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Hepatitis C virus (HCV) has high genomic variability and, since its discovery, at least six different 
types and an increasing number of subtypes have been reported. Genotype 1 is the most 
prevalent genotype found in South America. In the present study, three different genomic regions 
(5'UTR, core and NS5B) of four HCV strains isolated from Peruvian patients were sequenced 
in order to investigate the congruence of HCV genotypmg for these three genomic regions. 
Phylogenetic analysis using 5'UTR-core sequences found strain PE22 to be related to subtype 1 b. 
However, the same analysis using the NS5B region found it to be related to subtype 1a. To 
test the possibility of genetic recombination, phylogenetic studies were carried out, revealing that a 
crossover event had taken place in the NS5B protein. We discuss the consequences of this 
observation on HCV genotype classification, laboratory diagnosis and treatment of HCV infection. 

INTRODUCTION 
Hepatitis C virus (HCV) is the major causative agent of 
post-transfusion hepatitis and parenterally transmitted, 
sporadic non-A, non-B hepatitis throughout the world 
(Alter & Seeff, 2000). HCV is an enveloped RNA virus classi­
fied in the family Flaviviridae. HCV has high genomic 
variability and at least six different genotypes and an 
increasing number of subtypes have been reported 
(Simmonds, 1999). 

RNA viruses exploit all known mechanisms of genetic 
variation to ensure their survival (Domingo & Holland, 
1997). Their high rate of mutation and replication allow 
them to move through sequence space at a pace that often 
makes their DNA-based host's evolution look glacial in 
comparison (Worobey & Holmes, 1999). Over the last two 
decades it has become increasingly clear that many RNA 
viruses add the capacity to exchange genetic material with 

The GenBank/EMBL accession numbers of the sequences reported in 
this work are AJ438618, AJ438622 and AJ582126-AJ582135 

one another. Thus, in addition to producing large amounts 
of the raw material of evolution (mutations), these viruses 
also possess mechanisms (recombination) that, in principle, 
allow them both to purge their genomes of accumulated 
deleterious changes (Muller, 1964) and to create or spread 
beneficial combinations of mutations in an efficient manner. 

Until 1999, there was no evidence for recombination in 
flaviviruses, although the possibility had been considered 
(Blok etal, 1992; Kuno, 1997; Monath, 1994). Accordingly, 
the vast majority of work on flaviviruses, including vaccine 
studies and phylogenetic analyses in which genotypes were 
identified and sometimes correlated with disease severity 
(Chen etal, 1990; Leitmeyer etal, 1999; Rico-Hesse, 1990), 
has rested on the implicit assumption that evolution in the 
family Flaviviridae is clonal, with diversity generated 
through the accumulation of mutational changes. 

Recent studies have shown this assumption to be invalid, as 
homologous recombination has now been demonstrated in 
pestiviruses (bovine viral diarrhoea virus) (Becher et al, 
2001), flaviviruses (all four serotypes of dengue virus) 
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(Holmes et al, 1999; Tolou et al, 2001; Uzcategui et al, 
2001; Worobey & Holmes, 1999), hepaciviruses (GB vnus 
C/hepatitis G virus) (Worobey & Holmes, 2001) and 
Japanese encephalitis or St Louis encephalitis virus (Twiddy 
& Holmes, 2003). There have been few reports on 
recombination between HCV strains of different genotypes 
(Kalinina et al, 2002; Yun et al, 1996) and it has been 
suggested that these events art rare m vivo and that the 
resultant recombinants are usually not viable (Simmonds 
et al, 1994; Smith & Simmonds, 1997). 

Selected HCV genome regions within the 5'UTR, core, El 
or NS5, which have been shown to be conserved within 
a given HCV genotype, are used for the classification of 
HCV strains (Simmonds et al, 1994; Simmonds, 1999). 
Most methods for direct HCV genotyping include ampli­
fication of different genome regions, such as the 5'UTR, 
core, El or NS4, by PCR with type-specific primers or by 
restriction fragment length polymorphism analysis of PCR 
products (Ohno et al, 1997; Okamoto et al, 1993; Stuyver 
et al, 1993, 1995). Indirect HCV genotyping may be 
achieved by demonstration of type-specific antibodies by 
ELISA (Dixit et al, 1995; Simmonds et al, 1993). Thus, 
present methods of HCV genotype identification do not 
take recombination into account. 

Given the implications of recombination for virus evolution 
(Worobey & Holmes, 1999) and the development of vac­
cines, virus control programmes, patient management and 
antiviral therapies, it is clearly important to determine the 
extent to which recombination plays a role in HCV evolu­
tion. Recombination plays a significant role in the evolution 
of RNA viruses by creating genetic variation. For example, 
the frequent recovery of recombinant isolates of pohovirus 
(Georgescu et al, 1994; Kew & Nottay, 1984) that lesult 
from recombinatiou involving vaccine strains shows that 
recombination has the potential to produce 'escape mutants' 
in nature as well as in experiments. Recently, recombination 
has also been detected in other RNA viruses for which 
multivalent vaccines are in use or in trials (Holmes et al, 
1999; Suzuki etal, 1998; Worobey etal, 1999). We think the 
potential for recombination to produce new pathogenic 
hybrid strains needs to be carefully considered whenever 
vaccines are used or planned to control RNA viruses. 
Assumptions that recombination either does not happen or 
is unimportant in RNA viruses have a history of being 
proved wrong (Worobey & Holmes, 1999). 

In previous studies, we subtyped 72 HCV strains isolated 
in South America (Colina et al, 1999; Vega et al, 2001; 
San Roman et al, 2002; Cristina et al, 2002) by limited 
sequencing of the 5'UTR region. In the present study, 
this work was extended to include sequencing of the core 
and NS5B regions in order to investigate the congruence of 
HCV genotype determinations among the different regions 
of the genome. We found congruent results in 97% of 
cases. However, we also found evidence for recombination 
between type 1 subtypes of HCV in the Peruvian population. 

METHODS 
Serum samples . Seium samples weie obtained from 20 patients 
with chiomc hepatic, disease from the Hospital Nacional Edgardo 
Rebaghati Mai tins (Lima, Peru) In each case, patients were screened 
using an enzvme immunoassay (Innogenetics) and a confirmatory 
line immunoassay test (Innogenetics), according to the manufac-
tuiei's instructions 

RNA extraction, cDNA synthesis and amplification. HCV 
RNA was extiacted fiom 140 ul scrum samples with the QIAamp 
\nal RNA kit (Qiagen) according to the manufactuier's instruc­
tions the extiacted RNA was eluted horn the columns with 50 ul 
RNase ficc water tDNA synthesis and PCR amplification of the 
5'UIR, coie and NS5B regions were earned out as previously 
descnbed (Chan et al, 1992, Noider et al, 1998) To avoid 
false positne lesults, the recommendations of Kwok & Higuchi 
(1989) weie stnctlv adhered to Amphcons were purified using the 
QIAquick PCR punfication kit (Qiagen), according to the manufac-
tuiei's instiuctions 

Sequencing. The pinners used for amplification were used for 
sequencing the PCR fiagments The sequencing reaction was carried 
out using the Big Uve DNA sequencing kit (Perkin-Elmer) on a 
171 DNA sequencei appaiatus (Peikm-Elmer) or by manual sequen­
cing using the Thermo Sequenase radiolabeled teiminator cycle 
kit (Ameisham) 

Sequence analysis. The sequences foi the 5'UTR plus core and 
NS515 regions were aligned using the l IUSIAI \\ progiam (Thompson 
et al, 1994) Using the MFC.A piogram (Kumai et al, 1994), phylo­
genetic tiees weie created by the neighbour-joining method applied to 
the distance matrix obtained under the Kimura two-parameter model 
(Felsenstein, 1991) As a measure of the robustness of each node, we 
utilized the bootstrap method (1000 pseudo-replicas) 

Recombination analysis. Putative recombinant sequences were 
identified with the SimPlot program (Lole et al, 1999), using conca­
tenated (5'UIR plus core plus NS5B) sequences This program is 
based on a sliding window method and constitutes a way of graphi­
cally displa)ing the coheience of the sequence lelationships over the 
entire length of a set of aligned homologous sequences The window 
width and the step size were set to 200 bp and 10 bp, respectively. 
Once the recombinant strain and strains lepiesenting possible 
parents were identified, the likely recombination bieakpoint was 
determined by IARD (Holmes et al, 1999) Briefly, for eveiy possible 
breakpoint, the sequence alignment was divided into two indepen­
dent regions for which the branch lengths of a tree of the putative 
lecombinant and its two parent sequences were optimized The two 
results (likelihoods) obtained by using the separate regions were 
then combined to give a likelihood score for that breakpoint posi­
tion, and the breakpoint position that yielded the highest likelihood 
was then compared, using a likelihood ratio test, to the likelihood 
obtained from the same data under a model that permitted no 
recombination To assess whether the recombination model gave a 
significantly better fit to the data than the null hypothesis of no 
recombination, the likelihood ratios obtained using the real data 
weie evaluated for significance against a null distribution of likeli­
hood ratios produced by using the Monte Carlo simulation of 
sequences generated without recombination Sequences were simu­
lated 1000 times using the maximum likelihood model parameters 
and sequence lengths from the real data using Seq-Gen (Rambaut & 
Grassly, 1997). 
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RESULTS 

Phylogenetic analysis of HCV strains 

In order fo study the congruence of HCV genotype deter­

minations among the different regions of the genome, 
5'UTR, core and NS5B sequences from four HCV strains 
isolated in Peru were obtained. The 5'UTR and core 
sequences were aligned with those from 12 other strains 
representative of all six HCV types isolated elsewhere for 
which total sequences have been obtained. The origin of 
the sequences and the strains used are listed in Table 1. 
Once aligned, phylogenetic trees were created. As can be 
seen in Fig. 1(A), all HCV strains included in these studies 
clustered according to their genotype. Strains belonging 
to genotype 1 clustered together with the Peruvian isolates. 
Inside the main cluster of type 1 strains, two different line­

ages could be seen, supported by very high bootstrap values. 
One main line represented subtype la (Fig. 1A, upper part, 
and Table 1), while the other represented subtype lb 
(Fig. 1A, middle). 

The same analysis was performed using NS5B sequences. 
The results of these studies are shown in Fig. 1(B). As can be 
seen in the figure, all HCV strains included in these studies 
again clustered according to their genotype, and inside the 
main type 1 cluster, two different lineages, again supported 
by very high bootstrap values, were observed (Fig. IB, top). 
However, strain PE22, assigned to genotype lb in the 5'UTR 
plus core phylogenetic tree, was now assigned to genotype 1 a 

Table 1. 

Genotyp 

la 
1 
lb 
1 
lb 
2 
2 
3a 
3a 
3 
4a 
5a 
6a 
1 

1 

1 

1 

Origins of hepatitis C virus 

e Namf 

H77 
Jl 

JK1 
HD1 
K1R2 

16 
18 

NZL1 
K3a 
V­D 
ED43 
EUH 
euhk 
PE8 

PE96 

PE108 

PE22 

Geographic 
location 

USA 
Japan 
Japan 

Germany 
Japan 

Indonesia 
Indonesia 

Japan 
Japan 

Germany 
Egypt 
UK 

Hong Kong 
Peru 

Peru 

Peru 

Peru 

strains 

Accession no. 

AF009606 
D10749 
X61596 
U45476 
D50476 
D00944 
D10988 
D17763 
D28917 
X76918 
YU604 
Y13184 
Y12083 
AJ582126, AJ582128, 

AJ582131 
AJ438622, AJ582129, 

AJ582133 
AJ438618, AJ582130, 

AJ582135 
AJ582127, AJ582131, 

AJ582134 

in the NS5B phylogenetic analysis (Fig. IB, top). This 
discrepancy between the results found with the 5'UTR 
plus core sequences and the NS5B sequences, supported 
by very high bootstrap values in both trees (Fig. 1A and B), 
could be explained if a recombination event had taken place 
between putative paiental strains comparable with H77 
(subtype la) and JK1 (subtype lb). 

Recombination analysis 

To gain insight into a possible lecombination event, a phylo­
genetic profile analysis was carried out for the Peruvian 
strain PE22 and the putative parental­like strains H77 
(subtype la) and JK1 (subtype lb). The results of these 
studies die shown in Fig. 2. As can be seen in the figure, 

(A) 42 rH77(la) 
2 7 j L PE8 
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99 

21 

1( 

PE108 
PE96 

Jl( l) 
51j KlR2(lb) 

JK l ( lb ) 
100 

13 
HD1(1) 

­PE22 
NZLl(3a) 

■ K3a(3a) 
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75 
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64 
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0,05 

F ig . 1. Phylogenetic analysis of HCV strains isolated in Peru. 
Strains in the trees are shown by their names and their types 
are indicated in parentheses for strains previously described 
(see Table 1 for geographical location, types and accession 
numbers). Numbers at each node of the trees show bootstrap 
percentages obtained after 1000 replicates. Scale bars (number 
of substitutions per site) are shown at the bottom of the 
trees. (A) 5'UTR plus core region phylogeny. (B) NS5B 
region phylogeny. 
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Fig. 2. Phylogenetic profiles of HCV sequences. The y-axis gives the percentage identity within a sliding window 200 bp 
wide centred on the position plotted, with a step size between plots of 10 bp, along the concatenated (5'UTR plus core plus 
NS5B) sequences. Comparison of PE22 with H77 (subtype 1a) and JK1 (subtype 1b) is shown. The vertical line shows the 
recombination point (nt 677). 

profile analysis of the putative parental-like (H77, JK1) and 
recombinant (PE22) strains showed a clearly visible point of 
recombination at position 677 of the analysed sequences, 
which corresponds to position 58 of the NS5B sequences 
included in this study (see Fig. 3). This position corresponds 
to position 8321 in the HCV genome of the putative parental 
strain H77. 

To confirm these results, we employed the LARD method 
(Holmes et al, 1999). Simulations of sequence evolution 
under the null hypothesis (i.e. no recombination) gave 

strong statistical support for the alternative hypothesis of 
recombination (Fig. 4; P< 0-001). 

DISCUSSION 
Congruent results from genotyping HCV with different 
genomic regions have been repeatedly reported in the past 
and it has commonly been believed that recombination 
events are selected against or that they generally do not 
generate viable strains (Prescott et al, 1997; Simmonds 

PE22 
J K l ( l b ) 
H 7 7 ( l a ) 

PE22 
J K l ( l b ) 
H 7 7 ( l a ) 

CCCGCTGCTTTGACTCCACGGTCACTGAGAATGATATCCGTGTTGAGGAGTCAATTTA 
T A Q 

T A G C — C ACG G 

CCAATGTTGTGACCTGGACCCCCAAGCCCGCGTGGCCATCAAGTCCCTCACTGAGAGG 
T G _ G A-ACA—T A-G G G 

Fig. 3. Alignment of the nucleotide sequences within the NS5B region. Alignment of the PE22 recombinant strain sequences 
with corresponding sequences of isolates JK1 and H77. The sequences shown in the figure correspond to nt 8263-8378, 
relative to strain H77 (AF009606, type 1a). Nucleotide identity to PE22 is indicated by a dash. An arrow shows the 
recombination point. 
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Fig. 4. Distribution of the likelihood ratios expected by chance 
The distribution of likelihood ratios for the null hypothesis (i e no 
recombination) is shown. The y­axis shows the number of simula­

tions. Likelihood ratios are shown at the bottom of the figure The 
arrow shows the likelihood ratio obtained for the real dataset for 
the putative recombinant Peruvian strain (PE22). 

et al, 1994; Viazov et al, 2000). However, an infectious 
HCV chimera comprising the complete open reading frame 
of a subtype lb strain and the 5'­ and3'UTRsofa subtype la 
strain has been constructed and is infectious in vivo (Yagani 
et al, 1998). Recombination in other flaviviruses has now 
been demonstrated on a number of occasions (Becher et al, 
2001; Worobey & Holmes, 2001; Worobey et al, 1999; 
Twiddy & Holmes, 2003), and recently a natural inter­

genotypic recombinant (2k/lb) of HCV was identified in St 
Petersburg (Russia) (Kalinina etal, 2002). Our phylogenetic 
analyses based on two different genomic regions, 5'UTR­

core and NS5B, demonstrate the existence of natural 
intragenotypic HCV recombinant strains (la/lb) circulat­

ing in the Peruvian population. The recombination break­

point for non­segmented positive­strand RNA viruses, such 
as polioviruses and other picornaviruses (Santti at al, 1999; 
Guillot et al, 2000; Kew et al, 2002), as well as members 
of the family Flaviviridae, are often located in the part of 
the genome encoding the non­structural proteins but 
sometimes in genes encoding structural proteins (Costa­

Mattioli et al, 2003; Martin et al, 2002). Moreover, several 
possible recombination breakpoints have been identified in 
other RNA viruses, such as human immunodeficiency virus 
(HIV), and many more are being reported (Onafuwa et al, 
2003; Vidal et al, 2003; Strimmer et al, 2003; Najera et al, 
2002). The recombination point in our recombinant strain 
was situated in the NS5B region (see Figs 2 and 3). In the 
current HCV classification system, HCV strains are divided 
into genotypes, subtypes and quasispecies, but recombina­

tion has not yet been considered in this classification. By 
analogy with the nomenclature for HIV, we suggest that 
an HCV recombinant strain be designated a 'recombinant 
form' (RF), as also suggested by Kalinina et al. (2002). RF 
strains with the same number are progeny resulting from the 
same recombination event and thus share an identical 
mosaic structure; for example, the intertypic recombinants 

among subtypes 2k and lb observed by Kalinina et al. 
(2002) were described as RFl_2k/lb. Accordingly, we 
suggest the designation RF2_la/lb for the Peruvian strain 
PE22 described heiein. 
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