en résulte une perturbation importante

du spectre d’émission et probablement de la répartition des populations des différents

niveaux. Les modifications spectrales par élargissement Stark ont été très étudiées

et continuent de l’être (voir par exemple [31, 72]), l’influence du microchamp sur

les populations, la troncature des fonctions de partition et plus généralement sur

l’ensemble des processus microphysiques de peuplement est un sujet d’étude toujours

d’actualité. Il apparâıt donc nécessaire de connâıtre la distribution statistique ou

probabilité de distribution du champ P (~E). Celle ci se définit comme la probabilité

d’observer le champ ~E au point r0 créé par N particules et peut se mettre sous la

forme :
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P (~E) =
1

C

∫
e−V (r0,r1,··· ,rN)/kTδ(~E −

N∑

i=1

~Ei)dr
N+1 (2.1)

où ~Ei est le champ créé au point r0, par la particule i située au point ri, V est

l’énergie associée à la position et la vitesse des particules les unes par rapport aux

autres et C une constante de normalisation.

Il existe de nombreuses théories permettant de calculer cette distribution, di-

verses par leur approche analytique ou numérique ou encore par leur domaine de

validité. D Gilles [30] en discute plusieurs avec précision. Nous nous sommes large-

ment inspiré de son travail pour en présenter un certain nombre, non pas de manière

exhaustive, mais essayant de fournir au lecteur quelques références, valables dans

des conditions particulières de température et de pression mais d’emploi aisé, ainsi

que la méthode de calcul utilisée dans cet ouvrage et dont nous justifierons le choix

en la comparant aux autres approches.

2.2 Modèles théoriques

Le champ électrique ~E créé en un point est le gradient du potentiel généré en

ce point par les ions situés à sa proximité. Potentiel qui peut être coulombien ou

écranté, de type Yukawa ; il sera supposé additif, tout comme le champ, même si

cette hypothèse n’est vérifiée que pour des potentiels coulombiens. Les équations

caractérisant la distribution du microchamp s’obtiennent par un calcul autoconsis-

tant du hamiltonien total du système à la limite thermodynamique. La résolution

exacte de ce système d’équations est celle du problème à N corps et est donc im-

possible de manière analytique. Il convient donc d’en donner des approximations

fondées sur des hypothèses d’environnement (domaine de température, densité...)

ou encore d’envisager des simulations numériques pour approcher la réalité. Dans

tous les cas, le microchamp sera supposé uniforme (P (~E) = P (E)) même si dans des

conditions de densité très élevée les inhomogénéités du champ ne peuvent plus être

omises et devraient conduire à l’introduction d’un gradient du microchamp E dans

la distribution.

On a volontairement exclu les méthodes semi analytiques type APEX ou Dharma-

Wardana et Perrot de cette présentation car elles ne sont pas utilisées ici, ainsi que

la méthode numérique de dynamique moléculaire, pour la même raison.

Il nous faut mentionner, d’ores et déjà, les limites d’ionisation par champ et

d’Inglis-Teller, qui seront étudiées dans le chapitre suivant mais qui requièrent la

connaissance, pour l’une de la valeur du champ électrique la plus probable et pour
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l’autre la valeur du champ à mi-hauteur de la distribution. Elles seront donc précisées

et ces résultats permettront une comparaison des différents modèles.

2.2.1 Définitions et paramètres

On utilise deux paramètres sans dimension pour caractériser le degré de corré-

lation des particules du plasma :

– le paramètre de corrélation Ion-Ion Γii : à un facteur 2/3 près, le rapport de

l’énergie coulombienne de 2 ions, situés à la distance interionique moyenne (ou

rayon de Wigner-Seitz : rws), à l’énergie cinétique thermique des ions et qui a

déjà été mentionné au chapitre précédent. Il peut varier de plusieurs décades,

typiquement [10−5; 102].

– le paramètre d’écrantage électronique Uie : rapport de la distance interio-

nique moyenne à la longueur d’écran électronique. Il reste, lui, assez centré

([0.1; 2.5]) :

Uie =
rws

λe
= (36π)1/6Z

1/3
N

1/6
e

T
1/2
e

. (2.2)

Cette expression correspond au cas de l’écrantage électronique de Debye-Hückel.

D. Gilles mentionne que cette longueur d’écran peut s’appliquer au delà de son

critère de validité - à savoir un grand nombre de particules dans la sphère de Debye

- pour les situations physiques caractéristiques de cette étude, c’est à dire denses et

chaudes.

Enfin, une valeur de référence du champ est couramment employée, celle créée

par deux ions situés à la distance interionique moyenne :

E0i =
Z

r2ws

=

(
4π

3

)2/3

Z
1/3
N2/3

e = 7.27 10−17Z
1/3
N2/3

e (cm−3). (2.3)

Le champ est en général donné dans cette unité et noté β. La fonction de distribution

du microchamp électrique s’écrit P (β) et est normalisée, le milieu est ionisé mais

globalement neutre : Ne = ZNi.

Lorsqu’il s’agit de quantifier le champ, la plupart des auteurs choisissent d’em-

ployer le V cm−1 ou le Statvolt cm−1 = 300V cm−1, par cohérence avec le reste

de cet exposé nous resterons en Unités Atomiques : 1 u.a. = 5.1423 109V cm−1 =

1.7141 107 Statvolt cm−1.

2.2.2 Distribution de Holtsmark

Holtsmark a élaboré dès 1919 une théorie dans le cadre d’un plasma d’hydrogène

totalement ionisé et dilué. Il s’applique donc pour un environnement peu ionisé et
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non corrélé (Γii → 0), par exemple les plasmas de faible densité et forte température.

La fonction de distribution s’écrit :

PH(β) =
2β

π

∫ ∞

0
exp(−y3/2)y sin(βy)dy (2.4)

et équivaut à deux expressions approchées aux limites :

PH(β) −−−→
β→0

0.4244 β2 (2.5)

et

PH(β) −−−→
β→∞

1.496β−5/2 + 7.639β−4 + 21.60β−11/2. (2.6)

Le maximum de cette distribution correspond à β = 1.61 soit un champ le plus

probable E = 4.18 Z
1/3

N
2/3
e tandis que la valeur du champ à mi-hauteur de la

distribution est E = 7.66 Z
1/3

N
2/3
e (β = 2.95).

Il convient de noter que cette approche ne convient plus lorsque les corrélations

ne sont plus négligeables, la probabilité des grands champs est alors surévaluée.

2.2.3 Distribution Plus Proche Voisin

La méthode PPV (Plus Proche Voisin) ou NN (Nearest Neighbour), est une

simplification de celle de Holtsmark en ne prenant en compte pour le calcul du mi-

crochamp que l’ion le plus proche. Elle est calculée à l’aide d’un potentiel coulombien

non écranté, la position des ions est évaluée de manière statistique :

PPPV (β) =
3

2
β−5/2e−β−3/2

. (2.7)

La valeur la plus probable du champ est β =

(
3

5

)2/3

= 0.71 soit E = 1.85Z
1/3

N
2/3
e

et sa valeur à mi hauteur : E = 3.78 Z
1/3

N
2/3
e (β = 1.456) soit approximativement

deux fois celle du champ le plus probable.

Cette distribution, comme celle de Holtsmark, est réservée à des plasmas peu

corrélés. Elle gomme la participation des ions plus éloignés au microchamp et le

sous-évalue donc lorsque la densité est faible.

2.2.4 Distribution de Mayer

Le modèle de Mayer reprend celui de Holtsmark en incluant un facteur de Boltz-

mann qui prend en compte les interactions Ion-Ion :
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PM (β) =

(
2

π

)1/2

β2Γ
3/2
ii e−β2Γii/2. (2.8)

Le champ le plus probable vaut β =

√
2

Γii
soit E = 2.89

(
TiNe

Z

)1/2

et sa valeur à

mi hauteur : E = 4.74

(
TiNe

Z

)1/2

(β = 1.64

√
2

Γii
).

C’est une approximation bien adaptée aux plasmas denses et froids, très forte-

ment corrélés, où l’écrantage électronique est devenu négligeable, situations obtenues

en général pour des matériaux de Z élevé.

2.2.5 Méthode de Monte Carlo

Les distributions employées dans la suite de cet ouvrage sont issues de simula-

tions numériques effectuées par D. Gilles [30]. La technique utilisée consiste en un

ensemble d’expériences numériques sur des systèmes finis de particules, en cellules

périodiques, à l’intérieur desquelles sont traitées de façon aussi exacte que possible

l’ensemble des interactions particulaires ainsi que celles avec leurs images dans les

cellules limitrophes (méthode de Monte Carlo).

Un lissage analytique a été effectué à partir d’un grand nombre de calculs Monte

Carlo représentant une grande diversité de situations possibles. L’expression de la

distribution du microchamp est extrapolée à partir d’un ensemble de points issus

de ce lissage et obtenus à l’aide de fonctions analytiques simples et de coefficients

prétabulés.

Il convient d’ajouter que ce lissage n’est en principe utilisable que pour des plas-

mas à un seul constituant (constitués d’une seule espèce d’ion de charge égale à Z).

Ceci convient aux distributions de charge assez piquées autour de Z, mais nécessite

un aménagement lorsqu’il s’agit de plasmas de type FCI où une impureté lourde

(Néon, Argon ionisés en couche K ou encore Krypton) est intégrée dans un micro-

ballon rempli d’hydrogène totalement ionisé. D. Gilles mentionne que ses lissages

sont toujours fonctionnels, mais avec un Z plus élevé, rendu artificiellement plus

proche de celui de l’élément le plus lourd. A titre d’exemple, la distribution de mi-

crochamp d’un plasma composé d’1% d’Argon hydrogénöıde dans 99% d’hydrogène

totalement ionisé est correctement rendue par le lissage en employant Z = 5, dans

des conditions de température et de densité caractéristiques de la FCI. Pour une

concentration plus raréfiée (0.2%), le choix Z = 3 est recommandé.
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2.3 Cas pratiques avec la méthode de Monte Carlo

Nous présentons ici quelques situations correspondant à celles étudiées ultérieu-

rement dans cet ouvrage.

Nous avons choisi d’effectuer nos calculs principalement sur l’Aluminium dans le

cadre de l’interaction laser matière. Les transitions de couche K y sont communément

observées, c’est pourquoi nous avons choisi un Z = 12 supposant ainsi l’ion quasi

hydrogénöıde. Nos calculs d’excitation collisionnelle portent aussi sur les héliumöıdes

mais il apparâıt que le choix de Z = 11 n’a qu’une influence limitée (le champ créé

par une particule située à la distance interionique moyenne est proportionnel à Z
1/3

,

la variation est donc 121/3 − 111/3 ≈ 0.065 ). Les densités rencontrées atteignent

quelques 1024e/cm3 (aluminium sous choc) et les températures environ 500 eV,

nous avons donc choisi de présenter la distribution du microchamp jusqu’à Ne =

1025e/cm3 et Te ≈ 600eV .

Les figures 2.1, 2.3, 2.4 font apparâıtre une assez bonne corrélation entre le

pic de microchamp et la densité, le logarithme de la valeur la plus probable du

microchamp étant proportionnel au logarithme de cette dernière pour des densités

allant jusqu’à environ 1022e/cm3, à 500 eV. Au delà, il y a un affaissement progressif

du microchamp en raison des corrélations croissantes.

Il est plus difficile d’établir un comportement général pour la température (figure

2.2). Dans le cas de densités élevées, le comportement est linéaire en température

jusque vers 300 eV à 1025e/cm3, s’affaissant légèrement ensuite. A plus basse densité,

la distribution de microchamp devient quasiment indépendante de la température

et voisine de la valeur classique 0.42E0i pour la valeur de champ la plus probable.

Dans toutes les figures présentées ici, la température électronique a été supposée

égale à la température ionique. Hors équilibre thermodynamique, cette condition

n’est plus vérifiée. Une étude rapide montre une réduction du microchamp si la

température ionique décrôıt (environ un facteur 2 entre Ti = 100eV et Ti = 500eV

pour Te = 500eV et Ne = 1025e/cm3), mais cet effet s’estompe à plus basse densité.

2.4 Comparaisons

Nous avons tracé sur les figures 2.3 et 2.4 les valeurs des paramètres de couplage

Γii et d’écrantage électronique Uie pour des situations qui encadrent approximati-

vement celles qui seront traitées dans le reste de ce mémoire : un plasma chaud

et dense d’Aluminium, de température comprise entre 100 et 500 eV et pour uns

large gamme de densités au delà de Ne = 1019cm−3. Les valeurs de ces paramètres

varient notablement autour de l’unité. Nous traçons également les valeurs du champ
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le plus probable pour les différentes distributions présentées. Cette comparaison ne

dit rien sur la forme des courbes, en particulier aux champs élevés, mais donne

une assez bonne indication des champs les plus représentatifs qui seront subis par

l’atome excité. Il faut noter que les courbes obtenues pour Holtsmark et PPV sont

indépendantes de la température.

Lorsque le plasma est peu corrélé (Γ faible), les approximations de Holtsmark et

Plus Proche Voisin encadrent les résultats plus précis obtenus avec la méthode de

Monte Carlo, et ces derniers sont d’autant plus proches de ceux de Holtsmark que

la température est élevée et que l’on se rapproche donc du domaine de validité de

cette théorie, mais en deçà de 500eV, le champ le plus probable de Holtsmark est

supérieur d’au moins 50% par rapport à celui de Monte Carlo. La valeur obtenue

par PPV reste systématiquement sous-évaluée par rapport à celle de Holtsmark d’un

facteur de l’ordre de 2. Le champ le plus probable obtenu par Monte Carlo devient

inférieur à cette valeur lorsque le paramètre de couplage Γii dépasse 1, ce qui peut

constituer une limite approximative à la validité des théories de Holtsmark.

Les résultats issus des distributions de Mayer sont toujours largement surévalués

par rapport à ceux de D. Gilles (Monte Carlo) dans le domaine de température et

de densité considéré. Le couplage peut y devenir très intense à haute densité, mais

l’écrantage y est alors élevé, ce qui est contraire aux conditions d’application de cette

théorie. Les résultats deviennent comparables lorsque l’écrantage est faible, mais ces

conditions ne sont réunies que pour des Z élevés, dans le cas des plasmas chauds

et denses. Typiquement, ces conditions sont rencontrées dans des interactions laser-

matière avec des métaux lourds, par exemple, l’or de la cavité (Hohlraum) en FCI

par voie indirecte. L’ensemble des calculs présentés ultérieurement ne présenteront

jamais ces caractéristiques.

Cette étude succincte montre qu’une description approchée du microchamp avec

des expressions limites ne couvre qu’une partie étroite du domaine que nous envisa-

geons de traiter et qu’une distribution précise du microchamp est nécessaire.

2.5 Conclusion

En résumé, il apparâıt pertinent de choisir une description raffinée de la distri-

bution de microchamp, en particulier lorsque la densité crôıt et plus encore dans les

situations Hors ETL. A plus faible densité, lorsque le paramètre de couplage est très

inférieur à 1, la description classique reprend ses droits et il est alors possible d’em-

ployer l’expression analytique de Holtsmark. Le choix d’une distribution obtenue

par lissage analytique de simulations Monte Carlo, dépendant seulement de deux

paramètres, intégrant les 4 variables Te, Ti, Ne, Z permet d’envisager d’extrapoler
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les résultats de sections efficaces obtenus pour un élément à l’ensemble des autres,

pourvu que l’on choisisse des lois d’échelle adaptées pour ces paramètres.

Les quelques graphiques présentés montrent que des champs électriques attei-

gnant une dizaine d’unités atomiques peuvent exister dans un plasma d’Aluminium

très dense et très chaud. Il conviendra donc d’effectuer des calculs de sections effi-

caces jusqu’à ces valeurs, si tant est que les niveaux calculés existent encore.
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Fig. 2.1 – Distributions du Microchamp électrique créé par un plasma d’Aluminium de Z = 12

à la température Te = Ti = 500eV pour différentes valeurs de la densité (de gauche à droite) :

1019, 1020, 1021, 1022, 1023, 1024 et 1025e/cm3 (les distributions ne sont pas normalisées). Il faut

noter que les ”légers” accidents autour du maximum reflètent le caractère bruité de la simulation

Monte Carlo initiale.
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Fig. 2.2 – Distribution du Microchamp électrique créé par un plasma d’Aluminium de Z = 12

pour une densité Ne = 1025e/cm3 et à différentes valeurs de la température (de gauche à droite) :

100, 250 puis 625 eV.



48 Le microchamp ionique

0.001

0.01

0.1

1

10

1e+19 1e+20 1e+21 1e+22 1e+23 1e+24 1e+25
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Fig. 2.3 – Champ le plus probable obtenu pour différentes distributions pour un plasma d’Alu-

minium Z = 12, à la température Te = Ti = 1000 eV : distribution de Mayer en trait fin, de

Holtsmark en pointillés, distribution Plus Proche Voisin en trait épais et distribution de Monte

Carlo en carrés. Les variables Γii paramètre de couplage ionique (en losanges) et Uie paramètre

d’écrantage électronique (en croix) sont présentées simultannément.
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Fig. 2.4 – Même légende que précédemment mais pour Te = Ti = 100 eV .



Chapitre 3

Influence du champ électrique

sur la structure atomique

3.1 Introduction

Nous avons présenté au chapitre précédent l’émergence de champs électriques

quasi-statiques, croissants à mesure que le plasma se densifie et/ou voit sa températu-

re augmenter ; ces champs étant quasi-statiques à l’échelle des processus collisionnels

et radiatifs. La description de ces corpuscules perturbés conduit à modifier leur ha-

miltonien. Un traitement exact du microchamp et des fonctions d’onde nécessiterait

d’en chercher leurs formes en trois dimensions, ce qui n’est guère envisageable, en

particulier pour la structure atomique, si l’on espère pouvoir effectuer ensuite des

moyennes sur toutes les situations de microchamp et calculer les taux collisionnels

qui sont l’objet de cette étude. A titre d’exemple, Ruder et al [70] ont calculé l’in-

fluence de l’effet Zeeman à fort champ sur divers atomes en employant une base de

300000 fonctions d’onde pour décrire précisément l’asphéricité des fonctions d’onde

résultantes. Il est donc nécessaire d’admettre certaines approximations si l’on désire

rendre le problème soluble.

Nous supposons le champ uniforme (les gradients possibles, à l’échelle de la

structure atomique, sont négligés), comme cela a été mentionné dans les pages

précédentes. Ce choix parâıt pertinent en comparant la distance interionique moyenne

(rws), caractéristique des domaines de variation du champ, au rayon moyen de

l’atome (< rat >=
3n2 − l(l + 1)

2Z
dans le cas d’un hydrogénöıde, n et l étant les

nombres quantiques principal et orbital). Ce rapport s’exprime comme un multiple

de Z4/3/N
1/3
e et, dans le cas d’un plasma de densité 1024e/cm3, pour un ion hy-

drogénöıde excité en couche n=2, il vaut environ 6 pour l’Aluminium et 11 pour

l’Argon. L’uniformité du champ apparâıt donc raisonnable et est supposée avec
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profit par la majorité des auteurs car elle permet de reproduire avec une précision

correcte les situations expérimentales. Néanmoins, cette approche est plus discutable

dans le cas des densités très élevées et des travaux récents ajoutent un gradient à la

valeur du champ [22]. Ce raffinement ne sera pas pris en compte ici.

Le champ modifie fortement les fonctions d’onde et transforme leur symétrie

sphérique en une symétrie de révolution. Il est possible d’effectuer un changement de

référentiel en passant en coordonnées paraboliques [10] pour résoudre le Hamiltonien.

Cette approche n’est rigoureusement exacte que dans le cas des ions hydrogénöıdes et

nous avons préféré l’éviter pour traiter de façon similaire tous nos ions, en particulier

des systèmes multiélectroniques.

Nous rappelons succinctement la théorie nécessaire au calcul avant de détailler

les énergies et fonctions d’onde de l’Aluminium hydrogénöıde et héliumöıde pour les

états issus des couches n=2 et n=3, ce qui permettra d’interpréter les modifications

des forces de collision présentées au chapitre 5 tout en présentant simultanément les

notations spectroscopiques utilisées ultérieurement pour caractériser les niveaux hy-

drogénöıdes sous microchamp. Puis nous discutons les lois d’échelle en Z, de façon à

pouvoir extrapoler plus aisément nos résultats numériques d’excitation collisionnelle

à l’ensemble des éléments atomiques. Enfin, nous définissons le domaine de travail

en densité par le biais de la limite d’Inglis-Teller, présentée au premier chapitre et

recalculée avec le modèle de Monte-Carlo précédent.

3.2 Théorie de l’effet Stark

Nous avons repris les notations utilisées par R. D. Cowan [19] ainsi que, par

conséquent, la structure atomique qu’il décrit. Il s’agit d’un couplage LSJ où l’ordre

de couplage généalogique est respecté (la sous couche la plus profonde - 1s - est la

mère de la suivante -2s -, elle même mère de celle qui lui succède...) :

{. . . (lw1

1 α1L1S1, l
w2

2 α2L2S2)L2S2, l
w3

3 α3L3S3)L3S3, . . .}LqSqJqMq (3.1)

où wi correspond au nombre d’électrons de moments orbitaux li dans la sous couche

i de moment orbital total Li et de moment de spin total Si. Les α représentent les

éventuels nombres quantiques supplémentaires (nombre de séniorité...).

3.2.1 Eléments de matrice généraux

L’influence du champ électrique ~E , parallèle à Oz, est prise en compte par un

terme d’interaction au niveau de l’Hamiltonien atomique. A l’approximation dipo-
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laire, ce terme s’écrit :

Helec = −~E .
∑

i

eri = −~E .P (1) (3.2)

où P (1) est le moment électrique dipolaire de l’atome. L’élément de matrice non

diagonal qui s’y rattache s’écrit, en Rydbergs, d’après le théorème de Wigner-Eckart :

< γJM |Helec|γ′J ′M ′ > = −2E < γJM |P (1)
0 |γ′J ′M ′ >

= −2E(−1)J−M

(
J 1 J ′

−M 0 M ′

)
< γJ ||P (1)||γ′J ′ > .

(3.3)

L’élément de matrice réduit (indépendant de M)< || || > se simplifie car l’opérateur

de moment dipolaire électrique commute avec le spin :

< γJ ||P (1)||γ′J ′ >= δS,S′(−1)L+S+J ′+1[J, J ′]1/2

{
L S J

J ′ 1 L′

}
< γLS||P (1)||γ′L′S′ > .

(3.4)

Ce dernier élément de matrice est détaillé en appendice pour le cas général. Il contient

l’élément de matrice de transition

P
(1)
nl,n′l′ = < nl||r(1)||n′l′ >=< l||C(1)||l′ >

∫ ∞

0
Pnl(r)Pn′l′(r) r dr

= (−1)l[l, l′]1/2

(
l 1 l′

0 0 0

)∫ ∞

0
Pnl(r)Pn′l′(r) r dr

(3.5)

Le moment angulaire total ~J n’est plus un bon nombre quantique et seule sa

projection Jz commute avec le hamiltonien. Dans le cas d’un couplage LSJ pur, le

spin commute aussi avec le hamiltonien. De plus, les états γJM et γ ′J ′M ′ doivent

être de parité opposée et donc appartenir à deux configurations différentes.

3.2.2 Cas hydrogénöıde

Dans le cas d’ions à un seul électron, ces éléments de matrice adoptent des formes

simples :

< nlsj||r(1)||n′l′sj′ >= δl′,l±1(−1)l>+j′+3/2[j, j′]1/2(l>)1/2

{
l s j

j′ 1 l′

}∫ ∞

0
PnlPn′l′ r dr

(3.6)

où l> = max(l, l′), et sans couplage spin-orbite l.s :

< nlmlms|Helec|n′l′m′
lm

′
s >= −2Eδl′,l±1δmlms,m′

lm
′
s
(−1)l>−ml(l>)1/2

×
(

l 1 l′

−m 0 m

)∫ ∞

0
rPnlPn′l′dr

(3.7)
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L’effet Stark sépare les états de nombre quantique principal n et initialement

dégénérés de [19] :

∆E = 3nkE/Z (3.8)

où k (à ne pas confondre avec M) prend toutes les valeurs entières de −(n − 1)

à n − 1. A mesure que E grandit, il est nécessaire d’introduire plus de niveaux

dans la diagonalisation du hamiltonien et, du fait de l’interdiction de croisement

des niveaux de même M, le décalage devenu linéaire retourne dans un état très non

linéaire quadratique, puis oscillant par segments.

3.3 Résultats et notation

Pratiquement, nous avons effectué la résolution du hamiltonien pour chaque |M |
individuellement, à l’aide d’un programme numérique de diagonalisation pour des

matrices comprenant tous les états de la couche n=2 (hydrogénöıdes ou héliumöıdes

1s2l) et pour des matrices comprenant tous les états des couches n=3 et 4. Un tel

choix résulte de la très grande séparation des niveaux 2 et 3 et de la petitesse de

leurs couplages par le champ.

Nous présentons dans les figures 3.1 à 3.4 des exemples de calculs d’énergies et

de fonctions d’onde obtenus pour de l’Aluminium Hydrogénöıde et Héliumöıde. Les

énergies initiales sont présentées en appendice et les états initiaux sont supposés

en couplage LSJ pur : un état propre |βLSJM > de l’Hamiltonien non perturbé

vérifie :H0|βLSJM >= EβLSJ |βLSJM > et un état propre |αSM(E) > du système

ionique en présence de champ : (H0 +Helec) |αSM(E) >= EαSM (E) |αSM(E) >.

Le vecteur propre de l’Hamiltonien perturbé est obtenu par la diagonalisation

de sa matrice dans la base des états non perturbés :

|αSM(E) >=
∑

β,L,S,J

CαSM
βLSJ(E) |βLSJM > . (3.9)

Nous appellerons dans les pages suivantes les CαSM
βLSJ(E) les coefficients de mélange

de l’état propre |αSM(E) >.

Pour réduire les temps de calcul des sections efficaces d’excitation collisionnelle

présentées aux chapitres suivants, nous avons traité simultanément les états de même

|M |. Il faut mentionner que les coefficients de mélange de deux états similaires mais

de M de signes opposés sont les mêmes en valeur absolue mais peuvent voir leur

signe changer. Pour les déterminer, on compare les signes de < γJM |Helec|γ′J ′M >

et de < γJ −M |Helec|γ′J ′ −M >.

Dans le cas des hydrogénöıdes, la résolution de l’équation de Dirac-Pauli mène
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aux énergies :

Enlj(Ryd) = −Z
2

n2
− α2Z4

4n4

[
4n

j + 1/2
− 3

]
(3.10)

où α est la constante de structure fine. La levée de dégénérescence est effectuée sur j,

mais les états de même j et de l différents restent dégénérés. En présence

de champ électrique, l’état d’énergie la plus élevée (la plus proche de 0)

sera nommé |nj+ > et celui d’énergie la plus basse |nj− >.

|nj+(E = 0) >=
|nlj > +|n (l + 1) j >√

2
, |nj − (E = 0) >=

|nlj > −|n (l + 1) j >√
2

.

Le comportement quadratique puis linéaire est bien respecté aux champs faibles

pour les hydrogénöıdes (figure 3.1) mais aussi pour les héliumöıdes (figure 3.2).

Néanmoins, cette linéarité n’est pas respectée indéfiniment et une étude détaillée fait

apparâıtre des répulsions de niveaux qui correspondent à des échanges de fonctions

d’onde (figures 3.1, 3.3 et 3.4). Nous représentons sur ces figures l’anticroisement

de n=4 J+3/2- M=3/2 et de n=3 J=5/2 M=3/2 en 3.7 u.a. qui correspond à un

échange des deux fonctions d’onde, comme nous l’expliquons dans le cartouche des

figures 3.3 et 3.4 même si les deux fonctions d’onde ne serecouvrent pas exactement.

Ceci est du à la progressivité de l’anticroisement qui s’étire approximativement entre

3.3 et 4.1 u.a.. Des anticroisements plus brefs (en terme de champ électrique) existent

notamment n=4 J=1/2- M=1/2 et n=32D5/2 M=1/2 en 2 u.a. où les deux fonctions

d’onde s’échangent très précisément. Nous avons choisi de ne pas les présenter en

raison du très grand nombre de fonctions de base présentes dans les fonctions d’onde

(5 pour n=3 + 7 pour n=4 si M=1/2) et préjudiciable à la lisibilité des figures.

Notons que les fonctions d’onde entre deux évitements restent très stables, ce qui

permettra de restreindre le nombre d’évaluations des sections efficaces en fonction

du champ entre ces points.

3.4 Généralisation

Nous avons vu (formule 3.8) que des lois simples existent pour caractériser les

énergies des états en présence de champ. Il est manifeste que ces lois s’exercent tant

que les états ne se croisent pas.

En raison du 3j présent dans les éléments de matrice d’interaction avec le champ,

les déplacements des états sont d’autant plus intenses que |M | est faible. Les états

de |M | maximal à l’intérieur d’une couche ne sont pas affectés par le champ.

On peut noter que les intégrales radiales présentes dans les éléments d’interaction

sont proportionnelles à 1/Z et, donc, que le mélange des états décrôıt en importance
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en 1/Z le long d’une séquence isoélectronique. Cowan mentionne que la séparation

des niveaux crôıt au minimum en Z, on en déduit que le mélange des niveaux se fera

pour des intensités de champ électrique de plus en plus élevées, de l’ordre de Z2EH .

Les hydrogénöıdes présentent une très bonne régularité en Z tant en énergie

que pour leurs fonctions d’onde. Le croisement des couches étant fonction de la loi

en 1/Z (formule 3.8) et du décalage des couches en Z2, les évitements de niveaux

et échanges de fonctions d’onde se font à des champs caractérisés par Z3EH . Plus

précisément,

E =
Z3

3

2n+ 1

n2(n+ 1)2(nkn − (n+ 1)kn+1)
(3.11)

Les énergies des héliumöıdes correspondent approximativement à celles des hy-

drogénöıdes avec ZHe = Z − 1, ceci est d’autant plus vrai que le nombre quantique

principal n est élevé. Les transitions se font donc pour des champs ((Z− 1)/Z)3 fois

plus faibles, soit 0.79 dans le cas de l’Aluminium (les anticroisements adviennent

vers 2 u.a. et 3.7 u.a. dans la figure 3.1 pour Al XIII et vers 1.6 u.a. et 2.9 u.a. dans

la figure 3.2 pour Al XII).

Dans les faits, les croisements prédits sont d’autant plus décalés par rapport à

la réalité que le champ est élevé (les transitions mentionnées dans le paragraphe

précédent vaudraient 1.98 u.a. et 3.24 u.a. pour Al XIII et 1.56 u.a. et 2.55 u.a. pour

Al XII) ce qui signifie que les interactions de n=3 avec la couche supérieure n=4

ne sont plus négligeables et que la diagonalisation du hamiltonien doit se faire en

incluant les états des deux couches.

Nous avons mentionné au premier chapitre un effet spectral dû au microchamp

qui restreint la possibilité d’observation des raies issues des niveaux les plus excités

en les fondant dans un continuum : la limite d’Inglis-Teller.

3.5 Limite d’Inglis-Teller

Elle correspond à la limite de disparition d’une raie spectrale dans le continuum

dans un spectre de raies, ce qui se produit lorsque la largeur de raies de deux couches

voisines devient tellement importante qu’elles se recouvrent et qu’il n’est plus pos-

sible de les distinguer l’une de l’autre.

Sans que ce soit précisé clairement par Inglis et Teller [42], il apparâıt que la

largeur choisie est la largeur à mi-hauteur de la raie élargie par un microchamp Plus

Proche Voisin, ce qui correspond au décalage obtenu par le champ à mi-hauteur

de la distribution. A l’aide des valeurs du microchamp à mi-hauteur obtenues pour

les différentes distributions au chapitre précédent, nous recalculons cette limite. Il

est nécessaire de préciser que cette limite n’étant pas définie de manière stricte, les
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valeurs numériques proposées par les différents auteurs diffèrent un peu [33].

L’éclatement d’un niveau n en raison du champ électrique a été énoncé en 3.8 et

vaut pour les sous-niveaux les plus perturbés : ∆EZ
n = ±3n(n− 1)E/Z. Le rappro-

chement entre deux couches n et n+ 1 s’écrit donc :

|∆EZ
n |max + |∆EZ

n+1|max = 6n2E/Z (3.12)

La séparation entre deux couches non perturbées valant :

∆En+1
n =

Z2

n2
− Z2

(n+ 1)2
=

(2n+ 1)Z2

n2(n+ 1)2

≈ 2Z2

n3
si n� 1

(3.13)

Il y a superposition lorsque ces deux valeurs s’égalisent :

nmax ≈
(
Z3

3E

)1/5

(3.14)

Pour une valeur de E à mi hauteur, on retrouve avec le modèle PPV la limite

d’Inglis-Teller (formules 1.30, 1.31) et, pour la distribution de Holtsmark, la limite

de disparition se fait à des densités un peu plus élevées :

n ≥ nH
max ≈ Z8/15

(
6.13 1022

Ne(cm−3)

)2/15

. (3.15)

De même que pour l’ionisation par champ, il apparâıt sur la figure 3.5 que les

densités de disparition obtenues à l’aide d’un microchamp MC sont plus élevées que

celles définies précédemment lorsque le couplage grandit et dépasse 1 et tendent vers

le même résultat que la formule 3.15 obtenue à l’aide du microchamp de Holtsmark

lorsque la température est très élevée et la densité faible.

3.6 Conclusion

Cette partie nous a permis de présenter la théorie employée pour réaliser nos

calculs de structure atomique en présence de champ électrique, base des calculs

ultérieurs de section efficace d’excitation collisionnelle en présence de microchamp.

Les notations utilisées par la suite ont été posées et l’étude des croisements évités

de niveaux ainsi que le calcul de la limite d’Inglis-Teller permettent de déterminer

les champs électriques en deçà desquels le mélange des différentes couches n=3 et

n=4 n’est pas nécessaire, permettant ainsi une plus grande simplicité de calcul.
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Fig. 3.1 – Energie des différents niveaux issus des couches n=3 (en trait fin) et n=4 (en trait

épais) de l’Aluminium Hydrogénöıde, en fonction du champ électrique. Des croisements évités entre

les différents niveaux apparâıssent clairement, en particulier entre les niveaux de n=3 d’énergie

la plus élevée et ceux de n=4 d’énergie la plus faible vers 2 u.a. (pour M=1/2) et vers 3.7 u.a.

(pour M=3/2). Les fonctions issues de n=4 J=3/2- M=3/2 (♦) et n=3 J=5/2 M=3/2 (+) sont

représentées en superposition.
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Fig. 3.2 – Energie des différents niveaux issus de 1s3l (en pointillé) et 1s4l (en trait continu fin)

de l’Aluminium Héliumöıde en fonction du champ électrique. Les croisements évités équivalents à

ceux de la figure précédente ont lieu vers 1.6 u.a. et 2.9 u.a. L’aspect dédoublé des courbes est dû

aux états triplet et singulet de chaque niveau.
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Fig. 3.3 – Coefficients de mélange (au sens de la formule 3.9) de la fonction d’onde issue de n=4

J = 3/2−, M = 1/2 de l’Aluminium hydrogénöıde, en fonction du champ électrique. La légende

en est explicitée sur la figure. L’anticroisement s’effectue autour de 3.7 u.a. En 3.1 u.a., la fonction

d’onde vaut approximativement 0.6 n=42D5/2 - 0.56 n=42P3/2 - 0.33 n=42F7/2 + 0.3 n=42D3/2 -

0.23 n=32P3/2 + 0.21 n=42F5/2 et en 4.3 u.a., après l’échange avec la fonction d’onde issue de n=3

J = 5/2, M = 3/2, -0.76 n=32P3/2 - 0.52 n=32D5/2 - 0.26 n=32D3/2 - 0.25 n=42F7/2.
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Fig. 3.4 – Coefficients de mélange de la fonction d’onde issue de n=3 J = 5/2, M = 1/2 de

l’Aluminium hydrogénöıde, en fonction du champ électrique. La légende, explicitée sur la figure, est

la même que dans la figure précédente. L’anticroisement s’effectue autour de 3.7 u.a. En 3.1 u.a., la

fonction d’onde vaut approximativement 0.72 n=32P3/2 + 0.6 n=32D5/2 + 0.3 n=32D3/2 + 0.14

n=42F7/2 et en 4.3 u.a., après l’échange avec la fonction d’onde issue de n=4 J = 3/2−, M = 3/2,

0.57 n=42D5/2 - 0.55 n=42P3/2 + 0.33 n=32D5/2 + 0.29 n=42D3/2 - 0.25 n=42F7/2 - 0.24 n=32P3/2.
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Fig. 3.5 – Limite d’Inglis-Teller des différents niveaux de Al XIII calculée avec le microchamp

Monte-Carlo en fonction de la densité électronique et de la température (T = Te = Ti), le degré

d’ionisation vaut Z̄ = 12. n=3 est en trait continu fin, n=4 en pointillé fin, n=5 en trait continu

épais et n=6 en pointillé épais. Les limites calculées à l’aide des formules de Holtsmark et PPV sont

indépendantes de la température. Nous calculons la limite à partir de la formule exacte de 3.13 et

3.15 pour le microchamp de Holtsmark (♦) et pour le champ Plus Proche Voisin (+) ainsi que la

limite classique d’Inglis-Teller (⊗) (formule 1.31 obtenue à partir de la forme approchée de 3.13 et

du microchamp PPV). Le numéro de la couche est indiqué à proximité de chaque sigle.



Chapitre 4

Etude théorique du calcul des

sections efficaces et des forces

de collision

4.1 Introduction

Les excitations collisionnelles sont un des processus majeurs de peuplement des

niveaux en physique des plasmas et font l’objet de nombreuses études pour obtenir

des bases exhaustives de sections efficaces concernant les ions qui intéressent en

particulier la communauté des astrophysiciens ou encore celle des physiciens de la

fusion magnétique et inertielle. Les excitations collisionnelles ne se limitent pas à

peupler les niveaux excités des ions, elles jouent aussi un rôle important dans les

phénomènes d’ionisation collisionnelle par le biais d’excitations successives [40]. La

détermination de leur section efficace est donc une tâche incontournable mais ardue

aussi bien expérimentalement que théoriquement.

Pour les plasmas chauds, les expériences ne donnent accès qu’à des résultats

globaux qu’il faut ensuite réanalyser pour extraire les taux d’excitations collisionnelle

des populations des différents niveaux, elles-mêmes déduites des propriétés radiatives

du milieu étudié. Les mesures directes existantes de sections efficaces ne couvrent

principalement que les atomes et molécules neutres ainsi que quelques ions faiblement

ionisés [82]. L’obtention de résultats concernant des ions moyennement ou fortement

ionisés passe donc obligatoirement par une étude théorique.

Une excitation collisionnelle est un processus complexe, même en l’absence de

champ électrique. Elle met en jeu un ion, composé d’un noyau et d’au moins un

électron lié, et un électron libre. C’est donc un problème à au moins trois corps,

non soluble exactement, que ce soit de manière classique ou de manière quantique.
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Comme nous l’avons mentionné, de nombreuses équipes travaillent à déterminer, de

la façon la plus précise possible, ces sections efficaces et de nombreuses théories et

méthodes de calcul ont été élaborées. Henry [39, 40], Sobelman [77], Fano [27] ou

encore Carthy et Weigold [15] en font des présentations détaillées. Nous limiterons

notre étude aux deux approches envisageables en présence de champ électrique :

l’approximation de Born et la méthode Distorted Waves.

Après les avoir présentées, nous détaillerons les différentes méthodes que nous

avons essayées pour prendre en compte le microchamp et les comparerons pour jus-

tifier notre choix d’une approche Distorted-Waves avec un modèle d’ion en couplage

LSJ pur. Nous présenterons simultanément la méthode que nous avons développée

pour réduire les temps de calcul des sections efficaces à convergence lente. Enfin, nous

expliquerons le fonctionnement du code numérique réalisé. Il calcule de manière au-

tonome les forces de collision de l’ensemble des transitions possibles entre chaque

état (|γM >) ainsi que les taux collisionnels correspondants. Notre programme est

validé par comparaison avec des travaux similaires, hors champ électrique, pour du

Fer Héliumöıde.

4.2 Principes généraux sur la diffusion

Parmi toutes les réactions possibles qui surviennent lors de collisions entre par-

ticules, on nomme diffusions celles pour lesqueslles l’état final est constitué des

mêmes particules que l’état initial.

Lorsqu’il existe un flux incident Fi de particules (nombre de particules par unité de

surface et de temps) qui interagit avec un centre diffuseur, le nombre de particules

diffusées dans l’angle solide dΩ autour de la direction (θ, ϕ) s’écrit :

dn = Fiσ(θ, ϕ)dΩ (4.1)

où σ(θ, ϕ) est la section efficace différentielle de diffusion dans la direction

(θ, ϕ). La section efficace totale de diffusion σ est définie par :

σ =

∫
σ(θ, ϕ)dΩ. (4.2)

Cette partie étudie les diffusions inélastiques et plus spécifiquement les excitations

collisionnelles électron-ion. L’ionisation collisionnelle et la recombinaison diélectro-

nique mettent en oeuvre des techniques similaires et peuvent en être extrapolées.

Il existe, pour leur calcul, une grande variété de méthodes à la précision croissante

mais dont les difficultés théoriques et surtout numériques augmentent notablement.

Elles sont présentées successivement.
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4.3 Les excitations collisionnelles par la théorie des per-

turbations

4.3.1 Rappel sur les méthodes perturbatives

La résolution exacte des problèmes de mécanique quantique n’est en général

possible que dans des cas très simples et les tentatives de solutions numériques de

l’équation de Schrödinger en trois dimensions se heurtent aussi très rapidement aux

limites des calculateurs, en particulier lorsqu’il y a plus d’un électron.

Lorsque l’environnement est très légèrement modifié par rapport à une situation

microscopique soluble exactement, la théorie des perturbations propose de calculer

initialement ces solutions exactes puis de calculer approximativement les corrections

qui leur sont imposées par la perturbation [48, 8, 18]. L’une des applications ma-

jeures de cette théorie est le calcul des probabilités de transitions collisionnelles ou

radiatives dans le spectre continu sous l’influence d’une perturbation constante.

Le système (électron libre + ion, par exemple) est régit par l’équation de Schrödin-

ger :

2i
∂Ψ

∂t
= (H0 + V (t))Ψ (4.3)

où H0 est le Hamiltonien non perturbé, V le potentiel perturbateur et Ψ la fonction

d’onde totale qui peut être développée sur la base des états propres non perturbés :

Ψ =
∑

k

ak(t)ψ
(0)
k . (4.4)

Cette notation est discrète. Si le spectre des états propres est continu :

Ψ =

∫
aν(t)ψ

(0)
ν dν. (4.5)

Les conditions de normalisation sur les coefficients aν sont équivalentes aux précé-

dentes : ∑

k

|ak|2 = 1 →
∫

|aν |2dν = 1 (4.6)

néanmoins, la normalisation des fonctions propres à l’unité n’est plus possible, elle

s’écrit pour le cas continu [48] :
∫
ψν′ψ∗

νdq = δ(ν ′ − ν) et

∫
δ(ν ′ − ν)dν ′ = 1. (4.7)

Si le système est initialement dans l’état n (ak(t = 0) = δkn), les coefficients

de chaque fonction propre valent au premier ordre akn(t) = −i
∫
Vkn(t′)

2
dt′ =

−i
∫
Vkn

2
ei(En−Ek)t/2dt où Vkn(t) =

∫
ψk

∗V (t)ψndr = Vkne
i(En−Ek)t/2 est l’élément

de matrice de perturbation.
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La probabilité de transition par unité de temps de l’état initial vers les états

compris dans l’intervalle [νk; νk + dνk] vaut :

dWnk =
|ank|2dνk

t
= π|Vnk|2δ(E(0)

k − E(0)
n )dνk (4.8)

si le spectre des états dégénérés est continu sur ν et avec la normalisation 4.7.

4.3.2 La formule de Born

Lorsque les interactions responsables de la diffusion sont assimilables à des per-

turbations, il est possible d’obtenir des formules simples de sections efficaces à l’aide

de la théorie précédente sans effectuer de développement compliqué (i.e. en ondes

partielles) des fonctions d’onde (cf. [19, 77]).

Cette méthode est adaptée au cas où les électrons libres sont rapides par

rapport aux électrons atomiques (en particulier les électrons mis en jeu

dans la transition). Dans cette limite “hautes énergies”, il est possible de négliger

les effets d’échange entre l’électron libre et les liés (du fait de la grande différence

d’énergie entre les électrons libres et liés, leurs intégrales de recouvrement sont très

faibles).

La probabilité d’une transition par excitation collisionnelle entre les états atomiques

ψa0M0
et ψaM associés aux électrons libres ϕk0

et ϕk respectivement s’écrit au pre-

mier ordre de la théorie des perturbations (4.8) :

dW = π

∣∣∣∣∣

∫
ϕ∗

ki
(r)

〈
ψaiMi

∣∣∣∣∣

N∑

i=1

2

|r − ri|
− 2Z

r

∣∣∣∣∣ψaf Mf

〉
ϕkf

(r)dr

∣∣∣∣∣

2

δ(Ei − Ef )dkf .

(4.9)

Ei = Eai + k2
i et Ef = Eaf

+ k2
f où kf est l’impulsion de l’électron libre et la

fonction d’onde libre finale, développée en ondes planes, proportionnelle à eikf r est

normalisée par la condition 4.7, ce qui implique que ϕkf
(r) = (2π)−3/2eikf r.

D’après la formule 4.1, la section efficace différentielle d’excitation collisionnelle

correspond à cette probabilité de transition pour un flux incident d’électrons libres

égal à 1 (soit ϕki
(r) = eikir/

√
vi = k

−1/2
i eikir).

L’intégration sur kf s’effectue en écrivant :

δ(Ef − Ei)dkf = δ(k2
f − [k2

i + Eai − Eaf
])
kf

2
dk2

f dΩ (4.10)

ce qui permet de remplacer ces termes par
kf

2
dΩ où la valeur de kf est fixée par

kf = (k2
i + Eai − Eaf

)1/2 et la somme sur les états atomiques finaux et la moyenne
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sur les états initiaux conduisent à la formule de Born :

dσB = 1
16π2

kf

kigi

∑

MiMf

∣∣∣∣∣

∫
e−i(ki−kf ).r

〈
ψaiMi

∣∣∣∣∣

N∑

i=1

2

|r − ri|
− 2Z

r

∣∣∣∣∣ψaf Mf

〉
dr

∣∣∣∣∣

2

dΩ

(4.11)

où gi est le poids statistique de l’etat ai.

Il est possible d’en donner une formulation plus compacte en effectuant l’intégration

sur r qui transforme dσB en :

dσB =
8π

k2
i gi

∑

MiMf

∣∣∣∣∣

〈
ψaiMi

∣∣∣∣∣

N∑

i=1

e−iq.ri

∣∣∣∣∣ψaf Mf

〉∣∣∣∣∣

2
dq

q3
(4.12)

où q = ki − kf , l’interaction avec le noyau atomique, monoélectronique, s’annulant

pour des états atomiques distincts.

Le développement de l’exponentielle complexe [19] :

e−iq.ri =
∞∑

t=0

(2t+ 1)i−tjt(qri)
t∑

m=−t

C(t)
m

∗
(q̂).C(t)

m (r̂i) (4.13)

où C(t)
m (q̂) =

√
4π

2t+ 1
Ytm(q̂) est l’harmonique sphérique renormalisée et le théorème

de Wigner-Eckart permettent de simplifier la somme en :

dσB =
8π

k2
i gi

∞∑

t=0

(2t+ 1) < aiJi||
∑

i

jt(qri)C
(t)
i ||afJf >

2 dq

q3
(4.14)

où l’élément de matrice central peut être séparé en parties angulaire et radiale à

l’instar des éléments de matrice électriques multipolaires, seule la partie radiale

< li||rtC(t)||lf > étant modifiée en :

< li||jt(qr)C(t)||lf >= (−1)li [li, lf ]1/2

(
li t lf

0 0 0

)∫ ∞

0
Pli(r)jt(qr)Plf (r)dr

(4.15)

avec li et lf correspondant aux électrons liés actifs dans la transition.

dσB =
8π

k2
i gi

∞∑

t=0

(2t+ 1) < aiJi||C(t)||afJf >
2

(∫ ∞

0
Pli(r)jt(qr)Plf (r)dr

)2 dq

q3

(4.16)

et la section efficace totale a donc pour expression :

σB
a0a = 8π

k2
i gi

∞∑

t=0

(2t+ 1) < aiJi||C(t)||afJf >
2

∫ ki+kf

ki−kf

[Rt(q)]
2 dq

q3
(4.17)
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où Rt(q) est l’intégrale radiale précédente.

4.3.3 La formule de Bethe

Les valeurs admissibles de t sont contraintes par le 3j de 4.15 : t = |li−lf |, li−lf +

2, ..., li + lf et correspondent successivement à des interactions électron-atome multi-

polaires. Il est souvent suffisant de s’en tenir à la multiplicité minimale tmin = |li−lf |
dans la mesure où les éléments successifs de t dans 4.17 décroissent rapidement. Il

n’est pas possible d’en donner une formulation analytique simple, mais un calcul

numérique montre, qu’en général, la section efficace multipolaire σt+2 est 5 à 10 fois

inférieure à σt.

De plus, il est possible de simplifier les fonctions de Bessel au premier ordre du

développement :

jt(qr) −−−→
qr→0

2tt!qt

(2t+ 1)!
rt. (4.18)

Dans le cas des transitions dipolaires (i.e. optiquement permises), ∆l = ±1,

t = 1 , les deux approximations précédentes transforment l’élément de matrice de

4.14 en :

∞∑

t=0

[t] < aiJi||
∑

i

jt(qri)C
(t)
i ||afJf >

2=
q2

3
| < aiJi||

∑

i

rC
(1)
i ||afJf > |2 =

q2g

∆E
faiaf

(4.19)

où faiaf
est la force d’oscillateur dipolaire électrique :

faiaf
=

∆E

3gi
| < aiJi||

∑

i

rC
(1)
i ||afJf > |2. (4.20)

L’approximation résultante s’appelle formule de Bethe et s’écrit en unités a2
0 :

σBethe
aiaf

=
8π

k2
i ∆E

faiaf
ln

(
ki + kf

ki − kf

)
≈ 8π

Ei∆E
faiaf

ln

(
4Ei

∆E

)
=

8π

∆E2
faiaf

ln 4X

X

(4.21)

à forte énergie (Ei >> ∆E), X représentant le rapport de l’énergie incidente à

énergie de seuil.

4.3.4 Quelques remarques sur les sections efficaces de Born

Un certain nombre de caractéristiques générales sur les sections efficaces de Born

(et aussi de Bethe) peuvent être dégagées. Ainsi pour les transitions sans changement

de spin (∆S = 0) :
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à forte énergie (Ei >> ∆E)

– pour les transitions optiquement permises : ∆l = ±1 , σB α
lnEi

Ei

– pour les transitions interdites optiquement : ∆l 6= ±1 , σB α
1

Ei

à faible énergie (Ei ≈ ∆E)

– σB α kf =
√
Ei − ∆E

Il faut noter, en outre, la loi d’échelle en fonction de la charge du noyau pour un

hydrogénöıde :

σZ = σH/Z
4. (4.22)

Ces formules donnent de bons résultats comparées à l’expérience pour les énergies

élevées (& 10∆E) mais se montrent beaucoup plus approximatives en deçà.

Du fait qu’elle ne prend pas en compte l’attraction coulombienne de l’ion, la méthode

de Born donne une section efficace nulle à l’énergie du seuil, ce qui reste valable pour

un atome neutre mais pas dans le cas d’ions multichargés.

Les limites de cette approximation apparaissent aussi dans son incapacité à traiter

des transitions avec changement de spin (d’après l’élément de matrice angulaire de

4.17), à tenir compte de la modification des orbitales libres dans le potentiel de

l’ion...

4.3.5 Quelques raffinements possibles

Pour échapper aux limites intrinsèques de l’approximation de Born, tout en

conservant l’approche simple de la théorie des perturbations, il existe essentielle-

ment trois axes qui premettent d’améliorer les résultats et les rendre plus conformes

à ceux de l’expérience.

– La distortion des ondes incidentes et sortantes par le champ de

l’atome. L’attraction coulombienne fait crôıtre le flux d’électrons libres à

proximité du noyau, ce qui mène à un accroissement notable de la section effi-

cace au seuil de réaction, désormais non nulle. L’approximation la plus simple

consiste à perturber l’électron libre par un champ coulombien créé par une

charge égale au degré d’ionisation de l’ion et donc à remplacer les fonctions de

Bessel par des fonctions de Coulomb dans la formule de Born (approximation

Coulomb-Born). L’étape suivante, appelée Distorted Waves (DW), remplace

ce champ par le potentiel créé par l’ion.

– La prise en compte des effets d’échange entre l’électron libre et l’ion.

L’antisymétrisation de l’électron libre avec les électrons liés de l’ion, déjà an-

tisymétrisés, permet de traiter les transitions d’intercombinaison (∆S = 1).
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– La renormalisation des sections efficaces pour assurer la conservation

du nombre total de particules diffusées. L’approximation de Born suppose

que l’ensemble des transitions qui peuvent advenir au cours de la collision

sont négligeables devant les diffusions élastiques qui ne modifient pas l’état de

l’ion. Il existe néanmoins un certain nombre de ”voies” possibles de réactions

qui peuvent devenir résonnantes pour une énergie donnée et être extrêmement

favorisées au détriment des diffusions élastiques, déséquilibrant ainsi largement

le bilan de conservation (par exemple, les transitions autorisées à l’intérieur

d’une même couche).

Remarquons que ces effets s’estompent tous à forte énergie, où l’approximation de

Born redevient pertinente.

Ces développements ne peuvent être effectués qu’en acceptant un développement

en ondes partielles des fonctions d’onde libres, la représentation simple en q = kf − ki

n’étant plus utilisable. Nous développons dans le chapitre suivant la méthode que

nous avons employée et qui prend en compte distortion des fonctions d’onde libres

et échange lors de la collision.

4.4 L’approximation Distorted Waves (DW)

4.4.1 Développement en ondes partielles distordues

Il est possible d’accéder aux équations Distorted Waves par la théorie des per-

turbations en remplaçant dans la probabilité de transition 4.9 les ondes planes, qui

vérifient une équation de Schrödinger sans potentiel perturbateur ((−∇−k2)ϕk(r) =

0), par des ondes distordues par le potentiel de l’ion émetteur :

(−∇ + 2V (r) − k2)ϕk(r) = 0. (4.23)

Sachant que toute fonction de carré sommable peut être développée sur la base des

harmoniques sphériques, nous pouvons écrire pour la fonction d’onde sortante :

ϕkf
(r) =

√
2

π

1

kf

∑

lf ,mf

ilf
F

kf

lf
(r)

r
Ylf mf

(r̂)Y ∗
lf mf

(k̂f ) (4.24)

où les fonctions F k
l (r) vérifient

[
d2

dr2
− l(l + 1)

r2
− 2UaM (r) + k2

]
F k

l (r) = 0 (4.25)

et dont l’amplitude est prise égale à 1 pour r grand. On montre qu’avec ces coeffi-

cients, la fonction d’onde finale atteint bien la condition de normalisation requise :

< ϕkf
(r)|ϕk′

f
(r) >= δ(kf −k′

f ). (Voir la formule 18.26 de la référence [19](Cowan) :
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∫
F k

l F
k′

l dr = π
√
E δ(E − E′), δ(E−E′) = δ(k− k′)/2k et la formule VI D.26 de la

référence [18](Cohen-Tannoudji) :
∑

lm

Ylm(k̂)Ylm(k̂′) = δ(θk − θk′)δ(φk − φk′)/ sin θk.)

La section efficace différentielle d’excitation collisionnelle s’obtient à partir de

la probabilité de transition 4.9 lorsque le flux d’électrons incidents est unitaire. En

remarquant que les ondes planes incidente (eikir/
√
ki) et sortante (eikf r/(2π)3/2)

diffèrent d’un facteur
(2π)3/2

√
ki

tout en admettant le même développement 4.13 que

les ondes distordues :

eikr

(2π)3/2
=

√
2

π

∑

l

il

k

kr jl(kr)

r

l∑

m=−l

Y ∗
lm(k̂)Ylm(r̂) (4.26)

où krjl(kr) a aussi une amplitude de 1 aux r grands, nous pouvons écrire la fonction

d’onde distordue entrante :

ϕki
(r) =

4π

k
3/2
i

∑

limi

ili
F ki

li
(r)

r
Ylimi(r̂)Y ∗

limi
(k̂i) (4.27)

où F ki
li

est normalisée à 1 à l’infini et vérifie la même équation différentielle 4.25 que

F
kf

lf
avec UaiMi(r) et k2

i .

La moyenne sur l’angle d’incidence de l’électron libre initial et la somme sur celui

de l’électron sortant simplifient les harmoniques sphériques dépendantes de k̂f et k̂i

apparues dans dσ :

∫
dΩi

4π

∫
dΩf Ylf mf

(k̂f )Y ∗
l′f m′

f
(k̂f )Y ∗

limi
(k̂i)Yl′im

′
i
(k̂i) =

1

4π
δlf l′f

δmf m′
f
δlil′iδmim′

i

(4.28)

et mènent à la section efficace :

σaiMims
i ,af Mf ms

f
=

4π

kfk
3
i

∑

lf ,mf ,li,mi∣∣∣∣∣∣

∫
F ki

li

r
Y ∗

limi

〈
ψaiMi

∣∣∣∣∣

N∑

i=1

2

|r − ri|
− 2Z

r

∣∣∣∣∣ψaf Mf

〉
F

kf

lf

r
Ylf mf

dr

∣∣∣∣∣∣

2

(4.29)

où ms
i et ms

f représentent les spins des électrons libres.

Nous allons donner une autre forme à cette section efficace de manière à fournir

au paragraphe suivant une formule très simple de la force de collision. Les fonctions

F ki
li

et F
kf

lf
sont normalisées à 1 à l’infini, nous les renormalisons à k

−1/2
i et k

−1/2
f

et multiplions donc la formule précédente par kfki, moyennons le spin de l’électron
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incident et sommons le spin de l’électron libre final :

σaiMi,af Mf
=

2π

k2
i

lf mf ms
f∑

limims
i

∣∣∣
〈
ΨaiMi,kilimimSi

|Vinteraction|Ψaf Mf ,kf lf mf ms
f

〉∣∣∣
2

(4.30)

où
〈
ΨaiMi,kilimims

i
|Vinteraction|Ψaf Mf ,kf lf mf ms

f

〉
représente l’élément de matrice d’in-

teraction de 4.29 entre les systèmes initial Ψi et final Ψf composés de l’onde partielle
F k

l
r Ylmδms et de l’ion ψaM antisymétrisés.

En toute rigueur, il est possible d’établir les formules de section efficace DW

précédentes à l’aide des équations Close Coupling, plus générales et rigoureuses

[73, 74, 77, 28], et non plus par la voie perturbative précédente. En résumé, la

méthode Close Coupling établit un système intégro-différentiel complet soluble de

manière itérative pour le calcul des états du système ion-électron. Le nombre des

états possibles est variable mais peut comprendre ceux résultant de réactions ”para-

sites” telles l’ionisation collisionnelle, l’effet Auger ou encore la création de complexes

temporaires... Des temps de calcul prohibitifs et une grande complexité de program-

mation sont les coûts induits par la grande précision de cette méthode. L’approche

DW les réduit drastiquement en supposant que le couplage entre tous les différents

états possibles est très faible, ce qui permet de réduire le nombre de canaux de

réaction à 2 [67, 54, 75]. La précision reste très acceptable, en particulier pour les

ions multichargés [82, 39, 36].

Notre approche correspond à celle développée par Pindzola [63, 11]

et Peyrusse [61], sans effets relativistes ni états atomiques multiconfigu-

rationnels (mais ces derniers apparâıssent lorsque nous superposons le

champ électrique dans la partie suivante) ni normalisation des sections

efficaces, mais comprenant les effets d’échange ainsi que deux potentiels

distincts (Vai et Vaf
) pour la distortion des électrons incident et sortant.

Notre choix de cette méthode a été déterminé par son usage fréquent, sa mise en

oeuvre relativement simple et plus précisément, par souci de cohérence avec le code

Collisionnel Radiatif de O. Peyrusse : TRANSPEC [59, 60] qui permettra d’obser-

ver les effets spectraux induits par la modification de ces sections efficaces due au

microchamp.



4.4 L’approximation Distorted Waves (DW) 69

4.4.2 Forces de collision Ω

Une quantité sans dimension nommée force de collision peut être utilisée à la

place de la section efficace :

Ωif =
gik

2
i

π
σif (4.31)

où gi correspond à la dégénérescence du niveau initial. Elle a l’avantage d’être

symétrique par rapport aux processus direct et inverse (excitation et désexcitation) :

Ωif (ki, kf ) = Ωfi(kf , ki), (4.32)

est additive en regard des différents niveaux atomiques (Ωaa′ =
∑

MM ′

ΩaM,a′M ′ par

exemple), enfin, à forte énergie, en raison de ce qui a été noté sur les sections efficaces

de Born au paragraphe 4.3.4, elle est quasi indépendante de ki et kf (pour les tran-

sitions interdites optiquement) ou crôıt lentement (logarithmiquement) (transitions

optiquement permises).

Ωif = 2
∑

limims
i ,lf mf ms

f

|
∫
φiVijφjdr|2 (4.33)

où
∫
φiVijφj représente les éléments de matrice diélectroniques antisymétrisés, aussi

notés < ψaiMiφi(ki, li)|
N+1∑

k<l

2

rkl
|ψaf Mf

φf (kf , lf ) > où les φ représentent les ondes

partielles
F k

l
r Ylmδms . Les termes d’interaction électron-noyau sont monoélectroniques

et s’annulent donc car l’ion et l’électron libre sont tous deux différents entre l’état

initial et l’état final.

4.4.3 Calcul des éléments de matrice diélectroniques

Le résultat précédent ne présente aucun couplage entre l’électron libre et l’ion ou

bien de couplage spin orbite ou LS de l’ion. Dans la réalité, on cherche à déterminer

des forces de collision entre niveaux atomiques de moments cinétiques totaux Ji, Jf

bien spécifiés. Elles s’obtiennent en utilisant les coefficients de Clebsch-Gordan et

leurs propriétés :

|j1j2m1m2 >=
∑

jm

C(j1j2m1m2; jm)|j1j2jm > (4.34)

et ∑

m1m2

C(j1j2m1m2; jm)C(j1j2m1m2; j
′m′) = δj,j′δm,m′ . (4.35)
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Ce qui donne simplement pour les électrons libres :

Ωif = 2
∑

jimi,jf mf

| < ψaiφi(lijimi)|
N+1∑

k<l

1

rkl
|ψaf

φf (lf jfmf ) > |2 (4.36)

et dans le cas où le calcul est effectué sur tous les moments magnétiques de l’atome :

Ωif = 2
∑

jijf J

(2J + 1)| < ΦJiφjiJM |
N+1∑

k<l

1

rkl
|ΦJf

φjf
JM > |2, (4.37)

les éléments de matrice étant présentés en détail dans l’appendice D. Les sommes sur

les moments cinétiques totaux des électrons libres ji et jf contiennent implicitement

les sommes sur les moments orbitaux li = ji ± 1/2 et lf = jf ± 1/2.

Dans le cas où l’on ne considère pas des transitions détaillées mais des transitions

totales entre configurations n1l
w1

1 nαl
wα
α nβl

wβ−1
β nN l

wN
N et n1l

w1

1 nαl
wα−1
α nβl

wβ

β nN l
wN
N ,

Pindzola [63] et Peyrusse [61] donnent une version plus pratique des forces de col-

lision à partir de la formule 4.33 et en décomposant le système électronique en

déterminants de Slater (chaque électron est affecté de nombres quantiques bien

déterminés lmms). Leurs formules très générales se retrouvent simplement pour

des transitions dans des alcalins (un seul électron appartenant à une couche non

complète). Nous nous y restreindrons, les formules que nous établissons ultérieurement

pour des transitions en présence de champ électrique à l’aide de cette formule n’étant

valables que pour ces configurations électroniques.

Ωif = 8
∑

lilf k

1

2k + 1

[
(Q

(k)
αi,βf )2 + (Q

(k)
αi,fβ)2 −Q

(k)
αi,βfP

(k)
αi,fβ

]
(4.38)

où

Q
(k)
αi,βf = R

(k)
αi,βf < clα||C(k)||c′lβ >< cli||C(k)||c′lf >, (4.39)

Q
(k)
αi,fβ = R

(k)
αi,fβ < clα||C(k)||c′lf >< cli||C(k)||c′lβ >, (4.40)

P
(k)
αi,fβ = (2k + 1)

∑

k′

(−1)k+k′
Q

(k′)
αi,fβ

{
lα lβ k

li lf k′

}
, (4.41)

R(k) est l’intégrale radiale double classique sur les orbitales radiales P :

R
(k)
ij,tu =

∫ ∞

0

∫ ∞

0

2rk
<

rk+1
>

Pi(r1)Pj(r2)Pt(r1)PU (r2)dr1dr2 (4.42)
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et

< cli||C(k)||c′lf >= (−1)li [li, lf ]1/2

(
li k lf

0 0 0

)
(4.43)

où [l] = 2l + 1.

Diverses méthodes existent pour la détermination numérique des fonctions d’onde

libres, plusieurs sont proposées par C. Froese-Fischer [29] et de plus récentes ont été

développées, en particulier par Sapirstein et al [71], qui emploient des fonctions

splines, ou encore l’approche Phase-Amplitude de Bar-Shalom [6].

La voie choisie ici est une intégration par la méthode de Numerov avec un pas

exponentiel puis arithmétique pour s’accorder avec les codes ATHF (Hartree-Fock)

et ATKS (Kohn-Sham) de Perrot [57] (énergie moyennée sur une configuration) qui

ont fourni la base des fonctions atomiques numériques de ces travaux ; son détail est

fourni dans l’appendice C

4.4.4 Orthogonalisation des fonctions d’onde libres dans les intégrales

d’échange

Les fonctions d’onde monoélectroniques sont évaluées dans un potentiel autocon-

sistant par le code Hartree-Fock de Perrot, elles sont donc orthogonales entre elles et

avec les fonctions d’onde libres calculées à partir de ce potentiel. Néanmoins, dans

le cas des hydrogénöıdes, si les fonctions d’onde liées sont purement hydrogéniques

et les fonctions d’onde libres sont calculées dans le potentiel total de l’ion (noyau

+ électron lié), ces fonctions d’onde ne sont plus orthogonales entre elles (l’une

calculée dans un potentiel en Z/r, l’autre, dans un potentiel en (Z − 1)/r pour r

grand). Ceci induit une forte erreur numérique dans le calcul des intégrales radiales

d’échange (mais qui se réduit à mesure que l’état de charge - Z - crôıt). L’orthogona-

lité est assurée pour des orbitales de lat et li distincts par les parties angulaires ; dans

le cas contraire, il est possible d’y remédier par une orthogonalisation au premier

ordre dans les intégrales d’échange concernées :

φ̃li = φli− < φli |PLf
> .PLf

.δliLf
, (4.44)

φ̃lf = φlf− < φlf |PLi > .PLi .δlf Li . (4.45)

L’intégrale d’échange s’écrit :

R
(k)
echange =

∫ ∞

0

∫ ∞

0

2rk
<

rk+1
>

Pi(r1)φ̃i(r2)φ̃f (r1)Pf (r2)dr1dr2. (4.46)
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4.5 Excitations collisionnelles en présence de champ électrique

En présence de champ électrique, les forces de collisions précédentes doivent être

recalculées. Nous présentons dans les paragraphes qui suivent le seul modèle réalisé

jusqu’ici ainsi que les deux que nous avons essayés, avant de les comparer.

Mentionnons que, dans tous les cas présentés, l’axe de référence, pour ca-

ractériser la direction de l’impulsion des électrons libres comme pour la

projection des moments cinétiques totaux, est l’axe du champ électrique.

4.5.1 Etudes antérieures

Quelques travaux sur les mécanismes collisionnels en présence de champ ont

déja été présentés dans la littérature. Ils concernent essentiellement le phénomène

de Recombinaison Diélectronique, très affecté par la présence de champs électriques,

même modestes, car ce processus engage des niveaux peu liés et donc de nombre

quantique principal n élevé, extrèmement sensibles à toute perturbation.

Des études théoriques ont été présentées dès 1976 [43] suivies en 1983 par des

comparaisons expérimentales [9]. Elles se continuent et semblent de plus en plus

cohérentes [5, 7, 66]. De manière plus récente ont commencé des études portant sur

d’autres mécanismes collisionnels dont les excitations électron-ion. A notre connais-

sance, l’étude de F. Perrot (1988)[58] dans le cas du Néon hydrogénöıde, pionnière

dans ce domaine, suivie en 1996 par un travail plus général de Krstić et Hahn [47]

sur l’ensemble des mécanismes radiatifs et collisionnels sont restées isolées.

Le calcul de Perrot était prospectif et cherchait essentiellement à donner un

ordre de grandeur de l’influence du microchamp sur les sections efficaces d’excita-

tion collisionnelles. Le modèle est une approximation de Born adaptée à l’ion

monoélectronique du Néon dont le Hamiltonien d’interaction prend en compte

effet Stark et écrantage statique de Debye-Hückel en suivant le modèle de

Hatton [38] ;

U(r1, r2) = −Z

r1
e−r1/λD − Ez1 +

1

r12
e−r12/λD (4.47)

L’amplitude de diffusion de Born se simplifie :

fif (k̂i, k̂f ) = − 1

4π

∫ ∫
dr1dr2e

i(kf−kf ).r1U(r1, r2)Ψ∗
f (r2)Ψf (r2)

= −
∫
dr2Ψ∗

f (r2)Ψi(r2)
eiK.r2

K2 + λ2
D

(4.48)

où K représente la différence d’impulsion entre l’électron incident et l’électron libre

final : K = ki−kf sachant que l’énergie totale du système est conservée : k2
i /2+Ei =
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k2
f/2 + Ef . Finalement, le développement des états perturbés sur la base des états

propres non perturbés :

Ψim(r) =
∑

n,l

aim
nl (E)Rnl(r)Y

m
l (r̂)

Ψfµ(r) =
∑

ν,λ

afµ
νλ(E)Rνλ(r)Y µ

λ (r̂)

(4.49)

et la moyenne sur la direction du champ électrique donnent l’expression compacte

de la section efficace :

σif (ki) =
32π2

k2
i

∫ ki+kf

|ki−kf |

KdK

(K2 + λ2
D)2

×

λ+l∑

L=λ−l


∑

ν,λ

∑

n,l

af
νλ(E)ai

nl(E)C(lm, λµ;L µ−m)IL
νλ,nl(K)




2 (4.50)

où IL est l’élément de matrice radial :

IL
νλ,nl(K) =

∫ ∞

0
r2drRνλ(r)Rnl(r)jL(Kr) (4.51)

et jL la fonction de Bessel sphérique d’ordre L et C(lm, λµ;Lµ−m) est un coefficient

de Clebsch-Gordan.

Il est important de noter que l’approche de Perrot emploie un modèle d’ion

monoélectronique sans couplage spin-orbite, mais introduit un écrantage plasma

au coeur de l’édifice atomique. Cet écrantage est spécifique d’une situation

donnée en densité et température et limite par conséquent l’extrapolation des

résultats acquis à des cas ”extrêmes” (Te=500 eV, Ne=1.09 1024e/cm3 pour λD =

3.u.a.). Néanmoins, cette constante d’écran permet de lever la dégénérescence des

niveaux (séparant 2s et 2p de 0.1 Ryd) et de continuer de les nommer avec la

notation spectroscopique usuelle (2s et 2p) en présence de champ. Sans écrantage,

les niveaux seraient restés dégénérés et le traitement aurait dû se faire à l’aide des

états paraboliques.

Son étude se restreint aux excitations 1s → 2s, 1s → 2p et 2s → 2p mais fait

apparâıtre la grande sensibilité des sections efficaces au champ électrique, parti-

culièrement dans le cas des excitations entre niveaux proches où la variation peut

atteindre plusieurs ordres de grandeur.

4.5.2 Modèle Distorted Waves sans couplage spin-orbite

Sans donner tout le détail des calculs, non nécessaire ici, nous avons développé

une formulation compacte de la force de collision adaptée aux hydrogénöıdes, dans
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la lignée de celle établie par Pindzola [63] ou Peyrusse [61] déjà présentée dans la

section précédente.

Nous reprenons le developpement de Perrot 4.49 de l’état ionique perturbé sur

la base des états non perturbés :

ψ(i ou f),m(E , r) =
∑

(α ou β)n,l

a
(i ou f)Nm
(α ou β)nl (E) ψ(α ou β)nlm(r), (4.52)

sans modifier le développement en ondes partielles des fonctions d’onde libres présenté

en 4.24, 4.25, 4.27. Nous supposons ici, comme dans le modèle suivant, que les

électrons libres sont peu perturbés par la présence du champ électrique. Cette hy-

pothèse est acceptable lorsque leur énergie est élevée et dans la mesure où le micro-

champ électrique existe dans un volume restreint (caractérisé par les distances inter-

ioniques). La trajectoire de l’électron est alors peu modifiée. A plus basse énergie,

en particulier à proximité de l’énergie du seuil d’excitation, l’électron libre sortant

est beaucoup plus sensible au microchamp et notre trâıtement est sûrement plus

discutable. La prise en compte du champ électrique sur les électrons libres peut être

réalisée en résolvant leur Hamiltonien en coordonnées paraboliques, comme Bracher

et al [14] ou C. Valli [79] l’ont effectué récemment, mais au prix d’une complexité

beaucoup plus élevée.

La moyenne de la force de collision sur l’orientation des électrons libres 4.28

conduit à :

Ωif = 2
∑

l0l1

∑

m0m1

∑

ms0ms1

∑

msimsf

|Dif |2 (4.53)

où Dif est l’élément de matrice diélectronique de 4.30 modifié par la présence du

champ électrique :

Dif =
∑

αβ

aimi
nαlα

(E)a
fmf∗
nβ lβ

(E)

[〈
α0

∣∣∣∣
2

r12

∣∣∣∣β1

〉
−
〈
α0

∣∣∣∣
2

r12

∣∣∣∣ 1β
〉]

, (4.54)

0 et 1 représentant respectivement les ondes partielles φi et φf de 4.33.

Nous retrouvons la forme compacte 4.38 :

Ωif = 8
∑

l0,l1,k

1

2k + 1

(
(Q

(k)
i0f1)

2 −Q
(k)
i0f1P

(k)
i01f + (P

(k)
i01f )2

)
(4.55)

mais avec les éléments de matrice intermédiaires 4.39, 4.41 modifiés par le micro-

champ :

Q
(k)
i0f1 =

∑

αβ

(−1)lαaimi
nαlα

(E)a
fmf∗
nβ lβ

(E)

(
lα k lβ

−mi mi −mf mf

)
Q

(k)
α0β1, (4.56)



4.5 Excitations collisionnelles en présence de champ électrique 75

P
(k)
i01f =

∑

αβ

aαaβ

(
lα k lβ

−mi mi −mf mf

)
(2k + 1)

∑

k′

(−1)k+k′

{
lα lβ k

l0 l1 k′

}
Q

(k′)
α01β ,

(4.57)

les éléments restants correspondant à ceux du développement de Pindzola en l’ab-

sence de perturbation électrique 4.39, 4.40, 4.42 :

Q
(k)
α0β1 = Rα0β1 < clα||C(k)||c′lβ >< cl0||C(k)||c′l1 >

Q
(k)
α01β = Rα01β < clα||C(k)||c′l1 >< cl0||C(k)||c′lβ >

R
(k)
α0β1 =

∫ ∫
2rk

<

rk+1
>

Pα(r1)P0(r2)Pβ(r1)P1(r2)dr1dr2.

(4.58)

4.5.3 Modèle Distorted Waves en couplage LSJ

Nous reprenons, pour la structure atomique, l’ordre de couplage généalogique de

R. D. Cowan [19] présenté au début du chapitre 3 sur l’effet Stark (3.1). Les états

perturbés sont développés de la même façon qu’en 3.10 et 4.52 :

|γM >=
∑

α

aα(E)|γαLαSαJαM > (4.59)

(dans le cas des hydrogénöıdes, la notation LSJM n’a pas de sens et nous reprenons

la notation |nJ±M >).

En effectuant le même développement qu’au paragraphe précédent, nous trou-

vons l’expression de la force de collision lorsque les électrons de l’ion γiMi et γfMf

ne sont pas couplés avec l’électron libre kilijimi et kf lf jfmf (j = l ± 1/2) :

Ωif = 2
∑

α,β,α′,β′

a∗αaβaα′a∗β′

∑

li,lf ,ji,jf ,mi,mf

×
〈
γαLαSαJαMikilijimi

∣∣∣∣∣

N∑

i=1

2

ri,N+1

∣∣∣∣∣ γβLβSβJβMfkf lf jfmf

〉
×

〈
γβ′Lβ′Sβ′Jβ′Mfkf lf jfmf

∣∣∣∣∣

N∑

i=1

2

ri,N+1

∣∣∣∣∣ γα′Lα′Sα′Jα′Mikilijimi

〉
.

(4.60)

Néanmoins, cette présentation compacte de la force de collision masque beaucoup

les difficultés de son usage pratique. Les éléments de matrice diélectroniques sont

difficilement programmables sous cette forme si l’on désire pouvoir étudier des ions

de structure très générale (plusieurs électrons répartis sur plusieurs couches, non-

nécessairement complètes). Nous avons choisi d’employer les formules développées

par R. D. Cowan [19] pour les éléments de matrice diélectroniques. Nous couplons

les électrons libres à la structure ionique de façon à obtenir un couplage du type

|[(Lion, llibre)L, (Sion, slibre)S]JM >.
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Une transformation en couplage jjJM puis LSJM modifie Ω en :

Ωif = 2
∑

α,β,α′,β′

a∗αaβaα′a∗β′

∑

li,lf ,ji,jf ,mi,mf

×
∑

JαMα

∑

JβMβ

∑

Jα′Mα′

∑

Jβ′Mβ′

C(JαjiMimi,JαMα)C(JβjfMfmf ,JβMβ)×

C(Jα′jiMimi,Jα′Mα′)C(Jβ′jfMfmf ,Jβ′Mβ′)×〈
(γαLαSαJα, liji)JαMα

∣∣∣∣∣

N∑

i=1

2

ri,N+1

∣∣∣∣∣ (γβLβSβJβ , lf jf )JβMβ

〉
×

〈
(γβ′Lβ′Sβ′Jβ′ , lf jf )Jβ′Mβ′

∣∣∣∣∣

N∑

i=1

2

ri,N+1

∣∣∣∣∣ (γα′Lα′Sα′Jα′ , liji)Jα′Mα′

〉

(4.61)

puis

Ωif = 2
∑

α,β,α′,β′

a∗αaβaα′a∗β′

∑

li,lf ,ji,jf ,mi,mf

×
∑

JαMα

∑

JβMβ

∑

Jα′Mα′

∑

Jβ′Mβ′

CαCβCα′Cβ′×
∑

LαSα

∑

LβSβ

∑

Lα′Sα′

∑

Lβ′Sβ′

TLαSα,JαjiTLβSβ ,Jβjf
TLα′Sα′ ,Jα′jiTLβ′Sβ′ ,Jβ′jf

×
〈
LαSαJαMα

∣∣∣∣∣

N∑

i=1

2

ri,N+1

∣∣∣∣∣LβSβJβMβ

〉
×

〈
Lβ′Sβ′Jβ′Mβ′

∣∣∣∣∣

N∑

i=1

2

ri,N+1

∣∣∣∣∣Lα′Sα′Jα′Mα′

〉
,

(4.62)

où TLS,Jj est l’opérateur de modification du couplage :

TLS,Jj = [L,S, J, j]1/2





L l L
S s S
J j J





(4.63)

Enfin, comme l’interaction coulombienne conserve LSJM et est indépendante de

JM (car c’est une force interne à l’édifice ionique) :

Ωif = 2
∑

α,β,α′,β′

a∗αaβaα′a∗β′

∑

li,lf ,L,S,L′,S′

×
〈
γα(Lα, li)L, (Sα, s)S

∣∣∣∣∣

∣∣∣∣∣

N∑

i=1

2

ri,N+1

∣∣∣∣∣

∣∣∣∣∣ γβ(Lβ , lf )L, (Sβ , s)S
〉
×

〈
γβ′(Lβ′ , lf )L′, (Sβ′ , s)S ′

∣∣∣∣∣

∣∣∣∣∣

N∑

i=1

2

ri,N+1

∣∣∣∣∣

∣∣∣∣∣ γα′(Lα′ , li)L′, (Sα′ , s)S ′
〉
×

∑

J ,J ′,ji,jf

TLS,JαjiTLS,Jβjf
TL′S′,Jα′ji

TL′S′,Jβ′jf

∑

M,M′,mi,mf

CαCα′CβCβ′ .

(4.64)
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La dernière somme peut en être extraite et simplifiée à l’aide de Yutsis [83] ( p.152,

A. 7.5 ) :

∑

M,M′,mi,mf

C(JαjiMimi,JM)C(Jα′jiMimi,J ′M′)×

C(JβjfMfmf ,JM)C(Jβ′jfMfmf ,J ′M′) =

[J ,J ′](−1)2J+3(ji+jf )+Mi+Mf

∑

a

[a]

{
J ′ J a

Jβ Jβ′ jf

}{
J ′ J a

Jα Jα′ ji

}
×

(
Jα Jα′ a

Mi −Mi 0

)(
Jβ Jβ′ a

Mf −Mf 0

)
.

(4.65)

De cette façon :

Ωif = 2(−1)Mi+Mf

×
∑

α,β,α′,β′

a∗αaβaα′a∗β′

∑

a

[a]

(
Jα Jα′ a

Mi −Mi 0

)(
Jβ Jβ′ a

Mf −Mf 0

)

×
∑

li,lf ,L,S,L′,S′

〈
γα(Lα, li)L, (Sα, s)S

∣∣∣∣∣

∣∣∣∣∣

N∑

i=1

2

ri,N+1

∣∣∣∣∣

∣∣∣∣∣ γβ(Lβ , lf )L, (Sβ , s)S
〉

〈
γβ′(Lβ′ , lf )L′, (Sβ′ , s)S ′

∣∣∣∣∣

∣∣∣∣∣

N∑

i=1

2

ri,N+1

∣∣∣∣∣

∣∣∣∣∣ γα′(Lα′ , li)L′, (Sα′ , s)S ′
〉

×
∑

J ,J ′,ji,jf

(−1)2J+ji+jf [J ,J ′]TLS,JαjiTLS,Jβjf
TL′S′,Jα′ji

TL′S′,Jβ′jf

{
J ′ J a

Jβ Jβ′ jf

}{
J ′ J a

Jα Jα′ ji

}
.

(4.66)

Les éléments de matrice diélectroniques sont détaillés dans l’appendice D Ils corres-

pondent à ceux calculés par Cowan pour des structures atomiques multiconfigura-

tionnelles, adaptés pour le cas particulier des excitations collisionnelles.

4.5.4 Convergence des forces de collision partielles aux grands mo-

ments angulaires

Les sommes apparaissant dans la force de collision totale (4.66) s’entendent pour

la totalité des électrons libres possibles et nécessiteraient, en toute rigueur, d’être

menées sur tout l’ensemble des entiers pour li, lf , L, L′, J , J ′, ji et jf , en notant

néanmoins que ces nombres quantiques sont contraints les uns par les autres par

le biais des 3j et 6j. En pratique, seul un calcul analytique permet de mener la
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sommation à son terme, ceci n’étant possible que pour l’approximation de Born

sans échange. Dans les autres cas, une approche numérique s’impose et, même si

les moyens informatiques, en évolution constante, ont considérablement repoussé les

limites calculatoires, une troncature précoce est inéluctable dans les sommes.

A titre d’exemple, en limitant le nombre quantique orbital des électrons libres à

60 - ce qui contraint la valeur des autres nombres quantiques précités -, le calcul de

la force de collision d’une excitation 1s2s → 1s2p de l’aluminium héliumöıde, pour

un champ électrique 1 u.a. et une énergie du libre initial de l’ordre de 100 Ryd,

prend actuellement plusieurs dizaines de secondes pour chaque transition αJM →
α′J ′M ′ sur un calculateur rapide et n’atteint pas la convergence malgrè la troncature

tardive... (On notera que la formule complète de Ω en présence de champ contient 15

sommes imbriquées, sans compter le calcul de chaque élément de matrice, ensemble

qui finit par occuper une place mémoire démesurée.)

Dans de nombreuses situations, les sommes partielles convergent à grande vitesse

et le reste s’amenuise de plusieurs ordres de grandeur à chaque nouvelle itération.

Ceci est particulièrement vrai pour les transitions interdites entre des niveaux très

différents (deux couches distinctes bien éloigneés), ex : 1s → 2s, 1s → 3d... où une

dizaine d’ondes partielles sont largement suffisantes. La situation se complique dans

le cas des transitions permises, des transitions entre niveaux proches et encore à

énergie incidente croissante. De nombreux calculs effectuent une troncature pure et

simple et mentionnent que ceci a pour effet de réduire plus ou moins notablement la

valeur de la section efficace par rapport à sa valeur exacte [3, 51]. Certains auteurs

ont néanmoins remarqué la forme très lissée des forces de collision partielles, quelle

que soit la transition, pourvu que l’indice de sommation soit convenablement choisi.

C’est en général le moment angulaire total (L ou J suivant le couplage choisi).

Les forces de collision partielles se comportent comme une simple suite géométrique

décroissante, dont il suffit de trouver le rapport pour en extrapoler la somme totale.

La formulation choisie ici pour les forces de collision ne permet pas de choisir les

moments angulaires totaux comme indices de sommation de manière aisée ( dans la

mesure ou ils sont contraints par tous les moments angulaires précédents et sont au

nombre de 2 : Li et Lf ou Ji et Jf ). La solution la plus pratique consistait à choisir

le moment angulaire orbital maximal des électrons libres pour conserver la forme

générale de l’équation et limiter ainsi le temps de calcul.

Ωtotale =
∞∑

lmax=0

Ωlmax (4.67)
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où

Ωlmax =

lmax−1∑

li=0

Ωli,lf=lmax +

lmax−1∑

lf=0

Ωlf ,li=lmax + Ωlf=li=lmax (4.68)

Il reste à chercher le coefficient de décroissance de Ωlmax :

Ωlmax+1 ≈ αΩlmax . (4.69)

Dans les faits, ceci est bien valable pour les sommes partielles sur L ou J mais

un peu moins pour les sommes partielles sur lmax. Néanmoins, les fluctuations du

rapport α ne l’empèchent pas de conserver ”globalement” une allure assez stable.

On a donc choisi de moyenner ce coefficient sur plusieurs Ω partielles :

αlmax =
Ωlmax + Ωlmax−1 + Ωlmax−2 + Ωlmax−3

Ωlmax−1 + Ωlmax−2 + Ωlmax−3 + Ωlmax−4
(4.70)

(il faut remarquer que dans le cas d’une suite géométrique parfaite, la définition de

α est bien conservée). αlmax−1 et αlmax−2 sont définis de la même façon en décalant

les indices, finalement :

α =
αlmax + αlmax−1 + αlmax−2

3
(4.71)

Il est alors manifeste que que la moyenne a été réalisée sur les forces de collision par-

tielles entre Ωlmax et Ωlmax−6 tout en essayant de conserver une certaine pertinence

aux coefficients intermédiaires, en tâchant de les stabiliser par une moyenne sur 4

sommes partielles.

La somme totale s’écrit :

Ω =

ltronc∑

lmax=0

Ωlmax +
∞∑

lmax=ltronc+1

Ωlmax =

ltronc∑

l=0

Ωl +
∞∑

l=ltronc+1

Ωltronc α
l−ltronc (4.72)

soit :

Ω =

ltronc∑

l=0

Ωl + Ωltronc .
α

1 − α
. (4.73)

où ltronc est la valeur maximum de l à la troncature et Ωltronc est une valeur lissée

de la force de collision partielle à la coupure :

6∑

i=0

Ωltronc .α
−i =

6∑

i=0

Ωltronc−i. (4.74)

Nous présentons dans les figures suivantes divers cas où il faut faire appel à

une extrapolation qui démontrent que celle ci est pertinente, même dans les cas
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requerrant une grande robustesse (transitions autorisées, à haute énergie incidente,

entre des états très proches en énergies).

La convergence des forces de collision partielles est directement liée à la portée

des éléments de matrice d’interaction. Hatton [38] détaille les cas des transitions

permises (portée en 1/r2) et interdites (portée en e−r pour 1s → 2s) dans le cas des

transitions hydrogénöıdes impliquant les couches n=1 et n=2. La convergence est

d’autant plus lente que la portée est longue. Cette remarque peut être réemployée

dans le cadre des transitions en présence de champ électrique. L’effet Stark mélange

les différents états et mène la plupart des éléments de matrice d’interaction vers des

longues portées, l’interaction la plus forte entrâınant la forme générale de l’élément

de matrice. La figure 4.2 correspond à la situation opposée où une transition permise

1s2s 3S1M = 0 → 1s2p3P2M = 0 dans Al XII à champ nul devient interdite pour

des champs compris entre 0.3 et 0.5 u.a. car 3P2 effectue un évitement de niveau

avec 1S0 qui se traduit par un échange de fonctions d’onde (voir figure 3.2 dans

le chapitre sur l’effet Stark). Un nouvel évitement avec 3P1 et 3P0 vers 0.6 u.a.

rend à nouveau la transition permise mais moins favorable. Néanmoins, dans de

nombreux cas, l’allongement de la portée des interactions, du fait du mélange des

fonctions d’onde, n’est pas suffisant pour empécher la convergence rapide des forces

de collision, en particulier pour les transitions entre deux couches distinctes (figure

4.3, 1s M = 0.5 → 3d2D2.5M = 1.5 dans Al XIII). Dans ce cas, l’allongement se

traduit par une modification générale de l’amplitude des forces de collision partielles,

sans en changer le coefficient de décroissance α.

Dans le cas des électrons libres de forte énergie, les ondes partielles d’ordre

élevé qui ne peuvent sonder que des régions de r ≥ l/k, se rapprochent du coeur

et participent de plus en plus à la transition (figure 4.1). Néanmoins, les sommes

partielles Ωl d’ordre élevé convergent vers une limite à grande énergie.
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Fig. 4.1 – Forces de collision partielles Ωlmax
(Formule 4.68) pour la transition 1s2s 3S1 M=0

→ 1s2p 3P2 M=0 de Al XII pour plusieurs énergies incidentes : 3.34 Ryd (losanges), 10.5 Ryd

(+), 44.5 Ryd (carrés) et 198 Ryd (×) et à champ électrique nul.
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Fig. 4.2 – Forces de collision partielles Ωlmax
(Formule 4.68), en échelle logarithmique, pour la

transition entre les états 1s2s 3S1 M=0 et 1s2p 3P2 M=0 de Al XII, perturbés par le champ électrique

pour une énergie incidente de l’ordre de 96 Ryd et 5 valeurs du champ électrique : champ nul

(losanges), 0.4 u.a. (+), 0.6 u.a. (carrés), 1.6 u.a. (×) et 10 u.a. (triangles).
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Fig. 4.3 – Forces de collision partielles (Formule 4.68), en échelle logarithmique, pour la transition

1s 3S1.5 M=0.5 → 3d 2D2.5 M=1.5 de Al XIII pour une énergie incidente de l’ordre de 608 Ryd

et 8 valeurs du champ électrique : champ nul (losanges), 0.001 u.a. (+), 0.0025 u.a. (carrés),
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Fig. 4.4 – Forces de collision partielles (Formule 4.68) pour la transition 1s3s 3S1 M=0 → 1s3p
3P2 M=0 de Al XII à une énergie incidente de 95 Ryd et à champ électrique nul (losanges). En

pointillé est représentée la fonction (du type a ∗ bl) employée pour ajuster les forces de collisions

partielles à grand moment angulaire à l’aide des formules de convergence.



4.5 Excitations collisionnelles en présence de champ électrique 83
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Fig. 4.5 – Forces de collision partielles (Formule 4.68) pour la transition 1s3s 3S1 M=0 → 1s4d
3D3 M=3 de Al XII à une énergie incidente de 102 Ryd et à champ électrique nul. Même légende

qu’à la figure précédente.

4.5.5 Comparaison de ces modèles avec du Néon hydrogénöıde

Etant donné le très petit nombre d’études connues sur notre sujet, nous avons

essayé les deux approches présentées précédemment en les comparant entre elles et

avec les résultats de Perrot (figures 4.6 et 4.7), seuls présents dans ce domaine. Notre

choix s’est donc porté sur le Néon hydrogénöıde, déjà choisi par cet auteur, et sur

les transitions impliquant les couches n=1 et n=2.

La question de l’écrantage des interactions, qu’elles soient internes à l’atome ou

entre l’électron libre et l’atome, reste discutée, comme nous l’avons précisé dans le

premier chapitre de ce mémoire. Les énergies de liaison des électrons liés étudiés

ici (n=1 ou 2) sont en général égales ou largement supérieures à la température du

plasma, c’est aussi fréquemment les cas de celles des électrons libres impliqués dans

des transitions de couche K. Les autres électrons libres du plasma sont alors trop

lents pour créer un nuage électronique autour de ces particules rapides. Dans notre

approche purement perturbative, notre choix s’est donc porté vers un potentiel ato-

mique non écranté, à l’inverse de celui de F. Perrot. Les fonctions d’onde atomiques,

comme dans le reste de cet ouvrage, proviennent d’un programme Hartree-Fock non-

relativiste de Perrot. Les énergies des états relativistes sont celles issues de l’équation

3.10 ou la moyenne de 2P3/2 et 2P1/2 s’il n’y a pas de couplage spin-orbite.

Sans interaction l.s, les résultats du modèle DW (paragraphe 4.5.2)

présentent le même comportement que ceux de Perrot. A mesure qu’augmente le
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Perrot, avec sans potentiel écranté, sans potentiel écranté,

potentiel atomique sans couplage avec couplage

écranté spin-orbite spin-orbite

2s -18.99 -25.0416 2S1/2 -25.0416

2p -18.89 -25.0194 2P1/2 -25.0416
2P1.5 -25.0083

Tab. 4.1 – Energies des états n=2 de Ne X (Ryd)

champ, la force de collision Ω1s2s crôıt, Ω1s2p m=0 décrôıt et elles tendent à se

confondre au delà d’un champ E = 0.3u.a. (figure 4.8). On montre aisément que

cela correspond à une rotation dans l’espace des états n=2 - m=0, les fonctions

d’onde sous fort champ étant composées à parité des fonctions d’onde sans champ :

lim
E→∞

|± >=
|2s > ± |2p m = 0 >√

2
(4.75)

l’énergie de ces états s’écrit :

E± =
E2s + E2p

2
± E2s − E2p

2

√
1 +X2 (4.76)

oùX =
2γE

E2p − E2s
est le rapport des énergies de la perturbation induite par le champ

sur la différence des niveaux. γ est l’élément de matrice Stark : γ =
2√
3

∫ ∞

0
rP2sP2pdr,

|+ > correspond à l’état d’énergie la plus élevée (celui issu de |2pm = 0 >) et |− >

à celui d’énergie la plus basse (issu de |2s >).

La force de collision d’une excitation à partir du fondamental adopte la forme

simple :

Ω1s|±> =
1

1 +
(

1±
√

1+X2

X

)2 Ω1s2s +
1

1 +
(

X
1±

√
1+X2

)2 Ω1s2p0
, (4.77)

et les deux coefficients convergent bien vers 1/2 pour un champ infini.

On note aussi une diminution très conséquente de la force de collision pour

les transitions à l’intérieur de la couche n=2, d’autant plus marquée que les états

possèdent la même valeur de m, projection du moment orbital l sur l’axe Oz (figure

4.9, bien noter l’échelle logarithmique). Cette décroissance très importante marque

le passage d’une transition permise (2s vers 2p, ∆l = 1) vers une transition partiel-

lement autorisée dans le cas 2s vers 2p m=1 (où il ne reste que 50% de 2s dans l’état

issu de 2s à fort champ : diminution de 50% de la force de collision) ou vers une

transition interdite pour 2s → 2p m=0 (force de collision réduite de 15 à 40 fois).
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Il faut néanmoins mentionner un fort décalage entre nos calculs et ceux de Perrot,

qui présentent une modification des forces de collision à beaucoup plus fort champ

(d’un rapport 3 environ). La formule 4.77 montre, pour le cas particulier 1s →
2l, que la modification de Ω en fonction de E est inversement proportionnelle à

l’intervalle d’énergie séparant les niveaux (les deux coefficients valent respectivement

1/4 et 3/4 pour X =
√

3). Ceux de Perrot, écrantés, sont séparés de 0.1 Ryd ; sans

écrantage, l’écart se réduit à 0.0222 Ryd, soit un rapport de 4, ce qui correspond

approximativement au décalage (3) déjà mentionné avec les résultats écrantés de

Perrot.

Sachant que la distribution de microchamp est centrée autour d’une valeur pro-

portionnelle à N
2/3
e (à relativement faible densité, on peut utiliser l’approximation

de Holtsmark du champ le plus probable), nous pouvons en conclure que nos taux

collisionnels seront modifiés pour des densités électroniques 5 à 8 fois plus faibles

que celles de Perrot. Il apparâıt donc manifeste que le choix des énergies des niveaux

de départ influencera notablement les résultats ultérieurs. Une étude précise passe

donc par une modélisation très fine de la structure atomique.

Dans le cadre du modèle Distorted Waves avec interaction l.s (paragraphe

4.5.3), les états en l’absence de champ de moment angulaire total J=1/2 sont fort

différents de ceux sans interaction l.s (tableau 4.2). Par conséquent, les forces de

collisions en l’absence de champ sont distinctes de celles des états sans couplage

l.s, même si ceci ne reflète qu’un changement de notation et non une modification

physique.

J = 1/2− J = 1/2+ 2P3/2

2S1/2 1/
√

2 1/
√

2 0
2P1/2 −1/

√
2 1/

√
2 0

2P3/2 0 0 1

Tab. 4.2 – Coefficients des sous-niveaux n=2, MJ = 1/2, de Ne X pour un champ

électrique infinitésimal (coefficients de mélange des fonctions d’onde).

J = 1/2− J = 1/2+ 2P3/2

2S1/2 ∼ 0.7 ∼ 0 ∼ 0.7
2P1/2 ∼ −0.4 ∼ 0.8 ∼ 0.4
2P3/2 ∼ −0.6 ∼ −0.6 ∼ 0.6

Tab. 4.3 – Rotation des sous-niveaux n=2, MJ = 1/2, de Ne X pour un champ

électrique ≥ 0.3 u.a. : coefficients de mélange des fonctions d’onde.

Dans ces conditions (M = ±1/2), la transition 1s - n=2, J = 1/2− varie au
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plus de 12% jusqu’à 0.04 u.a. puis revient vers sa valeur non perturbée à champ

électrique élevé car l’état J = 1/2− n’effectue qu’une rotation dans les états issus de

2p (tableau 4.3). La transition 1s - J = 1/2+, équivalente à la précédente à champ

nul, subit une forte croissance vers la valeur de la transition autorisée 1s - 2p. A

l’inverse, la transition 1s - J = 3/2, équivalente à 1s - 2p à champ nul, décrôıt vers

la même valeur que 1s - J = 1/2 non perturbé, cette modification s’opérant pour

des champs 1.5 fois plus élevés que pour les états non couplés (la différence d’énergie

valant dans le cas couplé 0.0333 Ryd au lieu de 0.0222 Ryd sans couplage).

Le comportement des forces de collision intra-couche s’explique de façon simi-

laire : les transitions J = 1/2− - J = 3/2 |M | = 1/2, J = 1/2+ - J = 3/2 |M | = 3/2

décroissent très fortement vers des transitions interdites, tandis que J = 1/2− -

J = 3/2 |M | = 3/2 et J = 1/2+ - J = 3/2 |M | = 1/2 varient peu et temporaire-

ment de la même façon que 1s - J = 1/2−. Inversement, la transition J = 1/2− -

J = 1/2+ initialement interdite et peu favorable crôıt largement vers la valeur des

transitions non perturbées J = 1/2 - J = 3/2. Nous n’avons pas présenté de transi-

tions entre J = 3/2 |M | = 3/2 et J = 3/2 |M | = 1/2 dont les forces de collision sont

problématiques à calculer en l’absence de champ, mais il semble logique d’attendre

des valeurs semblables à celles de J = 1/2− - J = 1/2+ à fort champ en raison de

la similitude des fonctions d’onde pour des champs supérieurs à 0.3 u.a.

En conclusion, nos résultats présentent les mêmes tendances générales que ceux

de Perrot, mais avec des variations beaucoup plus précoces en fonction du champ.

Une étude en couplage l.s offre, outre une plus grande richesse spectroscopique,

quelques modifications importantes dans les transitions intra-couche. En effet, sans

couplage, la raie 1s - n=2 présentera assez peu de modifications dans les ailes du fait

des transitions intra-couches très atténuées. En revanche, en présence de couplage

spin orbite, les états d’énergies les plus extrêmes (J = 1/2− et J = 3/2 |M | = 1/2)

conservent ou atteignent des taux de transition élevés avec les états peu modifiés en

énergie (J = 1/2+ et J = 3/2|M | = 3/2) qui correspondent au centre de la raie.

Comme ces états peu modifiés sont surreprésentés en raison des transitions à partir

du fondamental qui leur sont plus favorables, on peut attendre un affaiblissement du

centre de raie en faveur des ailes du fait de la redistribution opérée par les transitions

plus nombreuses vers les états largement modifiés en énergie. Pour ces deux raisons,

nous avons choisi d’effectuer nos calculs avec un couplage spin-orbite.
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Fig. 4.6 – Forces de collision pour les différentes transitions entre les couches n=1 et n=2 (m=0),

sans couplage l.s, en fonction de l’énergie, reprises de Perrot [58]. Les différentes courbes corres-

pondent à différentes valeurs du champ électrique : 0, 0.0625, 0.125, 0.25, 0.5 et 1 u.a. L’amplitude

générale des courbes 1s → 2p (en trait plein) décrôıt à mesure que le champ augmente et elles

convergent vers celles de 1s → 2s (en pointillé) dont l’amplitude s’accrôıt avec le champ.
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Fig. 4.7 – Même légende pour des transitions intra-couche n=2 (Perrot [58]). Les amplitudes

des courbes de 2s → 2p m = 0 (en trait plein) et 2s → 2p m = 1 (en pointillé) décroissent quand le

champ électrique augmente. A champ nul, les courbes des deux transitions se superposent.
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Fig. 4.8 – Forces de collision pour les différentes transitions entre les couches n=1 et n=2 (m=0),

sans couplage l.s, en fonction de l’énergie. Les différentes courbes correspondent à différentes

valeurs du champ électrique : 0, 0.02, 0.04, 0.08, 0.16, 0.32 et 0.64 u.a. L’amplitude générale des

courbes 1s → 2p (en trait plein) décrôıt à mesure que le champ augmente et elles convergent vers

celles de 1s → 2s (en pointillé) dont l’amplitude s’accrôıt avec le champ.
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Fig. 4.9 – Même légende pour des transitions intra-couche n=2. Les amplitudes des courbes de

2s → 2p m = 0 (en trait plein) et 2s → 2p m = 1 (en pointillé) décrôıssent quand le champ

électrique augmente.
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Fig. 4.10 – Forces de collision pour les transitions entre 1s 2S1/2, M = ±1/2 et les états issus de 2s

et 2p J=1/2- et J=1/2+, M = ±1/2, avec interaction spin-orbite, en fonction de l’énergie. Les

différentes courbes correspondent à différentes valeurs du champ électrique : 0, 0.015625, 0.03125,

0.0625, 0.125 et 0.25 u.a. Les courbes 1s-J=1/2+ (en trait plein) et 1s-J=1/2- (en pointillé) se

superposent à champ électrique nul. L’amplitude générale des courbes 1s-J=1/2+ crôıt lorsque le

champ augmente (jusqu’à être comparable à celle d’une transition 1s-2p) tandis que celle des courbes

1s-J=1/2- décrôıt très légèrement jusqu’à 0.04 u.a. puis revient vers sa valeur initiale. La transition

1s 2s est donnée à titre de comparaison (trait continu épais).
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Fig. 4.11 – Même légende que précédemment mais pour la transition 1s - n=2 J=3/2 |M | = ±1/2.

L’amplitude générale des courbes décrôıt quand le champ électrique augmente et se stabilise vers

E = 0.5u.a.
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Fig. 4.12 – Forces de collision pour les transitions intra-couches n=2 J=1/2- vers n=2 J=3/2

en fonction de l’énergie. Les différentes courbes correspondent aux différentes valeurs du champ

électrique : 0, 0.015625, 0.03125, 0.0625, 0.125, 0.25 et 0.5 u.a. L’amplitude générale des courbes

J=1/2- → J=3/2 M=3/2 (trait continu épais) décrôıt avec le champ jusqu’à 0.04 u.a. de 12% puis

retrouve sa valeur originale tandis que celle des transitions vers J=3/2 M=1/2 (pointillé léger)

décrôıt avec le champ de 50% et se stabilise à partir de 0.25 u.a. Les transitions 2s-2p (continu fin)

et 2p J=1/2- → 2p J=3/2 (pointillé épais) avec un champ nul, sont fournies pour comparaison.
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Fig. 4.13 – De même que précédemment pour les transitions J=1/2+ vers J=3/2. L’amplitude

générale des courbes de J=1/2+ → J=3/2 M=3/2 (trait continu épais) s’effondre lorsque le champ

augmente et converge vers celle de la transition interdite 2p → 2p (pointillé épais) dès 0.25 u.a.

L’amplitude des transitions vers J=3/2 M=1/2 (pointillé fin) régresse de 30% jusquà 0.04 u.a. avant

de revenir vers sa valeur initiale, à savoir la moyenne de 2s - 2p (trait continu fin) et de 2p - 2p.
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Fig. 4.14 – De même que précédemment pour la transition J=1/2- vers J=1/2+ (trait pointillé),

dont l’amplitude générale, très faible à champ nul, crôıt vers la moyenne de 2s - 2p (trait continu

fin) et 2p - 2p (trait continu épais) et se stabilise dès 0.25 u.a.

4.6 Taux de transition

La force de collision calculée précédemment se présente sous une forme ”com-

pacte” et offre deux avantages, la symétrie et l’additivité. Néanmoins, c’est une

quantité sans dimension difficilement utilisable dans sa forme brute pour des calculs

collisionnels radiatifs. Les variations de population d’un niveau donné prennent en

compte tous les taux de peuplement et de dépeuplement :

dNi

dt
= −Ni

∑

j

Ri→j +
∑

j

Rj→iNj (4.78)

où Rij somme tous les taux de transition : Rij =
∑

p

T
(p)
ij en cm3s−1, p représentant

chaque processus collisionnel ou radiatif.

4.6.1 Moyenne sur la distribution des vitesses

Le taux de transition par excitation collisionnelle est une moyenne sur la fonction

de distribution des électrons libres :

Tij = Ne < σij(v)v >= Ne

∫ ∫ ∫

v,θ,ϕ
σij(v)vf(v)d3v

= Ne

∫ ∞

Eseuil

σij(E)v(E)f(E)dE

(4.79)
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Dans le cas d’une distribution maxwellienne des vitesses,

f(E)dE =
2√
π

E1/2

T 3/2
e−E/TdE, (4.80)

et

< σv >=
2
√
π

g
.

1

T 1/2

∫ ∞

Eseuil

Ω(E)e−E/TdE/T (4.81)

en unités atomiques : a3
0τ

−1, g étant le poids statistique de l’état initial. Les taux

s’expriment, en général, en cm3s−1 :

< σv > =
2.17 10−8

gT
1/2
Ryd

∫ ∞

Eseuil

Ω(E)e−E/TdE/T

=
8.63 10−6

gT
1/2
K

∫ ∞

Eseuil

Ω(E)e−E/TdE/T.

(4.82)

Par le principe de microréversibilité à l’ETL, le taux de désexcitation s’en déduit

aisément :

< σjiv >=
gi

gj
eEseuil/T < σijv > . (4.83)

4.6.2 Moyenne sur la distribution du microchamp

Les taux de transitions doivent être une moyenne en énergie mais peuvent aussi

l’être en champ électrique dans le cas des fortes densités. Dans la mesure où le

microchamp influe sur la force de collision mais aussi sur l’énergie du seuil, par

l’intermédiaire du déplacement des niveaux, il a paru pertinent de calculer un taux

de transition pour chaque valeur du microchamp, de façon à éviter des situations

malaisées comme les transitions à l’intérieur d’une même couche, où des niveaux

peuvent se croiser, transformant une excitation en désexcitation.

L’axe du champ électrique est l’axe de référence, comme cela a été mentionné

en préambule de la section sur les excitations collisionnelles en présence de champ

électrique (4.5). La moyenne sur l’orientation du champ électrique vaut

∫ ∫
sin θdθdϕ

= 4π :

< σijv > =

∫ ∫ ∫
< σij(E) v > P (E)d3E

/∫ ∫ ∫
P (E)d3E

=

∫
< σij(E) v > P (E)dE

/∫
P (E)dE .

(4.84)
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4.7 Réalisation numérique

4.7.1 Structure atomique

Nous avons remarqué, lors des comparaisons de modèles, combien le choix de la

structure pouvait avoir une influence importante, ainsi que la précision des énergies

employées. Nous avons donc décidé d’utiliser un schéma de couplage LSJ avec une

filiation directe entre chaque sous-couches (équation 3.1). Faute d’avoir réalisé nous-

même notre propre programme de structure, et en l’absence des éléments de matrice

Spin-Orbite, notre modèle est un couplage LSJ pur, ce qui dans un certain nombre de

cas multiélectroniques est préjudiciable à la pertinence des états atomiques étudiés.

Le calcul des fonctions d’onde est effectué par un programme Hartree-Fock réalisé

par François Perrot [57]. Les énergies de l’atome d’Aluminium Héliumöıde ont été

calculées par Jean Bruneau avec un code de structure relativiste.

4.7.2 Fonctionnement du code

Nous avons tâché de réaliser un outil de travail fonctionnant de manière au-

tonome et ne nécessitant qu’un minimum de paramètres d’entrée. Le fichier d’ini-

tialisation comporte le numéro atomique du corps à étudier, le nombre d’orbitales

considérées ainsi que leur liste puis le nombre de niveaux LSJ et leur liste avec

énergie. Deux éléments ont été ajoutés, l’énergie d’ionisation de l’état de référence

(le fondamental) et le groupe auquel appartient chaque niveau et dans lequel sera

effectuée la diagonalisation du Hamiltonien, il s’agit, en l’occurence, de pouvoir res-

treindre la taille des matrices à diagonaliser. Nous avons déja précisé au chapitre

consacré à l’effet Stark que nous isolions trois ensembles pour les hydrogénöıdes

et les héliumöıdes en fonction de leur nombre quantique principal : le fondamental

(n=1), les états participant à la couche n=2 puis les états issus des couches n=3 et

n=4 ensemble.

L’énergie d’ionisation du fondamental est là pour permettre de définir une grille

de températures pertinente pour le calcul des taux collisionnels (ces températures

sont limitées à 1/4 de l’énergie d’ionisation, ce qui correspond approximativement

à la limite de l’existence de tous les niveaux considérés). Le choix des températures

définit aussi une grille d’énergies pour les électrons libres incidents. Nous avons choisi

de déterminer la force de collision pour des énergies s’étageant entre 1.06 et 20 fois

l’énergie du seuil, pour des transitions entre niveaux bien séparés, en surreprésentant

les énergies les plus faibles car elles sont statistiquement les plus importantes dans

la distribution et correspondent aussi à la zone où la force de collision varie le plus.

Nous avons choisi de nous décaler de 6% du seuil pour le premier point en raison
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de problèmes de stabilité pouvant advenir dans le calcul de fonctions d’onde de très

faible énergie (pour le libre sortant, les fonctions oscillantes ont une période très

grande devant les dimensions caractéristiques de l’atome, ce qui pose un problème

de maillage radial). Dans le cas des transitions où l’énergie du seuil est très faible,

un tel maillage risquait d’échantilloner une trop faible portion de la distribution des

électrons thermiques et nous avons choisi de référencer notre grille d’énergies par

rapport à l’énergie d’ionisation du fondamental : nos valeurs s’échelonnent, au delà

de l’énergie du seuil entre 1.5% et 2 fois l’énergie d’ionisation.

L’utilisateur n’a à choisir que les configurations initiale et finale de la transition

qu’il désire étudier. Le programme liste initialement la totalité des sous-niveaux

LSJM en les classant par nombre quantique magnétique total M et par énergie

décroissante puis calcule pour chaque valeur de champ choisie les nouvelles structure

et énergie avant de chercher les forces de collision entre chaque sous-niveau de la

transition. Il en déduit ensuite les forces de collision effectives entre chaque sous-

niveau (moyenne de Ω sur la température), puis les taux de transition (en cm3s−1)

entre sous-niveaux, tout ceci pour chaque valeur du champ. Nous avons aussi réalisé

un petit post-processeur qui permet de déterminer la valeur de ce taux en fonction de

la densité en effectuant la moyenne sur les microchamps, pour chaque température.

Ce code peut fonctionner sur des PC modernes pour des transitions où un seul ni-

veau (initial ou final) est fortement perturbé par le champ. Lorsque les deux niveaux

sont “éclatés”, le nombre d’éléments de matrice angulaire devient très important et

il est nécessaire de disposer d’une mémoire vive conséquente (au moins 256 MegaOc-

tets pour des transitions 1s2s - 1s2p héliumöıdes). La méthode de convergence des

forces de collision partielles a permis de gagner plusieurs ordres de grandeur en vi-

tesse de calcul et ceux-ci passent désormais en quelques (dizaines de) minutes sur des

stations SUN Ultra 5 (400MHz), les transitions entre deux couches perturbées étant

plus lentes mais résolues en quelques dizaines de minutes sur les clusters Compaq à

2 Gigaflops du CEA.

4.7.3 Lissage des forces de collision et des taux collisionnels

Pour éviter le calcul d’un trop grand nombre de forces de collisions en fonction

de l’énergie initiale, nécessaires pour effectuer leur intégration dans les taux colli-

sionnels, il est pratique de réaliser un lissage des forces de collisions à l’aide d’une

expression analytique. Une formule fréquemment utilisée pour l’ensemble des forces

d’oscillateur et de collision a été proposée par Goett et al [32] :

Ω(Ei) = a ln(Ei) + b+
c

e+ Ei
+

d

(e+ Ei)2
. (4.85)
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Nous l’avons légèrement adaptée pour obtenir une précision supérieure sur les

transitions collisionnelles en présence de champ électrique :

Ω(Ei) = a ln(Ei) + b+
c

Ei
+

d

E2
i

+
e

E3
i

+
f

E4
i

. (4.86)

Les coefficients a, b, c, d, e, f sont déterminés par la méthode des moindres carrés en

fonction des 10 valeurs de l’énergie précisées au paragraphe précédent. L’incertitude

absolue vaut un millième de la force de collision la plus élevée.

L’intérêt d’une telle formulation est de permettre une intégration très simple des

forces de collisions à l’aide des intégrales exponentielles :

En(z) = zn−1

∫ ∞

z

e−t

tn
dt, En+1(z) =

1

n
(e−z − z.En(z)) (n ≥ 1), (4.87)

E1 étant elle-même obtenue à l’aide d’une formule analytique [1]. Ainsi, le taux de

collision s’écrit :

< σv >=
2.1737 10−8

gTe
1/2
Ryd

×
[
a (ln(Es)e

−X + E1(X)) + b e−X + c
E1(X)

Te
+ d

E2(X)

TeEs
+ e

E3(X)

TeE2
s

+ f
E4(X)

TeE3
s

]

(4.88)

Te étant la température électronique exprimée en Rydbergs.

4.7.4 Comparaison avec quelques résultats existants

Nous avons présenté quelques résultats concernant le Néon mais sans interac-

tion spin-orbite ni comparaison avec des modèles semblables hors champ. Nous al-

lons, ici, tâcher de valider notre modèle en champ nul dans le cas du Fer

héliumöıde, par comparaison avec des résultats de Mann [51] et Kato et al [44].

Les calculs de Mann sont relativistes en Distorted Waves, ceux de Kato et al corres-

pondent à l’interpolation polynomiale de résultats obtenus par Pradhan [64, 65] à

l’issue d’un calcul DW incluant les résonances d’autoionisation et de recombinaison

diélectronique. Ces auteurs effectuent leurs travaux en couplage intermédiaire, où

seul J est un bon nombre quantique. Nos calculs sont en couplage LSJ pur et les

corrections relativistes ne sont présentes que pour le calcul des énergies des niveaux

ioniques non perturbés.

Nous présentons quelques transitions 1s2 → 1s2l ainsi qu’une transition 1s2s→
1s2p.

Nos résultats concordent avec ceux de Mann à 10% près pour les transitions de

1s2 vers 1s2p1P1, 1s2s1S0 et 1s2s3S1. La comparaison avec les interpolations de

Kato et al est aussi satisfaisante pour les deux premières transitions précédentes
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ainsi que pour les transitions vers 3P2 et 3P0. Néanmoins, du fait de leur forme

polynomiale, ces interpolations sont oscillantes et nos résultats présentent une plus

grande variabilité par rapport à eux (jusqu’à 20%). (voir figure 4.15)

Mann ne présente pas de résultats de 1s2 vers 1s2p en couplage intermédiaire

mais seulement en couplage LS en tenant compte de l’interaction de configuration.

Nous avons donc effectué la somme des forces de collision correspondant à cette

transition et nos résultats sont très inférieurs à ceux de Mann (non présentés ici).

Ceci est dû à notre hypothèse qui fait de L et S de bons nombres quantiques. De

même, l’étude de la transition intra-couche 1s2s 3S1 → 1s2p 1P1 fait apparâıtre

une forte divergence entre les résultats de Mann et les nôtres, au moins 5 fois plus

faibles. En admettant que L et S ne sont pas de bons nombres quantiques nous

avons donc recalculé les forces de collision pour l’état en couplage intermédiaire

|1P1inter >= 0.962|1P1pur > +0.274|3P1pur > suivant les valeurs obtenues par le code

de O. Peyrusse. Nos résultats sont alors équivalents à ceux de Mann à basse énergie

à 5% près et s’écartent progressivement ensuite (30% d’écart à 10 fois l’énergie du

seuil soit 625 eV) (figure 4.16).
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Fig. 4.15 – Forces de collision pour les différentes transitions 1s2 → 1s2s et 1s2p comparées aux

résultats de Mann (carrés) ainsi que Kato et al (petits cercles) : 1s2 → 1P1 en trait continu fin,

1s2 → 3P2 en trait continu épais, 1s2 → 3S1 en trait continu plus épais, 1s2 → 1S0 en pointillé

léger, 1s2 → 3P1 en pointillé épais serré et 1s2 → 3P0 en pointillé épais élargi. Pour toutes ces

courbes, le champ électrique est nul.
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Fig. 4.16 – Force de collision pour la transition 1s2s3S1 → 1s2p1P1 en considérant L, S et J

comme de bons nombres quantiques (en pointillé), J seul bon nombre quantique (trait continu

épais), puis résultats de Mann (losanges). (Le champ électrique est nul.)
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4.8 Conclusion

Nous avons, dans cette partie, présenté le modèle théorique choisi pour le cal-

cul des forces de collisions ainsi que les approximations effectuées pour rendre les

résultats plus précis et rapides. Notre programme numérique est un code Distorted-

Waves, incluant une orthogonalisation des fonctions d’onde ainsi qu’une extrapo-

lation des forces de collision pour améliorer la convergence aux grands moments

angulaires. Les résultats obtenus en l’absence de champ sont comparables à ceux de

la littérature et sont proches de ceux obtenus par les méthodes les plus élaborées.

Seule une différence subsiste pour des transitions inter-couches lorsque les éléments

de matrice spin-orbite deviennent importants. Nous supposons que cette difficulté

apparâıtra aussi lorsque d’autres éléments de matrice négligés (interaction de confi-

gurations, spin-spin ...) seront grands. Néanmoins cette situation n’advient que pour

des corps relativement lourds (Z ≥ 20).

Nos calculs seront donc effectués en couplage LSJ pur, tout en étant aisément

modifiables pour intégrer les éléments de matrice oubliés le jour venu.

En présence de champ électrique nous avons développé une formule générale,

indépendante de l’élément considéré ainsi que de son degré d’ionisation. Nous consta-

tons une modification notable des sections efficaces pour le Néon hydrogénöıde, en

cohérence avec les résultats préliminaires de Perrot, mais pour un modèle plus raf-

finé.

Nous présentons donc, dans le chapitre suivant, une étude plus générale portant

sur l’Aluminium hydrogénöıde et héliumöıde.
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Chapitre 5

Résultats

5.1 Introduction

Nous donnons dans ce chapitre quelques résultats représentatifs des calculs que

nous avons menés ainsi qu’une étude plus globale des effets de la densité sur les

spectres d’émission à l’aide d’un modèle collisionnel-radiatif élémentaire.

Nous présentons de manière graphique, en les analysant :

– quelques échantillons de forces de collision, fonctions du champ et de l’énergie

de l’ion incident, pour des transitions entre sous-niveaux γLSJ |M | et γ ′L′S′J ′|M ′|,
– quelques taux collisionnels, en fonction du champ et de la température, entre

sous-niveaux γLSJ |M | et γ ′L′S′J ′|M ′|,
– quelques taux collisionnels moyennés en champ électrique, en fonction de la

densité à différentes températures ainsi que des coefficients de variation de

ces taux collisionnels en fonction de la densité par rapport à leur valeur non-

perturbée par le champ,

– l’ensemble des taux collisionnels moyennés en champ en fonction de la densité,

pour les transitions de couche K correspondant aux transitions radiatives,

– enfin, les profils spectraux des raies de l’Aluminium Lyα, Lyβ, Lyγ, Heα, Heβ

et Heγ pour plusieurs densités en comparant les spectres obtenus lorsque le

système est à l’ETL ou lorsque les taux collisionnels sont indépendants du

champ avec ceux issus de taux collisionnels variant avec le microchamp.

Nous avons focalisé nos calculs sur le cas de l’Aluminium, élément fréquemment

employé dans les expériences d’interaction laser-matière [4, 52, 50, 26]. Il présente

l’avantage d’être suffisamment commun et d’être un élément léger. Comme cela est

présenté au premier chapitre, cette propriété fait qu’il s’ionise fortement à partir

d’une centaine d’eV si le matériau reste assez dense, devenant ainsi hydrogénöıde

ou héliumöıde, voire un peu lithiumöıde. Ces ions présentent un spectre simple
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en couche K au sens où les raies sont bien résolues et caractéristiques de niveaux

bien identifiables. L’étude des effets de densité dans l’aluminium hydrogénöıde ou

héliumöıde est donc facilement envisageable. Nous n’avons volontairement effectué

aucun calcul sur des lithiumöıdes, les transitions de couche K conduisant à des états

de type 1snln′l′ pour lesquels notre schéma de couplage est manifestement inadapté

tant qu’il ne comporte pas d’éléments de matrice d’interaction de configuration...

Nous présentons en outre quelques lois d’échelle en Z qui permettent d’extrapoler

les résultats obtenus pour l’Aluminium hydrogénöıde à des éléments plus variés.

5.2 Transitions de couche K : quelques lois simples

Les transitions à partir de la couche n=1 présentent la particularité d’avoir un

niveau initial très faiblement affecté par le champ électrique. Nous le considérons

donc non perturbé. Dans ces conditions la formule générale 4.66 se simplifie notable-

ment en éliminant les sommes sur α et α′. De plus, les états sous champ électrique

étant indépendants du signe de M, les forces de collision peuvent être calculées entre

les états J |M | et J ′|M ′| directement. La sommation sur les M initiaux permet de

réduire encore la longueur de l’équation initiale à l’aide de (Cowan [19] 5.16) :

∑

m

(−1)m−j

(
j j j′

m −m 0

)
= δj′,0[j]

1/2.

On montre ainsi que a s’annule, ce qui permet de simplifier nombre de coefficients.

Nous trouvons donc pour les transitions de couche K des hydrogénöıdes et

héliumöıdes la formule très concise :

Ωi|Mi| f |Mf | =
∑

ββ′

δLSJβ , LSJβ′

aβaβ′

[Jβ ]

∑

li,lf ,S
[L,S]

< γi(0, li)li, (Si,
1

2
)S| 2

r12
|γβ(Lβ , lf )li, (Sf ,

1

2
)S >

< γβ(Lβ , lf )li, (Sf ,
1

2
)S| 2

r12
|γi(0, li)li, (Si,

1

2
)S >

(5.1)

avec L = li.

S’il n’y a pas de mélange entre états de couches distinctes (n 6= n′), les contraintes

sur LS et J imposent que β = β ′ et par conséquent :
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Ωi|Mi| f |Mf | =
∑

β

|aβ|2 Ωi|Mi| β|Mf |. (5.2)

Les forces de collisions ne sont plus qu’une simple moyenne de forces de collisions

entre états non mélangés. De plus, comme les coefficients aβ sont normés, la force de

collision totale entre deux niveaux n et n′ est conservée lorsque le champ électrique

varie.

Des formules équivalentes peuvent être dérivées pour les taux collisionnels, mais

il est nécessaire de préciser les approximations effectuées. Les forces de collisions

précédentes devraient en toute rigueur être calculées à chaque champ électrique, ce

dernier modifiant l’énergie de seuil de la transition (ES → ES + δE(E)). Une étude

des forces de collision en fonction de l’énergie du seuil montre qu’elles décroissent

lorsque δE augmente, mais dans une proportion très réduite : au seuil, la variation

est égale à la moitié de la variation en énergie pour les transitions interdites et est

similaire pour les transitions permises ; à haute énergie, cette variation disparâıt.

Or les variations en énergie restent restreintes : quelques pourcents au plus pour les

valeurs admissibles du champ.

Dans ces conditions, nous pouvons traiter la variation des taux collisionnels de

manière perturbative :

∫ ∞

ES+δE
Ω(E)e−E/TdE/T ≈ e−δE/T

∫ ∞

ES

Ω(u)e−u/T du/T. (5.3)

Les variations de l’énergie de seuil des transitions restant toujours très inférieures à la

température, les modifications des taux de transition occasionnées par les variations

d’énergie de seuil sont de l’ordre du pourcent.

Il est donc licite d’admettre la formule simplifiée des taux collisionnels :

< σi|Mi| f |Mf | v >=
∑

β

|aβ|2 < σi|Mi| β|Mf | v > . (5.4)

5.3 Quelques exemples pour l’Aluminium hydrogénöıde

Les taux collisionnels de Al XIII présentent les mêmes caractéristiques que ceux

de Ne X. Nous les avons présentées au chapitre précédent pour les transitions vers la

couche n=2 et nous les rappelons succinctement : (Figure 5.1) la force de collision 1s

- n=2 J=1/2- fléchit légèrement (12%) jusqu’à 0.16 u.a. puis revient vers sa valeur
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initiale à la suite d’une rotation dans l’espace 2P1/2,
2P3/2 (la répartition 2s/2p

est conservée) ; la transition 1s vers n=2 J=1/2+ crôıt fortement vers la transition

permise 1s → 2p tandis que la transition 1s vers n=2 J=3/2 |M | = 1/2 décrôıt

inversement de 1s → 2p vers 1s → (2s+2p)/
√

2. De même, les forces de collision des

transitions intra-couche (pas de figure) n=2 J=1/2- → n=2 J=3/2 |M | = 1/2 et n=2

J=1/2+ → n=2 J=3/2 |M | = 3/2 décroissent très fortement vers des transitions

interdites tandis que n=2 J=1/2- → n=2 J=1/2+, initialement interdite, crôıt très

fortement vers l’équivalent à champ nul de n=2 J=1/2 → n=2 J=3/2. Enfin n=2

J=1/2- → n=2 J=3/2 |M | = 3/2 et n=2 J=1/2+ → n=2 J=3/2 |M | = 1/2 varient

peu et temporairement de façon similaire à 1s → n=2 J=1/2-.

Pour les transitions de 1s vers les états |M | = 1/2 de la couche n=3 (Figures 5.4,

5.5 et 5.6), la force de collision de 1s → n=3 2D5/2|M | = 1/2 reste quasi constante

jusqu’à 1.25 10−3u.a. puis crôıt fortement (×10) et se stabilise entre 0.08 et 2 u.a.

(équivalent à la transition 1s → (0.36 3s + 0.52 3p + 0.12 3d)) puis, du fait de

l’évitement avec les états issus de la couche n=4, décrôıt jusqu’à 2. u.a. La transition

1s vers n=3 J=3/2+ |M | = 1/2 décrôıt dès 3. 10−4u.a. jusqu’à 10−2u.a. (1s → (0.9

3d + 0.1 3p)) puis se rétablit et se stabilise vers 0.2 u.a. (1s → (0.55 3p + 0.45 3d)).

La transition 1s vers n=3 J=3/2- |M | = 1/2 crôıt dès 3. 10−4u.a. jusqu’à 5 10−3u.a.

puis chute jusqu’à 810−2u.a. La transition 1s → n=3 J=1/2+ |M | = 1/2 décrôıt à

partir de 2 10−2u.a. progressivement jusqu’à 2.5 u.a. Enfin la transition 1s vers n=3

J=1/2- reste quasi constante jusqu’à 0.64 u.a. puis décrôıt (devient équivalente à

une transition vers n=3 J=3/2 |M | = 1/2 sans perturbation). Les transitions vers

les états de |M | = 3/2 adoptent un comportement général équivalent à celui des

transitions équivalentes (même J, même signe) avec |M | = 1/2.

Les forces de collisions obtenues, à champ nul, sont équivalentes à 1% près avec

celles de Aggarwal et al [3] calculées avec un code R-Matrix, à l’exception des tran-

sitions vers n,l=0 qui sont supérieures chez nous d’une dizaine de pourcent.

Les taux collisionnels qui en sont issus suivent la même orientation générale

hormis aux très forts champs électriques qui induisent une variation de l’énergie

de seuil non négligeable. De même, la dépendance en densité des taux collisionnels

conserve ces tendances : les transitions vers la couche n=2 (Figure 5.2) commencent

à varier dès Ne = 1021e − /cm3 : 1s → n=2 J=1/2+ crôıt au plus de 20%, 1s →
J=3/2 |M | = 1/2 décrôıt en proportion inverse tandis que 1s → J=1/2- reste quasi

constante, sauf à forte densité (supérieure à 1024e− /cm3) où la réduction d’énergie

de seuil entrâıne une croissance de 5% environ.

Notons sur les figures 5.2, 5.3, 5.5 et 5.6 que les courbes varient d’autant plus

faiblement et pour des densités plus élevées que la température du milieu est basse :

une plus forte agitation des ions favorisant des microchamps plus élevés.
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Les transitions vers la couche n=3 (Figures 5.5 et 5.6) varient notablement dès

1018e−/cm3 pour 1s → n=3 J=3/2+ |M | = 1/2 qui crôıt de 30 % avant de s’affaisser

et 1s → n=3 J=3/2- |M | = 1/2 qui décrôıt de 55% avant de retourner vers sa valeur

initiale (figure 5.5). La transition 1s → n=3 J=5/2 |M | = 1/2 crôıt très fortement à

partir de 1020e−/cm3 et atteint 8 à 10 fois sa valeur initiale dès 1021 − 1022e−/cm3

(figure 5.6). Les transitions 1s → n=3 J=1/2+ et 1s → n=3 J=1/2- varient moins

et pour des densités plus élevées (1021e− /cm3).

Nous présentons sur la figure 5.6 une comparaison entre des taux collisionnels

calculés “exactement” à l’aide de la formule 4.66, où les couches n=3 et n=4 sont

prises en compte simultanément pour la diagonalisation du hamiltonien et dont les

énergies de seuil dépendent du champ électrique, et des taux collisionnels “approxi-

matifs” obtenus à l’aide des formules 5.2 et 5.4 où seule la couche n=3 est prise en

compte et l’énergie de seuil est ou non modifiée avec le champ électrique. L’état n=3

J=5/2 |M | = 1/2 est le premier à être mélangé avec des états de la couche n=4

lorsque le champ crôıt ; néanmoins, ce mélange n’a quasiment aucune incidence sur

les résultats. Les différences qui apparaissent entre le calcul “exact” et les formules

simplifiées sont dues à un trop petit nombre de points calculés en fonction du champ

électrique pour la formule exacte, ce qui pèse sur la précision du taux collisionnel

moyenné sur le microchamp. Il apparâıt une variation de quelques pourcents à très

haute densité (1024e−/cm3) lorsque l’énergie de seuil n’est pas modifiée en fonction

du champ électrique. Nous en concluons que nos formules simplifiées (5.2) et (5.4)

donnent des résultats conformes à la réalité et que les forces de collision et taux

collisionnels de couche K peuvent être calculés très aisément par ce biais.

5.4 Lois d’échelle

Les énergies des niveaux hydrogénöıdes obtenues en résolvant l’équation 3.10

présentent un décalage proportionnel à Z4 entre niveaux d’une même couche. De

plus, les éléments de matrice d’interaction avec le champ électrique sont propor-

tionnels à E et

∫
PnlPn′l′ r dr est proportionnel à 1/Z (formules 3.3 à 3.5). Deux

niveaux se mélangent lorsque l’élément de matrice d’interaction entre eux devient

proche de la différence d’énergie qui les sépare : ∆EHZ
4 ∼< r >H E/Z. Les mo-

difications des forces et des taux collisionnels s’effectuent donc pour des

champs électriques proportionnels à Z5 :

ΩZ(Z5E , Z2E) ≈ Z2ΩH(E , E) (5.5)

car la loi d’échelle entre les forces de collision en l’absence de champ électrique s’écrit

ΩZ(Z2E) ≈ ΩH(E).



106 Résultats

Ainsi, pour l’Aluminium Z=13, les mêmes variations se produisent pour des

microchamps

(
13

10

)5

= 3.71 fois supérieurs à ceux du Néon Z=10 (ainsi 1s - n=2

J=0.5- décrôıt jusque vers 0.16 u.a. avant de revenir vers sa valeur initiale pour Al

XIII tandis que cette inversion s’effectue vers 0.04 u.a. pour Ne X).

Dans la mesure où les forces de collision sont proportionnelles à 1/Z2 et les

taux collisionnels à 1/Z3 (avec d’autant plus de précision que Z est élevé), l’étude

d’un seul élément en fonction du champ électrique est suffisante pour caractériser

avec précision l’ensemble des forces de collision et des taux collisionnels des autres

éléments (pour une énergie ou une température proportionnelle à Z2).

A faible densité, la distribution de Holtsmark est une bonne approximation et le

microchamp est proportionnel à Z1/3Ne, les taux collisionnels moyennés en champ

électrique suivront donc une loi d’échelle en densité proportionnelle à Z16/3. Du fait

des contraintes en densité sur cette distribution, cette loi ne sera vérifiée que pour

les niveaux n=3 et supérieurs, dont les sous-niveaux sont plus rapprochés (en 1/n3).

Ainsi les modifications s’effectuent dès 1018e− /cm3 pour Al XIII dans n=3 tandis

qu’elles apparaissent à partir de 1021e− /cm3 pour n=2 (figures 5.2, 5.3 et 5.5).

5.5 Spectres Collisionnels-Radiatifs

Nous présentons dans ce paragraphe une étude spectroscopique préliminaire des

effets de la prise en compte des taux d’excitation collisionnelle modifiés par le mi-

crochamp.

A cet effet, nous avons réalisé un calcul collisionnel-radiatif élémentaire en ne pre-

nant en compte que les excitations et désexcitations collisionnelles et les transitions

radiatives dipolaires électriques (E1).

Dans la mesure où aucun mécanisme d’ionisation n’est inclus, nous avons traité

distinctement les hydrogénöıdes et les héliumöıdes. Nous voulions présenter des

spectres de couche K : Ly α, β, γ et He α, β, γ, nous avons donc pris en compte

tous les états de type 1s, 2l, 3l ,4l pour les hydrogénöıdes et 1s2, 1s2l, 1s3l et 1s4l

pour les héliumöıdes.

Comme nous l’avons indiqué dans les parties précédentes, nous avons réduit le

nombre de niveaux γLSJM étudiés en traitant simultanément γLSJM et γLSJ−M
lorsque M est non nul (voir paragraphe 3.3 “Résultats et notation” dans L’ef-

fet Stark). Avec cette restriction, nous avons 30 niveaux γLSJ |M | pour les hy-

drogénöıdes et 74 pour les héliumöıdes (voir Appendice A, B) En calculant simul-

tanément les taux d’excitation collisionnelle et les désexcitations correspondantes,

il reste 435 taux collisionnels à évaluer pour les hydrogénöıdes et 2701 pour les
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héliumöıdes, ceci pour chaque valeur du microchamp de la distribution. Chaque

taux requiert, en outre, l’évaluation de plusieurs forces de collision, pour chaque va-

leur du champ électrique. Il n’est donc pas envisageable de calculer en ligne chaque

force de collision séparément, sachant que nombre d’entre elles nécessitent plusieurs

minutes de calcul sur des ordinateurs performants. Ce temps étant d’autant plus

long que les niveaux de départ et d’arrivée se mélangent avec de nombreux autres

niveaux en présence de champ électrique.

5.5.1 Forces de collision

Nous avons réitéré l’approximation présentée dans le paragraphe 5.2 pour les

transitions de couche K en l’adaptant aux cas plus complexes. Les simplifications

apparâıssant lorsque l’un des niveaux n’est pas perturbé par le champ n’ont plus

cours. Néanmoins, il est possible de présenter chaque force de collision entre deux

niveaux perturbés par le champ comme la somme de plusieurs forces de collision

partielles.

En reprenant la formule 4.66, nous pouvons l’écrire sous la forme :

Ωi±Mi,f±Mf
=

∑

α,β,α′,β′

a∗αaβaα′a∗β′ Ωαα′±Mi|,ββ′±Mf (5.6)

où les forces de collision partielles Ωαα′±Mi,ββ′±Mf
valent :

Ωαα′±Mi,ββ′±Mf
= 2

∑

a

[a]
∑

±Mi

∑

±Mf

(−1)Mi+Mf signeα(Mi) signeα′(Mi)

× signeβ(Mf ) signeβ′(Mf )

(
Jα Jα′ a

Mi −Mi 0

) (
Jβ Jβ′ a

Mf −Mf 0

)

×
∑

li,lf ,L,S,L′,S′

〈
γα(Lα, li)L, (Sα, s)S

∣∣∣∣∣

∣∣∣∣∣

N∑

i=1

2

ri,N+1

∣∣∣∣∣

∣∣∣∣∣ γβ(Lβ , lf )L, (Sβ , s)S
〉

〈
γβ′(Lβ′ , lf )L′, (Sβ′ , s)S ′

∣∣∣∣∣

∣∣∣∣∣

N∑

i=1

2

ri,N+1

∣∣∣∣∣

∣∣∣∣∣ γα′(Lα′ , li)L′, (Sα′ , s)S ′
〉

×
∑

J ,J ′,ji,jf

(−1)2J+ji+jf [J ,J ′]TLS,JαjiTLS,Jβjf
TL′S′,Jα′ji

TL′S′,Jβ′jf

{
J ′ J a

Jβ Jβ′ jf

}{
J ′ J a

Jα Jα′ ji

}
.

(5.7)
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Les variables nommées signeα(Mi), signeβ(Mf ) sont incluses pour accorder la phase

des coefficients de mélange aα(−Mi) et aβ(−Mf ) avec leurs correspondants aα(Mi)

et aβ(Mf ) comme cela a été indiqué au paragraphe 3.3. :

aα(−Mi) = aα(Mi) × signeα(−Mi) (5.8)

Notons toutefois que la notion de force de collision partielle n’est pas évidente. Elle

ne correspond pas à une transition entre deux états bien spécifiés comme cela pouvait

être le cas dans la formule 5.2 (états i et β) mais à un élément de matrice entre le

“produit” de deux états αα′ et ββ′.

Pour évaluer la structure d’un ion perturbé par le champ électrique, nous déter-

minons l’ensemble des états non perturbés qui y participent. Ces ensembles forment

des sous-groupes stables. Nous pouvons par exemple citer le sous-groupe de n=4 ,

M=3/2 :J=3/2-, J=3/2+, J=5/2-, J=5/2+ et J=7/2 de l’Aluminium hydrogénöıde

ou encore celui de n=4, S=1 M=3 : 3F4,
3F3 et 3D3 de l’Aluminium héliumöıde. Nous

présentons dans les Appendices A, B l’ensemble de ces sous-groupes. Ainsi, il n’est

nécessaire d’évaluer que les forces de collisions partielles dont α et α′ appartiennent

au même sous-groupe et dont β et β ′ réalisent la même condition. Le calcul de

l’ensemble de ces forces de collision partielles permet de déterminer ensuite la totalité

des forces de collision. Nous supposons ici, comme dans le cas des transitions de

couche K, que la modification des énergies de seuil des excitations par le champ

électrique n’a quasiment pas d’influence sur les forces de collision et à plus forte

raison sur les taux collisionnels. Par conséquent, la totalité des forces de collision

partielles ont été calculées avec un champ électrique nul, l’énergie des niveaux étant

prise comme la moyenne de celle de tous les niveaux non-perturbés du sous-groupe.

Nous évaluons ces forces de collision partielles en utilisant la même méthode de

convergence que celle que nous avions développée pour la force de collision totale

4.66. Il faut cependant noter que la valeur maximum de l, moment angulaire des

électrons libres, doit être au moins égale à 45 pour pouvoir traiter l’ensemble des

transitions à haute énergie. En particulier, les transitions autorisées entre les couches

n=3 et n=4 convergent très lentement et imposent cette valeur très élevée du moment

angulaire.

Les éléments de matrice angulaires étant de très loin les plus longs à calculer,

nous avons choisi d’évaluer préalablement les éléments de matrice radiaux à toutes

les énergies désirées avant d’effectuer le produit de l’élément de matrice angulaire

avec tous ces éléments radiaux. L’échantillonnage en énergie est celui présenté au

paragraphe 4.7.2 avec 10 valeurs pour les hydrogénöıdes et 7 pour les héliumöıdes en

raison des limites de mémoire de l’ordinateur. Cette méthode a permis de réduire les

temps de calcul d’un facteur 10 pour les hydrogénöıdes et de 7 pour les héliumöıdes.
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Avant de pouvoir calculer les forces de collision totales, nous avons donc dû

calculer et enregistrer sur un fichier l’ensemble de ces forces de collision partielles.

Pour calculer les forces de collision totales, il ne suffit plus que d’effectuer la lecture

du fichier et de déterminer la structure des ions initial et final de la transition, sous

champ électrique. Nos fichiers contiennent ainsi 103950 forces de collision partielles

pour les hydrogénöıdes et 445137 pour les héliumöıdes.

5.5.2 Taux radiatifs

Les transitions dipolaires électriques sont les transitions radiatives les plus in-

tenses et nous avons choisi de nous limiter à celles-ci. Le taux radiatif entre deux

niveaux γiMi d’énergie Ei et γfMf d’énergie Ef inférieure s’écrit en unités atomiques

(Cowan [19]) :

aif =
α3(Ei − Ef )3

6

∑

q=0,±1

| < γiMi|P (1)
q |γfMf > |2 (5.9)

où α est la constante de structure fine, les énergies sont exprimées en Rydbergs et

l’opérateur P (1)
q =

N∑

i=1

riC
(1)
q (i). La probabilité de transition radiative par seconde

entre les niveaux γi ±Mi et γf ±Mf s’écrit alors :

Aif (s−1) =
2.677 109(Ei − Ef )3

gi

∑

q=0,±1

∑

±Mi

∑

±Mf

| < γiMi|P (1)
q |γfMf > |2 (5.10)

où g est le poids statistique du niveau initial, à savoir : 1 si Mi = 0, 2 sinon. Ces

mêmes poids statistiques sont utilisés pour le calcul des taux collisionnels (formules

4.82, 4.83).

Le calcul de l’élément de matrice < γiMi|P (1)
q |γfMf > est similaire à celui des

éléments de matrice Stark au chapitre 3. Il faut préalablement développer les états

γiMi et γfMf sur la base des états non perturbés par le microchamp électrique :

|γiMi >=
∑

α|γαLαSαJαMi > et |γfMf >=
∑

β|γβLβSβJβMf > et les éléments

de matrice élémentaires s’écrivent :

< γLSJαMi|P (1)
q |γLSJβMf >= (−1)Jα−Mi

(
Jα 1 Jβ

−Mi 0 Mf

)
< γJα||P (1)||γJβ, >

(5.11)

ce dernier élément se développant de façon semblable aux formules 3.3 et 3.4 :

< γLSJα||P (1)||γLSJβ >=

δSα,Sβ
(−1)Lα+Sα+Jβ+1[Jα, Jβ]1/2

{
Lα Sα Jα

Jβ 1 Lβ

}
< γLSα||P (1)||γLSβ >

(5.12)

et l’élément de matrice réduit rémanent est détaillé dans l’Appendice E.
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5.5.3 Emissivité et populations

L’émissivité d’une raie i→ g s’écrit :

jν =
Eig

4π
AigNif(Eig − hν) (5.13)

où Eig est l’énergie de la transition, Aig est le taux de transition radiative du niveau

i vers le fondamental g, Ni est la population du niveau i et f(Eig − hν) est une

fonction caractérisant l’élargissement. L’émissivité totale sur la distribution P (E) de

microchamp s’écrit :

jν =

∫
Eig(E)

4π
Aig(E)Ni(E)f(Eig(E) − hν)P (E)dE (5.14)

Les populations Ni(E) sont déterminées en supposant l’état stationnaire
dNi

dt
= 0

et en diagonalisant la matrice des taux. Dans la mesure où aucun processus d’ionisa-

tion n’est considéré et où la température du milieu que nous choisissons (Te = Ti =

500eV ici, soit 36.76 Ryd) est assez inférieure aux énergies d’excitation à partir du

fondamental, d’après la loi statistique de Maxwell-Boltzmann, la population de ce

niveau reste peu perturbée par les processus de peuplement vers les niveaux excités.

Nous choisirons donc le niveau fondamental comme niveau de référence pour les

populations : N0(E) = P (E), la distribution de microchamp étant normalisée.

Pour calculer les populations des niveaux excités, en fonction du champ électrique,

deux logiques sont possibles :

– Calculer les taux collisionnels et radiatifs moyennés en fonction de la distri-

bution de microchamp, puis en diagonalisant ces taux moyennés, obtenir une

population moyenne de l’état N̄ ; la population utilisée pour calculer le profil

de raie précédent 5.14 valant : N(E) = N̄ .P (E). Il n’y a alors qu’une seule

diagonalisation.

– Calculer la population de chaque niveau, pour chaque champ électrique, en

diagonalisant la matrice des taux pour chaque valeur du champ.

La première approche suppose que le microchamp, quasi-statique à l’échelle des

processus collisionnels ou radiatifs, varie rapidement entre deux transitions subies

par l’ion. Par conséquent, la mémoire du champ électrique de la population est

perdue et elle s’accorde avec la distribution de microchamp.

La seconde approche considère que les variations du champ électrique entre la

transition qui peuple un niveau et celle qui le dépeuple restent négligeables. Il n’y a

donc pas de transfert de populations entre des champs électriques distincts, mais

seulement entre les différents niveaux, en conservant la même valeur de champ

électrique.
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Il suffit donc de comparer les temps caractéritiques de modification du micro-

champ à ceux séparant deux transitions. En première approximation, on peut assimi-

ler le temps de variation du microchamp au temps nécessité par un ion perturbateur

pour traverser la sphère ionique de l’ion perturbé : τE =
rws

vi
=

(
3Z∗

4πNe

)1/3( mi

3kTi

)1/2

,

temps caractéristique déjà mentionné au premier chapitre (formule 1.28). On ob-

tient alors τE(s) =
1.68 10−7

N
1/3
e (cm−3)

pour Te = Ti = 500eV = 36.76Ryd, valeur de la

température que nous avons choisie pour le calcul des spectres. Les taux radiatifs les

plus forts sont de l’ordre de 1013s−1 pour les transitions de la couche n=2 vers le fon-

damental, plus faibles sinon ; les taux collisionnels sont inférieurs systématiquement

à 10−8 × Ne (cm3s−1). Les temps caractéristiques séparant deux transitions sont

l’inverse de ces taux.

Ainsi, pour 1019 ≤ Ne ≤ 1024e− /cm3, le temps caractéristique de variation du

microchamp est systématiquement inférieur à celui séparant deux transitions. Il est

donc plus pertinent de supposer que le microchamp moyenne les taux de transition

et donc les populations.

Dans ces conditions, les taux collisionnels se récrivent simplement à partir de la

formule 4.82 :
∫
< σv > (E)P (E)dE =

2.17 10−8

gT
1/2
Ryd

∫
P (E)dE

∫ ∞

Eseuil(E)
Ω(E, E)e−E/TdE/T

≈ 8.63 10−6

gT
1/2
K

∫ ∞

Eseuil

∑

αβα′β′

Ωαβα′β′(E)

(∫
αβα′β′P (E)dE

)
e−E/TdE/T

(5.15)

soit,
∫
< σv > (E)P (E)dE ≈

∑

αβα′β′

(∫
αβα′β′P (E)dE

)
8.63 10−6

gT
1/2
K

∫ ∞

Eseuil

Ωαβα′β′(E)e−E/TdE/T.

(5.16)

Le taux collisionnel est une simple somme de taux collisionnels partiels et l’on peut

choisir approximativement l’énergie du seuil de réaction comme la moyenne sur le

microchamp des énergies de seuil dépendantes du champ :

Eseuil ≈
∫
Eseuil(E)P (E)dE (5.17)

5.5.4 Elargissement collisionnel électronique

La fonction d’élargissement f des formules 5.13 et 5.14 comprend l’ensemble des

phénomènes d’amortissement, mais qui sont composés largement d’amortissement
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par impact collisionnel avec les électrons dans les plasmas denses et chauds ainsi que

dans une moindre mesure de l’élargissement Doppler lorsque les densités sont peu

élevées. Nous nous restreindrons donc à ces deux-ci. La fonction f adopte un profil

Lorentzien :

f(Eig(E) − hν) =
C

(hν − Eig)2 + ∆ν2
(5.18)

où ∆ν est la largeur de raie. Nous avons choisi de prendre la plus grande des largeurs

électronique ∆νE et Doppler ∆νD. ∆νE à pour ordre de grandeur (Alaterre [4]) :

∆νE(Ryd) ≈ 2.6 10−23 n
4

Z2

Ne(cm
−3)

Te(Ryd)
(5.19)

et la largeur Doppler vaut :

∆νD(Ryd) = 1.2 10−4
√
Z3Te(Ryd). (5.20)

Notons que la formule utilisée pour évaluer l’amortissement collisionnel électronique

repose sur des simplifications massives et suppose en particulier que l’élargissement

est du aux collisions faibles (i.e. distantes), ce qui est d’autant moins vérifié que la

densité s’accrôıt. Les élargissements seront donc fortement surévalués à forte densité.

Cette approche permet néanmoins d’échapper à un trâıtement, certes plus précis,

mais beaucoup plus lourd [4, 31].

5.5.5 Aluminium hydrogénöıde

Nous traçons dans les figures 5.15 à 5.22 les profils obtenus pour les raies Ly

α, β, γ de l’Aluminium à Te = Ti = 500eV pour des densités électroniques variant

entre 1020 et 1023e − /cm3. Nous présentons simultanément les résultats obtenus

pour des taux collisionnels dépendant du champ électrique < σv > (E) et des taux

indépendants < σv >= cte ainsi que le spectre émis par un milieu à l’Equilibre

Thermodynamique Local . Les émissivités sont données dans les graphiques en unités

arbitraires et nous avons choisi de les superposer, masquant ainsi les éventuelles

différences de hauteur entre les raies (très faibles néanmoins).

Comme nous allons le voir, les différences entre les profils apparaissent à rela-

tivement faible densité, c’est à dire, en général, Hors Equilibre Thermodynamique

Local, à proximité de l’Equilibre Coronal. Nous avons donc choisi de présenter, pa-

rallèlement aux spectres, les taux collisionnels qui peuplent les niveaux à partir du

fondamental, en nous restreignant aux niveaux décroissant radiativement vers le fon-

damental (figures 5.7 à 5.11). Dans le cas des hydrogénöıdes, les règles de sélection

imposées par les transitions dipolaires électriques sont peu contraignantes et n’ex-

cluent que les niveaux dont |M | > 3/2 (∆M = 0,±1), tous les autres niveaux excités

se mélangent avec 2P3/2 et 2P1/2 en présence de champ électrique.
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– La raie Lyman α (figures 5.15 et 5.16) montre que le milieu est à l’ETL dès

Ne = 1022e−/cm3. Les profils sont quasiment indépendants des modifications

des taux collisionnels par le champ électrique, hormis àNe = 1022e−/cm3 où la

raie 2P1/2 est 6% plus faible lorsque les taux collisionnels sont indépendants du

champ. L’absence de modifications plus marquées s’explique par la très faible

variation des taux collisionnels en fonction de la densité (figure 5.7). Nous

notons aussi que les ailes lointaines de raies, à cette densité, sont plus étroites

d’environ 3%. Cet effet a été anticipé en conclusion du paragraphe 4.5.5 lors

de la comparaison entre les différents modèles sur du Néon hydrogénöıde, il

est dû à une redistribution des populations vers les états les plus modifiés en

énergie.

– La raie Lyman β (figures 5.17, 5.18 et 5.19) est en quasi-ETL dès Ne =

3.21019e − /cm3. La raie dont les taux collisionnels dépendent du champ

électrique s’élargit légèrement à partir de 1019e−/cm3 par rapport à celle dont

les taux sont fixes, la différence étant maximale entre Ne = 3.2 1020e − /cm3

et 1021e− /cm3, de l’ordre de 4% à mi-hauteur. Mais il est important de no-

ter que cet élargissement s’effectue essentiellement vers les énergies les plus

élevées et que l’ensemble de la raie se déplace vers ces énergies par rapport

à la raie dont les taux collisionnels ne sont pas perturbés. Les transitions de

1s vers n=3 2D5/2, |M | = 1/2 ou 3/2 initialement 6.7 fois inférieures à celles

vers J = 3/2± et 10 fois plus faibles que celles vers J = 1/2± deviennent

supérieures aux premières entre 1020 et 1021e − /cm3 et de l’ordre des se-

condes vers 1021e− /cm3 (figures 5.8 et 5.9). Les ions dans l’état initial 2D5/2

dont l’énergie augmente lorsque le champ crôıt voient leur population deve-

nir significative et engendrent un élargissement de la raie vers les plus hautes

énergies.

– La raie Lyman γ présente un comportement similaire à Lyman β, néanmoins

plus marqué et pour des densités légèrement plus faibles (figures 5.20, 5.21 et

5.22). L’élargissement à mi-hauteur est au maximum de l’ordre de 6% entre

3.2 1019 et 1020e− /cm3 et il s’effectue au profit des énergies les plus élevées.

Les niveaux responsables de cet élargissement sont J = 5/2±, |M | = 1/2 ou

3/2 et surtout 2F7/2, |M | = 1/2 et 3/2 (figures 5.10 et 5.11).

5.5.6 Aluminium héliumöıde

Nous présentons dans les figures 5.23 à 5.22 les mêmes profils qu’au paragraphe

précédent. Les raies Hélium α (figures 5.23 et 5.24) et Hélium β (figures 5.25, 5.26

et 5.27) ne présentent aucune modification apparente entre un calcul collisionnel
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dépendant du champ électrique et un calcul qui en est indépendant. Les raies Hélium

γ présentent, elles, des différences modestes, mais qui changent avec la densité (fi-

gures 5.22, 5.22et 5.22). Ainsi, entre Ne = 1020e−/cm3 et 3.21020e−/cm3 l’ensemble

de la raie dont les taux collisionnels sont fonction du microchamp est décalée vers les

énergies plus basses en regard de celle dont les taux sont indépendants du champ (de

1.5 10−3Ryd), tandis qu’à 1021e− /cm3, un rétrécissement (de 4%) de la raie, dont

les taux collisionnels sont fonction du champ, s’effectue exclusivement aux énergies

les plus élevées.

Pour interpréter ces résultats nous présentons les taux collisionnels des transi-

tions depuis le fondamental. Les règles de sélection des transitions dipolaires électri-

ques sont plus contraignantes pour les héliumöıdes et réduisent le nombre de taux à

étudier :

– ∆S = 0

– ∆L = 0,±1, Li = Lf = 0 étant interdit

– ∆J = 0,±1, Ji = Jf = 0 étant interdit

– ∆M = 0,±1.

Le niveau fondamental étant 1S0, seuls les niveaux mélangés avec l’état 1P1 par le

champ électrique seront présentés.

Pour la raie Hélium α, les taux collisionnels sont indépendants du champ (figure

5.12) et les profils ne se distinguent pas.

Les taux collisionnels de la raie Hélium β (figure 5.13) varient plus notablement,

en particulier pour la transition vers le niveau issu de 1D2, |M | = 1. Néanmoins,

ces taux ne deviennent significatifs qu’à “haute densité”, au delà de 1022e − /cm3,

lorsque le milieu est totalement à l’ETL.

Le profil de la raie Hélium γ est régi par les taux collisionnels les plus forts (figure

5.14) qui sont, aux densités que nous avons déjà mentionnées, 1P1 |M | = 0, 1, 1F3

|M | = 1, 1D2 |M | = 1. Nous oublions volontairement 1S0 dont l’énergie est beaucoup

plus faible et qui n’interagit pas avec la raie centrale aux densités inférieures à Ne =

3.21021e−/cm3. Les énergies de ces états se répartissent selon : E1P1
> E1F3

> E1D2
,

par conséquent, l’énergie des niveaux 1P1 |M | = 0, 1 crôıt avec le champ électrique

et la densité, celle de 1F3 |M | = 1 reste quasi-stable et celle de 1D2 |M | = 1 décrôıt.

Comme les taux collisionnels de 1P1 décroissent et ceux de 1D2 |M | = 1 augmentent,

les populations d’énergie la plus élevée se réduisent, à l’inverse de celles d’énergie la

plus faible. A 1021e − /cm3, la décroissance forte des niveaux 1P1 d’énergie la plus

élevée est essentiellement compensée par l’augmentation des taux collisionnels de
1F3 |M | = 1, d’énergie stable en dépit de la variation de densité. La modification de

profil se fait donc essentiellement par une réduction des populations d’énergies les

plus élevées.
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5.6 Conclusion

Nous avons déterminé dans ce chapitre quelques formules simples qui permettent

d’évaluer les taux collisionnels en fonction de la densité, de façon rapide, sans avoir

à calculer de forces de collision directement pour chaque valeur du champ électrique.

Pour limiter les temps de calcul, nous avons choisi de ne pas mélanger de niveaux de

couches différentes. En conséquence, il n’y a pas de modification des taux globaux

entre deux couches.

Les modifications des taux collisionnels s’effectuent pour des densités d’autant

plus faibles que les niveaux qui se mélangent ont des énergies proches, ce qui explique

que les transitions vers des couches de n élevé ont des taux collisionnels modifiés pour

des densités très faibles.

Les transitions initialement interdites et que le champ rend partiellement auto-

risées par mélange des différents niveaux ont leurs taux collisionnels très fortement

majorés, parfois de plusieurs ordres de grandeur. A l’inverse, les transitions auto-

risées à champ nul dont les niveaux se mélangent avec le champ voient généralement

leurs taux collisionnels être minorés. Globalement, le champ électrique a tendance à

rapprocher les différents taux collisionnels.

Nous avons réalisé un code Collisionnel Radiatif simple, intégrant les excitations

et désexcitations collisionnelles modifiées par le microchamp ainsi que les transitions

radiatives dipolaires électriques. En supposant le milieu en équilibre stationnaire, les

raies Ly α, He α et He β restent inchangées lorsque les taux collisionnels dépendent

du champ électrique, tandis que les raies Ly β et surtout Ly γ s’élargissent légèrement

vers Ne = 1020 − 1021e−/cm3, se décalant vers les énergies plus élevées. La raie He

γ se resserre, elle, faiblement, pour les mêmes densités, se décalant vers les énergies

plus réduites.

Néanmoins, ces modifications restent très faibles, quelques pourcent tout au plus

et à des densités moyennes. A plus haute densité, l’Equilibre Thermodynamique

Local est systématiquement atteint.
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Fig. 5.1 – Forces de collision pour les transitions entre 1s 2S1/2 et les états issus de 2s et 2p J=1/2-

, J=1/2+ et J=3/2, |M | = 1/2, en fonction de l’énergie. Les différentes courbes correspondent à

différentes valeurs du champ électrique : 0, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64 et 1.28 u.a. Les courbes

1s-J=1/2+ (pointillé) et 1s-J=1/2- (trait continu épais) se superposent à champ électrique nul.

L’amplitude générale des courbes 1s-J=1/2+ crôıt lorsque le champ augmente (jusqu’à être compa-

rable à celle d’une transition 1s-2p) tandis que celle des courbes 1s-J=1/2- décrôıt très légèrement

jusqu’à 0.16 u.a. puis revient vers sa valeur initiale. L’amplitude générale des courbes 1s-J=3/2 (en

trait continu fin) décrôıt inversement de 1s-J=1/2+ lorsque le champ augmente et se stabilise vers

1 u.a.(Al hydrogénöıde)
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Fig. 5.2 – Coefficients de variation des taux collisionnels pour les transitions entre les couches

n=1 et n=2 (|M | = 0.5) en fonction de la densité électronique (1s-J=1/2+ en trait continu fin, 1s-

J=1/2- en pointillés et 1s-J=3/2 en trait épais). Les différentes courbes correspondent à différentes

valeurs de la température (Te = Ti) : 97.5, 134.8, 209.2, 321., 395.5, 507.2, 618.9 et 693.4 eV.(Al

hydrogénöıde)



5.6 Conclusion 117

1e-13

1e-12

1e+19 1e+20 1e+21 1e+22 1e+23 1e+24 1e+25

Densité (cm−3)

J=0.5+
J=0.5-
J=1.5

Fig. 5.3 – Taux collisionnels pour les transitions entre les couches n=1 et n=2 (|M | = 0.5) en

fonction de la densité électronique (1s-J=1/2+ en trait fin, 1s-J=1/2- en pointillé et 1s-J=3/2 en

trait épais). Les différentes courbes correspondent à différentes valeurs de la température (Te = Ti) :

de bas en haut 321., 395.5, 507.2, 618.9 et 697.4 eV.(Al hydrogénöıde)
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Fig. 5.4 – Taux collisionnels pour les transitions entre les couches n=1 et n=3 (|M | = 0.5) en

l’absence de champ électrique en fonction de la température Te = Ti. La transition 1s-J=1/2 est

en pointillé fin, 1s-J=3/2 en pointillé épais et 1s-J=5/2 en trait continu très épais (1s-J=1/2+ et

1s-J=1/2- sont confondus ainsi que 1s-J=3/2+ et 1s-J=3/2-). Les courbes 1s-3s en trait continu fin

et 1s-3p en trait continu épais sont présentées pour comparaison.(Al hydrogénöıde)
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Fig. 5.5 – Variation des taux collisionnels pour les transitions entre les couches n=1 et n=3

(|M | = 1/2)(sauf 1s - n=3 J=5/2) en fonction de la densité électronique par rapport à leur valeur

pour un ion isolé. La transition 1s-J=3/2+ est en trait continu fin, 1s-J=3/2- en pointillé fin, 1s-

J=1/2+ en trait continu épais et 1s-J=1/2- en pointillé épais. Les différentes courbes correspondent

à différentes valeurs de la température (Te = Ti) : 97.5, 134.8, 209.2, 321., 395.5, 507.2, 618.9 et 697.4

eV : plus la température est élevée, plus la courbe varie pour des densités faibles.(Al hydrogénöıde)
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Densité (cm−3)

moyenne, eseuil variable
moyenne, eseuil fixe

résultat ”exact”

Fig. 5.6 – Même légende pour les transitions entre les couches n=1 et n=3 J=5/2 (|M | = 1/2).

La courbe en trait épais correspond à un calcul exact mélangeant les couches n=3 et n=4 avec le

champ électrique. Les autres courbes ne mélangent que des états de la couche n=3. La courbe en

trait fin correspond à une moyenne sur le champ où chaque énergie de seuil dépend du microchamp

(formule 5.3). La courbe en pointillé suppose que l’énergie du seuil de la transition est indépendante

du microchamp (formule 5.4). (Al hydrogénöıde)
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Fig. 5.7 – Taux collisionnels moyennés en champ électrique pour les transitions entre les couches

n=1 et n=2 (|M | = 1/2) en fonction de la densité électronique. 1s-2P3/2 est en trait continu fin,

1s-J=1/2+ en pointillé et 1s-J=1/2- en trait continu épais. (Al hydrogénöıde)
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Fig. 5.8 – Taux collisionnels moyennés en champ électrique pour les transitions entre les couches

n=1 et n=3 (|M | = 1/2) en fonction de la densité électronique. 1s-J=1/2- est en trait continu

fin, 1s-J=1/2+ en pointillé fin, 1s-J=3/2- en trait continu épais, 1s-J=3/2+ en pointillé épais et

1s-2D5/2 en trait continu très épais. (Al hydrogénöıde)
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Fig. 5.9 – Taux collisionnels moyennés en champ électrique pour les transitions entre les couches

n=1 et n=3 (|M | = 3/2) en fonction de la densité électronique. 1s-J=3/2- est en trait continu

fin, 1s-J=3/2+ en pointillé fin et 1s-2D5/2 en trait continu épais. (Al hydrogénöıde)
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Fig. 5.10 – Taux collisionnels moyennés en champ électrique pour les transitions entre les couches

n=1 et n=4 (|M | = 1/2) en fonction de la densité électronique. 1s-J=1/2- est en trait continu

fin, 1s-J=1/2+ en pointillé fin, 1s-J=3/2- en trait continu épais, 1s-J=3/2+ en pointillé épais, 1s-

J=5/2- en trait continu très épais, 1s-J=5/2+ en pointillé épais espacé et 1s-2F7/2 en trait continu

fin (valeur la plus faible à basse densité). (Al hydrogénöıde)
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Fig. 5.11 – Taux collisionnels moyennés en champ électrique pour les transitions entre les couches

n=1 et n=4 (|M | = 3/2) en fonction de la densité électronique. 1s-J=3/2- est en trait continu

fin, 1s-J=3/2+ en pointillé fin, 1s-J=5/2- en trait continu épais, 1s-J=5/2+ en pointillé épais et

1s-2F7/2 en trait continu très épais. (Al hydrogénöıde)
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Fig. 5.12 – Taux collisionnels moyennés en champ électrique pour les transitions entre les couches

n=1 et n=2 en fonction de la densité électronique. 1s2 − 1s2l1P1|M | = 0 est en trait continu fin

et 1s2 − 1s2l1S0|M | = 0 en pointillé fin. (Al héliumöıde)
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Fig. 5.13 – Taux collisionnels moyennés en champ électrique pour les transitions entre les couches

n=1 et n=3 en fonction de la densité électronique. 1s2 − 1s3l1P1|M | = 1 est en trait continu

fin, 1s2 − 1s3l1P1|M | = 0 en pointillé fin, 1s2 − 1s3l1S0|M | = 0 est en trait continu épais,

1s2 − 1s3l1D2|M | = 1 en pointillé épais et 1s2 − 1s3l1D2|M | = 0 en trait continu très épais.

(Al héliumöıde)
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Densité (cm−3)

n=4 1P1|M | = 1
n=4 1P1|M | = 0
n=4 1S0|M | = 0
n=4 1D2|M | = 1
n=4 1D2|M | = 0
n=4 1F3|M | = 1
n=4 1F3|M | = 0

Fig. 5.14 – Taux collisionnels moyennés en champ électrique pour les transitions entre les

couches n=1 et n=4 en fonction de la densité électronique. 1s2 − 1s4l1P1|M | = 1 est en trait

continu fin, 1s2 − 1s4l1P1|M | = 0 en pointillé fin, 1s2 − 1s4l1S0|M | = 0 est en trait continu

épais, 1s2 − 1s4l1D2|M | = 1 en pointillé épais, 1s2 − 1s4l1D2|M | = 0 en trait continu très épais,

1s2 − 1s4l1F3|M | = 1 en pointillé épais espacé et 1s2 − 1s4l1F3|M | = 0 en trait continu fin (valeur

la plus faible à basse densité).(Al héliumöıde)
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Fig. 5.15 – Profil de la raie Lyman α de l’Aluminium hydrogénöıde à la température Te =

Ti = 36.76Ryd = 500eV et à la densité électronique Ne = 1020e − /cm3, Z∗ = 12. En trait continu

fin, le profil collisionnel radiatif dont tous les taux sont calculés en fonction du champ électrique ; en

pointillé épais, le profil collisionnel radiatif dont les taux collisionnels sont indépendants du champ

électrique, en pointillé fin, le profil obtenu en supposant le milieu en Equilibre Thermodynamique

Local. Les émissivités sont en unités arbitraires et en échelle logarithmique.
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Fig. 5.16 – Même légende que pour la figure précédente, pour une densité électronique Ne =

3.2 1022e − /cm3.
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Fig. 5.17 – Profil de la raie Lyman β de l’Aluminium hydrogénöıde à la température Te =

Ti = 36.76Ryd = 500eV et à la densité électronique Ne = 1020e − /cm3, Z∗ = 12. En trait continu

fin, le profil collisionnel radiatif dont tous les taux sont calculés en fonction du champ électrique ; en

pointillé épais, le profil collisionnel radiatif dont les taux collisionnels sont indépendants du champ

électrique, en pointillé fin, le profil obtenu en supposant le milieu en Equilibre Thermodynamique

Local. Les émissivités sont en unités arbitraires.
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Fig. 5.18 – Même légende que pour la figure précédente, pour une densité électronique Ne =

1021e − /cm3.
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Fig. 5.19 – Même légende que pour la figure précédente, pour une densité électronique Ne =

3.2 1021e − /cm3.
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Fig. 5.20 – Profil de la raie Lyman γ de l’Aluminium hydrogénöıde à la température Te =

Ti = 36.76Ryd = 500eV et à la densité électronique Ne = 1020e − /cm3, Z∗ = 12. En trait continu

fin, le profil collisionnel radiatif dont tous les taux sont calculés en fonction du champ électrique ; en

pointillé épais, le profil collisionnel radiatif dont les taux collisionnels sont indépendants du champ

électrique, en pointillé fin, le profil obtenu en supposant le milieu en Equilibre Thermodynamique

Local. Les émissivités sont en unités arbitraires.
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Fig. 5.21 – Même légende que pour la figure précédente, pour une densité électronique Ne =

3.2 1020e − /cm3.
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Fig. 5.22 – Même légende que pour la figure précédente, pour une densité électronique Ne =

3.2 1021e − /cm3.
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Fig. 5.23 – Profil de la raie Hélium α de l’Aluminium héliumöıde à la température Te = Ti =

36.76Ryd = 500eV et à la densité électronique Ne = 3.2 1020e − /cm3, Z∗ = 12. En trait continu

fin, le profil collisionnel radiatif dont tous les taux sont calculés en fonction du champ électrique ; en

pointillé épais, le profil collisionnel radiatif dont les taux collisionnels sont indépendants du champ

électrique, en pointillé fin, le profil obtenu en supposant le milieu en Equilibre Thermodynamique

Local. Les émissivités sont en unités arbitraires et en échelle logarithmique.
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Fig. 5.24 – Même légende que pour la figure précédente, pour une densité électronique Ne =

3.2 1022e − /cm3.
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Fig. 5.25 – Profil de la raie Hélium β de l’Aluminium héliumöıde à la température Te = Ti =

36.76Ryd = 500eV et à la densité électronique Ne = 1020e − /cm3, Z∗ = 12. En trait continu fin,

le profil collisionnel radiatif dont tous les taux sont calculés en fonction du champ électrique ; en

pointillé épais, le profil collisionnel radiatif dont les taux collisionnels sont indépendants du champ

électrique, en pointillé fin, le profil obtenu en supposant le milieu en Equilibre Thermodynamique

Local. Les émissivités sont en unités arbitraires.
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Fig. 5.26 – Même légende que pour la figure précédente, pour une densité électronique Ne =

1021e − /cm3.
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Fig. 5.27 – Même légende que pour la figure précédente, pour une densité électronique Ne =

1022e − /cm3.
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Fig. 5.28 – Profil de la raie Hélium γ de l’Aluminium héliumöıde à la température Te = Ti =

36.76Ryd = 500eV et à la densité électronique Ne = 1020e − /cm3, Z∗ = 12. En trait continu fin,

le profil collisionnel radiatif dont tous les taux sont calculés en fonction du champ électrique ; en

pointillé épais, le profil collisionnel radiatif dont les taux collisionnels sont indépendants du champ

électrique, en pointillé fin, le profil obtenu en supposant le milieu en Equilibre Thermodynamique

Local. Les émissivités sont en unités arbitraires.
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Fig. 5.29 – Même légende que pour la figure précédente, pour une densité électronique Ne =

1021e − /cm3.
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Fig. 5.30 – Même légende que pour la figure précédente, pour une densité électronique Ne =

3.2 1021e − /cm3. Les émissivités sont en échelle logarithmique.
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Conclusion

De nombreuses données collisionnelles et radiatives sont nécessaires pour modéli-

ser l’émission X des plasmas hors ETL, qu’ils soient astrophysiques ou de laboratoi-

re. Ces derniers atteignent fréquemment des densités élevées où les sections efficaces

classiques, calculées pour de faibles densités, s’avèrent inaptes à reproduire précisé-

ment l’ionisation et le profil des raies spectrales obtenues expérimentalement. Notre

étude s’est attachée à observer l’influence de la densité et de la température sur les

excitations collisionnelles électron-ion, par l’intermédiaire du microchamp ionique,

sujet qui n’avait été qu’effleuré, à deux reprises, jusqu’ici.

Nous avons, dans un premier temps, rappelé différentes théories de diffusion

inélastique et de microchamp avant d’établir les équations des sections efficaces d’ex-

citation d’un ion perturbé par le champ électrique. La méthode Distorted-Waves

choisie offre un bon compromis entre temps de calcul et précision en vue de la

réalisation d’une étude numérique. Mais elle ne permet pas d’accéder aux résonances

(proches du seuil), qui sont essentiellement le fait de captures diélectroniques peu-

plant des ions doublement excités. L’effet des résonnances reste néanmoins limité

lorsque l’on intègre toute une section efficace pour obtenir un taux. Nous avons

laissé l’électron libre indifférent au champ électrique perturbateur, ce qui est proba-

blement inadapté à proximité du seuil ; la trajectoire de l’électron le moins véloce est

fortement perturbée par le champ. De plus, dans ces conditions, le temps de collision

s’allonge, devenant comparable à celui des fluctuations thermiques des ions pertur-

bateurs, mettant la théorie en défaut, comme elle peut l’être dans la description du

centre des raies dans les calculs d’élargissement par effet Stark.

Notre seconde étape à consisté à réaliser un code numérique appliquant la théorie

précédente à des ions en couplage LSJM pur. Cette limite est imposée par le code

de structure atomique et non par celui d’excitation, qui peut être adapté natu-

rellement à des états multiconfigurationnels. Les taux collisionnels en l’absence de

champ électrique sont comparables à ceux de la littérature, tandis que la seule étude

existante en présence de microchamp présente les mêmes tendances, ce qui valide

simultanément notre approche théorique ainsi que le code de calcul.
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Enfin, dans un troisième temps, nous avons mis en oeuvre une méthode per-

mettant de calculer un très grand nombre de ces sections efficaces en présence de

champ, dans un temps restreint, tout en conservant une très bonne précision pour

les taux collisionnels. Ce support de calcul nous a permis de réaliser une ébauche de

code Collisionnel-Radiatif incluant les excitations et désexcitations collisionnelles,

ainsi que les transitions radiatives dipolaires électriques pour la totalité des niveaux

jusqu’à n=4 de l’Aluminium Hydrogénöıde et Héliumöıde. Le programme génère les

spectres des raies Ly α, β, γ et He α, β et γ à l’équilibre stationnaire.

Nous disposons désormais d’une base complète de forces de collision en présence

de champ électrique et donc de taux collisionnels dépendant de la densité pour toutes

les transitions précitées. Les transitions interdites, dont les niveaux se mélangent, du

fait du champ électrique, avec des niveaux de transitions autorisées, sont accrues très

fortement et deviennent de l’ordre des transitions les plus favorables. Ces dernières

voient leur intensité décrôıtre pour respecter la conservation des taux globaux entre

les groupes de niveaux couplés par l’effet Stark. Ces changements sont beaucoup plus

importants, différents et adviennent pour des densités plus faibles, que ceux induits

par l’écrantage électronique, responsable d’une réduction systématique des forces de

collision, d’autant plus forte que l’interaction est à longue portée. De même que pour

la recombinaison diélectronique, ces variations sont d’autant plus conséquentes que

n et l sont élevés pour les ions hydrogénöıdes.

Néanmoins, ces effets sont peu visibles sur les profils de raies, dans notre ap-

proche, les densités élevées établissant rapidement l’équilibre thermodynamique lo-

cal. L’élargissement ou le décalage des raies reste très modéré, à proximité des den-

sités de l’équilibre coronal mais augmente d’autant plus que la couche observée a un

nombre quantique principal élevé. A haute densité, nous atteignons systématiquement

l’équilibre thermodynamique local à l’intérieur de la raie étudiée, gage de la cohérence

de nos sections efficaces.

Nous avons restreint la taille mémoire nécessaire et nos temps de calcul des sec-

tions efficaces, en limitant le couplage par effet Stark aux seuls niveaux appartenant

à la même couche n. Cette contrainte impose que le taux collisionnel global entre

deux couches reste indépendant de la densité et ne permet pas de rendre compte des

modifications du rapport des hauteurs des différentes raies lorsque le microchamp

augmente. Or les couches se mélangent d’autant plus que n est élevé et l’on peut

légitimement attendre d’une nouvelle étude adaptée qu’elle mène à un transfert entre

leurs populations.

Un tel travail, comportant un grand nombre de couches et de niveaux est hors

de propos en couplage LSJM et n’apporte aucune précision supplémentaire dans le

calcul des profils de raies au dessus de n=2, en raison de l’élargissement électronique.
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Le passage à un couplage LSMLMS ou quasi hydrogénöıde (à l’image du travail de

Gilles et Peyrusse [31]) nous émancipera des contraintes numériques et permettra

d’évaluer la modification des taux globaux entre couches. Notons que nous avons

d’ores et déjà développé les calculs théoriques nécessaires à cette étude pour le cas

hydrogénöıde (formules 4.55 à 4.58).

Ces quelques remarques concernent les améliorations aisément envisageables sur

notre code. Nous pourrions y ajouter l’utilisation d’un meilleur modèle d’élargissement

électronique ([31] par exemple), la prise en compte d’autres transitions collisionnelles

ou radiatives ainsi que l’étude d’atomes plus complexes, lithiumöıdes ou néonöıdes,

fréquemment rencontrés à des densités relativement élevées.

De façon plus générale, de nombreux sujets de recherche restent à aborder

pour mieux rendre compte des changements de hauteurs de raies. En particulier

l’intégration des phénomènes d’écrantage de l’électron libre dans le calcul des exci-

tations collisionnelles en présence de microchamp ainsi que l’extrapolation de cette

étude aux ionisations collisionnelles pour obtenir à terme un code collisionnel-radiatif

dont tous les taux dépendent de la densité et de la température.



134 Conclusion



Annexe A

Niveaux de l’Aluminium

Hydrogénöıde

Nous présentons dans cette annexe les différents niveaux de l’Aluminium hy-

drogénöıde pris en compte dans nos calculs. Nous indiquons, en outre, leur énergie,

calculée à l’aide de l’équation de Dirac-Pauli, l’énergie de leur transition radiative

vers le fondamental ainsi que le sous-groupe de niveaux employé pour leur diagona-

lisation en présence de champ électrique.

No Couche Configuration |M | N o groupe Energie ∆E/

n= Stark (Ryd) fondamental

1 4 2F7/2 7/2 1 -10.5640 158.8162

2 4 2F7/2 5/2 2 -10.5640 158.8162

3 4 2F5/2 5/2 2 -10.5660 158.8142

4 4 2D5/2 5/2 2 -10.5660 158.8142

5 3 2D5/2 5/2 3 -18.7824 150.5978

6 4 2F7/2 3/2 4 -10.5640 158.8162

7 4 2F5/2 3/2 4 -10.5660 158.8142

8 4 2D5/2 3/2 4 -10.5660 158.8142

9 4 2D3/2 3/2 4 -10.5699 158.8103

10 4 2P3/2 3/2 4 -10.5699 158.8103

11 3 2D5/2 3/2 5 -18.7824 150.5978

12 3 2D3/2 3/2 5 -18.7918 150.5884

13 3 2P3/2 3/2 5 -18.7918 150.5884

14 2 2P3/2 3/2 6 -42.2738 127.1064
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No Couche Configuration |M | N o groupe Energie ∆E/

n= Stark (Ryd) fondamental

15 4 2F7/2 1/2 7 -10.5640 158.8162

16 4 2F5/2 1/2 7 -10.5660 158.8142

17 4 2D5/2 1/2 7 -10.5660 158.8142

18 4 2D3/2 1/2 7 -10.5699 158.8103

19 4 2P3/2 1/2 7 -10.5699 158.8103

20 4 2P1/2 1/2 7 -10.5818 158.7984

21 4 2S1/2 1/2 7 -10.5818 158.7984

22 3 2D5/2 1/2 8 -18.7824 150.5978

23 3 2D3/2 1/2 8 -18.7918 150.5884

24 3 2P3/2 1/2 8 -18.7918 150.5884

25 3 2P1/2 1/2 8 -18.8200 150.5602

26 3 2S1/2 1/2 8 -18.8200 150.5602

27 2 2P3/2 1/2 9 -42.2738 127.1064

28 2 2P1/2 1/2 9 -42.3688 127.0114

29 2 2S1/2 1/2 9 -42.3688 127.0114

30 1 2S1/2 1/2 10 -169.3802
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Niveaux de l’Aluminium

Héliumöıde

De même que dans l’annexe précédente, nous présentons les différents niveaux

de l’Aluminium héliumöıde pris en compte dans nos calculs. Leur énergie a été

aimablement calculée par Jean Bruneau sur son code MCDF (Multi Configuration

Dirac Fock).

No Couche Configuration |M | N o groupe Energie ∆E/

n= Stark (Ryd) fondamental

1 1s4l 3F4 4 1 -178.3542 144.1021

2 1s4l 1F3 3 2 -178.3540 144.1024

3 1s4l 3F4 3 3 -178.3542 144.1021

4 1s4l 3F3 3 3 -178.3556 144.1007

5 1s4l 3D3 3 3 -178.3589 144.0974

6 1s3l 3D3 3 4 -185.3626 137.0937

7 1s4l 1F3 2 5 -178.3540 144.1024

8 1s4l 3F4 2 6 -178.3542 144.1021

9 1s4l 1D2 2 5 -178.3547 144.1016

10 1s4l 3F2 2 6 -178.3554 144.1009

11 1s4l 3F3 2 6 -178.3556 144.1007

12 1s4l 3D3 2 6 -178.3589 144.0974

13 1s4l 3D2 2 6 -178.3609 144.0954

14 1s4l 3P2 2 6 -178.4194 144.0369
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No Couche Configuration |M | N o groupe Energie ∆E/

n= Stark (Ryd) fondamental

15 1s3l 1D2 2 7 -185.3549 137.1015

16 1s3l 3D3 2 8 -185.3626 137.0937

17 1s3l 3D2 2 8 -185.3676 137.0887

18 1s3l 3P2 2 8 -185.5100 136.9464

19 1s2l 3P2 2 9 -205.8844 116.5720

20 1s4l 1P1 1 10 -178.3377 144.1186

21 1s4l 1F3 1 10 -178.3540 144.1024

22 1s4l 3F4 1 11 -178.3542 144.1021

23 1s4l 1D2 1 10 -178.3547 144.1016

24 1s4l 3F2 1 11 -178.3554 144.1009

25 1s4l 3F3 1 11 -178.3556 144.1007

26 1s4l 3D3 1 11 -178.3589 144.0974

27 1s4l 3D2 1 11 -178.3609 144.0954

28 1s4l 3D1 1 11 -178.3612 144.0951

29 1s4l 3P2 1 11 -178.4194 144.0369

30 1s4l 3P1 1 11 -178.4253 144.0311

31 1s4l 3S1 1 11 -178.5351 143.9212

32 1s3l 1P1 1 12 -185.3124 137.1439

33 1s3l 1D2 1 12 -185.3549 137.1015

34 1s3l 3D3 1 13 -185.3626 137.0937

35 1s3l 3D2 1 13 -185.3676 137.0887

36 1s3l 3D1 1 13 -185.3681 137.0882

37 1s3l 3P2 1 13 -185.5100 136.9464

38 1s3l 3P1 1 13 -185.5237 136.9326

39 1s3l 3S1 1 13 -185.7912 136.6651

40 1s2l 1P1 1 14 -205.1693 117.2870

41 1s2l 3P2 1 15 -205.8844 116.5720

42 1s2l 3P1 1 15 -205.9309 116.5254

43 1s2l 3S1 1 15 -206.9047 115.5516

44 1s4l 1P1 0 16 -178.3377 144.1186

45 1s4l 1F3 0 16 -178.3540 144.1024

46 1s4l 3F4 0 17 -178.3542 144.1021

47 1s4l 1D2 0 16 -178.3547 144.1016

48 1s4l 3F2 0 17 -178.3554 144.1009

49 1s4l 3F3 0 18 -178.3556 144.1007
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No Couche Configuration |M | N o groupe Energie ∆E/

n= Stark (Ryd) fondamental

50 1s4l 3D3 0 17 -178.3589 144.0974

51 1s4l 3D2 0 18 -178.3609 144.0954

52 1s4l 3D1 0 17 -178.3612 144.0951

53 1s4l 1S0 0 16 -178.4176 144.0387

54 1s4l 3P2 0 17 -178.4194 144.0369

55 1s4l 3P1 0 18 -178.4253 144.0311

56 1s4l 3P0 0 17 -178.4268 144.0295

57 1s4l 3S1 0 17 -178.5351 143.9212

58 1s3l 1P1 0 19 -185.3124 137.1439

59 1s3l 1D2 0 19 -185.3549 137.1015

60 1s3l 3D3 0 20 -185.3626 137.0937

61 1s3l 3D2 0 21 -185.3676 137.0887

62 1s3l 3D1 0 20 -185.3681 137.0882

63 1s3l 1S0 0 19 -185.5051 136.9512

64 1s3l 3P2 0 20 -185.5100 136.9464

65 1s3l 3P1 0 21 -185.5237 136.9326

66 1s3l 3P0 0 20 -185.5273 136.9290

67 1s3l 3S1 0 20 -185.7912 136.6651

68 1s2l 1P1 0 22 -205.1693 117.2870

69 1s2l 1S0 0 22 -205.8374 116.6189

70 1s2l 3P2 0 23 -205.8844 116.5720

71 1s2l 3P1 0 24 -205.9309 116.5254

72 1s2l 3P0 0 23 -205.9422 116.5141

73 1s2l 3S1 0 23 -206.9047 115.5516

74 1s2 1S0 0 25 -322.4563
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Annexe C

Fonctions d’onde libres

La détermination numérique des fonctions d’onde du continu est fondée sur

le même principe que celle des fonctions d’onde liées avec quelques spécificités

supplémentaires dues à leur caractère oscillatoire et à leur normalisation.

Nous avons développé les aspects théoriques de leur calcul au paragraphe 4.4.1

, retenons leur amplitude à l’infini qui vaut
1

E1/4
ainsi que l’équation différentielle

4.25 qui les décrit :

[
d2

dr2
− l(l + 1)

r2
+ E − U(r)

]
FE

l (r) = 0 (C.1)

où E est l’énergie cinétique (en Ryd) de l’électron libre et U(r) le potentiel créé par

l’ion cible.

En raison du comportement exponentiel initial (similaire à celui des électrons liés)

et ultérieurement oscillant, la résolution de cette équation nécessite deux maillages

successifs : exponentiel puis arithmétique.

L’équation est du type y′′ = f(r)y qui peut être résolue à l’aide de la méthode

d’intégration de Numerov [19] :

yn+1

(
1 − 1

12
h2fn+1

)
= 1

(
1 +

5

12
h2fn

)
yn −

(
1 − 1

12
h2fn−1

)
yn−1 (C.2)

avec une très bonne précision de l’ordre de h6 où h est le pas d’intégration.

En pas exponentiel, cette équation s’écrit :

u′′(x) = [(l + 0.5)2 + (V (r) − E)r2]u(x) (C.3)

avec u(x) =
PE

l (r)√
r

, r = ex, h = ∆x et donc : fn = (l + 0.5)2 + (U(rn) − E)r2n.

En pas arithmétique :

P ′′(r) +

(
E − U(r) − l(l + 1)

r2

)
P (r) = 0 (C.4)
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où h = ∆r et fn = U(rn) − E +
l(l + 1)

r2n
.

Il faut au minimum cinq points par arche lors de l’intégration de la partie oscil-

lante, de façon à conserver une précison satisfaisante. Nous avons calculé les forces

de collision pour des énergies atteignant 20 fois l’énergie du seuil de l’excitation.

Dans ces conditions, à l’aide de l’équation précédente, le pas minimum d’intégration

arithmétique vaut :

∆rmin =
π

5
√

20Eseuil
&

π

25
√
Eionisation

(C.5)

où Eionisation est l’énergie d’ionisation du fondamental.

Le changement du pas exponentiel au pas arithmétique s’effectue lorsque r(nar)−
r(nar − 1) ≈ ∆rmin, c’est à dire pour le pas :

nar ≈ 2 +
1

he
ln

(
ha

r(1).(ehe − 1)

)
(C.6)

où he est le pas exponentiel fixé par le code de structure atomique et ha ≈ ∆rmin le

pas arithmétique.

Une détermination précise des fonctions d’onde à l’origine (les deux premiers

pas) conditionne leur précision ultérieure. Nous avons repris la méthode utilisée

pour le calcul des fonctions d’onde liées. D’après l’équation C.3 le comportement

initial de la fonction u est du type u(x) −−−→
r→0

p0r
l+1/2. Nous pouvons donc effectuer

son développement limité :

u(x) = [p0 + a2r + a3r
2 + a4r

3 + O(r3)]rl+1/2 (C.7)

ainsi que celui du potentiel :

U(r) = −2Z

r
+ p1 + p2r + p3r

2 + p4r
3 + O(r3). (C.8)

Le développement de l’équation C.3 permet de déterminer ces coefficients :

– a2 =
−Zp0

l + 1

– a3 =
(p1 − E)p0 − 2Za2

4l + 6

– a4 =
p2p0 + (p1 − E)a2 − 2Za3

6l + 12

– p1 ≈ (U(r2) + 2Z/r2) − (U(r1) + 2Z/r1)r2
r1 − r2

– p2 ≈ (U(r1) − 2Z/r1) − (U(r2) + 2Z/r2)

r1 − r2
p3 et p4 n’intervenant pas.

De même que pour l’origine, la détermination précise de l’amplitude à l’infini

conditionne beaucoup la précision des calculs. La fonction d’onde peut s’écrire pour

un grand rayon :

PE(r) ∼ A(r, E)

E1/4
cos(

√
E r + δ) (C.9)
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où δ est un terme de déphasage et A(r, E) est l’amplitude normalisée à l’infini de la

fonction d’onde dont Cowan [19] donne l’expression assymptotique :

A(r, E) ≈ 1 − Zc

2Er

[
1 − 5Zc

4Er
− l(l + 1)

2Zcr

]
. (C.10)

Zc est la charge ionique vue par l’électron libre. Cette expression assymptotique est

vérifiée au delà d’un rayon minimum que Cowan caractérise par :

r0 > max

(
10Zc

E
,
5l(l + 1)

Zc
, rc =

extension maxi-

mum des e− liés

)
. (C.11)

Dans ces conditions, numériquement, la fonction PE(r) normalisée s’obtient suivant :

PE(r) =
A(r0, E)

E1/4

P non normalisée
E (r)

Amplitude(P non normalisée
E (r0))

, (C.12)

l’amplitude de P non normalisée
E (r) étant déterminée en interpolant deux points proches

de r0 : y1 et y2 obtenus numériquement, par une sinusöıde de fréquence :

freq =

√
E − U(r) − l(l + 1)

r2
. (C.13)

L’amplitude vaut alors :

Amplitude(P non normalisée
E (r0)) =

√

y2
1 +

(
y1 cos(freq ha) − y2

sin(freq ha)

)2

(C.14)

où ha est le pas arithmétique de l’intégration.
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Annexe D

Eléments de matrice

coulombiens : excitation d’ions

complexes

Ces pages sont très largement inspirées de Cowan [19] (Chapitre 13), les éléments

de matrice coulombiens caractérisistiques des excitations collisionnelles électron ion

étant les mêmes que les éléments coulombiens employés pour la détermination de la

structure atomique dans une approche multiconfigurationnelle.

Nous rappelons la structure de couplage employée dans le reste de cet ouvrage :

{[
(lw1

1 α1L1S1L1S1, l
w2

2 α2L2S2) L2S2, · · · lwq
q αqLqSq

]
LqSq

}
JqMq.

Sous peine de rentrer dans un catalogue fort long et fastidieux de toutes les

situations, il faut, ici, se restreindre au seul cas des excitations collisionnelles.

Les électrons liés sont distribués dans les sous-couches 1 à q − 2 et les électrons

libres attachés à q − 1 et q. L’état initial correspond à un électron libre dans la

sous-couche q et aucun dans la q − 1eme, l’état final inverse cette situation.

Deux classes traitées par Cowan sont à extraire, les 6 et 10 (Chapitre 13-10, Fig 13-5

et formules 13-83, 13-84 et 13-91, 13-92).

Dans le cas traité, le lié initial est dans l’état fondamental ρ tandis que le libre, très

énergétique, est dans l’état σ ; le lié final est excité, indicé ρ′ et le libre σ′ est moins

énergétique.

Pour des transitions entre configurations distinctes, un classement énergétique des

orbitales donne ρ < ρ′ < σ′ < σ, soit le cas 10b de Cowan. Dans le cas d’états

mélangés par exemple par le champ électrique, le classement n’est pas modifié mais il

existe des éléments de matrice tels que ρ = ρ′ < σ′ < σ (classe no6 en intervertissant

les orbitales ′ et non ′) et ρ′ < ρ < σ′ < σ (classe no10a, de même, en intervertissant
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les orbitales ′ et non ′).

L’élément de matrice coulombien peut s’écrire :

< Ψb|
∑

i<j

∑

k

2rk
<

r
k+1
>

C
(k)
(i) .C

(k)
(j) |Ψb′ >

=
∑

ρσρ′σ′

∑

k

[
rk

dRk
d(lρlσ, lρ′lσ′) + rk

eRk
e(lρlσ, lσ′lρ′)

]
.

Les coefficients Rk
d(lρlσ, lρ′ lσ′) et Rk

e (lρlσ, lσ′ lρ′) sont les intégrales radiales doubles,

directe et d’échange 4.42. Les coefficients angulaires rk
d et rk

e sont calculés comme le

produit de plusieurs facteurs élémentaires. Quelques coefficients intermédiaires sont

nécessaires pour expliciter ces facteurs :

les coefficients de recouplage :

- déplacement (shift)

Rs(j1j2J ′, j3J, J ′′) ≡< [(j1j2)J
′, j3]J |[j1, (j2j3)J

′′]J >

= (−1)j1+j2+j3+J [J ′, J ′′]1/2

{
j1 j2 J ′

j3 J J ′′

}

- saut (jump)

Rj(j1j2J ′, j3J, J ′′) ≡< [(j1j2)J
′, j3]J |[j1, (j3j2)J

′′]J >

= (−1)j1+J+J ′′
[J ′, J ′′]1/2

{
j1 j2 J ′

j3 J J ′′

}

- échange (exchange)

Rx(j1j2J ′, j3J, J ′′) ≡< [(j1j2)J
′, j3]J |[(j1j3)J

′′, j2]J >

= (−1)j2+j3+J ′+J ′′
[J ′, J ′′]1/2

{
j2 j1 J ′

j3 J J ′′

}

(Ces trois termes valent 1 si j2 ou j3 est nul ainsi que Rx si j1 est nul.)

les opérateurs de découplage :

si T (k) et W (k) agissent sur les électrons 1 et 2 respectivement :

< α1j1α2j2j‖T (k)‖α′
1j

′
1α

′
2j

′
2j

′ >= δα2j2,α′
2
j′
2
Ua(j1j2j; k; j

′
1j

′) < α1j1‖T (k)‖α′
1j

′
1 >,

< α1j1α2j2j‖W (k)‖α′
1j

′
1α

′
2j

′
2j

′ >= δα1j1,α′
1
j′
1
Ub(j1j2j; k; j

′
2j

′) < α2j2‖W (k)‖α′
2j

′
2 >,

où

Ua(j1j2j; k; j′
1j′) = (−1)j1+j2+j′+k[j, j′]1/2

{
j1 j2 j

j′ k j′
1

}
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(opérateur de découplage ”á droite” qui permet de ”s’affranchir” de la couche succédant

à j1)

et

Ub(j1j2j; k; j′
2j′) = (−1)j1+j′

2
+j+k[j, j′]1/2

{
j1 j2 j

k j′ j′
2

}

(permet de ”s’affranchir” de la couche précédant j2).

Enfin, le découplage de deux opérateurs agissant sur des électrons distincts s’écrit :

< α1j1α2j2j‖T (k)W (k)‖α′
1j

′
1α

′
2j

′
2j

′ >

= δjm,j′m′(−1)j′1+j2+j

{
j1 j2 j

j′2 j′1 k

}
< α1j1‖T (k)‖α′

1j
′
1 >< α2j2‖W (k)‖α′

2j
′
2 > .

Le premier facteur des coefficients angulaires rk
d et rk

e , résultant de l’orthonor-

malité des fonctions d’onde et de la conservation des quantités de mouvement, est

un produit de fonctions delta :

B1 = δJqJ′
q

[
∏

m

δαmLmSm,α′
mL′

mS′
m

]

m6=ρσρ′σ′

×

[
∏

m

δLmSm,L′
mS′

m

]

m<ρ,m≥max(σ,σ′)

.

Le second prend en compte phase et nombres d’occupation :

B2 = (−1)∆p
[wρ(wσ − δρ,σ)w′

ρ′(w′
σ′ − δρ′,σ′)]1/2

(1 + δρ,σδρ′,σ′)

avec ∆p = δρ,σ − δρ′,σ′ +
σ∑

j=ρ+1

wj −
σ′∑

j=ρ′+1

w′
j .

Il faut encore ajouter les coefficients de parentage fractionnel issus des sauts

d’électrons d’une sous-couche à l’autre :

B3i = (lwi
i αiLiSi{|lwi−1

i α′
iL

′
iS

′
i) i = ρ et/ou σ

ou

B4i = (l
w′

i−1

i αiLiSi{|l
w′

i
i α′

iL
′
iS

′
i) i = ρ′ et/ou σ′.

Il existe deux possibilités de recouplage principales :
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– soit faire passer un électron d’une sous-couche ρ vers une autre moins profonde

i = min(ρ′, σ). Si ρ < i, il est nécessaire d’adjoindre à rk le facteur :

B5 =
[
δρ1 + (1 − δρ1)Rs(Lρ−1L′

ρL
′
ρ, lρLρ, Lρ)

]

×




i−1∏

m=ρ+1

Rx(L′
m−1lρLm−1, LmLm, L

′
m)




×

[
termes de spin équivalents, en

remplaçant les l, L, L par s, S, S.

]

(Le premier facteur correspond au recouplage des wρ − 1 électrons de la sous-

couche ρ, non impliqués dans la transition, avec les électrons des couches plus

profondes, le deuxième terme ”fait passer” l’électron actif ”au dessus” de la

couche qui lui succède ; cette opération transforme :

{[Lρ−1, (l
wρ−1
ρ α′

ρL
′
ρ, lρ)αρLρ]Lρ · · ·Li−1}Li−1, l

wi
i αi · · ·

en

{[(Lρ−1, l
wρ−1
ρ α′

ρL
′
ρ)L

′
ρ, l

wρ+1

ρ+1 αρ+1 · · · lwi−1

i−1 αi−1Li−1}L′
i−1, lρ}Li−1, l

wi
i αi · · · ).

– soit transférer le plus ”extérieur” des électrons (supposé appartenir à σ ′) vers la

sous-couche j = max(σ, ρ′). Si j < σ′, de même que précédemment, il s’ajoute

un facteur :

B′
6 = Rj(L

′
σ′−1lσ′Lσ′−1, Lσ′L

′
σ′, L′

σ′)

×




σ′−1∏

m=j+1

Rx(L′
m−1LmL

′
m, lσ′Lm, Lm−1)




×

[
termes de spin équivalents, en

remplaçant les l, L, L par s, S, S.

]

Soit le couplage de

{(L′
j , l

wj+1

j+1 α
′
j+1L

′
j+1)L

′
j+1 · · ·L′

σ′−1, [l
wσ′−1
σ′ ασ′Lσ′ , lσ′ ]α′

σ′L′
σ′}L′

σ′ · · ·

avec

{[(L′
j , lσ′)Lj , l

wj+1

j+1 α
′
j+1L

′
j+1 · · ·Lσ′−1]Lσ′−1, l

wσ′−1
σ′ ασ′Lσ′}Lσ′ · · · .

(Dans le cas où l’électron le plus extrème se trouve dans σ et non dans σ ′, il

est nécessaire d’inverser les termes primés et non-primés dans B ′
6, qui devient

B6.)
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- ρ < ρ′ < σ′ < σ

Les configurations initiales et finales peuvent s’écrire (en laissant cachés les nombres

quantiques de spin) :

(· · · (Lρ−1, lwρ
ρ αρLρ)Lρ, Linter)Linter, l

wρ′

ρ′ αρ′Lρ′)Lρ′, Lpeel)Lpeel,

l
wσ′

σ′ ασ′Lσ′)Lσ′, Lfin)Lfin, lwσ
σ ασLσ)Lσ

et

(· · · (Lρ−1, l
w′

ρ
ρ α′

ρL′
ρ)L

′
ρ, Linter)L

′
inter, l

w′
ρ′

ρ′ α′
ρ′L

′
ρ′)L

′
ρ′, Lpeel)L

′
peel,

l
w′

σ′

σ′ α′
σ′L

′
σ′)L

′
σ′, Lfin)L′

fin, lw
′
σ

σ α′
σL′

σ)Lσ

où inter, peel et fin rassemblent les électrons intermédiaires n’intervenant pas

directement dans l’interaction.

L’action des facteurs B3ρB3σB4ρ′B4σ′B5B6 permet de transformer ces configu-

rations en :

(· · · (Lρ−1, l
w′

ρ
ρ α′

ρL
′
ρ)L

′
ρ, Linter)L

′
inter, lρ)L

′
inter, l

wρ′

ρ′ αρ′Lρ′)Lρ′ , Lpeel)Lpeel,

l
wσ′

σ′ ασ′Lσ′)Lσ′ , lσ)L′
σ′ , Lfin)L′

fin, l
w′

σ
σ α′

σL
′
σ)Lσ

et

(· · · (Lρ−1, l
w′

ρ
ρ α′

ρL
′
ρ)L

′
ρ, Linter)L

′
inter, (l

wρ′

ρ′ αρ′Lρ′ , lρ′)L
′
ρ′)L

′
ρ′ , Lpeel)L

′
peel,

(l
wσ′

σ′ ασ′Lσ′ , lσ′)L′
σ′)L′

σ′ , Lfin)L′
fin, l

w′
σ

σ α′
σL

′
σ)Lσ.

Soit :

(· · · (L′
ρ′−1, lρ)L

′
ρ′−1, l

wρ′

ρ′ αρ′Lρ′)Lρ′ , · · ·Lσ′−1)Lσ′−1, l
wσ′

σ′ ασ′Lσ′)Lσ′ , lσ)L′
σ′

et

(· · · (L′
ρ′−1, (l

wρ′

ρ′ αρ′Lρ′ , lρ′)L
′
ρ′)L

′
ρ′ , · · ·Lσ′−1)L

′
σ′−1, (l

wσ′

σ′ ασ′Lσ′ , lσ′)L′
σ′)L′

σ′ .

Dans la configuration initiale, l’opérateur d’échange permet de sortir les sous-

couches l
wρ′

ρ′ αρ′Lρ′Sρ′ et l
wσ′

σ′ ασ′Lσ′Sσ′ :

Rx(L′
ρ′−1lρLρ′−1, Lρ′Lρ′ ,L).Rx(Lσ′−1Lσ′Lσ′ , lσL′

σ′ ,L′) × [spins]

transforme la configuration initiale en :

(· · · (L′
ρ′−1, l

wρ′

ρ′ αρ′Lρ′)L, lρ)Lρ′ , · · ·Lσ′−1)Lσ′−1, lσ)L′, l
wσ′

σ′ ασ′Lσ′)L′
σ′ .
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De façon similaire, sur la configuration finale, les opérateurs de déplacement et

de saut permettent d’isoler les derniers électrons de ρ′ et σ′ de leurs sous-couches

mères en expulsant ces dernières :

Rs(L
′
ρ′−1Lρ′L, lρ′L

′
ρ′ , L

′
ρ′).Rj(L

′
σ′−1lσ′L′, Lσ′L′

σ′ , L′
σ′) × [spins]

génère la configuration finale :

(· · · (L′
ρ′−1, l

wρ′

ρ′ αρ′Lρ′)L, lρ′)L
′
ρ′ , · · ·Lσ′−1)L

′
σ′−1, lσ′)L′(l

wσ′

σ′ ασ′Lσ′)L′
σ′ .

Mais ces recouplages doivent être menés pour tous les moments résultants de

L′
ρ′−1 et Lρ′ et aussi pour tous ceux de Lσ′−1 et lσ ou L′

σ′−1 et lσ′ (et spins).

Il ne reste plus, dès lors, qu’à calculer :

rk
i =< [(L, lρ)Lρ′, · · · Lσ′−1, lσ)L′‖g(k)‖[(L, lρ′)L′

ρ′, · · · L
′
σ′−1, lσ′]L′ >

où g(k) est l’opérateur angulaire dílectronique : g(k) = C
(k)
(i) .C

(k)
(j) .

Il est courant d’employer les opérateurs unitaires u(k) et v(k1) ainsi que leurs géné-

ralisations U (k) et V (k1) pour mettre en forme les coefficients directs et indirects :

rk
id =< lρ‖C(k)‖lρ′ >< lσ‖C(k)‖lσ′ > I(k)

ρσ

rk
ie = −

1

2
< lρ‖C(k)‖lσ′ >< lρ′‖C(k)‖lσ >

×
∑

r

(−1)r[r]

{
lρ lρ′ r

lσ lσ′ k

}
[I(r)

ρσ + 4I(r1)
ρσ ].

I(k)
ρσ = (−1)

L′
σ′−1

+lσ+L′

{
Lσ′−1 lσ L

′

lσ′ L
′
σ′−1 k

}

×




σ′−1∏

m=ρ′+1

Ua(Lm−1LmLm; k; L′
m−1L

′
m)




×
[
δL,0 + (1 − δL,0)Ub(LlρLρ′; k; lρ′L

′
ρ′)
]

× < lσ‖u(k)‖lσ′ >< lρ‖u(k)‖lρ′ >
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(ces deux derniers éléments valent δlσklσ′ et δlρklρ′
car u(k) est unitaire) : le pre-

mier terme découple les électrons lσ et lσ′ de l’ensemble, le second fait ”disparâıtre”

les électrons intermédiaires et l’avant dernier isole les électrons lρ et lρ′ de L.

Le calcul du coefficient angulaire de l’élément de matrice d’échange doit prendre

en compte la présence des spins et génère l’apparition d’un facteur dont les différents

termes ont la même signification que ceux du coefficient direct :

I(r1)
ρσ = (−1)

L′
σ′−1

+lσ+L′+S′
σ′−1

+sσ+S′

×

{
Lσ′−1 lσ L

′

lσ′ L
′
σ′−1 r

}{
Sσ′−1 sσ S

′

sσ′ S
′
σ′−1 1

}

×




σ′−1∏

m=ρ′+1

Ua(Lm−1LmLm; r; L′
m−1L

′
m)Ua(Sm−1SmSm; 1; S′

m−1S
′
m)




×
[
δLS,0 + (1 − δLS,0)Ub(LlρLρ′; r; lρ′L

′
ρ′)Ub(SsρSρ′; 1; sρ′S

′
ρ′)
]

× < lρsρ‖v(r1)‖lρ′sρ′ >< lσsσ‖v(r1)‖lσ′sσ′ >

(ces deux derniers éléments valent
√

3/2δlρrlρ′
et
√

3/2δlσ′rlσ ).

Les termes angulaires complets r(k) s’écrivent alors :

r(k) = B1B2B3ρB3σB4ρ′B4σ′B5B6

×
∑

LS

Rx(L′
ρ′−1lρLρ′−1, Lρ′Lρ′, L)Rs(L

′
ρ′−1Lρ′L, lρ′L

′
ρ′, L′

ρ′) × [spins]

×
∑

L′S′

Rj(L
′
σ′−1lσ′L

′, Lσ′L
′
σ′, L′

σ′)Rx(Lσ′−1Lσ′Lσ′, lσL
′
σ′, L

′) × [spins]

×r
(k)
i .

En fait, pour une excitation collisionnelle, tout ceci peut être légèrement simplifié

en notant que L′ = Lσ = L′
σ′ , S′ = Sσ = S′

σ′ , wσ = w′
σ′ = 1 et w′

σ = wσ′ = 0.

Les coefficients modifiés sont :

B2 = (−1)∆p(wρwρ′)
1/2 avec ∆p =

ρ′∑

j=ρ+1

wj ,
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B3σ = B4σ′ = 1,

B6 = 1 et i = ρ′ dans B5 et

r(k) = B1B2B3ρB4ρ′B5

×
∑

LS

Rx(L′
ρ′−1lρLρ′−1, Lρ′Lρ′ ,L)Rs(L

′
ρ′−1Lρ′L, lρ′L

′
ρ′ , L

′
ρ′) × [spins] × r

(k)
i .



Annexe E

Forces d’oscillateur d’ions

complexes

De même que pour l’annexe précédente concernant les éléments de matrice cou-

lombiens d’ions complexes, cette annexe est largement inspirée de Cowan[19] (cha-

pitre 14).

La transition la plus générale est du type : lw1

1 ...lni ...l
k−1
j ...l

wq
q ↔ lw1

1 ...ln−1
i ...lkj ...l

wq
q

où w, k et n représentent le nombre d’électrons des sous couches de moment angulaire

li. La force d’oscillateur se présente aussi sous la forme d’un produit de facteurs :

< Ψb||
∑

m

rt
mC

(t)
m ||Ψb′ >= D1D2...D7 < li||rtC(t)||lj >

où l’élément de matrice réduit final vaut :

< li||rtC(t)||lj >= P
(t)
lilj

= (−1)li [li, lj ]
1/2

(
li t lj

0 0 0

)∫ ∞

0
Pnili(r)Pnj lj (r)dr.

Notons que nous avons conservé la forme la plus générale où t est un entier. Le reste

de cet ouvrage ne fait mention que de transitions dipolaires électriques ou d’effet

Stark pour lesquels t = 1. Une programmation plus ouverte a été effectuée pour

accéder ultérieurement aux transitions multipolaires.

D1 rend compte des différentes permutations pour l’antisymétrisation :

D1 = (−1)∆p(n.k)1/2

où ∆p = k − 1 +

j−1∑

m=i+1

wm.

D2 correspond aux coefficients de parentage fractionnel des sous-couches parti-

cipant à la transition :

D2 = (lni αiLiSi{|ln−1
i α′

iL
′
iS

′
i)(l

k−1
j αjLjSj |}lkjα′

jL
′
jS

′
j).
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D3 est le découplage de Sq avec Lq et L′
q :

D3 = δSqS′
q
(−1)Lq+Sq+J′

q+t[Jq, J
′
q]

1/2

{
Lq Sq Jq

J′
q t L′

q

}
.

D4 est le découplage successif de Lq, Lq−1, . . .Lj+1 si q > j :

D4 =

q∏

m=j+1

δαmLmSm,α′
mL′

mS′
m
δSmS′

m
(−1)Lm−1+Lm+L′

m+t

×[Lm,L
′
m]1/2

{
Lm−1 Lm Lm

L′
m t L′

m−1

}
.

D5 est le recouplage de l
wi−1

i−1 (ln−1
i li) vers (l

wi−1

i−1 ln−1
i )li si i > 1 :

D5 =

(
i−1∏

m=1

δαmLmSm,α′
mL′

mS′
m
δLmSm,L′

mS′
m

)
Rs(Li−1L

′
iL

′
i, liLi, Li)

×Rs(Si−1S
′
iS

′
i, siSi, Si)

les coefficients de déplacement Rs étant détaillés dans l’annexe précédente.

D6 correspond au déplacement successif de l’électron li entre les couches i et m

non-comprises (si i < j − 1) :

D6 =

j−1∏

m=i+1

δαmLmSm,α′
mL′

mS′
m
Rx(L′

m−1liLm−1, LmLm,L
′
m)

×Rx(S′
m−1siSm−1, SmSm,S

′
m).

Enfin, D7 simplifie l’élément de matrice rémanent, transformant :

< [(L′
j−1S

′
j−1, li)Lj−1Sj−1, LjSj ]LjSj‖rt

NC
(t)
N ‖[L′

j−1S
′
j−1, (l

k−1
j LjSj , lj)L

′
jS

′
j ]L

′
jS

′
j >

en < [L′
j−1, (Ljli)L]Lj‖rt

NC
(t)
N ‖[L′

j−1, (Ljlj)L
′
j ]L

′
j > où L est un moment orbital in-

termédiaire, puis < li‖rtC(t)‖lj > :

D7 = δSjS′
j
Rj(S

′
j−1sSj−1, SjSj , S

′
j)

×(−1)Lj+lj+L′
j [Lj−1, L

′
j ,Lj ,L

′
j ]

1/2





Lj−1 L′
j−1 li

Lj L′
j lj

Lj L′
j t




.
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