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Abstract 
This report is one out of several that constitute the final report on the ELSAM 
funded PSO project “Vindmøllekomponenters udmattelsesstyrke og levetid”, 
project no. 2079, which regards the lifetime distribution of larger wind turbine 
components in a generic turbine that has real life dimensions. 
 
Though it was the initial intention of the project to consider only the distribution 
of lifetimes the work reported in this document provides also calculations of re-
liabilities and partial load safety factors under specific assumptions about uncer-
tainty sources, as reliabilities are considered to be of general interest to potential 
readers too. 
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Introduction 
This report is one out of several that constitute the final report on the project 
ELSAM funded PSO project “Vindmøllekomponenters udmattelsesstyrke og 
levetid”, project no. 2079, which regards the lifetime distribution of larger wind 
turbine components in a generic turbine that has real life dimensions. 
 
In the present report the probabilistic part of the project is given. In other parts 
of the project the following has been treated: 

• Material properties of the three types of steel used for the three compo-
nents (hub, main shaft, and main frame) that has been considered in the 
project, i.e. determination of SN-curves 

• Design of the components to fit into the generic turbine followed by de-
termination of transfer function from cross-sectional loads to hot-spot 
stresses 

• Simulation of wind turbine response at given mean wind speeds, and 
subsequently assessment of lifetimes of the components conditional on 
the considered mean wind speeds 

Based on this input this report evaluates the lifetime distributions of the compo-
nents. Actually, it was the initial intention of the project to consider only the 
distribution of lifetimes however, as the distribution of lifetimes and the reli-
ability are directly connected, the work reported in this document provides also 
calculations of reliabilities and partial load safety factors under specific assump-
tions about uncertainty sources, as reliabilities are considered to be of general 
interest to potential readers too. 

 
The study in this report constitutes a simplified probabilistic analysis where 
some short cuts are made here and there. In the report it is attempted to provide 
comments on the deviations made from a more complete approach. Some of the 
results and conclusions reached in this report are – in the author’s mind – how-
ever considered to be of general qualitative validity, though they are expected to 
deviate quantitatively from those obtained if a more detailed analysis had been 
conducted. 

 
One of the notable conclusions is that the reliability differs considerably among 
the components. This can be explained by the fact that three different manufac-
tures have contributed each with one of the components. The differences are 
therefore expected to result partly from the fact that different manufactures may 
have different design strategies, partly from the fact that in any turbine not all 
components are designed fully to the limit. Thus any turbine design has a bot-
tleneck, which then can be one of the components considered herein. 

 
The project originally contained a demonstration/verification task that had the 
aim of comparing experimental results to the results coming out of the work 
covered in the present report. This task was cancelled at an early stage of the 
project, when the current project team took over the project from the initiating 
project teem, as the author of this report found it impossible – or at least very 
difficult – to carry out such experiments that would be needed to verify the 
theoretical results obtained in the project. The experiments would have to prove 
that the obtained lifetime distributions were correct. As it becomes apparent in 
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the report the lifetimes are in the range of ten to thousand years, results that cer-
tainly support the decision made. Because the project considers components 
from real-life structures that are naturally designed with the aim of very few 
collapses such results are not unrealistic. Therefore the project team is confident 
that the right decision was made. Moreover, to a large extent, the lifetime distri-
bution depends on many other uncertainties than the natural randomness of ma-
terial properties. Implying that experiments should be constructed such that 
these uncertainties could be accounted for as well. Because these uncertainties 
are model uncertainties this can hardly be done. The conclusion gives recom-
mendations on what should be done instead. 
 
The report is divided into three chapters contains: 

1. The theoretical approach behind the probabilistic evaluation 
2. Calculations leading to the lifetime distributions 
3. Discussions of reliabilities and partial safety factors. 

 
Some of the material given in this report is an extension of the note [1] that the 
author complied at an early stage of the project. The note deals with a simula-
tion approach to the numerics behind the probabilistic results. As discussed in 
Chapter 1 the method has turned out to be inapplicable. 
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1 The Approach Taken 
Equation Chapter 1 Section 1This chapter describes the approach and 
modelling employed in this work to assess the lifetime distributions and reliabil-
ities. Essentially the approach consists in pinning out the possible sources on 
randomness and uncertainty that contribute to the lifetime distribution and then 
trying to assess the distributions   of the uncertainties. Finally one applies a suit-
able numerical scheme to assess the distribution of the lifetime and the reliabil-
ities. 

1.1 Project Limitations 
Up to now lifetime distribution and reliability have been mentioned without go-
ing into detail. This section provides a clarification of what will be considered 
in this work. A probabilistic approach is required because not only are the com-
ponents subjected to fluctuating loads with a substantial random content and 
only does the material properties exhibit inherent variability which can be prop-
erly modelled by use of random variables, but also because considerable statis-
tical uncertainty and so-called model uncertainties enter into the lifetime as-
sessment. 
 
A number of relevant probabilistic problems relate to the assessment of life-
times for structural components subjected to fatigue loads. Among these are: 
 

1. Determination of the lifetime distribution taking into account all of the 
relevant uncertainty sources 

2. Determination of design such that the probability of rupture within a 
given design lifetime requirement becomes sufficiently small 

3. Determination of partial safety factors that approximately lead to 2 
4. Determination of optimal inspection planning such that the same 

probability of rupture is obtained with lesser dimensions without in-
spection costs becoming unacceptably high. 

 
These problems are more or less sophisticated variations over the same theme. 
Central to all of these problems is the examination of the uncertainties that can-
not be classified as inherent or natural. Ideally the lifetime distribution depends 
on the natural variation of the external loads and the natural variation of the fa-
tigue resistance among material specimens. Because the external load that leads 
to the fatigue does not consist in a single contribution but rather in the average 
of a sum of many contributions the variation of the lifetime – if everything else 
is kept constant – is practically negligible. The inherent variation of material 
properties has a much larger impact on the variation of the lifetime distribution. 
Now, statistical uncertainties, which can always be given a probabilistic inter-
pretation, related to the estimation of the SN-curve may potentially have an 
even larger impact on the uncertainty of the lifetime, i.e. on the lifetime distri-
bution. Note that over the past few sentences the concept of lifetime distribution 
has shifted from what one would intuitively understand as the actual lifetime 
distribution to the understanding that will prevail throughout the remainder of 
this report, namely: the lifetime distribution embraces also the uncertainties that 
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are not of ‘inherent randomness’ nature. This may seem contra-intuitive to 
some, however from a rational point of view the latter understanding is to be 
preferred. Say an engineer is asked to give a statement about the probability that 
a certain component will survive a given fatigue load history over N years she 
faces the fact that, if she could gather rupture data from components that had the 
same design and had been subjected to the same load history, the lifetimes 
would show a larger scatter than should be expected from an evaluation based 
purely on natural randomness. The scattered data would however still appear as 
the outcome of a random experiment. Thus including the statistical uncertainty 
in the lifetime distribution is definitely meaningful. Following this line of rea-
soning including also the model uncertainties related e.g. to the modelling of the 
aerodynamic loads in the lifetime distribution should also be done. A further 
discussion of the different uncertainty sources is given in Section 1.4. 
 
The work presented herein is limited to point 1 and 3, but it is not limited to the 
natural randomness only, on the contrary other uncertainty sources are consid-
ered at least as important – if not more important – to the fatigue life/reliability. 

1.2 Lifetime Distributions and Reliability 
Before proceeding it is convenient to establish the straightforward link between 
lifetime distributions and reliabilities. The lifetime distribution function F  is 
defined by  
 
 ( ) Pr{ }F l L l= ≤  (1.1) 
 
where  denotes the random variable for the lifetime and ‘Pr’ stands for prob-
ability. On the other hand the reliability 

L
R  is defined by 

 

 design lifetime

design lifetime

1 Pr{The component ruptures due to fatigue}
1 Pr{ }

1 ( )

R
L l

F l

= −
= − ≤

= −

 (1.2) 

 
The aimed design lifetime  is for instance 20 or 50 years. In the re-
mainder of the report  will for short 
be referred to as the probability of failure 

design lifetimel
he comPr{T ponent ruptures due to fatigue}

fp  or simply the failure probability. 
It is the probability of failure that is evaluated by the numerical scheme de-
scribed below. Thus, to interpret the results coming out of the numerics we need 
the relations 
 

  (1.3) 
design lifetime design lifetime

( ) ( )

( ) 1 (
f

f

F l p l

R l p l

=

= − )
 

which show the simple interconnection between the reliability and lifetime dis-
tribution. 

1.3 The Steps to Obtain the Lifetime Distribution 
It is further helpful for the subsequent presentation to briefly recapitulate the 
procedure to follow to obtain the fatigue lifetime. For clarity all other uncertain-
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Figure 1: from mean wind distribution to lifetime distribution. 

ties than natural randomness are neglected in this section. In Section 1.4 the ne-
glected uncertainties are discussed with reference to their introduction into the 
procedure. 

 

 
Figure 1 shows a schematic of the procedure. The starting point is the mean 
wind distribution and turbulence intensity distribution plus, which is not shown, 
assumptions about yaw errors and other possible operational modes that will 
contribute to the lifetime consumption. In the present work a rather simple load 
history without faults, start-ups and shutdowns is considered. Likewise the tur-
bulence intensity distribution is also neglected, the latter being of less impor-
tance due to the averaging inherent in fatigue. Typically FEM time domain 
simulations involving aerodynamic models obtain next response time series 
conditional on mean wind. The third step is to establish the stress range distri-
bution by combining the mean wind distribution and the conditional response 
from step two which has been subject to a more or less advanced stress range 
count. It is in this third step the inherent fluctuations among realisations of the 
turbulent wind field, even for given mean wind and turbulence intensity, appear. 
These fluctuations are, as already mentioned negligible. So are the fluctuations 
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due to variations between realisations of the mean wind distribution that has 
implicitly been assumed zero in this procedure. The fourth step is the Wöhler 
curve with modelling of the natural randomness of material properties leading 
to some distribution around the SN-curve of the number of cycles to rupture. It 
is this distribution that contributes the most to the lifetime distribution that is 
finally obtained in the fifth step where the distribution of cycles to rupture con-
ditional on stress range is convolved with the stress range distribution. 

1.4 Sources of Uncertainty 
In this section an attempt is made at providing an exhaustive list of the various 
sources of uncertainties that influences the lifetime distribution. The idea is to 
follow the path laid out in Figure 1. At each step the possible uncertainty inputs 
are then discussed. Preferably the inputs would then also be quantified in terms 
of distributions, however during the course of the project it has shown difficult 
to either obtain useful data to substantiate specific choices of distributions, or to 
arrive at consensus about an expert judgement of the distributions. These are 
therefore to be assessed in another project, while in this work sort of sensitivity 
studies are conducted in order to guide future decision-making regarding 
choices of distributions. In subsections 2.2.1, 2.2.2 and 2.2.3, though, one will 
find some discussions concerning material uncertainties and model uncertainties 
relating to evaluation of aerodynamic loads. As will be apparent from the dis-
cussion below the minute one starts to think about uncertainty sources related to 
the response simulation, the stress range count, and the application of the SN-
curve, the picture becomes so full of details that it seems that the only feasible 
approach is to assess the overall uncertainty of the lifetime by inviting different 
engineers to compute the lifetime of a certain specimen, that is not described in 
a standard. The different results that would come out of these computations 
would then account for the distribution of the lifetime uncertainty due to the 
uncertainties related to the response simulation, the stress range count, and the 
application of the SN-curve. 
 
Mean Wind Distribution 
The mean wind distribution at a given site may be estimated from one year of 
measurements or taken from a standard or e.g. estimated from a WASP analy-
sis. In the first case uncertainties in terms of statistical uncertainties appear be-
cause one year of measurements cannot contain the same amount of information 
about the mean wind distribution as for instance 50 years, see Section 2.2.1. In 
the second case model uncertainties are introduced, whereas in the latter both 
model and statistical uncertainties mix. 
 
Response Simulations 
Unless clearly stated below all uncertainties are of model uncertainty type. 
There are two steps in the response calculation 

1. Simulation of the dynamics of the turbine 
2. Detailed analysis (typically FEM) of the considered component 

 
Regarding the first step the uncertainties relate to 

• Modelling of the upstream airflow 
• Modelling of the aerodynamic loads 
• Modelling of turbine’s structural properties 

This list could have been made more detailed, however the focus has been more 
on understanding the second step. In order to cut a long story short merely a list 
of possible sources concerning step two is stated. Essentially the uncertainties 
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relate to: 1) bringing reality into a manageable mechanical model, 2) bringing 
the mechanical model into a computational model, and 3) the engineer’s inter-
pretation of results. 
 

Geometry (from reality to mechanical model) 
1. Mismatch between drawings and FE model. Specifications may 

change without FE model being updated. Such an error is to be con-
sidered a gross error and not a true uncertainty source see Sec. 1.4.1. 

2. Mismatch between drawings and fabrication. As long as tolerances are 
kept, this source qualifies as a true uncertainty source. 

Boundary conditions (from reality to mechanical model) 
1. Simplification of clamping, e.g. replacing a flexible joint by a rigid 
2. Simplification of stress distribution, e.g. along interface between blade 

and hub. 
Transfer functions  
1. Neglecting welds (from reality to mechanical model) 
2. Mesh generation and shape function choice influences stress concen-

tration (from mechanical to computational model) 
3. The user can make small errors, because she does not fully understand 

how iterations and hysteresis are defined in the applied FE program 
(interpretation of results) 

Selection of hotspots 
1. Selection based on engineering judgement: e.g. the points of max von 

Mieses stress in extreme load computations or at critical design details 
(this source is actually closer to being a potential source of gross er-
rors) 

2. Selection on the basis of a number of load cases leading to different 
ratios of the stresses. 

3. In both cases an assumption of linear transfer from loads to stresses. 
 
Stress range count 
A unique stress count algorithm does not exist. The rain flow count (RFC) 
scheme seems to be generally accepted as the method that provides the most 
meaningful stress range distribution for metallic materials. Since RFC is widely 
used a minor contribution to model uncertainties from stress range counting can 
be expected. Some statistical uncertainty is of course also arising from range 
counting of a limited number of simulated response time series. 
 
SN-curve 
The modelling of the SN-curve contributes mainly to model uncertainties. 
However some statistical uncertainty also originates from the fact that SN-
curves are sometimes estimated by linear regression based on a limited number 
of tests. The following issues are expected to contribute to the uncertainty 

1. General 
a. The approximate validity of Miner’s rule 
b. The influence of mean stresses 
c. Extrapolation of SN-curves to small stress ranges 

2. Synthetic SN-curves 
a. The general nature of synthetic SN-curves taken from standards 
b. Erroneous choice of synthetic SN-curve (gross-error-category) 

3. SN-curves based on tests 
a. Tests are conducted on specimens, not on full-scale compo-

nents 
b. Deviation of test data from a straight line 
c. Estimation of an SN-curve from a limited number of data 
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1.4.1  Remark on Gross Errors 
As the reader may have noticed some of the uncertainty sources listed above has 
actually been categorised as gross errors. They have been included in the list 
with the purpose of putting the discussion of uncertainties into perspective.  
 
Partial safety factors are not intended to provide safety against gross errors (like 
omitting a bar in a latticed structure) that should be captured by the quality con-
trol. Aiming at developing safety factors for gross errors too would end up in 
uneconomic design. 
 
The author expects that despite of quality control there is a non-negligible risk 
that some gross errors will remain. Especially a critical issue is the selection of 
hot spots, which is a difficult discipline. At present, i.e. with the current rules of 
design, the author estimates, that the extra uncertainty due to such a hot spot 
error is countered by the conservative assessment of the characteristic fatigue 
loads. This being of course an irrational design situation that ought to be further 
investigated. 

1.5 Numerical Scheme 
It was the initially the intention of the project to apply a simulation technique to 
assess the probability distribution of the lifetimes. However the probabilities, 
i.e. the failure probabilities, that are of interest in the current project are very 
small, i.e. in the range form 10-8 to 10-4. These small probabilities reflect the 
fact that the project considers component from real live structures that are de-
signed with the aim of very few collapses, i.e. long expected lifetimes. Simula-
tion techniques require that the events that contribute to the probability which 
one wants to estimate occur several times among the simulation results. Other-
wise stable estimates of the probability wanted are not obtained. Consequently, 
if one seeks probabilities in the range mentioned, the number of simulations 
needed would be in the range from 106 to 1010. A simulation procedure that was 
developed during the course of the project is described in the note [1]. Though 
the procedure aims at being cheap in terms of computer time per simulation 
loop it is still impractical to apply such a method in the current context. There-
fore the simulation approach has been abandoned in favour of a more sophisti-
cated numerical procedure – the so-called First Order Reliability Method (in 
short: FORM), which is extensively described in e.g. [2]. The FORM procedure 
computes directly the probability of failure fp  required in formulas (1.3). 
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2 Lifetime Evaluation 
Equation Chapter (Next) Section 1This chapter is the core part of 
the report as the employed limit-state function and stochastic model are de-
scribed; including some suggestions for, and some examples of, quantification 
of model uncertainties. Further several examples of lifetime distributions are 
given. 

2.1 Limit-State Function 
In the context of structural reliability, which is the context of this work, the sto-
chastic model is the specification of the distributions of the stochastic variables 
that enter into the problem under consideration. Recalling what was shown in 
Section 1.2, the problem is finding the probability that some structural failure 
event occurs; that is finding the probability that the component is subjected to 
loads that brings the component into a failure mode, i.e. a mode on the unfortu-
nate side of the limit between safe and unsafe modes. To the end of distinguish-
ing safe modes from unsafe modes the so-called limit-state function 

 is defined. The quantity 1 2( ) ( , ,..., )ng g X X X=X X  denotes the vector of 
random variables that enter the problem, i.e. material strengths, loads, and 
model uncertainties. The limit-state function shall be defined such that it takes 
positive values when the random variables take values that correspond to the 
component being in a safe mode; that is if the strength variables take high val-
ues and load variables take low values. On the other hand, if the random vari-
ables take values that correspond to component rupture the limit-state function 
shall take negative values. Finally the limit-state function is zero for any combi-
nation of the random variables that neither is a safe mode nor a rupture mode, 
i.e. modes just on the edge of rupture – thereby the name “limit-state function”. 
Having defined ( )g i  evaluating the probability of failure therefore boils down 
to 
 

  (2.1) 
1 2

Pr{failure} Pr{ ( ) 0}
Pr{ ( , ,..., ) 0}n

g
g X X X

= ≤
= ≤

X

 
So stating the stochastic model requires also stating the limit-state function. In 
the following the limit-state function is developed. Then, in the next section the 
stochastic model follows. 
 
Start out disregarding the model uncertainties. By use of a discretised Miner’s 
rule the probability of failure is given by 
 

 Pr{ } Pr 1i
f

i i

n l
p L l

N
 

= ≤ = ≥ 
 
∑  (2.2) 

 
where  is the frequency (number per unit time) of cycles at stress range level in

iσ , and iN  is the number of cycles to rupture at the stress range level iσ . Ac-
cording to the SN-curve model iN  is given by 1

2 ( ) m
i iN ε σ σ −′=  (except for 
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the ε , the notation follows the one defined in [5]). The random variable ε , 
which has mean 1, accounts for the random spread of number of cycles to rup-
ture around the SN-curve. Thus the limit-state function becomes 

ijn

, j

 

 
1
2

( , , , ) 1
( )

i
i m

i i

n lg n m σ ε
ε σ σ −

′ = −
′∑  (2.3) 

 
Note that  has been included in the list of arguments to in ( )g i  because, strictly 
speaking it is a random variable, though its variation is practically negligible. In 
the following this variation is neglected, and instead the statistical uncertainty of 
the mean wind distribution is accounted for by randomness of . The variables 

 and 
in

m σ ′  are assigned distributions that account for the statistical uncertainties 
related to the estimation of the SN-curve from data. In order to make the limit-
state function work with results obtained prior in the project it has to be refor-
mulated. Later it will become clear that this reformulation puts some limits on 
the generality of the results. Because all mean wind speeds contribute to the 
stress range iσ  formula (2.3) can be rewritten into 
 

 
1
2

( , , , ) 1
( )

ij
j j m

j i i

n
g p m p lσ ε

ε σ σ −
′ = −

′∑ ∑  (2.4) 

 
where jp  is the probability of the 10-min. mean wind speed bin 10, jU , and  

is the frequency of cycles at stress range level iσ  and 10-min. mean wind speed 

10U . In essence  has been substituted by the product in j ijp n  where jp  will 
account uncertainty of the mean wind distribution and the fact that the inherent 
randomness of  is neglected render  a deterministic variable. Denoting by in ijn

jl  the expected lifetime of a component subjected only to loads derived from 
mean wind speed bin j, i.e.  
 

 

1
2

1( , )

( )

j
ij

m
i i

l m nσ

σ σ −

′ =

′∑
 (2.5) 

 
the formula (2.4) simplifies to 
 

 ( , , , ) 1
( , )

j
j

j j

p l
g p m

l m
σ ε

ε σ
′ = −

′∑  (2.6) 

 
It follows from formula (2.5) that for given  and m σ ′  the jl s can be computed 
directly from a stress range count at each mean wind speed. In this way the 
complexity of the input to the limit-state function is reduced from the stress 
range distributions to the expected lifetimes conditional on mean wind speed. 
The reduction is obtained at the expense of giving up the possibility to investi-
gate the influence of possible variations in uncertainties with the stress range 
level. For instance one could imagine that large stress ranges, which could po-
tentially contribute significantly to the overall fatigue (depending on the Wöhler 
exponent m) may be subjected to relatively larger uncertainty than low stress 
ranges. Then introducing the bin-wise expected lifetimes jl  is too simplistic an 
approach. 
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It is now time to introduce the uncertainties disregarded so far, namely the 
model uncertainties. The common practice is to specify any model uncertainty 
as a random variable multiplied to the quantity that the model uncertainty re-
lates to. This is so because the error/uncertainty typically increases with the ab-
solute value of the quantity that the model uncertainty relates to. Though there 
is no general argument that the uncertainty should increase linearly with the 
quantity there is seldom sufficient information available to justify whether or 
not a linear dependency is valid, leaving the linearity assumption as the prefer-
able choice due to its simplicity. The distribution of the model uncertainty vari-
able is ideally of mean 1, implying no realised systematic model errors are pre-
sent, i.e. no bias. The uncertainty variable’s COV (Coefficient Of Variation = 
standard deviation / mean value) is then a convenient measure of the relative 
error that the model uncertainty represents. Instead of multiplicative model un-
certainties one can of course consider additive errors. In practice these occur 
mostly in relation to measurement data, which is not really considered herein.  
Though one should have only a vague idea about the actual distribution of the 
model uncertainty variable most engineers can come up with an intuitive 
judgement of the relative error, which is yet another argument in favour of 
multiplicative uncertainties. 
 
Take first the uncertainty of aerodynamic load modelling (see the first bulleted 
list in Section Response Simulations p. 10). These uncertainties influence the 
stresses. The way they influence the stresses depends on the control system of 
the turbine. For simplicity it is assumed, that the control system, conditional on 
mean wind speed, behaves approximately linearly. If X  denotes some multipli-
cative model uncertainty to the aerodynamic load then the assumption implies 
that X  becomes a multiplicative model uncertainty to any stress range level. 
Formula (2.4) shows that mX  is then the resulting model uncertainty to the sum 
in (2.6). In [4] four model uncertainties to the aerodynamic loads are suggested, 
of which only three are relevant here (the fourth is replaced by jp ) 

• expX : accounts for the model uncertainties associated with the expo-

sure, i.e. expX  accounts for the uncertainties due to the modelling of ter-
rain topography and roughness. 

• earoX : accounts for model uncertainties related to the assessment of the 
lift and drag coefficients, i.e. uncertainty originating from model-
scale/full-scale disagreements and/or empirical-analytical estimates. 

• dynX : accounts for model uncertainties stemming from the modelling of 
the dynamical response characteristics of the turbine, e.g. structural 
damping ratios and eigenfrequencies. 

 
Thus the limit-state formula (2.6) is now updated to 
 

 
exp aero dyn

exp aero dyn

( , , , , , , )

1
( , )

j

jm m m

j j

g p m X X X

p l
X X X

l m

σ ε

ε σ

′ =

−
′∑

 (2.7) 

 
We treat now the remaining model uncertainties. The stress analysis described 
in Section Response Simulations p. 11 involves many different model uncer-
tainty contributions that are here gathered in just one variable . The uncer-
tainty related to employing the rain flow counting algorithm instead of another 
stress range counting procedure is denoted , and finally uncertainties re-

stressX

RFCX
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lated to the application of the SN-curves are put together into the variable SNX . 
Unlike the uncertainties  and  that will appear in formula (2.7) in the 
same way as the aerodynamic uncertainties because they are multiplied to the 
stress 

stressX RFCX

iσ  the uncertainty SNX  is multiplied to the number of cycles 
1
2 ( ) m

iε σ −σ ′  meaning that SNX  will be divided into the other uncertainties. 
Thus one ends up with this final expression for the limit-sate function: 

exp

ero d

X

X

aero

yn str

SN

, ,

m m

X

Xexp a

, , ,

m mX X

σ ε′

1
2

σ
σ ′jl =

( iσ σ ) m−′

σ ′

0 1e j c= + 10,c 2U c+

 

 
dyn stress RFC SN

ess RFC

( , , , , )

1
( , )

j

m
j

j j

g p m X X X X

X p l
X l mε σ

=

−
′∑

 (2.8)  

2.1.1  Bin-Wise Expected Lifetimes 
An important part of the limit-state function is the bin-wise expected lifetimes 

jl  introduced in formula (2.6). These expected lifetimes have been computed 
for the three different materials that are used for the three different components 
considered in this project. Details about the computation of the bin-wise ex-
pected lifetimes, e.g. like the simplified load history shortly mentioned in Sec-
tion 1.3, are given in some of the other reports of the project [5]. Here the nec-
essary results needed in the present report are repeated and a little further devel-
oped. 
 
For the hub and the main shaft bin-wise artificial equivalent stresses ,e jσ  have 
been determined such that they satisfy an expression of the form 
 

 , h
m

e j

sK

−
 


 

 (2.9) 

 
where ‘h’ denotes the time unit ‘hour’, and  is a scaling factor accounting for 
scale-effects and differences in surface characteristics between the test speci-
men and the actual component. The similarity of Equation (2.9) with the SN-
curve expression 

SK

1
2N =  is useful as it allows for scaling between dif-

ferent SN-curves with the same Wöhler exponent, i.e. between translated 
curves, without re-computing the equivalent stresses from scratch. A translation 
simply implies a change in  and no changes in equivalent stresses. It has 
been possible to fit a polynomial expression to the obtained ,e jσ s: 
 
  (2.10) 31 2

, 10, 3 10, 4 10,
pp p

j j jU c U c Uσ + + 4p
j

 
The numeric values of the parameters in formulas (2.9) and (2.10) are listed in 
Table 1. From the employed units it is seen that the formulas give the lifetime in 
hours if the mean wind speed is input in m/s. 
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 Hub Shaft 
m  10.79 21.32 
σ ′  [Mpa] 500  525  

SK  0.6 1.0 

0c  [Mpa] 20.19 782  

1p  1  1  

1c  [Mpa/(ms-1)p
1] -2.76 -4.377 

2p  2  -1  

2c  [Mpa/(ms-1)p
2] 0.37 -20032  

3p  3  -1.5 

3c  [Mpa/(ms-1)p
3] -0.00803 61623  

4p  - -2  

4c  [Mpa/(ms-1)p
4] - -53270  

 
Table 1: numeric values for the parameters in the formulas (2.9) and (2.10). 

 
 

Now, the values in Table 1 are valid only for the  and m σ ′  values specified. If 
the influence of uncertainties in these values is to be investigated other expres-
sions like (2.10) are needed. As mentioned translations do not affect the expres-
sions however changes in the exponent does. Investigations of the influence of 
changes in  have been made for the hub only. For a few mean wind speeds 
the left plot in Figure 2 depicts values of the equivalent stresses obtained with 
Wöhler exponents 

m

0 , 1.2,1.1, 0.9, 0.8m m γ γ= =  ( m0 10.79= ) and normalised 
by the fit (2.10). Changes in  are not possible without changing m σ ′  if it is at 
the same time required that all of the SN-curves with changed exponent must go 
through a specific point. Such a requirement is enforced in the present context 
because the SN-curves are estimated from a set of test data. As explained in 
Section 2.2.2 the modelling of the statistical material data uncertainty becomes 

 

σ e,m / σ e,m 0
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Figure 2: the influence of changes in the Wöhler exponent on the equivalent 
stresses (the hub material) 
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Figure 3: bin-wise expected lifetimes different Wöhler exponents of the hub ma-
terial 

simple if a certain average point among the test data is used as reference point. 
The changes in σ ′  following from changes in  are shown in the right plot in 
Figure 2. Because of the definition of equivalent stresses in this work and be-
cause of the described requirement linking  and 

m

m σ ′  it is difficult to give intui-
tive arguments for the results shown in Figure 2. However Figure 3 shows that 
the lifetimes decrease drastically with decreasing  (increasing m γ ). The impli-
cation of this circumstance is discussed in Section 2.2.2. For later reference it is 
mentioned here that based on the data in the plots in Figure 2 the following ex-
pressions have been fitted: 

 

 

 

0

0

, 2
0 1 10 2 10

,

2 -
0

2 -
1

2

2

0.345 0.0915 0.7466   [(m/s) ]

0.0136 0.0044 0.0091   [(m/s) ]
0.0005( 1)

0.5432 0.4352 0.8917

e m

e m

m

m

c c U c U

c

c
c

σ
σ

γ γ

γ γ
γ

σ
γ γ

σ

= + +

= − +

= − + +
= −

′
= − +

′

2

1  (2.11) 

 
For the frame a simple fit like expression (2.10) has not been established. In-
stead interpolation between the values on the curves in Figure 4 can be made. 
The curve marked with the number 1.00 is obtained for the load history defined 
in [5]. Adding to this load history model uncertainties then, as described in Sec-
tion 2.1 a scaling of the stress ranges result. If the expected lifetimes for such a 
scaled load history is needed one may interpolate between the curves using the 
numbers that mark the curves as interpolation points of the scaling factor. It is 
noted that unlike what is the case for the hub and main shaft, the SN-curve for 
the frame has been chosen among a bundle synthetic SN-curves for welded 
joints. 
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Figure 4: bin-wise expected lifetimes for the frame as function of 10-min. mean 
wind speed and for different ratios of the stress range to the load history ranges 

2.2 Stochastic Model 

2.2.1  Statistical Uncertainty of Mean Wind Distribution 
The following text is based on [3]. A Weibull distribution is usually fitted to the 
empirical mean wind distribution: 
 

 10
10( ) 1 exp

kUF U
A

  = − −     
  (2.12) 

 
where  and  are distribution parameters. This distribution is assumed herein 
and the statistical uncertainty is expressed by stating a joint distribution of  
and . The estimation of this distribution is based on a representative synthetic 
Danish set of data of s and s estimated from one-year measurements over a 

A k
A

k
A k

1,6

1,8

2,0

2,2

2,4
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A
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Figure 5: scatter plot of  and  A k
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Figure 6: empirical marginal distributions of  and . A k

period of 52 years. The plot in Figure 5 shows the data together with the linear 
regression of k  on . The parameters exhibit a weak correlation, which 
amounts to a correlation coefficient of 0.33. 

A

kA

 

 
Plotting the empirical marginal distribution functions of  and  on normal 
probability paper the graphs shown in Figure 6 are obtained. Assuming that  
is normally distributed seems a good approximation. On the contrary the upper 
tail of the distribution of  is in conflict with an assumption of normality. An-
ticipating that the lifetime distribution is dominated by the uncertainty of the 
material properties it is expected that for the current purpose approximating  
by a normal distribution is appropriate. This stand point is supported by the fact 
that COVs of  and  are 4.2% and 5.0% respectively. 

A k
A

k

k

 
An analysis of another set of data, with  and  values of the same magnitude 
as above but of shorter duration provide similar results. The correlation is how-
ever somewhat smaller, namely 0.22. It is therefore suggested to represent the 
statistical uncertainty related to the Weibull distributional parameters estimated 
from one-year measurements by a pair of correlated normally distributed ran-
dom variables both with COV 5% and mutual correlation 0.30. 

A k

 
If the mean wind bins each range 2 m/s then the uncertainty of  and k  enter 
into the limit-state function in (2.8) by substituting for 

A
jp  the expression 

 

 10, 10,1 1
exp exp

k k
j

j

U U
p

A A

  − +  
  = − − −        

j

  

 (2.13) 

 
where 10, jU  equal the bin centres, and  follows the suggested joint prob-
ability distribution. 

( , )A k

2.2.2  Inherent and Statistical Uncertainty of Material Data 
In this section the focus is put on the uncertainties attached to SN-curves de-
rived from data. The uncertainties related to the application of synthetic curves 
are not discussed, as the subject is not part of the project plan. We will consider 
the data plotted in Figure 7. That data, which is taken from [5], corresponds to 
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Figure 7: test data from representative cast steel material used for hubs. Left 
plot is correct. 

the hub, and will be extensively used in the following as a reference case. Be-
fore proceeding to the derivation of the stochastic model for the uncertainties, a 
discussion of how to properly obtain by statistical means the SN-curve from a 
set of test data is given. 

 

 
Because fatigue tests are designed the way they are, i.e. a constant stress ampli-
tude is fixed and then the experiment is run – preferably – until rupture, the only 
statistical sound estimation approach is to estimate the linear regression of 
log N  (the dependent variable) on logσ  (the independent variable). The argu-
ment is as follows. The core of any regression analysis is a stochastic model. In 
the simplest case, which is considered here, the stochastic model assumes that 
the dependent variable is random with a mean value that depends on the inde-
pendent variable, which is deterministic. Since the only way to conduct fatigue 
tests is to choose the stress amplitude deterministically and obtain the lifetime 
as a random result, it is evident that the proper regression analysis is to estimate 
log N  as the linear regression on logσ . Trying the opposite is algebraically 
possible, though meaningless, and it will generally lead to too large a Wöhler 
exponent , the overestimation being lesser the lesser the data spreads about 
the regression line. That is, a non-conservative estimate of lifetimes for stresses 
below the average stress range of the tests, and a conservative estimate for 
stresses above the average, follows. The reason for the over-estimation of the 
Wöhler exponent lays in the fact that in the estimator of the slope of the regres-
sion line those points that – measured along the axis of the variable chosen as 
the independent variable – lay furthest away from the centre of gravity of the 
data get the highest weights. Figure 7, Figure 8 and Figure 9 illustrate the dif-
ferences between the correct and the wrong approach. In Figure 7 both the lin-
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Figure 8: test data from representative high-strength steel used for shafts. Left 
plot is correct. 
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Figure 9: artificially simulated test data for visual judgement of goodness of 
slope estimates. Left plots are correct. 

ear regression of log N  with respect to logσ  and vice versa appear; left-hand 
plot and right-hand plot respectively. The correct and the wrong estimates are in 
this case considerably different, 6.8m 3=  and 10.79m =  respectively. Figure 9, 
which has been obtained artificially by numerical simulation, shows more 
clearly than Figure 7 that the wrong estimate tends to cut trough the data along 
the diagonal rather than along the centre line of the data giving in that way an 
optimistic estimate of the Wöhler exponent. If the spread in data is less than 
shown in Figure 7 and Figure 9 then the differences between the two ways of 
determining the linear regression becomes less. Figure 8, showing the two re-
gression lines for the set of high-strength steel data used for the shaft in this 
work, is such an example where one obtains 19.6m =  and m  for the cor-
rect and wrong slope, respectively. 

21.3=

 

 
It is now time to turn to the quantification of the statistical and inherent uncer-
tainty of the material strength. It is convenient to parameterise the linear regres-
sion model as 
 
 log (log log ) logN α β σ σ= + − + ε  (2.14) 

 
where logσ  denotes the sample average of the logarithmetised stress ranges in 
the data set. The parameterisation exploits that the linear regression goes 
through the point of gravity of the logarithmetised data set. The m  and σ ′  re-
late to the α , β , and logσ  through 
 

 ( ) 1log 2

m

e e
βσ α

β

σ
−

= −

′ =
 (2.15) 
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The ε  in (2.14) is identical to the ε  in 1
2 ( ) m

i iN ε σ σ −′= . Substituting (2.15) 
into 1

2 ( ) m
i iε σ σ −′=N  yields the expression that will form the basis of the in-

clusion of the statistical and inherent uncertainties of the material strength: 
 

 
log

N e
e

β
α

σ

σ ε =  
 

 (2.16) 

 
The inclusion of the uncertainties is obtained by substituting the α  and β  by 
their estimators α̂  and β̂  which are random variables. Under the usual as-
sumption that the inherent randomness covered by the residuals logε  be zero 
mean normal distributed the estimators follow a normal distribution with pa-
rameters that can be estimated from the data. Also the std. dev. s  of the residu-
als is substituted by its estimator ŝ , which is qui-square distributed. Denoting 
by s  and k  the estimated std. dev. of the residuals and the number of data 
points, respectively, then 
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 (2.17) 

where 
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 (2.18) 

 
It is noted that the applied modelling of the statistical uncertainty follows from 
Bayesian statistics assuming standard non-informative prior distributions. Dif-
ferent choices could have been made, however, this is not discussed in any fur-
ther detail here. The estimated numeric values of the parameters in (2.17) for 
the hub material are stated in Table 2. Clearly the translation parameter α  is 
well determined, whereas the slope parameter β  has a COV a little below 20%. 
Also the inherent randomness contributes a considerable amount. Figure 10 that 
shows three different 95 percent confidence intervals supports these observa-

 
k  log N  logσ  s  log logS σ σ  log log NS σ  log logN NS  

19 13.7 4.88 0.513 0.164 -1.12 12.12 
 

Table 2: estimated distributional parameters of the statistical uncertainty model 
for the hub material strength. 
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Figure 10: 95% confidence intervals for the regression line and for the regres-
sion model. See the text for further details. 

tions. The innermost interval is the confidence interval for the regression line 
when neglecting the uncertainty of the translation term. The middle curve is the 
confidence interval for the regression line when including the uncertainty of the 
translation term. It is seen that the uncertainty of the translation term does not 
contribute much outside the core of the data set. The outermost curve is the con-
fidence interval of the regression model, i.e. the regression line plus the residu-
als (the uncertainty of the estimation of 2s  has been disregarded). Clearly the 
inherent randomness contributes much, even as one moves away from the centre 
of the data set. 

l= +

 

 
In the present report the inherent uncertainty of the material strength is de-
scribed as the uncertainty of the number of cycles to rupture. When looking into 
e.g. design standards the inherent uncertainty is often described as an uncer-
tainty of the stress range. This is not in conflict with the presentation here be-
cause having first estimated the parameters of the regression model in the cor-
rect way explained earlier in this section nothing prohibits rearranging Equation 
(2.14) into 
 

 log loglog ogN α εσ σ
β β

−
−  (2.19) 

 
in which the inherent uncertainty now appears as an uncertainty to the stress 
ranges. A scaling of the std. dev. accounting for the slope has of course taken 
place but the confidence intervals are the same for the formulations (2.14) and 
(2.19) as they are fully equivalent. 
 
The std. dev. estimate 0.513s =  stated in Table 2 corresponds to the test data 
covering about ¾ of a decade around the regression line. Since this is just one 
single estimate gathering other information is of interest. Asking an expert [7], 
he says that for materials with Wöhler exponents about 3 the test data covers 
approximately ½ of a decade about the regression line at all stress range levels. 
This appears to be in good agreement with the estimate. In Section 2.3 results 
for different values of s  are presented. 
 
Formula (2.16) gives an expression for the number of cycles to rupture in terms 
of the parameters α  and β . What is needed for the limit-state function (2.8) is 
an expression for the bin-wise expected lifetimes in terms of the estimators for 
the parameters α , β  and s . Because of the similarity between the SN-curve 
expression and the formula (2.9) one easily derives that 
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where  α̂ , β̂  and ŝ  are the estimators defined by formulas (2.17). 
 
Because the mean value of β̂  for the hub material is numerically notably 
smaller than the wrong estimate used as reference for the calculations recapitu-
lated in Section 2.1.1 the formulas (2.11) will be used for extrapolation far from 
the data that the formulas are fitted to. However, as the results depicted in 
Figure 3 show substantial reductions in the lifetime of the hub with lower 
Wöhler exponents, it is worth investigating the consequences of using the cor-
rectly estimated slope rather than the wrong slope, even though this study will 
be uncertain in itself. The fact that the bin-wise lifetimes decrease with the slope 
reflects that the fatigue stress ranges acting on the hub material are below the 
average test stress range. It is exactly in such a case the sensitivity of the life-
time distribution to the uncertainty of the correct estimate of the Wöhler expo-
nent is most relevant.  

2.2.3  Model Uncertainties 
As mentioned earlier substantiating choices of model uncertainty distributions is 
difficult. Since the distribution of the model uncertainties is usually unknown 
choosing a symmetric distribution is a reasonable choice. Due to its simplicity 
the Gaussian distribution is often the favourite among the symmetric distribu-
tions. For small COVs (up to at most 10%) the Gaussian and the Log-Normal 
distributions do not deviate much from each other. Because the product of Log-
Normal distributions is again a Log-Normal distribution choosing this as the 
model uncertainty distribution is convenient. Therefore the Log-Normal distri-
bution is in this context preferred to the Gaussian. Thus in the remainder of this 
report all the model uncertainties are simply replaced by one variable 
 

 exp aero dyn stress RFC

SN

m m m m mX X X X X
X

X
=  (2.21) 

 
If one denotes by a V  the coefficient of variation one can show that  
 

  (2.22) 
2

2 2 2 2 2 2
exp aero dyn stress RFC SN1 (1 )(1 )(1 )(1 )(1 ) (1 )

m
V V V V V V V + = + + + + + + 

2

 
Obviously those model uncertainties that are multiplied directly to the stress are 
considerably magnified according to the slope of the SN-curve. The mean value 
of the X  is, if one assumes that of all the X ’s have mean value 1,  
 
 2

SN[ ] 1E X V= +  (2.23) 
 
Having now at hand the expressions (2.22) and (2.23) the question regarding the 
values of the COVs emerge. The work in [4] suggests some values for V , 

, and V  based on further references given in [4] – namely 10%, 10% and 
5% respectively. In Section 3.2 alternative values of the COVs of the model 

exp

aeroV dyn
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COV expV  aeroV  dynV  stressV  RFCV  SNV  

Value 0.10 0.10 0.05 0.05 0.02 0.05 
 

Table 3: example of model uncertainty quantification 

uncertainties are further discussed. The other model uncertainties are believed 
to be in the same range. Whether this postulate is true or not is not discussed 
any further but instead the results of computations with different model uncer-
tainties are shown in Section 2.3. An example of the choice of the model uncer-
tainties could be as stated in Table 3. This example leads to the following total 
model uncertainty COV if m=1, 3 and 10, respectively: 0.17, 0.51 and 3.40. 
These numbers show the influence of the slope. The first case is not realistic, 
but has been included for reference as it corresponds to no magnification of un-
certainties. The second corresponds to structural steel, whereas the third is for 
cast steel. In the latter case COV of the total uncertainty is no longer small. Be-
cause the upper tail of the Log-Normal distribution is thick compared to that of 
the Gaussian distribution the seemingly harmless choice of using the Log-
Normal distribution for the individual uncertainties instead of the Gaussian does 
have quite an impact on the total uncertainty distribution. Whether to choose 
other distribution types is not discussed any further. 

 

2.3 Results 
In this section the lifetime distributions ( )F l  for different situations are shown. 
In order to facilitate the future use of the results presented here various sensitiv-
ity studies are carried out. All plots show a limited part of the lower tail of ( )F l  
because the components are of course designed to have low probabilities of fail-
ure. Since wind turbines are generally designed with the requirement that the 
time of operation should be 20 years the lower tail from 20 years to 500 years is 
considered.  The plots are made on normal probability paper with probabilities 
( ( ) (f )p l F l= ) on the left-hand ordinate-axis and the corresponding reliability 
indices on the right-hand ordinate axis. The reliability index β  is defined by 

1( )fpβ −= −Φ

av

 where  designates the inverse of the standard Gaussian 
distribution. For all computations the average 10-min. mean wind speed has 
been set to V .  

1( )−Φ i

/se 8.5 m=
 
We start out by considering the hub component as it allows for the widest spec-
trum of sensitivity studies. Because the model uncertainties are of identical type 
the sensitivities of the lifetime distribution with respect to V , , , 

 and V  are similar. The sensitivity with respect to V  will be different 
from these sensitivities because 

exp aeroV dynV

stressV RCF SN

SNX  appears in a different place in the limit-
state function (2.8). Figure 11 shows the sensitivity with respect to V  and 

 in the case where the statistical uncertainty, originating from the limited 
number of test data, of the SN-curve is neglected. The other model uncertainties 
are set as stated in Table 3. The Wöhler exponent and the standard deviation of 
the spread 

stress

SNV

ε  of the lifetimes around the SN-curve are taken from Table 2. Ow-
ing to the fact that  is raised to the power of the Wöhler exponent the sen-stressX
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sitivity with respect to V  is considerably larger than the sensitivity with re-
spect to V  that is practically non-existing. 
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Figure 11: sensitivity of lifetime distribution for the hub with respect to COV of 
model uncertainty Xstress and XSN respectively. No statistical uncertainty of the 
SN-curve. 
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Figure 12: left-hand plot shows the lifetime distribution of the hub with a wrong 
Whöler exponent (no statistical uncertainty of the SN-curve). The right-hand 
plot is the lifetime distribution with correct Wöhler exponent and statistical un-
certainty of the SN-curve. In both cases model uncertainties are taken from 
Table 3. 

The plots in Figure 12 illustrate the importance of modelling the SN-curve cor-
rectly. The left-hand plot in Figure 12 shows, still in the case of neglecting the 
statistical uncertainty of the SN-curve, the influence of applying the wrong, i.e. 
the too optimistic, Wöhler exponent. Comparing the plot to the uppermost left-
hand plot in Figure 11 it shows that for the present case the safety is increased 
approximately by an order of magnitude. The right-hand plot in Figure 12 
shows the impact of the statistical uncertainty of SN-curve on the lifetime dis-
tribution. Though a wrong Wöhler exponent can result in underestimated life-
time distributions the present case shows that the statistical uncertainty has 
much more importance. The plots in Figure 11 showed that the sensitivity with 
respect to V  is notable when the ideal situation of no statistical uncertainty stress
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Figure 13: sensitivity of lifetime distribution of the hub with respect to COV of 
model uncertainty Xstress.in case of statistical uncertainty of the SN-curve. 
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of the SN-curve is considered. On the other hand Figure 13 shows that when the 
statistical uncertainty of the SN-curve is included the sensitivity to V  practi-
cally vanish. 

stress
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Figure 14: sensitivity to inherent randomness of lifetime distribution of the hub; 
first row does not include statistical uncertainty of SN-curve; the second row 
does. Model uncertainties are taken from Table 3. 
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Because the COV of the spread ε  of the lifetimes around the SN-curve is not 
always easy to assess it is also of interest to see what is the sensitivity to this 
parameter – i.e. the sensitivity to the inherent material randomness. The COV is 
characterised by the fraction of a decade on the lifetime axis that is covered by 4 
times the standard deviation of logε . The first row of plots in Figure 14 shows 
the sensitivity in case the statistical uncertainty of the SN-curve is neglected. 
The lifetime distribution is not much sensitive to the COV of the inherent mate-
rial randomness because, like it is the case with the model uncertainty V , SN ε  is 
 

20 50 100 200 500
1e-9

1e-6

1e-3

0.01

0.05

6

4.75

3.09

2.33

1.64

β

l [years] 

pf(l)

 
20 50 100 200 500

1e-9

1e-6

1e-3

0.01

0.05

6

4.75

3.09

2.33

1.64

β

l [years] 

pf(l)

 
 

Figure 15: sensitivity of the lifetime distribution of the hub to statistical uncer-
tainty of the mean wind distribution. In the left plot the uncertainty is neglected. 
Model uncertainties are taken from Table 3. 
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not amplified by the Wöhler exponent. Contrary to this the second row of plots 
in Figure 14 shows the sensitivity in case the statistical uncertainty of the SN-
curve is not neglected. In that case, the sensitivity becomes large because the 
statistical uncertainty of the SN-curve scales with the COV of ε  – see Formulas 
(2.17). 

 0.10

s] 

 
Finally, in Figure 15 the sensitivity of the lifetime distribution with respect to 
the statistical uncertainty of the mean wind distribution is illustrated in the case 
of no statistical uncertainty of the SN-curve. Comparing the left-hand plot in 
which the statistical uncertainty has been disregarded to the right-hand plot in 
which the statistical uncertainty of the mean wind distribution is included shows 
that the sensitivity is very small. It is noted that the statistical uncertainty of the 
mean wind distribution as described in 2.2.1 considers that the mean wind dis-
tribution is estimated from one year of measurements. Basing the mean wind 
distribution estimate on more than one year will bring the sensitivity further 
down. Moreover, if statistical uncertainty of the SN-curve is introduced the sen-
sitivity to the statistical uncertainty of the mean wind distribution becomes even 
smaller. 
 
We now turn to the main shaft for which the SN-curve is also based on test data. 
Since a detailed analysis of sensitivities to statistical uncertainty of SN-curves 
was given in relation to the hub component such analysis is not conducted for 
the main shaft. Only a few results are given. Figure 16 shows the sensitivity 
with respect to V  in the case where the statistical uncertainty of the SN-
curve is neglected. The other model uncertainties are set as stated in Table 3. 
The Wöhler exponent and the standard deviation of the spread 

stress

ε  of the life-
times around the SN-curve are computed from the test data and they are 
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Figure 16: sensitivity of lifetime distribution for the main shaft with respect to 
COV of model uncertainty Xstress. No statistical uncertainty of the SN-curve. 
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Figure 17: the lifetime distribution for the frame with model uncertainties taken 
from Table 3 except VSN has been set to 0.15. 

21.32m =  and . Again it is seen that, as it was the case for the hub, that 
the lifetime distribution is sensitive to V . More interesting it is to see that the 
probability of failure for 20 years is in the order of 5% to 10% for the shaft – 
even when not accounting for statistical uncertainties of the SN-curve – which 
is considerably higher than for the hub that has a probability of failure of 1‰ 
when also including statistical uncertainty of the SN-curve. This is further dis-
cussed below. 

ˆ 0.48s =
stress

 

 
Contrary to the main shaft the frame is safer than the hub component – this ap-
pears from Figure 17 that shows the lifetime distribution of the frame. This dis-
tribution is based on a synthetic SN-curve implying that no explicit statistical 
uncertainty of the SN-curve exists. To counter for this the COV VSN of the 
model uncertainty XSN has been set to 0.15, otherwise the model uncertainties 
from Table 3 has been used. Bearing in mind the lesson learned from the hub 
component, that statistical uncertainty of the SN-curve dominates the lifetime 
distribution and that the sensitivity to VSN is small one could argue that setting 
VSN to 0.15 does not really counter the statistical uncertainty that must be pre-
sent in the data that has once lead to the synthetic SN-curve. However one must 
anticipate that more test data is behind the synthetic SN-curves than the specific 
ones considered here implying less sensitivity to the statistical uncertainty of the 
SN-curve. The Wöhler exponent is 3 and the COV of the inherent randomness 
of the lifetimes has been set so that 4 times the standard deviation of logε  cor-
responds to ½ a decade on the lifetime axis. This choice is based on [7]. 
 
The question is now what can be the reasons that the three components have so 
different levels of safety. It is first noted this can be explained by the fact that 
three different manufactures have contributed each with one of the components 
to the generic turbine considered in this work. The differences are therefore ex-
pected to result partly from the fact that different manufactures may have differ-
ent design strategies, partly from the fact that in any turbine not all components 
are designed fully to the limit. Thus any turbine design has a bottleneck, which 
then can be one of the components considered herein, i.e. the main shaft. It is 
noted, however, that the safety of the shaft seems to be very low, implying that 
other reasons than the bottleneck-argument may exist. These have not been un-
covered during the course of the project. The reason that the frame has very 
high reliability can be that the design strategy applied implies very conservative 
assessment of characteristic loads and design loads. 
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3 Reliability Considerations 
Equation Chapter (Next) Section 1In this chapter some preliminary 
investigations of how partial safety factors for fatigue can be adjusted if one can 
reduce model uncertainties are given. The investigations do not include inspec-
tion planning, which can excessively reduce safety factors. The way the stress 
range counting has been performed in the current project puts some limitations 
on the general validity of the results, and only the hub component is considered.  

3.1 The Calibration Procedure 
The procedure employed here to compute the effects on the partial safety factors 
of changes in the uncertainties is called calibration. The kind of calibration re-
garded here is the one where existing safety factors and related characteristic 
values corresponding to a specific uncertainty model are given and another set 
of partial safety factors for the same characteristic values and a modified yet 
comparable uncertainty model is sought. By an uncertainty model is meant a 
listing of uncertainty sources and their quantification – just like presented in the 
previous chapter. The aim is that the level of reliability of components designed 
according to the derived safety factors and subject to the modified uncertainty 
model must be equal to the reliability level of components designed according 
to the existing safety factors and subject to the corresponding uncertainty 
model. The reliability level of the components designed according to the exist-
ing safety factors is therefore termed the target probability and the calibration 
technique could be called ‘probabilistic calibration’. The technique consists in 
the following 4 steps: 
 

1. Design a component using the existing safety factors and characteristic 
values. The design must be ‘to the limit’. 

2. Compute the reliability of the designed component according to a spe-
cific uncertainty model believed to correspond to the safety factors. 
This reliability is then the target reliability level. 

3. Design a component that, according to the modified uncertainty model, 
will have reliability equal to the target. This design will have other di-
mensions than the component obtained in step 1. 

4. Determine the safety factors that, applied to the characteristic values, 
will result in loads and material strengths that will lead to a design 
equal to that obtained in step 3. 

 
In steps 1 and 4 the so-called design equation is employed. The design equation 
has many similarities to the equation that defines the zero-points of the limit-
state function. The design equation is defined by (see Eq. (2.3)): 
 

 c,
c,

1
c, c2

1
( /( / )) c

ij
j m

j i f i m

n
p l

ε γ σ σ γ −
=

′∑ ∑  (3.1) 

 
 
All model uncertainty variables are removed and the load and strength variables 
are replaced by characteristic values (indicated by an index ‘c’) and partial 
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safety factors fγ  and mγ  for load and material respectively. The stress ranges 

c,iσ  stems from internal cross-sectional loads  that are scaled by some in-
fluence number, say , reflecting the design of the component. It is the value of  

 – in the following termed the design parameter – that is determined in steps 1 
and 3. Introducing the design parameter in the design equation (3.1) one gets  

c,iQ
z

z

 

 
c

c,
c,

1
c, c2

1
( / )

ij
j m

j i i

n
p lFDF

zQ σ −
=

′∑ ∑  (3.2) 

 
In which also , the often-used so-called Fatigue Design Factor, 
has been introduced as a factor to the lifetime. 

c( )m
m fFDF γ γ=

 
Because in this project the manufactures have provided the design of the com-
ponents and because, for confidentiality reasons, they have not supplied all de-
tails on the design procedure the partial safety factors to be used in step 1 are 
not known. This means the fatigue design factor has to be derived herein. This 
is done on the assumptions that: 

a. the components have been designed to the limit, 
b. that the load safety factor has been put to 1.0, and 
c. that the characteristic value of the number of cycles to fatigue (or 

similar the material fatigue strength) is determined by the mean 
value minus two times the standard deviation of the natural random-
ness of the lifetime (or fatigue strength). 

Assumption ‘a’ implies that the design parameter  to be assessed in step 1 has 
already been determined by the manufacture. From the assumption ‘b’ it follows 
that the loads applied in the calculations, which have led to the bin-wise ex-
pected lifetimes presented in Section 2.1.1, are the characteristic loads. Combin-
ing this with assumption ‘c’ it implies the characteristic expected lifetimes 

z

,cjl  

equals the computed expected lifetimes multiplied by 2se− , where s  denotes the 
standard deviation of the logarithm of the natural randomness, ε , of the life-
times (see Equation (2.17)). The calibration procedure requires the possibility to 
compute the bin-wise expected lifetimes for different designs, that is for differ-
ent values of the design parameter . Assuming further that the stresses scale 
linearly with  and introducing the ratio 

z
z 0z zη = , where  denotes the refer-

ence design parameter corresponding to the design provided by the manufac-
ture, the design equation can finally be restated as: 

0z

 

 
c
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p l FDF
e l mη − =∑  (3.3) 

 
where  denotes the bin-wise expected lifetimes obtained with the charac-
teristic value of the Wöhler exponent defined here as the expected value, i.e. for 
the hub material m

c( )jl m

c 6.83= . The limit-state function corresponding to the de-
rived design equation is (see Equation (2.8)) 
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Based on Equations (3.3) and (3.4) the four steps of the calibration procedure 
may be implemented for the current problem by the following four steps (note 
that, in accordance with the above made assumptions step 1 is replaced by a 
determination of the current safety factors): 
 

1. Assuming that the component is designed to the limit put 1η = , 
, and solve the design Equation (3.3) with respect to FDF, 

giving the partial safety factor product 

20 yearsl =
cm

m f FDFγ γ = . 
2. For l  and 20 years= 1η =  use the limit-state function (3.4) to assess 

the target reliability level denoted tβ . 
3. With the modified uncertainty model use the limit-state function (3.4) 

to determine η  such that for l  the reliability 20 years= tβ  is obtained. 
4. With the η  obtained in step 3 and 20 yearsl =  solve again the design 

equation (3.3) with respect to FDF, giving the new calibrated partial 
safety factor product cm

m f FDFγ γ = . 
 
Before proceeding to the results a remark on the assumed definition of the char-
acteristic SN-curve is appropriate. The assumed definition corresponds to a par-
allel shift of the SN-curve sidewards to the left giving an SN-curve correspond-
ing approximately to the 2.3 percentile. Other definitions could be relevant. For 
other definitions other FDF’s will come out of step 1 in the above procedure. 
Knowing the ratio between the characteristic SN-curve assumed here and any 
other characteristic SN-curve, the partial safety factor product m fγ γ  can be di-
rectly scaled by this ratio. 

3.2 Results 
In this section only results for the hub material are shown. The uncertainty 
model developed in Chapter 2 is of course used here as starting point. The val-
ues suggested in Table 3 are – as mentioned – based on [4]. In [4] other possible 
values than the ones adopted in Table 3 are given. In [4] it is argued that putting 

, V , and V is the minimum uncertainties that can be 
reasonably obtained. Typically the computer models of any wind turbine are 
calibrated to fit with full-scale response measurements. Naturally the uncertain-
ties of the computer model cannot be smaller than the uncertainties of the meas-
urements, which in [4] is judged to be 10% for the aerodynamic loads and 5% 
for the dynamical properties such as eigenfrequencies and damping ratios. In 
other works than [4] it is suggested to put V

exp 10%V = aero 10%= dyn 5%=

exp 20%= . In [4] the argument is 
that by use of programs like WASP or by site measurements of the climate the 
effects of the terrain (topography) can be accurately accounted for why V  can 
be put equal 10%. So, essentially the values suggested in Table 3 are – in the 
author’s opinion – the least conservative uncertainty model that can be used. 
Because the author also finds the values fairly realistic they have been used for 
the study of the lifetime distributions. In the present section two cases are con-
sidered: 1) a case where the values in Table 3 are assumed realistic, and the 
consequences for the partial safety factors of having even lower model uncer-
tainties is examined, and 2) a case where higher model uncertainties are as-
sumed as reference uncertainties and the consequences for the partial safety fac-
tors of having the model uncertainties reduced to the ones suggested in Table 3. 

exp
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t 5.43β =  expV  aeroV  dynV  stressV  RFCV  SNV  η  FDF m fγ γ
 

Reference 0.10 0.10 0.05 0.05 0.02 0.05 1 873 2.69 

Exposure 0.05 - - - - - .89 394 2.40 

Aerodyn. - 0.05 - - - - do. do. do. 

Dynamics - - 0.03 - - - .975 734 2.63 

Exp.+aero 0.05 0.05 - - - - .775 153 2.09 

All three 0.05 0.05 0.03 - - - .751 124 2.02 
 

Table 4: calibrated partial safety factor products for the hub material when sta-
tistical uncertainty of the SN-curve is disregarded. The first row gives the refer-
ence model uncertainties as stated in Table 3. In the second to the sixth row a 
dash means that the reference value given in the first row is used. tβ  is given in 
the upper left corner. 

The first case is included to provide guidance for those that can document that 
they can actually obtain lower uncertainties than the author considers to be 
minimum. The latter case is motivated by the fact that the partial safety factors 
currently stated in wind turbine standards have originally been developed for 
building codes from where they have been adopted. One could therefore argue 
that they correspond to higher model uncertainties than suggest in Table 3 why 
the partial safety factors should be calibrated to become lower, so that they cor-
respond to the present day practise of wind turbine engineering. Because this is 
a point of view that can be discussed the current work gives only the results of 
these various assumptions without suggesting possible adjustments of partial 
safety factors. The results for the first and second case are summarised in Table 
4 and Table 5, respectively. 

 

 
For the results in both Table 4 and Table 5 the statistical uncertainty of the SN-
curve has been disregarded. Otherwise the partial safety product would have 
 
 

t 3.25β =  expV  aeroV  dynV  stressV  RFCV  SNV  η  FDF m fγ γ
 

Reference 0.20 0.20 0.10 0.05 0.02 0.05 1 873 2.69 

Exposure 0.10 - - - - - .86 311 2.32 

Aerodyn. - 0.10 - - - - do. do. do. 

Dynamics - - 0.05 - - - .965 684 2.60 

Exp.+aero 0.10 0.10 - - - - .71 84 1.91 

All three 0.10 0.10 0.05 - - - .665 54 1.79 
 

Table 5: calibrated partial safety factor products for the hub material when sta-
tistical uncertainty of the SN-curve is disregarded. The first row gives the refer-
ence model uncertainties taken from [4]. In the second to the sixth row a dash 
means that the reference value given in the first row is used. tβ  is given in the 
upper left corner. 
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been almost insensitive to the model uncertainties. This follows from the plots 
in Figure 13 showing virtually no sensitivity of the reliability to the model un-
certainties if statistical uncertainty of the SN-curve is included in the uncer-
tainty model. Under all the assumptions made it is seen that considerable 
amounts of material can be saved – without changing the level of safety – sim-
ply by improving the models (the possible relative material reduction is given 
by 1 η− ). In order to verify the results obtained it is relevant to investigate in 
much further detail the proper modelling of model uncertainties, that is the 
value of the COV as well as the choice of distribution type. This is a subject that 
has not yet been dealt with to the degree of detail that it deserves because tradi-
tionally these uncertainty sources have been considered of less importance than 
many other sources. This is true for extreme loads in the storm situation but not 
for fatigue where they are of importance. Adding to this that for many compo-
nents of wind turbines the fatigue loads are design-driving the need for further 
investigations into the subject of model uncertainties is crucial. 
 
Results involving statistical uncertainties related to the SN-curve are not pro-
vided here because there is too little data available in the project to carry out an 
analysis. E.g. one subject of such an analysis would be the influence of having 
more test data and test data at other stress levels. 
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4 Conclusions 
In this report examples of fatigue lifetime and reliability evaluation of larger 
wind turbine components have been given. Part of the investigation has been the 
discussion of possible uncertainty sources that influences the lifetime distribu-
tion and their quantification. 
 
The work being based on three example components and further the probabilis-
tic analysis being simplified the applicability of results and conclusions reached 
in this report is limited. The results and discussions are however of general 
qualitative validity. 
 
The major conclusions are: 

• That statistical uncertainty of the determination of the SN-curve from 
limited amounts of test data greatly influences the lifetime distribution 
if the tests have been carried out at stress levels that are higher than 
those present in the load history that the material becomes subject to. 

• On the other hand statistical uncertainty relating to site-specific as-
sessment of mean wind distribution from at least one year of measure-
ments hardly influences the lifetime distribution.  

• Because model uncertainties relating to stresses are raised to the power 
of the Wöhler exponent the sensitivity of the lifetime to these uncer-
tainties can be quite significant. This correct modelling of the model 
uncertainties is a subject that has not yet been dealt with to the degree 
of detail that it deserves because traditionally these uncertainty sources 
have been considered of less importance than many other sources. This 
is true for extreme loads in the storm situation but not for fatigue where 
they are of importance. Adding to this that for many components of 
wind turbines the fatigue loads are design-driving the need for further 
investigations into the subject of model uncertainties is crucial. Below 
a recommendation for the future work in this field is given. 

• The three components showed to have significantly different levels of 
safety. As explained in the introduction these differences are expected 
to result partly from the fact that different manufactures that have con-
tributed with the design of the components may have different design 
strategies, partly from the fact that in any turbine not all components 
are designed fully to the limit. Thus any turbine design has a bottle-
neck, which then can be one of the components considered herein, i.e. 
the main shaft. However the safety of the shaft seemed to be very low, 
implying that other reasons than the bottleneck-argument may exist. 
These have not been uncovered during the course of the project. The 
reason that the frame has very high reliability can be that the design 
strategy implies very conservative assessment of design loads. 

• Studies of partial safety factor calibrations show that considerable 
amounts of material can be saved. However this conclusion rests on the 
validity of the modelling of the model uncertainty, which is discussed 
above. 
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Recommendation for Future Work: 
 
One issue of this report has been the discussion of uncertainty sources. From 
this discussion it has been learned that the minute one starts to think about un-
certainty sources related to the response simulation, the stress range count, and 
the application of the SN-curve the picture becomes so full of details that it is 
difficult overview.  
 
It is therefore recommended, as a potentially fruitful approach to assessing some 
of the contributions to the overall uncertainty of the lifetime, that one invites 
different engineers to compute the lifetime of a certain component. The differ-
ent results that would come out of these computations would then account for 
the distribution of the lifetime uncertainty due to the uncertainties related to the 
response simulation, the stress range count, the application of the SN-curve, etc.  
 
For the modelling of e.g. the exposure model uncertainty (i.e. the uncertainty 
relating to the influence of the terrain topology) comparing long-time measure-
ments of the climates at several specific – but typical – sites with WASP com-
putations and/or short-term measurements could give information that could 
lead to the establishment of a distribution for exposure model uncertainty. 
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