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Abstract

This report is one out of several that constitute the final report on the ELSAM
funded PSO project “Vindmellekomponenters udmattelsesstyrke og levetid”,
project no. 2079, which regards the lifetime distribution of larger wind turbine
components in a generic turbine that has real life dimensions.

Though it was the initial intention of the project to consider only the distribution
of lifetimes the work reported in this document provides also calculations of re-
liabilities and partial load safety factors under specific assumptions about uncer-
tainty sources, as reliabilities are considered to be of general interest to potential
readers too.
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Introduction

This report is one out of several that constitute the final report on the project
ELSAM funded PSO project “Vindmellekomponenters udmattelsesstyrke og
levetid”, project no. 2079, which regards the lifetime distribution of larger wind
turbine components in a generic turbine that has real life dimensions.

In the present report the probabilistic part of the project is given. In other parts
of the project the following has been treated:

e Material properties of the three types of steel used for the three compo-
nents (hub, main shaft, and main frame) that has been considered in the
project, i.e. determination of SN-curves

e Design of the components to fit into the generic turbine followed by de-
termination of transfer function from cross-sectional loads to hot-spot
stresses

e Simulation of wind turbine response at given mean wind speeds, and
subsequently assessment of lifetimes of the components conditional on
the considered mean wind speeds

Based on this input this report evaluates the lifetime distributions of the compo-
nents. Actually, it was the initial intention of the project to consider only the
distribution of lifetimes however, as the distribution of lifetimes and the reli-
ability are directly connected, the work reported in this document provides also
calculations of reliabilities and partial load safety factors under specific assump-
tions about uncertainty sources, as reliabilities are considered to be of general
interest to potential readers too.

The study in this report constitutes a simplified probabilistic analysis where
some short cuts are made here and there. In the report it is attempted to provide
comments on the deviations made from a more complete approach. Some of the
results and conclusions reached in this report are — in the author’s mind — how-
ever considered to be of general qualitative validity, though they are expected to
deviate quantitatively from those obtained if a more detailed analysis had been
conducted.

One of the notable conclusions is that the reliability differs considerably among
the components. This can be explained by the fact that three different manufac-
tures have contributed each with one of the components. The differences are
therefore expected to result partly from the fact that different manufactures may
have different design strategies, partly from the fact that in any turbine not all
components are designed fully to the limit. Thus any turbine design has a bot-
tleneck, which then can be one of the components considered herein.

The project originally contained a demonstration/verification task that had the
aim of comparing experimental results to the results coming out of the work
covered in the present report. This task was cancelled at an early stage of the
project, when the current project team took over the project from the initiating
project teem, as the author of this report found it impossible — or at least very
difficult — to carry out such experiments that would be needed to verify the
theoretical results obtained in the project. The experiments would have to prove
that the obtained lifetime distributions were correct. As it becomes apparent in
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the report the lifetimes are in the range of ten to thousand years, results that cer-
tainly support the decision made. Because the project considers components
from real-life structures that are naturally designed with the aim of very few
collapses such results are not unrealistic. Therefore the project team is confident
that the right decision was made. Moreover, to a large extent, the lifetime distri-
bution depends on many other uncertainties than the natural randomness of ma-
terial properties. Implying that experiments should be constructed such that
these uncertainties could be accounted for as well. Because these uncertainties
are model uncertainties this can hardly be done. The conclusion gives recom-
mendations on what should be done instead.

The report is divided into three chapters contains:
1. The theoretical approach behind the probabilistic evaluation
2. Calculations leading to the lifetime distributions
3. Discussions of reliabilities and partial safety factors.

Some of the material given in this report is an extension of the note [1] that the
author complied at an early stage of the project. The note deals with a simula-
tion approach to the numerics behind the probabilistic results. As discussed in
Chapter 1 the method has turned out to be inapplicable.
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1 The Approach Taken

Equation Chapter 1 Section 1This chapter describes the approach and
modelling employed in this work to assess the lifetime distributions and reliabil-
ities. Essentially the approach consists in pinning out the possible sources on
randomness and uncertainty that contribute to the lifetime distribution and then
trying to assess the distributions of the uncertainties. Finally one applies a suit-
able numerical scheme to assess the distribution of the lifetime and the reliabil-
ities.

1.1 Project Limitations

Up to now lifetime distribution and reliability have been mentioned without go-
ing into detail. This section provides a clarification of what will be considered
in this work. A probabilistic approach is required because not only are the com-
ponents subjected to fluctuating loads with a substantial random content and
only does the material properties exhibit inherent variability which can be prop-
erly modelled by use of random variables, but also because considerable statis-
tical uncertainty and so-called model uncertainties enter into the lifetime as-
sessment.

A number of relevant probabilistic problems relate to the assessment of life-
times for structural components subjected to fatigue loads. Among these are:

1.  Determination of the lifetime distribution taking into account all of the
relevant uncertainty sources

2.  Determination of design such that the probability of rupture within a

given design lifetime requirement becomes sufficiently small

Determination of partial safety factors that approximately lead to 2

4.  Determination of optimal inspection planning such that the same
probability of rupture is obtained with lesser dimensions without in-
spection costs becoming unacceptably high.

98]

These problems are more or less sophisticated variations over the same theme.
Central to all of these problems is the examination of the uncertainties that can-
not be classified as inherent or natural. Ideally the lifetime distribution depends
on the natural variation of the external loads and the natural variation of the fa-
tigue resistance among material specimens. Because the external load that leads
to the fatigue does not consist in a single contribution but rather in the average
of a sum of many contributions the variation of the lifetime — if everything else
is kept constant — is practically negligible. The inherent variation of material
properties has a much larger impact on the variation of the lifetime distribution.
Now, statistical uncertainties, which can always be given a probabilistic inter-
pretation, related to the estimation of the SN-curve may potentially have an
even larger impact on the uncertainty of the lifetime, i.e. on the lifetime distri-
bution. Note that over the past few sentences the concept of lifetime distribution
has shifted from what one would intuitively understand as the actual lifetime
distribution to the understanding that will prevail throughout the remainder of
this report, namely: the lifetime distribution embraces also the uncertainties that
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are not of ‘inherent randomness’ nature. This may seem contra-intuitive to
some, however from a rational point of view the latter understanding is to be
preferred. Say an engineer is asked to give a statement about the probability that
a certain component will survive a given fatigue load history over N years she
faces the fact that, if she could gather rupture data from components that had the
same design and had been subjected to the same load history, the lifetimes
would show a larger scatter than should be expected from an evaluation based
purely on natural randomness. The scattered data would however still appear as
the outcome of a random experiment. Thus including the statistical uncertainty
in the lifetime distribution is definitely meaningful. Following this line of rea-
soning including also the model uncertainties related e.g. to the modelling of the
aerodynamic loads in the lifetime distribution should also be done. A further
discussion of the different uncertainty sources is given in Section 1.4.

The work presented herein is limited to point 1 and 3, but it is not limited to the
natural randomness only, on the contrary other uncertainty sources are consid-
ered at least as important — if not more important — to the fatigue life/reliability.

1.2 Lifetime Distributions and Reliability

Before proceeding it is convenient to establish the straightforward link between
lifetime distributions and reliabilities. The lifetime distribution function F is
defined by

F())=Pr{L<I} (1.1)

where L denotes the random variable for the lifetime and ‘Pr’ stands for prob-
ability. On the other hand the reliability R is defined by

R =1-Pr{The component ruptures due to fatigue}
= 1 - Pr{L = ldesign lifetime} (1 2)
=1-F(l,

esign lifetime )

The aimed design lifetime /, is for instance 20 or 50 years. In the re-

esign lifetime
mainder of the report Pr{The component ruptures due to fatigue} will for short
be referred to as the probability of failure p, or simply the failure probability.

It is the probability of failure that is evaluated by the numerical scheme de-
scribed below. Thus, to interpret the results coming out of the numerics we need
the relations

E)=p,0)

(1.3)
R(ldesign lifetime ) = 1 - pf (ldesign 1ifetime)

which show the simple interconnection between the reliability and lifetime dis-
tribution.

1.3 The Steps to Obtain the Lifetime Distribution

It is further helpful for the subsequent presentation to briefly recapitulate the
procedure to follow to obtain the fatigue lifetime. For clarity all other uncertain-
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Figure 1: from mean wind distribution to lifetime distribution.

ties than natural randomness are neglected in this section. In Section 1.4 the ne-
glected uncertainties are discussed with reference to their introduction into the
procedure.

Figure 1 shows a schematic of the procedure. The starting point is the mean
wind distribution and turbulence intensity distribution plus, which is not shown,
assumptions about yaw errors and other possible operational modes that will
contribute to the lifetime consumption. In the present work a rather simple load
history without faults, start-ups and shutdowns is considered. Likewise the tur-
bulence intensity distribution is also neglected, the latter being of less impor-
tance due to the averaging inherent in fatigue. Typically FEM time domain
simulations involving aerodynamic models obtain next response time series
conditional on mean wind. The third step is to establish the stress range distri-
bution by combining the mean wind distribution and the conditional response
from step two which has been subject to a more or less advanced stress range
count. It is in this third step the inherent fluctuations among realisations of the
turbulent wind field, even for given mean wind and turbulence intensity, appear.
These fluctuations are, as already mentioned negligible. So are the fluctuations
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due to variations between realisations of the mean wind distribution that has
implicitly been assumed zero in this procedure. The fourth step is the Wdohler
curve with modelling of the natural randomness of material properties leading
to some distribution around the SN-curve of the number of cycles to rupture. It
is this distribution that contributes the most to the lifetime distribution that is
finally obtained in the fifth step where the distribution of cycles to rupture con-
ditional on stress range is convolved with the stress range distribution.

1.4 Sources of Uncertainty

In this section an attempt is made at providing an exhaustive list of the various
sources of uncertainties that influences the lifetime distribution. The idea is to
follow the path laid out in Figure 1. At each step the possible uncertainty inputs
are then discussed. Preferably the inputs would then also be quantified in terms
of distributions, however during the course of the project it has shown difficult
to either obtain useful data to substantiate specific choices of distributions, or to
arrive at consensus about an expert judgement of the distributions. These are
therefore to be assessed in another project, while in this work sort of sensitivity
studies are conducted in order to guide future decision-making regarding
choices of distributions. In subsections 2.2.1, 2.2.2 and 2.2.3, though, one will
find some discussions concerning material uncertainties and model uncertainties
relating to evaluation of aerodynamic loads. As will be apparent from the dis-
cussion below the minute one starts to think about uncertainty sources related to
the response simulation, the stress range count, and the application of the SN-
curve, the picture becomes so full of details that it seems that the only feasible
approach is to assess the overall uncertainty of the lifetime by inviting different
engineers to compute the lifetime of a certain specimen, that is not described in
a standard. The different results that would come out of these computations
would then account for the distribution of the lifetime uncertainty due to the
uncertainties related to the response simulation, the stress range count, and the
application of the SN-curve.

Mean Wind Distribution

The mean wind distribution at a given site may be estimated from one year of
measurements or taken from a standard or e.g. estimated from a WASP analy-
sis. In the first case uncertainties in terms of statistical uncertainties appear be-
cause one year of measurements cannot contain the same amount of information
about the mean wind distribution as for instance 50 years, see Section 2.2.1. In
the second case model uncertainties are introduced, whereas in the latter both
model and statistical uncertainties mix.

Response Simulations
Unless clearly stated below all uncertainties are of model uncertainty type.
There are two steps in the response calculation

1. Simulation of the dynamics of the turbine

2. Detailed analysis (typically FEM) of the considered component

Regarding the first step the uncertainties relate to

e Modelling of the upstream airflow

e Modelling of the aerodynamic loads

e Modelling of turbine’s structural properties
This list could have been made more detailed, however the focus has been more
on understanding the second step. In order to cut a long story short merely a list
of possible sources concerning step two is stated. Essentially the uncertainties
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relate to: 1) bringing reality into a manageable mechanical model, 2) bringing
the mechanical model into a computational model, and 3) the engineer’s inter-
pretation of results.

Geometry (from reality to mechanical model)

1.  Mismatch between drawings and FE model. Specifications may
change without FE model being updated. Such an error is to be con-
sidered a gross error and not a true uncertainty source see Sec. 1.4.1.

2. Mismatch between drawings and fabrication. As long as tolerances are
kept, this source qualifies as a true uncertainty source.

Boundary conditions (from reality to mechanical model)

1. Simplification of clamping, e.g. replacing a flexible joint by a rigid

2. Simplification of stress distribution, e.g. along interface between blade
and hub.

Transfer functions

1. Neglecting welds (from reality to mechanical model)

2. Mesh generation and shape function choice influences stress concen-
tration (from mechanical to computational model)

3. The user can make small errors, because she does not fully understand
how iterations and hysteresis are defined in the applied FE program
(interpretation of results)

Selection of hotspots

1. Selection based on engineering judgement: e.g. the points of max von
Mieses stress in extreme load computations or at critical design details
(this source is actually closer to being a potential source of gross er-
rors)

2. Selection on the basis of a number of load cases leading to different
ratios of the stresses.

3. Inboth cases an assumption of linear transfer from loads to stresses.

Stress range count

A unique stress count algorithm does not exist. The rain flow count (RFC)
scheme seems to be generally accepted as the method that provides the most
meaningful stress range distribution for metallic materials. Since RFC is widely
used a minor contribution to model uncertainties from stress range counting can
be expected. Some statistical uncertainty is of course also arising from range
counting of a limited number of simulated response time series.

SN-curve
The modelling of the SN-curve contributes mainly to model uncertainties.
However some statistical uncertainty also originates from the fact that SN-
curves are sometimes estimated by linear regression based on a limited number
of tests. The following issues are expected to contribute to the uncertainty
1. General
a. The approximate validity of Miner’s rule
b. The influence of mean stresses
c. Extrapolation of SN-curves to small stress ranges
2. Synthetic SN-curves
a. The general nature of synthetic SN-curves taken from standards
b. Erroneous choice of synthetic SN-curve (gross-error-category)
3. SN-curves based on tests
a. Tests are conducted on specimens, not on full-scale compo-
nents
b. Deviation of test data from a straight line
c. Estimation of an SN-curve from a limited number of data
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1.4.1 Remark on Gross Errors

As the reader may have noticed some of the uncertainty sources listed above has
actually been categorised as gross errors. They have been included in the list
with the purpose of putting the discussion of uncertainties into perspective.

Partial safety factors are not intended to provide safety against gross errors (like
omitting a bar in a latticed structure) that should be captured by the quality con-
trol. Aiming at developing safety factors for gross errors too would end up in
uneconomic design.

The author expects that despite of quality control there is a non-negligible risk
that some gross errors will remain. Especially a critical issue is the selection of
hot spots, which is a difficult discipline. At present, i.e. with the current rules of
design, the author estimates, that the extra uncertainty due to such a hot spot
error is countered by the conservative assessment of the characteristic fatigue
loads. This being of course an irrational design situation that ought to be further
investigated.

1.5 Numerical Scheme

It was the initially the intention of the project to apply a simulation technique to
assess the probability distribution of the lifetimes. However the probabilities,
i.e. the failure probabilities, that are of interest in the current project are very
small, i.e. in the range form 10 to 10™. These small probabilities reflect the
fact that the project considers component from real live structures that are de-
signed with the aim of very few collapses, i.e. long expected lifetimes. Simula-
tion techniques require that the events that contribute to the probability which
one wants to estimate occur several times among the simulation results. Other-
wise stable estimates of the probability wanted are not obtained. Consequently,
if one seeks probabilities in the range mentioned, the number of simulations
needed would be in the range from 10° to 10". A simulation procedure that was
developed during the course of the project is described in the note [1]. Though
the procedure aims at being cheap in terms of computer time per simulation
loop it is still impractical to apply such a method in the current context. There-
fore the simulation approach has been abandoned in favour of a more sophisti-
cated numerical procedure — the so-called First Order Reliability Method (in
short: FORM), which is extensively described in e.g. [2]. The FORM procedure
computes directly the probability of failure p, required in formulas (1.3).
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2 Lifetime Evaluation

Equation Chapter (Next) Section 1This chapter is the core part of
the report as the employed limit-state function and stochastic model are de-
scribed; including some suggestions for, and some examples of, quantification
of model uncertainties. Further several examples of lifetime distributions are
given.

2.1 Limit-State Function

In the context of structural reliability, which is the context of this work, the sto-
chastic model is the specification of the distributions of the stochastic variables
that enter into the problem under consideration. Recalling what was shown in
Section 1.2, the problem is finding the probability that some structural failure
event occurs; that is finding the probability that the component is subjected to
loads that brings the component into a failure mode, i.e. a mode on the unfortu-
nate side of the limit between safe and unsafe modes. To the end of distinguish-
ing safe modes from unsafe modes the so-called limit-state function
g(X)=g(X,,X,,..,X,) is defined. The quantity X denotes the vector of

random variables that enter the problem, i.e. material strengths, loads, and
model uncertainties. The limit-state function shall be defined such that it takes
positive values when the random variables take values that correspond to the
component being in a safe mode; that is if the strength variables take high val-
ues and load variables take low values. On the other hand, if the random vari-
ables take values that correspond to component rupture the limit-state function
shall take negative values. Finally the limit-state function is zero for any combi-
nation of the random variables that neither is a safe mode nor a rupture mode,
i.e. modes just on the edge of rupture — thereby the name “limit-state function”.
Having defined g(+) evaluating the probability of failure therefore boils down

to

Pr{failure} = Pr{g(X) <0}

2.1
=Pr{g(X,,X,,...X,)<0}

So stating the stochastic model requires also stating the limit-state function. In
the following the limit-state function is developed. Then, in the next section the
stochastic model follows.

Start out disregarding the model uncertainties. By use of a discretised Miner’s
rule the probability of failure is given by

P, =Pr{L£l}=Pr{z;—’J21} 22)

i i

where n, is the frequency (number per unit time) of cycles at stress range level
o;, and N, is the number of cycles to rupture at the stress range level o,. Ac-

cording to the SN-curve model N, is given by N, =¢1(0,/c")™ (except for
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the ¢, the notation follows the one defined in [5]). The random variable &,
which has mean 1, accounts for the random spread of number of cycles to rup-
ture around the SN-curve. Thus the limit-state function becomes

g(ni,m,o',é‘):l—z nil

~1(0,/0) " -

Note that n, has been included in the list of arguments to g() because, strictly
speaking it is a random variable, though its variation is practically negligible. In
the following this variation is neglected, and instead the statistical uncertainty of
the mean wind distribution is accounted for by randomness of #,. The variables

m and o' are assigned distributions that account for the statistical uncertainties
related to the estimation of the SN-curve from data. In order to make the limit-
state function work with results obtained prior in the project it has to be refor-
mulated. Later it will become clear that this reformulation puts some limits on
the generality of the results. Because all mean wind speeds contribute to the
stress range o, formula (2.3) can be rewritten into

n

g(p,.moe)=1-) ply ——— (2.4)
' Zj: ' Z‘gé(@/ o)
where p, is the probability of the 10-min. mean wind speed bin U, ;, and n,

is the frequency of cycles at stress range level o, and 10-min. mean wind speed
U

account uncertainty of the mean wind distribution and the fact that the inherent
randomness of », is neglected render n; a deterministic variable. Denoting by

10, - In essence n, has been substituted by the product p n, where p, will

[, the expected lifetime of a component subjected only to loads derived from

mean wind speed bin j, i.e.

l(m,c") = ——— (2.5)

z i

- %(GI /Gr)fm
the formula (2.4) simplifies to

p,l

g(Pj,mao",é") =1—Zm
j b

J

(2.6)

It follows from formula (2.5) that for given m and o’ the /;s can be computed

directly from a stress range count at each mean wind speed. In this way the
complexity of the input to the limit-state function is reduced from the stress
range distributions to the expected lifetimes conditional on mean wind speed.
The reduction is obtained at the expense of giving up the possibility to investi-
gate the influence of possible variations in uncertainties with the stress range
level. For instance one could imagine that large stress ranges, which could po-
tentially contribute significantly to the overall fatigue (depending on the Wdohler
exponent m) may be subjected to relatively larger uncertainty than low stress
ranges. Then introducing the bin-wise expected lifetimes /; is too simplistic an

approach.
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It is now time to introduce the uncertainties disregarded so far, namely the
model uncertainties. The common practice is to specify any model uncertainty
as a random variable multiplied to the quantity that the model uncertainty re-
lates to. This is so because the error/uncertainty typically increases with the ab-
solute value of the quantity that the model uncertainty relates to. Though there
is no general argument that the uncertainty should increase linearly with the
quantity there is seldom sufficient information available to justify whether or
not a linear dependency is valid, leaving the linearity assumption as the prefer-
able choice due to its simplicity. The distribution of the model uncertainty vari-
able is ideally of mean 1, implying no realised systematic model errors are pre-
sent, i.e. no bias. The uncertainty variable’s COV (Coefficient Of Variation =
standard deviation / mean value) is then a convenient measure of the relative
error that the model uncertainty represents. Instead of multiplicative model un-
certainties one can of course consider additive errors. In practice these occur
mostly in relation to measurement data, which is not really considered herein.
Though one should have only a vague idea about the actual distribution of the
model uncertainty variable most engineers can come up with an intuitive
judgement of the relative error, which is yet another argument in favour of
multiplicative uncertainties.

Take first the uncertainty of aecrodynamic load modelling (see the first bulleted
list in Section Response Simulations p. 10). These uncertainties influence the
stresses. The way they influence the stresses depends on the control system of
the turbine. For simplicity it is assumed, that the control system, conditional on
mean wind speed, behaves approximately linearly. If X denotes some multipli-
cative model uncertainty to the aerodynamic load then the assumption implies
that X becomes a multiplicative model uncertainty to any stress range level.
Formula (2.4) shows that X™ is then the resulting model uncertainty to the sum
in (2.6). In [4] four model uncertainties to the aecrodynamic loads are suggested,
of which only three are relevant here (the fourth is replaced by p,)

e X_ :accounts for the model uncertainties associated with the expo-

exp

sure, i.e. X accounts for the uncertainties due to the modelling of ter-

rain topography and roughness.
e X :accounts for model uncertainties related to the assessment of the

earo
lift and drag coefficients, i.e. uncertainty originating from model-
scale/full-scale disagreements and/or empirical-analytical estimates.
e X, accounts for model uncertainties stemming from the modelling of

the dynamical response characteristics of the turbine, e.g. structural
damping ratios and eigenfrequencies.

Thus the limit-state formula (2.6) is now updated to

g(p;moe, X, X

exp? aero ?

Xdyn) =

) 2.7
1= X0, X0, X5, Y —P o7
7 el (m,0’)

We treat now the remaining model uncertainties. The stress analysis described
in Section Response Simulations p. 11 involves many different model uncer-
tainty contributions that are here gathered in just one variable X ___ . The uncer-

stress
tainty related to employing the rain flow counting algorithm instead of another
stress range counting procedure is denoted X,.., and finally uncertainties re-
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lated to the application of the SN-curves are put together into the variable X, .
Unlike the uncertainties X

stress

and X, that will appear in formula (2.7) in the
same way as the aerodynamic uncertainties because they are multiplied to the
stress o, the uncertainty X, is multiplied to the number of cycles
£1(o, /o)™ meaning that X, will be divided into the other uncertainties.
Thus one ends up with this final expression for the limit-sate function:

g(p./’m’gl’g’chp’Xacro’Xdyn’Xstrcss’XRFC’XSN) =
(2.8)
1_ Xcr:‘(pX:;roXénynXs’:lrcssXIr{nFC Z p/l
Xox J 51., (m,c")

2.1.1 Bin-Wise Expected Lifetimes

An important part of the limit-state function is the bin-wise expected lifetimes
[, introduced in formula (2.6). These expected lifetimes have been computed

for the three different materials that are used for the three different components
considered in this project. Details about the computation of the bin-wise ex-
pected lifetimes, e.g. like the simplified load history shortly mentioned in Sec-
tion 1.3, are given in some of the other reports of the project [5]. Here the nec-
essary results needed in the present report are repeated and a little further devel-
oped.

For the hub and the main shaft bin-wise artificial equivalent stresses o, ; have

been determined such that they satisfy an expression of the form

1 o—e’/‘ —-m
l ZE(WJ h (2.9)

where ‘h’ denotes the time unit ‘hour’, and K is a scaling factor accounting for
scale-effects and differences in surface characteristics between the test speci-
men and the actual component. The similarity of Equation (2.9) with the SN-
curve expression N =1(o,/0')™ is useful as it allows for scaling between dif-
ferent SN-curves with the same Wohler exponent, i.e. between translated
curves, without re-computing the equivalent stresses from scratch. A translation
simply implies a change in ¢’ and no changes in equivalent stresses. It has
been possible to fit a polynomial expression to the obtained o, ;s:

— D P2 P3 Py
0, =C+ CIUIO,J' + CzUlo,_,- + c3U10,j + c4U10,/.

(2.10)

The numeric values of the parameters in formulas (2.9) and (2.10) are listed in
Table 1. From the employed units it is seen that the formulas give the lifetime in
hours if the mean wind speed is input in m/s.
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Hub Shaft
m 10.79 21.32
o' [Mpa] 500 525
K, 0.6 1.0
¢, [Mpa] 20.19 782
)2 1 1
¢, [Mpa/(ms™)P,] -2.76 -4.377
D, 2 -1
¢, [Mpa/(ms™),] 0.37 -20032
Ps 3 -1.5
¢, [Mpa/(ms™)P;] -0.00803 61623
Py - -2
¢, [Mpa/(ms™),] - -53270

Table 1: numeric values for the parameters in the formulas (2.9) and (2.10).

Now, the values in Table 1 are valid only for the m and o’ values specified. If
the influence of uncertainties in these values is to be investigated other expres-
sions like (2.10) are needed. As mentioned translations do not affect the expres-
sions however changes in the exponent does. Investigations of the influence of
changes in m have been made for the hub only. For a few mean wind speeds
the left plot in Figure 2 depicts values of the equivalent stresses obtained with
Wahler exponents m=m,/y,y=1.2,1.1,0.9,0.8 (m,=10.79) and normalised

by the fit (2.10). Changes in m are not possible without changing o if it is at
the same time required that all of the SN-curves with changed exponent must go
through a specific point. Such a requirement is enforced in the present context
because the SN-curves are estimated from a set of test data. As explained in
Section 2.2.2 the modelling of the statistical material data uncertainty becomes

Ge,m/o_e,mo O-'m/O-,mO

12 14
=1.2

R « X 12 -

A A A
1,0 0 1 190 N

a o o
0’9 i 07/:0.8 °® © 0,8 _
0,8 \ \ \ \ 0,6 \ \ I

0 5 10 15 20 25 06 08 10 12 14
Ui [m/s] V4

Figure 2: the influence of changes in the Wéhler exponent on the equivalent
stresses (the hub material)
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Figure 3: bin-wise expected lifetimes different Wohler exponents of the hub ma-
terial

simple if a certain average point among the test data is used as reference point.
The changes in ¢’ following from changes in m are shown in the right plot in
Figure 2. Because of the definition of equivalent stresses in this work and be-
cause of the described requirement linking m and o' it is difficult to give intui-
tive arguments for the results shown in Figure 2. However Figure 3 shows that
the lifetimes decrease drastically with decreasing m (increasing y ). The impli-
cation of this circumstance is discussed in Section 2.2.2. For later reference it is
mentioned here that based on the data in the plots in Figure 2 the following ex-
pressions have been fitted:

e,m

_ 2
- CO + CIUIO + CZUIO

e,my

¢, =0.3457% —0.0915y +0.7466 [(m/s)”]
¢, =—0.0136> +0.0044y +0.0091 [(m/s)"] 2.11)
¢, =0.0005(y —1)

In_—0.5432 - 0.4352y +0.89175°

!

o

my

For the frame a simple fit like expression (2.10) has not been established. In-
stead interpolation between the values on the curves in Figure 4 can be made.
The curve marked with the number 1.00 is obtained for the load history defined
in [5]. Adding to this load history model uncertainties then, as described in Sec-
tion 2.1 a scaling of the stress ranges result. If the expected lifetimes for such a
scaled load history is needed one may interpolate between the curves using the
numbers that mark the curves as interpolation points of the scaling factor. It is
noted that unlike what is the case for the hub and main shaft, the SN-curve for
the frame has been chosen among a bundle synthetic SN-curves for welded
joints.
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Figure 4: bin-wise expected lifetimes for the frame as function of 10-min. mean
wind speed and for different ratios of the stress range to the load history ranges

2.2 Stochastic Model

2.2.1 Statistical Uncertainty of Mean Wind Distribution

The following text is based on [3]. A Weibull distribution is usually fitted to the
empirical mean wind distribution:

F(U,) =1—exp(—(%j ] 2.12)

where A and k are distribution parameters. This distribution is assumed herein
and the statistical uncertainty is expressed by stating a joint distribution of A
and k& . The estimation of this distribution is based on a representative synthetic
Danish set of data of 4s and £ s estimated from one-year measurements over a

2,6

2,4

2,2 1
&

2,0 -

1,8 -

1,6 T T T T T T
6,0 6,2 6,4 6,6 6,8 7,0 7,2 7,4

Figure 5: scatter plot of A and k
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Figure 6: empirical marginal distributions of A and k .

period of 52 years. The plot in Figure 5 shows the data together with the linear
regression of & on A. The parameters exhibit a weak correlation, which
amounts to a correlation coefficient of 0.33.

Plotting the empirical marginal distribution functions of 4 and &£ on normal
probability paper the graphs shown in Figure 6 are obtained. Assuming that 4
is normally distributed seems a good approximation. On the contrary the upper
tail of the distribution of & is in conflict with an assumption of normality. An-
ticipating that the lifetime distribution is dominated by the uncertainty of the
material properties it is expected that for the current purpose approximating &
by a normal distribution is appropriate. This stand point is supported by the fact
that COVs of 4 and k are 4.2% and 5.0% respectively.

An analysis of another set of data, with 4 and & values of the same magnitude
as above but of shorter duration provide similar results. The correlation is how-
ever somewhat smaller, namely 0.22. It is therefore suggested to represent the
statistical uncertainty related to the Weibull distributional parameters estimated
from one-year measurements by a pair of correlated normally distributed ran-
dom variables both with COV 5% and mutual correlation 0.30.

If the mean wind bins each range 2 m/s then the uncertainty of 4 and k enter
into the limit-state function in (2.8) by substituting for p; the expression

Uy, 1Y Uy, +1)
D; =exp[—["Tj J—exp{—("Tj J (2.13)

where U, ; equal the bin centres, and (4, k) follows the suggested joint prob-
ability distribution.

2.2.2 Inherent and Statistical Uncertainty of Material Data

In this section the focus is put on the uncertainties attached to SN-curves de-
rived from data. The uncertainties related to the application of synthetic curves
are not discussed, as the subject is not part of the project plan. We will consider
the data plotted in Figure 7. That data, which is taken from [5], corresponds to
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Figure 7: test data from representative cast steel material used for hubs. Left
plot is correct.

the hub, and will be extensively used in the following as a reference case. Be-
fore proceeding to the derivation of the stochastic model for the uncertainties, a
discussion of how to properly obtain by statistical means the SN-curve from a
set of test data is given.

Because fatigue tests are designed the way they are, i.e. a constant stress ampli-
tude is fixed and then the experiment is run — preferably — until rupture, the only
statistical sound estimation approach is to estimate the linear regression of
log N (the dependent variable) on logo (the independent variable). The argu-

ment is as follows. The core of any regression analysis is a stochastic model. In
the simplest case, which is considered here, the stochastic model assumes that
the dependent variable is random with a mean value that depends on the inde-
pendent variable, which is deterministic. Since the only way to conduct fatigue
tests is to choose the stress amplitude deterministically and obtain the lifetime
as a random result, it is evident that the proper regression analysis is to estimate
log N as the linear regression on logo . Trying the opposite is algebraically

possible, though meaningless, and it will generally lead to too large a Wohler
exponent m , the overestimation being lesser the lesser the data spreads about
the regression line. That is, a non-conservative estimate of lifetimes for stresses
below the average stress range of the tests, and a conservative estimate for
stresses above the average, follows. The reason for the over-estimation of the
Wohler exponent lays in the fact that in the estimator of the slope of the regres-
sion line those points that — measured along the axis of the variable chosen as
the independent variable — lay furthest away from the centre of gravity of the
data get the highest weights. Figure 7, Figure 8 and Figure 9 illustrate the dif-
ferences between the correct and the wrong approach. In Figure 7 both the lin-
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Figure 8: test data from representative high-strength steel used for shafts. Left
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Figure 9: artificially simulated test data for visual judgement of goodness of
slope estimates. Left plots are correct.

ear regression of log N with respect to logo and vice versa appear; left-hand
plot and right-hand plot respectively. The correct and the wrong estimates are in
this case considerably different, m =6.83 and m =10.79 respectively. Figure 9,
which has been obtained artificially by numerical simulation, shows more
clearly than Figure 7 that the wrong estimate tends to cut trough the data along
the diagonal rather than along the centre line of the data giving in that way an
optimistic estimate of the Wohler exponent. If the spread in data is less than
shown in Figure 7 and Figure 9 then the differences between the two ways of
determining the linear regression becomes less. Figure 8, showing the two re-
gression lines for the set of high-strength steel data used for the shaft in this
work, is such an example where one obtains m =19.6 and m =21.3 for the cor-
rect and wrong slope, respectively.

It is now time to turn to the quantification of the statistical and inherent uncer-

tainty of the material strength. It is convenient to parameterise the linear regres-
sion model as

logN =a + f(logo —logo) +loge (2.14)
where logo denotes the sample average of the logarithmetised stress ranges in

the data set. The parameterisation exploits that the linear regression goes
through the point of gravity of the logarithmetised data set. The m and o’ re-

late to the ¢, f, and logo through

(2.15)
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The ¢ in (2.14) is identical to the & in N, =¢1(o,/c")™". Substituting (2.15)
into N, =¢4(0o, /o)™ yields the expression that will form the basis of the in-
clusion of the statistical and inherent uncertainties of the material strength:

ok
N= ‘e (2.16)

logo
@g

The inclusion of the uncertainties is obtained by substituting the & and S by

their estimators & and ﬁ which are random variables. Under the usual as-
sumption that the inherent randomness covered by the residuals loge be zero
mean normal distributed the estimators follow a normal distribution with pa-
rameters that can be estimated from the data. Also the std. dev. s of the residu-
als is substituted by its estimator §, which is qui-square distributed. Denoting
by s and k the estimated std. dev. of the residuals and the number of data
points, respectively, then

2

Qe N(logN,%)

A S 2
ﬂe N( logolog N , N ) (217)
logologo logologo
S2
loge € N(0,5%), §2€?}(2(k—2)
where
S2 — SlogNlogN _SligalogN/ logologo
k-2

k
Slogo-logo— = Z(log O-l - lOg 0)2
= (2.18)

k
SlogNIogN = Z(lOgNI - log N)2
=1
k —
SlogalogN = Z(log O, — log O-)(log Nl - log N)
1=1

It is noted that the applied modelling of the statistical uncertainty follows from
Bayesian statistics assuming standard non-informative prior distributions. Dif-
ferent choices could have been made, however, this is not discussed in any fur-
ther detail here. The estimated numeric values of the parameters in (2.17) for
the hub material are stated in Table 2. Clearly the translation parameter o is
well determined, whereas the slope parameter £ has a COV a little below 20%.

Also the inherent randomness contributes a considerable amount. Figure 10 that
shows three different 95 percent confidence intervals supports these observa-

k 10g N log o N Slogo'logo' Slogo-logN SlogNlogN

19 13.7 4.88 0.513 0.164 -1.12 12.12

Table 2: estimated distributional parameters of the statistical uncertainty model
for the hub material strength.
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Figure 10: 95% confidence intervals for the regression line and for the regres-
sion model. See the text for further details.

tions. The innermost interval is the confidence interval for the regression line
when neglecting the uncertainty of the translation term. The middle curve is the
confidence interval for the regression line when including the uncertainty of the
translation term. It is seen that the uncertainty of the translation term does not
contribute much outside the core of the data set. The outermost curve is the con-
fidence interval of the regression model, i.e. the regression line plus the residu-

als (the uncertainty of the estimation of s* has been disregarded). Clearly the

inherent randomness contributes much, even as one moves away from the centre
of the data set.

In the present report the inherent uncertainty of the material strength is de-
scribed as the uncertainty of the number of cycles to rupture. When looking into
e.g. design standards the inherent uncertainty is often described as an uncer-
tainty of the stress range. This is not in conflict with the presentation here be-
cause having first estimated the parameters of the regression model in the cor-
rect way explained earlier in this section nothing prohibits rearranging Equation
(2.14) into

logN —«a +@_ lo;g

logo = (2.19)

in which the inherent uncertainty now appears as an uncertainty to the stress
ranges. A scaling of the std. dev. accounting for the slope has of course taken
place but the confidence intervals are the same for the formulations (2.14) and
(2.19) as they are fully equivalent.

The std. dev. estimate s =0.513 stated in Table 2 corresponds to the test data
covering about % of a decade around the regression line. Since this is just one
single estimate gathering other information is of interest. Asking an expert [7],
he says that for materials with Wdohler exponents about 3 the test data covers
approximately 2 of a decade about the regression line at all stress range levels.
This appears to be in good agreement with the estimate. In Section 2.3 results
for different values of s are presented.

Formula (2.16) gives an expression for the number of cycles to rupture in terms
of the parameters « and £ . What is needed for the limit-state function (2.8) is

an expression for the bin-wise expected lifetimes in terms of the estimators for
the parameters «, f and s. Because of the similarity between the SN-curve

expression and the formula (2.9) one easily derives that
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/ {Ge’f(ﬂ)J ¢s h (2.20)

eloga K
where &, ﬁ’ and § are the estimators defined by formulas (2.17).

Because the mean value of B for the hub material is numerically notably

smaller than the wrong estimate used as reference for the calculations recapitu-
lated in Section 2.1.1 the formulas (2.11) will be used for extrapolation far from
the data that the formulas are fitted to. However, as the results depicted in
Figure 3 show substantial reductions in the lifetime of the hub with lower
Wohler exponents, it is worth investigating the consequences of using the cor-
rectly estimated slope rather than the wrong slope, even though this study will
be uncertain in itself. The fact that the bin-wise lifetimes decrease with the slope
reflects that the fatigue stress ranges acting on the hub material are below the
average test stress range. It is exactly in such a case the sensitivity of the life-
time distribution to the uncertainty of the correct estimate of the Wdohler expo-
nent is most relevant.

2.2.3 Model Uncertainties

As mentioned earlier substantiating choices of model uncertainty distributions is
difficult. Since the distribution of the model uncertainties is usually unknown
choosing a symmetric distribution is a reasonable choice. Due to its simplicity
the Gaussian distribution is often the favourite among the symmetric distribu-
tions. For small COVs (up to at most 10%) the Gaussian and the Log-Normal
distributions do not deviate much from each other. Because the product of Log-
Normal distributions is again a Log-Normal distribution choosing this as the
model uncertainty distribution is convenient. Therefore the Log-Normal distri-
bution is in this context preferred to the Gaussian. Thus in the remainder of this
report all the model uncertainties are simply replaced by one variable
X — ngann;roX;;nXsrﬁessXIr{nFC (221)
X

SN

If one denotes by a V' the coefficient of variation one can show that

exp aero

Lo = [ P2+ V2 )+ P2+ V24 Vi) | (1) (222)

Obviously those model uncertainties that are multiplied directly to the stress are
considerably magnified according to the slope of the SN-curve. The mean value
of the X is, if one assumes that of all the X ’s have mean value 1,

E[X]=1+Vg, (2.23)

Having now at hand the expressions (2.22) and (2.23) the question regarding the
values of the COVs emerge. The work in [4] suggests some values for V,

y

aero ?

Xp 2
and V,, based on further references given in [4] — namely 10%, 10% and

5% respectively. In Section 3.2 alternative values of the COVs of the model
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CcCov Vo V. Vi V.

aero stress VRFC VSN

Value 0.10 0.10 0.05 0.05 0.02 0.05

Table 3: example of model uncertainty quantification

uncertainties are further discussed. The other model uncertainties are believed
to be in the same range. Whether this postulate is true or not is not discussed
any further but instead the results of computations with different model uncer-
tainties are shown in Section 2.3. An example of the choice of the model uncer-
tainties could be as stated in Table 3. This example leads to the following total
model uncertainty COV if m=1, 3 and 10, respectively: 0.17, 0.51 and 3.40.
These numbers show the influence of the slope. The first case is not realistic,
but has been included for reference as it corresponds to no magnification of un-
certainties. The second corresponds to structural steel, whereas the third is for
cast steel. In the latter case COV of the total uncertainty is no longer small. Be-
cause the upper tail of the Log-Normal distribution is thick compared to that of
the Gaussian distribution the seemingly harmless choice of using the Log-
Normal distribution for the individual uncertainties instead of the Gaussian does
have quite an impact on the total uncertainty distribution. Whether to choose
other distribution types is not discussed any further.

2.3 Results

In this section the lifetime distributions F'(/) for different situations are shown.

In order to facilitate the future use of the results presented here various sensitiv-
ity studies are carried out. All plots show a limited part of the lower tail of F(/)
because the components are of course designed to have low probabilities of fail-
ure. Since wind turbines are generally designed with the requirement that the
time of operation should be 20 years the lower tail from 20 years to 500 years is
considered. The plots are made on normal probability paper with probabilities
(p,(1)=F(l)) on the left-hand ordinate-axis and the corresponding reliability

indices on the right-hand ordinate axis. The reliability index /£ is defined by
L=—d7( p;) where ®7'(s) designates the inverse of the standard Gaussian

distribution. For all computations the average 10-min. mean wind speed has
beensetto V  =8.5m/s.

We start out by considering the hub component as it allows for the widest spec-
trum of sensitivity studies. Because the model uncertainties are of identical type

the sensitivities of the lifetime distribution with respect to V., V,..» Vi
|4

stress

from these sensitivities because X, appears in a different place in the limit-

and V., are similar. The sensitivity with respect to V;, will be different

state function (2.8). Figure 11 shows the sensitivity with respect to V,___ and

stress
Vi 1n the case where the statistical uncertainty, originating from the limited
number of test data, of the SN-curve is neglected. The other model uncertainties
are set as stated in Table 3. The Wohler exponent and the standard deviation of
the spread ¢ of the lifetimes around the SN-curve are taken from Table 2. Ow-
ing to the fact that X ___ is raised to the power of the Wohler exponent the sen-

stress
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Figure 11: sensitivity of lifetime distribution for the hub with respect to COV of
model uncertainty Xy.ess and Xsn respectively. No statistical uncertainty of the
SN-curve.

sitivity with respect to V,

stress

spect to Vg, that is practically non-existing.
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Figure 12: left-hand plot shows the lifetime distribution of the hub with a wrong
Wholer exponent (no statistical uncertainty of the SN-curve). The right-hand
plot is the lifetime distribution with correct Wohler exponent and statistical un-

certainty of the SN-curve. In both cases model uncertainties are taken from
Table 3.

The plots in Figure 12 illustrate the importance of modelling the SN-curve cor-
rectly. The left-hand plot in Figure 12 shows, still in the case of neglecting the
statistical uncertainty of the SN-curve, the influence of applying the wrong, i.e.
the too optimistic, Wohler exponent. Comparing the plot to the uppermost left-
hand plot in Figure 11 it shows that for the present case the safety is increased
approximately by an order of magnitude. The right-hand plot in Figure 12
shows the impact of the statistical uncertainty of SN-curve on the lifetime dis-
tribution. Though a wrong Wohler exponent can result in underestimated life-
time distributions the present case shows that the statistical uncertainty has
much more importance. The plots in Figure 11 showed that the sensitivity with
respect to V. is notable when the ideal situation of no statistical uncertainty

stress
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Figure 13: sensitivity of lifetime distribution of the hub with respect to COV of
model uncertainty Xg.ess.in case of statistical uncertainty of the SN-curve.
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Figure 14: sensitivity to inherent randomness of lifetime distribution of the hub;
first row does not include statistical uncertainty of SN-curve, the second row
does. Model uncertainties are taken from Table 3.

of the SN-curve is considered. On the other hand Figure 13 shows that when the
statistical uncertainty of the SN-curve is included the sensitivity to V. practi-

stress

cally vanish.

Because the COV of the spread ¢ of the lifetimes around the SN-curve is not
always easy to assess it is also of interest to see what is the sensitivity to this
parameter — i.e. the sensitivity to the inherent material randomness. The COV is
characterised by the fraction of a decade on the lifetime axis that is covered by 4
times the standard deviation of loge . The first row of plots in Figure 14 shows
the sensitivity in case the statistical uncertainty of the SN-curve is neglected.
The lifetime distribution is not much sensitive to the COV of the inherent mate-
rial randomness because, like it is the case with the model uncertainty V,, € is

0.05 1 1.64 0.05 1 1.64
0.01 1233 0.01 1233
le-3 1 3.09 le-3 1 3.09
B
PO PO
le-6 1 4.75 le-6 14.75
1e-9 6 le-9 - - . . . 6
20 50 100 200 500 20 50 100 200 500
[ [years] [ [years]

Figure 15: sensitivity of the lifetime distribution of the hub to statistical uncer-
tainty of the mean wind distribution. In the left plot the uncertainty is neglected.
Model uncertainties are taken from Table 3.
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not amplified by the Wohler exponent. Contrary to this the second row of plots
in Figure 14 shows the sensitivity in case the statistical uncertainty of the SN-
curve is not neglected. In that case, the sensitivity becomes large because the
statistical uncertainty of the SN-curve scales with the COV of ¢ — see Formulas
(2.17).

Finally, in Figure 15 the sensitivity of the lifetime distribution with respect to
the statistical uncertainty of the mean wind distribution is illustrated in the case
of no statistical uncertainty of the SN-curve. Comparing the left-hand plot in
which the statistical uncertainty has been disregarded to the right-hand plot in
which the statistical uncertainty of the mean wind distribution is included shows
that the sensitivity is very small. It is noted that the statistical uncertainty of the
mean wind distribution as described in 2.2.1 considers that the mean wind dis-
tribution is estimated from one year of measurements. Basing the mean wind
distribution estimate on more than one year will bring the sensitivity further
down. Moreover, if statistical uncertainty of the SN-curve is introduced the sen-
sitivity to the statistical uncertainty of the mean wind distribution becomes even
smaller.

We now turn to the main shaft for which the SN-curve is also based on test data.
Since a detailed analysis of sensitivities to statistical uncertainty of SN-curves
was given in relation to the hub component such analysis is not conducted for
the main shaft. Only a few results are given. Figure 16 shows the sensitivity
with respect to V. in the case where the statistical uncertainty of the SN-
curve is neglected. The other model uncertainties are set as stated in Table 3.
The Woéhler exponent and the standard deviation of the spread & of the life-

times around the SN-curve are computed from the test data and they are

Vslress = 0‘05 stress =
0.25 0.67 0.25 1 0.67
0.10 1.28 5 010 / {1.28
I
P 6 05 1ee B P s 1 1.64
0.01 233 0.01 233
20 50 100 200 500 20 50 100 200 500
[ [years] I [year
Vtress = 015 Vgress = 0:20
0.25 0.67 0.25 0.67
| 010 / 1.28 010 / 1.28
P 0 05 et AP s 1.64
0.01 233 0.01 233
20 50 100 200 500 20 50 100 200 500
1 [years] [ [years]

Figure 16: sensitivity of lifetime distribution for the main shaft with respect to
COV of model uncertainty Xgess. No statistical uncertainty of the SN-curve.
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Figure 17: the lifetime distribution for the frame with model uncertainties taken
from Table 3 except Vsy has been set to 0.15.

m=21.32 and §=0.48. Again it is seen that, as it was the case for the hub, that
the lifetime distribution is sensitive to V. More interesting it is to see that the

stress *
probability of failure for 20 years is in the order of 5% to 10% for the shaft —
even when not accounting for statistical uncertainties of the SN-curve — which
is considerably higher than for the hub that has a probability of failure of 1%
when also including statistical uncertainty of the SN-curve. This is further dis-
cussed below.

Contrary to the main shaft the frame is safer than the hub component — this ap-
pears from Figure 17 that shows the lifetime distribution of the frame. This dis-
tribution is based on a synthetic SN-curve implying that no explicit statistical
uncertainty of the SN-curve exists. To counter for this the COV Vgy of the
model uncertainty Xsy has been set to 0.15, otherwise the model uncertainties
from Table 3 has been used. Bearing in mind the lesson learned from the hub
component, that statistical uncertainty of the SN-curve dominates the lifetime
distribution and that the sensitivity to Vsy is small one could argue that setting
Vsn to 0.15 does not really counter the statistical uncertainty that must be pre-
sent in the data that has once lead to the synthetic SN-curve. However one must
anticipate that more test data is behind the synthetic SN-curves than the specific
ones considered here implying less sensitivity to the statistical uncertainty of the
SN-curve. The Wohler exponent is 3 and the COV of the inherent randomness
of the lifetimes has been set so that 4 times the standard deviation of loge cor-

responds to %2 a decade on the lifetime axis. This choice is based on [7].

The question is now what can be the reasons that the three components have so
different levels of safety. It is first noted this can be explained by the fact that
three different manufactures have contributed each with one of the components
to the generic turbine considered in this work. The differences are therefore ex-
pected to result partly from the fact that different manufactures may have differ-
ent design strategies, partly from the fact that in any turbine not all components
are designed fully to the limit. Thus any turbine design has a bottleneck, which
then can be one of the components considered herein, i.e. the main shaft. It is
noted, however, that the safety of the shaft seems to be very low, implying that
other reasons than the bottleneck-argument may exist. These have not been un-
covered during the course of the project. The reason that the frame has very
high reliability can be that the design strategy applied implies very conservative
assessment of characteristic loads and design loads.
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3 Reliability Considerations

Equation Chapter (Next) Section 1In this chapter some preliminary
investigations of how partial safety factors for fatigue can be adjusted if one can
reduce model uncertainties are given. The investigations do not include inspec-
tion planning, which can excessively reduce safety factors. The way the stress
range counting has been performed in the current project puts some limitations
on the general validity of the results, and only the hub component is considered.

3.1 The Calibration Procedure

The procedure employed here to compute the effects on the partial safety factors
of changes in the uncertainties is called calibration. The kind of calibration re-
garded here is the one where existing safety factors and related characteristic
values corresponding to a specific uncertainty model are given and another set
of partial safety factors for the same characteristic values and a modified yet
comparable uncertainty model is sought. By an uncertainty model is meant a
listing of uncertainty sources and their quantification — just like presented in the
previous chapter. The aim is that the level of reliability of components designed
according to the derived safety factors and subject to the modified uncertainty
model must be equal to the reliability level of components designed according
to the existing safety factors and subject to the corresponding uncertainty
model. The reliability level of the components designed according to the exist-
ing safety factors is therefore termed the target probability and the calibration
technique could be called ‘probabilistic calibration’. The technique consists in
the following 4 steps:

1. Design a component using the existing safety factors and characteristic
values. The design must be ‘to the limit’.

2. Compute the reliability of the designed component according to a spe-
cific uncertainty model believed to correspond to the safety factors.
This reliability is then the target reliability level.

3. Design a component that, according to the modified uncertainty model,
will have reliability equal to the target. This design will have other di-
mensions than the component obtained in step 1.

4. Determine the safety factors that, applied to the characteristic values,
will result in loads and material strengths that will lead to a design
equal to that obtained in step 3.

In steps 1 and 4 the so-called design equation is employed. The design equation
has many similarities to the equation that defines the zero-points of the limit-
state function. The design equation is defined by (see Eq. (2.3)):

1

i gi(ny-C,i /(O-'c /ym ))_mc

S o 1> P -1 G.1)
J

All model uncertainty variables are removed and the load and strength variables
are replaced by characteristic values (indicated by an index ‘c’) and partial
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safety factors y, and y, for load and material respectively. The stress ranges

o,,; stems from internal cross-sectional loads Q,; that are scaled by some in-

fluence number, say z, reflecting the design of the component. It is the value of
z —in the following termed the design parameter — that is determined in steps 1
and 3. Introducing the design parameter in the design equation (3.1) one gets

p JFDFY — i (3.2)
Z Z 120,10’ )™

In which also FDF =(y,»,)™ , the often-used so-called Fatigue Design Factor,

has been introduced as a factor to the lifetime.

Because in this project the manufactures have provided the design of the com-
ponents and because, for confidentiality reasons, they have not supplied all de-
tails on the design procedure the partial safety factors to be used in step 1 are
not known. This means the fatigue design factor has to be derived herein. This
is done on the assumptions that:
a. the components have been designed to the limit,
b. that the load safety factor has been put to 1.0, and
c. that the characteristic value of the number of cycles to fatigue (or
similar the material fatigue strength) is determined by the mean
value minus two times the standard deviation of the natural random-
ness of the lifetime (or fatigue strength).
Assumption ‘a’ implies that the design parameter z to be assessed in step 1 has
already been determined by the manufacture. From the assumption ‘b’ it follows
that the loads applied in the calculations, which have led to the bin-wise ex-
pected lifetimes presented in Section 2.1.1, are the characteristic loads. Combin-
ing this with assumption ‘c’ it implies the characteristic expected lifetimes /,

equals the computed expected lifetimes multiplied by e**, where s denotes the
standard deviation of the logarithm of the natural randomness, ¢, of the life-
times (see Equation (2.17)). The calibration procedure requires the possibility to
compute the bin-wise expected lifetimes for different designs, that is for differ-
ent values of the design parameter z. Assuming further that the stresses scale
linearly with z and introducing the ratio 7 =z,/z, where z, denotes the refer-
ence design parameter corresponding to the design provided by the manufac-
ture, the design equation can finally be restated as:

p. | FDF

Y=L =] (3.3)

7" e ™ (m,)

where /,(m,) denotes the bin-wise expected lifetimes obtained with the charac-

teristic value of the Wohler exponent defined here as the expected value, i.e. for
the hub material m, =6.83. The limit-state function corresponding to the de-

rived design equation is (see Equation (2.8))

g(p/,ma X X X X XirerXn) =

exp ?“aero®“ " dyn 2 <" stress ?
(3.4)
m m m m m
1 chancroX Xstrcss XRFC Z p/l
! mg
Xox J glj(maa)ﬂ
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Based on Equations (3.3) and (3.4) the four steps of the calibration procedure
may be implemented for the current problem by the following four steps (note
that, in accordance with the above made assumptions step 1 is replaced by a
determination of the current safety factors):

1. Assuming that the component is designed to the limit put 7 =1,
[ =20 years, and solve the design Equation (3.3) with respect to FDF,

giving the partial safety factor product y,,y, ="/ FDF .

2. For [=20years and 77=1 use the limit-state function (3.4) to assess
the target reliability level denoted S, .

3. With the modified uncertainty model use the limit-state function (3.4)
to determine 7 such that for / =20 years the reliability S, is obtained.

4. With the 7 obtained in step 3 and /=20 years solve again the design
equation (3.3) with respect to FDF, giving the new calibrated partial

safety factor product y, 7, ="/ FDF .

Before proceeding to the results a remark on the assumed definition of the char-
acteristic SN-curve is appropriate. The assumed definition corresponds to a par-
allel shift of the SN-curve sidewards to the left giving an SN-curve correspond-
ing approximately to the 2.3 percentile. Other definitions could be relevant. For
other definitions other FDF'’s will come out of step 1 in the above procedure.
Knowing the ratio between the characteristic SN-curve assumed here and any
other characteristic SN-curve, the partial safety factor product 7,7, can be di-

rectly scaled by this ratio.

3.2 Results

In this section only results for the hub material are shown. The uncertainty
model developed in Chapter 2 is of course used here as starting point. The val-
ues suggested in Table 3 are — as mentioned — based on [4]. In [4] other possible
values than the ones adopted in Table 3 are given. In [4] it is argued that putting
V. =10%, V. _ =10%, and Vin = 5% is the minimum uncertainties that can be

exp aeto
reasonably obtained. Typically the computer models of any wind turbine are
calibrated to fit with full-scale response measurements. Naturally the uncertain-
ties of the computer model cannot be smaller than the uncertainties of the meas-
urements, which in [4] is judged to be 10% for the aerodynamic loads and 5%
for the dynamical properties such as eigenfrequencies and damping ratios. In
other works than [4] it is suggested to put V,  =20% . In [4] the argument is

that by use of programs like WASP or by site measurements of the climate the

effects of the terrain (topography) can be accurately accounted for why V, = can

be put equal 10%. So, essentially the values suggested in Table 3 are — in the
author’s opinion — the least conservative uncertainty model that can be used.
Because the author also finds the values fairly realistic they have been used for
the study of the lifetime distributions. In the present section two cases are con-
sidered: 1) a case where the values in Table 3 are assumed realistic, and the
consequences for the partial safety factors of having even lower model uncer-
tainties is examined, and 2) a case where higher model uncertainties are as-
sumed as reference uncertainties and the consequences for the partial safety fac-
tors of having the model uncertainties reduced to the ones suggested in Table 3.
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B =543 | V. |4 v, V.

exp aero yn stress

Vrec Ven U FDF Vs

Reference | 0.10 | 0.10 | 0.05 | 0.05 | 0.02 | 0.05 1 873 | 2.69

Exposure | 0.05 - - - - - .89 394 | 2.40
Aerodyn. - 0.05 - - - - do. do. do.

Dynamics - - 0.03 - - - 975 | 734 | 2.63
Exp.+aero | 0.05 | 0.05 - - - - J75 | 153 | 2.09
All three 0.05 | 0.05 | 0.03 - - - J51 | 124 | 2.02

Table 4: calibrated partial safety factor products for the hub material when sta-
tistical uncertainty of the SN-curve is disregarded. The first row gives the refer-
ence model uncertainties as stated in Table 3. In the second to the sixth row a

dash means that the reference value given in the first row is used. [, is given in

the upper left corner.

The first case is included to provide guidance for those that can document that
they can actually obtain lower uncertainties than the author considers to be
minimum. The latter case is motivated by the fact that the partial safety factors
currently stated in wind turbine standards have originally been developed for
building codes from where they have been adopted. One could therefore argue
that they correspond to higher model uncertainties than suggest in Table 3 why
the partial safety factors should be calibrated to become lower, so that they cor-
respond to the present day practise of wind turbine engineering. Because this is
a point of view that can be discussed the current work gives only the results of
these various assumptions without suggesting possible adjustments of partial
safety factors. The results for the first and second case are summarised in Table
4 and Table 5, respectively.

For the results in both Table 4 and Table 5 the statistical uncertainty of the SN-
curve has been disregarded. Otherwise the partial safety product would have

B.=325 | Voo | Viw | Vew | Vi | Vaec | Vox | 7 | FDF | 3,7,

exp aero yn stress

Reference | 0.20 | 0.20 | 0.10 | 0.05 | 0.02 | 0.05 1 873 | 2.69

Exposure | 0.10 - - - - - .86 311 | 2.32
Aerodyn. - 0.10 - - - - do. do. do.
Dynamics - - 0.05 - - - 965 | 684 | 2.60
Exp.+aero | 0.10 | 0.10 - - - - 1 84 1.91
All three | 0.10 | 0.10 | 0.05 - - - .665 54 1.79

Table 5: calibrated partial safety factor products for the hub material when sta-
tistical uncertainty of the SN-curve is disregarded. The first row gives the refer-
ence model uncertainties taken from [4]. In the second to the sixth row a dash
means that the reference value given in the first row is used. B, is given in the

upper left corner.
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been almost insensitive to the model uncertainties. This follows from the plots
in Figure 13 showing virtually no sensitivity of the reliability to the model un-
certainties if statistical uncertainty of the SN-curve is included in the uncer-
tainty model. Under all the assumptions made it is seen that considerable
amounts of material can be saved — without changing the level of safety — sim-
ply by improving the models (the possible relative material reduction is given
by 1—7). In order to verify the results obtained it is relevant to investigate in

much further detail the proper modelling of model uncertainties, that is the
value of the COV as well as the choice of distribution type. This is a subject that
has not yet been dealt with to the degree of detail that it deserves because tradi-
tionally these uncertainty sources have been considered of less importance than
many other sources. This is true for extreme loads in the storm situation but not
for fatigue where they are of importance. Adding to this that for many compo-
nents of wind turbines the fatigue loads are design-driving the need for further
investigations into the subject of model uncertainties is crucial.

Results involving statistical uncertainties related to the SN-curve are not pro-
vided here because there is too little data available in the project to carry out an
analysis. E.g. one subject of such an analysis would be the influence of having
more test data and test data at other stress levels.
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4 Conclusions

In this report examples of fatigue lifetime and reliability evaluation of larger
wind turbine components have been given. Part of the investigation has been the
discussion of possible uncertainty sources that influences the lifetime distribu-
tion and their quantification.

The work being based on three example components and further the probabilis-
tic analysis being simplified the applicability of results and conclusions reached
in this report is limited. The results and discussions are however of general
qualitative validity.

The major conclusions are:

That statistical uncertainty of the determination of the SN-curve from
limited amounts of test data greatly influences the lifetime distribution
if the tests have been carried out at stress levels that are higher than
those present in the load history that the material becomes subject to.
On the other hand statistical uncertainty relating to site-specific as-
sessment of mean wind distribution from at least one year of measure-
ments hardly influences the lifetime distribution.

Because model uncertainties relating to stresses are raised to the power
of the Wohler exponent the sensitivity of the lifetime to these uncer-
tainties can be quite significant. This correct modelling of the model
uncertainties is a subject that has not yet been dealt with to the degree
of detail that it deserves because traditionally these uncertainty sources
have been considered of less importance than many other sources. This
is true for extreme loads in the storm situation but not for fatigue where
they are of importance. Adding to this that for many components of
wind turbines the fatigue loads are design-driving the need for further
investigations into the subject of model uncertainties is crucial. Below
a recommendation for the future work in this field is given.

The three components showed to have significantly different levels of
safety. As explained in the introduction these differences are expected
to result partly from the fact that different manufactures that have con-
tributed with the design of the components may have different design
strategies, partly from the fact that in any turbine not all components
are designed fully to the limit. Thus any turbine design has a bottle-
neck, which then can be one of the components considered herein, i.e.
the main shaft. However the safety of the shaft seemed to be very low,
implying that other reasons than the bottleneck-argument may exist.
These have not been uncovered during the course of the project. The
reason that the frame has very high reliability can be that the design
strategy implies very conservative assessment of design loads.

Studies of partial safety factor calibrations show that considerable
amounts of material can be saved. However this conclusion rests on the
validity of the modelling of the model uncertainty, which is discussed
above.

Rise-R-1418(EN)

39



40

Recommendation for Future Work:

One issue of this report has been the discussion of uncertainty sources. From
this discussion it has been learned that the minute one starts to think about un-
certainty sources related to the response simulation, the stress range count, and
the application of the SN-curve the picture becomes so full of details that it is
difficult overview.

It is therefore recommended, as a potentially fruitful approach to assessing some
of the contributions to the overall uncertainty of the lifetime, that one invites
different engineers to compute the lifetime of a certain component. The differ-
ent results that would come out of these computations would then account for
the distribution of the lifetime uncertainty due to the uncertainties related to the
response simulation, the stress range count, the application of the SN-curve, etc.

For the modelling of e.g. the exposure model uncertainty (i.e. the uncertainty
relating to the influence of the terrain topology) comparing long-time measure-
ments of the climates at several specific — but typical — sites with WASP com-
putations and/or short-term measurements could give information that could
lead to the establishment of a distribution for exposure model uncertainty.
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