管理番号 11 43

複合材料成形技術調查報告書

平成4年度新エネルギー・産業技術総合開発機構委託 「複合材料新成形技術の研究開発(高効率発電用部材創製技術開発)」 総合調査研究

平成5年3月

財団法人

中部科学技術センター

复合才斗艾珍支防噶監殺导聾(応文和戸庭方にたいに、,崔龍友防谷合司洛斐輝祭七「夏子才斗斤艾彡支行つ所已月色(后力这首置目召才引起左行月色)」 谷子哥 医牙已

こんにミニリ

t a

<u>77</u>

68

X

この報告書は、新エネルギー・産業技術総合開発機構 の委託による平成4年度「複合材料新成形技術の研究 開発(高効率発電用部材創製技術開発)」を実施する 過程で財団法人中部科学技術センターと再委託機関に より行われた調査研究の結果を内部の検討と利用のた めに編集したものである。

¥

はじめに

この報告書は、新素材とその加工技術の研究開発に対する中部地域の要請と期待を背景 に、新エネルギー・産業技術総合開発機構の委託を受けた「複合材料新成形技術の研究開 発(高効率発電用部材創製技術開発)」の平成4年度研究開発の推進の中で「総合調査研 究」の一環として実施した「複合材料成形技術調査」の成果をまとめたものである。

「複合材料新成形技術の研究開発」は、セラミックス系・金属系複合材料の超塑性現象 発現を目指して複合化技術を研究し、更に超塑性加工技術にチャレンジする先端複合材料 のプロセシング技術の開発プロジェクトである。先端複合材料は可能性を期待されつつも、 その多くはなお開発の段階にある。それ故、斯界の研究動向に注目し、その最新情報を本 プロジェクトの研究に反映させることがプロジェクトの効率的推進に必要不可欠である。 一方、当プロジェクトの重要課題の一つである超塑性加工技術、特にセラミックス系材料 の超塑性加工技術は、セラミックスの超塑性現象の発見から僅かな年月を経過したに過ぎ ず、これを技術の領域に昇華、発展させるにはセラミックスの超塑性に対する理解を一層 深める必要がある。

この様な認識から、平成4年度「複合材料成形技術調査」では、まずセラミックス系・ 金属系複合材料の現状と課題とセラミックス系材料の超塑性研究の最前線を展望して、本 プロジェクトがチャレンジする技術をマクロ的視点でとらえた。更に関連する国際会議な どに報告された論文を調査し、最近の研究動向を捉えるミクロの視点を加えることとした。

この報告書は、本プロジェクトの総合技術委員会委員ならびにセラミックス系分科会・ 金属系分科会委員としてご指導をいただいている名古屋大学 工学部 平野教授、長 教 授、セラミックスの超塑性についてご講演いただいた東京大学 工学部 佐久間教授に加 えて工業技術院名古屋工業試験所「複合材料新成形技術の研究開発」研究者、そして再委 託先10研究機関の研究者のご指導、ご尽力の賜物である。お名前を後記して深甚な謝意を 表する次第である。

財団法人 中部科学技術センター会長 太田宏次

	目 次
1.調査の	〕目的●方法および執筆者
2. 複合材	料の現状と課題
セラ	ミックス系複合材料の現状と課題 名古屋大学 工学部 応用化学科 教授 平野真一
金属	系、特にアルミニウム基複合材料の現状と課題 - SAMPE Toront会議から眺めて 名古屋大学 工学部 材料フロセス工学科 教授 長 隆郎
3.研究	, の 展 望
セラ	ミックスにおける微細結晶粒超塑性 東京大学 工学部 材料学科 教授 佐久間健人
4. 複合	材料関連文献抄録
A. セラ	ミックス系複合材料 ····································
A-1.	概 要 1
A-2.	文献投録
[A-2-1]	キャラクタリゼーション、強度/力学的特性
抄録番号	

1. Fibel beoonding and fullout flocesses in ceramic composites.	
(セラミックス複合材料における強化繊維の界面剝離と引き抜けプロセス) 2	1
2. Damage Development in a Ceramic Matrix Composite under Mechanical Loading.	
(荷重負荷時におけるセラミックマトリックスコンホシット 中での損傷の進展)	23
3. Microtextures of Interfaces Related to Mechanical Properties in Ceramic	
Fiber Reinforced Cerami Matrix Composites	
(セラミックス繊維強化セラミックマトリックス 複合材料の機械的特性に影響する界面の微組織) 2	25
4. Short-crack T -Curves and Damage Tolerance in Alumina-based Composites	
(アルミナ基複合材料のショートクラックータフネス 曲線と破壊限界)	.7
5. Matrix Cracking during Deformation and Fatigue of Glass Matrix Composites	
Composites(変形中のマトリックスのひび割れとカラスセラミックスマトリックス 複合材の疲労) 2	19

6. Experimental Observation of Progressive Damage in SiC/Glass-Ceramic Composites	
(SiC/カラスセラミックス 複合材の傷の進行)	31
7. Micromechnics of Compressive Fracture in Particulate Reinforced Ceramics.	
(粒子強化セラミックス複合材料における圧縮応力破壊の微視的機構)	33
8. Micromechanisms of Toughening in a Particulate Reinforced Ceramic Matrix	
Composite (粒子強化セラミックス複合材のタフニンク 機構)	35
9. Mechanical Behavior of Silicon Carbide Particulate Reinforced Reaction Boneded	
Nitride Matrix Composites.	
(SiC粒子で強化した反応焼結 Si₃N₄の機械的挙動)	37
10. Indentation Residual Stress in RBSN and RBSN Composites.	
(RBSNとRBSN複合材のインテンテーション 残留応力)	39
[A-2-2] 複合化プロセスと性質	
[A-2-2] 複合化プロセスと性質 1. Whisker Growth and Composite Fabrication in the Si,N,-C System.	
[A-2-2] 複合化プロセスと性質 1. Whisker Growth and Composite Fabrication in the Si₃Nィ-C System. (Si₃Nィ-C 系下のウイスカ成長と複合体作成)	41
[A-2-2] 複合化プロセスと性質 1. Whisker Growth and Composite Fabrication in the Si,N,-C System. (Si,N,-C 系下のウイスカ成長と複合体作成) 2. Surface Modification and Slip Casting of SiC Platelets in Al,O, Composites	41
[A-2-2] 複合化プロセスと性質 1. Whisker Growth and Composite Fabrication in the Si,N,-C System. (Si,N,-C 系下のウイスカ成長と複合体作成) 2. Surface Modification and Slip Casting of SiC Platelets in Al ₂ O ₃ Composites (板状SiC粒子/Al ₂ O ₃ 複合材料における表面改質と鋳込成形)	41 43
 [A-2-2] 複合化プロセスと性質 1. Whisker Growth and Composite Fabrication in the Si₃N₄-C System. (Si₃N₄-C 系下のウイスカ成長と複合体作成) 2. Surface Modification and Slip Casting of SiC Platelets in Al₂O₃ Composites (板状SiC粒子/Al₂O₃複合材料における表面改質と鋳込成形) 3. Densification and Fracture Toughness Enhancement of Pressureless Sintered 	41 43
 [A-2-2] 複合化プロセスと性質 1. Whisker Growth and Composite Fabrication in the Si₃N₄-C System. (Si₃N₄-C 系下のウイスカ成長と複合体作成) 2. Surface Modification and Slip Casting of SiC Platelets in Al₂O₃ Composites (板状SiC粒子/Al₂O₃複合材料における表面改質と鋳込成形) 3. Densification and Fracture Toughness Enhancement of Pressureless Sintered Aluminum Oxide-Titanium Diboride Composites. 	41 43
 [A-2-2] 複合化プロセスと性質 1. Whisker Growth and Composite Fabrication in the Si₃N₄-C System. (Si₃N₄-C 系下のウイスカ成長と複合体作成) 2. Surface Modification and Slip Casting of SiC Platelets in Al₂O₃ Composites (板状SiC粒子/Al₂O₃複合材料における表面改質と鋳込成形) 3. Densification and Fracture Toughness Enhancement of Pressureless Sintered Aluminum Oxide-Titanium Diboride Composites. (常圧焼結Al₂O₃-TiB₂の緻密化と破壊靱性) 	41 43 45
 [A-2-2] 複合化プロセスと性質 1. Whisker Growth and Composite Fabrication in the Si₃N₄-C System. (Si₃N₄-C 系下のウイスカ成長と複合体作成) 2. Surface Modification and Slip Casting of SiC Platelets in Al₂O₃ Composites (板状SiC粒子/Al₂O₃複合材料における表面改質と鋳込成形) 3. Densification and Fracture Toughness Enhancement of Pressureless Sintered Aluminum Oxide-Titanium Diboride Composites. (常圧焼結Al₂O₃-TiB₂の緻密化と破壊靱性) 4. Silicon Carbide Whisker Reinforced Alumina. 	41 43 45

[A-2-3] 複合化プロセス

1.	Green Body Processing Effects on SiC Wisker Textures in Alumina Matrix	
	Composites.	
	(成形フロセスがアルミナマトリックス複合材料の SiC ウイスカー構造に及ぼす影響)	51
2.	Fabrication of SiC Whisker-Reinforced SiC Ceramics.	
	(SiC ウイスカー 複合強化 SiCセラミックスの作成)	53
3.	Slip Casting under Pressure.	
	(加圧鋳込成形)	55
4.	Tape Cast Al ₂ O ₃ /ZrO ₂ Composite Laminates.	
	(テーフキャスト 法によるAl₂Oュ/ZrOュ層状複合材)	57

[A-2-4] 超 塑 性

1.	Superplastic Flow in Nanograin Ceramics.	
	(ナノ結晶粒セラミックスの超塑性挙動)	5 9
2.	Deformation of Alumina/Titaniun Carbide Composites at Elevated Temperatures	
	(高温でのAl₂O₃/TiC 複合材料の変形)	61

[A-2-5] プロセスと超塑性

1. Superplastic Alumuina Ceramics with Grain Growth Inhibitors.	
(粒成長を抑制したアルミナセラミックス)	3
2. Shear Thickening Creep in Superplastic Silocon Nitride.	
(超塑性窒化けい素におけるずり変形粘稠化クリープ)	5
3. Superplasticity of Mullite/Zirconia Composite.	
(ムライト-ジルコニア複合材の超塑性)	7
4. Fabrication of Mullite Body using Transient Phase.	
(超塑性遷移相を用いたムライトの製造)	9
5 Superplastic Bulging of Fine-Grained Zirconia.	
(微細粒ジルコニアの超塑性バルジ加工)	1
A-2-6] その他	
1. Assessment of the Status of Ceramic Matrix Composites Technology in the	
United States and Abroad.	
(米国内外におけるセラミックマトリックス 複合材の状況のアセスメント)	3
3 金属系複合材料 ······ 8	2
3—1 概 要	2
	2
3-2. 文献 抄 録	
B-2-1] キャラクタリゼーション、強度/力学的特性	
1. Low Cycle Fatigue of Discontinuously Reinforced Metal Matrix Composite	
(不連続的に強化された金属基複合材料低サイクル疲労)	4
2. Corrosion Behavior of Metal Matrix Copmposotes.	
(金属基複合材料の腐食挙動)	6
3. Enviromental Influence to the Fatigue Behavior and Damage in SiC-Fibre	
Reinforced Aluminum Alloys.	
(SiC繊維強化アルミニウム合金の疲労強度と損傷に対する環境の影響)	8
B-2-2] 複合化プロセスと性質	
1. Heat Treatment Optimization and Improvement of Tensile Properties of	
Fibre-Reinforced Aluminum Alloys.	
(繊維強化アルミニウム合金の最適熱処理と引張特性の向上)	0
2. An Overview of the Damage Effects Related to the Processing of Aluminum	
Matrix Composites by Liquid Infiltration.	
(溶湯含浸法によるアルミニウム合金の製造における材料損傷)	2
B-2-3] 複合化プロセス	
1. Forging of Short Alumina Fibre Reinforced Aluminum Alloys.	
(アルミナ短繊維強化アルミニウム合金の鍛造)	4

2. Manufacturing of Al-Si Matrix Composites Preformes Reinforced by C-Fibres.
(炭素繊維で強化した Al-Siマトリックス複合材のフリフォームの製造)
3. Forming of Magnesium Matrix Composites by Forging .
(鍛造によるマクネシウム基複合材料の製造)
4. Theoretical and Experimental Analysis of $Al_2O_3/Al-Si$ Composites Processed
from Al-Si-Zn and Al-Si-Mg by Direct Metal Oxidation.
(直接金属酸化法によるAl₂O₃/Al-Si基複合材料に関する理論的・実験的解析)100
5. Directed Metal Oxidation Analysis of Al-Si-Mg, Al-Ni-Mg and Al-Si-Mg
Alloy Composites.
(Al-Si-Mg,Al-Ni-Mg および Al-Si-Mg 合金コンホシットの直接金属酸化)102
6. Diffusion Bonding of Fibre Reinforced Aluminum.
(繊維強化アルミニウムの拡散接合)
7. Develoopment of Aluminum Matrix Composites Connecting Rods.
(アルミニウム合金MMC製のエンシン部品-コネクティンクロッドの開発)
[B-2-4] 超 塑 性
1. On Superplasticity in Silicon Carbide Reinforced Aluminim.
(炭化ケイ素アルミニウム複合材料の超塑性について)
2. A Rheological View of High-Strain Rate Superplasticity in Alloys and
Metal Matrix Composites.
(合金と金属基複合材料における高速超塑性とレオロシー観点)
3. Superplastic Behaviour in As-Extruded Al-Cu-Mg Alloy Matrix Composite
Reinforced with 20 vol% Si $_3N_4$ Partículate.
(体積含有率20%の窒化ケイ素粒子強化Al-Cu-Mg複合材料の押出し材の超塑性挙動)112
1. Effect of Hot Working on the Microstruxture and Properties of
a Cast 5083 Al-SiCp Metal Matrix Composite.
(5083AI-SiC, 鋳造復合材料の組織と性質に及ばす烈間加工の影響)
2. Superplastic Behavior in a Mechanically Alloyed Aluminum Composite
Keinforced with SiU Particulate.
(メカーカル)ロイク/により作製した SiC粒子強化がにつ4複合材料の超塑性挙動) ····································
3. Mirostructural Refinement by Thermomechanical Treatment of a Cast and
(毎 年 か よ い 沖 田 し 加 上 さ 4 い に 6 00 0 1 A 1 - A 1 2 0 3 J / A Y 9 ト の 9 - 4 X / - / W 処 理 に よ る
4. Effect of Cold work on the Recrystallized Grain Size in a Particle
At a control of the and the
(社丁理16///シーシム宙並の母相館/レイノソ1ヘ に関9 る帝国加工の効果)
Properties of an Aluminum Passed Matal Matrix Comparing
riopercies of an Arominum based metal Matrix Composite.
いパーツ で、 ^ に し に 立 周 会 後 百 均 作 の 祖 職 や よ ひ 阪 忱 时 住 に 及 ほ 9 加 丁 執 加 理 の 影 纓)

1. 調査の目的・方法および執筆者

1. 調査の目的・方法および執筆者

1.1.目的

より実部材に近い成形を可能とする成形技術の開発は、難加工材料である複合材料の重要な課題で あり、超塑性加工はチャレンジングなターゲットである。脚中部科学技術センターが新エネルギー・ 産業技術総合開発機構(NEDO)から委託を受けた「複合材料新成形技術の研究開発」(本研究開発)は この課題に向かう研究開発プロジェクトである。平成3年度より3カ年計画で、超塑性発現を目指す セラミックス系・金属系複合材料の複合化技術と超塑性加工技術の研究開発が進められている。

この調査はセラミックス系・金属系複合材料の複合化と超塑性に係わる技術の動向を把握し、本研 究開発の推進に資することを目的に、セラミックス系・金属系分科会の審議を経て、次の二つの側面から行 われた。

(1)『セラミックス系・金属系複合材料の現状と課題』および本研究開発の重要課題である『セラミックスの超塑性』の動向をマクロな視点で捉える(動向調査)。
 (2)文献調査により研究の最近の動向を捉える(文献調査)。

1.2. 方法

1)動向調査

『セラミックス系・金属系複合材料の現状と課題』については、本研究開発の総合技術委員会委員である名古屋大学 平野・長 両教授からそれぞれセラミックス系複合材料・金属系複合材料について寄稿をいただいた。また、『セラミックスの超塑性』の動向については、東京大学 佐久間教授に「研究の展望」として総説を述べていただいた。

2) 文献調査

本研究開発のセラミックス系分科会(委員長・名工試セラミックス基礎部 中野主任研究官)および 金属系分科会(委員長・名工試 金属部 西田材料工学課長)の両分科会の審議を経て表Aの論文 集ないし Journalから調査すべき論文を選択し、表B記載の名工試および再委託先研究者各位に依 頼して調査と抄録作成を行った。また調査結果はセラミックス系・金属系分科会にて報告と検討が行われ た。

表A. 調査論文掲載誌等

×	Proceedings of 5th Europian Conference on Composite Materials (1992)	:セラミックス系おび金属系
×	16th Annual Conference on Composites and Advanced Materials (1992)	:セラミックス系
×	Journal of the Ameriam Ceramic Society (1990 \sim 1992)	:セラミックス系
*	J.Mat.Sci.(1992)	:セラミックス系
*	Scripta Matallurgica et Materialia (1990 \sim 1992)	:金属系
×	Acta Metall.Mater.(1991)	:金属系

表B. 執筆者等名簿(*はセラミックス系または金属系分科会委員)

(1)複合材料の現状と課題

平野 直一 夕古屋大学丁学部広田化学科教授	セラミックス 五複合材料の現状と課題
	授金属系 特にで応加する材料の現状と課題
	- SAMPE Toront 会議に出席して-
(2)研究の展望	
佐久間健人 東京大学工学部材料学科教授	セラミックスにおける微細結晶粒超塑性
(3)-1 セラミックス糸複合材料	<u>抄録番号</u>
中野喜久男* 名古屋工業技術試験所セラミゥクス基礎部	主任研究官[A-2-1]-3
若井 史博* 名古屋工業技術試験所セラミックス基礎部	主任研究官[A-2-4]-1,[A-2-5]-4
神谷 晶 名古屋工業技術試験所セラミックス基礎部	研究員[A-2-1]-2,[A-2-2]-4
	[A-2-2]-5, [A-2-3]-2

		表B	執	筆	者	等	名 🎗	篿(約	続)	(*	はセラミ	ックスヺ	系また	は金	属升	《分科	·会委	員)		
	島田 横山	忠* ケ節	岐阜	県陶	B磁器	影試験	険場 金退	専門	門研乳	宅員									[A-2	-2]-1
	會知	へ載	政 中 岐 皇		破裂		命場	一世	丘 仄 Pi 斩										[A-2	-31-1
	佐藤	仁俊*	東海	高刻	江業	(株)	る古国	累工	 場技績	衍課	開発(泵	..				[A-2-	-1]-4.	[A-2	-1]-7
																	[A-2-	-1]-8,	[A-2-	-1]-9
																	[A-2-	-1]-10	,[A-	2-2]-2
																	[A-2-	-2]-3,	[A-2	-5]-1
																			[A-2	-5]-1
7	桜井	定人	名古	屋市	「工業	\$研3	它所会	金属	・無機	篾材	料部	総打	舌研究	員		• • • • • • •		•••••	[A-2	-1]-5
1	望月	英世*	名古	屋市	丁工業	\$研3	宅所≤	金属	・無格	幾材	料部	無机	機材料	·課長			· • · · • •	•••••	[A-2	-1]-6
-	三宅	卓志	名古	屋市	「工業	き研 3	巴所會	電子	部構	篋電	技術	果 <u>打</u>	支師 一		· · · · · ·				[A-2-	-5]-3
:	後藤	厚	川崎	重工	_業㈱	9岐	旱 技 (荷研	究所覺	元空	機研究	宅部相	溝造材	料研	咒調	K 保 員	[A-2-	-1]-1,	[A-2	-4]-2
	大橋	昭宣*	卿守	部を	 字玢	て何う	センジ	9-1	爭業音	β,	担当者	影長			• • • • • •				[A-2	-6]-1
	(2)	<u> </u>		र ंग	5 1 1	•	++ *	k:l												
	(3) ム 代	-Z. 玉 后,首☆	「周」	ポプ	Ҟ 1夜 * 北 井	「百	化化	计继续	क्ति केए	+	に立っ	2合.					[P_2.	41-1	ר_ק]	- 41- 2
		但也"		座工	- 未ひ - 坐日	く 11月 日 日 分に号	八 3 天日 土田会司	门版1	170、ロロ 151、立77 十	- 1×1	ן עון דר 10		TAUR				[D-2-	-4]-1,	[D-2· [ກ່າ	-4]-2
-	⊳ 伽 玄英	可当	石白	全山	- 来⊅ · ₩ ±!	と11月戸	八明次月 →EA日	灯(残1) こへり	成部や	イイヤ. 十世1	╜╵┶┇ ╶┙┍╩╧┋	术 11	丌 九 貝 ㅠ ゕ ᇢ				[B-2-	-1]-2,	[B-2·	-4]-3
1	角糜	问义	石白	全工	- 来ひ	て11灯戸	八駅片	灯 金ん	周部や	1 种.	┶子┇ ᅮᄴᆿ	₹ 10 11 7	开先員						[B-2·	-1]-1
	中四	膀	名古	座」	- 美切	て何言	式 颗月	り金ん	禹 部の	7科	上子前	米 1	井光貝						[B-2-	-1]-3
J	彦圾	武天*	変知	県上	-業技	と何う	マンク	9 —)	加工艺	文術	部 三	E仕t	卅 究員			• • • • • • •	[B-2-	-2]-1,	{ B−2·	-3]-3
	•							.				-					[B-2-	-5]-1		
ł	向合	. 臭 *	二重	県金	属記	、験り	易研究	光部	"] <u>]</u>	E任	研究	₹		••••	••••		[B-2-	-3]-1,	[B -2·	-3]-2
-	土肥	義治*	富山	県ユ	業投	を術り	セング	9-1	中央研	开究.	所 Ξ	E任d	开究員	• • • •			[B-2-	-3]-6,	[B-2·	-5]-2
J	唐木	道雄*	㈱不	二赵	技術	行開 3	爸部 材	才料	開発音	1 3 (主事			••••	• • • • • •		[B-2-	-3]-4,	[B-2·	-3]-5
																	[B-2-	-5]-3,	[B-2·	-5]-4
Ī	都筑	隆之	三菱	重工	業例	8名7	古屋舟	吭空	宇宙シ	ステム	製作所	斤研多	宅部加	工研	究謂	主任	•	· · · · · · · · ·	[B-2·	-2]-2
ţ	堀田	彰彦	川崎	重工	業㈱	9航2	と宇宙	宙技征	術本音	祁材:	料技術		係員		• • • • • • •				[B-2·	-3]-7
-	二宮	崇	川崎	重工	業㈱	₿航2	包宇宙	宙技征	術本音	ß	材料İ	支術言	果 係	員				· · · · · · · ·	{B-2·	-5]-5
	±. ₹⊐ D		利 厶	禾月	1+ 14	، م	 - 新わ			小司	 ∩ kk =	+1-=	ke that \							
	エロン	いたのカ	175	女月	1120		Ξ-ワ-	- i/a) (e t	ッず	い夜日	コレーミ	≥加丿							
ī	西田	差印	名古	屋工	* 業材	が行き	オ驗ӗ	所全日	軍部	**	ЖТ₫	と 課 4	Ē.							

 ロロ
 我則

 中山
 裕敏

 平
 博仁
 西田 義則 名古屋工業技術試験所金属部 材料工学課長 中山 裕敏 川崎重工業㈱岐阜技術研究所航空機研究部構造・材料研究課長 平 博仁 川崎重工業㈱航空宇宙技術本部技術材料技術課部員 佐藤 広明 三菱重工業㈱名古屋航空宇宙システム製作所研究部加工研究課

抄録番号について

A : セラミックス系複	合材料	B: 金属系初	夏合材料					
A-1-n キャラクタリゼーション,	強度/力学的特性	B-1-n : ++>>>	リモーション,強度/力学的特性					
〃2 〃 複合化プロセ	スと性質	// 2 // : 複合(とプロセスと性質					
〃3 〃 複合化プロセ	ス	〃3 〃:複合イ	ヒプロセス					
<i>" 4 "</i> 超塑性		〃4 〃:超塑性	ŧ					
〃5 〃 プロセスと超	塑性	<i>″ 5 ″</i> : プロt	こスと超塑性					
〃6 〃 その他								
番号の最終桁(n)は通し番号である								

複合材料の現状と課題 . 2

-

福合材料の現状と課題--1

セラミックス系複合材料の現状と課題

名古屋大学工学部応用化学科 教授 平野 真一

先端的なセラミックスは、高強度・高性能材料および高機能材料として高いポテンシャルを有して いる。しかし、たとえば、通常のセラミックスのぜい性が問題になっているように、モノリシックセ ラミックスの高性能化には限度があり、復合系あるいは多相系への展開が必要になっている。「復合 材料新成形技術の研究開発」プロジェクトもこの一環であり、高じん性化とより実部材に近い成形 法の開発を目指している。

セラミックスの機能発現因子

図1にセラミックスの機能発現因子を示す。これらの因子のうち、組成と構造の因子は、物質その ものを規定するものである。しかしながら、多結晶セラミックスの機能を制御するには、粒径とその 分布、粒子の配向、気孔径とその分布、気孔の配向、粒界、表面などの微構造の制御が必須となる。 さらに、使用するに際しては、用途にあった材料の形態(形状)が重要な因子となる。

図1 セラミックスの機能発現因子

相が互いに分布する様式に基づいて複合材料を分類すると表1のようになる。セラミックスにおけ る組織の複合化や機能の複合化は、機械的・熱的特性の向上や電磁気的・光学的機能の向上を目指し

表1 複合構造の種類

相の分布状態	構造	例
0 次 元	分散構造	粒子分散複合材料
一次元	繊維構造	繊維配向複合材料
二次元	層状構造	積層複合材料、相間複合材料
三次元	網目構造、モザイク構造 多結晶体構造	多結晶焼結体、ウイスカ分散複合材料 三次元網繊維複合材料

た新材料開発において重要な課題になってきている。原子・分子レベルでの無機質材料を複合化し、 既存無機材料のそれとは異なる結合状態にすることによって、性能をより高度化するか、または全く 新しい機能を発現させるナノメーターレベルの複合(ナノコンポジット)化は、近い将来、新素材の 重要な位置を占めるであろう。

材料プロセンシグ

望むような材料の機能を発現させるには、材料のプロセシングの重要さをよく認識することが必要 となる。セラミックスの高じん化法の一つであるセラミックス長繊維またはウイスカのセラミック基 への複合化効果は、まさにプロセシングの成否に強く依存しており、性能の改善とともにコストパフ ォーマンスが要求されている。

セラミックス粒子またはセラミック基材料の微構造を制御したセラミック基複合材料を創製するた めの方法を表2に示す。従来からよく行われている方法に、調整したセラミック粉末どうし、または セラミック粉末とセラミック繊維あるいはウイスカの混合物を成形・焼結して複合材料を製造する方 法がある。表における固相間の焼結による複合化である。

相	プロセス
液 相 (溶液、融液)	ゾルーゲル法、水熱法、共沈法 含侵法、溶射法 Lanxide法
	分相法 表面コーティング法 インターカレーション法
気相	CVD法、CVI法 含侵法、積層法
	スパッタリング法、MAE法、イオンビーム法 イオン注入法
固相	混合焼結法 積層法 部分結晶化法
	粒界拡散法 メカノケミカル法 分相法

表2 セラミック複合材料のプロセンシグ

第二相となるべき固体粒子あるいはフィラーをゾル系中に分散させれば、ゲル化の際に、第二相が 高分散化した、または三次元的に気孔が分布したセラミック基複合材料を合成することができる。こ のような材料としては、結晶性セラミック粒子分散非晶質(ガラス)セラミック複合材料、金属分散 セラミック基複合材料、セラミックーセラミック複合材料や、三次元連続気孔中に有機モノマーを含 侵し、そのモノマーを重合することによって得られる有機高分子-セラミック複合材料がある。

金属溶湯を酸化して、金属分散セラミック基複合材料が商品名 Lanxideとして開発されているが、 これは大型の高じん性材料として注目されている。 水熱処理法を用いると、層間化合物やイオン交換化合物のように、固体内でイオンを分子レベルで 効果的に置換したり析出させたりするホストーゲスト的セラミック基複合材料を合成することができ る。液相からセラミック粒子を共沈させる方法は、異質な無機物質相の複合化に有効であり、適切な 触媒作用を発現させたり、粒子中または共晶内で性質を組み合わせることによって、新しい物質を創 製する場合にも利用されている。

多相系セラミック複合材料の微構造の制御には、不混和液相中における微視的レベルでの分相を利 用することができる。

表面処理を含むコーティングは、機械的・光学的・電気的・磁気的・化学的諸機能を複合化するために重要な手段である。コーティング膜の合成法としては、化学的ゾルーゲル法、熱分解法、化学気相析出(VD)法、スパッタリング法、分子線エピタキシー(MBE)法などがある。これらの方法は、現在では、材料の正面修飾のみではなく、ハイプブリッドICのマイクロエンジニアリングに不可欠となっている。

構造用セラミック複合材料

セラミックスは優れた機械的・熱的特性、耐食性を有しているために、構造用材料として重要な位 置を占めている。しかし、優れた性質を有するセラミックスも、一方では、改善されなければならな い課題が残されている。セラミックスは、自由電子が関与する金属結合とは異なり、イオン結合ある いは方向性の強い共有結合から構成されている。セラミックスが高硬度,高融点、高い高温強度、大 きい弾性率、高い化学的安定性などの特徴を示すのは、この化学結合に由来している。しかし、一方 この結合と結晶構造ゆえに、転位の移動度が低く、すべり系が少なく、かつ、き裂の生成・成長エネ ルギーが小さいことによるもろさが問題となっている。

高信頼性構造用セラミックスの開発過程は、まさに、欠陥や傷を最小にするプロセシングの改善と セラミックスの特性を失うこと、もろさを克服すること、すなわち、じん性を改善することの歴史で あるといってよい。セラミックスの耐破壊じん性の基準となる臨界応力拡大係数(K_{1c})は、次式で示 される。

 $K_{1c} = \sqrt{2E\gamma} = \sigma_f \cdot Y \sqrt{c}$

ここで、E はヤング率、γは破壊エネルキー、σ, は破壊強度、Y はき裂形状因子、c はき裂の長さ。 従って、高強度で高い信頼性の有するセラミックスを開発するためには、 K_{1e}を大きく、き裂の長 さC と分布を小さくすることが必要である。ヤング率E は物理定数であり、一般に構造に敏感な因子 ではない。き裂の長さC は、製造プロセスに強く依存する。γ は種々な型のエネルギー吸収機構によ って改善することが可能であり、高強度・高じん性化には、破壊源となるき裂の長さを大きくするこ となく、破壊エネルギーγをいかに増大させるかにかかっている。

破壊エネルギーγの増大、すなわち高じん性化のための複合法には次の方法がある。

- ① き裂先端における応力誘起相転移を利用する方法(Zr0₂の正方晶→単斜晶への相転移)
- ② き裂先端と分散相との相互作用によって、き裂のピンニングやき裂のわん曲・偏向を起こさ せる方法(板状粒子やウイスカの分散)
- ③ き裂先端近傍のプロセスゾーンでの圧縮応力や微小き裂の発生、ウイスカや繊維の引抜きに よるき裂先端の応力集中を緩和させる方法(ウイスカ、連続繊維分散強化)
- ④ 展延性を有する第二相との複合によるき裂の成長抑止法(金属分散、サーメット)
- ⑤ 微構造の改質と第二相の分散制御法

粒子分散型複合材料は、Garvie や Clausssen らによって、正法晶系ZrOzを室温で準安定に保持した部分安定化ジルコニアが高いじん性を持つことが発表されて以来、ZrOz粒子分散セラミゥクス基複合材

料の開発が盛んに行われている。Y₂O₃を 2~4 mol%固溶した正法晶系ZrO₂を分散させた ZrO₂/ZrO₂複 合材料では、破壊強度(σ ,)が 1,000MPa 以上で、破壊じん性値(K_{1c})も 10 MPa・m^{1/2}以上の高 強度・高じん性化が図られるようになっている。このZrO₂分散複合化はムライト基、 Si₃N₄基複合材 料にも適用され、ムライトでは K_{1c}約 5MPa・m^{1/2}、 σ ,約 500MPa と単体焼結体の約2 倍の特性向 上となっている。 Si₃N₄基複合材料では、 K_{1c}約 7MPa・m^{1/2}、 σ ,約 900MPa と単体に比べて約4 割程度の特性向上が見られている。

このような複合材料には、ZrO₂相転移を利用しているために、高じん性化はZrO₂の正方晶と単斜晶 の相転移温度以下においてのみ有効であこと、また 200~300℃付近で、特に水分が存在する条件下 での劣化が問題になっている。セラミックマトリックス中に異質粒子または同質異方性粒子を分散さ せることによっても、高強度・高じん性化が図られている。

セラミックス間を結合する金属を複合化した材料は、サーメット(Cermet)と呼ばれ、WC基、TiC基 サーメットなどの複合材料が実用化されている。また、セラミック粒子分散型としては、約2 μ mの SiC粒子を10mol%複合した SiC/Al₂0₃複合材料で,K₁cは約 4.5MPa・m^{1/2}、 σ ,は約 500MPa までに 改善されている。 この破壊じん性値の向上は SiC分散粒子による微小き裂の偏向と SiCと Al₂0₃ の熱膨張差による微小き裂によるものと考えられている。 同様の結果が,Al₂0₃を分散した Al₂0₃/ Si₃N,複合材料,SiC/TiB₂複合材料においても得られている。

最近、焼結体中の微構造の制御によって高じん性化を達成しようとする試みも多くなされている。 板状の Al₂O₃粒子が分散した Al₂O₃/Al₂O₃複合材料では、均質な Al₂O₃焼結体に比べて K_{1c}が 50%以 上も改善されること、また柱状に成長した Si₃N₄粒子からなる焼結体では K_{1c}が約2倍にも向上する ことが知られている。

セラミック繊維やウイスカによる高じん性化は、亀裂の偏向や引抜きによる破壊エネルギーの増加 が重要な因子となる。それゆえ、複合材料の特性はマトリックスとの界面の性質に強く依存する。す なわち、繊維やウイスカ表面のコーティングによる界面における結合と摩擦力の制御が重要となる。 以前からよく知られている炭素繊維/炭素複合材料に加えて、最近、炭素長繊維で強化した、炭素繊 維/窒化ケイ素、炭素繊維/ムライト複合材料において、単体のじん性値のそれぞれ 4.7倍、6.9倍 までに破壊じん性値が向上し、また同時に、破壊エネルギーも向上した複合材料が開発されている。 この材料の破面では、繊維の引抜きと、ブリッジングの効果が観察されている*。

将来の展望

材料の使用環境はますます厳しくなっており、さらに、単に省エネルギーからのみではなく環境保 全の観点からも、信頼性の高い高強度・高じん性材料の開発が望まれている。ZrO₂の相転移を利用し た高じん性化は、転移温度以下の温度領域で特に有効であり、粒子分散、ウイスカや長繊維による高 温領域での機械的性質の向上に関する研究が盛んになっている。特に、ウイスカや長繊維との複合系 では、定法による焼結では緻密化が困難であり、ホットプレスやHIP(熱間水圧焼結)法を適用する場 合が多い。適切な強化材料とマトリックスの組合せの選択とともに、所望の特性を出すためのプロセ シングの開発が今後の実用化の鍵となろう。より実部材に近い成形を可能とする成形技術の開発も重 要な課題である。また、このような複合材料の評価法および強化機構についてのより進んだ研究が期 待されている。

*岩田美左男 : 粉体粉末冶金協会講演概要集, p.171(1990)

複合材料の現状と課題-2

金属系、特にアルミニウム複合材料の

現状と課題

— SAMPE Toront 会議に出席して —

名古屋大学工学部材料プロセス工学科 教授 長 隆郎

金属基複合材料、なかでもアルミニウム複合材料は軽量化という観点において重要視されているに もかかわらず、工業材料としての需要において伸び悩んでいる。これは製造コストあるいは材料特性 などにいくつか課題を抱えていることによると思われる。

ここにおいて、一つの国際会議、しかも複合材料を中心としない一般的な金属関係の国際会議に出 席したからといって、直ちにそれらの課題に対処できるような情報が得られるとは思われないが、少 しでも何かのお役に立てば幸いと考え、本稿を記すことにした。

現状と展望

金属基複合材料の現状と課題について正しく評価してまとめることなど到底できることではなく、 また間違った判断をくだす恐れもあるが、これまでの印象を含めて述べてみたい。

金属基複合材料の研究が盛んになった発端としては、改めて言うまでもなく、分析用試薬作成中に 偶然見い出された粒子分散強化型アルミニウム複合材料SAPの発見であり、また、その後の発展は 強度特性に優れたアルミナ、炭素、炭化珪素あるいはホウ素などのの長繊維、短繊維、ウイスカの開 発に負うところが大きい。

一般に、セラミック/アルミニウム間においては濡れ性が悪く、単純なプロセスによってアルミニ ウム複合材料を作成することは難しく、また、濡れが開始されるや、界面反応によって強化材が劣化 するやっかいな問題がある。そのため、長繊維の場合には、そのような界面反応を抑制し、かつ濡れ 性を改善するために強化繊維表面の改質がいくつか試みられ、一応の成果があげられている。

また、悪い濡れ性を克服するために、半凝固金属を攪拌して、セラミックス粒子あるいはウイスカを 強制的・物理的に混合させるコンポ・キャスティング法、粉末どうしを攪拌後、成形・圧縮・焼結す る粉末冶金法、さらには最も多く採用されている方法としてプリフォーム中に溶融金属を圧入するス クイズ・キャスティング法などが用いられてきた。また、これらの方法によって作成された複合材料 については、優れた特性、結果が多く報告されている。しかしながら、金属基複合材料をコスト面か ら見ると、他の競合材料に勝つことが難しく、プラスチックス系複合材料に押され、使用するとして も、部品のごく一部に限られている。

一方、コストあるいは簡便さを考えたとき、溶湯攪拌法が最適であるが、ここでは分散粒子直径あ るいは配合率に制約を受ける。

また、材料特性については、理想的条件下で作成された複合材料について強度特性を測定し、これ に基づいて強度モデルを構築する研究、あるいは電気的特性、熱膨張や熱伝導など物理的特性の評価 もなされている。このほか、複合材料の破壊過程についても破面観察をとおした解析、あるいは最近 では複合化による超塑性発現が注目されている。

ここで、いくつかの課題を見いだすとすれば、以下のようになると考えられる。

- ① コスト低減のための新しい強化材および製造プロセスの開発 特に、ウイスカ強化型あるい は粒子分散強化複合材料について
- ② 界面強度の定量化方法の確立 材料特性に対する界面強度の影響を明確化するため。
- ③ 優れた特性発現に必要な強化材/マトリックス界面強度の制御 各種複合材料のそれぞれに ついて最適な界面を作成するため
- ④ 複合材料の変形プロセスあるいは荷重負荷時のマトリックス、強化材および界面の役割および それらの挙動解析

- ⑤ 各種複合材料の諸環境下における特性および界面現象の変化の測定と解析 高温下、極低温 下、各種溶液内、各種雰囲気下、高圧力下など
- ⑥ 各種複合材料設計のための最適強度モデルの構築

⑦ 複合材料からの強化材分離技術の確立 --- リサイクルのため

SAMPE Toront会議に出席して

1992年10月20~22日、カナダのトロント市、オンタリオ湖畔に聳え立つ36階建(最上階はレストラン)のホテル、Westin Harbour Castle Hotel の会議場において 3rd International SAMPE Metals and Metals Processing Conference および 24th International SAMPE Technical Conference が開催された。10月19日に成田を出発し、途中デトロイトにて乗り換えた後、トロント・パールソン空港に着いた。トロントへの機内放送から、ただ今の現地(夏時間の午後6時頃)の気温1℃と聞いて日本との温度差に驚きながらの到着であった。

翌日の20日、8:00から総会があり、これに続いて Plenary Sessionが開始された。幾つかの講演の なかで、Prof.Ignas Verpoest (Katholieke Univ.,ベルギー)の講演が興味深く、ヨーロッパにおけ る大学での研究状況が紹介された。それによれば、工業材料としての需給状況を反映してか、複合材 料の研究はプラスチックス系のものが圧倒的に多く、金属基は少ない。また、この金属基においても 材料特性あるいはマイクロ・メカニクスに関するものが大部分を占め、プロセスに関するものはさら に少なくなる。また、ヨーロッパとはいえ、研究の大部分をイギリスでなされ、フランスあるいはド イツでの研究は極く僅かとのことであった。この他、最近は会社における研究が増加傾向にあること も述べられた。

20日午後からは 3rd International SAMPE Metals and Metals Processing Conferenceに出席した。 会議は3会場に分かれて開かれ、全講演数59件のうち、複合材料関係は9件であり、日本からは私ど もの2件と浅沼助教授(千葉大)による1件とさびしいものであった。

これらの講演から将来への展望あるいは課題に対する適切なヒントなど得られるものではないが、 複合材料の摩擦圧接に関するものを除いて、講演順に内容に触れてみたい。

21日午後、Advances in Forming and Thermomechanical Processing - IIの Sessionが開かれ、そ こにおいて金武ら[1](名大)が、SiC粒子/6061 アルミニウム復合材料の加工前後における機械的 特性と熱処理の関係について講演した。それによれば、マトリックス材の強度は300°Cでの加工に よってほとんど変わらないが、復合材料の強度は加工によって低下した。ただし、この加工後の復合 材料に更に室温加工を加えると加工以前の強度に回復した。また、T6処理の影響を見ると、マトリ ックス材に関しては、加工の有無、加工方法による強度の差異は見られないが、復合材料では、T6 処理が加工前ならば強度は上昇するが、加工後は強度が低下した。これは加工に伴う粒子/マトリッ クス界面の剝離によるものである。この講演に対して、復合材料の強度・破壊関係の専門家である王 教授(トロント大)が幾つか質問された。これが縁となり、私ども3名は23日にトロント大の研究室 を見学することができた。また、ついでにセラミックス/メタル界面現象の専門家であり、日本にお けるこの分野の研究者が多数訪問する同大学のToguri教授に挨拶することができた。

22日午後から、Synthesis of Metal Matrix Composites for Cost-Effective Use の Session が 開始された。まず最初に、Y.H.Tengら[2](Queen's Univ.,カナダ) は Al/SiC 粒子分散粒子複合材料 の破壊挙動に及ぼす界面の影響について報告した。この研究では、粒子直径 5~15μm の SiCおよび 20~100µmのアルミニウム粒子を混合してプリフォームを作製し、溶湯浸透法によって体積配合率 Vf=10~55%の複合材料を作製した。但し、一部のSiC粒子にはゾル・ゲル法によって厚さ50~100 µmのアルミナ被覆を行っている。これらの試料について引張試験を行うとともに、破面を観察し、 合計1000個の粒子についてそれぞれ破壊粒子あるいは界面剝離粒子の判別を行った。それによれば、 アルミナ被覆のないSiC粒子の場合には、破面はディンプル状であり、多くの破壊粒子が観察され、 またマトリックスには界面反応に伴うSiおよびAl.C.が認められた。また、この場合には、反応に伴 って界面強度が上昇し、これによって引張強度も向上する結果を得ている。一方、アルミナ被覆の SiCを用いた場合には、界面反応が抑制されて界面強度が低下し、多数の界面剝離粒子が見られ、低 い引張強度となった。このほか、硬度測定結果を用いたモデル計算を行い、界面強度を推算した。

次いで、 T.F.Stephenson ら[3] (Inco:カナダ)は、ニッケル被覆した炭素繊維を用い、溶湯鍛造 法によって復合材料を作製した。Vf=3~5%のこの復合材料はマトリックス材あるいは SiC粒子/A356 復合材料(Vf=20%)よりも耐磨耗性において優れていることを示した。これは、被覆ニッケル/アルミ ニウム間反応によって形成された Ni-Al系金属間化合物粒子がマトリックス中に分散していることに よると述べた。

また、G.Huard ら[4](Laval Univ.,カナダ)は、メカニカルアロイング法によって SiC粒子/Mg 系 復合材料(MA材)を作製し、降伏強度、引張強度さらには伸びにおいて、いずれもMA材が優れている ことを示した。ただし、衝撃値は両者間に差がなく、SiCの配合率上昇とともに低下した。

さらに、浅沼ら[5](千葉大)は、アルミニウム溶湯内において初期チタン濃度を 1mass% 以下とし、 また冷却速度を 0.3° k/s と低下させた条件下において、繊維状Al,Tiをin situ生成させ、これら をステンレス網によって坩堝下に濃縮してVfを高め、in situ Al,Ti/アルミニウム複合材料を作製し た。その結果、この復合材料の耐磨耗性は同じ体積配合率の SiC Whisker/アルミニウム複合材料よ りも優れていることを明らかにした。

W.F.Caley ら[6](Nova Scotia Technical Univ.,カナダ) は、人工的な SiCは高価であるというこ とから、天然の Wollastonite (CaSiO,, 50%が粒子であり、残る50%が繊維状) を用い、Reocast 法 によって Al-Zn合金(8~20%Zn)への復合化を試み、界面反応あるいは強化材混入挙動を測定した。

また、小橋ら[7](名大)は、Al₁の,よりも酸化物標準生成自由エネルギーの大きい酸化物,CuO, ZnO,SnO₂,Cr₂O,粒子を溶融アルミニウム中に添加・攪拌し、微細 Al₂O,粒子を in situ 生成させ ることを試みた。それによれば、CuO を用いた場合には、純Al系では 1 μ m 以下の Al₂O₃、また Al-3%Mg系では Al₂O₃.MgOなる酸化物粒子の生成を確認できた。さらに、ZnO およびSnO₂粒子を Al-3%Mg 系に添加した場合にも酸化物生成を確認できた。ただし,Cr₂O₃粒子添加では in situ生成粒子を見い だすことができなかった。また in situ生成粒子の大きさは温度上昇によって大きくなり、粒子形態 にも影響することを示した。

最終日、22日午後から Advances in Powder Metallurgy Processing – Intermetallics, MMC's and Net Shape Processingの sessionが開かれた。そこにおいて、Y.Wuら[8](California Univ., ア メリカ) は窒素によってアトマイズし Al-Si合金(4,12%Si) 中にTiB₂(5 μ m)あるいは SiC粒子(7.4 μ m)を噴射する Spray法により複合材料を作製した結果を報告した。 Al-4%Si/TiB₂ 系(Vf=13.2%)で は、降伏点および引張強度は複合化によって低下し、僅かな変形によっても界面剝離が生ずることを 確認している。一方 Al-12%Si/TiB₂系(Vf=17.3%)では、降伏点および引張強度はともに複合化によっ て上昇し、破面においては界面剝離ではなく、多くの SiC粒子の破壊を観測している。

以上の内容を前述の課題に対応してみよう。

まず、コストを念頭に置くとともに、さらに高強度あるいは高耐磨耗性を有する複合材料を製造す

るために、新しい研究に取り組んだ研究がある。それは、浅沼らのように in situ生成物を繊維状に 成長させるプロセスであり、また小橋らのように粒子添加法では困難な微細粒子を in situ反応によ って生成して分散するものである。また、ニッケル被覆した炭素繊維によって複合材料をし作製した 場合にも、マトリックスは Ni-Al系金属間化合物が分散して、耐磨耗性を向上しているが、これは、 菅沼ら(鉄と鋼、75(1989), 1790) によって開発された(ALSILON 繊維+in situ NiAlO₃)で強化し た複合材料に通ずるものである。また、コスト低減という観点に立ち、天然鉱石を使用する発想も重 要であり、Near Net Shape ということでは、Spray 法も有望である。いずれも、プロセスの簡素化 あるいはコストの低減に向かっていると思われ、前述の課題①に対応するものであろうか。

また、複合材料の利用にとって、材料の加工性が重要であることは言うまでもない。この観点から すれば、複合材料加工に伴う特性変化,さらには熱処理の効果を示した金武らの研究は、課題④に対 応するものである。

破面観察結果に基づいて、アルミナ被覆 SiCあるいはTiB₂粒子を分散した複合材料では、界面強度 が弱いため、これに起因して引張強度が低下する結果を示した Teng ら、あるいは Wu らの研究は、 課題②、③さらには④にまで迫ろうとするものである。これらの研究はいずれも注目される。

カナダからの帰路、アメリカに立ち寄り、MIT の J.A.Cornie 教授および Drexel大学の M.J.Kockzak教授の研究室を訪問し、多くの知見をうることができた。このなかで、研究目的の一部 においてKockzak教授の考え方と一致したことが印象的であった。 そこでの議論とは、「高強度を 得るためには、いかにして微細粒子をマトリックスない分散するか、それには in situ 生成粒子分 散法に可能性を秘められているが、その粒子の成長を如何にして微細なまま抑止するかが問題であ る」であった。

なお、複合材料に関係ないが、会議終了翌日23日早朝(午前4時頃と思う。)ホテルの火災報知機 が鳴り、停電はしないが、防火扉が閉じ、エレベーターは停止した。そのため、宿泊していた35階か ら地上まで非常階段を使って時間をかけて降りる羽目になった。梯子車も届きそうない35階に宿泊し ていたことが裏目かと一瞬思ったが、本格的な火災でなく胸をなでおろした。

このとき、35階からの眺めよりも、低い階での安全性をとることが良いのか、複合材料においても 高配合率/高機能性を追求するよりも、低配合率において高機能の発揮させることが、コスト低減へ の狙いを含めて肝腎なことかと考えさせられた。

引用文献

Proceeding of 3rd International SAMPE Metals and Metals Processing Conference/Advances in Synthesis and Processes (October 20-22, 1992, Toront, Canada)

- [1] N.Kanehara and T.Choh : Mechanical Properties of Forged SiC/6061 Aluminum Metal Matrix Composite, PP.M414~M423.
- [2] T.H.Teng, et al : Interface Effects in Fracture of Al-SiC Particulate Composites, PP.M546~M554.
- [3] T.F.Stephenson, et al : Nikel-Coated Carbon Fiber Preforms for Metal Matrix Composites, PP.M560~M568.
- [4] G.Hurd, et al : Tensile and Impact Properties of Mechnically Alloyed SiC/Mg Composites, PP.M569~M580.
- [5] Hiroshi Asanuma, et al : Fabrication of In Situ Ti₃Al/Al Composite, PP.M581~M587.
- [6] W.F.Caley, et al : Natural Minerals as Secondary Reinforcing Agents in Metal Matrix Composites, PP. M588~M599.
- [7] M.Kobashi and T.Choh : In-Situ Formation of Oxide Particles in Metal Matrix Composite, PP. M600~M610.
- [8] Yue Wu, et al : Synthesis of Al-Si Metal Matrix Composites Using Spray Atomization and Co-deposition, M692~M704.

3.研究の展望

•

研究の展望

セラミックスにおける微細結晶粒超塑性

東京大学工学部材料学科 教授 佐久間 健人

セラミックスにおける微細結晶粒超塑性の特徴を簡明にレビューする。超塑性変形は結晶粒径が1 μm 以下のセラミックスで実現する。高温変形中の結晶粒径の安定性は超塑性の最も重要な因子の一 つである。微細結晶粒超塑性に関する金属とセラミックスと相違点を代表的データを基に述べる。

セラミックスの微細結晶粒超塑性の発見

『超塑性』という用語は引張応力によって大きな伸び-セラミックス材料の場合には100%以上-を 示す材料に対して用いられる。 セラミックスの超塑性は二つのタイプに大別される。その一つは転 移超塑性であり、材料の相転移温度を上下する温度サイクルによって起こる。他の一つは、ある一定 温度において起こる構造超塑性である。

若井とその共同研究者(1) は、粒径0.3 µm のTZPにおいて、一定温度で 100% 以上の伸びが生 ずることを最初に報告した。それ以来、様々なセラミックスの超塑性および超塑性変形について広範 な研究が進められている。セラミックスの超塑性は、多くは粒径約 1µm 以下の微細粒試料について の報告であり、このタイプの超塑性はしばしば微細結晶粒超塑性と呼ばれる。研究の進歩については 既刊レビューに纏められている(2-6)。本論文は超塑性変形中の微構造の安定性を重点を置き、セラ ミックスの微細結晶粒超塑性について述べる。

微細結晶粒超塑性の特性上の特徴

セラミックスの微細結晶粒超塑性の特性は、表1 に示すように、金属とは異なる。最も興味ある事 実の一つは、今まで報告されている伸びの最大値である。金属材料の場合、アルミプロンズで5500% (7) であるが、セラミックスの場合の最大値はY-TZPの800%である(8)。セラミックスの最大値は 金属に比べて一桁小さい。然しながら 800% という値はセラミックスのような脆性材料では極めて大 きい値である。セラミックスの微細結晶粒超塑性を生ずる臨界結晶粒径は約 1μm であり、金属の場 合より約一桁小さい。種々の結晶粒径のTZPの応力・歪曲線を示す図1を見れば超塑性変形挙動に及 ぼす結晶粒径の影響がよくわかる(9) 。 結晶粒が大きくなると変形応力は増加する。結晶粒が大き くなればなるほど空洞やクラックがTZPに生じ易くなり、結晶粒径1.83μm のTZPでは、圧縮試 験においてすら、10% 以下の歪みで破壊した。このように、結晶粒径は、高温においてセラミックス 材料の空洞生成と破壊を支配する最も重要な要素の一つである。

金属材料は、高温引張試験中に、しばしば、応力集中によってネック部分に生ずる局部的変形により破壊する。引張応力下での延性はネックの成長により制約される。ネック部分が充分に歪み硬化しネックの成長が抑制されれば、大きな伸びを期待できる。このような局部的歪硬化は、歪速度感受性指数mの高い材料に生ずる(10)。金属材料ではm = 0.5 であることが超塑性発現の条件である。セラミックスの場合も m=0.5 またはそれ以上が超塑性の必要条件ではあるが、それのみでは不十分である。この点については後述する。

超塑性金属の高温変形について、応力・歪み速度の関係を両対数プロットすると、三っの領域に分かれる(6)。超塑性は歪み速度が中間の領域でおこる、この領域では、m値は約 0.5の最大値を取る。 応力の対数値と歪速度の対数値の関係は、超塑性セラミックスにおいては通常、直線で表わされる。 図2 はTZPの例である(11)。log σ と log ε の関係は、1200℃から1500℃の範囲の全ての温度で直 線関係となる。直線の勾配は温度によって若干異なる。全ての超塑性セラミックスで、歪速度感受 性 — logσ vs logε関係図の勾配に対応 — は凡そ 0.5の値をとる。金属に比べ、セラミックス では歪み速度の中間領域が広くなることが判る。

変形のパラメーター

粒界辷りがセラミック材料の超塑性変形の中心的な役割を担うことは一般的に認められている。何 故ならば、変形中に結晶粒形は殆ど変化しない(2)。然しながら、信頼できる拡散データーが不足し ているため、様々な微細結晶粒セラミックスの超塑性変形の律速機構を、実験により得られた変形パ ラメーターを基に論理的に演繹することは容易ではない。

通常、次の速度式が、歪速度をが一定の場合の高温応力のの解析に適用されている。

ŧ	$= A - \frac{\sigma}{\exp} ($)	(1)	
-	d"	RT	,	
	A:Proportional	constant,	d:Grain size	
n:Stress exponent		p:Grain size	exponent	
	Q:Activation en	ergy		

歪 速 度 感 受 性

超塑性を示すTZPの歪速度感受性 m値は殆どが 0.33~0.50の範囲に入る。これは $n = 2 \sim 3$ に 相当する。TZPのm値の違いを説明するため様々な試みがなされている。 LangdonはTZPの純度 のせいだと主張している(4)。 彼の $\log \sigma$ vs $\log \varepsilon$ プロットによると、低純度TZPではn値は 2、高純度では3となる。低純度~高純度間に存在するこのようなn値の差は結晶粒界のガラス相の 存在により生じている可能性がある(4)。とは言え、材料の純度は与えられておらず、どのようなタ イプの不純物がn値の変化の原因になるかを示すことはできていない。

超塑性変形を解析する場合、粒界のガラス相存在の有無はしばしば議論されてきた。不純物の影響 を検討するには、高純度TZPと結晶粒界にガラス相を含むTZP —— 高純度TZPとは高分解能 電顕観察によっても粒界ガラス相が検出されないものを指す —— のデータを比較することが有効で ある。2つのグループのm値データが図3にプロットされている。その一つは Cuo添加TZPについ てHwang,Chenが得たデータ、他の一つは高純度TZPおよび異なる3種の粒界ガラス相を含むてTZ Pについて著者のグループが確認したデータである(11)。 Cuo添加TZPについてHwang,Chenが得 たデータは1130℃ — Zr0,-Cuo系の共晶温度 — 近傍で急変している。この急変はm値ばかりでなく、 活性化エネルギーと粒径指数の場合にも見られる。彼らは、この急変は変形律速機構の変化に起因す ること、即ち、超塑性変形は融点以下の温度で拡散に支配され、融点以上では界面反応に支配される、 と主張している。このデータは超塑性変形に与える粒界ガラス相の重要性を直接的に差し示す証拠で あると想像することもできる。 しかしながら、結論に先立ち次の諸点を明らかにしておかなければ ならない。

粘度の低い粒界ガラス相が存在しないTΖΡは、約1200℃以下で超塑性変形を起こさない。TΖΡ の変形挙動は、この温度の上下で非常に異る。TΖΡでは僅かな歪硬化を伴う安定的変形は1200℃以 上において生じ、1200℃以下では、応力・歪曲線に、初期の歪硬化が大きく、且つ僅かの歪みで破壊 するという特徴がある(11)。歪硬化が生ずるとm値は常に大となる。著者は、この効果は Huwang 及 びChenの研究結果に含まれているものと考えている。

図3 に示した結果は高純度TZPおよび珪酸アルミニウムガラス(ガラス 1)、珪酸リチウム・ア ルミニウムガラス(ガラス 2)、珪酸リチウムガラス(ガラス 3)に関する著者のデータである(11)。 高分解能電顕観察によると、高純度TZPには粒界ガラスは存在せず、ガラス添加のTZPの粒界 には厚さ1 nmのガラス相が観察された。全ての温度で、高純度TZPのm値はガラスを添加したTZP よりも小さい。この事実は、Langdon の解析結果と定性的に一致している。然し、高純度TZPのm 値は平均0.45であり、かなり (0.33以上) 大きい。これは、歪速度を変化させた試験により得たm値 は、log σ vs log ε プロットから得られた値より若干大きいからである。ガラス相を含むTZPの m値は、m値 0.50 ~0.65の高純度TZPより大きい。これらの値は 2よりも僅かに小さいn値に対 応している。

活性化エネルギー

TZPの超塑性変形の活性化エネルギーは 480~560kJ/mol である(4)。今まで、この活性化エネ ルギーは粒界拡散の活性化エネルギーよりかなり大きく、格子拡散の活性化エネルギーに比べれば若 干大きい、と論議されてきた。 これまで、この論議は超塑性変形の活性化エネルギーを立方晶ZrO₂ (C-ZrO₂)の陽イオン格子拡散あるいは粒界拡散の活性化エネルギー~それぞれ 337kJ/mol,255kJ/mol と報告されている~との比較を基に行われてきたが、最近正方晶CeO₂-ZrO₂-HfO₂多結晶固溶体の拡散 データは活性化エネルギー,623kJ/molを与えている。 この最新データから判断すると、TZPの超 塑性変形の律速機構は粒界辷りのみか若しくは粒界辷りの緩和過程を考えることにより無理なく説明 される。

ここで、A1,0,-ZrO,複合体の超塑性変形の活性化エネルギーについて述べたい。この材料の活性化 エネルギーは図4 に示したようにZr0,含有量により変わる(15-17) 。図4 にはZr0,含有量の関数とし てm値もプロットしてある。 著者等の図4の結果は、初期結晶粒径約0.75µm と殆ど同一粒径の試 料から得たものである(16,17)。若井は Al 203-rich とZrO2-rich の複合体では活性化エネルギーが 異なり、50vol%近傍に敷居が存在すると主張している(15)。彼の結果は球形の分散物を含む複合体に 対するレオロジーモデルにより説明されている(18)。その解析によれば、活性化エネルギー値は硬質 相、マトリックス相あるいは分散相の何れが硬質相であるかによって決まる。 著者のグループは、 最近この複合体では 50vol% 近傍で活性化エネルギー値は急変せず、ZrO2含有量の増加とともに徐々 に低下すると報告している(16,17)。 結晶粒径の変化を無視することができ、(1)式のパラメーター Aは温度と独立的ならば、結果として活性化エネルギーは一定歪速度における変形応力の温度依存性 を示すことになる、即ち、活性化エネルギーの値が大きいほど温度による変形応力の変化が大きくな ることに注目しなくてはならない。 この状況は、Zr01-Al20, 複合材料の 10%変形応力と温度との 関係をがプロットされた図5のように、ZrO₂-Al₂O₃複合材料において満足されていると考えられる (16,17)。 何れの温度においても、Zr0,含有量の減少に伴い変形応力は減少している。Zr0,含有量 の低い材料ほど、変形応力の温度依存性はより大きくなり、対応する活性化エネルギーは増大に向か う。この複合材料でのZr0,含有量の増加にともなう活性化エネルギーの変化は、粒界辷り抵抗の相違 から生ずる。活性化エネルギー値は、他の複合材料の焼結の活性化エネルギー 700kJ/molとかなり良 く一致していることは興味深い。焼結プロセスが粒界拡散に支配されること(19)を考えると超塑性変 形において観測された活性化エネルギー値は粒界辷りから期待される活性化エネルギー値と矛盾しな い。

結晶粒径指数

粒径指数 pは、時として高温塑性変形の律速機構の識別に用いられる。定常クリープに対する体積 拡散支配モデルは p=2(20)、粒界拡散支配モデルは, p=3(21)としている。 p値の実験データは 単純なTZPにおいてすら 1.5から 3.0の範囲にばらついている。Langdon は、p値が様々である理 由は推定方法が不適当なためと主張し、活性化エネルギーとn値が一定のTZPについてデータを再 プロットし、3.0 を得ている。この結果も律速機構としての粒界拡散に基づく値である。p値の解析 には適切な方法が取られるべきである。更に、高温変形中の結晶粒径変化も考慮すべきである。変形 中の粒径変化は通常無視されているが、高温変形応力は粒径に大きく依存するので、粒成長を無視す れば不正確な結論に到るであろう。高温変形中の粒成長の加速については後述する。

引張り延性に影響する因子

前にも述べたように、粒径約1µm以下のセラミックスにおいて微細結晶粒超塑性が実現する。粒径が大きくなると変形応力は際立って増加し、そのため延性が制約される。図1はTZPの応力・歪み挙動に及ぼす粒径の影響の典型的な例である。粒界の交わる部分での空洞の発生が変形応力の増加により加速されて、セラミックスの粒界に空洞が発生する。 微細粒径のセラミックスにおいても、空洞は優先的に粗粒の結晶粒界に発生することが認められている(22,23)。超塑性セラミックスはしばしば空洞が引張応力方向に対し直角方向に結合して破壊する(24)ので、粗粒のセラミックスの伸びは限られる。

セラミックスの引張り伸びは、初期粒径と直接むすびついていないことを指摘しておかねばならな い。即ち、高温変形中の粒晶粒成長により制約を受ける。結晶粒成長は変形により加速され、時には 歪誘起粒成長(strain-enhanced grain growth)と呼ばれる(9,25)。この粒成長が高温における微細結 晶粒セラミックスの歪み硬化の主要な発生源である(9,23)。図6(a)は三種類の材料 --- 純A1₂0,, MgO 添加A1₂0,,TZP -- の1400℃における引張応力・歪み曲線である。この三種類の材料の歪み硬化速 度の順序はTZP < Mgo添加A1₂0, <純A1₂0, となっている。この3種の材料のうち、TZPが歪み 硬化が最も少なく、伸びは最大である。純A1₂0, は初期降伏後の大きな歪み硬化が特徴であり、僅か な歪みによる甚だしい空洞生成のため伸びが制約される(23)。図6(a)に見られる通り、A1₂0,の延性 は Mgoの添加により改良される。これは歪み硬化速度の抑制に関係する。図6(b)の何れの材料も、歪 み硬化速度は粒成長速度とよく一致している。高温変形中の粒成長は純A1₂0,で非常に顕著だがMg0 の添加により効果的に遅くなる(25)。TZPの微細粒は極めて安定で、それ故、TZPは大きな引張 り伸びを発現するには非常に適当な材料である。次のセクションでTZPの粒径安定性を更に詳細に 述べる。

微細粒が充分に安定ならば、高温で超塑性変形を達成できる。微細粒超塑性セラミックスの引張延 性に影響する因子が Kimら(26)により解析されている。彼らによれば、引張延性を制約する因子は超 塑性金属と超塑性セラミックスとでは異なっている。超塑性金属では、歪み速度感受性指数が延性に 影響する支配的因子である。全伸びはm値と良い相互関係にある(27,28)。0.5 近傍の大きなm値を 持つ材料では200%以上の巨大伸びが得られている。m値は、歪み硬化指数と同様に、組成の不安定性 とネック成長に対する抵抗に関連している(10)。 ネック領域における歪み硬化のため、m値の大き い金属でネック成長が抑制される。 ネック成長抑制は大きな引張伸びを得るための一つの条件であ る。

他方、超塑性セラミックスでは、試験片ゲージ全長にわたり均一に変形が進行し、ネックの生成は 起こらない。歪速度感受性の高いことは必要であるが、セラミックスにおいて大きな引張延性を起こ させる条件として、-これのみでは不充分である。 Kimらは超塑性セラミックスがZener-Hollomonパラ メーター、 *ε* exp(Q/RT) の増加とともに延性が急激に低下することを見出している。 引張伸びは次式で記述される。

様々な微細結晶粒セラミックスのデータについて、指数 f を -0.33と取ると、(2)式によく適合する。 この関係は、低い歪速度と高い変形温度の場合に大きな伸びが得られること、を意味している。これ は、T乙Pで報告された最大伸び800%は、1550℃という高温度、8.3 ×10⁻³ S⁻¹(8) という低歪速度 で得られたという事実と関連するものであろう。

結晶粒径安定性

前のセクションで述べたように、結晶粒の安定性は、微細粒超塑性が生ずるか否かを決定する主要な因子である。粒成長は本来変形によって加速されるにも係わらず、TZP、Al₂O₃-ZrO₂, Si₃N₃-SiC 等々の超塑性セラミックスでは、粒成長は実際は極めて緩慢である。

超塑性金属の高温変形中の粒成長加速は、しばしば、Wilkinson and Cacersの解析(19)を基に、歪 み速度に対する初期粒径で normalizeした粒成長速度の log - logプロットから解析されている。 Wilkinson and Cacersの解析ににれば、この log - logプロットは、種々の超塑性金属に対するS字 型関係で表わされ、三つの領域に分かれる。中間的な歪速度領域では、殆どの超塑性金属の粒成長速 度 d は歪み速度 ε に比例し、狭い帯状の領域に収まる。ある種の微細結晶粒セラミックスについて同 様なプロットを行うと、超塑性金属の中間歪速度の場合と同様な傾きの、単純な直線関係となる (9,15)。

図7は金属とセラミックスの場合のこのようなプロットである(25)。TZPとAl₁O,とでは歪誘起 粒成長速度は大いに異なる。Al₂O₃の粒成長速度は金属よりも大きく、MgO 添加により超塑性金属と 同レベルに達する。これと対象的に、TZPの粒成長速度は、Al₂O₃や超塑性金属より小さい。図7 に示したTZPのデータは別の研究者のデータ(8,12)に比べ若干低い。著者は、彼らのデータは静的 粒成長を過小評価し、歪誘起粒成長を過大視したものと思う。何故ならば、試料ゲージ部より低温度 の試料摑み部分で静的粒成長を評価しているからである(30)。現在の所、各種セラミックス間の粒成 長の相違を解釈することは不可能である。静的粒成長速度は、歪誘起粒成長速度と同様に、TZP <MgO 添加Al₂O₃ の順序、と言い得るにすぎない。歪誘起粒成長は静的粒成長と比例関係 にある。

次に、若干の超塑性セラミックスの結晶粒安定性について簡単に述べる。多くのセラミックス複合体で、微細粒は安定である。例えば、Al₁0,にZrO₂を添加すると粒成長は効果的に抑制されまた焼結中の異常粒成長の発生も抑制される(31,32)。 Al₂0,中のZrO₂粒子ー通常はAl₂0,の結晶粒界のコーナー部分に存在する-のこのような抑制効果を説明するべく多くの試みが行われている。 最近、我々はAl₂0,-ZrO₂複合材料中のZrO₂, Al₂0,結晶粒寸法の比は焼きなまし温度を高めるとほぼ一定値となり、ZrO₂粒子の体積率の関数であることを報告した(33-35)。 図7はAl₂0,の粒径に対するZrO₂粒子の半径の比率をZrO₂の体積率に対してプロットしたものである(33)。結果は Zenerの予測と定性的に一致している。Zener の pinning効果はZrO₂粒子によるAl₂0,の粒成長抑止の理解に重要と思われる(33-35)。

TZPは単相セラミックスであるため、その粒径安定性は pinning効果では説明できない。TZP の粒径安定性は、ある特別なケースとして重視されるべきである。代表的なTZPは3mol%のY₂0₃を 含み、立方晶/正方晶の2相領域で焼結または焼鈍される。2相領域で焼鈍すると正方晶領域、立方 晶領域の何れの単相領域で行う場合より、結晶粒成長は更に緩慢となる(36)。この緩慢な粒成長は、 Y³⁺その他陽イオンによる粒子間分配作用に関係する(36-40)。平衡分配到達後の後期においても粒 長速度はなお緩慢であり、焼鈍あるいは変形中において微細粒径は安定している。

図9は1700℃-2相領域温度のほぼ中央の温度で10時間焼鈍したY20,4mol%-Zr0,の微細組織であ

り、図中の数値はTEM-EDS分析による各結晶粒中のY203含有量を示している。 Y203含有量は 2つのグループに分かれる。その一つは 2.0~2.7 mol % Y203を含み、他の一つは 5.6~6.1 mol% Y203を含有する。Y203含有量は焼鈍温度におけるY203の平衡量に近似している(36,38)。この事実は、 焼鈍により、平衡量に近いY203を含有する t-Zr02 結晶粒および c-Zr02 結晶粒により構成される混 合組織が出来上がったことを意味している。この微細組織は金属材料に見られる混合組織に他ならな い。混合組織では結晶粒成長は極めて緩慢である。陽イオン分配作用と混合組織の発生は、Zr02の微 細結晶粒の安定性の基であるに相違ない。

混合組織は、然しながら、常温には残留しない(36,38)。高温でのt-ZrO₂は常温においても残留す るが、c-ZrO₂は冷却によって完全にt-ZrO 転移してしまう(36,38)。著者らのグループは、ZrO₂の立 方晶→正方晶転移の特異性のために、この組織が生ずると主張している(41-44)。我々は、この相転 移は2次相転移と見なしている。 この転移の性質に関心を寄せる向きは別の代表的文献(41-46)を 参照されたい。

結 論

1 μm 以下の微細結晶粒セラミックスは、高温で、高度に変形可能であり、適切な条件の下で超塑 性変形する。微細結晶粒セラミックスの超塑性の特徴について議論した。セラミックスの引張伸びを 支配する様々な因子の中で、セラミックスの超塑性を実現させる最も重要な因子は結晶粒安定性であ る。

	METALS	CERAMICS
Maximum Elongation	Maximum 5500% Elongation (Al-Dronze, 1985)	
Grain Size	<10µm	<կսո
Necking	Yes	No
έvsσ	3 Regions	Single Region
m	0.5	0.5
Q	Grain Boundary Diffusion	Grain Boundary Diffusion
p	2-3	3 (7)
homenclature; t strain rate o stress m strain rate	Q ucti p grai sensitivity	vation energy in size exponent

表1.金属とセラミックスの 微細結晶粒超塑性の比較

図2. YZPの成形応力と歪速度(11)

温度依存(11,12)

図7. 超塑性金属と数種のセラミックスの応力 誘起粒成長の正規化値と歪速度の log-logプロット(25)

図8. Al203-Zr02のシルコニ7体積率とシルコニ7 粒半径/フルミナ粒径比の関係(33)

図9.1700℃で10時間アニールした Zr0₂-4mo1XY₂0₃の微細組織。 図中の数字は各粒子中のイットリウム 含有量をY₂0,mo1%で示したもの。 この結果はTEM-EDS分析による(38)

参 考 文 献

- 1. F. Wakai, S. Sakaguchi and Y. Matsuno, "Superplasticity of Yttria-Stabilized Tetragonal ZrO₂ Polycrystals", Adv. Ceram. Mater., 1(1986)259-263.
- F. Wakai, Y. Kodama and T. Nagano, "Superplasticity in
- 3.
- P. Wakat, Y. Kodama and I. Nagino, "Superplasticity in ZrO₂ Polycrystals", Jpn. J. Appl. Phys., Series 2, Lattice Defects in Ceramics, (1989) p.57-67.
 Y. Machara and T. G. Langdon, "Superplasticity in Ceramics", J. Mater. Sci., 25(1990)2275-2286.
 T. G. Langdon, "Superplastic Ceramics A Review", Superplasticity in Aerospace, II, Ed. by T. R. McNelley and H. C. Heikkenen, The Min. Met. Mater. Soc., (1990) p.3-18 4. p.3-18.
- I. W. Chen and L. A. Xue, "Development of Superplustic Structural Ceramics", J. Am. Ceram. Soc., 73(1990)2585-2609.
- A. K. Mukherjee, Plastic Deformation and Fracture of 6. Materials, Ed. by II. Mughrabi, in press. K. Higashi, T. Ohnishi and Y. Nakatani, "Superplastic
- 7. Behavior of Commercial Aluminum Bronze", Scripta Metall., 19(1985)821-828.
- T. G. Nich and J. Wadsworth, Acta Metall. Mater., "Superplastic Behavior of a Fine-Grained, Yttrin-8.
- Superplastic Benavior of a Fine-Grained, Yitria-Stabilized, Tetragonal Zirconia Polycrystal(Y-TZP)", Acia Metall. Mater., 38(1990)1221-1233.
 Y. Yoshizawa and T. Sakuma, "High-Temperature Deformation and Grain Growth in Fine-Grained Zirconia", Eng. Fract. Mech., 40(1991)847-854.
 W. A. Backofen, I. R. Turner and D. H. Avery, No. 1997 (2019) (2019
- "Superplasticity in an Al-Zn Alloy", Trans. ASM, 57 (1964)980-998. Y. Yoshizawa and T. Sakuma, "Role of Grain-Boundary
- 11. Class Phase on the Superplastic Deformation of Tetragonal Zirconia Polycrystal", J. Am. Ceram. Soc., 73(1990)3069-3073.
- C. M. J. Hwang and I. W. Chen, "Effect of Liquid Phase on Superplusticity of 2mol%Y₂O₃-Stabilized Tetragonal Zirconia Polycrystals", J. Am. Ceram. Soc., 73(1990) 1626-1632
- 13. Y. Oishi, Y. Sukka and K. Ando, "Cation Interdiffusion in Polycrystalline Fluorite-Cubic Solid Solutions", J. Nucl.
- Mater., 96(1981)23-28. Y. Sakka, Y. Oishi, K. Ando and S. Morita, "Cation Interdiffusion and Phase Stability in Polycrystalline Tetragonal Cerin-Zirconia-Hafnia Solid Solution", J. Am. 14. Ceram. Soc., 74(1991)2610-2614. 15. F. Wakai, "Superplasticity of Zirconia Toughened
- Ceramics", (Ph.D. thesis, Kyolo University, 19(8) 109-150.
 16. K. Okada, Y. Yoshizawa and T. Sakuma, "High-Temperature Deformation in Alumina-Rich Al₂O₃", Proc. 1st Int. Symp. on the Science of Engineering Cerumics, Ed. by S. Kimura and K. Niihara, The Ceram. Soc. Jpn., (1991)
- by S. Kimura and K. Niihara, The Ceram. Soc. Jpn., (1991) p.251-256.
 17. K. Okada, Y. Yoshizawa and T. Sakuma, "High-Temperature Deformation in Al₂O₃-zrO₂", Superplasticity in Advanced Materials, Ed. by S. Hari et al., The Jpn. Soc. for Research on Superplasticity, (1991) p.227-232.
 18. F. Wakai and H. Kato, "Superplasticity of TZP/Al₂O₃ Composite", Adv. Ceram. Mater., 3(1988)71-76.
 19. J. Wang and R. Raj, "Activation Energy for the Sintering of Two-Phase Alumina/Zirconia Ceramics", J. Am. Ceram. Soc. 74(1991)1950-1963.
- Soc., 74(1991)1959-1963. 20. C. Herring, "Diffusional Viscoslty of a Polycrystalline
- Solid", J. Appl. Phys., 21(1950)437-445.
 R. L. Coble, "A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials", J. Appl. Phys., 34 (1963)1679-1682.
- A. H. Chokshi and J. R. Porter, "Analysis of Concurrent Grain Growth during Creep of Polycrystalline Alumina", J. Am. Ceram. Soc., 69(1986)e37-e39.
- Y. Yoshizawa and T. Sakuma, "Improvement of Tensile 23. Ductility in High-Purity Alumina due to Magnesia Addition", submitted to Acta Metall. Mater.
- 24. D. J. Schlssler, A. H. Chokshi, T. G. Nich and J. Wadsworth, "Microstructural Aspects of Superplastic Tensile Deformation and Cavitation Failure in a Fine Grained Yttria Stabilized Tetragonal Zirconia", Acta Metall. Mater., 38(1991)3227-3236.
- 25. Y. Yoshizawa and T. Sakuma, "Grain Growth Acceleration during High-Temperature Deformation In High-Purity Alumina", Mater. Sci. Eng., A149(1991)59-64. 26. W. J. Kim, J. Wolfenstine and O. D. Sherby, "Tensile Ductility of Supervision of Supervision and States a
- Ductility of Superplastic Ceranics and Metallic Alloys", Acta Metall. Mater., 39(1991)199-208.

- 27. D. A. Woodford, "Strain Rate Sensitivity as a Measure of Ducility", Trans. ASM, 62(1969)291–293. C. H. Hamilton, "Superplasticity", Strength of Metals and
- Alloys, Ed. by H. J. McQueen and J. P. Baiton, Pergamon Press (1986) p.1831.
- D. S. Wilkinson and C. H. Caceres, "On the Mechanism of Strain-Enhanced Grain Growth during Superplastic Deformation", Acta Metall., 32(1984)1335-1345.
 Y. Yoshizawa and T. Sakuma, "The Strain-Enhanced Grain
- r. roshizawa and T. Sakuma, "The Strain-Enhanced Grain Growth in Tetragonal Zirconia Polycrystal during Superplastic Deformation", Superplasticity in Advanced Materials, Ed. by S. Hori et al., The Jpn. Soc. for Research on Superplasticity, (1991)251-256.
 D. J. Green, "Critical Microstructures for Microcracking in Al₂O₃-ZrO₂ Composites", J. Am. Ceram. Soc., 65(1982) 610-614.
 E. Lange and M. M. Hardbarg, "With Longe C. C.
- F. F. Lunge and M. M. Herlinger, "Hindrance of Grain Growth in Al₂O₃ by ZrO₂ inclusions", J. Am. Ceram. Soc., 67(1984)164-168.
- 33. K . Okada, Y. Yoshizawa and T. Sakuma, "Grain-Size Distribution in Al₂O₃-ZrO₂ Generated by Annealing at High Temperatures", J. Am. Ceram. Soc., 74(1991)2820-2823.
- K. Oknda and T. Sakuma, "The Role of Zener's Pinning Effect on the Grain Growth in Al₂O₃-ZrO₂", J. Ceram. Soc. Jpn., 100(1992)382-386.
- I. W. Chen and L. A. Xue, "Development of Superplastic Structural Ceramics", J. Am. Ceram. Soc.; 73(1990)2585-2609.
- 36. T. Sakuma and Y. Yoshizawa, "Grain Growth of Zirconia
- So. I. Sakuma and F. Yoshizawa, "Grain Growth of Zirconin during Annealing in the Cubic/Tetragonal Two-Phase Region", Grain Growth Conference, Rome, 1991.
 F. E. Lange, D. B. Marshall and J. R. Porter, "Controlling Microstructures through Phase Partitioning from Metastable Precursors", Ultrastructure Processing of Advanced Ceramics, Ed. by J. D. Mackenzie and D. R. Ulrich, John Wilgut & Sone (1989)519-512 Wiley & Sans, (1988)519-532.
 38. Y. Yoshizawa and T. Sakuma, "Evolution of Microstructure
- and Grain Growth in ZrO2-Y2O3 Alloys", ISIJ International,
- 29(1989)746-752.
 D. K. Leung, C. J. Chan, M. Ruhle and F. F. Lange, "Metastable Crystallization, Phase Partitioning, and Grain Growth of ZrO₂-Gd₂O₃ Materials Processed from Liquid 39.
- Precursors", J. Am. Ceram. Soc., 74(1991)2786-2792.
 40. T. Stoto, M. Nauer and C. Carry, "Influence of Residual Impurities on Phase Partitioning and Grain Growth Processes of Y-TZP Materials", J. Am. Ceram. Soc., 74(1991)2615-2621.
- T. Sakuma, Y. Yoshizawa and H. Suto, "Metastable Two-Phase Region in the Zirconia-Rich Part of ZrO2-Y2O3
- Phase Region in the Zirconin-(ref Part of ZrO₂-Y₂O₃ System", J. Mater. Sci., 21(1986)1436-1440.
 42. T. Sakuma and H. Hata, "The Domain Structure of Tetragonal Zirconin In ZrO₂-Y₂O₃ Alloys", Advances in Zirconin Science and Technology, Ed. by S.Meriani and C.Palmonari, Elsevier,(1989)283-292.
 43. T. Sakuma, "Development of the Domain Structure Associated with the Diffusionless Cubic-to-Tetragonal Trapping", in Party Science Alloys", Alloys Science Alloys and Science Alloys Science Alloys and Science Alloys Science Alloys Science Alloys Science Alloys and Science Alloys Science
- Transition in ZrO2-Y2O3 Alloys", J. Mater. Sci., 22(1987)447()-4475.
- 44. M. Hillert and T. Sakuma, "Thermodynamic Modeling of the c+t Transformation in ZrO2 Alloys", Acta Metall. Mater., 39(1991)1111-1115. A. H. Heuer, R. Chaim and V. Lanetri, "Phase
- Transformations and Microstructural Characterization of Alloys in the System $ZrO_2-Y_2O_3$ ", Advances in Ceramics,
- Vol. 24A Science and Technology of Zirconin III, Ed. by S. Somiyn et al., The Am. Cerum. Soc., (1988)3-20.
 46. R. Chaim, V. Lunteri and A. H. Heuer, "The Displacive Cubic-Tetragonal Transformation in ZrO₂ Alloys", Acta Metall., 35(1987)661-666.

4. 複合材料関連文献抄録

.

4. 複合材料関連文献抄録

A. セラミックス系複合材料

- A-1. 概 要
 - (1)調 査 論 文

セラミックス系複合材料の複合化技術および成形技術の最近の動向を調査するため下記の論文 集(①,②)および Journal論文(③,④)を調査して、27論を選択し、その抄録を作成した。 調査と抄録は、名古屋工業技術試験所並びに本研究開発を再委託したセラミックス系4研究機関 に所属する研究者により行われた(抄録者の氏名等は第1章既出)。

セラミックス系調査論文の出典

- (1) Europian Association for Composite Materials : 5th Europian Conference on Composite Materials, Apr. 7-10, 1992, "Developments on the Science and Technology of Composite Materials.
- (2) The American Ceramic Society : 16th Annual Conference on Composites and Advanced Ceramic Materials, Jan. 7-10, 1992
- (4) J. of American Ceramic Society, 1990~1992

(4) J.Mat.Sci.,1992

調査した27論文を主題別に分類すると次のとおりである。

セラミックス系調査論文の主題別分類

文

(2)結果の概要

i. 複合材料の性質および複合化技術

Si₃N,中のSiを炭素と反応させて SiCウイスカーを生成させ、SiC ウイスカーを強化材とする Si₃N,基複合材料を作製する方法[1] が報告されている。これは人体に有害とされるセラミック ウイスカーをマトリックス材料と混合する操作を経ないで複合化させる方法であり、セラミック ス系複合材料の複合化プロセスの安全性と製造コスト低減の両面より注目される。また、ウイス カー入り複合材料の鋳込成形[2],強化材をマトリックス中でコートする強化材の表面改質法[3], SiC 強化 Si₃N₄の機械的挙動[5] および、粒子強化セラミックス複合材料のタフニング機構[4] に関する報告などはセラミックス系複合材料の最近の研究動向を示すものである。

ii. 超塑性、超塑性加工技術.

添加材により超塑性変形中の結晶粒成長を抑制し、超塑性加工を容易にした研究(Al₂O₃基複合 材料)[6]および Mulliteの超塑性加工を行うとき、先ず比較的高速かつ低応力で超塑変形する前 駆材料 (pre-mullite)を超塑性加工し、その後熱処理して所定の材料を生成させる研究[7] の2 報はセラミックスの超塑性加工分野の新しい試みである。セラミックスの加工法に超塑性加工法 を適用する上での最大の課題は、その厳しい加工条件(高温、低速、高応力)である。この加工 条件を緩く(低温、高速,低応力)することである。そのためには、超塑性加工に適した材料開 発が重要な要素になり、粒界へのガラス相の積極的な導入、変形中の粒成長を抑制する添加材の 導入などが考えられる。その意味で [6],[7]は 超塑性加工が「現象の研究」から「プロセスの 究」に脱皮を始める兆しでもあろうか。

この他セラミックス系複合材料についての米国内外の状況アセスメントが行われている[8]。 それによると、セラミックス系複合材料原料(粉末、強化繊維)の領域で日本に一歩を譲るもの の、米国では、具体的なターゲット(特に軍事分野)に対する研究開発を強力に進めており、今 後、成形方法、特性評価・解析法などの総合的研究を推進すればこの分野のリーダー的存在であ り続けることが可能としている。セラミックス系複合材料の両国の環境は著しく異なる。

てある。
-

A-2. 文献 抄録

[A-2-1]キャラクタリゼーション、強度/力学的特性 [A-2-1]-1a

	セラミックス複合材	材料における	強化繊維の界面剥離と引き	友けのプロ	コセス	
タイトル	Fiber debonding and pullout		process in ceramic compos	ites	·····	
出典	Proc.of 16th Annual Conf.on Composites and Advanced Ceramics,70-77					
著 者 (所属機関)	D.R.Mumm ,K.T.Fab Science and Engin	er(Northwes leering ,Eva	stern University, Departme anston,IL 60208-3108)	ent of Ma	terial	s
キーワード	ceramic composite single-fiber, cra	es, fiber de ack opening	ebonding, fiber pullout, i displacement, fiber sufac	.nterface ce morpho	logy	
図、表、写真、	参考文献の数 図: 4	4,表:2,	写真: 0. 参考文献: 10	抄訳者	後藤	淳
【概要】 <u>1. 要約</u> (1) セラミック 化 花 総 2) 繊 進行の の な が (3) 最 り ボ 値 縦 約 の の な り (2) 繊 総 行 の の の の の の の の の の の の の	マス複合材料のモデルは 界面剥離と引き抜けを より調査した。 裏や摩擦を伴う引き抜い 界面剥離が観察された。 所法を使用して荷重-3 れた。 和形態が界面剥離や滑い 響を与える。	こお お お ば 都 都 前 に 、 な な よ 文 ひ の 挙 動 に 、 、 の で む し の 曲 他 の ま 、 の の 曲 他 の の 一 、 の の 曲 他 の の 一 、 の の 一 他 の の 一 の の 一 の の 一 の の 一 の の 一 の の 一 の の 一 の 一 の 一 の 一 の の の 一 の の の 一 の の の の	の開口変位 <u>4. 結果と討論</u> (1) 荷重-COD曲線(図: ①繊維破断まで荷重はC る。 ②データ初期部の非線形式 剥離に伴うもの予測です ③劇的な荷重減少(繊維研 々に減少するが、これに 抜けるマトリックス中の繊維 に起因する。 ④両実験とも最終的な繊維 等しい。	 (COD) 3:22と の分る断、さの (との) (たいの) <	を 安 で う っ た 、 友 、 方 っ た 、 友 、 方 、 方 、 方 、 方 に 的 荷伴な け 、 う む 、 む む 、 む 、 む 、 む 、 む 、 む 、 む 、 む 、 む む 、 む 、 む 、 む 、 む 、 む 、 む 、 む 、 む 、 む 、 む 、 む 、 む 、 む 、 む む 、 む 、 む 、 む 、 む 、 む 、 む 、 む む む 、 む む む む む む む む む む む む む	削 口 尽 よりこ さ こうす 面 徐きと は
 (1) 繊維強化セ 制御してい 多くの手約 (2) 今回の研究 繊るとマー よる表面の形 (3) 本研究の就 進行的 	 ラミックス(FRC)の機構 > つる界面特性を評価する よが開発されている。 そに用いたKeransらの > リックスの熱的なミンクな界面影響も組み込んで ぎ節向は離を実験的に調め 	戒る モスてで复べて的た デマおい合る ドマおい合る たれのりる材たつ性に はチ、。料めた、、に繊のに	 ⑤ピーク荷重や劇的な荷重 界面剥離クラックが最新 り前進していることを (2) モデル解析の荷重-C(①図中のP・は、ポアソン 力と表面形態効果が打す りに摩擦抵抗を伴わない ②図中のP。は、界面剥離 進展を続けるのに必要 	1 €冬〒○ンちい雅な- 減破しD効消臨ク臨りの点い線にれ荷ッ荷 の点い線にれ荷ッ荷	にちら(ヒー重っ重っきり。図り繊でのですさも、4残維あ先あっか。)留のそ弟そう	パハ 習りる耑る」、な 応滑。が。
単繊維引 (4) 界面摩線 状態、繊維 <u>3.実験</u> 試体 (1) 供計 (1) 供計 (1) マ化化方法 (2) 試形 (2) 試 (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	 を抜き試験を使うことし 界面剥離エネルギー、 進の表面形態が説明され 単繊維強化ガラスマトリックス は繊維強化ガラスマトリックス ないためにガラス ないためにガラス ないためにガラス ないために ないために ないに ないに ない ない ない ない 	こある。 残留応力 れる。 着入 う径 う ぞ (が 前 れ 、	 ③繊維破断はP*よりも- る。 (3)実験適合の解析パラメ- ・μ 摩擦係数 ・Pa、P* 上記の通り ・σn^{***} 界面摩擦に有効 ・Gi 歪エネルギー解放 ①Giはとても低く、本材 とと一致する。 ②μは他者測定のものと目 ③これらのパラメータから 振幅は0.25μm であり 実測値と良く一致する。 ④繊維の引き抜け長さける 	← ク (表 1) か つ か な 率料 く 求 (表 2) 小 の つ か や か の 一 め 他 の の の の か れ の の の の か れ の の の か れ の の か れ の の か れ の の れ の の れ の の か れ の の の か れ の の か れ の の か れ の の か れ の の か れ の の の か れ の の か れ の の か れ の の か れ の の か れ の の か れ の の か れ の の か れ の の か れ の の か れ の の か れ の の か れ の の か れ の の か れ の の か れ の の の か れ の の の の	可しい ひ 面 す 載り いってで しいい 力 が る維表 でで しいしん が る 総表 で しんしょう しょう しょう しょう しょう しょう しょう しょう しょう しょう	さこ こ のさ

|--|

[A-2-1]-2a

(和文)	荷重負荷時におけるセラミックマトリックスコンポジット中での損傷の進展		
タイトル (英文)	Damage Development in a Ceramic Matrix Composite under Mechanical Loading		
著者(所属機関)	期) B. F. Sorensen, R. Talreja*, O. T. Sorensen Materials Department Riso National Laboratory PO Box 49 4000 Roskilde Denmark *Georgia Inst. of Tech. Atlanta Georgia 30332 150 USA		
キーワード Conti tensi Poiss	nuous SiC fiber reinforced calcium le loading, development of damage. son's ratio, permanent offset strai	aluminosilicate gl acoustic emmision n. thermal expansi	ass ceramic matrix composite. , elastic modulus. on coefficient
図・表・写真・参考	考文献の数 図:6 表:1 写真:1 参考	考文献:6 抄訳者	有神谷 晶
【ポポポコーネっれた係 を比否を通行しな厚をげはをいか計直 はででず重らかは 要かや中クシンは損傷を料理したでで、る保荷残と、のかなりののの結的っつかきした。 要かや中クシンは損傷を料理したで、 で、 、 で、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	載維強化加ジウムアルジノジリケートがうスセジックスコン 平行に引張り試験した。このときのコン の進展を微視的スケールで観察し、同時に に信号)の積算数の記録によってモターし 空挙動は弾性率とポアソン比の変化によ 関連付けられる。残留至が測定され、そ 支映するよい指標であることが分かっ る過程におけるコンポジット全体の熱膨張 うおよびったとき軸方向の歪は 、損傷を受ける前のヤング率はピ、ポアソン トリックスにクラッキング)が完了するときを しただと垂直方向の歪をrtu一定 易を受けたコンポジットは接線弾性率ELを 生率とポアソン比はEL、をいて、完全に除荷 大久的な歪ををて、をすとする。最終的 ig.1)。試験片は長さ150m、幅12.5m、 どのものに取り付けてわずかでも曲 ら検出できるようにした。引張り試験 または0.2mm/minで行った。AE変換子 の発観察し、クラッケ密度(単位長さ当りの れた表面中の全てのクラックの長さの合 って求め、またコンボジットの軸方向と垂 数 $\alpha_{1,\alpha}$ α_{1} e^{20} c^{20} c^{20} c^{21} e^{51} e^{51} c^{21} e^{51} e^{51} c^{21} e^{51}	加信ののあれいたれ応のやりに弾とらとックがの除留にえ張生定いのずて、サインシンで、していたれ応のやりに弾とらとックンがの除留にえますでと近く減せずがたわは破の、かりか信に認る。など、したいのがの比重普の加るでと近く、減量れるな歪よ重れた認る。が後、50の比重普の加る電をとるえまとして、の発。いれそれ、なが増加重。かび後、50の最たしるアウムをしたことでがないがない。ためではない、たいかがなし、50の最たして、たてのたる、たいで、していたで、100でに、そのかかれた。ここの考えて、した、たい、そのかがない。たれた、100でに、そのかのた。ここの、たい、たい、たい、たい、たい、たい、たい、たい、たい、たい、たい、たい、たい、	製が入りアする。 歪が0.7%になるとAE 始め、繊維の破壊が起こっているも 観急激に起こりアルクトによるエネルギー を示しており、曲げ試験と対照的で - (応力-歪曲線の面積) は3.1MJ/m ³ と、 そであった。 クロスヘット 位置を固定して やするにもかかわらずAE信号は増加し かキング は時間に依存していると思わ ig.4に示す。 クラック発生は非常に低い でのクラックは歪0.2-0.5%で発生した。そ にわずかとなり、 クラック密度増加はゆる 市向の歪に対してもでルイブルマトリックスクラッキ ACKクラッキング 歪以上でをrは一定値 $\varepsilon \sim \tau$ 市時の弾性率とす アソン比を示す。この たび の起きる歪い、ルで急減すること 近ずくまでその値を保持することか 7%の間で損傷が進展しないというこ 10歳壊に至るまでに ($\varepsilon \sim t$) この たび の起きるでに ($\varepsilon \sim t$) コンボ ジ 「繊維の破壊が始まるようである。 ポ より緩に至るまでに ($\varepsilon \sim t$) であるのに対して除荷 り果のように $\varepsilon \tau$ は線型的に増加する。 溜歪の測定結果をFig.6に示す。残 場)に比例して増加する。最大クラッキング なったあたりで一定量に達する。ゆ 傷の良い指標である。Fig.7に熱膨 してプロットした。マトリックスにクラックが発 0.5%)減少し、破壊歪に達するまで一 は0.5-0.7%でマトリックスのクラック発生がな にすったが実際はマトリックスのクラック進展につれ

出典 Proc. of 5th Europian Conf.on Composite Materials, P.613

[A-2-1]-2b

[A-2-1]-3a

(和文)	セラミック繊維強化セラミックマトリックス複合材料の機械的特性に影響する界面の微組織		
タイトル (英文)	Microtextures of Interfaces Related to Mechanical Properties in Ceramic Fiber Reinforced Ceramic Matrix Composites		
著者(所属機関)	M. Mothioux and D. Cojean Lab. Marcel Mathieu		
キーワード Silic	on Carbide Composite, Chemical vapor infiltration. Interface microstructure		
図・表・写真・参	考文献の数 図:2 表:1 写真:0 参考文献:6 抄訳者 中野 喜久男		
【概要】SiC繊維強のとこうに、 のあったいで、 繊維のの料理をしていた。 繊維関化をと維た。 物るこ繊維た。 りかって、 繊維ので、 細物をとれて、 一般、 なって、 に、 に、 に、 に、 なたの、 に、 なたので、 なたので、 なたのので、 なたので、 なたので、 なたので、 なたので、 なたので、 なたので、 なたので、 なたので、 なたので、 なたので、 なたので、 なたので、 なたので、 なたので、 なたので、 なたので、 なたので、 なたので、 なたので、 なんので、 なたので、 なたので、 なんのので、 なたので、 なんので、 なたので、 なたので、 なんののでで、 なんのので、 なんのので、 なんので、 なんのので、 なんのので、 なんのので、 なんのので、 なんののので、 なんのので、 なんのので、 なんのので、 なんのので、 なんのので、 なんのので、 なんので、 なんので、 なんのので、 なんのので、 なんのので、 なんのので、 なんのので、 なんのので、 なんのので、 なんのので、 なんのので、 なんのので、 なんのので、 なんので、 なんので、 なんのので、 なんので、	(CSIC複合材料をCVI法で作製し、そ 組織の観察及び界面組織と強度特性 急求している。 alon NL-200繊維で作製された二次元 繊維表面に、芳香族炭化水素を熱分解 持られた炭素を被覆した後、CVI法で れにSIC?トリックスを充填して複合材料を の微組織は透過電子顕微鏡、EELSと 環微鏡等で観察されている。界面組 を1 のようなタイ7 に分類される。タイ7 他の上に芳香族分解當炭繁層(SSIS) ジオリンテッコンをも填して後の料料を (図、表、写真) (図、表、写真) (図、表、写真) (図、表、写真) (図、表、写真) (図、表、写真) (図、表、写真) (図、表、写真) (図、表、写真) (20) なっている。20男面構造を たっている。20男面構造を たっている。20男面構造を たっている。307 20男面構造を たっているのは主にA947 の複合材であ 407場合も僅かながらある。947 300 敗定形がり+SSUs炭素混合層/±10 [®] 、341 (フォッンでない芳香族分解主炭 素層/SIC?トリックスの準備 たっている構造をもっている。 6本に載縮維化(A)-ス*でない芳香族分解主炭 素層/SIC?トリックスの構造 5、2070 (環境)(1)-750 (1)-750		

出典 Proc. of 5th Europian Conf.on Composite Materials, P.729
[A-2-1]-3b

[A-2-1]-4a

(和文)	アルミナ基複合材料のショート 許容性	クラック-タフネス曲線	(7 曲線) と耐損傷
タイトル (英文)	Short Crack T -Curves and Da Composites	amage Tolerance in Aumin	a-based
出典	Proc.of 16th Annu.Conf.on Co	omposite Mater.and Adv.C	eramics. P.156
著 者 (所属機関)	Linda M. Braun, Stephan J. E (Materials Science and Eng Standards and Technology,	Bennision, Brain. R. La gineering Lab., National , Gaithersburg, MD, USA)	wn Institute of
キーワード	T-curve, damage tolerance, a toughness, Al ₂ O ₃ , Al ₂ TiO _{3.}	alumina based composites short crack	, R-curve,
図・表・写真	・参考文献の数 図:2 表:0 写	真:3 参考文献:18	抄訳者 佐藤仁俊
cumphe complex methods and the set of th	を伴う靱性向上(T-curve or R- Dtラミゥクス材料の機械的特性の重 構造用tラミゥクスの T- curve こ対する重要事項は二つある。 curveを支配する微構造パラメーター かつそれを制御することであり hort crack" domain 即ち微構 rveを評価することである。 き2相にごびたれる子名のの手段に加え たいて、第2相とマトリゥクス こよを敬良する一つのら発生する の場面に更に加多強度デー on-strength data)と関連させ T-curve を評価した結果を述	性(T)は、亀裂サイズ, C= 健(T)は、亀裂サイズ, C= 裂サイズ, C= 裂サイズ, C= 2 2 2 4 (T)は、亀羽am ^{1/2} まで 4 2 5 MPam ^{1/2} まで 4 2 5 MPam ^{1/2} まで 2 5 MPam ^{1/2} まで 2 5 MPam ^{1/2} 3 4 2 5 MPam ^{1/2} 3 4 2 5 MPam ^{1/2} 3 5 5 5 5 5 5 5 5 5 5 5 5 5	100 μ 2nm 加 のの この この に らい た の た に らい た の た に らい た の た に らい た の た に らい た の た の た に らい た の た の た の た の た の の の の の の の の の の
 高95%、純化、10% 約粒度99 高95%、純化、30% 約枚度99 約大化、10% 約枚度99 約大化、10% 10% 11% 11%<!--</th--><th>(A1 $_{2}$O₃:住友 AKPHP, 純度99.9 0.5μ. β-A1$_{2}$TiO₃: Trans- 9%, 粒径 1~5μ)のJUI/F懸 2燥後、一軸加圧(63MPa)成形 7とし、更に wet bag I.P(350 Nを大気中仮焼(1050 C,12hr) 600C, 1 hr)した。粒径はサ- near intercept 法により求め ck T-curve 特性の測定》 500 (2, 1 hr)した。粒径はサ- near intercept 法により求め ck T-curve 特性の測定》 500 (2, 1 hr)した。粒径は 100 (2, 1 hr)した。粒径 100 (2, 1 hr) 600 (2, 1 h</th><th>の 亀裂 (高 圧 な た よ り、Al₂0、 の 電 次 の た れ た の の し の た た れ た の し の し の た た た れ た の た の し の た た た に よ の の し の た た た に は の し の た た た た に は の し の た た た た に は の た の た た た に は の た の た た た で た の た の た た た で れ た た の た の た た た で れ た た で れ た た で れ た た で れ た た で れ た た で れ た た で れ た た で こ よ や 本 か た た た に い た の た た た れ た で こ よ た や た に に の れ た で こ な か た た で こ な 安 か た た で こ た た れ た た で こ の た た た れ た た の た の た の た の た の た の た の た の た の た の た の た の た た た の の の た た た の の の た た た の の の で こ い た た た の の の で こ の て こ の の た た よ た の た の た の た の た の で い て こ に の の の で い て 一 に し の た の た の で し て で に し て の た の た の た の た の た の の の で し て こ の ち い て こ の ち で い て こ の の で し て こ の た か た つ こ の の で し て こ の た の た つ こ の つ の て こ の つ の て こ の つ の て こ の つ の て こ の つ て こ の つ の つ こ の つ の つ の つ の つ の つ の つ の つ の つ の つ つ つ つ の の の の の の の の の の の の の</th><th>成 の が に い 。 。 る る を に り が の た ち の た い の た の た い の た の た い の た い の た の た い か の の た の た の た の た い の た の た い の た の た の た の た の た の た の た の た い の た い の た い の た し た れ い う れ の た い で の た の た い か の た の た い か う す ち て る た や い っ た の た い で の た し っ の た し っ や た し 、 た や し っ た し っ た し っ た し っ の た し っ の た し っ の た し っ の た し っ の た し っ の た し っ の た し っ の た う っ の た し っ っ の た う っ の た う っ の た っ っ の た の っ の た の た の っ の た の っ の た の っ の た っ っ の た っ っ の た っ の た っ の た の っ の た つ っ の た つ っ の た つ っ の た つ っ の た っ つ っ の た つ っ の つ の の の の つ の っ の っ の つ の つ っ つ っ つ っ つ っ つ つ っ つ つ っ つ っ つ っ つ っ つ っ つ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ つ つ つ つ つ つ つ つ つ つ つ つ</th>	(A1 $_{2}$ O ₃ :住友 AKPHP, 純度99.9 0.5 μ . β -A1 $_{2}$ TiO ₃ : Trans- 9%, 粒径 1~5 μ)のJUI/F懸 2燥後、一軸加圧(63MPa)成形 7とし、更に wet bag I.P(350 Nを大気中仮焼(1050 C,12hr) 600C, 1 hr)した。粒径はサ- near intercept 法により求め ck T-curve 特性の測定》 500 (2 , 1 hr)した。粒径はサ- near intercept 法により求め ck T-curve 特性の測定》 500 (2 , 1 hr)した。粒径は 100 (2 , 1 hr)した。粒径 100 (2 , 1 hr) 600 (2 , 1 h	の 亀裂 (高 圧 な た よ り、Al ₂ 0、 の 電 次 の た れ た の の し の た た れ た の し の し の た た た れ た の た の し の た た た に よ の の し の た た た に は の し の た た た た に は の し の た た た た に は の た の た た た に は の た の た た た で た の た の た た た で れ た た の た の た た た で れ た た で れ た た で れ た た で れ た た で れ た た で れ た た で れ た た で こ よ や 本 か た た た に い た の た た た れ た で こ よ た や た に に の れ た で こ な か た た で こ な 安 か た た で こ た た れ た た で こ の た た た れ た た の た の た の た の た の た の た の た の た の た の た の た の た た た の の の た た た の の の た た た の の の で こ い た た た の の の で こ の て こ の の た た よ た の た の た の た の た の で い て こ に の の の で い て 一 に し の た の た の で し て で に し て の た の た の た の た の た の の の で し て こ の ち い て こ の ち で い て こ の の で し て こ の た か た つ こ の の で し て こ の た の た つ こ の つ の て こ の つ の て こ の つ の て こ の つ の て こ の つ て こ の つ の つ こ の つ の つ の つ の つ の つ の つ の つ の つ の つ つ つ つ の の の の の の の の の の の の の	成 の が に い 。 。 る る を に り が の た ち の た い の た の た い の た の た い の た い の た の た い か の の た の た の た の た い の た の た い の た の た の た の た の た の た の た の た い の た い の た い の た し た れ い う れ の た い で の た の た い か の た の た い か う す ち て る た や い っ た の た い で の た し っ の た し っ や た し 、 た や し っ た し っ た し っ た し っ の た し っ の た し っ の た し っ の た し っ の た し っ の た し っ の た し っ の た う っ の た し っ っ の た う っ の た う っ の た っ っ の た の っ の た の た の っ の た の っ の た の っ の た っ っ の た っ っ の た っ の た っ の た の っ の た つ っ の た つ っ の た つ っ の た つ っ の た っ つ っ の た つ っ の つ の の の の つ の っ の っ の つ の つ っ つ っ つ っ つ っ つ つ っ つ つ っ つ っ つ っ つ っ つ っ つ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ っ つ つ つ つ つ つ つ つ つ つ つ つ つ

[A-2-1]-4b

[A-2-1]-5a

LA-Z-11-5a							
(和文)	変形中のマトリックスのひび割れとガラスセラミックスマトリックス複合材料の疲労						
タイトル (英文)	Matrix Cracking during Deformation and Fatigue of Glass Ceramic Matrix Composites						
著者(所属機関)	B.Harris,R. (School of	G.Cooke,F.Habib Materials Science-Univer	sity of Bath				
キーワード Cra	cking,Glass	ceramic matrix, Composit	tes,Laminates, In	crementa	l loading,Repeated loading		
図・表・写真・ネ	参考文献の数	図:6 表:1 参考文献	: 4	抄訳者	桜井定人		
ー加ッひり割い スミたたるい荷使対 中社リれトら。にの部一は示ら在、クび下れて にッ。よい品を用す にに一るのい複対右分方、すにす方期ミれ起度じーいヨのも高のみて応ルカり押試にま材るの、性様そ均。向的ッはるのでボてン学小分低る作答シロ、出料作で料引部試とでのの酸と引ヨンひのると以よにい複をとさ研ムSil造、1し化強りは中9初傾き通	ニ畏ンさび関。Si前るつ歪合招はれ究アCはさホ2たさ度、、に0)のきが常力り法れ割係 CLのひいで材く、たをル繊れッ層。せ特圧通同 35部が増マロをとたれは 繊研びい起料か興CM行ミ維たトー種た性縮常時ラ分小加トン印端理パ、 維究割てるでど味CCつノを。プ方々。はののにミはさすリノ()加面論タ三 ででれ現可通うが単たシ骨製レ向の実表応応測ネ主くるッ907 ぎここの 強、が状情常かあ調。リし造ス性板験1カカ定一とな第ク97 ぎここの 付手が状情報な 調)35 ないの生成した。 しいたいでは、 しいたいでは、 しいたいでは、 しいたいでは、 しいたいでは、 しいたいでは、 しいたいでは、 しいたいでは、 しいたいでは、 しいたいで、 しいで、 しいで、 しいで、 しいでので、 しいでので、 しいでので、 しいでので、 しいでので、 しいでので、 しいでので、 しいでので、 しいでのない、 しいでのない、 しいでのない、 しいでのでい、 しいでのない、 しいたい、 しいで、 しいで、 しいでのない、 しいでのない、 しいでのない、 しいでのない、 しいでのない、 しいたい、 しい、 しいで、 しい、 しい、 しい、 しい、 しい、 しい、 しい、 しい	示クるる割材と有 知く引料はの滅に一に り初にて ンく 割増すスよ。れ料のり るつ張の応後少な歪滅 、の一ゆ の似 れ加わるりこをのでそ機たかり弾力約する曲少一最繰方つ図信て一のおち複りこをがかはつ械るで的に増荷係歪45%の4%の人名 い方大よと材かはつ械るで的に増荷係歪45%の4%の人名 しんし たいかけ しんしょう しょうしょう	れつ小んる答作。こ方るこ成の期の135り(合約で材少かび)合逆していさどたを用(対向歪ひ少膝歪金う下)材75、料する割(材数負。ていのめ損し(す性レびすの定にミに(料%1.4%とる様れ(料)荷応、応理となな るとべ割る下対おえあ の減減同。にの ののしうみつ話だすが、 う(の)が、 う(の)が)	カー歪の関係を調るとキション 電力でですれたモデルから子測され からとうが分かで 電力でではなることが分かで 見われることが分かで 見われる。現実のCMCではなるこ からまたでのにのでではなるこ からででするののででは、 ないのののたきでののののででは、 ないのののののででで、 して、ののののでで、 して、ののののでで、 して、ののでで、 して、ののででで、 して、ののででで、 して、ののででで、 して、ののででで、 して、ののででで、 して、ののののののでで、 して、ののののののののでで、 して、ののででで、 して、のの他のの約44% では、100回繰返し負荷によよ ないののでで、 した。その後図3に示すの した。 に、 ないののである。 単性係は、図5に示した様に、 た、 に、 た、 に、 に、 のでのである。		

出	典	Proc.	of	5th	Europian	Conf.	on	Composite	Materials,	P.605
---	---	-------	----	-----	----------	-------	----	-----------	------------	-------

.

[A-2-1]-5b

[A-2-1]-6a

(和文)	SiC/ガラスセラミック複合材の傷の進行の観測						
タイトル (英文)	Experimental observation of progressive damage in SiC/glass-ceramic composites						
著者(所属機関)	R.Y.Kim(Uni	versity	of Dayt	on Resear	ch Institute Da	vton,Ohic	45469)
キーワード fib mul	er-reinforce tidirectiona	d glass- l lamina	ceramic te, NDS	composit ANDS mode	e, unidirection 1, brittle matri	al lamina Lx compos	te, ite, acoustic emission
図・表・写真・	参考文献の数	図 : 10	表:5	写真:6	参考文献: 10	抄訳者	望月英世
【 、 、 、 、 、 、 、 、 、 、 、 、 、	ミみ研幹表前にです。今期後は線芯直生に図を16の3プト放は一適免ッ子究動験に(101)であった。市内に、「「「「「」」」」」、「「」」」、「」」、「」」、「」」、「」」、「」」、「	「参加市市市S、44推がき次」のNODをしおう村作と力多後没る。のとこのス重薄口に十9体33さ射「弾SD、示、化イエ用。一軸にの。イ考思無よに下板ン儿字DI層がはと「性モ横6す[Dが破ネは音盃方直始図イえわ関う比での親AI型。にあ幅頻「的デガは。III見壞ルSI響曲向線まにで方れ係」なく形の親AII型。にあ幅頻「他デガにこ試らGA」の方線系えり、同に4人	は、他女生I)プCはある故、生レ向りこ料らなデノ牧泉事かりま時はるこの施て性壊強)ラSI頭つ㎜鏡、質に試りれにれカーム射中板らにさに、。ど性小マ過化でィの微た、写、はよ料0」ら比るを対Sでにののおれ に 脆言ん マさト程ガあ (み鏡。長真、Paりド23多比。決[0で検矢場ずける一性いな)	トなりをラる([) 写板さを ga計90と軸く一定//31出印合れるようマ替プリ歪ッ調ス。()の真の25用 no算0[0方て連す0]00さではがSiうてトえラッ量クベセ板0]潜で平〜い とさの//向進のる gNれ示応始C/にいりれイクでスるラの 2 板調均50た Taれ (/薄線実た薄、たさ力まんマるッばに	もいて曲いと期をして、 ある起線もことに、 もいて曲りるとして、 もして、 もして、 もして、 もして、 もして、 もして、 もして、 も	子はわの一たGPよど熟済はな(0る亀の、現基なさ前歪物Paりび膨板応。0)維が合維、谷いれに曲性に計L張は応。0)維が合維、合。るは線を劣算L張は応。0)維が合維、	オのように最も弱いプライにお 青重負荷中の傷の進行は応力- 。多軸方向薄板は一軸方向薄板 るかに厳しい傷の進入を受けて からわかる。表4にもとの物性 示す。マトリックス弾性率した。残留応力状態が破壊に及 IIマトリックスを用いて調べた 数はCASより小さくLASIIより 造時に界面では圧縮円形応力 を受ける。LASIII薄板では応力 5はこれら2つの材料の比較で 坂断と界面の分離を示す。図15 推-マトリックス界面に達する 界面に沿って延びる。これらマ 断、界面分離は非線型応力- 合材の性質の連続的な劣化をき

出典 Proc. of 16th Annual Conf. on Composites and Adv. Ceram., P.281

[A-2-1]-6b

[A-2-1]-7a

[A-2-1]-7a					
(和文)	粒子強化セラミック複合材料における圧縮応力破壊の微視的機構 Micromechanisms of Compressive Fracture in Praticulate Reinforced Ceramics				
(英文)					
出典	Proc.of 16th Annu.Conf.on C	omposite Mater.and Adv.Ceramics. P.107			
著 者 (所属機関)	George Lird ∏ (US Buerau o K. C. Kennedy (Oregon State	f Mines, Albany, OR. USA) Univ., Corvallis, OR. USA)			
キーワード	praticulate reinforcement, friction coefficient, stres elastic moduli mismatch, pu	SiC/TíB2, Si3N4/SiC, M-Glass/Ni, s intensity factor, toughening, ll-out, finite element analysis			
図・表・写真	・参考文献の数 図:6 表:1 写	3 真:0 参考文献:17 抄訳者 佐藤仁俊			
[SiC] M / [I U - Glass] M cle)に。、行のn Tax結 cracher ack のよ摩石な結 cracher ack のもの のよ摩子子 ででの 性係 g. 1 状、ka Fig. 1 なん にの 、行の の 集工な結 cracher ack 数1: (a/r) なるい K1 (1) (a/r) (a/r) (a/r) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c	$[iB_2]_p$, $[Si_3N_4]_M$ / $[SiC]_p$ 及 / $[Ni]_p$ (M:Matrix, P:Parti- 复合大学校, $[Ni]_p$ (M:Matrix, P:Parti- 支付, $[Ni]_p$ (M:Matrix, P:Parti- 支付, $[Ni]_p$ (M:Matrix, P:Parti- generation, $[Ni]_p$) (μ), $[SiC]_p$, $[Ni]_p$ (μ), $[SiC]_p$, $[Ni]_p$ (μ), $[Ni]_p$ (M:Matrix, P:Parti- generation, $[Ni]_p$ (μ), $[Ni]_p$ (M:Matrix, P:Parti- generation, $[Ni]_p$) (μ), $[Ni]_p$ (M:Matrix, P:Parti- generation, $[Ni]_p$ (μ), $[Ni]_p$ (M:Matrix, P:Parti- generation, $[Ni]_p$) (μ), $[Ni]_p$ (M:Matrix, P:Parti- generation, $[Ni]_p$) (μ), $[Ni]_p$ (M:Matrix, P:Parti- generation, $[Ni]_p$) (μ), $[Ni]_p$ (M:Matrix, P:Parti- generation, $[Ni]_p$ (μ), $[Ni]_p$ (M:Matrix, P:Parti- generation, $[Ni]_p$) (μ), $[Ni]_p$ (M:Matrix, P:Parti- generation, $[Ni]_p$) (μ), $[Ni]_p$ (M:Matrix, P:Parti- generation, $[Ni]_p$ (M:Matrix, P:Parti- generation, $[Ni]_p$) (μ), $[Ni]_p$ (M:Matrix, P:Parti- generation, $[Ni]_p$ (M:Matrix, $[Ni]_p$ (M:Matrix, P:Parti- generati	《結果および考察》 Fig.3, Fig.4, Fig.5 に,3種の複合材料の モデル計算から得た負荷面対応力拡大係周 の電気した。横軸は、球球キャビティ周 開、を通した。横軸は、球球キャビティ周 開、を加りた。横軸は、球球キャビティ周 開、を加りた。横軸は、球球をついた。 「「」」」」 「「」」」」 「「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」 「」」」 「」」」 「」」 「」」 「」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」」 「」」 「」」 「」」 「」」」 「」」 「」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」 「」」 「」」」 「」」 「」」 「」」 「」」」 「」」 「」」 「」」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」 「			
有限要素のマトリ 有限。そのマトリ ようをにモディファイマ なっかで、 なった。 るののでトリ なって、 、 、 、 、 、 、 、 、 、 、 、 、 、	モデルによる二つの方法で確証 つは、有限要素法モデルを大き 1972内の球状キャヒティ を反映する することであり、他の一つは球 囲に環状亀裂を考えることであ 生では、次式により子午線応力 (3(R/x) ³ -(R/x) ³) -5ν) ν: ホアソン比、 R: 粒子直径 x: 粒子中心から放射状に 沿った赤道面への距離	れる如くグラフの開きは大きくなる。 このように、摩擦が存在する場合、弾性係数のミスマッチが大きいほど靱性の向上効果は大きい。 《結論》 ・マトリックスとの摩擦がない粒子は、圧縮荷重の下で亀裂側面を開き、粒子強化セラミックス複合材料の靱性を低下させる。 ・マトリックスとの摩擦がない粒子はマトリックス・粒子間に弾性率ミスマッチが存在しても粒子強化セラミックス複合材料の靱性を低下させる。 ・マトリックス・粒子間の摩擦(0.1<μ>0.25)が発生する場合は靱性が向上する。 ・摩擦係数が0.25のとき、球状キャビティにより生成した引張応力場は圧縮応力場に代わり 亀裂が閉鎖する。			
較したもので、	両者はかなり一致している。	ミスマッチ が大きいほど靱性は増大する。			

[A-2-1]-8a

(和文)	粒子強化セラミックス複合材料	斗のタフニング機構					
タイトル (英文) 	Micromechanisms of Tougheni Composites	Micromechanisms of Toughening in Particulate Reinforced Ceramic Composites					
出典	Proc.of 16th Ann. Conf. on	Composite Mater. and Adv	. Ceram. P.99				
著 者 (所属機関)	R. I. Brett, P. Bowen (School of Metallurgy and M Edgbaston. Birmingham, UK)	aterials, University of	Birmingham,				
キーワード	SiC, SiC-TíB₂, vacuum, fra	cture toughness					
図・表・写真	・参考文献の数 図:3,表:0, 3	写真:2,参考文献:11	抄訳者 佐藤仁俊				
国本 本 は 立 本 け こ 熱 が れ に な ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹		世 本 ま 1200℃ 本 本 1200℃ 本 1200℃ 本 1200℃ 本 1200℃ 本 1200℃ 本 1200℃ 本 1200℃ 本 1200℃ 本 1200℃ 本 1200℃ 本 1200℃ 本 1200℃ 本 1200℃ 本 1200℃ 本 1200℃ 本 1200℃ 本 1200℃ 本 1200 1200℃ 本 1200℃ 本 1200 1000 1200 1000 1				
粒子、TiB ₂ は さらに、研磨 れてクラックの 破壊靱性値 に要約した。 温の場合より	250粒子をサンプリングした。 した試験片にプレクラックを入 D相互作用を直接観察した。 D測定結果を図2 に示し、表1 SiCの1200℃の破壊靱性値は室 たきく、SiC/TiB₂の場合は小さ	の抑制、クラックの歯止され、マイクロクラックが な存しないと仮定すると、 SiC 材ほどに、SiC/TiB ₂ C るようには見えないので、 筈である。	め、曲がりと枝分か ある。これは温度に 温度を上げたとき の靱性を高くしてい 小さいものである				

[A-2-1]-8b

[A-2-1]-9a

(和文)	SiC粒子で強化した反応焼結S	ii ₃ N ₄ の機械的挙動	<u> </u>		
タイトル (英文) 	Mechanical Behavior of Silicon Crabide Particulata Reinforced Reaction Bonded Silicon Nitride Matrix Composite				
出典	Proc. of 16th Ann. Conf. on	Composite Mater. and Ad	lv. Ceram. P.81	-	
著 者 (所属機関)	S. V. Nair, Peter Z. Q, Cai Dept. Univ. of Massachusett Haggerty (Materials Prosess logy, Cambridge, MA, USA)	, J. E. Ritter (Mechanic s, Amherst, MA), A. D sing Center, Massachuset	cal Engineering Lightfoot, J. S. ts Inst. Techno-	-	
キーワード	SiC, SiC – Si $_3N_4$, particu indentation method	late composite, toughen:	ing mechanism		
図・表・写真	・参考文献の数 図:1 表:1 3	写真:3 参考文献:13	抄訳者 佐藤仁	.俊	
本	上がある、リックスとして、 ないの二 とがある、リックである。 とした、 ないたの一 とした、 ない、 ない、 ない、 ない、 ない、 ない、 ない、 ない	考えた。 9479 の複合材 に対り、R に分布し 1n P に対り、R に対り、R に対り、C に対り、C に対り、C に対した (1/3 であり、C) であっした。 947110であった。 947110であった。 17110であった。 171100であった。 17110000000000000000000000000000000000	□ で1曲照 いてから裏則暇のを これを量生 のリッ浅クッチチェー いてから裏則暇のを これを量生 のリッ浅クッチチェー いてから裏則暇のを これに加一は 破ック留シクをの確 いてからましたけに う加 R え定増 断クと応ョが通破空 はっいい ここ でせ大者と性(1)いた さそ比、、(ターベにのニら子い効蛭 切りとこう きずきらイととて。 のしべ何強行 たは相ンれのるに対	一のと06 え、なはンは式、 範て、れ化99 と強互グな周こ弾し	
キズの小さい キズで、しか 高っのは、 あるる。 50 µ)度を示した。 こ と	>>monolithic RBSN (94710) は D曲げ強度は 457±111 MPa で し、キズが小さい割に低強度で 生が低い(1.57 MPa mº ³) ため SiC(P) で強化したRBSN(94711 きさが極端に大きく、最低の強 これは、SiC粒子の凝集のため	ている。 クラックは粒 いが、その経路は比較的 子へと局在して進展して この知見から高靱化は クラッキングによるもの	子で偏向はしてい ねじれ、粒子から いる。 SiC粒子のマイク と考えられた。	な粒ロ	

[A-2-1]-9b

Material Type	Ball-on-ring Strength (MPa)	Toughness (indentation) (MPa-m ^ 0.5)	Toughness (fractography) (MPa-m ^ 0.5)	Hardness (GPa)	(GPa)	Flaw size (um)
8 RBSN	295 (138)	1.63 (0.08)	1.76 (0.04)	9.2 (0.8)	147	53
9a RBSN	273 (32)	2.46 (0.14)	-	10.2 (1.1)	163	-
(22%SiC(p)) 95 RBSN (38%SiC(p))		3.0-3.8	-	11.0 (1.3)	176	-
10 RBSN	457 (111) 171 (6)	1.57 (0.12)	1.81 (0.22) 3 11 (0.42)	8.9 (1.0) 11.4 (1.3)	142	19 302

al. [10]. Fracture toughness was also determined by the fractography method by relating the stress at the flaw site to the size and shape of the strengthcontrolling flaw as determined by fractography [6,7].

Figure 4: SEM micrograph of an indentation crack path on the polished surface of Type 9b composite, showing uncracked ligaments along the crack path.

aligning bend fixture. K_R was obtained from a measurement of the post-indentation strength alone using the equation [9]

$$K_R(c_f) = \eta_v \sigma_f^{3/4} (\frac{E}{H})^{1/8} P^{1/4} \Phi_1(m)$$
(1)

Here η_v is a calibrated constant having the value of 0.59, σ_f is the postindentation strength, E the Young's Modulus, H the hardness, P the indentation load and $\Phi_1(m)$ is given by

Φ

$$q_{1}(m) = \left(\frac{3}{2m+3}\right)^{3/4} \frac{1}{(1-2m)^{1/4}}$$
(2)

m in Eq.(2) is the power-law exponent of the crack size when the R-curve is defined by the equation $K_{R}(c) = kc^{m}$ (3)

$$K_R(c) = kc^{m}$$

Eq.(1) provides the value of K_R at the critical failure crack size value, c_I , which is related to the measured as-indented crack size, c_i , by

$$\frac{c_f}{c_i} = (\frac{4}{1-2m})^{\frac{1}{3+3m}}$$
(4)

Experimentally, *m* is obtained from the slope, β , of a log-log plot of σ_f versus *P* using

$$m = \frac{1 - 3\beta}{2 + 2\beta}$$

(5)

When m = 0, that is, when $\beta = 1/3$, no R-curve behavior is present, and $K_R = K_c$. Eq.(1) then reduces to the previous derived equation by Anstis et

所感 ポーラスな複合材料についてインデンテ ーション法で破壊靭性等機械的特性をR 曲線に着目して検討し、興味深かった。 [A-2-1]-10a

(和文)	RBSNとRBSN複合材の~	インデンテーション残留応力	ל				
(英文)	Indentation Residual stress in RBSN and RBSN Composite						
出典	Proc.of 16th Ann. Conf. on	Proc.of 16th Ann. Conf. on Composite Mater. and Adv. Ceram. P.90					
著 者 (所属機関)	S. V. Nair, Peter Z. Q, Cai Dept. Univ. of Massachusett Haggerty (Materials Prosess gy, Cambridge, MA, UAS)	S. V. Nair, Peter Z. Q, Cai, J. E. Ritter (Mechanical Engineering Dept. Univ. of Massachusetts, Amherst, MA), A. Lightfoot, J. S. Haggerty (Materials Prosessing Center, Massachusetts Inst, Technolo gy, Cambridge, MA, UAS)					
キーワード	SiC, SiC—Si₃N₄, particu indentation method, resid	late composite, tougheni ual stress	ng mechanism				
図・表・写真	・参考文献の数 図:2 表:3 5	写真:0 参 考 文献:9	抄訳者 佐藤仁俊				
が のま見靱が 想と下の使の高破イた いいがか にた す10ンに央 周い料き うかで地性あ充的予のもっ研強壊ン結 そにる信を使要。 イるNテ、に強りて固定要ーらあかのる分な想残とた究度靱デ果 こよか頼検用約 ンたのーイお度の伝有。 (すべう、るら測。な塑さ留で破でで性ンと でるどで討しし K デめ範シンきを残統の。 (すべて)、その一人定 密性れ応は壊はポ値テは 、残うきしたた 。 ン、囲ョデ、決留的値上ででなった。 (なくれたない)、4 (ない)、4 (ない)	レーム 「「「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」」 「」」」 「」」 「」」 「」」」 「」 「	クた。シャン クた。シャン オン、えるな シャン 大き、 シャン 大き、 シャン 大き、 シャン 大き、 シャン 大き、 シャン 大き、 シャン 大き、 シャン 大き、 なた、 シャン にたい なた、 シャン した にたた なた、 なた、 なた、 なた、 なた、 なた、 なた、 な	ロース ロース ロース ロース ロース ロース ロース ロース				
o, a,c,と心) る。表3 にイ	ッ 5 からふめに吸吸物性値での ンデンテーション荷重、クラッ	音のにのと和冊 フりた。 					

[A-2-1]-10b

ヽル Indentation Residual Stresses In RBSN And RBSN Composite

(1)

(2)

 $K_{c} = Y \sigma \sqrt{a}$

where Y is a crack geometry constant.

$$K_{app} = Y_i \sigma_f \sqrt{c_i}$$

where, Y_i is the indentation flaw shape factor, σ_f the post-indentation strength and c_i the as-indented flaw size. The indentation flaw shape factor Y_i in Eq.(2) is 1.06 [8]. If no indentation residual stresses are actually present, A would be

$$K_e = \eta_v \left(\frac{E}{H}\right)^{\frac{1}{2}} P^{\frac{1}{2}} \sigma_f^{\frac{1}{2}} \tag{3}$$

where σ_f is the post-indentation strength, P is the indentation load, E/H is the elastic modulus to hardness ratio, and η_v is a constant with a value of

$$K_{c} = \chi_{R} \left(\frac{E}{H}\right)^{\frac{1}{2}} \frac{P}{c^{\frac{3}{4}}} \tag{4}$$

where c is the indentation crack size (measured as half of the total surface trace length), and the value of χ_R is 0.016. In Fig.2, the fracture toughness by

Table 1: Materials included in this study

Material Type	Description	SiC type & bulk volume fraction
Type 1	RBSN	-
Type 3	RBSN	-
Type 8	RBSN	-
Type 10	RBSN	-
Type 6	RBSN/SiC(p)	2µm SiC(p),17vol%
Type 7	RBSN/SiC(p)	2µm SiC(p),33vol%

Table 2: Strength-controlling flaw sizes, stresses at failure site and fractography toughness of the materials included in this study

Material Type	Stress at Failure site σ , (MPa)	Ave. flaw depth a, (µm)	Ave. flaw half width c, (µm)	Fractography toughness K _e , (MP a-m ^{0.5})
				0.0010.00110
Type 1 RBSN	205.3	72	93	[2.00±0.03 [4] ⁻]
Type 3 RBSN	391.3	10	21	1.65±0.06 [7]
Type 8 RBSN	185.0	53	98	1.76±0.04 [4]
Type 10 RBSN	280.4	19	53	1.81±0.22 (3)
Type 6 RBSN/SiC(p)	302.7	25	31	1.94±0.08 [4]
Type 7 RBSN/SiC(p)	231.7	61	51	2.07±0.08 [3]

*: Numbers in bracket indicate numbers of samples.

Table 3: As-indented crack lengths and post-indentation strengths for the materials involved in this study

r	·····		
Sample Type	Indentation load, P (N)	Crack length, c (µm)	Strength, σ _j (MPa)
Type 1 RBSN	9.8 49.0	38.6±6.6 [16] 124.2±13.5 [16]	133.24±8.62 [3] 78.81±9.96 [3]
Type 3 RBSN	9.8 19.6 49.0	39.3±3.6 [16] 61.7±4.3 [16] 117.3±13.2 [16]	113.53±7.57 [3] 89.91±4.59 [3] 85.41±3.66 [2]
Type 8 RBSN	9.8 19.6 29.4 49.0	39.6 63.1 87.2 125.5	110.84±5.76 [4] 96.81±9.18 [4] 77.57±1.64 [4] 65.82±0.58 [4]
Type 10 RBSN	19.6 49.0	63.4 130.9	80.30±11.20 [3] 66.38±5.75 [3]
Type 6 RBSN/SiC(p)	9.8 19.6 29.4 49.0	38.1±4.2 [16] 66.9±6.2 [16] 90.1±8.8 [16] 126.3±11.7 [16]	118.6±9.3 [4] 107.0±3.6 [4] 83.6±7.4 [4] 79.8±4.7 [3]
Type 7 RBSN/SiC(p)	9.8 19.6 29.4 49.0	38.9±4.0 [16] 69.8±6.0 [16] 99.9±10.4 [16] 128.6±13.9 [16]	147.7±13.0 [3] 115.6±13.9 [3] 102.4±3.21 [3]

Numbers in bracket indicate numbers of samples.

所感 ポーラスな複合材料についてインデンテ ーション法で破壊靭性等機械的特性をR 曲線に着目して検討し、興味深かった。

[A-2-2]複合化プロセスと性質

[A-2-2]-1a

(和文)	S i 3N4-C系下のウイスカ成長と複合体作製
×1 トル (英文)	Whisker Growth and Composite Fabrication in the Si3N4-C System
著者(所属機関)	Hongyu Wang and Gary S. Fischman (New York State College of Ceramics at Alfred University)
キーワード Si3 car	isker, composite, whisker growth, SiC whisker, N4, chemical mixing, VLS mechanism, root growth rbothermal reduction, liquid alloy droplet,
図・表・写真・参考	考文献の数図:3表:0写真:5参考文献:22抄訳者 島田忠
【 カと素化化つら 合れ助間い壊性と 窒とい liらこア段長をV 時きこ成概マ(き熟珪珪でのまでに剤保る靱はし触化、る触叫のの表階に見型触、なと長クイ原で珪リこ合化ア3派ッの4処。無炭れ確いの場面でつい欠媒生液がはフクイ原で珪リこ合化ア3派ッの4処。無炭れ確いの機、のスRて2のた見さい。 このこうがいた いかく しつしか 認知 に素た認場 d構 の しんしん いかくしん しん しんしん しん	
出典	Proc. of 16th Annual Conf. on Composites and Adv. Ceram., P.723

[A-2-2]-1b

[A-2-2]-2a

(和文)	板状SiC粒子/Al 203複合材料的	こおける表面改質と鋳込成り	Ĕ						
タイトル (英文) 	Surface Modification and Slip Casting of SiC Platelets in Al ₂ O ₃ Composites								
出典	Proc. of 16th Ann. Conf. on	Composite Mater. and Ac	iv. Ceram., pp.121						
著 者 所属機関	P. T. Pei, J. F. Kelly, S (Ceramics Division, Nation logy, Gaithersgurg, MD, U	. G. Malgham al Inastitute of Standar SA)	ds and Techno-						
キーワード	surface modification, SiC,	SiC-Al ₂ O ₃ composite, s	slip casting						
図・表・写真・	・参考文献の数 図:3 表:2 写	写真:4 参考文献:7	抄訳者 佐藤仁俊						
板状 SiC粒子 め Al ₂ 0 ₃ 復合れ か。SiCp/Al ₂ ので。モラミッパ る。セラミッパ る。ビワ/Al ₂ ン こ中た法メペール、 ですに オンンのSiCp キンンのSiCp キンンのSiCp キンンのSiCp キンンの SiCp は 、 た、 イン 、 イン ので。 を カンンの SiCp イン ので 、 そ 、 ので 、 で 、 で 、 や 、 で 、 で 、 で 、 で 、 で 、 で 、	F(SiCp)がタフネスを上げるた オの強化材として既に検討され 0,は、切削工具、低温度、低 クスとして応用が見出されてい 0,には、表面特性の分析、コ 割定方法の検討が必要である。 コロイド化学に基づきプロセ SiCpとAl ₂ 0,粒子の特性を調 SiCp上にAl ₂ 0,をコートする こめ、Al ₂ 0,の粒度分布、電気 こよるAl ₂ 0,の粒度分布、電気 こよるAl ₂ 0,の粒度分布、電気 こよるAl ₂ 0,の粒度分布、電気 について研究した。SiCpの上 -トしたものをSEMとESAで調 時込成形したSiCp/Al ₂ 0,複合材 デーをSEMで調べた。	ベイマイトのような水酸 思われる。 pH=5.8で Al ₂ 0 ₃ 粉末と 持つ。つまり、SiCpに Al 出する。図3 は,Al ₂ 0 ₃ ス 症の3 は,Al ₂ 0 ₃ ス 症の第にp/Al ₂ 0 ₃ ス 症の第にp/Al ₂ 0 ₃ ス 症の増加を示したものであ するとESA 値が増加する。 SiCp に Al ₂ 0 ₃ 粒子がコー 表面分布範囲を SEMで調 一の濃度を対し、ほぼ同量の SiCp に対し、ほぼ同量の すると約40%表面分布範囲 子添加量を更に増しても、 り吸着し続ける。 Al ₂ 0 ₃ SiCpへのるように Al ₂ 0 ₃ の に見られるように Al ₂ 0 ₃	 SiCp はずるためと SiCp はがの電荷を 30,粉添加量をしか ラリーにかりる ESA ラリーにたいなどの た。範の出すの たの 						
 マ APK15, 50 sta Chemical れら原料の特徴 (0.1N), トリン SiCpにAl₂0, 通音音がである 通音音が る →混合液を 図1 に示性な 	(住友化学製)と Dispal-80(Vi Co.製)の3種類を用いた。こ 生を表1に示した。pH調整と表 ブには硝酸(0.01n),アンモニア フロロエタンを用いた。 粒子をコートする方法は次の SiCpと Al ₂ 0 ₃ の凝集を別々に す \rightarrow pH=5.8の水中に分散させ 友を pH=5.8 で機械的に混合す ESiCpスラリーに添加する。	るとコートの強度が低下す 32 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	03 00 (Q C M H K K P する。 図5 は AKP プを SiCp スリップ トされることを示し 03 粒子をコートし スラリー中に導入し 分離しないよう、ス 加させた。その結果 が少なくなった。 観察により、SiCpの						
 たの表面や住谷 ーニングは重要 (J.Am.Ceram.S 参照。 図2 l ングした SiCp .3を超えるとS pH=5~8 でA12 KP50 A1203 C .2±0.1, 8.72 は 8.8±0.1 	Enfractivica)、 表面クリーン 要である。その方法は別の報告 Soc., Vol9-10 pp.2115-2123)を は、Al ₂ O,粉末と表面クリーニ のESA 測定結果である。pH=3 SiCpは大きな負のESA を示し、 O,粉末と正となる。AKP15,A D ESA ₁ cp (等電点)は各々 8 ±0.1 である。Dispal180 Al ₂ O ₃ で、AKP50に近い。 これは、	A_{120} , コート/)元王 C の 表面コートした $A1_{20}$, と ントラストを分かりやす (d50 =0.25 μ) でコート を AKP15(d50=0.7 μ) の5 入して SiCp 10wt% を含 合材を得た (図7 参照))。 コートが完全であり、ス グでコートが安定であった	S こ C を確認した。 マトリックス間のコ くするため、AKP50 したSiCpのスラリー SOwt% スリップに導 んだ SiCp/Al ₂ O ₃ 復 0.25μのAl ₂ O ₃ の ラリープロセッシン たことを確認した。						

[A-2-2]-2b

[A-2-2]-3a

(和文)	常圧焼結Al203-TiB2の緻密化と	:破壞靱性						
ダイトル (英文) 	Densification and Fracture Toughness Enhancement of Pressureless Sinterd Aluminum Oxide - Titanium Diboride composite.							
出典	Proc. of 16th Ann. Conf. on	Composite Mater. and Ad	v. Ceram., pp.132					
著 者 (所属機関)	Timothy V. Lin, P. Darrel (Dept. of Ceramic QEnginee	Ownby ring, Univ. of Missouri,	Ro;;a, MIS, USA)					
キーワード	Al ₂ O ₃ -TiB ₂ , Composite, Dens Preesureless sintering	ification, Frecture toug	heness					
図・表・写真	・参考文献の数 図:6 表:0 写	译真:0 参考文献:22	抄訳者 佐藤仁俊					
Al ₂ 0, $(SiC, brick)$ Al ₂ 0, $(SiC, brick)$ ので化ンで な向プ度プきまか 高で、 かで性、 の学に形性はペ形が 結密。 なの の学に形性はペ形が 結密。 なの たち に、 たち のでせ、 の の の で たち の で たち の で たち の で たち の で た の で た の で た の で た の で た の で た の で た の で た の で た の で た の で た ら の で た の で た の で し 、 し な た の で え の で し 、 し な た の で 、 し で し な た ら の で た に た の で し で た ら の で こ し の で し の で し な た の で し に た に た に た に に た た の で た い あ の で た い あ の で し の で た の で し い た の で し い た の で し の で し い た の で し い た た し て し れ の で し 、 し て し れ の で し 、 の で し に に た の で た の で た か で ろ の で た の で た の で た の で し の で た か で か の で し つ で た か の で し の で か い ら の で し い っ で か の で し っ で し つ で た っ の で し つ で し つ で し つ で し っ の で し つ で し つ で し っ の で し っ の で し っ の で し っ の で し っ の で し っ つ で し っ つ で し つ で し つ つ で し っ つ で し つ で し つ で つ つ で し つ つ て つ で し つ こ っ つ こ つ つ て つ つ つ つ つ つ つ つ つ つ つ つ つ	裏靱性は $A1_20_3$ と反応しない強 $C, TiB_2, ZrO_2, B_4C, ダイア 复合化により増大させることが TiB_2は製造中または使用中の硬さ(15 ~36 GPa), 高いヤi74$ GPa)から魅力のある強化材 因因がある。 $A1_2O_3$ -TiB ₂ のホット x ある。 $A1_2O_3$ -TiB ₂ のホット x なが、 $i(x_n - x_m)$ ながある。 $A1_2O_3$ -TiB ₂ のホット x なが、 $i(x_n - x_m)$ x x x x x x x x	図2にTiB ₂ 含点 図2にTiB ₂ 含点 で、TiB ₂ 合点 で、TiB ₂ 合点 で、TiB ₂ 合点 で、TiB ₂ 合点 で、TiB ₂ 合力 で、TiB ₂ の で、TiB ₂ の で て TiB ₂ の で て TiB ₂ の で TiB ₂ の で TiB ₂ の で TiB ₂ の で TiB ₂ の で TiB ₂ の で TiB ₂ の て TiB ₂ の TiB ₂ TiB	の量 品度と聞巫方寸 喝 m oblight of a contract of a					
の相対密度と の相対密 の の の 2 μ m の の に は が た の て i B 、 物 た の し て i の の の こ 2 μ m の の る 高 で あ の の 高 で あ の の こ こ 。 一 れ む し て i B 、 物 た し て i B 、 物 た い に 明 、 物 た の に に れ 、 ち に に れ た の し て i B 、 物 た い に れ 、 、 ち に い 、 、 か し て に B 、 わ た て に B 、 わ た て に B 、 わ た て に あ 、 、 、 い た の の に 、 、 、 い た の の に 、 、 の ち て に り 。 、 の た の に 、 、 い た の の た 、 に 、 、 い た の た の の て い た の た の た 、 の に 、 、 い た の た の の た い た の の び び た 、 の た の た の の の で た の た の の で た の た の の で た の た の た の た の た の た の た の た の た の で の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の の の の の の の の の の の の の	<i>w</i> 環 戦 性 に 対 す る 影 響 を 調 べ た マトリックス相として 平均 粒 径 地度 Al ₂ O ₃ (住友化学 APK 509), こつのタイプの 平均 粒 径 5.2 μ ,C,Stark A),平均 粒 径 10 μ m の 分末(Union Crbide HCT-30)を .5 μ m の TiB ₂ 粉末は、5 つの異 き(1~3, 3~6, 6~10, 10~15 分類品)に分類した。六角板状 かった。	 ためである。 K₁。を大きくする板状 迄である。アスペクトレラックデフレクションに。 きくなるため、K₁。が大きは1~15µm TiB₂粒子で引入Al₂0₃-TiB₂複合材の DCる。常圧焼結品はホットごはそれ以上である。 	立子の効果は 25vol 北が大きい粒子はク より曲がる角度が大 きくなる。 図4 魚化したホットプレ M法によるK1。であ プレス品と同等また					
複合粉末は 複合、オーブ、 混合、 また形の た。 圧粉体に 状炉で焼結した 破壊靱性は CM)と Chevro 測定した。ノー ド砥石でカッ Al ₂ O ₃ とTiB ₂ O	習音波分散し、メタノール中で ンで乾燥し、一軸加圧でペレッ 奉に成形し、さらに CIP成形し は水素雰囲気で1600℃, 1hr,管 た。 Direct Crack Measurement (D on Notch Short Bar(CNSB)法で ッチは0.75mm厚さのダイヤモン トした。 焼結体はX線回折で の反応がないことを確認した。	さらに、整粒品の効果 測定した K ₁ cは、DCM 法(大きかった。 図 6 は、1 材の、常圧焼結品とホッ について、CNSB法による トプレス品の K ₁ cは、急れ を超えると減少する。 K ₁ cは、徐々に上昇する。 子で造った常圧焼結品ので した。	を示した。CNSB法で こよる値より僅かに ーン5 μ m TiB ₂ 強化 トプレス品の二種類 K ₁₀ を示した。ホッ 数に上がるが、5% 一方、常圧焼結品の 3~6 μ m TiB ₂ 粒 たットきな K ₁₀ を示					

[A-2-2]-3b

[A-2-2]-4a

		·····								
(和)	文)	炭化ケイ素ウイスカー強化アルミナ								
タイトル (英文	文)	Silicon Carbide Whisker Reinforce	Silicon Carbide Whisker Reinforced Alumina							
著者(所属機問	푗)	Bernard J. Wrona, James F. Rhodes Advanced Composite Materials Corpo 1525 S. Buncombe Road Greer, SC 25	and William pration 3651	M. Roge	ers					
キーワード Sh	SiC w nigh	hisker, alumina composite, rice ful temperature strength, hardness, com	ll. toughenin mmercial app	ng mecha lication	nism, fracture toughness,					
図・表・写真	·参考	考文献の数 図:0 表:1 写真:2 参考	较献:9	抄訳者	神谷晶					
【に製き強はるのに らり物はかてか年の生衆側売脳缶ジ 製鉱16月、SiCh、かまの見たりに、の時間に、1000000000000000000000000000000000000	イ以賊性品対加削てドケットにつとけ。工分さ販さ次機計は、を得りけてルビで素来的値Paすし工いジをプアミ可セマA具みれ売ら、の画er黒除らGPミのク閉あり、性にいるで算る。イランク能ミリMA用一て新に あをら組まれ aク機 30 じり	イスカーの商業的な生産は1970年代初期 SiCウイスカーによってアルジナ複合材料を作 生質が大幅に向上することが示されて は従来のアルジナの2.7MPa、mからSiCウイスカ 「mへと向上した。このような複合材料 S敏感さかがいさくなりクラック成長に対す ている。破壊靱性値や高温強度、硬度 や飲料水用の缶の成形機、耐摩耗材 S。 トマテリアルズ、社 (ACMC)は1979年に、もみが たる技術の開発のために設立された。 ント建設ののち、大規模なウイスカー製造工 クコンボ・ジットの製造工場の建設へと事業 マトリックスコンボ・ジットの研究開発の初期に 性を探るためにオークリッジ研究所におい ックス部門の間で交流が始まった。ここ ックス/ウイスカー複合材料の研究成果が1982 に社によるその後の成果は機械部品用 用セラミックスの発展を導いた。1985年以来 強化切削材がグリーンリーフ社によって合 ている。スウェーデンのサントビックAB社は西 周を展開し、強化セラミックス切削工具を販 こ最近では4ギリスのクアーズ セラミックス社、ゲ そしてかけウト、/メクルボ、ックス社が飲料水用 全属を成形する部材にアルジナ/ウイスカーコンボ をたてた。 5によって示された方法でSiCウイスカーを 指抗炉でもみがらを加熱し、浮遊選 ちして、クラックアブリッジング、ウイスカーアル ンの三つがある。クラックアリッジングはクラッ る応力が働いてクラックの開口と進展を り、マトリックスからのウイスカーのアルアクトによっ	てデジつれれ 度え対水25810の 填列際がす以くすさ き化 用で 00剤高が 増か、るた四、るみ中SiBNはがのある上なるれ対いを対いは対かやい すがありがも種硬とふ冷気が見いたが妨切取る。にりこるみほ妨みて一から焼とり すが面かりとの気を分加しみ強力のにはが切取る。にりこるみほ妨みて一から焼とり のりたいしい強力のでしたが防収る。対緻不とこのう害の密にがも 1816年のからたとしていた。 1816年のからたいのでは、 1817年のでは 1817年のでは、 1817年のでは 1817年ので 1817年の 1817年ので 1817年ので 1817年ので 1817年の 1817年	りデッケムiukがよい7をなっているな的なすと思いいの、彼が以てなIPなうこまえかるりの特っいちを一桁るるるな的ですな常ありいのク複ネ以でが焼るクとい粒で、AP性でけが示添小り。かくならる微にる比とで比合が下行よ焼るデにデートーがにではいし加さかりらす圧せ、強重。にお、を材やのわりにすす。イビッ・受けたたるけ、パイスお%の強重。にお、を材やのわりにす。イビッ・受けたたるけ、パインスを発展する。	7レクションは7トリックス/クイスカー界面のデボン よって起こる。またプ・ルフクトとブリッジ シグによって促進される。もうひと 自身によるクラックブリッジングが考えら ウスの粒成長を抑制するために限ら 無化アルジャ復合材料の破壊靱性値、強 と比較した。ウイスカーの量が30wt%を越 が減少した。このほか耐熱衝撃性も 幅に向上する。たとえば200℃から 00MPa程度の強度を示すのに対し、 を1000℃以上から水中急冷しても 強度低下が起こらなかった。また で1500℃におけるクリープ速度が単味 くなった。 の割合が大きくなるほど粉体の充 かーの強度と形のために粒子の再配 である。圧粉体の密度は常圧焼結の るためにできるだけ大きくする必要 分体は焼結によって17から20%収縮 含まれるアルジャは常結で普通95% イカーの凝集が起こると、密度が低 きをもたらす。ウイスカー分散を確実に 長であるとともに、しばしば見落と ついては、特性を向上させるには大 つれるが、一方で、長いウイスカーは緻密 るる最適値が存在すると思われる。 最適化するのに加え、焼結助剤を と得ることが行われる。 場合、常圧焼結は不活性雰囲気で14 れる。ウイカーが10%を越えると焼結助 複雑になる。もし求められる性能が よって作られることもある。ウイスカー トプレス法がよく用いられる。					

出典 Proc. of 5th Europian Conf. on Composite Materials, P.653

[A-2-2]-4b

タイトル(英文)	Silicon Carbide Whisker Reinforce	d Alumina
ニッかル基合金のため 使った最初の商品(したのは、ウイスカー分 の強度および硬度が 削工程では工具と材 ことがある。従来の SiCウイスカー強化アルドナ の寿命も長くなって メーカーはかつて Incor	bの切削工具が、SiCウイスカー強化アルミナを とであった。このような応用を可能に -散による破壊靱性値の向上と高温で が大きいことがあげられる。普通の切 オ料の界面では温度が1000℃を越える Dタング ステンカーバイド切削工具と比べて、 辺削工具は切削速度を速くでき、工具 た。一例として、ある大手のガスタービン nel 718の切削にサイアロン工具を、仕上げ	にタングステンカーバイド工具を使っていたが、これらをSiC042 か-強化アルシナ工具に変えたことによって作業時間を5時間 から20分に短縮することができた。そして年間で250000 ドルの節約になり、3000マシン時間を他の作業に振り向ける ことができ、代替機の購入を延期できた。 この他に、アルミ缶製造機の部品にSiC042カー強化アルシナが 利用され、品質の改善とコスト削減に役だっている。さら に耐摩耗性ポンブ部品、ポールおよびローラーベアリング、サンドブ ラストのノズルそして線引きダイスなどにも応用されている。

【図、表、写真】

Table 1. Properties of Alumina and Whisker Reinforced Ceramics

MATERIAL	100% Al ₂ O ₃	Sintered 7.5% SiCw 92.5% Al ₂ O	Sintered/HIP 7.5% SiCw 3 92.5% Al ₂ O3	Hot Pressed 15% SiCw 85% Al ₂ O ₃	Hot Pressed 25% SiCw 75% Al ₂ O ₃	
THEORETICA DENSITY ACTUAL, g/cr	AL 3.96 m ³ 3.96	3.92 3.73	3.92 3.86	3.86 3.80	3.78 3.72	
FLEXURAL STRENGTH, MPa	345	414	538	566	635	
FRACTURE TOUGHNESS MPa·m ^{1/2}	6 2.7	4.3	4.5	5.1	6.6	
WEAR RATE(10-5 g	77) 180		1		0.9	
VICKERS HARDNESS, GPa	17.0	17.5	18.5	19.5	20.7	
YOUNG'S MODULUS, GPa	380	390	390	391	392	
MAXIMUM USE TEMP, «	C 1100	1100	1100	1100	1100	
ELECTRICAL RESISTIVITY Ohm-cm ² /cm	10 ⁶	3X104	3X104	1.5X103	7X10²	
THERMAL EXPANSION 10 ⁻⁶ /°C	8.0	7.7	7.7	7.4	7.0	
THERMAL CONDUCTIVIT W/m °K	TY 27			30	32	
			所見 も え 複合 してい	みがらを原 すの実用化 いる。	料としたSiC の例までを具	2420年の製造からアルミナマトリッ に体的な記述によって概説

[A-2-2]-5a

(和文)	炭化ホウ素のウイスカーとプレートレ	ノット複合強化セラミ、	ックマトリックスコンボジット						
タイトル (英文)	Boron Carbide Whisker and Platele	Boron Carbide Whisker and Platelet Reinforced Ceramic Matrix Composites							
著者(所属機関)	Jenq Liu, P. Darrell Ownby and *S University of Missouri-Rolla Roll Inc. 120 Sherlake Drive P.O.box 2	am C. Weaver a. Missouri 65401. 3556 Knoxville, TN79	(Ceramic Engineering Department *Third Millennium Technologies 933-1556)						
キーワード Boror fract	n carbide whisker and platelet, alu sure toughness	mina matrix, silicor	n carbide matrix, hot-pressing.						
図・表・写真・参考	考文献の数 図:4 表:0 写真:2 参考	考文献:12 抄訳者	神谷晶						
【概要】れに作りたい。 、よっての大きな、 、よっての大きな、 、よっての大きな、 、としての大きな、 、としての大きな、 、としての大きな、 、としての大きな、 、としての大きな、 、としての大きな、 、としての大きな、 、してたき、 、してたき、 、しいこので、 、たった、 、しいこので、 、たってた。 、しいこので、 、たってた。 、しいこので、 、たってた。 、しいこので、 、たってた。 、しいこので、 、たってた。 、しいこので、 、たってた。 、しいこので、 、たってた。 、しいこので、 、たってた。 、しいこので、 、たってた。 、しいこので、 、たってた。 、しいこので、 、たってた。 、しいこので、 、たってた。 、しいこので、 、たってた。 、しいこので、 、たってた。 、しいこので、 、たってた。 、たった。 、、、 、たった。 、たった。 、、、 、たった。 、、 、、 、、 、たった。 、、 、、 、たった。 、、 、、 、、 、 、 、、 、 、 、、 、 、	Dウイスカーおよびアレートレットを複合化したア 素ウイスカー複合化炭化ケイ素を、ホットアレス さ。これらの複合材料の機械的性質は 愛れていた。破壊靱性値の最大値は、 ーで9.5MPa√m、アルトナ/炭化ホウ素アレートレ して炭化ケイ素/炭化ホウ素ウイスカーで 3.8M 実物性値は、アレートレットやウイスカーで 3.8M 実物性値は、アレートレットやウイスカーのVfに に相を粒子、アレートレットやウイスカーのVfに こよって強化できることがよく知られ やウイスカーは、それら微細な単結晶に固有 角度が粒子よりも大きい。したがって こアレートレットやウイスカーはセラミックアトリックスの強 高温での機械的性質の向上に有効であ 最近開発された炭化ホウ素のアレートレットお 炭化ケイ素マトリックスに対する強化材とし イ素は、共有結合性の強い物質である る機械的的低い破壊靱性値しか示さず、 瞬間的である。したがってその固有の ことなく靱性を向上させることが望ま 炭化ケイ素同様、共有結合性の高い物 な高温硬度、高温強度、高温やか 率と ど約素同様、共有結合性の高い物 な高温で低した材料は、軽量 れた構造用やショックスになると思われる。 は1600℃1時間のホットアレスで作製した。 場合は2050℃アルゴン中でホットアレスした。 ま密度、結晶相の組成および微構造の った。破壊靱性値はシェアロンノッチショートバー した。試験片は0.95cm×0.828cm×1.4 トアレス軸に対して垂直および平行両方 modulus-of-rupture)と四点曲げ強度 m×3.810cmの試験片で行った。破面 行った。	作製した試料はすく 度が得られた。また# 素とマトリックスの間にはい った。炭化が素プレート したアトルシトよりもウ が大きい。ウイスカーの方 う。CNSB試験片の破値 られた。曲げ強度もフ 上した。MORはプレート をくなった。 炭化ケイ素マトリックスのな ぼ比きようが単転の場合 素がせばもっと破壊靱性値 材のショットを減破壊靱性	べて理論密度の98.0%以上の焼結密 分末X線回折とSEM観察からは炭化材 かかなる化学反応も起きてはいなか やかおよび炭化材素ウイスカーを複合化 裏靱性値の向上が得られた。この場 パスカーの方が同一のVfでの改善効果 がよりアスペクト比が高いためである 面をSEMで観察すると、アルワウがみ パレートレットやウイスカーの添加によって向 小添加の方がウイスカーの添加量にほ 直は高くなっている。アルミナマトリックスの 直の向上は小さいが、それでも複合 含よりも靱性が高い。さらに炭化材 パスペクト比を増し、ウイスカーの均質性を 生値は高くなると思われる。						

出 典

Proc. of 16th Annual Conf. on Composites and Adv. Ceram., P. 696

[A-2-2]-5b

[A-2-3]複合化プロセス

[A-2-3]-1a

 (和文) 成形プロセスがアルミナマトリックス複合材料のSiCウィスカー構造に及尽す影響 ダイトル (英文) Green Body Processing Effects on SiC Whisker Textures in Alumina Matorix Composites Alumina Matorix Composites Alumina Matorix Composites Michael S.Sandlin . Keith J.Bowan School of Materials Engineering, Purdue University, Vest Lafayette, IR 47907) ×-ray pole figure analysis, alumina matrix-SiC whisker composite material, whisker orientation distribution, whisker texture, whisker orientation, seried to alongs, 図・表・写真・参考文献の数 図・表・写真・参考文献の数 図・え、ち写真・参考文献の数 図・え、ち写真・がのころにウィスカー満谷材料のつう パバ、ガ堤水酸などに関係して特定の方向や、構造 (1)データの説明 (1)デークの説明 (1)デークンストレックの説得したシのたりのかった、彼られのジェクション (1)デークスカーは人気がよくスカーの体積益 (1)デークの説明 (2)デークスカー体積益を考察することは重要なことであ (2)アルは、前版がフレミナジの読を作り、即を確確で (2)アル 実は正規算らなられて、読込を行きたいたいとしてある (2)アルラナは再発展を着くするとしたしたしたしたの事ないになので (2)アル マスカーの構造ないためたった (2)アルラボは、前版が アンシジェジ 読慣を作り、即を確確で (2)アルラボは、前版が アンシジェジ 読慣を作り、ロームが、着したいたいまので (2)アルラボは、前版が アンシジェジ 読慣を作り、ロームが、「ないのので (2)アルラブ 大は 高校 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)															
フォトル (英文)Green Body Processing Effects on SIC Whisker Textures in Alumina Matorix Composites第者(所属機関)Michael S.Sandlin . Keith J.Bowan (School of Materials Engineering, Purdue University, Vest Lafayette, IK 47907) $* - ray pole figure analysis, alumina matrix/SIC whisker composite material,whisker orientation distribution, whisker texture. whisker orientation,green body consolidation, solids loadings,M \cdot ray pole figure analysis, alumina matrix/SIC whisker orientation,green body consolidation, solids loadings,M \cdot zy = ray to figure analysis, alumina matrix/SIC whisker orientation,green body consolidation, solids loadings,M \cdot zy = ray to figure analysis, alumina matrix/SIC whisker orientation,green body consolidation, solids loadings,M \cdot zy = ray to figure analysis, alumina matrix/SIC whisker orientation,green body consolidation, solids loadings,M \cdot zy = ray to figure analysis, alumina matrix/SIC whisker orientation,green body consolidation, solids loadings,M \cdot zy = ray to figure analysis, alumina matrix/SIC whisker orientation,green body consolidation, solids loadings,M \cdot zy = ray to figure analysis, alumina matrix/SIC whisker orientation,green body consolidation, solids loadings,M \cdot zy = ray to figure analysis, alumina matrix/SIC whisker orientation,stype to zy to z$	(和文) 成形プロセスがアルミナマトリック						フス複合材料のSiCウィスカー構造に及ぼす影響								
(東大)(中のにのないて) in Alumina Matorix Composites in Alumina matrix-SIC Whisker composite material, whisker orientation, whisker texture. whisker orientation distribution, whisker texture. whisker orientation distribution, whisker texture. whisker orientation, solids leadings, 	ツイトル (市	t ∀)	Green Rod	V Proces	eing Ff	fects o		` Ubic	kor 1	ovtur					
著者(所属機関) Michael S.Sandlin, Keith J.Bowman (School of Materials Engineering, Purdue University, West Lafayette, IN 47907) キーワード x-ray pole figure analysis, alumina matrix-SiC Whisker orientation (steps) whisker orientation distribution, whisker texture. whisker orientation 第一ワード x-ray pole figure analysis, alumina matrix-SiC Whisker orientation, green body consolidation, solids loadings, 参切式: 参切式: White orientation, green body consolidation, solids loadings, 図・表・写真・参考文就の数 図:2 表:1 写真:1 参考文就:6 妙訳者 倉 知 一 正 【板 要] アルミナマトリックス-SitOナスカー満合材料で、 SitOナスカーは、成形プロセスネタンリーブロセ (1)データの説明 (価点回)をシュルツ反射法で測定した。 Lita要U3条21 1、約式、た規力が起去、圧力力通法を使い オスカー構造に影響していることがわかった。漬合材料のウィスカ 一様を応託影響していることがわかった。漬合材料のウィスカ 一様症に影響していることがわかった。漬合材料のウィスカ 一様症に影響していることがのかかった。漬合材料のウィスカ 一様症に影響していることがわかった。漬合材料のウィスカ 一での (1)データの説明 人はため、カク・スカーの体積法を、カー フアの面積をトータル面積で割ることにより爆撃する。 (2)成形類の見つてのこと、ウィスカーの体積法を、カー フアの面積をレータル面積で割ることにより増撃する。 (2)成形類の見つたのえたとなっジャン カーは、ランダムに分散したいる。 30.2 にある。2(2)のは、ウィスカーの構造変化を成形方 イスカーや海にしていない、ことさを示すどころがある。 (3)応類構成はたどうった。 (3)応類構成はたともかったのですイスカーの注意していたる。 (3)応類構成をLND・マスカーの満分が装置したいる。 (3)応類構成ない、プロセスの違いに関係してい、 、教名に、COTATATATATATATATATATATATATATATATATATATA		in Alumina Matorix Composites								CABUI	03				
著者(新属機問) Michael S.Sandlin . keith J.Bowman (School of Materials Engineering, Purdue University, Vest Lafayette, 18 47907) ×-ray pole figure analysis. a lumina matrix-SiC whisker composite material, whisker orientation distribution, whisker texture. whisker orientation, green body consolidation, solids loadings, $\Box \cdot 表 \cdot S = 5 \pm s = 5 \pm s = 5 \pm 5$						····*								· · · · · · · · · · · · · · · · · · ·	
(School of Materials Engineering, Purdue University, Vest Lafavette, IN 47907) $+ -17$ -ドx-ray pole figure analysis, alumina matrix-SiC whisker composite material, whisker orientation, solids loadings, $m + 7-17$ -Fx-ray pole figure analysis, alumina matrix-SiC whisker composite material, whisker orientation, solids loadings, $m + 7-17$ -Fx-ray pole figure analysis, alumina matrix-SiC whisker composite material, whisker orientation, solids loadings, $m + 7-17$ -Fx-ray pole figure analysis, alumina matrix-SiC whisker composite material, whisker orientation, solids loadings, $m + 7-17$ -Fx-ray pole figure analysis, alumina matrix-SiC whisker composite material, whisker orientation, solids loadings, $m + 7-17$ -Fx-ray pole figure analysis, alumina matrix-SiC whisker composite material, whisker orientation, solids loadings, $m + 7-17$ -Fx-ray pole figure analysis, alumina matrix-SiC whisker composite material, whisker corientation, solids loadings, $m + 7-17$ -Fx-ray pole figure analysis, alumina matrix-SiC whisker texture. whisker corientation, solids loadings, $m + 7-17$ -Sint (m + 7-17)x-ray pole figure analysis, alumina matrix-SiC whisker texture. whisker corientation distribution, whisker texture. whisker corientation, solids loadings, $m + 7-17$ -Sint (m + 7-17)x-ray pole figure analysis, alumina matrix-SiC whisker texture. $m + 7-17$ -Sint (m + 7-17)x-ray pole figure analysis, alumina matrix-SiC whisker texture. $m + 7-17$ -Sint (m + 7-17)x-ray pole figure analysis, alumina matrix-SiC whisker texture. $m + 7-17$ -Sint (m + 7-17)x-ray pole figure analysis, alumina matrix-SiC whishift texture. $m + 17$	著者(所属機	期)	Michael	S.Sandli	n . Kei	th l.Bo	wman								
k - r7 - kx-ray pole figure analysis, alumina matrix-SiC whisker composite material, whisker orientation, green body consolidation, solids loadings, $[X + r7 - k]$ whisker orientation distribution, whisker texture. whisker orientation, green body consolidation, solids loadings, $[X + r7 - k]$ <trr>$[X + r7 - k]$$[X + r7 - k]$</trr>			(School	of Mater	ials En	gineeri	ng, F	Purdue	e Univ	ersit	y. West	Lafay	/ette	2, 1	N 47907)
キーワード いはsker orientation distribution, whisker texture. sreen body consolidation, solids loadings,図・表・写真・参考文献の数 アルミナマトリックス-SiCウィスカー複合材料で、 SiCウィスカーは、成形プロセスや、スラリープロセ ス, PH、 た湖大坂なとに間低して特定の方向や、構造 や素で了レスな、泥焼鋳込法、圧力ろ温法なご面低して特定の方向や、構造 い、乾式プレス法、泥焼鋳込法、圧力ろ温法をした。 (1)データの開明 セスカー構造と影響していることがわかった。 後台材料のウィスカ ー構造に影響していることがわかった。 後台材料のウィスカー 一構造に影響していることがわかった。 後台材料のウィスカー 一構造に影響していることがわかった。 後台材料のウィスカー 一構造に影響していることがわかった。 後台材料のウィスカー ー構造に、酸煤に打する特性に直接影響するよい。 さとてある。 (2)成形法の効果 このボールフィギャーの特徴は、横 な、ウィスカー構造を考察することは重要なことである。 (2)成形法の効果 この第空の目的は、ウィスカーの構造変化を成形方 さとてある。 (2)の原状の力によう光振簧を作り、phを増散で うーを加え、硝酸かアンモニュウム溶積を作り、phを増散で うーを加え、硝酸かアンモニュウム溶積を行りにあたるSiCウィスカ ーを加え、硝酸かアンモニュウム溶積を行りにやる。 (2)の原状を切除した。その肥気にたから120の構成の目的な、ウィスカーの構造変化を成形方 さととてある。2(2)に加く着く着している。200分構成との方が大きいことで る。(2)に力力一法する検討などの方が大きいことで さる。(2)に力力やアルミナは凝集する。 (2)の原状のもつる、第11.5000 による局部変化が見られる。これらのことから、ウィスカーロイは、販売にしている、 ない。に力ク道法に対したにどを示すビークがある。 (2)の原状のかって、水回るにに利うの法法法とで ない、に力力通法で数にかうた。 (3)売類鋳込たに圧力ろ過法に効果したの素にしていない、 がなビーク変動かみられる、これは、売買ったが加く力 (4)とこういの文(1) (2)に広すようる、これは、水型の小回検法とい、カック、 (3)売類構成したの水に、水型の素切の効果 (2)と2(1)のデータかるしたる、これは、水型カーの情法には関係 (私しての方向力市が変化するのを避けるために、 ガンの前向で加く用物を10MPaの (4)と2(1)に示すように、ウィスカーの構造には同じ (4)と2(1)に示すように、ウィスカーの構造は、huに関係 (4)と2(1)2(1)に示すよういった。 (3)売数法ない、ガラスリングを使った売扱 (4)と2(1)2(1)に示すように、マクコンクの表してみると、 (1)2(1)にご約果 (1)に示すようる、これは、水型の一体造は、huに間 (私するにもは、水型のしてかると、 (1)2(1)にごかること(1)とやうかん (2)(1)にごがることの1)とうかう (1)2(1)にごかることがしたみとくの(2) (1)2(2)(2)(2)と比較してみると、 (2)(2)(2)(2)(2)(2)と比較してみると、 (2)(2)(2)) (2)としていること、 (2)(2)(2)(2)(2)(2)(2)(2)(2)(2) (2)(2)(2))(2)(2)(2)(2) (2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(x-rav	pole figu	re analy	sis.	alumina	mati	·ix-Si	iC whi	sker	composit	e mat	teria	<u>.</u>	
green body consolidation, solids loadings, $ \begin{bmatrix} g.g. $	キーワード	whisk	er orienta	tion dis	tributi	on, w	hiske	er tex	(ture)	wh	isker or	ienta	tior	۱,	
図・表・写真・参考文献の数 図:2 表:1 写真:1 参考文献:6 抄訳者 合 知 一 正 【概 要] (極点図) をシュルツ反射法で制定した。 (福泉図) をシュルツ反射法で制定した。 SICウィスカーは、成形プロセスや、スラリープロセス、 (福泉図) をシュルツ反射法で制定した。 (福泉図) をシュルツ反射法で制定した。 ハ・ 充現大器など、気能がたプロセスや、スラリープロセスや、スラリーブロセスや、スラリーブロセスの時、たち、記録録込法に加えた。 (1)データの説明 (1)データの説明 (1)データの説明 (1) データの研究では、X線ボールフィギャーのた。 そ13 (2)2 このボールフィギャーの特徴は、横 知の角度内で傾いているウィスカーの体積比を、カー フィガー、マオーの特徴は、横 小を式フレス法、認疑 読していることがわかった。 (福谷国を)、マンギーの一様造などをある。 201 (2)21 (2)1 (2)		green	body cons	olidatio	n, so	lids lo	ading	gs,							
国内 Import Import <thimport< th=""> Import I</thimport<>	107. 丰, 121		を文書の教	0 • 101	=== · 1	「宮吉・	· 1	***	 ታ ተቱ •	G	七日本		žπ		
【概 要] アルミナマトリックス-SiCウィスカー復合材料で、 SiCウィスカーは、成形プロセスが良くスリープロセ、 か、た類状態などに関係して特定の方向や、構造 をとる。この研究では、X線ボールフィギャー法を使 い、乾式プレス法、泥類構込法、圧力ろ過法毎に評価 した。その結果、成形プロセスが複合材料のウィスカーの体積比を、カー 構造に影響していることがわかった。複合材料のウ ィスカー構造を考察することは重要なことであ 3、 ウィスカー構造を考察することは重要なことであ 3、 ウィスカー構造を考察することは重要なことであ 3、 ウィスカー構造を考察することは重要なことである。 (2)取方活動 20いいド~50vol \$0 アルミナ泥類を作り、PHを硝酸で 1)元グ類問整 20いいド~50vol \$0 アルミナ泥類を作り、PHを硝酸で 1)元グ調整 20いいド~50vol \$0 アルミナ泥類を作り、PHを硝酸で 20vol \$~50vol \$0 アルミナ泥類を作り、PHを硝酸で 1)元グ調整 20いいド~50vol \$0 アルミナ泥類を作り、PHを硝酸で 20vol \$~50vol \$0 アルミナ北類集する傾向にある。PH-4では、SiCウィスカーやアルミナは凝集する。 (2)圧力う過法、00 アルミナは凝集する。 (2)圧力う過法とのBH 4 では、SiCウィスカーやアルミナは凝集する。 (3)流費結及はた 広にプルスカーやアルミナは凝集する。 (3)流費結及込法 石者のしたばガラスまたは、ステンレスのリングをの セ、その中に泥類をいれて、鋳込成形を行った。サン ブルの端における圏化状況を比較するために、ガラス とメタルのリングを使った。 (3)花類なび、プレスカーの方向分布が変化するのを避けるために、 だいったスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼くしいない。或形能軸に対しているか。 5(5) X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して独良を上げた。この 時収縮は起こらなかったのでウィスカーのローテーシ こく(p)面で面間隔2.51Aのビークのボールフィギャー		5 E F				-子具・ 	· 1	27.	× 147 •	0	抄訳伯		×u		
アルミナマトリックスーSICウィスカーは、成形プロセスや、スラリープロセ【結果及び考察】 (1)データの説明SICウィスカーは、成形プロセスや、スラリープロセ(1)データの説明(1)データの説明(1)データの説明レた。その結果、成形プロセスが、気合材料のウィスカ ー構造に影響していることがわかった。複合材料のウィスカ ー構造に影響していることがわかった。複合材料のウィスカ ー構造に影響していることがわかった。複合材料のウィスカ ー構造に影響していることがわかった。複合材料のウィスカ ー構造に影響していることがわかった。複合材料のウィスカ ー構造に影響していることがわかった。複合材料のウィスカ ークが、マカー構造ない酸塩に対する特性に直接影響するた (2)成形法の効果 この研究の目的は、ウィスカーの構造変化を成形方 たらののは気のアルミナル現先を作り、pHを確認で ない、たち50velなアルミナル現先を作り、pHを確認で いて、アルミナは再凝集する傾向にあるるSICウィスカーやアルミナは環難なする傾向にあるるSICウィスカーやアルミナは現集する (2)に力ろ過法 SICウィスカーやアルミナは基集する。 (2)に力ろ過法 (2)に力ろ過法 (2)に力ろ過法 (2)に力ろ過法 (2)に力ろ過法 (3)肥環痛したが考して、気力・していろい、図コにその互助に対してスカーの方向シ、マスカーの方向シ、マスカーの方向分束に発気したい、ガラス アレマガルの切とグを使った。 (4)乾式ブレス法 (4)乾式ブレス法 (5)SX線分析 ウィスカーの方向分布が変化するのを避けるために 、方フスカーの方向分布が変化するのを避けるために 成形体を1550°C10分茶圧焼成して強度をとけた。この 高が形なロマスカーの方向影で成式売しくいっ、成形物に対して平行(side)と要 直(top)面で面間隔2.51Aのビークのボールフィギャー [結果及び考察] (1)データの説明 (1)データの説明 (3)の (4)<	【概 要】						(桓	点図))をシ	コルツ	ン反射法-	で測定	した		
SiCウィスカーは、成形プロセスや、スラリープロセ ス、叫、充填状態などに関係して特定の方向や、構造 をとる。この研究では、X線ボールフィギャー法を使 特の角度内で傾いているウィスカーの体積比を、カー ブドの面積をトータル面積で割ることにより概算でき ることである。 マスカー構造な、破壊に対する特性に直接影響するた とが、た式プレス法、死動気がわかった。複合材料のウィスカ 一構造に影響していることがわかった。複合材料のウィスカ 一構造に影響していることがわかった。複合材料のウィスカ 一構造に影響していることがわかった。複合材料のウィスカ 「実験方法] (2)応形法の効果 この研究の目的は、ウィスカーの構造変化を成形方 法とPI、死動類として表すことである。2(2) つが、圧力ろ過たより鋳込法の方が大きいことで ある。2(2)正方ろ過た SiCウィスカーやアルミナル環境を作り、pIPを確較で いて、アルミナは再凝集する傾向にある。SICウィス カーを加え、硝酸かアンモニュウム溶液でoIPを3~8℃ SiCウィスカーやアルミナは凝集する。 (2)正方ろ過た SiCウィスカーやアルミナは凝集する。 (2)正方ろ過法 図1(a)に圧力ろ過法の図を示す。圧力は、10MPaで ある。 (3)泥環鏡込法 石膏の上にガラスまたは、ステンレスのリングをの と、その中に泥環をいれて、鋳込成形を行った。サン ブルの端における固化状況を比較するために、ガラス とメタルのリングを使った。 (4)乾式ブレス法 圧力ろ違した成形体を約砕し、その粉体を10MPaの 圧力で整式プレス法 (4)乾式ブレス法 (4)乾式ブレス法 (4)乾式ブレス法 (5)X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーシ コン(1)シス目ののに大力、の近地に対して平行(side)と垂 直(top)面で面間隔2.51Aのビークのボールフィギャー	アルミナマ	マトリッ	ックスーSiC	ウィスカ	一複合材	材で、	【結	「果及 で	び考察	[]					
ス、即、充填状態などに関係して特定の方向や、構造 横座爆(は、サンブル表面からの角度、縦座標(組強度 をとる。この研究では、X線ボールフィギャーの特徴は、横 短期す(図2)。このボールフィギャーの特徴は、横 い、乾式ブレス法、記気鋳込法、圧力ろ過法気気に評価 地の角度内で傾いているウィスカーの核後はと、カー した。その結果、成形ブロセスが復合材料のウィスカ ブドの面積をトータル面積で割ることにより概算でき マスカー構造な、破壊に対する特性に直接影響するた 2)応形法の効果 さ、ステカナ (2)成形法の効果 さ、カーを加え、耐酸かアンモニュウム溶液で10を3 この研究の目的は、ウィスカーの構造変化を成形方 (1)脱環調整 このの中徴がわかる。第1に、90°での (2)ル水汚調整 このがしたった。(2)のが描えり鋳込法の方が大きいことで 20vol%~50vol%のアルミナ泥漿を作り、PHを硝酸マ イ、街数がアンモニュウム溶液で10を3~84 オーを加え、硝酸かアンモニュウム溶液で10を3~84 動による同部変化が見られる。21んのことから、ウィスカーの加く、100°での (2)ルテカラ過法の図をデオ・圧力なるを91(た) マング体気がしたいる。21(こうなんのことから、ウィスカー配向の違いは、プロセスの違いに関係している。 SiCウィスカー・マクガを使っな (4)や式アレスカー、チンレスカーは分散している (3)ポパ環錆込法 石膏の上にガラスまたは、ステンレスのリングをですた。 石膏の上にガラスまたは、ステンレスのリングをですた。 (4)や式プレス法 (4)乾式プレス法 (4)乾式プレス法 アレスカーの方向分布が変化するために、ガラス (2)にとなん、素肉がられる。これは、認識では、ためには関係 アレスカーの方向ケイスカーの方向変化で、中間には間 「本する」 アレスカーの方向分を数すために、ボラスレンスかーの方向変化で、マリビークがある。 (3)泥環境にない、図名を示す、低濃度では、シンオ、シンク、の変化 (4)乾式プレスカー たがたるために、ガラス・ラスから、高濃度でのに大の方向変化で、マリレングを使った。 (3)ポパ環境を1000分素しために、ガラス・ラスから、高濃度でのたった。 <td>SiCウィスカ</td> <td>ーは、</td> <td>成形プロセ</td> <td>スや、ス</td> <td>ラリーフ</td> <td>ロセ</td> <td>(1)</td> <td>データ</td> <td>の説</td> <td>明</td> <td></td> <td></td> <td></td> <td></td> <td></td>	SiCウィスカ	ーは、	成形プロセ	スや、ス	ラリーフ	ロセ	(1)	データ	の説	明					
をとす。この新小ルフィキャー法を使たし、ションパンプトキャー法を使たして、ションパンプトンスは、死状ホールフィキャー法を使たし、ションパンプトンスは、死状ホールフィキャー法を使った。その結果、成形プロセスが複合材料のウィスカー体意に影響していることがわかった。複合材料のウィスカー体遣は、破壊に対する特性に直接影響するた。 (2)成形法の効果 (2)成形法の破壊な対する特性に直接影響するた。(2)成形法の効果 (2)成形法の効果 (2)成形法の方が大きいことである。2(2)成形法の方が大きいことで (2)成形法のが果 (2)成形法の方が大きいことである。2(2)から、2つの特徴がわかる。第1に、90°での ビークが、圧力ろ過法とり時、がごでのことが見かかた。ない、近力の特徴がわかる。第1に、90°での ビークが、圧力ろ過法とり時、21(つすスカーは分散している のに、アルミナは再凝集する傾向にある。pH5-8では、新込法では、凝固方向に対しウィスカーの 長軸が垂直平面に分散したことを示すビークがある。 (3)泥漿瘍込法 石膏の上にガラスまたは、ステンレスのリングをの し、その中に泥漿をいれて、鋳込成形を行った。サン ブルの増における固化状況を比較するために、ガラス とメタルのリングを使った。 (4)乾式ブレス法 正力ろ過した成形をおゆし、その粉体を10MPaの 圧力ろ強した成形体を1550°C10分常圧焼成して強度を上げた。こつ 時収縮は起こらなかったのでウィスカーのマーチーシ 直(10)常に続成して強度を上げた。こつ 時収縮は起こらなかったのでウィスカーのマーチーシ 直(10)面で面間隔2.51Aのビークのボールフィギャー	ス、pH、充坑	し状態な	ことに関係し	ノて特定の	の方向や	、構造	横	逐標	は、サ	シブル	レ表面から	うの角	度、	縦囚	を標は強度
い、ぞれプレスス、花気(新など)、ビスカーの協会は、ビスカーの協会の「個い」のない。など、クレークシル面積で割ることにより概算でき っ、イスカー構造は、破壊に対する特性に直接影響するた め、ウィスカー構造を考察することは重要なことであ る。 (2)成形法の効果 この研究の目的は、ウィスカーの構造変化を成形方 えっとである。 (2)の成形法の効果 この研究の目的は、ウィスカーの構造変化を成形方 大き内化、泥漿満度の関数として表すことである。2(a) ~2(d)から、2つの特徴がわかる。第1に、90°での ビークが、圧力ろ過法より鋳込法の方が大きいことで る。2(2)では、強度がほいでであるから、ウィス カーを加え、硝酸かアンモニュウム溶液でPHを3の8に 調整した。PH<4では、SICウィスカーは分散している 0に、アルミナは再凝集する傾向にある。PH5~8では SICウィスカーやアルミナは凝集する。 (2)圧力ろ過法 図1(a)に圧力う透法の図を示す。圧力は、10MPaで ある。 (3)泥漿鋳込法 石膏の上にガラスまたは、ステンレスのリングをの セ、その中に泥漿をいれて、鋳込成形を行った。サン ブルの端における面化状況を比較するために、ガラス ビークがある。これは、泥漿流動によ たがちてノスカーの方向分布が変化するのを避けるためた 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーシ コンは生じていない。成形軸に対して平行(side)と理 直(top)面で面間隔2.51Aのビークのボールフィギャー	をとる。この	り研究で		ミールフィ	イキャー	法を使	を切	J (<u>判2)</u> カテル	。 ご 0 い - ア・	りボール	フィギ	キー	の特	時徴は、横
した。この研究の目的は、ウィスカー構造な、破壊に対する特性に直接影響するた ることである。 マスカー構造な、破壊に対する特性に直接影響するた (2)成形法の効果 この研究の目的は、ウィスカーの構造変化を成形方 なと用、泥漿濃度の関数として表すことである。2(a) (1)泥漿調整 20vol%~50vol%のアルミナ泥漿を作り、pHを硝酸で (1)泥漿調整 20vol%~50vol%のアルミナ泥漿を作り、pHを硝酸で (1)泥漿調整 20vol%~50vol%のアルミナ泥漿を作り、pHを硝酸で (1)泥漿調整 20vol%~50vol%のアルミナ泥漿を作り、pHを硝酸で (1)泥漿調整 20vol%~50vol%のアルミナ泥漿を作り、pHを硝酸で (1)泥漿調整 20vol%~50vol%のアルミナ泥漿を作り、pHを硝酸で (1)泥漿調整 20vol%~50vol%のアルミナ泥漿を作り、pHを硝酸で (2)泥力る遊気に (2)圧力ろ過法、SICウィスカーは分散している。2(c)では、泥漿流 動による局部変化が見られる。これらのことから、ウ マスカーの間の違いは、プロセスの違いに関係してい る。第2(a)では、ジロセスの違いに関係してい る。第2(a)では、ジロセスの違いに関係してい る。第2(a)では、シロセスの違いに関係してい る。第2(a)では、美力なしかる。これらのことから、ウ マスカーの間の違いは、プロセスの違いに関係してい る。第2(a)をがしくかる。これらのことから、ウ マスカーの間の違いは、プロセスの違いに関係してい る。第2(a)をが見られる。これらのことから、ウ マスカーの間の違いは、プロセスの違いに関係してい る。第2(a)をしたが見られる。これらのことから、ウ マスカーの間の違いは、プロセスの違いに関係してい る。第2(a)をでが取られる。これらのことから、ウ マスカーのが見つかがあられるが鋳込法ほどで ない。圧力ろ過法では、非対称的なウィスカーの 長軸が垂直平面に分散したことを示すビークがある。 (3)泥漿錆込法 でレクがある。これは、泥漿流動によ り起こる局部的なウィスカーの方向変化で、pHには関 係していない。図3にその写真を示す。低濃度では、 2(h)2(1)に示すように、ウィスカーの構造は、Hに関 係していない。図3にその写真を示す。低濃度では、 2(h)2(1)に示すように、ウィスカーの構造は、Hに関 (私うな、その証拠はない。オラスリングを使った。 (3)泥漿素(法可、いの影響はなかった。 (3)泥漿糖(はむこらなかったのでウィスカーのローテーシ コンは生じていない。成形軸に対して平行(side)と垂 直((top)面で面間隔2.51Aのビークのボールフィギャー	した。その知	イス法、	形況時込行	な、圧力が てが増合す	がしていた。	に計画	開い	の両	へじゅ 清たし	いしい 	いるワイン し両晴で	スカー 叫るこ	410014 アルイ	「月口」	しを、カー・1 拇質でき
マスカー構造は、破壊に対する特性に直接影響するた め、ウィスカー構造を考察することは重要なことであ る。 【実験方法】 (2)成形法の効果 この研究の目的は、ウィスカーの構造変化を成形方 法とPI、犯疑濃度の関数として表すことである。2(a) (2)成形法の効果 この研究の目的は、ウィスカーの構造変化を成形方 法とPI、犯疑濃度の関数として表すことである。2(a) (2)成形法の効果 この研究の目的は、ウィスカーの構造変化を成形方 法とPI、犯疑濃度の関数として表すことである。2(a) (2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(一構造に影響	ロホ、 n W してい	、 いることが オ	つかった。	、複合材料	「ハパ」	るこ	してで	ある。			1.1.0		. A >	/ 1%0 /7* C C
め、ウィスカー構造を考察することは重要なことであ る。 【実験方法】 (1)泥漿調整 20vol%~50vol%のアルミナ泥漿を作り、pHを硝酸で 4 に調整した。その泥漿に25vol%にあたるSiCウィス カーを加え、硝酸かアンモニュウム溶液でPHを3~8に 期整した。pH<4では、SiCウィスカーは分散している のに、アルミナは再凝集する傾向にある。pH5~8では SiCウィスカーやアルミナは凝集する。 (2)圧力ろ過法 図1(a)に圧力ろ過法の図を示す。圧力は、10MPaで ある。 (3)泥漿錆込法 石膏の上にガラスまたは、ステンレスのリングをの せ、その中に泥漿をいれて、鋳込成形を行った。サン ブルの端における固化状況を比較するために、ガラス とメタルのリングを使った。 (4)乾式プレス法 医工力ろ過した成形体を粉砕し、その粉体を10MPaの 圧力で乾式プレスした。 (5)X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 耐収縮は起こらなかったのでウィスカーのローテーシ ョンは生じていない。成形軸に対して平行(side)と要 直(top)面で面間隔2.51Aのビークのボールフィギャー	ィスカー構造	責は、利	支壊に対する	5特性に	直接影響	するた	(2)成形法の効果								
る。 【実験方法】 【実験方法】 (1)泥漿調整 20vo1% ~ 50vo1%のアルミナ泥漿を作り、叶を硝酸で 4に調整した。その泥漿に25vo1%にあたるSICウィスカ カーを加え、硝酸かアンモニュウム溶液で叶を3~8に 調整した。pH<4では、SICウィスカーは分散している。 のに、アルミナは再凝集する傾向にある。pH5~8では SICウィスカーやアルミナは凝集する。 (2)圧力ろ過法 図1(a)に圧力ろ過法の図を示す。圧力は、10MPaで ある。 (3)泥漿鋳込法 石膏の上にガラスまたは、ステンレスのリングをの せ、その中に泥漿をいれて、鋳込成形を行った。サン アルの端における固化状況を比較するために、ガラス アルの端における固化状況を比較するために、ガラス アルの端における固化状況を比較するために、ガラス アルの端における固化状況を比較するために、ガラス アルの端における固化状況を比較するために、ガラス アルの端における固化状況を比較するために、ガラス アルの端における固化状況を比較するために、ガラス アルの端における固化状況を比較するために、ガラス とメタルのリングを使った。 (4)乾式アレス法 圧力ろ過した成形体を粉砕し、その粉体を10MPaの 圧力で乾式アレスした。 (5) X線分析 ウィスカーの方向分布が変化するのを避けるために 病形体を1550°C10分常圧焼成して強度を上げた。こつ 時収縮は起こらなかったのでウィスカーのローテーシ コンは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのビークのボールフィギャー	め、ウィスナ	りー構造	きを考察する	ることは!	重要なこ	とであ	この研究の目的は、ウィスカーの構造変化を成形方								
【実験方法】 (1)恋類調整 20vo1%~50vo1%のアルミナ泥漿を作り、叫を硝酸で 4 に調整した。その泥漿に25vo1%にあたるSICウィスカ カーを加え、硝酸かアンモニュウム溶液で叫を3~8に 調整した。pH<4では、SICウィスカーは分散している のに、アルミナは再凝集する傾向にある。pH5~8では SICウィスカーやアルミナは凝集する。 (2)圧力ろ過法 図1(a)に圧力ろ過法の図を示す。圧力は、10MPaで ある。 (3)泥漿錆込法 石膏の上にガラスまたは、ステンレスのリングをの せ、その中に泥漿をいれて、鋳込成形を行った。サン アルの端における固化状況を比較するために、ガラス アルの端における固化状況を比較するために、ガラス アルの端における固化状況を比較するために、ガラス アルの端における固化状況を比較するために、ガラス アルの端における固化状況を比較するために、ガラス アルの端における固化状況を比較するために、ガラス アルの端における固化状況を比較するために、ガラス アルの端における固化状況を比較するために、ガラス とメタルのリングを使った。 (4)乾式アレス法 圧力ろ通した成形体を粉砕し、その粉体を10MPaの 圧力で乾式アレスした。 (5) X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーシ ョンは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのビークのボールフィギャー	る。						法と	pH. ž	尼漿湛	度の	観数とし~	て表す	こと	であ	5る。2(a)
(1) 液漿 調整 20 vol $x < 0 > 2 (x > 0 > x > 0 > x > x > x > x > x > x > $	【実験方法】						~2(d)から、2つの特徴がわかる。第1に、90°での								
20001x~50001xのアルミナル設定作り、同かを朝政でした。 4 に調整した。その泥漿に25vo1%にあたるSiCウィス カーを加え、硝酸かアンモニュウム溶液でPHを3~8に 調整した。PH4年では、SiCウィスカーは分散している のに、アルミナは再凝集する傾向にある。PH5~8では SiCウィスカーやアルミナは凝集する。 (2)圧力ろ過法 図 1 (a)に圧力ろ遇法の図を示す。圧力は、10MPaで ある。 (3)泥漿鋳込法 石膏の上にガラスまたは、ステンレスのリングをの せ、その中に泥漿をいれて、鋳込成形を行った。サン ブルの端における固化状況を比較するために、ガラス ブルの端における固化状況を比較するために、ガラス とメタルのリングを使った。 (4)乾式ブレス法 圧力ろ過した成形体を粉砕し、その粉体を10MPaの 圧力で乾式プレスした。 (5) X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーシ ョンは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのビークのボールフィギャー	(1)泥漿調整	0 194		コ (July July)		TH 164 ~~~	ビークが、圧力ろ過法より鋳込法の方が大きいことで								
はに調整した。ため、親においれためをおおりイス カーを加え、硝酸かアンモニュウム溶液で即を3~8に 調整した。pH-4では、SICウィスカーは分散している のに、アルミナは再凝集する傾向にある。pH5~8では SICウィスカーやアルミナは凝集する。 (2)圧力ろ過法 図1(a)に圧力ろ通法の図を示す。圧力は、10MPaで ある。 (3)泥漿鋳込法 石膏の上にガラスまたは、ステンレスのリングをの せ、その中に泥漿をいれて、鋳込成形を行った。サン ブルの端における固化状況を比較するために、ガラス とメタルのリングを使った。 (4)乾式プレス法 圧力ろ過した成形体を粉砕し、その粉体を10MPaの 圧力で乾式プレスした。 (5) X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーションは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのビークのボールフィギャー	2013~3	0001700 5 2 0	リアルミナガ い涼將)こ25い	と現を作り	り、phを ちょくにど	明設じ	ある。2(a)では、強度がほぼ一定であるから、ウィス カーは、ランダルに公劫している。2(へ)では、泥腸液								
別を加え、前はのつじて、ないののでした。 調整した。pH<4では、SiCウィスカーは分散している のに、アルミナは再凝集する傾向にある。pH5~8では SiCウィスカーやアルミナは凝集する。 (2)圧力ろ過法 図1(a)に圧力ろ過法の図を示す。圧力は、10MPaで ある。 (3)泥漿錆込法 石膏の上にガラスまたは、ステンレスのリングをの せ、その中に泥漿をいれて、鋳込成形を行った。サン ブルの端における面化状況を比較するために、ガラス とメタルのリングを使った。 (4)乾式プレス法 圧力ろ過した成形体を粉砕し、その粉体を10MPaの 圧力で乾式プレスした。 (5) X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローデーシ コンは生じていない。成形軸に対して平行(side)と垂	サーを加え	こってい 稲酸す	リアンチニー	リカにの	さるいし) 夜でniiな	ノイ へ 3~8に	新して	トス	ノンラ 周部如	ジャント	「取して、 ヨムわス	く'る。 . これ	LC, CC σ	ノビゼ	a、01532011 - から ウ
のに、アルミナは再凝集する傾向にある。pH5~8では SICウィスカーやアルミナは凝集する。 (2)圧力ろ過法 図1(a)に圧力ろ過法の図を示す。圧力は、10MPaで ある。 (3)泥漿鋳込法 石膏の上にガラスまたは、ステンレスのリングをの せ、その中に泥漿をいれて、鋳込成形を行った。サン ブルの端における固化状況を比較するために、ガラス とメタルのリングを使った。 (4)乾式プレス法 圧力ろ過した成形体を粉砕し、その粉体を10MPaの 圧力で乾式プレスした。 (5) X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーションは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのビークのボールフィギャー	調整した。ロ	H<4でし	オ、SiCウィ	スカーは	分散して	いる	ィスカー配向の違いは、プロセスの違いに関係してい								
SiCウィスカーやアルミナは凝集する。 (2)圧力ろ過法 図1(a)に圧力ろ過法の図を示す。圧力は、10MPaで ある。 (3)泥漿鋳込法 石膏の上にガラスまたは、ステンレスのリングをの せ、その中に泥漿をいれて、鋳込成形を行った。サン ブルの端における固化状況を比較するために、ガラス とメタルのリングを使った。 (4)乾式プレス法 圧力ろ過した成形体を粉砕し、その粉体を10MPaの 圧力で乾式プレスした。 (5) X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーシ ョンは生じていない。成形軸に対して平行(side)と 直(top)面で面間隔2.51Aのビークのボールフィギャー	のに、アル	ミナは	耳凝集する	頃向にあ	3. pH5∽	-8では	る。	第2	に、毎	影达法*	で、凝固	方向に	対し	ウー	ィスカーの
 (2)圧力ろ過法 図1(a)に圧力ろ過法の図を示す。圧力は、10MPaである。 (3)泥漿錆込法 石膏の上にガラスまたは、ステンレスのリングをのせ、その中に泥漿をいれて、鋳込成形を行った。サンプルの端における固化状況を比較するために、ガラスとメタルのリングを使った。 (4)乾式プレス法 (4)乾式プレスした。 (5) X線分析 ウィスカーの方向分布が変化するのを避けるために (5) X線分析 ウィスカーの方向分布が変化するのを避けるために (5) X線分析 ウィスカーの方向分布が変化するのを避けるために (5) X線分析 ウィスカーの方向分布が変化するのを避けるために (6) たいない。成形軸に対して平行(side)と率 (7) 直(i) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	SiCウィスカ	ーやア	ルミナは凝	集する。			長朝	が垂	直平面	「に分散	故したこ	とを示	すと	:- <i>?</i>	りがある。
図1(a)に圧力ろ過法の図を示す。圧力は、10MPaで ある。 (3)泥漿鋳込法 石膏の上にガラスまたは、ステンレスのリングをの せ、その中に泥漿をいれて、鋳込成形を行った。サン ブルの端における固化状況を比較するために、ガラス ブルの端における固化状況を比較するために、ガラス ジルのリングを使った。 (4)乾式プレス法 圧力ろ過した成形体を粉砕し、その粉体を10MPaの 圧力で乾式プレスした。 (5)X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーシ ョンは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのビークのボールフィギャー	(2)圧力ろ過	法					乾豆	じプレ	スにも	っこのし	ニークが。	みられ	るか	铸议	込法ほどで
ある。 (3)泥漿鋳込法 石膏の上にガラスまたは、ステンレスのリングをの せ、その中に泥漿をいれて、鋳込成形を行った。サン ブルの端における固化状況を比較するために、ガラス とメタルのリングを使った。 (4)乾式プレス法 圧力ろ過した成形体を粉砕し、その粉体を10MPaの 圧力で乾式プレスした。 (5) X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーシ ョンは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのビークのボールフィギャー	図1(a)に	圧力ろ	過法の図を	示す。日	三力は、1	OMPaで	なし	い。圧	力ろ過	はでい	は、非対対	称的な	マイ	、スプ	カー配向を
(3)犯領報込伝 石膏の上にガラスまたは、ステンレスのリングをの せ、その中に泥漿をいれて、鋳込成形を行った。サン ブルの端における固化状況を比較するために、ガラス とメタルのリングを使った。 (4)乾式プレス法 圧力ろ過した成形体を粉砕し、その粉体を10MPaの 圧力で乾式プレスした。 (5) X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーシ ョンは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのビークのボールフィギャー (3)犯領法及及(f) (3)犯領法及及(f) (3)犯領法及及(f) (3)犯領法及及(f) (3)犯領法及及(f) (3)犯領法及(f) (3)犯領法及(f) (3)犯領法及(f) (3)犯領法及(f) (3)犯領法及(f) (3)犯領法及(f) (3)犯領法及(f) (3)犯領法及(f) (4) データから、高濃度での圧力ろ過法に 小さなビーク変動がみられる。これは、犯領流動によ (4) たいない。図3にその写真を示す。低濃度では、 2(h)2(1)に示すように、ウィスカーの構造は、pHに関 係するようである。これは、ろ過中のビストンの変位 増加が、ウィスカーの軸配置に影響していると考えら れるが、その証拠はない。ガラスリングを使った泥漿 (3)泥漿鋳込中の不自然な流動 2(h)2(d)と2(j)2(k)を比較してみると、2(j)2(k)の ビークがシフトしていることがわかる。これは、メタ	める。 (2)泥糖(注)は	٥±					ボずビークがある。 (2)温懋濃度と別の効果								
は、その中に泥漿をいれて、鋳込成形を行った。サン ブルの端における固化状況を比較するために、ガラス とメタルのリングを使った。 (4)乾式プレス法 圧力ろ過した成形体を粉砕し、その粉体を10MPaの 圧力で乾式プレスした。 (5)X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーションは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのピークのボールフィギャー	「石膏のトレ	:伝 アガラ・	スキカけ、	ステンレ	スのリン	ガをの	│(3)犯頞濃度とpHの効果 │ 2(a)と2(4)のズータから 高濃度での圧力を過せた					カス過注に			
ブルの端における固化状況を比較するために、ガラス とメタルのリングを使った。 (4)乾式プレス法 圧力ろ過した成形体を粉砕し、その粉体を10MPaの 圧力で乾式プレスした。 (5)X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーシ ョンは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのビークのボールフィギャー	せ、その中に	こ泥塘	をいれて、	清込成形	への ノン を行った	。サン	ACDとATDのデータから、両濃度での圧力の週法に 小さなビーク変動がみられる。これは、泥漿流動によ								
 とメタルのリングを使った。 (4)乾式プレス法 圧力ろ過した成形体を粉砕し、その粉体を10MPaの 圧力で乾式プレスした。 (5) X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーションは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのビークのボールフィギャー 係していない。図3にその写真を示す。低濃度では、 2(h)2(i)に示すように、ウィスカーの構造は、pHに関係するようである。これは、ろ過中のビストンの変位 増加が、ウィスカーの軸配置に影響していると考えられるが、その証拠はない。ガラスリングを使った泥漿 3)泥漿鋳込中の不自然な流動 2(h)2(i)に示すように、ウィスカーの構造は、pHに関係するようである。これは、ろ過中のビストンの変位 増加が、ウィスカーの軸配置に影響していると考えられるが、その証拠はない。ガラスリングを使った泥漿 (3)泥漿鋳込中の不自然な流動 2(h)2(d)と2(j)2(k)を比較してみると、2(j)2(k)の ビークがシフトしていることがわかる。これは、メタルリング付近でおこる泥漿の不自然な流動によるもの 	ブルの端に	おける	固化状況を	北較する	ために、	ガラス	り起こる局部的なウィスカーの方向変化で、明には関				、pHには関				
 (4)乾式プレス法 圧力ろ過した成形体を粉砕し、その粉体を10MPaの 圧力で乾式プレスした。 (5) X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーションは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのピークのボールフィギャー 2(h)2(i)に示すように、ウィスカーの構造は、pHに関 (係するようである。これは、ろ過中のビストンの変位 増加が、ウィスカーの軸配置に影響していると考えられるが、その証拠はない。ガラスリングを使った泥漿 3)泥漿鋳込中の不自然な流動 2(b)2(d)と2(j)2(k)を比較してみると、2(j)2(k)の ビークがシフトしていることがわかる。これは、メタルリング付近でおこる泥漿の不自然な流動によるもの 	とメタルのリングを使った。						「係していない。図3にその写真を示す。低濃度では、				農度では、				
 圧力ろ過した成形体を粉砕し、その粉体を10MPaの 圧力で乾式プレスした。 (5) X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーシ コンは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのピークのボールフィギャー 係するようである。これは、ろ過中のピストンの変位 増加が、ウィスカーの軸配置に影響していると考えられるが、その証拠はない。ガラスリングを使った泥漿 3)泥漿鋳込中の不自然な流動 2(b)2(d)と2(J)2(k)を比較してみると、2(J)2(k)の ビークがシフトしていることがわかる。これは、メタルリング付近でおこる泥漿の不自然な流動によるもの 	(4)乾式プレス法						2(h)2(1)	に示す	ようい	こ、ウィ	スカー	-の椎	造	t、pHに関
 注刀で乾式フレスした。 (5) X線分析 ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーションは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのピークのボールフィギャー 増加が、ウィスカーの軸配置に影響していると考えられるが、その証拠はない。ガラスリングを使った泥漿 43次漿鋳込中の不自然な流動 2(b)2(d)と2(j)2(k)を比較してみると、2(j)2(k)の ビークがシフトしていることがわかる。これは、メタルリング付近でおこる泥漿の不自然な流動によるもの 	圧力ろ過	した成け	15体を粉砕	し、その	粉体を10	MPaの	係	トるよ	うです	ある。	これは、	ろ過中	コのと	ス	トンの変位
(3) A ## 57 fm ウィスカーの方向分布が変化するのを避けるために 成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーシ ョンは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのビークのボールフィギャー ハるか、その証拠はない。カラスリングを使った花娘 鋳込法では、pHの影響はなかった。 (3)泥漿鋳込中の不自然な流動 2(b)2(d)と2(j)2(k)を比較してみると、2(j)2(k)の ビークがシフトしていることがわかる。これは、メタ ルリング付近でおこる泥漿の不自然な流動によるもの	上刀で乾式	アレス	した。				増力	ロが、	ワイン	マカー(の軸配置	に影響	₿して 1 \	こいえ	ると考えら
成形体を1550°C10分常圧焼成して強度を上げた。この 時収縮は起こらなかったのでウィスカーのローテーシ ョンは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのピークのボールフィギャー ルリング付近でおこる泥漿の不自然な流動によるもの	(こん称分析	 –	前分布が亦く	ルオスの	た避けス	ちかに	れる 住:	ョか、 んはブ	ての別	に挽ぼう 日の暑が	ばい。 刀 弊けわれ	コスリ った	120	21	史つた死毀
時収縮は起こらなかったのでウィスカーのローテーシ ョンは生じていない。成形軸に対して平行(side)と垂 直(top)面で面間隔2.51Aのビークのボールフィギャー ルリング付近でおこる泥漿の不自然な流動によるもの	成形休を155	50°C10	うろ うかえ うろう うちょう うちょう うちょう うちょう ひょう うちょう しょう うちょう うちょう しょう うちょう しょう しょう うちょう しょう うちょう しょう しょう しょう しょう しょう しょう しょう しょう しょう し	して強度	を上げた	· この	(3)	泥塘	いいりました	の不自	大方流す	ンバー o カ			
ョンは生じていない。成形軸に対して平行(side)と垂 ビークがシフトしていることがわかる。これは、メタ 直(top)面で面間隔2.51Aのピークのボールフィギャー ルリング付近でおこる泥漿の不自然な流動によるもの	時収縮は起	こらな	かったので	ウィスカ	-00-	テーシ	2	(b)2(d)と2	())2(いを比較	、 してす	りると	< 、 2	2(j)2(k)の
直(top)面で面間隔2.51Aのピークのボールフィギャー ルリング付近でおこる泥漿の不自然な流動によるもの	ョンは生じ	ていな	い。成形軸	に対して	平行(sid	le)と垂	ビ-	ークが	シフト	トして	いること	がわた	いる。	こね	れは、メタ
	直(top)面で	面間隔	2.51Aのビ	ークのボ	ールフィ	ギャー	11	リング	付近了	でおこ	る泥漿の	不自然	たな決	流動い	によるもの

出典

Proc. of 16th Annual Conf. on Composites and Adv. Ceram., P.661

[A-2-3]-1b

タイトル	Green Body Processing Effects on SIC Whisker Textures				
(英文)	in Alumina Matorix Composites				
である。図1(b)は 【結 論】 1.ウィスカー配向 2.鋳込成形のサン ンプルより、強 3.50vo1%泥漿を圧;	、リング付近の付着を表している。 の違いは、成形法による。 ブルは、同じ条件での圧力ろ過のサ くて対称的な構造であった。 力ろ過したサンブルは、低濃度泥漿	をろ過したサンブルより均質性に乏しい構造であった。 4.圧力ろ過法で作られたサンブルの構造は、低濃度ではHHに依存する。 5.サンプルエッジ付近の不自然な流動は、構造の不均 一の原因となる。			

Sample	Consolidation	pH	Vol% solids	Viscosity	Relative
•	Method	•		(Pa-s)	Density
				at 0.3 Hz	-
£	P. F.	3	- 50	0.71	0.68
b	S. C. glass	3	50	0.71	-
c	P. F.	4	50	0.06	0.69
d	S. C. glass	4	50	0.06	-
e	Dry Pressed	NA	NA	NA	0.50
ŝ	P. F.	7	50	•	0.57
g	P. F.	4	40	-	0.67
กั	P. F.	4	20	•	0.67
i	P. F.	8	20	-	0.58
i	S. C. metal	5	50	0.08	-
ĥ.	S. C. metal	8	50	>8 .	•

Figure 1. (a) Pressure filtration device; (b) schematic of edge adhesion during slurry consolidation via slip casting.

Figure 3. SEM micrographs of a hot pressed alumina matrix-25 vol.% SiC whisker composite with local variations in whisker orientation which arise during green body processing via pressure filtration.

[A-2-3]-2a

(和文)	SiCウイスカー複合強化SiCセラミックスの作製									
タイトル (英文)	Fabrication of SiC Whisker-Reinfo	Fabrication of SiC Whisker-Reinforced SiC Ceramics								
著者(所属機関)	Kaoru Miyahara, Takashi Watanabe, Research Institute, Ishikawajima- 1-15, 3-Chome, Toyosu, Koto-ku, T	Kaoru Miyahara, Takashi Watanabe, Shin Koga and Tadashi Sasa Research Institute, Ishikawajima-Harima Heary Industries Co.,Ltd. 1-15, 3-Chome, Toyosu, Koto-ku, Tokyo 135 Japan								
キーワード SiC W HIP.	hisker-reinforced SiC, whisker CVD whisker bridging, pull-out, fractu	-coating, in re toughness,	terfacia , whiske	l bonding, slurry-pressing, er diameter						
図・表・写真・参考	考文献の数 図:5 表:2 写真:3 参考	考文献:12	抄訳者	神谷晶						
【概要】界面の結果 D法でかった。 TSiCウイスかコーティングでいた。 TSiCウイスかコーティングでした。 たた機構か破影のいった。 たたでめら初や、したっていかで、 たた。に、シリーンで、 たた。 に、シリーンを含った。 に、シリーンを含いった。 たた。 に、シリーンを たた。 に、シリーンを たた。 に、シリーンを たた。 に、シリーンを たた。 に、シリーンを たた。 たた。 に、シリーンを たた。 たた。 に、 シリーンを たた。 たた。 たた。 たた。 たた。 たた。 たた。 たた。 たた。 たた	合強度を調節するためにSiCウイスカーにCV を行い、スラリーの加圧成形とHIPによっ セラミックスを作製する研究を行った。ウイス ウことによって、ウイスカーの主要な高初 バック、とアがかかが大幅に増加すること ーティッグの際のCVD温度や、コーティッグ厚 ごのように影響するか、また、ウイスカー D組織の異方性による破壊靱性値の違 した。 イック、はメタッを原料が入、水素をキャリヤーガ 1773Kに加熱したCVD法によって行っ 反応時間を加減して調節した。SEM観 れた。 なコーティッグができたことを確認した。 こたウイスカーとSiC粉末(α-SiC平均粒径0 と有機、イッダーを含む水に超音波分散 なち50MPaの圧力で加圧濾過して円盤 加圧濾過軸に垂直面にウイスナーは配向 なのがうスカブセルHIPで焼結した。 VD条件を変化させて破壊靱性値のた こ。CVD温度を1523、1673、1773K、メタッ 水素)とし、反応時間を変化させて厚 温度2273K、200MPa、1時間で、ウイスカー30 を得た。SiCにはBおよびCを焼結助剤 3Kでコートした場合かーボンの(002)X線回 いが、温度を高くするとピークがはっき 去で測定した破壊靱性値を比較すると につれて増大する。しかしある値に は減少に転ずる。SiC連続繊維SiC複合 クス界面の剪断強度が、界面のかーボン膜 な報告されているので、コーティッグ厚 壊壊靱性値が増したのは界面の強度が ジングの効果が増加したためと思われ グ厚さが増すほど増加していた。 たを与えるかーボン厚さは、平均直径2.2 いのウイスカーに対しておよそ0.1 μmであ EMで観察した結果、これと一致した。	0.もいをくこ長思 にく壊り行す性径こる よµµは思えりがるれか一部物かっなをののとおるとすわり二か物かっなをののとおるいかわるテ考こるの類の値が少ちえいでえ加料りれ。デえと。別の試い大モさとう、オ油算	うで300からこ 態々料EPいデムさかかる過程大は、温の、っ ゆかをBはんがさがれる過方さなVD度基、っ ゆで20さどで同れ破み。の性なく温が底さり 壊比33で破はじる壊り 際が	直から、界面の特性は化学的性質の 熱的機械的性質のものの影響も大き 度はより低い方がより高い靭性値 高くなるとかず >の結晶度がより高 気面に沿って滑りや亀裂が多くなる らには熱的機械的性質の異方性を助 界面の残留応力を増大させるものと 靱性値に及ぼす影響を調べるため 較した。5%7%ミナを焼結助剤としてす K, 200MPa. 1時間のHIPで作製し、破 校めた。ウイホーブリッジ >グ 行 ルでは、 浅観性値が高くなる。いっぽうクラッ より7入、クト比の高いウイホーほど、 ならより径の小さいものほど高い靱 結果はブリッジ >グ 行 Mこ一致して 別性値は大きかった。このことから リッジ >グ が主な高靱性化ホニムであ ウイスかーが二次元に配向する。これに 皮壊靱性値に及ぼす影響を調べた。						

出典 Proc. of 5th Europian Conf. on Composite Materials, P.704

[A-2-3]-2b

[A-2-3]-3a

(和文)	加圧铸込成形								
タイトル (英文) 	Slip Casting under Pressure								
出典	Proc. of 5th Europian Conf	erene on Composite Mater	ials, pp.704						
著 者 所属機関	H. H. Grazzini, d. s. Wilki (Dept. of Material Science Hamilton, Ontario, Canada	nson and Engineering, Macmas)	ter Univ.,						
キーワード	Slip casting, Pressure, Al	$_{2}O_{3}$, Al $_{2}O_{3}$ -SiC composit	e						
図・表・写真・	・参考文献の数 図:3 表:1 5	写真:2 参考文献:18	抄訳者 佐藤仁俊						
しそ本密Si 粉添にし~ 造(うslH双力たン はっラれ性 形っらあたの研度C 粒末加分た60 和っ凝にip範方を。ダ < 分滑たりはに 分品たれ込りた究品複 径を量散後 v $_{0}$ た固分よ囲の加 6 - 和散ら。-、よ 散に。ず成密めのを合 2 原 0 さ、0 $_{3}$ 。し散りはスえ50、 $_{0}$ しか生を図る しでこ生形度、目造材 5 といた心の α 3、Nたし最、ラて℃板 。たで密用1 も たはの密 しでこ生したので、 > スは度いかの ス、現度	は、肉厚品を造るのに時間を要 記ができたりする欠点がある。 E鋳込成形が用いられてきた。 は、で、Al ₂ 0 ₃ とAl ₂ 0 ₃ -27vol [%] ことで、Al ₂ 0 ₃ とAl ₂ 0 ₃ -27vol [%] ことで、Al ₂ 0 ₃ とAl ₂ 0 ₃ -27vol [%] ことで、Al ₂ 0 ₃ とAl ₂ 0 ₃ -27vol [%] ことで、Al ₂ 0 ₃ とAl ₂ 0 ₃ -27vol [%] こいて検討した。 の SiC 粉えと0.41 μ の Al ₂ 0 ₃ こかて検討した。 の SiC 粉えと0.41 μ の Al ₂ 0 ₃ こやて、Al ₂ 0 ₃ とAl ₂ 0 ₃ -27vol [%] こので、Al ₂ 0 ₃ とAl ₂ 0 ₃ -27vol [%] こので、Al ₂ 0 ₃ とAl ₂ 0 ₃ -27vol [%] ことで、Al ₂ 0 ₃ とAl ₂ 0 ₃ -27vol [%] ことで、Al ₂ 0 ₃ とAl ₂ 0 ₃ -27vol [%] こので、Al ₂ 0 ₃ とAl ₂ 0 ₃ -27vol [%] こので こので こので、Al ₂ 0 ₃ とAl ₂ 0 ₃ -27vol [%] この たて、Al ₂ 0 ₃ とAl ₂ 0 ₃ -27vol [%] この たて、Al ₂ 0 ₃ とAl ₂ 0 ₃ -27vol [%] この たで 約 の Al ₂ 0 ₃ とAl ₂ 0 ₃ -27vol [%] この たで たで たで た た た た た の た の た た の た の た の	Rule 2 5000 Rul	 たれ」 とれて、 た結挙動を図5 に示 た結密度は高い。加 は認められない。 500℃ 3時間で生密 ,均質性に優れた 日織の焼結体であっ うごC粒子をAl₂0, うに難しくなる。 こうに、Al₂0, マト は均一であった。 						
加圧力と生? 図3 示すよう(密度には相関がある(図1) 。 こ、焼結体には粒子サイズの勾								

[A-2-3]-3b

[A-2-3]-4a

(和文)	和文) テープキャスト法によるAl2O3/ZrO2層状複合材			
タイトル (英文)	Tape Cast Al ₂ O ₃ /ZrO ₂ Composite Laminates			
著者(所属機関) Kevin P. Plucknett, Carlos H. Caceres, Fabienne Fremont and David S. Wilkinson Department of Materials Science and Engineering McMaster University Hamilton, Ontario, L&S 4L7, Canada				
$\neq - \nabla - \kappa$ Al ₂ O ₃ , ZrO ₂ , flexible ceramic sheet, tape-casting process, laminate, hot-pressing, pressureless-sintering, superplastic deformation				
図・表・写真・参考	考文献の数 図:3 表:2 写真:4 参考文献:11 抄訳者 神谷 晶			
【で、その、この、この、この、この、この、この、この、この、この、この、この、この、この	数細な7ルドとジルエ7粉末をテーブキレスティン 次性のあるちシ;約>+Fにした。こちらの 行われ(V,W) テスト)、試験温度は1460°C、荷重は最大100M Paまでかけた。 法ののちホッドレスして密度が理論値の 私版P-507ルド単味では1300°C/20MPaのあッドレスで理論密密 変密にはならなかったが、積層した- 度の割く減成が発生し、層の間で緻密 に微細な焼結組織で平均粒径は約0.3 µmであった.7ルドナ (定の割、領域が発生し、層の間で緻密 に微細な焼結組織で平均粒径は約0.3 µmであった.7ルドナ ジルニ7複合材のあッド1 V温度は理論密度でできるたけ近 ちる。常圧焼結で作った場合、1450°C く、粒径が最小になるように決定された。ジルエ7を10ま たは20001&含むものでは1300°C/20MPaであった.7ルドナ ジルニ77複合材のホットブレスです。たが、1310°Cのホットブレスで完 の0%の超塑性変形を示し、粒成長もほ たこ 1310°C以上になると粒成長が若干起きた。ジルエ7を10ま たは20001&含むものでは1300°C/20MPaであったが、1310°Cのホットブレスで完 全に数密化し、しかも粒径は1300°C/20MPaであったが、1510°Cのホットブレスで完 つたる。第150℃以上になると私成長が若干起きた。ジルエ7を10ま たは20001&含むものでは1300°C/20MPaであかけでと で理論密度の97%以下であったが、1310°Cのホットブレスで完 全に数密化し、しかも粒径は1300°Cの働合と同じであっ た。1310°C以上になると私成長が若干起きた。ジルエ7ので 全に数密化し、しかも粒径は1300°Cの働合と同じであっ た。1310°C以上になると私成長が若干起きた。ジルエ7の 分散が不十分だと、ジルエ7の凝集(径2µm以上)と7ルけの 力ひとつに下ディキルディがグ(またはゲ) ってれば液状の媒体にやジャン粉茶を分 これは液状の媒体にやジャン粉茶を合こ これは液状の媒体にやジャン粉茶を合う これは液状の媒体にやジャン粉茶を合う これは液状の媒体にやジャン粉茶を合う た。1310°C以上になると私成長が若干起きた。ジェンプの 分散が不十分だと、ジルエ77の凝集(径2µm以上)とと7ルけの 分散が不力では205の本の大きな 常正焼結の場合がレニップの差の 素には同様のなため、可塑剤とバイ る必要があった。このためテアのグブ いい1を含むたががの別、10本でなこのた。 超塑性変形の31物にすった。これらの複合材に常正焼結の7かた。 超塑性変形の1%かたうであたので たってが近まする53となった。7 1001%を含む7かたがが かたした、ホッティ たいた、ボナパのをなたいでがすいた。 2050帯間に、かった。最高の密度は1450°C(単味がに かたいた、両者ともにおよそ100%のひずみを示した。 そして変形が未100%のひずみを示した。 そして変形後、約100%のでがきたが かたってたがすいがなの方法で ながてあるこのためテアのグブ やとジャンか1を、ためたのご たたって、たから、可塑剤とバイ なんジェンのた、かがた、約1000%のひずみを示した。 そして変形後であいた。 2050帯値のおった。2000加熱には たた、バボボネいかの加熱には たたって、たいた、あがたいた。 本のちののかかた、粒成長も なんどねた。たいた、本のた なんどれたく、粒成長も たた なんどなたいた。このたんがすいた。 たた たいた、ホッケ・た。 たた なんでなる、このたかた。 たた たいた。たた、たた なんどなんでのがした、た。 たいた。 たた たいた。 たた なんでののかかた なんどした。たた なんどなんでかった。 たた なんでたた。たた なんでのかた なんでからの加熱には なんどした。た、かた なんだした。たた なんでかった。 たた なんでかった。 なんでかった。 たた なんた なんでかった。 なんた なんでかった。 なんた なんでかった。 たいた なんた なんかかった。 なんからののかかた なんた なんでかった。 なんた なんかののかかた なんた なんかた なんかかった。 たた なんかかった。 たた なんた なんかかった。 なんかかった。 なんかかった。 なんかかった。 なんかかった。 なんかかった。 なんかかった。 なんかかっかった。 なんかかかった。 なんかかった なんかかった。 なんかかった なんかかった なんかかった。			

出典 Proc. of 5th Europian Conf. on Composite Materials, P.873

[A-2-3]-4b

[A-2-4]超塑性

[A-2-4]-1a

(和文)	ナノ結晶粒セラミックスの超塑性流動				
タイトル (英文)) Superplastic Flow in Nanograin Ceramics				
出典	Superplasticity in Advanced Materials, ICSAM-9, Ed. S. Hori, M. Toki zane and N. Furushiro, (1991);Acta metall. mater. <u>39</u> [12]3125(1991)				
著 者 (所属機関)	Department of Materials Science and Engineering, Bard Hall, Cornel 1 University, Ithaca, NY 14853-1501, U.S.A.				
キーワード PVD, Al ₂ O ₃ , ZrO ₂ , tension test, grain sliding, threshold stress, serration, superplasticity, stochastic model					
図、表、写真、教	参考文献の数 図:5,表:0,写真:2,参考文献:21 抄訳者 若井史博				
した した の離イ塑す 超した が 超した が 超した が 地 した が した した した した した した した した した した	連続的な粒界すべりによる 多結晶体中で時間的、空間的 二、事象として生起する。フ 就験方の引張試験において、 ドみの突発的な増加として生 食的に捕らえるとともに、微 ミデルを提案した。 限は以下のとおりである。 $50X1.1\mum、ゲージ長$ $(1) 古典的なAshby-Verralモ デルでは変形中に結晶粒の体積が変化しない この前限を取り外すこととは、り、 限は以下のとおりである。 50X1.1\mum、ゲージ長(-+++14\pic)10vo1%SiO_2/A1nm)、5vo1%Pt/50nm)、2.6mo1%(粒径<100nm 10)90nm 1200~12885a. r / f o実験結果はバル \chiし、しきい値応力が観察さa.c. 縦歯状の応力-ひずみ ar / f o実験結果はバル \chiし、しきい値応力が観察された。セレー試験片断面積中の結晶粒子3Cm \chi f + f + f + f + f + f + f + f + f + f$				

- 60 -

[A-2-4]-2a

タイトル	高温でのAl20s/TiC 複合材料の変形					
	Deformation of Alumina/Titanium Carbide composite at elevated temperatures					
出典	J. Am. Ceram. Soc.,74 [9] 2258-62 (1991)					
著 者 (所属機関)	T.Nagano, H.Kato (Reserch and Development Center, Suzuki Moter Corporation, Hamamatsu, 432-91, Japan) F.Wakai (Ceramic Science Department, Government Industrial Research Institute Nagoya, Nagoya, 462, Japan)					
キーワード	ワード Alumina, Titanium Carbide, composite, superplastic, grain boundaries flow stress, true strain, tension, elevated temperature					
図、表、写真、	参考文献の数 図: 8,表: 1,	写真: 2, 参考文献: 21	抄訳者 後藤 淳			
【 根 3 4 1 203/30wt% 要要203/30wt% 要要203/30wt% 第 4 1 203/30wt% 第 4 1 203/30wt% 第 4 1 200 2 1500℃a 変 方材方方温環・M 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	GTiC 複合材料の高温変形特性を な結果は以下の通りである。 伸びを示す。 力指数は3.8 である。 性化エネルキは853kJ/mol である。 キャビティ発生を伴う。 Al ₂ 0 ₃ / 30wt% TiC (表1) 一軸引張 (pxy 、ド速度一定) 1300℃~1550℃ 真空中 10 ⁻⁵ torr 方法 ② X線回折 電関係 (図2.図3) さいほど変形早期の歪軟化が観 、これはキャビティやクリープ よるものと考えられる。 450℃以下の温度で観察される。 に伴い破断伸びは大きくなるが 程度は小さくなる。 速度関係 (図4,図5) 速度関係について、歪速度を段 こさせ取得した場合 (図4)と真 回線のピークから求めた場合 (500℃におけるn値は一致する。	 (3) 微視的観察 ①結晶粒のアスペクト比(②全歪に対する粒内歪の) ③粒界すべりによる歪は7 ④変形後の粒界にはキャヒティ (4) X線回折 ①1550℃ではTi₂0sのビー それ以下の温度では存行 ②Ti₂0sの生成の有無が[各温度のn値の差異を? ③結晶粒の大きな変化は 4. 検討 ①Heuer らの変形機構図(変形機構は粒界拡散に、あるはずだが、本実験で プのそれ(n=1)よ ②1500℃・23MPa以上の) 拡散クリーブ変形(図) A1₂0s/TiC の歪速度の? ③Chermantらの結果から、 転移クリーブであると? ④2相複合材料の場合、2 在により抑制される。 ⑤A1₂0s/Zr0₂の場合、2r0 ど破断伸びが増え、2r0 積率に近づくとn値は ⑥理論モデルでは母材と 致するが、A1₂0s/Zr0₂の 料(A1₂0s:TiC=58:42) のn値に比べ大きい。 ⑦本材料の活性化エネル 	は1.26である。 北30%である。 北30%である。 かがないである。 かがないでするが、 なないでのでするが、 ないのでのでするが、 によるのもた。 によるのものでのでのでのです。 ない。 たいでは、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、			

[A-2-5]プロセスと超塑性

[A-2-5]-1a

(和文)	粒成長を抑制した超塑性ア	ルミナセラミックス						
タイトル (英文)	Superplastic Alumina Ceramics with Grain Growth Inhibitors							
出典	Journal of American Cera	mic Society, 74 [4], 842 ~	~845 (1991)					
著 者 (所属機関)	Liang A. Xue, Xin Wu. I- (Dept. of Materials Scoe Ann Abour, Michigan, US	Wei Chen nce and Engineerong, The U A)	niv. of Michigan,					
キーワード	alumina ceramics, super inhibitors, additives	plastic deformation, grain	growth,					
図・表・写真	・参考文献の数 図:4 表:0	写真:2 参考文献:17	抄訳者 佐藤仁俊					
高純度A1 ₂ 0, 抑制した焼結(を低温度で焼結し、粒成長 本を得た。しかし、超塑性変	を っていないことを意味し 形 歪速度は少し増加し、Zr	ている。MgO により O₂により低下する。					
中に大きな粒 その原因とさ 粒界の移動を(MgO,とZrO ₂ を) Al ₂ O,粉末の	成長が生じた。 改良策はまだ明らかではない 低下させるために、Al₂O₃に 忝加して検討した。 Dサスペンジョンに MgO(NO₃	 図1 に変形後の材料の 純度 Al₂0₃は、変形後明 ている。Mg0-Al₂0₃の粒 に比べて進んでいない。 サイズの変化はないが、 があった。 	微構造を示した。高 らかに粒成長を示し 成長は高純度Al ₂ 0, Zr0 ₂ -Al ₂ 0,は、粒子 アスペクト比に変化					
とZrOCL ₂ 溶液 200ppmで、ZrC MgO-Al ₂ O ₃ スラリ は1000℃で仮始 この粉末を、 度は,MgO-Al ₂ ℃、高純度Al ₂ 以上の焼結体 201 に3種類	を添加した。 MgOの添加量は 0.は 10vo1% とした。 乾燥 -は 700℃で、Zr0z-Al203スラ 発した。 分散、加圧成形した。焼結 03:1320℃、Zr0z-Al203:148 03:1250℃とし、相対密度 9 を得た。 質のAl203の微構造を示した	 後 図4 に歪に対し ln(d/ これは、Mg0 と ZrO2 に 制する効果があることを 1000 ppmの Mg0をドープ Al203 について、一定の で、flow stress と粒子 数 せた。同じ flow stress よりアスペクト比が大き スペクト比は、変形の初 stressによるものと考え 	d)をプロットした。 変形している。 が形している。加した でし、ZrO ₂ を添加した 変度とトー低した でしたでのでした でした。 のでした でした でので でした での での での での での での での での での での での での での					
高純度 A1,0,6 は3種類とも 0.51μm, MgO- :0.5μm)。3 1400℃、歪速 true strain o 図2 に示した。	は広い粒径分布を示すが、粒 司じであった(高純度Al ₂ O ₃ -Al ₂ O ₃ :0.53 μm, ZrO ₂ -Al ₂ C 重類の Al ₂ O ₃ について、温度 度 10 ⁻⁴ /sec で圧縮変形さ curve に対する true stress	 ⁽⁴⁾ MgO-Al₂O₃, ZrO₂-Al₂O₃ 型を用いて超塑性加工を すように、両方共に変形 せり、変形中の粒成長を抑 Al₂O₃の超塑性加工が可 できた。 	について帽子状の 行った。 図6 に示 した表面は良好であ 制することにより、 能であることを立証					
高純度 Al ₂ (長がその原因 上昇は少ない7 ressは 約 20 Zr0 ₂ 約20% の? 抑制された	9sは、歪みが大きくなり、粒 である。 Mg0-Al₂0sは、歪み が、歪変形 0.68 後 flow st 0MPaから約 50MPaに増加した 忝加により、歪の上昇は約10	成 の - %						
1400℃にお ータを図3 に きく粒成長す 類とも約2の れは、変形中 ば、添加物に	ける flow stressと歪速度の 要約した。高純度 Al₂0₃は、 るため 2%K 歪を用いた。 3 皆数の応力に比例している。 に同じ微構造が維持されるな よって Al₂0₅の変形機構が変	デ 大 種 こ ら わ						

[A-2-5]-1b

[A-2-5]-2a

(和文)	超塑性窒化けい素におけるずり速度粘稠化クリーブ							
91 Fル (英文)	Shear Thickening Creep in Superr	Shear Thickening Creep in Superplastic Silicon Nitride						
著者(所應機関)	I-Wei Chen and Shyh-Lung Hwang (Deparment of Materials Science	nd Shyh-Lung Hwang of Materials Science and Engineering.University of Michigan. Ann Arbor.Michigan (48109-2136)						
$\pm - 17 - F$ sialon.surperplastic.shear thickening.creep.transition stress.compression.model								
図・表・写真・参考	身文献の数 図:8 表:1 参考文	献:40	抄訳者	横山久範				
セラミックスやメ マックスマ ⁿ の マッ ⁿ のスマ ⁿ の で た 及 で せ の で て い こ こ た の で せ の で で せ の い こ こ た の い っ れ こ こ た の の の っ れ こ こ た の の の っ れ い こ え た の い る た の し の い っ た の し の い っ た の し の い っ た の れ い い ら い っ た の れ い い っ れ い い っ れ い い ら い っ れ い い ら い っ れ れ い い ら れ い い ら い っ れ い い ら に っ れ い い ら む っ れ い い ら む っ れ い い ら む っ れ い い ら む っ む む っ む む っ む い ら い ら む っ む む っ い い ら い ら に っ い ら む っ い ら い ら に っ い ら い ら い ら い い ら に っ い い ら で に っ い い い ら で 二 っ い い い い い い い ら で 二 っ っ い い い い い い い い い い い い い	タルの超塑性を含むクリーブは一般 そされる。この式はスラリーやコロイ のひずみにおいても同様に表すこと 流体、ずり速度粘稠性、ずり速度流 一方、数百%以上の延性を示すSi 体が発見された。このSiAION スにした固溶体であり、約5~20vol いる。今回、1500~1600℃での圧縮 ずり速度粘稠化現象を見い出し、S 体の増大した液相クリーブは、約20 -トン挙動からずり速度粘稠化挙動へ 分かった。以下、詳細を述べる。 に5種類の調合を行って、ホットブ →、1550℃)で焼結し、SiAION の試料を3×3×6mmのバルク体に C1500~1570℃の間で速度を変えて圧	かる。この現象は流体 のである。この現象は流体 のである。なお、この ©ニュートンーずり速 上記の転移をモデル 公式化することを行っ られ、しかしお互いに 配列を持っている互いに 配列を行ったいくつかのモデルか 的にはクリープ速度は $\varepsilon = \begin{cases} (1) -$	に転転した。 に転転した。 に転転した。 にでするで、 たた。 にでするで、 たた。 にでするに、 でした。 でののなれ にでいて、 でした。 でののなれ にでいて、 でした。 でののなれ でした。 での での での での での での での での での での	トビクシーと呼ばれるも りである。 多におけるモデル 連続的なメカニズムを こでランダムに方向づけ 、同地的につり合った きえる(図6)。こうし てを組み合わせると最終 ($\sigma < 2/3 \sigma_c$) ろと比較するためlog σ ある。もし転移応力 σ^* 四7 で得られる $\sigma - \varepsilon$ ブ に同じである。				
 新試験を行い、OT (◎ 結果 ③ 結果 ③ おり、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し	みと応力の関係を測定した。 の代表的な応力ーひずみ曲線を図2に (み速度を除いて、大きなひずみの領 になり、たぶん安定状態に達してい 、各試料の1550℃におけるひずみ速 、切の関係を図3に示す。この図にお (1/n)の変化が見られる。転移応力 健度ではn = 1であるのに対し、転移 忘する。また、はば広いひずみ速度の 、転移応力(σ*)は約20MPaであ 温度を変化させても同様な結果が得 に、ひずみ速度を徐々に増加させ 健度を減少させることによるひずみ速 ちに示す。この図から転移応力(約2) っちずり速度粘稠化レジン状態におい リシスがブロットされていることが分	(2) 考察 SiAlONSにお ることから、DLVO のモデルでは転移応力 り、てきないでは でわって なり、スタ(図8)。 ム 発力で 粒子/液想 の な り、 な う で 粒子/液 相 え し の の 石 た 、 た た の に た の に の の に た に た の に つ で わ で つ で わ で た つ で わ で つ で わ で つ で つ で わ で つ で つ で つ で	けの♂を◎子のさルMPト量動ッSつにえれるのがです。 今論越入2年のMれをPとし、体ク独自にえれる年ののがです。 30MれをPとし、体ク独自にえれる年の。 すび現でに現象では現象では現象では うたののの	R験は粒子間の反応があ 雪しない。しかし、上記 σ_c の説明が不十分であ うことにより容易に説明 れたどまっているが、 力になるとh=2 Δ ,に なるとh=2 Δ ,に なるたh=2 Δ ,に なるたh=2 Δ ,に なるたh=2 Δ ,に なるたh=2 Δ ,に たた、粒界に なるたh=2 Δ ,に なるたh=2 Δ ,に たた、 たた、 たた、 たた、 たた、 たた、 たた、 たた				

出典 J. Am. Ceram. Soc., <u>75</u> [8] 1073-1089 (1992)

[A-2-5]-2b

-66-

[A-2-5]-3a

(和文)	ムライトージルコニア複合和	すの超塑性							
(英文)	Superplasticity of mullit	Superplasticity of mullite-zirconia composite							
著者(所属機関) Takuayuki Nagano ,Hidezumi Kato (Research and Development Center, Suzuki Motor) and Fumihiro Wakai (Ceramic Science Dept., Gov. Industrial Research Institute,Nagoya)									
キーワード mulli grain	$\neq - \nabla - F$ mullite-zirconia composite, superplasticity, tensile creep test, grain-boundary slinding, the Dorn equation								
図・表・写真・参	券文献の数 図:8 表:2 3	写真:7 参考文献:17	抄訳者 三宅卓志						
【 ムーン (3412) 「 ムーン (3412)	.0 ₃ 2Si0 ₂)は高いクリープ耐 系数や化学安定性等により高 着目されている。ムライトを ジルコニアを分散させたムラ 復合材は、破壊靱性や強度が レコニンが高温でのムライト 5.000000000000000000000000000000000000	ずみ取り、 すないのない。 すないのない。 すないのない。 などの、 などの、 など、 など、 など、 など、 など、 など、 など、 など	ようFig.1,33 になる。両部 になる。両部 になる。両部 になる。両部 になる。両部 にない。 「 「 「 「 」 」 」 」 」 」 」 」 」 」 」 」 」						
出典	J. Mat. Sci., <u>27</u> (1992),3575)							

[A-2-5]-3b

[A-2-5]-4a

(和文)	超塑性遷移相を用いたムライトの製造
タイトル (英文)	Fabrication of Mullite Body Using Superplastic Transient Phase
出 典	J.Am. Ceram. Soc., 75 [5] 1085-91 (1992)
著 者 (所属機関)	Liang A. Xue and I-Wei Chen (Dept. Mater. Sci. & Engng., The University of Michigan, Ann Arbor, Michigan 48109-2136)
キーワード	mullite, premullite, mullitization, superplasticity, mechanical properties, deformation
図、表、写真、教	参文献の数 図:9,表:0,写真:6,参考文献:29 抄訳者 若井史博
「「「」」」」では、「」」」では、「」」に、「」」に、「」」に、「」」に、「」」に、「」」、「」」、「」」、「」	加工のためには、応力が 加工速度10 ⁴ s ⁻¹ 以上で とが必要である。ムライト とが必要である。ムライト たが必要である。ムライト たの成形条件を達成すること の成形、超塑性遷移相を用 トの製造/成形方法を開発 ・応力指数は1250℃から、1300℃では は約1.7、1350℃から1400℃では は約1.7、1350℃から1400℃では は約1.7、1350℃から1300℃では は約1.7、1350℃から1300℃では は約1.7、1350℃から1400℃では は約1.7、1350℃から1400℃では いってはれたホルギーは、1250℃から13 25℃では2086kJ/mol、1325℃ たから1400℃では1150kJ/mol こ325℃では2086kJ/mol、1325℃ たから1400℃では1150kJ/mol こ325℃では2086kJ/mol、1325℃ たから1400℃では1150kJ/mol こ325℃では2086kJ/mol、1325℃ たから1400℃では1150kJ/mol こ325℃では2086kJ/mol、1325℃ たから1400℃では1150kJ/mol こ325℃では2086kJ/mol た、250%方式のした、ムライト た、から構成される。 こ325℃では2086kJ/mol た、から構成される。 こ325℃では2086kJ/mol た、250%方式和の粘性の活性化工 たいたたたた た、250%方式和の粘性の活性化工 たいたたたた た、250%方式和の粘性の活性化工 たいたたたた た、250%方式和の粘性の活性化工 たいたたた たがられる。 こ50歳留な(99%)プリム 50℃で、1.2X10 なしてした、250% たいたた たいたた たいたた たいたた たいたた たいた たい

[A-2-5]-5a

	微細粒ジルコニアの超塑性バルジ加工								
21 11	Superplastic bulging of fin	e-grained zirconia							
出典	J. Am. Ceram. Soc.,73 [3] 746-49 (1990)								
著 者 (所属機関)	Xin Wu ,I-Wei Chen (Department of Material Science and Engineering University of Michigan , Ann Arbor , Michigan 48109-21361								
キーワード	mechanical propaties, Y-TZP fine grain, biaxial tension	mechanical propaties, Y-TZP, grain boundaries, plasticity, bulging fine grain, biaxial tension, hemispherical shell							
図、表、写真、	参考文献の数 図:7,表:0,	写真: 0,参考文献: 12 抄訳者 後藤 淳							
1. (根要) 1. (根要) 1. (相) 1. (相) 1. (1) 村り2Y-TZ より、一日 シェブリン シェブリルマン (2) 本予この (3) (2) 政策材 (2) (3) (1) (2) (1) (2) (2) (3) (4) (5) 試験結果 (1) 成一日 (2) 商力 (1) (2) (1) (2) (2) (3) (4) (5) (5) (1) (2) (2) (3) (4) (5) (7) (8) (1) (2) (3) (4) (5) (7) (8) <th>Pの薄板に対して、半球パンチに 生ストレッチ加工を実施し、半球 犬の成形体を得た。 スにおける2軸の応力/歪状態を さめ、力学的解析を実施した。 D臨界歪速度は10⁻³/sである。 · 3mo1%Y₂O₃-正方晶$3$³/sである。 · 3mo1%Y₂O₃-正方晶$3$³/sである。</th> <th> (5)本加工法と他加工法との比較 (5)本加工法と他加工法との比較 ①2軸引張ストレッチ加工によりガス圧バルジ加工と同様な形状を得た。 ②得られる形状はフランジ部拘束なしの深絞り加工に似ているが、その機構はフランジ部の変形がないことからフランジ部拘束ありのパンチストレッチ加工と似ている。 ③フランジ部が変形しない理由は、超塑性変形部位が十分に加工硬化しておらず、変形に必要な応力をフランジ部に伝えることができないからである。 (6)荷重、変位、歪速度の解析 ①数値解析から予測される荷重-変位曲線と実験結果(図2)は良く一致している。 ②10分で同じ最終形状となるS.R.=6×10⁻⁴/sおよびC.H.S.=0.6mm/minの条件の時間と荷重、変位との関係を図6に示す。 ③図6においてビーク荷重はS.R.一定の方が低くなる。 ④1150℃・成形時間10分において、C.H.S.一定の時にはT/Pがある程度破壊する場合があったが、S.R.一定の場合にはT/Pは破壊せず、表面状態も良好であった。 (7)表面状態の影響 ①表面の研削傷が、クラックの発生場所となた。 </th>	Pの薄板に対して、半球パンチに 生ストレッチ加工を実施し、半球 犬の成形体を得た。 スにおける2軸の応力/歪状態を さめ、力学的解析を実施した。 D臨界歪速度は10 ⁻³ /sである。 · 3mo1%Y ₂ O ₃ -正方晶 3 ³ /sである。	 (5)本加工法と他加工法との比較 (5)本加工法と他加工法との比較 ①2軸引張ストレッチ加工によりガス圧バルジ加工と同様な形状を得た。 ②得られる形状はフランジ部拘束なしの深絞り加工に似ているが、その機構はフランジ部の変形がないことからフランジ部拘束ありのパンチストレッチ加工と似ている。 ③フランジ部が変形しない理由は、超塑性変形部位が十分に加工硬化しておらず、変形に必要な応力をフランジ部に伝えることができないからである。 (6)荷重、変位、歪速度の解析 ①数値解析から予測される荷重-変位曲線と実験結果(図2)は良く一致している。 ②10分で同じ最終形状となるS.R.=6×10⁻⁴/sおよびC.H.S.=0.6mm/minの条件の時間と荷重、変位との関係を図6に示す。 ③図6においてビーク荷重はS.R.一定の方が低くなる。 ④1150℃・成形時間10分において、C.H.S.一定の時にはT/Pがある程度破壊する場合があったが、S.R.一定の場合にはT/Pは破壊せず、表面状態も良好であった。 (7)表面状態の影響 ①表面の研削傷が、クラックの発生場所となた。 							
 ・各条件の7 ・査速度の3 (3) 頂点からの ・パンチとの 	青重- 変位曲線の相違は、温度と 違いから説明できる。 D距離と各方向歪の関係(図3) D 摩擦により最大歪を受け る占け	り、T/P の破壊を左右する。 ②T/P にタイヤモンドヘーストによる研磨処理したとこ ろ、クラック発生をかなり抑制できた。							
頂点より 頂点より (4) 各方向の の プ た向のそる 力が働く。 ②接触部外 ③ σ θ は、 フランジ	2mm程ずれる。 芯力と歪との関係(図4) D接触部には、半径、円周、板厚 れぞれに、 σ r、 σ θ 、 σ t の応 削には σ r と σ θ の応力が働く。 外側に向かうにつれ減少して行き 丘傍で負となる。	 4. 結論 (1) 温度1150℃・歪速度≒10⁻⁴/sの条件下で、 微細粒TZP の2軸引張超塑性に成功した。 (2) 数値解析により、荷重・歪等が予測され、 成形条件の改善がなされた。 (3) 材料に優れた形状付与性を与えられるなら ば、超塑性加工はニア・ネット・シェイフ 加工の魅力 的な方法となるであろう。 							

DISPLACEMENT h (mm)

ASSESMENT OF THE STATUS OF CERAMIC MATRIX COMPOSITES TECHNOLOGY IN THE UNITD STATES AND ABROAD

C.Y.Ho, S.K.El-Rahaiby, DoD Ceramics Information Analysis Center, CINDAS Purdue University, West Lafayette, Indiana 47906

The American Ceramic Society:Ceramic Engineering & Science Proceedings, Jul.-Aug.1992 Part 1 of 2, Page 3-17. 16th Annual Conference on Composite and Advanced Ceramics

.....

— 米国内外におけるセラミックマトリックス複合材料技術のアセスメント —

概要

米 国防省 Ceramics Information Analysis Center が行った米国内外におけるCeramic Matrix Cpmposites (CMCs)の現状アセスメントの結果を述べ、考察した。米国のCMCsに係わる種 々の重要技術を評価、判定して「CMCsに対し過去10年間に投じられた約2.5億\$の米国政府資金 の効果如何?」の疑問に答える。

序

米国の軍需・航空宇宙・民需産業は、更に軽量で・強く・耐食性に優れ、極高温でより長時 間使用できる材料を切実に求めている。

セラミックマトリックス復合材料(CMCs) — 連続繊維、短繊維、ウイスカ、小板状物あるい は粒子でセラミックスまたはガラスマトリックスを強化したもの — は、軽量性、高温強度と耐 環境性を同時に必要な場合に、最大の可能性をもたらすものである。CMCsは、殆どのモノリシッ クセラミックスに比べ、破壊靱性(亀裂の急速伝播に対する抵抗性)と耐熱衝撃性に優れている。 更に、CMCsは被覆されたC/C 復合材料よりも遙かに優れた耐酸化性を持つことも可能である。適 当なコスト・有効性の下で、このようなCMCsの可能性をものにできれば、高強度・高靱性で低熱 膨張なCMCs は、21世紀の画期的な構造材料になることであろう。

今のところ、CMCsを高温(1300℃以上)で利用にするに限界があるのは、主に高温ファイバ ーが得られないことと、工程/製造コストが嵩むためである。設計データ、設計手法、寿命予測 手法、部材の信頼性、使用経験も必要である。

1979年から1989年にわたり国防省(DoD)はCMCsの基礎、応用、探索開発に対し\$1億1,900 万(約160億円)を投資した(1)。NASA, DoE, NSF, NISTの米国政府機関と鉱山局の投資を加算 すると総計\$2億5000万(約330億円)に達する(1-3)。

Prude大学情報統計センター(CINDAS)が運営する国防省セラミックス情報分析センター(CIAC) は、次の各項目を評価、判定するため、米国内外でのCMCs技術のアセスメントを行った。

- ① CMCs技術に対する米国政府投資の有効性
- ② 政府投資の現在および将来の米国の軍事力におよぼす影響
- ③ 米国は、軍事および民間の両面で必要なる複合材料とその部品を製造できる競争力ののあるCMCsの産業基盤を整備してきたであろうか?
- ④ 米国はCMCsの健全な技術基盤を確立してきたであろうか? 何が弱いか? 成長の方向 は?
- ⑤ CMCs技術のための米国外の投資レベルと最も強力な外国の技術分野
- ⑥ CMCs技術における米国の競合面での世界的な相対地位
- ⑦ 米国の科学、技術機関にとって最も重要なCMCs分野の研究開発の方向

このため、CAICは、可能な限り、主に米国内でCAICが利用できる個人専門家を利用して調査した。従って、この技術アセスメントの結果は全米のCMCs技術の多数の指導的エキスパートのまと まった意見である。意見は次のような方法で集められた。 ①専門家の意見調査 ②米国のトッ プ専門化によるワークショップ(Purdue大学) ③15th Annual conference on composites(Coccon Beach)と並行して行われたワークショップ ④その他

CMCs技術に対する米国政府投資の有効性

全体的な結論として、米国政府資金は、賢明かつ効果的に投資された。1979年から1989年ま での10年間、米国のCMCs科学は長足に進歩し、CMCsの変形機構の理解を深めた優れた情報が集積 された。このように科学の基盤は強化されたが、CMCs部品を設計したりCMCs部品の寿命を予測す る知識は依然として充分ではない。環境因子、熱・機械的疲労、エロージョン・コロージョン・ 磨耗、多軸応力、等々はいづれも重要事項であるが、未だ不充分である。

ファイバー強化ガラス・ガラスセラミックス複合材料のような新材料が開発され、1000℃程度の中温度領域システムに利用されている。靱性のある Si₃N₄,SiC, アルミナマトリックス材料 も開発されている。 ファイバー、ウイスカー強化についても進歩もあり、その結果、ある種の 高強度フイラメント状材料 (例えば SiC, Al₂O₃)やウイスカー (例えば SiC) が入手できるよう になった。

引張試験 — 設計に要する基本的な機械的性質は、殆どが引張試験で求められる — によって、材料のプロセシング、加工、試験技術を進歩させる情報が引き続き得られている。大気中で 1600℃(11)更には1927℃(12)までの温度でCMCsを試験できる装置が開発された。

CMCsは、温度とそれ以外の環境条件 — 例えば、耐酸化性、エロージョン、酸による化学的 アタック、等々 — の両面で、利用の範囲は大変広く、1000℃以下を含むあらゆる温度に実用し 得る可能性を持つ材料である。表1 は、CMCsの利用が考えられる様々な用途である。航空宇宙、 防衛、エネルギー、車両、環境分野など広範な分野で利用の可能性があるCMCsは、将来、米国の 国際競争力の局面で重要かつ不可欠な役割を演ずることになるであろう。米国政府の研究開発資 金の水準が満足でき、かつ継続的であることは充分に適切である。

然し、次の事実に注意しなければならない。それは、CMCsについて、各種政府機関と産業界 内で充分な全体計画を設定するには、CMCsが持つ可能性を完全に認識することが必要なことであ る。産業界と政府のクロスオーバーを実現するには、可能な限りチャンスの窓を開き、クロスオ ーバーのベストパートナーを広く探し求めなければならない。CMCsは1000℃以下の温度を含め、 あらゆる温度領域での利用に発展可能なクロスオーバーの候補なのである。研究者と産業界の間 のインターフェイスを強化し、また「研究」を部品設計に利用し得る設計技術者数を増すことが 必要である。これらは、応用指向のシンポジウム、ワークショップ、グループミーティングと垂 直に統合された計画を通じなし遂げ得るであろう。政府/産業界の部品実証プログラムが米国の 競争力を生き生きと保たしめるに必要である。NASAの推進材料開発プログラムはその実例の一つ である。

政府投資の現在および将来の米国の軍事力におよぼす影響

今のところ、CMCsは軍事力に対し、ある限られた影響力を持つに過ぎないが、状況は変わり つつあり、途方もなく大きく成長する機会を持っている。陸海軍を巻き込んだ DARPA装甲・対装 甲プログラムの結果、重砲弾防御用として LAV-25 装甲車にハイテクCMCが採用されようとし ている(5)。交換式プレート或いはセラミックタイルは鉄鋼より強力かつ軽量で、明らかに鉄鋼 より優れた防弾性を有する(5)。ペルシャ湾岸戦争で使用された多数のヘリコプターには、機関 銃から発射される徹甲弾を止める軽量のセラミックアーマーを装備していた(6)。 セラミックスは、例えば米陸軍のパトリオットミサイルのレーダーなど、殆どの軍用レーダ ー通信システムに採用されている(6)。パトリオットミサイルにはレーダー機能を損なうことな く過酷な環境条件からレーダーシステムを守るためセラミックス製レドームが使われている(6)。 航空システムの推進サブシステム、スペースシャトルのメインエンジン、高性能ガスタービンエ ンジンを含む幅広い範囲で積層構造のCMCsが検討されている。特に、CMCsは、分割式エンジンラ イナー小型ミサイルのエンジンタービンローター、排気ノズルに採用の可能性がある(7)。これ らの材料を採用すると、エンジン作動温度・圧力が上昇し、出力と推進力が増加し、燃料効率の 向上が期待される。更に、CMCsは比信頼性が高い方向を任意に選ぶことができる材料であるため ガスタービンエンジンの重量/推力を高める明らかな可能性を持つと言える(7)。出現しょうと している複合材料システム、特に Si₃N₄マトリックス複合材料と SiCマトリックス複合材料は、 多くの応用面で金属との競合が可能である。積層型セラミックマトリックス複合材料のプロトタ イプの性能は、殆どの金属材料の使用限度をはるかに上回る、1400℃に達する温度で証明されて いる。

1990年陸軍技術基盤基本計画(Army Technology Base Master Plan:ATBMP)と1991年国防省緊 要技術計画(DoD Critical Technology Plan)の両計画は、12世紀初期の軍事システムに先進材料 および複合材料が広範囲に必要、としている。DoDプランは、2005年までには「殆どの武器シ ステムおよび施設に先進複合材料が広範に使用されること」が最終目標であると述べ、陸軍プラ ンは、2005年までに 25%の軍事システムの重量軽減が必要としている(14)。技術的見地から見れ ば、これらの目標は達成可能である。成功のキーポンイトは、研究所から軍事システムへの技術 移転が成功裏に進められることで、移転が成功裏に行われれば、軍事システムにおけるCMCsの市 民権が確立され、軍事用CMCsの採用を早めるに必要なCMCsの品質と性能データーが、民生市場と 同様に、蓄積されることになるであろう。

DoD/NASAによる集積高機能タービンエンジン計画(Integrated High Performance Turbine Engine Technology Program: IHPTET),NASAの先進高温度エンジン材料計画(Advanced High Temperature Engine Material Program: HITEMP)および国家宇宙飛行体計画(National Aero-Space Plane Program: NASP)は CMCs を加えた複合材料を含む諸材料を軍用および宇宙用に開発する 事業を始めている。HIPTET計画はCMCsの性能を1650℃以上に高めることを狙い、軍事目的に焦点 を当て、HITEMPは民間輸送用エンジンを第一目標としている。IHPTET活動の一つでは1650℃用 CMCsを目標とするものもあり、別の活動では中温度領域での利用を狙ったCMCsの研究が行われて いる(15)。NASAは高強度で安定性の高い様々な組成の微細径ファイバーの開発を活発化すること も検討中である(16)。

アメリカは軍事用と民間の両面で必要な複合材料とその部品を製造する 競争力のあるCMCs産業の基盤を整備してきたであろうか ?

米国の産業基盤は限界はあるが良くなりつつある。SiCw/Al203製切削工具と熱交換器部品用 が成功裏に登場している。Avanced Composite Materials, Greenleaf, Cercon, Cooresなど多くの 米国の会社が必要に応じ部品を供給できるベースラインを確立している。

DuPont社と Lunxide社の一子会社はセラミックス製装甲部品と自動車エンジン用バルブ部品 及びセラミックス軸受用パイロット設備を増強している。 Nicalon[™]とUTRC Compgas[™]のような カーボン強化ガラスおよびガラスセラミックス材料が1000℃近傍で使用される航空機部品用に最 も近いものとして出現している。

CMCsの主要な用途は、今のところ切削工具チップ、耐磨耗部品、ある種の航空宇宙・軍事用 途 — 主としてスペースシャトルタイルおよび装甲部品 — である。エンジン部品、超音速レド ーム、航空宇宙用途はその多くが研究開発段階にある。航空宇宙、軍事関連用先進セラミックス — CMCsを含む — の市場規模は8000万 \$ (約100 億円)/1990年、 2億(260億円)/1995年, 4億4500万 \$ (約580億円)/2000年と推定された。米国の先進セラミックス産業と市場に関する 分析が文献(13)に示されている。

①プロセシング、製造および複合材料構成物質のハンドリングに係わる健康障害問題
②ファイバーおよびウイスカーコストの高さ

③高金利と税制優遇措置の不足

④米国の研究開発コストの高さ

⑤コスト-生産性の良い製造力の不足

⑥研究指向のデータ取り傾向の強さ

⑦CMCs部品のポテンシャルニーズが国防省向であるため、CMCs投資の正当性評価が産業界で 充分行われていない、

など様々な要素のため、米国のCMCs産業基盤は制約されている。加えて米国においては、垂直統 合(vertical integration)が不足していることも一因である。例えば、日本は、エレクトロニク ス分野で見られるように、垂直統合が著しく、結果として米国よりも競争力が強い。今日まで、 米国のこの様な傾向のため、複合材料製造者は、新材料(例えばウイスカーやファイバー)を使 用しようとすると、それを米国外のサプライヤーから入手することになる。この結果、国外サプ ライヤー依存性が続くことになる。若し、米国の部品製造業者が適切な注意を払わなかったなら ば、部品の製造は、米国内で行われた研究開発を利用することができる外国に追随することにも なる。別のキーポイントは、日本では会社間の共同研究が頻繁に行われていることで、米国の会 社は、まさにその反対である。

米国はCMCsの健全な技術基盤を確立してきたであろうか?何が弱いか?成長の方向は?

DoD傘下の研究所、国立研究所、民間企業など米国の研究開発の世界のCMCsの挙動機構に関 する理解はかなり高度なものがあり、現在では日本その他の諸外国に比べ優位に立っている。 CMCsの靱性機構に関する我々の理解は特に進んでおり、CMCsが単体の構造用セラミックスに比べ 遙かに靱性の優れた材料であることが立証されている。CMCsの合成とプロセシングについての進 歩も少なからぬものがある。いくつかの新しい新材料システムも得られ、多くのファイバー/マ トリックス システムが有用を性質を示すことが明らかにされてきた。高温特性に関する所期の 研究目標は未だ達成されていないが、少なくとも1200℃までの進歩は得られている。

とは言え、CMCsは二つの重要点、即ちコスト・有効性および製品信頼性の二点について処理 できるまでは、軍事、航空宇宙、民生という広範な用途に対して充分な状況にあるとは言えない。 二つの重要点には次のような事項がある。

①ファイバーおよびウイスカーのコストが高いこと

- ②ファイバーおよびウイスカーが海の輸入に依存し米国メーカーの供給体制が不適当な状態 にあると
- ③信頼性が高く、高温(1200℃以上)、耐環境性の良好な強化用ファイバーが入手できない こと
- ④コスト・有効性の点で信頼できる成形法が不足していること。
- ⑥CMCsの設計,評価,品質表示(qualification),試験法に関する包括的規格が不足している こと

⑦他種材料と組付けることが必要なシステムにCMCsを組み込むことができる進歩した接合ないし固定化技術が不足していること。

セラミックス産業とその原材料メーカーは自らリスクのある冒険を行うには消極的である。 逆に、軍事および航空宇宙用途は、コストドライブ型というより、性能ドライブ型である。材料 およびプロセス — 少量である場合が多い — は「要求性能を満たすことができること」に基づ いて選択される。他方、産業用途はコストに敏感である。安定的、長期的資金に対して政府 が関与することにより、リスクが緩和され、開発速度が早まり、軍事および航空宇宙分野の CMCsにおいて米国がリーダーシップを発揮する可能性が高まることなるであろう。

今後、技術基盤の向かう方向は、市場の占める場所によって最終的に定められるであろう。 然しCMCsの性能目標が1300℃以上の比較的狭い温度領域に限られるならば、産業界が主導的に多 額の自己資金を投入することはないだろう。CMCsの産業用大規模市場は、産業用として性能は適 度だか産業用としてのコスト・効果性があり、低コストのプロセシングで製造される材料のみを 基盤とすることになるであろう。産業界と政府のクロスオーバーを実現するには、出来るかぎり 機会の窓を広く開き、ベストのクロスオーバー候補を探し求める必要がある。前述のとおりCMCs は、1000℃以下を含めた全ての温度で使用が期待できる「可能性を持つ材料」なのである。とい うことは、これ以外の複合材料およびマトリックスシステムと競合することを意味する。然し、 材料は、その性質を基に選択れさるべきであり、材料タイプのカテゴリーに基づいて差別される べきではない。この機会を、いま追求することにより、将来いつか現れるCMCsの最適温度を待つ よりも、はるかに早くCMCsの応用の良きチャンスが現れる。

CMCs技術への外国の投資水準と最も強い外国技術の分野

米国以外でCMCsの研究開発を行っている主要5カ国は、フランス、日本、ドイツ、英国および スエーデンである。これら5カ国では、合計87機関がCMCsの研究開発に取り組んでおり、研究開 発資金は年額1.4 ~1.5 億\$(120~200 億円程度)であり、過去2年間の資金増加は年率10% に 近い。この5カ国の連続繊維CMCs(CFCMCs)研究開発投資は年間6000万\$(800億\$程度)と推定さ れる。この内、約55% が新種CFCMCsの製造法と応用に向けられ、25% が新種ファイバーの開発に 向けられている(9)。

CMCsの応用開発をおこなっている会社の中で、海外のリーダーには Rhone-Poulenc(France) 新日鐵(Japan), Pechney(France), Hoechst Ceramtec(Germany) がある。CFCMCs応用の外国リー ダーには Societe des Europeenne de Propulsion(SEP)(France), Rhone-Poulenc(France), 日本カーボン(Japan), 宇部興産(Japan), 東燃(Japan), Machienfablik Nurunberg(MAN) Technologhies(Germany), Imperial Chemical Industries(ICI)(UK) がある。

フランスは、欧州諸国では最もCMCsの開発に熱心な国と考えられている。政府資金に依る機 関が開発をコーディネートしており、SEP, Aerospatiale, Rhone-Poulenc, Pechiney 等の大会 社が関係している。ヨーロッパシャトル計画にC-SiC, SiC-SiC, C-C 部品が利用されることから これらの各社はCMCsの製造とその応用分野で世界の最前線に登場してきた。軍事と航空宇宙への 応用計画にに主導されて、セラミックスファイバーの開発、製造とその高温挙動に関する研究が 進んでいる。 SEP社製のCMC製エンジン排気フラップが最近ミラージュ2000航空機でテストされ た。C-C製ターボホイール、C-SiC製ノーズコーン、C-SiC製ターボエンジンスラストプレード の応用も試みられている。

ドイツでは、MAN-Technologies社が C-C複合材料の製造に化学気相含浸法(Chemical Vapour Infiltration: CVI)と珪素含浸法(Silicon infiltration Technique)を採用している。この動 きは、CMCsの信頼性は熱・強度上の問題に絡んでSEP社とMAN社を結ぶプログラムと重要な関連 があると思われる。次の重要プログラムは、カールスルーエ大学とボルドー大学との共同研究で あり、ここではモデル基体を用いて物理的、化学的手法による CVIのモデリングが研究されてい る。第三の興味深いプログラムは、Groupement d'Etudes pour la Construction (Alsholm)と Saint Gobain社がウイスカー・粒子複合材料の最適のプロセシング法(10)を開発ししつあること である。

ヨーロパ共同体(EC)は様々な材料分野の研究開発を重要課題として共同で進めている。複合 材料分野で注目を引くのは、Europe/Europian Research on Advanced Materials (BRITE/EURAM) として推進中の産業技術に関する基礎研究であり、CMCsに関する計画を含めて様々な共同研究が 行われている。

BRITE/EURAM 計画は、二本の予算枠で 445のプロジェクトをサポートしている(10)。予算規 模は基幹産業や防衛分野の研究開発のそれと較べて小さいとは言え、予算付けと計画の統合・協 調のプロセスは今後の欧州における研究活動の一つの先駆的なものである。

GEC ALSTOHM Engineering Research Centre(英国), Bertin et Cie(フランス), BHP(フイルラント),は 『セラミックスマトリックス複合材料の設計手法』と名付けた EC RRITE-EURAM プロジェクトを 1991年 2月に開始した。この計画は、3 年計画で、次の各項を開発することになっている(17)。

・連続繊維強化CMCs

・粒子強化CMCs

・材料設計/部品設計の基準作り

全予算は2600万ECU(1 ECU = 約 1.2\$)であり、ある特定の先進CMCsについて、部品性能、製造 手法、などの手法を作りあげることが目的である。

CMCsの開発に関与している日本の会社には日立、宇部興産、東燃、日本カーボン、東芝セラ ミックスなどがある。宇部、東燃、日本カーボン、東芝セラミックスはファイバーの開発を行っ ている。日本は、非酸化物のセラミックファイバー、セラミックパウダー技術およびセラミック ス製品のプロセシングと製造技術のリーダーであり、彼らが究開発中のセラミックスの種類は最 も多く、モノリシックセラミックスの範疇では彼らがプライオリティを持ち、ウイスカーと連続 ファイバーでもこれに続いている。しかし、全般的に見ると、最近では、プロセシングの途中で その場生成したウイスカー類似組織を有するモノリスセラミックスで進歩が見られるため、ウイ スカー強化セラミックスマトリックス複合材料から遠ざかっているようである。京セラは、Si₃N. のその場生成おいて非常に強力な 立場にある。この様な開発の状況とウイスカーの過剰コスト および健康障害への心配から、この種の靱性強化セラミックスが需要は少ないがコストを重視す る用途の材料選択の「要素」になる可能性もある(10)。

米国CMCs技術の世界的競合状況

米国CMCs技術の状況は、今やジルコニア強靱化複合材料の製造とマーケティングでは他国に キャッチアップした状況にあるが、追われる立場にもある。 米国は粒子強化複合材料では、他 国に比べ、良い状況にはあるとは言え、ある部分では外国と競合し、ある部分では有利な立場に ある。ウイスカー複合材料の分野でも、米国は幾らかは有利な立場にあるが、日本メーカーが米 国内に持つウスカー生産施設が増加してきたため、(粒子強化複合材料と)同様な危険に直面し ている。米国は、恐らく、連続ファイバーセラミックス複合材料技術の開発では最大のリードを 保っているが、ファイバーの開発と生産の分野で、日本勢とヨーロッパ勢 — 特にフランス — の双方との過酷な競合に、再び直面するかも知れないのである。

米国は、DoD, DoE, NASA, NSF その他政府機関の投資強化により、過去10年間以上にわたり 復合材料の研究開発分野で世界をリードしてきている。 しかし、そのポジションは他国、特に 日本から、主として基礎研究成果のエンジニアリングおよび生産への移転によって、挑戦を受け ている。例えば、米国で開発された多くの技術が外国で実用化されている。また、諸外国では、 研究機関と生産ラインとの協調は米国に比べ密接に行われている。

最近、DARPA は、防衛関連製品に対するDoDの外国品依存度がいよいよ増大しつつあると報 じている。全てが米国産部品だけで作られた武器は何一つ見出せない。ファインセラミックス、 半導体、磁性材料など輸出管理リストに登録されている全ての材料について、もはや、米国は唯 一の技術リーダーではない。様々の軍事用重要材料に対し、米国産業は追従者の位置に落ちてし まった。この事実は、Office of Science and Technology Policy, Department of Commerce, Department of Defence, The Council of Compentiveness から出された多くの現状アセスメン ト報告で明らかにされている(18)。 米国は優れた科学基盤を持ち、ある程度の限界はあるもの製造基盤も有している。しかし、 最も良質な非酸化物ファイバーは基本的に日本に依存し、最良の粉末も日本とドイツ(ESK, H.C. Stark)に依存している。米国はその科学を利用する恵まれた立場にあるとはとても言えない。こ のように、世界的に見ると、CMCs分野で米国は不利な立場に置かれている。

米国の科学・技術界がCMCsの分野で最も注力すべき研究開発の方向

(1) 強化材

- a. 高強度で高温安定性のよいファイバーの開発
- b. ファイバーへのコーティング
- (2)界面構造
 - a. ファイバー/界面/マトリックス システムの制御と適正化
 - セラミックス-セラミックス界面の性質をを化学的ないし構造的手段で 如何にしたら制御できるか?
 - 様々な局面から界面を理解することが必要。
 - i)ファイバーコーティング前駆体の化学合成
 - ii)界面の化学的活性
 - iii) 微構造
 - iv)界面の機械的性質と微構造および微細領域化学成分との関連

(3)プロセセシング

- a. コストー有効性の良いプロセシング法、特に Directed Metal Oxidation Process (DIMOX^{YM}), CVIのような novel process
- b. ニアネットシェイプ成形法
- (4)試験、検査法
 - a. 製造プロセス中に組み込むことの出来る非破壊検査法 および製造中、製造後 に欠陥を検出するセンサー技術の開発
 - b. 材料の確性と特性付け(identification and characterization)
 - c. 用語の共通化(hermonization)
 - d. データ報告の標準化(data reporting format)
 - e. 試験法の標準化
 - f. 諸性質と特性 特に高温度での 評価の再現性
 - g. 特性解析と、

重複を排し技術的なギャップや欠落を明らかにするデータベースの開発

- (5)部品設計手法および解析
 - a. 部品設計手法、復合材料設計コードおよび規格、材料選択および設計許容限界 部品の経済設計のためのコンピュータプログラム
 - b. CMCs部品の信頼性研究と実使用環境における寿命予測
 - c. デザインコード性能の試験による立証
- (6)耐環境性
 - a. 腐食磨耗(errosion)
 - b. 磨耗
 - c. 腐食

◎航空宇宙	◎防 衛
- 軸受	- 装甲・防弾
- 燃焼器	- ベアリング
- 燃料電池	- エンジン燃焼部
- 燃料システムおよびバルブ	- 高性能レドーム材料
- 高温補助動力ユニット	- 赤外線ドーム
回転機器用軽量部品	- 不可視体(ステルスに使用)
(スターターなど)	- ロケットノズル
- シール	- 潜水艦推進軸シール
- 防熱システム	- 戦車用エンジン
- タービンエンジン部品	- 地上用支援車両
◎自動車	- ヘリコプター
- 触媒コンバーター	およびジェット部品
- 動力エンジン部品	◎発 電
- 固定レキュペレーター	- ベアリング
- 燃料噴射装置部品	- セラミックガスタービン
- 遮熱ディーゼル	- コジェネレーション
- タービン	- フィルター(カス清浄化用)
- ターボローター	- 燃料電池(固体電解質)
- バルブ、バルプシート	- 高温耐熱部品
- ウオーターポンプ	◎エレクトロニクス
◎バイオセラミックス	- 新型多層ICパッケージ
- 人工歯、骨、関節	- 多層キャパシター
- 心臓弁	- 圧力センサ、ガスセンサ
◎化学工業プロセス	- 基板
- 触媒および燃焼器	◎環境関連
- メカニカルシール	- フィルター、スクラバー
- ノズル	- 焼却器(内張、アフターバーナー)
- ラジアントチューブ	- ラジアントバーナー、ボイラー
およびバーナー	- 排水処理装置
- レキュペレーター	◎産業用機器
- 改質器	- ボート
- 耐火物	- バーナー
- バルブ部品	- 切削工具、ダイス
◎石油産業	- ルツボ、取鍋
- ベアリング	- 溶融金属フィルター
- 流量制御バルブ	- 金属/セラミックス仕上げ研磨工具
- 精油装置ヒーター	- 熱交換器
- ポンプ	

- 1. "Department of Defense Directions for Engineering Ceramics," Jerome Persh, Ceramic Bulletin, <u>68(6)</u>, 1174-1176, 1989.
- "Advanced Materials by Design, New Structural Materials 2. Technologies," U.S. Congress, Office of Technology Assessment, OTA-E-351, Washington, DC: U.S. Government Printing Office, June 1988.
- 3. "Congressional Perspective on Advanced Ceramics," P. C. Maxwell, Ceramic Bulletin, <u>67(8)</u>, 1357-1359, 1988.
- 4. "Bridging the GAP. An Advanced Ceramics Development and Commercialization Program," United States Advanced Ceramics Association (USACA), October 1990.
- "Made in Delaware, Tiles Shield Marines," Phil Milford, The 5. Wilmington News Journal, February 24, 1991.
- 6. "Ceramics at War in the Persian Gulf," The American Ceramic Society, Inc. News Release, February 11, 1991.
- 7. "Structural Reliability Analysis of Laminated CMC Components," Stephen F. Duffy and Joseph L. Palko, NASA Technical Memorandum 103685, prepared for the 36th International Gas Turbine and Aeroengine Congress and Exposition, sponsored by the American Society of Mechanical Engineers, Orlando, FL, June 3-6. 1991.
- "The New Materials Society-Challenges and Opportunities," Vol. 1: 8. New Materials Markets and Issues, Vol. 2: New Materials Science and Technology, U.S. Department of the Interior, Bureau of Mines, 1990.
- "Appraisal of Foreign Capabilities in Ceramic Composites," RCG/HBI Ref. Nos. 89-5073 and 90-3090, RCG/Hagler, Bailly Inc., 9. Washington, DC, February 1990.
- "Metal and Ceramic Matrix Composites Activities in Europe," 10. Michael J. Koczak, European Science Notes Information Bulletin, Office of Naval Research, European Office, 60-66, January 1991.
- "High Temperature Tensile Testing of Advanced Ceramics," Lito C. 11. Mejia, Ceramic Engineering and Science Proceedings, 10(7-8), 668-681, 1989.
- "A Test Method for Tensile Testing Coated Carbon-Carbon and 12. Ceramic Matrix Composites at Elevated Temperature in Air." Stuart Starrett, Ceramic Engineering and Science Proceedings, 11(9-10), 1281-1294, 1990.
- "U.S. Advanced Ceramics Industry An Industry and Market 13. Analysis," Thomas Abraham, CIAC Newsletter, DoD Ceramics Information Analysis Center, CINDAS/Purdue University, 1(2), 1-4, March 1991.
- "The Department of Defense Critical Technologies Plan," Committees on Armed Services, U.S. Congress, AD-A234 900, 14. May 1991.
- "Air Force High Temperature Materials Program," Norman M. 15. Tallan, Ceramic Engineering and Science Proceedings, 12(7-8), 957-960, 1991.
- "Ceramic-Matrix Composites," S. J. Grisaffe, Advanced Materials & 16. Processes, 137(1), 43-44, 93-94, 1990.
- "CMC BRITE-EURAM Research Project," CIAC Newsletter, DoD 17. Ceramics Information Analysis Center, CINDAS/Purdue University, <u>1</u>(2), p. 7, March 1991.
- 18. "Export Control," Arden L. Bement Jr., MRS Bulletin, 16(8), p. 5, August 1991.

B. 金属系複合材料

B-1. 概 要

(1)調 査 論 文

金属系複合材料についても、セラミックス系複合材料と同様に、下記の論文集(①,②)および Journal論文(③,④)を調査して、20論を選択し、その抄録を作成しした。 調査および抄録は、名古屋工業技術試験所並びに本研究開発を再委託した金属系6研究機関に所属 する研究者により行われた。抄録者の氏名等は第1章に記した。

金属系調査論文の出典

- Europian Association for Composite Materials : 5th Europian Conference on Composite Materials, Apr. 7-10, 1992, "Developments on the Science and Technology of Composite Materials.
- ② The American Ceramic Society : 16th Annual Conference on Composites and Advanced Ceramic Materials, Jan. 7-10, 1992
- ③ Scripta Metallurgia et Materialia, 1990~1992
- (4) Acta Metall.Mater.,1991

調査した20論文を主題別に分類すると次のとおりである。

金属系調査論文の主題別分類

キャラクタリゼーション、強度/力学的特性	3論文
複合化プロセスと性質	2
複合化プロセス	7
超塑性	3
プロセスと超塑性	5

(2)結果の概要

i. 複合材料の性質および複合化技術

金属基複合材料の耐環境性(腐食データと腐食と疲労特性)に関して2件の研究が報告されて る[1][2]。これは金属系複合材料の耐環境性に関する初めての報告と思われる。また、接合に関 する初めてと思われる研究報告[12]や、熱間加工が粒子分散強化材料の粒子分散性や強度におよ ぼす影響(複合化技術の範疇でもある)に関する多くの報告[6]~[10]が発表されたが、これら の報告は、本プロジェクトの目標達成へ有用な情報であるばかりでなく、金属基複合材料が具体 的な設計用材料の対象と見なされはじめたことを暗示するものであろう。

複合化技術の分野では、ニアネットシェイプ成形法(特に大型製品の)として数年前から知ら れている Lanxide Processの速度論的研究が報告されいる[4][5]。このプロセスは、複合材料製 品のニアネットシェイプ成形法(特に大型複合材料製品の)として特徴ある複合化・成形プロセスであり、本開発が目指す方向と競合的立場にある。Lanxide Process は最近、セラミックス系複合材料の複合化プロセスにも展開しつつあり、日本での活動も活発化し始めただけに注目に値する。

ii. 超塑性、超塑性加工技術

塑性の分野では、高速超塑性現象を固体物理的観点ではなく、レオロジー的に表現し、その現 象を解析した研究[11]がある。ここでは、熱間加工による組織微細化による高速超塑性の発現に 対する液相の役割が述べられており、高速超塑性材料やプロセスの開発に示唆を与えている。

[1]:[B-2-1]-1	[4]:[B-2-3]-4	[7]:[B-2-2]-2	[10]:[B-2-5]-1
[2]:[B-2-1]-2	[5]:[B-2-3]-5	[8]:[B-2-3]-1	[11]:[B-2-4]-2
[3]:[B-2-1]-3	[6]:[B-2-2]-1	[9]:[B-2-3]-3	[12]:[B-2-3]-6
		・文献タイトルは目	目次を参照
		・所載誌は抄録の	「出典」に記載してある。

B-2. 文献 抄録

[B-2-1]キャラクタリゼーション、強度/力学的特性

[B-2-1]-1a

(和文)	不連続的に強化された金属基複合材料の低サイクル疲労							
タイトル (英文)	Low Cycle Fatigue of Discontinuously Reinforced Metal Matrix Composites							
The former of the second of th								
著者(所属機製)	著者(所属機與) M.Levin and B.Karlsson (Charmers University of lechnology, Dept. of engineering Metals, Sweden)							
キーワード Low cycle fatigue, Metal matrix composite, SiC particle, Saffil fibre, Fracture process, Surface crack								
図・表・写真・参	考文献の数 図:2 表:1 写真:1 参考文献:11 抄訳者 斎藤尚文							
AlおよびMgf	合金をマトリックスとする複合材 複合化によって延性は低下した。							
の機械的性質に	こついては、この十年あまり色々 Fig.3a,bに疲労試験の結果を示す。Fig.3aは、							
と調べられてき	た。しかし、金属基複合材料の 🛛 総ひずみ振幅 (total strain amplitude) と寿							
低サイクル疲労	らに関しては、まだほとんど報告 命の関係である。この図よりわかるように、マ							
がない。そこ	で本論文では、二種類の金属基複 トリックスの方が複合材よりも疲労特性が若干							
合材料を用いて	て、その低サイクル疲労挙動を調 📔 すぐれている。ことに、繊維強化複合材(試料 🗌							
べたので報告	する。最初に今回使用した試料の 2)は延性が低いため、高ひずみ領域での疲労							
作製法につい	て簡単に述べる。 寿命が低い。							
試料1は、洋	溶融金属中にSiC 粒子を分散させ Fig.3bは、塑性ひずみ振幅(plastic strain							
た後に鋳造する	ることで作製した(含有量は15 amplitude)と寿命の関係である。この図より							
vol.%)。鋳	₿後に押出し加工を行い(押出し わかるように、粒子強化複合材料は繰り返し塑							
比は10:1)角相	オとした。この試料の組織写真を 性ひずみに対して最も大きな抵抗を持っている。							
Fig.laに示す。	粒子は部分的にボアを伴って凝 最後に今回用いた試料の破壊過程について述							
果している。	また、Sil 粒子よりも小さな介任 (べる。マトリックス合金では、ます粗大な介仕							
初を古んにre	(IVOI・%以下) も観祭される。 物の所でクラックが発生する(NKNr)。このク							
松子は押出した								
に配向してい	S 。 松子间層は $1.9^{-13.4\mu \text{ III}}$ で $NN (では 松界 クラック か 観祭 さ 4 0 C (取入 C) 1 = 2 * た か 9 と)$							
お知りけ :	2 I = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =							
の方法では	間上崎連協にあって作扱した。こ 510 松丁畑 10001 日並(317 1 1 1 1 1 1 1 1 1 1							
るので、アル	ミナ							
ンダムに配向	している(Fig.1b)。繊維の含有 オス クラックの起占け 粉子端(期件ひずみ							
率は20vol.%	である。今回用いた繊維の平均径 が集中する)および粒子が凝集した部分(長い							
は80μmであ	った。またFig.1bより、繊維は均 クラックの起点となる)である。クラックの長							
一に分布して	いることがわかる。 さは35~100 μ m であり、 $1 mm^2$ あたりのクラ							
これらの試	料から押出し方向、または長さ方 ックの数はN=Nrで10ケを越える。また、この試							
向に引張り試	験片および疲労試験片を切り出し 料では、塑性変形領域の大きさは成長クラック							
た。 試験はAS	M E606 に準拠した(試験片のゲ 前方の塑性領域よりも大きいので、弱い粒子が							
ージ部の径は	Ann)。 試験前に、試験片に熱処 破壊する割合が増加する。							
理を施した。	容体化は530℃に3h 保持後に冷水 アルミナ短繊維強化6061合金(試料2)では、							
中で急冷する	ことで行った。時効は170℃で8h 疲労破壊の直前まで表面クラックは観察されな							
行った。	い。クラックは均一に発生し、その90%以上は							
Table 1 iz	引張り試験の結果を示す。複合化 破損した繊維と関係している。繊維の破壊は、							
によって強度	は同上することがわかる。しかし、 ひずみ方向と平行であり、繊維のずれは、ひず							

出典 Proc. of 5th Europian Conf. on Composite Materials, P.561

[B-2-1]-2a

	(和文)	金属基複合材料の腐食挙動				
タイトル	(英文)	Corrosion Behavior of Metal Matrix composites				
著 者 (所属機]関)	S.L.Coleman, B.McEnaney, V.Scott and K.Stokes* (School of Materials Science, University of Bath) (*Admiralty Research establishment)				
キーワード	キーワード corrosion, metal matrix composites, carbon fiber, nicalon, キーワード saffile, SiC, aluminum alloys, galvanic corrosion, fabrication route, interface.					
図・表・写真・参考	文献の数 図:	:0表:3写真:3参考文献:3 抄訳者 馬渕 守				
(ご動響の本、)ト%、用一 腐とに学た子状強食たは強化とにマ因強たは連料続とマ影は概のをおで研ニ短リSOしズ 食ガは顕領顕態化挙。、化材考著トと化。大続で繊にト響、要研、よあ究力繊ッi%たキ 実ル3微域微が材動腐腐材にえしリ考材すき繊は維大リをマア材造 い連炭に、一造ト はッw走さよら響き、抑りガる食スれ態ちい化挙で特スしッルの方 た続化は51方法 クt査がりれをく強制不ル。はのるの、は複動は徴のたク	ミ影法 強繊ケ %、法お 単腐%型測強た調影化す連バカ進界、違短見合に、が成。スニニ番の 化維イ純M5とよ 純食N電定化。べ簪材る続ニー行面 い繊ら材違織あ分す中ウ、影 材、素アg%しび な試a子さ材 たすの効にッポしに も離れ料い離つもなのムマ響 はサ粒ル(Mて粉 腐験C顕れと 結る周果なクンた存 腐、なとがにた複わ第基トの 、ッ子ミ3gは末 食が1微たマ 果こ囲のる腐強。在 食粒か連認沿。合ち2枚月間、カフでニ5(冶 (行が鏡。ト かとにあた食化こす 挙子つ続めつ 材、相	合材料の腐食 (小の腐食) (小の腐食) (小の腐食) (小の腐食) (小の腐食) (小の腐食) (小のの腐食) (小のの腐食) (小のの腐食) (小のの腐食) (小のの腐食) (小のの腐食) (小のの腐食) (小の肉酸食) (小の肉酸食) (小の肉酸食) (小の肉酸食) (小の肉酸食) (小の肉酸食) (小の酸酸酸酸食) (小の酸酸酸食) (小の酸酸酸酸食) (小の酸酸酸酸食) (小口、(小口、) (小口、(小口、(小口、) (小口、(小口、(小口、) (小口、(小口、(小口、) (小口、(小口、(小口、(小口、) (小口、(小口、(小口、(小口、(小口、(小口、(小口、(小口、(小口、(小口、				

出	– – – – – – – – – – – – – – – – – – –	Proc.	of	5th	Europian	Conf.	on	Composite	Materials,	P.493
---	---------------------------------------	-------	----	-----	----------	-------	----	-----------	------------	-------

[B-2-1]-2b

タイトル(英文) Corrosion Behavior of Metal Matrix composites

(図、表、写真)

Fig.1. Corrosion at the fibre/matrix interface in squeeze cast 357-carbon after 3 weeks immersion.

Fig.2. Aluminium carbide at the fibre/matrix interface in squeeze cast Al-carbon; a fibre, b matrix, c Al₄C₃

Fig.3. Preferential corrosion around (CuFeMn)Al₆ in squeeze cast 2124-carbon; a Al₂CuMg, b (CuFeMn)Al₆

Matrix	Reinforceme	Fabrication		
	Туре	Geometry	Diameter	Route
357	Carbon	cont' fibre 0/90	8µm	LMI
357	Carbon	unidirectional	8	sc
357	Nicalon	**	15	LMI
357	· Saffil	100µm short fibre planar random	3	LMI
2124	Carbon	cont' fibre unidirectional	.8	SC
2124	SiC	particle	3	PM

LMI: Liquid metal infiltration PM: Powder metallurgy SC: Squeeze cast

Table 1. Details of the composite systems used in the investigation.

Coupie	Current (µA)	Corrosion Rate(mm.yr ⁻¹)
357-Carbon	465	5.0
357-Nicalon	72	0.8
2124-Carbon	320	3.6
Al-Carbon	260	2.8

Table 2. Results of galvanic tests on matrix/fibre couples.

ммс	Maximum Pit Depth (μm)
357	• 45
357-Carbon	6000 (LMI)
	300 (SC)
357-Nicalon	350
357-Saffil	35
2124	35
2124-Carbon	50
2124-SiC	40
Al-Carbon	150

Table 3. Maximum pit depth recorded after 3 weeks corrosion.

所見 複合材料の腐食挙動を色々な角 度から調べた研究であり、 複合材 料の腐食挙動のポイントが明確に されている。 [B-2-1]-3a

(和文)	SiC繊維強化ア	ルミニウム合	金の疲労挙動と	:損傷に	対する現	環境の影響	F				
タイトル (英文)	Environmental I Reinforced Alum	nfluence to t inium Alloys	the Fatigue Be	haviour	and Da	amage in	SiC-Fibre				
著者(所属機関)	著者 (所属機関) K.Schulte(Technical University Hamburg, Hamburg, Germany), K.Minoshima (Kyoto University, Kyoto, Japan)										
キーワード ら	iC fibre, fibre r orrosion fatigue,	einforced alu immersion te	uminium, fatig est, corrosion	ue beha damage	vior, t , NaCl	censile t solutior	test,				
図・表・写真・参	考文献の数 図:1	表:1 写真:	4 参考文献:	2	抄訳者	中西	勝				
加圧鋳造法によ	 にって作製したVf55%の	Si-Ti-C-O連続	この複合系	では、一種	 重のSiC繊維	誰であるTyr	anno繊維が半				
繊維 (Tyranno)	強化 1070純アルミニウム	を用い、疲労	導体であり	、それがフ	アルミニウ	ムマトリッ	クス中でカソ				
挙動と損傷に対す	トる環境の影響を調べた。	以下に実験方	ードの作用	をして、マ	マトリック	スと繊維の	ガルバニック				
法を述べる。使用	目した複合材中では繊維と	こうしの接触を	腐食につな	がったとい	いうことが	ある。2番	目に、繊維と				
避けるため、平均	9程0.27 μm のSiC粒子	そが繊維のまわ	マトリック	スの熱膨弛	長係数の差	によって、	製造時に生じ				
りをとりまいてい	いる。試験片形状は丸棒で	、直径3.5㎜、	た激しい残	留応力が被	复合材中に	存在し、そ	れは、腐食に				
ゲージ長さ4㎜の	ものと直径3.45㎜、ゲー	ジ長さが5㎜の	対して活性	な場所が多	多く存在す	ることを意	味する。表面				
ものを用い、荷重	宣方向が繊維に平行なもの)(L 試験 片)	に形成され	た不動態度	皮膜を一度	溶液中の塩	素イオンが破				
と繊維に垂直なも	5の (T試験 片)の2方向	可に加工した。	ると、激し	い溶解が起	己こり得る	。マトリッ	クスと繊維の				
試験片の表面は、	加工による表面の損傷物	【域をとり除き、	間のガルバ	ニック腐食	きなどの他	に、複合材	の腐食挙動に				
また表面粗さの構	告果への影響を避けるため	5、 # 1500 まで	は酸素減少	反応が大き	きな役割を	はたしてい	る。これは、				
エメリー紙で磨い	トた後精密に研磨した。 点	5カ比尺が0.1	マトリック	スの溶解か	が深いとこ	ろより気液	界面付近で激				
(引張-引張疲労	が)とRが-0.1 (引張一日	E縮疲労)の疲	しかったた	めである。	気液界面	近くでは、	深い場所に比				
労試験と、引張部	試験・圧縮試験をサーボ 液	由圧疲労試験機	べて溶解し	た酸素の濃	農度が高い	o					
を用いて行った。	疲労試験は実験室空気中	マで1~10Hzの	Figure 4	に、大気中	申と3.5%Ⅳ	aCl溶液中	の複合材のS				
応力サイクル周辺	と数で行い、腐食疲労試験	は3.5%NaCl	ーN曲線を	示す。しき	武験片では	、疲れ強さ	はNaCl溶液				
溶液中で25℃で	?0.1Hzの応力サイクル履	記波数で行った。	中の方が大	気中よりも	もわずかに	小さいが()	Fig. 4a)、し				
腐食疲労試験では	は、試験片表面は、腐食な	避けるために、	かし、工試	験片の場合	合、より大	きい腐食疲	れ強さの減少				
中央の5㎜の長さ	くの部分を除いてシリコン	レ樹脂でコーテ	が見られた	(Fig. 4b)。腐食疲	労の破面観	寮では、 L試				
イングした。複合	訪の耐食性を調べるため	bに、室温(約	験片の場合	には、3.5	\$NaCl溶	液中の単体	のアルミニウ				
23°C) 73.5%N	JaC1中で浸漬試験を行っ	った。試料表面	ム合金の腐	食疲労のよ	ような破面	の腐食がみ	られた。興味				
は精密に研磨し、	破面と破断した試料の構	而は走査型電	深いことに	、腐食によ	よる生成物	は、特に折	れた繊維の表				
子顕微鏡によって	【調べた。		面に付着し	、繊維がオ	カソードの	作用をして	いることを示				
実験により、以	l下の結果が得られた。T	able 1 に複合	している。	T試験片の	の破面には	むき出しの	繊維があり、				
材のL・T両試験	食片の引張および圧縮特性	Eをまとめた。	クラックが	繊維とマー	トリックス	の境界で成	長したことを				
マトリックス単体	\$の特性は、弾性率が 69	GPa、引張強	示している	。腐食疲労	芽のクラッ	クは、トン	ネルのような				
さが約59MPa、	破断伸びは約 25%である	。Figures 2b,	クラックの	経路を形成	戊して繊維	の方向に優	先的に成長し、				
2cにNaCl溶液に	24時間と72時間浸漬した	複合材の試料	高度に加速	されたクラ	ラックの成	長を示して	いる。単体の				
表面を示す。24時	時間の浸漬でさえ、繊維と	マトリックス	金属の腐食	疲労クラン	ックの成長	は、クラッ	ク先端での溶				
の境界に集中する	5腐食損傷が観察された。	72時間の浸漬	解や、応力	腐食割れと	≚active p	ath corros	ion 型の応力				
後は、マトリック	マス金属の激しい溶解がお	らこり、それは	腐食の動的	効果の重な	より等によ	って加速さ	れる。今回用				
深いところより気	氏液界面付近で激しかった	こ。溶解が繊維	いたTyrann	io/Al 複合	合材では、	3.5%NaC1	溶液中での耐				
方向に優先的にま	3こっているところでは、	孔食が観察さ	食性の悪さ	からわかる	るように、	クラック成	長の加速は主				
れた。一般的には	は純アルミニウムは、不動	動態皮膜が表面	にマトリッ	クス金属の	の溶解によ	って生じた	。応力腐食割				
に形成されるため	b、腐食に対しては強いな	5. Tyranno/	れの効果は	、この複合	合系のマト	リックス材	が応力腐食割				
Al複合材は耐食的	生に劣っていた。その理由	もとして、まず	れに鈍感な	:純アルミニ	ニウムなの	で無視し得	る。				

出典 Proc. of 5th Europian Conf. on Composite Materials, P.569

[B-2-1]-3b

[B-2-2]複合化プロセスと性質

[B-2-2]-1a

(和文)	繊維強化アルミニウム合金の最適熱処理と引張性質の向上								
タイトル (英文) 	Heat treatment optimisation and improvement of tensile properties of fibre-reinforced aluminium alloys								
出典	Proc. of 5th Europian Conf. on Composite Materials, P.773								
著 者 (所属機関)	F.D,N.G,M.G.B,A.B.M (University of Surrey - Guildford Surry - Great Britain ,Universidade do Porto - Porto - Portugal)								
キーワード	Al-5%Cu-0.5%+Ti,squeeze casting,binder,solution treating,critical temperature,G.P.zones age-hardening								
図、表、写真、	参考文献の数 図:8 表:2 写真:2 参考文献:11 抄訳者 彦坂武夫								
「「「「」」」」」 「」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」 「」」 「」」」 「」」 「」」」 「」」」 「」」 「」」」 「」 「	コーン コース硬さ変化によって調べた。 国本の 第本に適用される T 6 熱処理 カース硬さ変化によって調べた。 (図 2、3、4) 近世と与り気材では異なっ ・ゴーンの、ではよって、調べた。 (図 2、3、4) 近世とうり気材では異なっ ・ゴーンの、の硬さは普通 近理と時効硬化のメカニズ ・ゴーンの、の使さは着通 とにとい、金属去複合材料 ・ゴーンの、のででは、寝合材は5時間、Hv1100時間後に安にした。 アレックス組成によって ・ゴーンの、のデンさいた。 5. 本論文は、マグネシュ ・「・」、「ち時間後に苦しく減少した。 5. イーンの、金属花グローン、 ・「シーンの、のででは、寝合材は5時間、Hv11400で安定 5. イーンの、クジネシュ ・「シーンの、 5. イーンの、 ・「シーンの、 5. イーンの、 ・「シーンの、 5. イーンの、 ・「シーンの、 5. イーンの影響について ・「シーンの、 5. イーンの影響について ・「シーンの、 5. インターの影響について ・「ジーンのを完て 5. インターの影響について ・「ジーンの、 5. インターの影響にし、いっし、 ・「シーンの、 5. インターの影響にし、 ・「シーンの、 5. インターの影響にとし、 ・「シーンのの、 5. インターの影響になって、 ・「シーンの、 5. インターののがし、 ・「ジーンの、 5. インターの影響なし、 ・「ジーンの、 5. インターの影響なし、 ・「シーンの、 5. インターンのし、 ・「ジーンの、								

[B-2-2]-1b

[B-2-2]-2a

(和	文)	溶	湯含浸注	による	アルミ	ニウ	ム複合材料	の製	造におけ	る材料損傷
(英	文)	AN OVERVIEW OF THE DAMAGE EFFECTS RELATED TO THE PROCESSING OF ALUMINIUM MATRIX COMPOSITES BY LIQUID INFILTRATION								
著 者(所属機	著者(所属機関) Y.Lepetitcorps, J.M.Quenisset, T.Stephenson (Universite de Bordeaux) G.Leborgne, M.Barthole, Y.Rouaux and R.Moore (PSA Etudes et Recherche							te de Bordeaux) des et Recherches)		
$\neq - \neg - \lor$ squeeze casting, infiltration, aluninium matrix composite, preform, fiber/matrix interaction, spinel interphase, binder, aging response										
図·裘·写真·参	※考文前	状の数	図: 4	表:3	写真	: 0	参考文献:	5	抄訳省	都筑隆之

溶湯含浸法によるアルミニウム複合材料の製造におい ては、マトリックス偏析、繊維バインダーと溶湯との反 応、過大含浸圧力による繊維の損傷等、多くの特性低下 因子があり、それが相互に影響し合って、健全な材料を 得ることを非常に難しくしている。

本論文では強度低下につながる因子としてマトリック ス組成、バインダーの化学的性質、溶湯含浸圧力等を取 り上げ、これらの強度特性に対する影響と条件適正化の ための考え方について概要を述べている。

マトリックス組成の影響で最も注意すべき事は、マト リックス中のMgと繊維との反応による脆いスピネル相の 形成とそれに伴う固溶Mgの減少である。Table 1 はCuと Mgのスピネル形成傾向の比較、Fig.1 はマトリックス組 成及び温度による界面反応潜伏時間の変化、Fig.2 はス ビネル形成に伴うMg濃度の変化を示しており、これらの 基礎データから、複合材料製造の溶湯含浸条件ではMgを むマトリックス材は直ちに繊維と反応することが判る。 Fig.3 は溶湯含浸によって製造した複合材料のマトリッ クス中のMg量変化であり、高Mg組成の材料(a)では溶湯 が含浸して行く間に反応が生じるため、材料のボトム側 でMg濃度が低くなっている。低Mg組成の場合(b) には繊 維/マトリックス界面反応に潜伏期があるため、溶湯含 浸後にはMg濃度の低下は認められないが、繊維/マトリ ックス界面反応は熱処理中にも生じるため、熱処理後に はMg濃度が大幅に低下する。

マトリックス中のMgはこのように極めて反応性が高い

ことから、脆化相を形成したり、時効析出元素としては 利用できないという問題を有しているが、それと同時に 繊維/マトリックスの界面接合強度を確保するのに極め て重要な役割を果たしている。 マトリックスとの反応に関与しているのは繊維だけで

ストリックスとの反応に関子しているのは繊維だけでなく、プリフォームの製造に用いるバインダーの影響もかなり大きい。Fig.4 はバインダーとしてアルミナ及びシリカを用いた場合のマトリックス中のMg及びCuの濃度変化を示している。シリカバインダーを用いた場合には材料のボトム側でMg濃度の大幅な低下が生じており、シリカバインダーの反応性が大きいことが判る。Table 2 はバインダーによる複合材料強度の違いを示しており、反応性の高いバインダー(シリカ)を用いると、繊維/マトリックスの界面接合に必要なMgがバインダーとの反応によって減少するため、反応性の低いバインダーを用いた場合に比べて強度が低くなる。

プリフォームは浸透性や濡れ性が低いことから、溶湯 含浸にはかなりの圧力が必要であり、解析によれば、そ の圧力(通常 5~10MPa)では繊維は容易に破損する。 しかし、繊維の長さは臨界アスペクト比以上であれば良 いため、繊維の破損はそれほど大きな問題ではなく、高 圧含浸によるプリフォーム全体の変形や繊維含有量の不 均一化のほうが重大な問題である。Table 3 は溶湯含浸 圧力の複合材料強度への影響を示しており、マトリック ス中のMg量が少ない場合には、良好な繊維/マトリック ス界面接合を得るのに高い含浸圧力が必要となる。

Alloy composition	Interphase	
(alonic %)	Composition	Ea/2(kcal/mol
AI (99,5 %)	a - Alumina	53.5
AI 3 % Mg	MgAl ₂ O ₄ spinel phase	11
AI 3 % Cu	a-Alumina	49.4
AI 10 % Mg	Mg Al2O4 + MgO	15.1
AI 10 % Cu	a-Alumina + small amount of Cu Al2O4	73.9
Al 4.5 % Mg 4.5 % Cu	MgAl2O4 Spinel phase	8
Table 1 : chemical re matrices according to	action between silica rods within liquid the following experimental conditions :	aluminum basi

出典 Proc. of 5th Europian Conf. on Composite Materials, P.667

[B-2-2]-2b

[B-2-3]複合化プロセス

[B-2-3]-1a

タイトル (英文) Forging of Short Alumina Fibre Reinforced Aluminium Alloy 著 香(所属機製) 6.Durrant, V. Scott, S. Clift, R. L. Trump* (University of Bath-School of Materials Science-Claverton Down Bath BAZ 7AY – Great Britain, #MRAMartitie Division-Are-Holton Heath Poole Dorset-Greit Britain *-ワード forging, short alumina fibre reinforced aluminium alloy, commercially pure aluminium aliminium-7Ksilicon alloy, liquid netal infiltration, flow characteristics, fibre breakage aspect resio, flexural strength, calculated composite strength 図・表・写真・参考文紙の数 図:7 表:0 写真:1 参考文献:3 Portal 月は間、たた、これは、上に、製造コストが高い、 会属基複合材料は優れた強度と同性を提供するが、満 用は間のされた、これは、上に、製造コストが高い、 なるが設立の加上の地園地にプロセスは生産性を衣 要形していない複合材料の曲げ特性に近づき、LMO/Saft 11で6220 Crut250Maとなる。要形通程を上げていくと、 タボルマレマルな包材料の曲げ特性に近づき、LMO/Saft 11で6220 Crut250Maとなる。 3:3 20 年組織 (広びいなのかれが合け開始に いてなる) 2、実験方法 マトリックス合会は、工業用純アルミ(LMD)とAI-TK S1(LM3)の2 組績で、20% のアルミナ感繊維合合たので報告であた。 3:3 32 7 年組織 (基の目像の200 6 れる) 3:3 32 7 年組織 (基は数化)としてすいなして優白体なる) 101 Ltd: Clift Clif	 タイトル (英文) Forging of Short Alumina Pibre Reinforced Aluminium Alloy Forging of Short Alumina Pibre Reinforced Aluminium Alloy Example 1 Contrast, V. Scott, S. Clift, R. L. Trump4 Contrast, V. Scott, Stott, Scott, Sco		(和文)	アルミナ	アルミナ短繊維強化アルミ合金の鍛造									
著 香 (所属機関) G. Durrant, V. Scott, S. Clift, R. L. Trump* (University of Bath-School of Materials Science-Claverton Down Bath BA2 7AY - Great Britain, #DRA-Maritime Division-Are-Bloton Heath Poole Dorset-Greet Britain キーワード forging, short alumian fibre reinforced aluminium alloy, commercially pure aluminium aluminum-7ksilicon alloy, liquid metal infiltration, flor characteristics, fibre breakage aspect resio, flexural strength, calculated composite strength 図・表・写真・参考文献の数 図: 7 表: 0 写真: 1 参考文献: 3 PWR者 河合 真 【概 要]	著 者 (所属機関) G. Durrant, V. Scott, S. Clift, R. L. Trup# (Diversity of Bath-School of Materials Science-Claverton Down Bath Bd2 7AY - Great Britain, #QRI-Maritime Division-Are-Holton Heath Poole Dorset-Gret Britain abanta to the provide and the provide of Materials Science-Claverton Down Bath Bd2 7AY - Great Britain, #QRI-Maritime Division-Are-Holton Heath Poole Dorset-Gret Britain abanta to the provide and the provide	タイトル	(英文)	Forging o	³ orging of Short Alumina Fibre Reinforced Aluminium Alloy									
$+ - \nabla - \mathbb{K}$ forging, short alumina fibre reinforced aluminum alloy, commercially pure aluminum aluminum-7%silicon alloy, liquid metal infiltration, flow characteristics, fibre breakage aspect resio, flexural strength, calculated composite strength図・表・写真・参考文献の数図: 7 表: 0 写真: 1 参考文献: 3抄訳者河合 真【概 要]1. 緒言 金属基複合材料は優れた強度と剛性を提供するが、滴 用は限られていた。これは、主に、数造コストが高いこ とと最終認足への加工が開難なことに起因している。 ニアネットシェイブの設造加工プロセスは生産性を改 なすることが可能である。 ホ油文では、アルミナ気繊維強化アルミ合金の組織社 健茸などはすえころ加工の影響たついて報告する。 2. 実験方法 マトリックス合金は、工業用純アルミ(LMO)とAI-TK Sil (LMO) 20 星類で、20% のアルミナ気繊維 (Saffill で同様の直径25m高高さ10mの記録)たは、 にはし、70%1とおれており、溶極金属含浸法で製造さ れている。口の説使した混すなしていたな。 このご酸性に潤滑なしたと認知を通常となどで シス合金は、工業用純アルミ(LMO)とAI-TK Sil に示すように、底面が繊維の配向とおおよそ平行 とたるえうに機械加工されている。 このご酸性に活滑なしていたいた、酸維白面の認識がは、 Sul 50 や見たすて、いたいたで シス合金はたいたちかった。 Six 4 vinno Saffil では20 へ625℃ た、約4第4No/Saffil で 100%5/Saffill 22.4で 3.1 So Puila 4.12%43. 実験結果 した後、最大確に違したの後にないたちった。 このの影使にご買からいた。 なくとも300本以上の資素を行し、とおそで観知の伝表がでは、NMO/Saffilの場合31.50mら5.31 (LT) いたがの5×5 51mmの領域から、3M の大板 はたとしろ、2007、5007C 共晶温度以上の385°Cでは3 4.12%4No 53mの大板 4.13%43. 実験結果 した後、最大確に違しその後は成少する。温度が高くては、 なくとも300本以上の資素だにし、たまそ値物的に力 た後、最大権に違しその後は成少する。温度が高くな 、3.2 空酸結果 たた。2 つの酸合材料では、LMO/Saffilの場合31.50mら5.312% 3.50mでは30MParch 3.50moの低肉を示し、およそ値物的にする 5.12% 3.50mでは気がたいためてくためのこことがないため 5.20%2 3.50mでは気がからす、34%2 4.20mの気が行きためたちった。 3.50mでは気がからす、14%2 4.20mの気が行きためたちった。 3.50mの気は成少から、35mmの領域から、3M の大橋 4.20mの気が行きたいためたちちった。 3.20mの方がちく、20mの気が行きたいためたちろ、3.20mの方がちく、30mの気が行きたい、30mの(現力から、30mの大橋) 3.15mのすべたいため気が気が気がしていため、30mの気が行きたい、30mの気が行きたい、30mの気が行いため方がる、30mの方がし、30mの気が行きたい、30mの気が行きたい、30mの気が行きたい、30mの気が行きたい、30mの気が行きたい、30mの気が行きたい、30mの気が行きたい、30mの気が行きたい、30mの気が行きたい、30mの気が行きたい、30mの気が行きたい、30mの気が行きたい、30mの気が行きたから、30mの気が行きた	キーワード forging, short alumina fibre reinforced aluminium alloy, commercially pure aluminium aliminium-7% silicon alloy, liquid metal infiltration, flow characteristics, fibre breakage appet resio, flexural strength, calculated composite strength 図・表・写真・参考文献の数 図:7、表:0 写真:1 参考文献:3 抄訳者 河合 真 【概 要】 1. 緒言 シネス 「「「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「	著者(所	著 者(所属機関) G.Durrant, V.Scott, S.Clift, R.L.Trump* (University of Bath-School of Materials Science-Claverton Down Bath BA2 7AY - Great Britain, *DRA-Maritime Division-Are-Holton Heath Poole Dorset-Gret Britain											
図・表・写真・参考文献の数 図:7 表:0 写真:1 参考文献:3 抄訳者 河合 真 【概 要] 1. 緒言 に与える変形温度の影響をPig.3 に示す。室温で変形したものは浅度が低くなり、LMO/Saffil で 180MPa、LM25 ふ属石は合材料は優れた強度と剛性を提供するが、適 用は限られていた。これは、主に、製造コストが高い。 に与える変形温度の影響をPig.3 に示す。室温で変形したものは浅度が低くなり、LMO/Saffil で 180MPa、LM25 /Saffilでは240MPaとなる。変形温度を上げていくと、 変形していたい複合材料の曲げ子はた近づき、LMO/Saf 11で625℃では250Maとなる。 2. 実験方法 マトリックス合金は、工業用純アルミ(LMO)とAI-TK Si LM25)の直径短で、20% のアルミナ短繊維強化アルミ合金の組織と 性質に及ぼすすえころ加工の影響について報告する。 3.3 ミクロ組織 信した証拠も見受けられず、繊維の大部分は円筒軸に 対してほぼ垂直な面上でランダムに分布している。 -3.3 ミクロ組織 個人類な認められる。 2. 実験方法 マトリックス合金は、工業用純アルミ(LMO)とAI-TK Si LM25)の直径短さ20% のアルミナ短繊維(Saffil Fig.1に示すように、底面が端維の配面は影片は、 Tip.1に示すように、底面が端維の配面は影片は、 15.1 に示すように、このが端維の配面は影片はた要単さ れている。円筒状の直径25mm高さ10mmの試影片は、 Fig.6に平均アスペクト比と変形温度の関係を示す。 3.3 ミクロ組織 個人類な認められた。 変形させていない複合材料の繊維は、LMO/Saffilでは22.4 で もった。変形後のLM25/Saffil では22.6 で まるとうには繊維の配合したおよそ平行 となるように機械加工されている。 この記録片に潤滑なして12.5 までの圧縮塑性変形を与 た。このの時の実験強度にはMO/Saffil では20~625℃ なくとも300本以上の測定からてスペクト比を変形る。 このごは、低い温度領域ではマトリックスを通しての満 ななたる。 このことは、低い温度領域ではマトリックスの変形で繊維の 相互作用で繊維の損傷が起こる。 3. 実験結果 2. 1 塑性洗動時性 2.つの複合材料の圧力と歪みの関係をFig.2aととかに示 す。とちらの、同様の傾向で示し、なよそ可識的に上昇 した後、最大値に達したの後は減少から、3M の水酸 化ナトリウム溶液に31日間浸して補出し、SBKを使って少 なくとも300本以上の測定からてスペクト比を求めた。 このことは、低い温度領域ではマトリックスの変形で繊維の 相互作用で繊維の損傷が起こる。 3. 実験結果 2. 1 塑性洗動時性 2. つの複合材料の圧力と違みの関係をFig.2aととたこ るのにしたがい、変形圧力は減少し、例えばM25/Saffil 1010変かででは、10M/Saffilの方が変形にす かたかう方高くく繊維とし酸が広力方高く、繊維の るのにしたがい、変形圧力は減少し、例えばM25/Saffil 1010流症のではいがし、M351filの方が変形にす 、 もので a. 20 複合材料では、LM0/Saffilの方が変 、複合材の部時のマトリックスの広力 素成した方も、30 Cででは100MPa.50Cででは30MPa たた支援数はしかかたりかきく実施維化の このこの複合材料では、LM0/Saffilの方が高く、 4.2 曲げ強さ 5.2 affig.8 に示す。 3. よりなきい 3. 実験結果 <td>図・表・写真・参考文献の数 図:7 表:0 写真:1 参考文献:3 抄訳者 河合 真 【概 要】 1. 結言 金属基複合材料は優小た強度と同性を提供するが、適 時間におれていた。これは、主に、製造コストが高い、 とと最終部品への加工が困難なことに起因している。 ニフネットシェイブの鍛造加工プロセスは生産性を改 とすることが可能である。 本論文では、アルミナ短繊維急とに起因している。 ニフネットシェイブの鍛造加工プロセスは生産性を改 さりることが可能である。 本論文では、アルミナ短繊維急化フルミ合金の組織と 性質に及ぼすすえころ加工の影響について報告する。 3.3 に与える変形品度の影響を打き.3 に示す。室温で変形し たものは強度が低くなり、LMO/Saffilで 1620% の設置したっていなは食わ材料の曲が特性に近づき、LMO/Saff 11で625℃では250mPaとなる。 2.実験方法 マトリックス合金は、工業用純アルミ (LMO)とAI-T% Si (LM25)の2 種類で、20% のアルミナ短繊維 (Saffil, C1 Lud.) で強化されており、溶融金属含浸法で製造さ れている。原間状の値で認め高する。 マトリックス合金は、工業用純アルミ (LMO)とAI-T% Si (LM25)の2 種類で、20% のアルミナ短繊維 (Saffil, C1 Lud.) で強化されており、溶融金属含浸法で製造さ れているこの前物(素配の面試験)ft は、 2.の試験がに置荷なして12%までの圧縮差徴性変形を与 た。この時物実験温度はLMO/Saffilでは20~685℃で たまころ、3.0℃、500℃、500℃、500℃、500℃、500℃、500℃、500℃、5</td> <td>キーワード</td> <td>forging alimini aspect</td> <td>, short al um-7%silic resio, fle</td> <td>lumina con all exural</td> <td>fibre reinfo oy, liquid m strength, ca</td> <td>orced metal alcula</td> <td>aluminium alloy, co infiltration, flow ated composite stren</td> <td>mmercial characte gth</td> <td>ly pure ristics,</td> <td>aluminiun fibre breakage</td>	図・表・写真・参考文献の数 図:7 表:0 写真:1 参考文献:3 抄訳者 河合 真 【概 要】 1. 結言 金属基複合材料は優小た強度と同性を提供するが、適 時間におれていた。これは、主に、製造コストが高い、 とと最終部品への加工が困難なことに起因している。 ニフネットシェイブの鍛造加工プロセスは生産性を改 とすることが可能である。 本論文では、アルミナ短繊維急とに起因している。 ニフネットシェイブの鍛造加工プロセスは生産性を改 さりることが可能である。 本論文では、アルミナ短繊維急化フルミ合金の組織と 性質に及ぼすすえころ加工の影響について報告する。 3.3 に与える変形品度の影響を打き.3 に示す。室温で変形し たものは強度が低くなり、LMO/Saffilで 1620% の設置したっていなは食わ材料の曲が特性に近づき、LMO/Saff 11で625℃では250mPaとなる。 2.実験方法 マトリックス合金は、工業用純アルミ (LMO)とAI-T% Si (LM25)の2 種類で、20% のアルミナ短繊維 (Saffil, C1 Lud.) で強化されており、溶融金属含浸法で製造さ れている。原間状の値で認め高する。 マトリックス合金は、工業用純アルミ (LMO)とAI-T% Si (LM25)の2 種類で、20% のアルミナ短繊維 (Saffil, C1 Lud.) で強化されており、溶融金属含浸法で製造さ れているこの前物(素配の面試験)ft は、 2.の試験がに置荷なして12%までの圧縮差徴性変形を与 た。この時物実験温度はLMO/Saffilでは20~685℃で たまころ、3.0℃、500℃、500℃、500℃、500℃、500℃、500℃、500℃、5	キーワード	forging alimini aspect	, short al um-7%silic resio, fle	lumina con all exural	fibre reinfo oy, liquid m strength, ca	orced metal alcula	aluminium alloy, co infiltration, flow ated composite stren	mmercial characte gth	ly pure ristics,	aluminiun fibre breakage			
【概 要】 1. 緒言 金属基複合材料は優れた強度と剛性を提供するが、満 用は限られていた。これは、主に、製造コストか高いに とと最終部品への加工が困難なことに起因している。 = 7 + y + y = 470敬造加工プロセスは生産性を改 度することが可能である。 本論文では、アルミナ短繊維強化アルミ合金の組織と 性質に及ぼすすえころ加工の影響について報告する。 2. 実験方法 = 7 + y - y - 2 - 6 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	【概要】 1. 緒言 金属基複合材料は優れた強度と剛性を提供するが、適 用は限られていた。これは、主に、製造コストが高い、 たものは強度が低くなり、LMO/Saffil で 1300ma、LM25 とっと影を記品への加工が困難なことに起因している。 こアネットシェイブの勉造加工プロセスは生産性を改 良することが可能である。 本論文では、アルミナ短繊維強化アルミ合金の組織と 性質に及ぼすすえころ加工の影響について報告する。 2. 実験方法 マトリックス合金は、工業用純アルミ(LMO)とAI-TX Si (LMS)の2種類で、20% のアルミナ短繊維(Saffil CI Ltd.)で強化されており、溶融金属含浸法で製造さ れている。円筒状の直径25mm高さ10mmの試験片は、 Tis (LF示すように、底面が繊維の配回とおおよそ平行 たるまえがにはかで132%ででは250mmされている。 この試験片に潤滑なしで123%での圧縮空設造さ れている。円筒状の直径25mm高さ10mmの試験片は、 Tis (LF示すように、底面が繊維の配回とおおよそ平行 たるまように酸物が加工もれている。 この試験片に潤滑なして123%での圧縮空化を25℃、 3. 実験結果 3. まの生活の前では違いを55%1000kmを示す。 このことは、低いSaffilの通行に、4点曲げ試験を室温で たる。この時の実験温度はLMO/Saffil では20-865℃で行い、繊維 の損傷が起こることが認めのたた。室温の変形で繊維の方高くとなみら、12% の変形で繊維の 4. Li繊維の損傷が起められた。 このに対して、すべての変形能の損化の繊維の損傷状況を容調 査したところ、20℃、500℃、共晶温度以上のあ5%でで繊維の 4. Discussion 4. I 繊維の損傷が起こることが認めのたた。室温の変形で繊維の 相互作用で繊維の損傷が起こる。 このことは、低い温度領域では本りリックスを通しての荷 塩伝達によるのに対し、高い温度領域では本りリックスを通しての荷 塩伝達しよるのに対したがい、変形圧力は減少し、例えばLM2/S/Saffil 1010定在では、380℃ででは1000mを示し、およを直線的に上昇 した後、最大値に達しての微量がたる。温度が高く、繊維の頂傷の起こる。 4.2 曲げ強さ Ef縮変形を受けていない材料の曲げ強さはLM0/Saffilの方が変形を注 240MPa、LM25/Saffilでは370MPa であった。曲げ強変	図・表・写	真・参考ス	文献の数 [図:7	表:0 写	真:1	参考文献:3	抄訳者	河合	真			
で240MPa、LM25/Saffilでは370MPa であった。曲げ強度		【1 用と 良 性 2 SICれ Fiと えLM 行は化な 3 すしる loo小 で 概.金はとニす本質 .マ(LI て g.なこた 5つ 圧ナく .3.2。たの lたさ 3.圧 240ME 要言基ら終ネこ文及 験り 5) d.るによ試こ $fi \times 1$ 紙類のち、し歪 2。曲変 2。曲変 1 複れ部 っとでぼ 方 っの 7。示う験の fi 1 組験 ウ 30 結性複ら最たみつ げ形、	合て品トがはす 法ク2號円上に片時1㎜織片ム0 果流合も大がでの 強をLMの対いヘシ可、す ス種独筒う機にのでの観中溶以 動材、値いは複 さ受25が料たのェ能アえ 合類と状に械潤実22試察心液と 特料同に、、合 け/Saにないでかこ 金でれの、加滑験~験は部にの 性の様達変35が てff	したした。 したした。 したした。 したした。 したした。 したした。 したした。 したした。 したした。 したした。 したした。 したした。 したした。 したした。 したした。 したした。 したした。 したした。 したした。 したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したした したし したし したし したし したし したし したし したし したし したし したし した したし したし したし した した したし した した したし した した した したし した した したし した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した し した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した した し した し し し し し し し し	ー とにこ工 強響 純ル器さ進る。Sao、、mark のし減少WPO のWP し、のWP しんしん アミ かいかい しゅう しょう しん しんしゅう しゅう しょう しゅう しょう しょう しょう しょう しょう しょう しょう しょう しょう しょ	と して して した して した した した した した した した した した した	、い。を織。 1% itst 砰 40℃ 温繊水てこ に上くすで圧 ff強適こ 改 と うんざ 行 与、 で維酸少。 示昇なfiあは it度	に与える変形温度の に与える変形温度の ななける ななける ななける なな がaffilでは240MPa そ なな がにていない複合本 filで625℃クロは250MP 3.3 供傷していないなと250MP 3.3 対な証ぼすしていないなどの なでしてもれて、 なの がの 形のでは250MP 3.3 対なにはでの なっては250MP 3.3 対なにてそりたいでは250MP 3.3 対なにでは250MP 3.3 対なにはでの なの たのでは250MP 3.3 対なにはでの なの たのでは250MP 3.3 対なにてやられて での なの たの たの しの 形の での での までの までの までの までの までの までの	「どなと材ぁ、したべ忍夏トリ/Sizeク」と忍/いを起りて易いと含怒値とす響りな料と、れらでてめ合比/S00。トーのめなららは度損、が、比材図はる。「を、るのなったれラのら材とffでいい、潤らff3.顕領傷高起の破かりとらい。」で、必要れ料をffでいた。これ118者域はいこうが断らか実にの認らった。、それもなりました。	3. SET 対域のし、共変 いたのににには、「かっていた」、 3. a x 新祝 (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	す。室窓形しで変形して変形して180MPa、LM25 で180MPa、LM25 を上づき、LM0/Saf していくと、 すごき、LM0/Saf したの/Saffilで (気affilは22.4で 進のしたのでは、 しM0/Saffilで (気affilは状況でで 進の目の585℃です。 の変形ら6.5高の空では、 したい温度 のの変形ら6.5高の空では、 したい温健 したいの方面の したいにの ないで したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにで したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにの したいにで したいにで したいにの したいにの したいにの したいにの したいにで したいにで したいにで したいにで したいにの したい したいにの したいにの したいにの したいにの したいにで したいにの したいにで したいにの したいにの したいにの したいにの したいにの したいにの したいの したいにで したいの したい			

出典 Proc. of 5th Europian Conf. on Composite Materials, P.639

[B-2-3]-1b

[B-2-3]-2a

							i				
	(和文)	炭素繊	継で強任	ŁしたA1-	Si¬	マトリックス複合材プリ	リホームの	D製造			
タイトル	(英文)	Manufac	anufacturing of Al-Si Matrix Composites Preforms Reinforced by C-fibres								
著者(所加	著 者(所属機関) S.Pelletier, M.De Sanctis, J.MASSOL, Y.Bienvenu, H.Vincent, C.Vincent (Centre des Materiaux P.M. Fourt-ENSMP-Enceinte SNECMA RN7BP87-91003 Evry Cedex-France)										
キーワード	キーワード carbon fibre reinforced aluminium, reactive C.V.D, carbides, fluxing, infiltration process fluoride deposit, physico-chemical observation, monofilament, wires preforms										
図・表・写	眞・参考ン	文献の数	図:0	表:3 写	真:3	3 参考文献:3	抄訳者	河合	真		
+-ワードcarbon fibre reinforced aluminum, reactive C. V. D. carbides, fluxing, infiltration proce fluoride deposit, physico-chemical observation, monofilament, vires preforms図・麦・写真・参考文献の数図:0 麦:3 写真:3 参考文献:3 抄訳者河合 頁【概 要]introduction ホットプレスで版や管にする炭素繊維で強化したプロ 、長繊維のMM構造を得る比較的経済的な方法である。 複合材料を作取するのに2つの原因で問題が起こる。 しつは、液体のフルミになど化が高化にくいこと、6.5 1 つは、な価マルマに定化が高化にくいこと、6.5 1 つは、な価マルマに定化が高化にくいこと、6.5 1 つは、な価マルマーの開発について言意する。 ととちに、これら2つの問題について言及する。 										Sost て理Connot C 、温 so最 」はえ気 たし影IE受 さ とマ 」 Cと もをで、 + ワ度、小 X、、泡 めた響Mけ の 炭ト	
出	典I	Proc. of	5th Euro	opian Conf.	on C	omposite Materials,	P.651				

[B-2-3]-2b

タイトル (英文)	Manufacturing	of Al-Si m	atrix (composit	es prefo	orms reinfo	preed by C-f	ibres			
	Teble 1: :	fibre chare	acterist	;ics (L.I	.C.M. 80	ource, gaug	e length 2 d				
	Fibres	σr MPa	E GPa		leibull	CTE (10 ⁻⁶	•c ⁻¹)				
	Стзоо	3150	210	6.	9						
	CTIC	2100	208	5.	.5	5.5					
	Csic	2650	210	3.	.2	3.8-5.8					
Свас 2650 210 4.7 5.7											
Table 2: monofilament tensile tests (C.d.M. source, gauge length 2 cm, cross-head speed 5mm/min).											
	treatmen	nts MPa	MI	a	MPa	Weibull	tests	_			
	+0.3mg/0	2679 2395	5	2626	2595	6.5 6.1	41 61				
	+0.5mg/d K2ZrF6+J disc. p:	2 1051 1051 1051		1060 1050		3.8	57				
	CTIC+ 0 K2ZrF6	. 25 1809	2	1819 1810		4.7	49				
	+AS13 d: process	isc. 1466	5	1469 1472		2.8	49				
	cont. p: 14m/h	1385	;	1385	1389 2.7		55				
	75m/h	1442	:	1385	1585	2.6	54				
	Table 3: speed 6mm,	wire prefo /min, avera	orm ten ige valu	sile tes les on 8	tests).	ge length	5 cm, cross	s-head			
	Elaborat	ion condit	1003	Or MPa	Secti	ons mm	VE *				
	CTic + C R2ZrF6).25mg/cm ² AS13 / 38	æ/h	263	0.	87	28				
	$Cric + ~lmg/cm^2$ K25rF6 320 0.57 43 + As13 /9m/b 43										
				所	素繊維で をめざし C. V. D. と れており 物の生成	[*] 強化したア ノ、濡れ性及 :K』ZrF。処玛) 興味深い。 、 等の新たな	ルミマトリー なび界面の反し などの複合 しかし、これ に問題が生じ	ックスの複合材料の 芯を改善するために 化前処理について記 れらの処理によって ている。			
[B-2-3]-3a

(和文)	鍛造によるマグネシュウム基複合材料の成形
タイトル (英文)	Forming of magunesium matrix composites by forging
出典	Proc. of 5th Europian Conf. on Composite Materials, P.665
著 者 (所属機関)	J.S.K.U.K (Institut fur Werkstoffkunde und Werkstofftechnik-TU Clausthal Agricolastr.6-3392 Clausthal-Zellerfeld-Germany)
キーワード	magunesium matrix composite, preforme, forging, sqeeze cast, alumina short fibre , segregation
図、表、写真、	参考文献の数 図:6 表:0 写真:3 参考文献:4 抄訳者 彦坂武夫
コるとの条、面び 繊ム製、のし、 ンれ応ら℃多強0繊 とキ傷心 繊硬ら形 ン値度果 グト鍛度めを造反織グ2金さ0響。プクム。見で低。効での4形ッ見は条強か鍛合造率得増、 ネの造上良用条応とネ0をれ0は最リィに繊らあい繊果は損は度プら繊件化ら造に材がら加高 シニに昇好い件、機シ%含たm、終ン-分維れる鍛維を、傷、合弁れ維には1材関の得れと温 コアおになるにそ械ュの浸。m4的グズ散/ず。造の強マ防ニののるのお、0は係引らたと度 なんしょう	ム基複合材料の鍛造は、低 シト加工によって製造され。 5間題は、強化繊維の損傷 とが留要である。本論文は たが重要である。本論文は たが重要である。本論文は たが重要である。本論文は たが重要である。本論文は たが重要である。本論文は たが重要である。本論文は たが重要である。本論文は たが重要である。本論文は たが重要である。本論文は たが重要である。本論文は たの可力が支援機構 たの可力が、意味 生気多には、適切な鍛造 たていて論じている。 な酸増伸びは、1%より少ない結果を示した。 多ちの高い変形度合の増加は、高い耐力と30 5 GPa以上の引張強さへと導く。ところが、 破壊伸びは、1%より少ない結果を示した。 3 5の高い変形度でもの15 のでもって得ることができる。ゆ0.16~0.0 3 5の高い変形度ですかた3 のでものではたされた。「のうい変形度でもの15 のの近く効果は得られなかった。 2 00℃における引愚試験は、鍛造条件に依 存している。(図8) 4 3 0℃で鍛造した複合材は、スクィーズ鋳 造なたい強定ながした。 2 00℃における引愚試験は、、鍛造条件に依 存している。(図8) 4 3 0℃で鍛造した複合材は、スクィーズ鋳 造なたい強定ながした。 2 00℃における引愚試験は、、鍛造条件に依 存している。(図8) 4 3 0℃で鍛造した複合材は、スクィーズ鋳 造ない強定を示した。ところが、4 7 0℃の範囲で試験 4 3 0℃で鍛造した複合材は、スクィーズ鋳 造んない強定を示した。ところが、4 7 0℃した。ところが、4 7 0℃した。ところが、4 7 0℃と高い鍛造温度は良好な高温性質を導いた こそれは鍛造温度は見好なる高温性質を導いた こそれは鍛造温度はす 7 0℃、変形度合0.35 の鍛造材で得られた。 2 0 0℃における引愚式酸合し、約2.1 g/ 0 ℃と高い鍛造温度47 0℃、変形度合0.35 の鍛造材で得られた。 5% 増加させた。 4 5 5 5 5 5 5 5 5 5 5 5 5 5

[B-2-3]-3b

[B-2-3]-4a

(叩火)	□ 技 並 典 取 1 L 法 に よ る A1 2 0 3 / A1 - S1 復 合 材 科 に 関 9 る 埋 論 ・ 夫 験 的 舟 切
タイトル (英文)	THEORETICAL AND EXPERIMENTAL ANALYSIS OF Al_O_3/Al-Si COMPOSITES PROCESSED FROM Al-Si-Zn AND Al-Si-Mg BY DIRECT METAL OXIDATION
出典	16th Annual Conference on Composites and Advanced Ceramics/Am.Ceram.Soc./ 75-C-92F, P.485~493
著 者 (所属機関)	S.C.Khatri,M.J.Koczak(Dep.of Materials Engineering,Drexel University) T.Chou,Y.Kagawa(University of Tokyo,Institute of Industrial Science)
キーワード	direct metal oxidation,Lanxide,ceramic/metal composites,growth rate,growth mechanism,oxidizing atomosphere,Al ₂ O ₃ /Al-Si,Al-Si-Mg,Al-Si-Zn,
図、表、写真、参	考文献の数 図: 4,表: 1,写真: 0,参考文献: 9 抄訳者 唐木 道雄
	Lanxide Inc.により関発された、 「アトの新しい製造法である。溶 較的高温(>11/3K)の酸化雰囲 加を酸化し、例えばAl_20。,710 成を乾化し、例えばAl_20。,710 定させ。他体の浸透を促進する ム。例えばSiC、を準備すれば、 類進し得る。)本報告では、コz について論ずる。 * ジブトは、Al-Si-Mg,Al-Si-Zn から生成された。窒素、 -スの雰 から生成された。窒素、 -スの雰 たう 1:ters/min とした。酸化は 773 Kで行った。 * ジブトは、Al-Si-Mg,Al-Si-Zn から生成された。窒素、 -スの雰 から生成された。窒素、 -スの野 から生成された。窒素が、 -スの野 から生成された。窒素、 -スの野 から生成された。窒素が、 -スの野 から生成された。窒素が、 -スの野 から生成された。窒素が、 -スの野 から生成、 - 1/1 - 20.5 atm として、重量増加 から生成、 - 1/1 - 20.5 atm から生成された。窒素が、 - 20.5 atm から生成、 - 1/1 - 20.5 atm - 25.5 - 5Mg 合金は、 Al-25i - 5Mg すこ とか分かる。 30.7 5 - 6Mg 合金は、 Al-25i - 5Mg すこ とか分かる。 30.7 5 - 6Mg 合金は、 Al-25i - 5Mg すこ とか分かる。 30.7 1 - 1 - 20.5 atm - 25.5 - 5Mg 合金は、 Al-25i - 5Mg すこ とか分かる。 30.7 1 - 70 - 80.5 - 80.5 - 80.5 - 50.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 80.5 - 70.5 - 80.5 - 70.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 80.5 - 70.5 - 80.5 - 80.5 - 80.5 - 70.5 - 80.5 -

[B-2-3]-4b

[B-2-3]-5a

(和文)	Al-Cu-Mg, Al-Ni-Mg および Al-Si-Mg 合金コンボジットの直接金属酸化の解析
タイトル (英文)	DIRECTED METAL OXIDATION ANALYSIS OF Al-Cu-Mg, Al-Ni-Mg AND Al-Si-Mg ALLOY COMPOSITES
出典	16th Annual Conference on Composites and Advanced Ceramics / Am.Ceram.Soc. (76-C-92f),p.494-502
著 者 (所属機関)	S.C.Khatri, M.J.Koczak (Dept.of Mat.Eng.,Drexel University) T.Chou, Y.Kagawa (University of Tokyo,Inst.of Industrial Science)
キーワード	directed metal oxidation, Al-Cu-Mg, Al-Ni-Mg, Al-Si-Mg, ceramic-metal comp osite, Al ₂ O ₃ /Al-Ni, Al ₂ O ₃ /Al-Cu, growth rate, Lanxide, DIMOX,
図、表、写真、参	考文献の数 図: 6,表: 5,写真: 0,参考文献: 7 抄訳者 唐木 道雄
Lanxide社によ こりふ合金、ジャト高と生 かいったいたいです。 しついまで、シャト高した。 しついまで、シャト高した。 からの、ジャト高した。 しついまで、シャト高した。 していたいたいで、 していたいで、 なで、シャートのので、 していたいで、 したいたいで、 していたいで、 したいたいで、 していたいで、 したいたいで、 していたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいたいで、 したいで、 したいたいで、 していで、 し	9開発されたDIMOX7 ロセスは、アハミ 直接的に酸化させ、セラミァクス マトリフ 気、させる方法である。アルミ=ウム合 (T>1200 K) で、反応ガス (空気 約曲させコンボジアトを成長させる。 $e _ コンホ 'ŷ` _ ? トの数法を図示した。 É 塡 しておけば、3相 コンホ 'ŷ` _ ? トも 0_3/A1,A1N/A1,ZrN/Zr,TiN/Ti な 5.4 \ Lo_3,A1N,Sic,ZrB_2,TiB_2: た A1_20_3/A1-Ni,A1_20_3/A1-Cuc の成長挙動調査は、Table 'ŷ` _ ? トの成長挙動調査は、Table i - Mg,A1-Cu-Mg,A1-Ni-Mg 合金を Cは下記の条件により行った。 3 K-1673 K / 50 k ステアブアァフ min. 整空気(流量 51iters/min.)$
実はleⅡ加とす。 実なして、 実たにとす。 にでのに、 またのに、 にでので、 した。 にでで、 した。 に、 に、 に、 に、 に、 に、 に、 に、 に、 に、	速度に関する測定結果を、Fig.2 Jとの関係の代表例を示す。最高 1-Si,Al-Cu 合金では1573 K、Al 3 Kで得られた。Al-Cu,Al-Ni 合 K成長速度を示す温度の高温側で K低下する。 さもに、Al,Mg は減少し、合金は てる。この合金組成の変化により 液相の粘性は増大する。各合金 引成、プロス 温度と初期および最 温度差、粘性変化、反応終了の理 にした。 全では、ATの変化は小さく反応 てる。しかし、Al-Ni 合金の AT 感激に粘性が増大し、初期段階か 5ものと推察される。

[B-2-3]-5b

[B-2-3]-6a

(和文)	載維強化アルミニウムの拡散	法合	
タイトル (英文) D	liffusion bonding of fibr	e-reinforced aluminium	
出典	3CCN-5, P. 645∼ 650		
著 者 R (所属機関) N +	R.S.Bushby,V.D.Scott,R.L. Naterials and Sience Clav DRA-Maritime Division-Ar	Trumper‡(University of erton Down-Bath BA27Ay e-Holton Heath Poole D	Bath-School of Great Britain/ orset-Great Britain
キーワード d	liffusion bonding,fibre-r solid-phase,bond strength	einforced aluminium,li ,micro-indentation tes	quid-phase, ts, interlayer
図・表・写真・参ネ	考文献の数 図:4 表:0 写	写真:4. 参考文献:5	抄訳者 土肥 義治
【機機 (い)、断機小に価及 ・ しょのかれ こたの に () 料合さ調に アル液、 ッ試料 ELよをび供復マ強 イ 図る評らる こ荷ヤま示 1)の接の反は料ッ ー 、/法込 て重ンたす)で長のてすっ面 で重ンたす)で長の反は料ッ ー 、/法込 て重(b-a) () と下 ス 材 研トあこ /4ヵ) ないかい この () おいろての () おいろくの () ないしてん () ないのし () ないのし () ないのし () ないのし () かい () ないのし () かい	ニウムの拡散合について こウムの拡散を合について 金をようの形式の なた。ともで なた。ともで なた。ともで なた。ともで なた。ともで なた。ともで なた。ともで なた。 たた。ともで にての-indentation test) たた。として たた。として にての-indentation test) たた。として なた。として にての-indentation test) たた。として なた。として なた。として たた。として たた。として たた。の たた。 たた。	は、184±RPa、法ののより、このでは、184±100000000000000000000000000000000000	「WAND CONNECTION NOT A CONNECTION A

[B-2-3]-6b

[B-2-3]-7a

(利	1文)	アルミニ	ニウム合金MMC製の)エンシ	ジン部品ー連結ロット	ドの開発.		
タイトル (す 	英文)	DEVELOP	DEVELOPMENT OF ALUMINUM MATRIX COMPOSITES CONNECTING RODS.					
著者(所属樹	送 関)	F.Girot 1) La Uni 2) In	¹⁾ P.Conchez-Bovey boratoire de Genie versite Bordeaux. asmet, Barrio Igara	vtou, ¹ Mecan a.	⁾ A.Munoz, ²⁾ J.Gon ique, Laboratoire	i, ²⁾ de Chimi	e du Solide.	
キーワード	キーワード ・carbon fiber ・aluminum matrix composite (AMC) ・preform manufacturing ・ceramic binder ・alumina filler ・mechanical property			ysis.				
図・表・写真	い参考	野文献の数	図;2 表;1			抄訳者	堀田 彰彦	
[低金カジ、従がそ まっ 試本 1.開 2 3 プ発 カバ 繊 7 フリンションによさは張ン記設 容でフバフエ フれ ボン を 3 フ ペ 2 オ 4 375 フォーンション 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	していたまが、「「「「」」」、「」」、「」」、「」」、「」、「」、「」、「」、「」、「」、「	は、こくれての「していた」」では、「したい」」では、「したい」」では、「したい」」では、「したい」では、「したい」では、「してい」では、「してい」では、「してい」では、「してい」では、「してい」で、「してい」で、「してい」で、「してい」で、「してい」で、「してい」で、「してい」では、「してい」では、「してい」では、「してい」では、「してい」では、「してい」で、「してい」で、「してい」で、「してい」で、「してい」で、「してい」で、「してい」で、「してい」で、「してい」で、「してい」で、「してい」で、 「してい」で、「してい	レミ合金MMCを高性 ち試みの結果が、製造 ないる。 達プリフォーム製造プ すりリックスに対し250%増 でわりックスに対し100%増 たす限要素法を用いた つれた。 つれる。 つうの。 つうのの。 つうの つ の つ の つ の の つ の の の つ の の つ の の つ の の つ の の つ の の つ の の つ の の つ の の つ の の つ の の つ の の つ つ の つ つ の つ つ の つ つ の つ つ の つ つ の つ つ の つ つ つ つ つ つ の つ つ つ つ つ つ つ つ つ つ つ	能、 っ))連 … ル ・ ナエギ セ 結 ミ	特長:バインダー により繊維 イズラまくダ 2.バインダー、ブ ンダー、ブ と様果マトルミング ・アルミナ ・いずれの 3.連結ロッド内 設計が可能.	□ 一司テ子 ア及りりを置易 段が(□ 中士ィ散 ルび関通ス大合 計決設にのンす ミア係り材一も (ま計ア接グる ナル(。に)ヤ 3る例	レミナフィラーを入れる 虫がさけられ、その後の こより、繊維かマトリッ (図1) フィラー配合比の最適何 ミナフィラーの配合比 長1) 比べ機械的強度改善。 絶化(靭性小)。 ノグ率は2倍以上。 次元有限要素法) こ、3次元有限要素法に 回2)	ることクス と し し し し こ より
 Г <u>н</u>	: 典	Proc. of	5th Europian Conf.	on C	omposite Materials	, P.677]

|出 典| Proc. of 5th Europian Conf. on Composite Materials, P.677

[B-2-3]-7b

タイトル(英文)

DEVELOPMENT OF ALUMINUM MATRIX COMPOSITES CONNECTING RODS.

(図表)

Sample Reference	Binder : Water	Binder : Filler	Additional Thermal	Al-13%Si + 35% M40 fiber composites		
	Concent.	Concent.	Treatment	σR MPa	E GPa	
			1			
1 S	20:100	20:40	по	375	130	
1 A	20:100	20:40	375°C 14h	375	130	
35	20:100	20:60	по	495	160	
- 3A	20:100	20:60	375°C 14h	650	165	
4 A	20:100	20:80	375°C 14h	300	140	
5 A	10:100	10:20	375°C 14h	400	150	
6S	10:100	10:40	no	600	165	
6 A	10 : 100	10:40	375°C 14h	585	165	
	1					

表 1 Composites properties for various preform conditions.

☑ 1 : Microstructure of an Al-13%Si + 35% M40 carbon fiber composite

 $\boxed{\mathbb{X}}$ 2 : Design of a carbon/aluminium connecting rod

所見

本文献は長繊維強化型MMCについてであり、分散 粒子強化型MMCの話ではないが、鋳造による分散粒 子MMCの製造において、バインダー/アルミナ配合 比等の情報が役に立つ。

[B-2-4]超塑性

[B-2-4]-1a

(和文) タイトル	ON SUPERPLASTICITY IN SILICAL	CON CARBIDE REINFORCED OMPOSITES		
(英文)	炭化ケイ素強化アルミニウム	複合材料の超塑性について		
出典	Scripta Metallurgica et Ma	terialia, Vol.25, pp. 27	1-275, 1	991
著 者 (所属機関)	R.S. Mishra‡ and A.K. Mukhe Laboratory, +University o	rjee+, (‡Defence Metallu f California, Davis)	rgical R	esearch
キーワード	superplasticity, Al-SiC comp activation energy, diffusion	osite, threshold stress,g creep,volume fraction d	rain bou ependenc	ndary, e
図、表、写真、	参考文献の数 図5、 参考文	献12	抄訳者	今井恒道
Sile Sile Sile Sile Sile Sile Sile Sile	ミニウム複合材料は新世代のア オ料として登場し10年がたっ な材料として登場し10年がたっ な材料に繋際に、2124A1-SiCw,20 54-SiCp(wはウイスカ、pは粒子 現が報告されてきた。これらの 34 から450%の範囲の伸びが観 20 から450%の範囲の伸びが観 20 から450%の範囲の伸びが観 20 から450%の範囲の伸びが観 20 から450%の範囲の伸びが観 20 から450%の範囲の伸びが 観念が、本自知がの 20 中のが 20 から450%の範囲の伸びが 観光である。即ち、 20 常いたには 20 常いたは 20 常いたには 20 常いたには 20 である。 20 常いたたの 20 たいたの 20 常いたたの 20 たいたの 20 たいたの 21 24A1-SiC 20 たいたい 20 常いたたの 21 24A1-SiC 20 たい 20 常んでの 21 24A1-SiC 20 たい 20 常んでの 21 24A1-SiC 20 たい 20 常んでの 21 24A1-SiC 20 たい 20 常んでの 21 24A1-SiC 20 である 20 常んでの 21 24A1-SiC 20 である 20 常んでの 20 常んでの 21 24A1-SiC 20 である 20 常んでの 20 常んでの 21 24A1-SiC 20 である 20 常んでの 21 24A1-SiC 20 である 20 常んで 20 常んでの 21 24A1-SiC 20 である 20 常んでの 21 24A1-SiC 20 である 20 常んで 20 常ん 20 常んで 20 常んで 20 常んで 20 常んで 20 常んで 20	クスの化学成分と微視的 のプロットでn=2とQ=313K されている。 PM64-SiCp複合材料に対 σ_{0} と粒子の体積合点。 $\log \sigma_{0} = 3.4 \log Vf$ (2)式に20Vol%強化材料 ットをつき。= 3.4 log Vf (2)式にす。しきい値化材料 ットをつき。= -31 + 24778 である。 (1) 定形形のでのです。 のは低がです。 のはたがに対したが、 のはたがに対応でのでのです。 のは作べいでのでのです。 のは作べいでのでのです。 のはたがにたが、 のはたがにための をたいの るいたた の にたが、 たた の にたが、 たた の に た が た た の に た が た た の に た が た た の に た が た た の に た が た の に の た の に の た の に の た の た の に の の の に の の の に の の の に の の の の	狙J すの +にり/T 構著)きべ、 塑ひ-ヒレのKオ立复子るるそ度の の 一〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇	こで、い係のな 速/、、晶 ルはミドKノ観い生り気性ワイコウト こよー 値は の存 度り G d粒 は n 。 ーノー 察活と超で測イ S ー界リおるタ 応(1) (1 プ性(2) は、はは径 n と値 につし 化係性り超力複過滑 クてこま 力式 しん晶数 と33 はルに活てエすにが塑の合程りス重

[B-2-4]-1b

[B-2-4]-2a

[B-2-4]-2b

[B-**2-4**]-3a

(和文)	体積含有率20%窒化ケイ素粒子強化AlーCuーMg 複合材料の押出し材の超塑性挙動
ダ 1 F ル (英文)	Superplastic Behavior in As-Extruded Al-Cu-Mg Alloy Matrix Composite with 20vol% Si3N4 particulate
著者(所属機関)	M.Mabuchi,K.Higashi*,S.Wada*, S.Tanimura* (Government Industrial Reserach Institute, Nagoya) (*Department of Mechanical Engineering, College of Engineering, University of Osaka Prefecture)
キーワード superplasti キーワード Al-Cu-Mg al rate, the s free neckin	icity, aluminum matrix composite, Si3N4 particulate, lloy, hot extrusion, small grain size, high strain strain rate sensitivity, strain hardening behavior, ng
図・表・写真・参考文献の数 図	:2 表:0 写真:3 参考文献:12 抄訳者 馬渕 守
(概こので、 (概こので、 、他で、 、 、 、 、 、 、 、 、 、 、 、 、 、	特に、10 ⁻¹ s ⁻¹ で0.500 ずみ速度感受性指数が得られた。一般に、0.3以上のひ すみ速度感受性指数が得られた。の すみ速度感受性指数が得られた。の すみ速度感受性指数が得られた。これ、2015 ができるだ。 かったことに対応している。 この相果が20% また、破断するたでの伸び(全伸び)を また、破断するたでの伸び(全伸び)を また、破断するたでの(中び)を なてみると、10 ⁻³ -10 ⁻² s ⁻¹ の低ひど比較 かったことに対応している。 ってみると、10 ⁻³ -10 ⁻² s ⁻¹ の低ひど比較 かったことに対応している。 ってみると、10 ⁻³ -10 ⁻² s ⁻¹ の低ひど比較 かったことに対応している。 このは、200% にの高いた し比10000 こったた。 定になるよく、 た後できるだ。 のアルミニウム合金など多く のアルミロウム金性指数が得られた。 にバM7075アルシェロクム金性が発現である。 この小しなが引くためた。 定になるよく、 たき定になるよく、 たた。 たき空型電 されたた。 たきった。 たき空型電 されたた。 たきった。 たきされた。 たきされた。 たきされた。 たきされた。 たきされた。 たきされた。 たきされた。 たきされた。 たきされた。 たきされた。 たきでもり、 ないた。 たたの研究では、 ないた。 たためと考えられる。 830%の最大伸びを示した試験片はやれでいた。 これは結晶粒をがられる。 830%の最大伸びを示した試験片はやれついた。 たたが見通型でもれなが、ひずみ速度でもり、ひずみ速度でもない、 ないた。 ないた。これは、ひずみ速度度低受性指数が ないた。 ないた。 ないた。 たためた ないた。 ないた。 ためとすみに、 したが ないた。 ないた。 ないた。 ないた。 ないた。 ないた。 ためと ないた。 ないた。 ためと ないた。 ためと ないた。 ためと ないた。 ためと ないた。 ためと ないた。 ためと ないた。 ためと ないた。 ためし ないた。 ためと ないた。 たためと ないた。 たためと ないた。 ためし ないた。 ためし ないた。

出典

Scripta Metalluria et Materialia, 26 [8], 1269-1274 (1992)

```
[B-2-4]-3b
```


[B-2-5]プロセスと超塑性

[B-2-5]-1a

(和文)	5083A1−SiC _ℙ 鋳造複合材料の組織と性質に及ぼす熱間加工の 影響
	Effect of hot working on the microstoructure and properties of a cast 5083 Al-SiC $_{\rm p}$ metal matrix composite
出典	Scripta Metalluria et Materialia, 24 [7], 1233-1238 (1990)
著 者 (所属機関)	I.D.C.F.T.T.R.M (Department of Mechanical Engineering Naval Postgraduate School Monterey , California 93943)
キーワード	metal matrix composite, SiC particle, hot working, hot forging, intermetallic, recrystallization, equiaxed subgrain, concentration
図、表、写真、	参考文献の数 図:1 表:0 写真:8 参考文献:25 抄訳者 彦坂武夫
「「「「「」」」」」、「「」」」」、「」」」、「」」、「」」、「」」、「」」、	1 コーム (1) 「「「「」」」、「」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、

[B-2-5]-1b

[B-2-5]-2a

(和文) タイトル	メカニカルアロイングにより 材料の超塑性挙動	作製したSiC粒子強化アルミニウム複合
(英文)	Superplastic behavior in reinforced with SiC partic	a mechanically alloyed aluminum composite culates
出典	Scripta Metallugica et Na	terialia, Vol. 25, No. 2, 1992, pp185~190
著 者 (所属機関)	K.Higashi,T.Okada,T.Mukai, (College of Bngineering,D versity of Osaka Pre.,Moz and Development Division,	,S.Tanimura,T.G.Nieh‡ and J.Wadsworth‡ epartment of Mechanical Bngineering, Uni- u-umemachi,Osaka591,Japan/‡Lockheed Res. 3251 Hanover Str.,Palo Aito,CA 94304,USA.
キーワード	superplastic behavior,mec IN 9021aluminum,"positive	hanical alloying, SiC particulates, exponent"superplasticity
図・表・写真・	参考文献の数 図:3 表:0 写	译真:1 参考文献:13 抄訳者 土肥 義治
【水りの「「「「「」」」」」 「「」」」」 【水りの「「」」」 「「」」」 「」」」」 「」」 「」」」 「」」 「」」」 「」」」 「」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」」 「」」 「」」」 「」 「	ロイングにより作製した15 を含む1N9021アルミニウム 3 Kiの高型味ど、SiC粒子 21の意味で、SiC粒子 21の意味で、SiC粒子 21の意味で、SiC粒子 21の動きて超速なって、 21の動きで着いた。 21の一般での一個での一個で、 21の一個での一個で、 21の一個で、 21の一個で、 21の一個で、 21の一個で、 21の一個で、 21001.% 212.7000 21001.% 212.7000 21000 21001.% 212.7000 21000 21000 21000 21001.% 21001.% 21001.% 21001.% 21001.% 21001.% 210000 210000 210000 210000 210000 210000 210000 2100000 2100000 2100000000	加し5~100S ⁻¹ の高金速度倒で約500 %もの伸びが得られている。610%の最大 値を5S ⁻¹ の高歪速の間違としている。これ らの伸びが得られている。610%の最大 値を5S ⁻¹ の高歪速の見ている。これ らの海で行ったもので発線温度である。 ただし、SiC粒子による複合材料の場合、マ トリックス単体のIN9021での結果より、伸び は小さい。 図3から、 歪速度感受性指数であるm値が 低重域に対応したm値が0.5のふたつの領域 があることがわかる。この低金速度側では、 変形参動にしたm値が0.5のふたつの領域 があることがわかる。この低金速度側では、 変形参動にしたm値な0.5のふたつの領域 があることがわかる。この低金速度側では、 変形参動にしきい応力があることを意味して いる。15vol.%SiCp/IN9021複合材とマトリ ックスIN9021ともに類似の塑使板を形して いる。15vol.%SiCp/IN9021複合材とマトリ ックスN3の気い血症を意味して いる。これは、たったである。こことを意味して いる。これは、ためまた、 ならか方、 ならた力、の流動応力がたる。 こことを ないためである。こことを ないためである。こことを ないためである。こことである。 こことであった。 ならないたかの 温度倒では、 ないためである。こことで ないためである。こことで ないためである。こことで ないためである。こことで ないためである。こことで ないためである。こことで ないためである。こことで ないためである。こことで ないためでためでない ないためである。こことで ないためである。こことで ないためである。こことで ないためである。こことで ないためである。こことで ないためである。こことで ないためである。こことで ないたかの にていためである。こことで ないためである。こことで ないたかの にていためである。こことで ないたかの ないたかの にていためである。こことで ないたかの ないたかの にていためで ないたかの ないたかの ないたかで ないたかで ないたかで ないたついで ない ない ない ない ない ない ない ない ない ない
1250%もの大き 10-`S-'での は小さく、 歪速	な伸びが得られている。 低歪速度での複合材料の伸び 度が大きくなると伸びが、 増	のような大きな伸びの発現は、これが初めて の報告であり、"positive exponent"超塑性 と位置づけられる。

[B-2-5]-2b

[B-2-5]-3a

(和文)	鋳造および押出し加工された6061 Al-Al20。コンボジラトのサーモメカニカル処理による組織の 微細化
(英文)	MICROSTRUCTURAL REFINEMENT BY THERMOMECHANICAL TREATMENT OF A CAST AND EXTRUDED 6061 A1-A1 $_2$ O $_3$ COMPOSITE
出典	Scripta METALLURGICA et MATERIALIA, Vol. 25, (1991), P.853-858
著者 (所属機関)	P.N.Kalu, T.R.McNelley (Dept.of Mech.Eng. Naval Postgraduate School)
キーワード	aluminum-matrix composite, 6061 , Al_2O_3 particulate, microstructure, cast composite, extruded composite, thermomechanical processing(TMP)
図、表、写真、参	考文献の数 図: 8,表: 0,写真: 0,参考文献:20 抄訳者 唐木 道雄
とラミックス粒子製造 イビラミックス粒子製造 インドングシング イングシング インジング イングシング インクリング インクシング インシング インクシング インシング インシング インシング インシング インクシング インシング インシング インシング インシング <th>27以にかふ 複合材料は、P/M 法と される。特性改善のために、こ 、二次加工されることがあり、 、電次加工されることがあり、 、電波振訪よび押出加工された60 増力状態および押出加工された60 増力状態がよび押出加工された60 酸変化を系統的に調査した。 製酸値は、推定値よりもやや微細であるけれども 傾向は行 ルと一致する。この微細化の傾向は、粗 粒子による核発生の増加と加工-焼きなましサイクル 数によるものと考えられる。 粒子誘起核生成に必要な、変形量と粒子サイズの 関係をFig.7b に示す。このデータから~12μmの粒 子の場合、20%の加工度を要する。 パズ回数と粒子誘起核生成の比率との関係をFig .8に示す。核生成は、3パスより始り、7バス後で全 てのゲレインが粒子誘起核生成によるケレインとなる。</th>	27以にかふ 複合材料は、P/M 法と される。特性改善のために、こ 、二次加工されることがあり、 、電次加工されることがあり、 、電波振訪よび押出加工された60 増力状態および押出加工された60 増力状態がよび押出加工された60 酸変化を系統的に調査した。 製酸値は、推定値よりもやや微細であるけれども 傾向は行 ルと一致する。この微細化の傾向は、粗 粒子による核発生の増加と加工-焼きなましサイクル 数によるものと考えられる。 粒子誘起核生成に必要な、変形量と粒子サイズの 関係をFig.7b に示す。このデータから~12 μ mの粒 子の場合、20%の加工度を要する。 パズ回数と粒子誘起核生成の比率との関係をFig .8に示す。核生成は、3パスより始り、7バス後で全 てのゲレインが粒子誘起核生成によるケレインとなる。
実 Al 203 たちの Al 203 to Al 20	vol% 含有する鋳造材は、粒子 するが (Pig.2a) 、熱間押出し 5が、一部残存する (Pig.2b) 。 4間圧延の影響を、Fig.3とFig.4 D中間段階では高倍率検鏡で、ま 認められるが (Fig.3a) 、 最終 分散は本質的に均一になる。粒 く、粒子の破壊現象は認められな を化を観察した (Fig.5 ~ 6) 。 ig.5aに示すように押出し状態と .5a は、3ハ ズ 完了直後の組織で ご局所的コントラストを有する大きな されている。これを焼きなましす 立子に伴つて新しい再結晶) ン/ン (Fig.5b) 。 2n ズ までは、この 、新再結晶) ン/ンが各粒子にとも (Pig.6) 。) ン/ンサイズ は、粒子の くくなる。

[B-2-5]-4a

(和文)	粒子強化アルミニウム合金の再結晶グレインサイズに関する冷間加工の効果				
タイトル (英文)	EFFECT OF COLD WORK ON THE RECRYSTALLIZED GRAIN SIZE IN A PARTICLE- REINFORCED ALUMINUM ALLOY				
出典	Scripta METALLURGICA et MATERIALIA, Vol.27, (1992), p.549-554				
著 者 (所 属機関)	G.M.Vyletel, P.E.Krajewski, I (Dept.of Mat. Sci.and Eng.,Th).C.Van Aken, J.W.Jones, J.E.Allison ne University of Michigan)			
キーワード	grain size control, cold work metal matrix composite, pinni	k, recrystallization, particulate reinforced ing model, TiC, 2219 aluminium alloy			
図、表、写真、参	考文献の数 図: 2,表: 3,写	真: 0,参考文献: 27 抄訳者 唐木 道雄			
図	5 又 m (の) 図 : 2, 表: 3, 与 "가のク"レインサイス" コントロールの研究は コしている。本研究では、再結晶 武速度の低加工の効果およびコン "ンニンク"効果について研究した。 5世第二相粒子の分散によるク"レイ る下記 モデ"ルと比較することに : $D=(4/3)r/f$ (1) : $D=3.6r/f^{1/3}$ (2) : $D=9.0r/f^{0.31}$ (3) : $D=9.0r/f^{0.31}$ (3) : $r:$ 第二相粒子半径 容積分率 9 アルミニウム合金マトリックスに15 vol%の .7 μ m)を分散させたコンボ・ジ・ジ・ブト 日成は、6.28%Cu,0.3%Mnであり、 ごある Zr, V は添加されていな AMAX R&Dにおいて XD TM 法で製 Loc. 冷間圧延の加工度は、1 ~ なましは、Al ₂ Cu の析出を避け 行った。焼きなまし時間は 100, た。 成は、535℃,1000min.の条件で得 いら分かるように、初期粒度と同 レインサイス"は、加工度 3.0% 未満と た。加工度が約 3.0%にて "となっつた。グレイン ハ"ウング"りの単 - 密度の測定結果をTable II に示 ける粒子密度は、加工度やグ"レイン	 A.: 0, 参考文献: 21 投配者 唐木 追進 TableⅢには、Zener, Hillert, Anderson et. al.の行"ルによるビンニング されたケレインサイズ の計算 結果を示した。 考察 本研究における、冷間加工された粒子強化7ルミニ から合金の再結晶挙動は、一般の金属材料の挙動と 定性的に同一である。 金属系コンボジットにおいても、臨界加工度以上で 加工度を低下させると、グレインサイズ は大きくなる 傾向にあることは、一般に知られている。しかし 本研究のように、ビンニング されたグレインサイズ の計算 値よりも大きなケレインが得られたのは、他に例を 見ない。大きな粒子もしくは粒子クラスターが、低加 工度において核生成サイトになり得たものと考えら れる。加工度が増大すると粒子の大部分が、核生 成サイトになる。 TiC粒子密度の計算値 8×10⁶/nm³からグレインサイズ を計算すると約 5µmとなる。実験値は 30µm で あり、グレインが成長している。この値は、押出し 加工-焼きなまし状態の値とも一致し、コンボジット における ビンニング 状態を表すものと考えられる。 本研究で得られたグ レインサイズ の値は、Anderson et.al.の行"ルの予測値と一致した。Table Ⅱから 分かるように、TiC粒子はランダ、ム分布ではなく、グ レイン粒界に多く分布する。今後は、粒子とグレイン粒 界との相互作用を考慮する必要がある。 			
914 に依存してく 核生成密度と加 全てのTiC 粒子か 合の核生成密度と 計算結果も付記し	、ない。 ロ工度の関係をFig.2 に示した。 「核生成に寄与すると仮定した場 Anderson et.al.のモデルによる 」た。				

[B-2-5]-4b

[B-2-5]-5a

 (英文) 「 著者(所属機関) C 	THE EFFECT OF THERMON C.Styles ¹⁾ , S.M.Flitc (1) Engineering Mat (2) Materials and S	MECHANICAL PR OF AN ALUMINU roft ²⁾ , P. J. Gr	OCESSING ON THE ST M BASED METAL MATR	RUCTURE AND MECHANICAL PROPERTIE				
著者(所属機関) C	C.Styles ¹⁾ , S.M.Flitc (1) Engineering Mat (2) Materials and S	roft ²⁾ , P. J. Gr erials Univer		THE EFFECT OF THERMOMECHANICAL PROCESSING ON THE STRUCTURE AND MECHANICAL PROPERTIES OF AN ALUMINUM BASED METAL MATRIX COMPOSITE				
		C.Styles ¹⁾ , S.M.Flitcroft ²⁾ , P.J.Gregson ¹⁾ & P.D.Pitcher ²⁾ (1) Engineering Materials, University of Southampton (2) Materials and Structures Royal Aerospace Establishment						
キーワード ・ Metal Matrix Composite ・ Particle ・ SiC ・ Mechanical Properties ・ Thermomechanical Treatment ・ Micro Structure								
図・表・写真・参考ス	文献の数 図:3	写真:5	参考文献:14	抄訳者 二 宮 崇				
 (全般) 20wt% SiC_p/2124 ル よび組織との関連につ 主要な結果は以下の (1)冷間圧延後熱処理の状態で高い強度は、組織・特性に変成形を行うと延性ル (2)熱間圧延材:微維線、一時間に近後熱処理ない。 (2)熱間圧延相、に、するのが増加し亜結晶が高い。 (試験内容) (1)供試体20wt%SiC_p/212、SiC 粒径、製法 (2)熱機械処理5mm^tの板材をに圧延。その後、I、Iは熱処3 (3)試験方法組織観察(光等引張試験(BS- (試験結果) (1)組織観察(Fig.、冷間圧延後熱処3 (注、除結果) (1)組織観察(Fig.、冷間圧延後熱処3 	についての加工熱処理 ついての試験結果を示 のとおり。 理材:再結晶組織をも を示す。改良溶体化 変化が見られない。冷 は低下する。 細な亜結晶を含む粗大 より回復が起こりにくく が減少する。この材料 24 (BP Metal Compo :3 µm : P/M 法で 5mm ^t の板 Fig.1に示す3通りの 、Fig.2の手順で溶体 理条件が異なる。 学顕微鏡、TEM) -A4 に準拠:英国規格 :.3) 理材 (Route I.II):等 れ 3~4µm, 30~40µm。亜	と引張する。 ち処間、な高なは のまで (MST)ッチ 結力転位化 か に 本 (MST)ッチ 結力転位化 シ 、 本 の に 本 和 耐、工 の し 、 和 和 、 工 の し 、 に 、 和 耐、工 の し 、 和 都 、 工 の の た の た の に 、 和 耐、工 の の た の の た の た の た の た の た の た の た の た の た の た の の た の た の た の た の た の た の た の た の た の た の の た の た の た の た の た の で の の の た の の た の た の た の た の た の た の た の た の た の た の た の た の の の た の た の た の の た の の の た の の の た の の の た の た の の た の の た の の の の の の の の の の の の の	 れない。 熱間圧延材(Ro 組織。粗大粒の (2)機械前の溶圧延く(Fi 通常体化效 冷離部にになる 熱問に正延材 MST 後間圧圧延材 (考察) 結晶能(Route I, 冷離間圧延材) (考察) 結晶能(Route I, う数間間性切の 結晶いてい延材の 結晶がいて近すってに 後の うないの 結晶がしている ない。 MST 状態金属間 って間上ッチ後の引 	ute III) : 伸長形の粗大の非再結晶 D中には~1µmの微細な亜結晶が存在。 g.6) U理(CST) を改良(MST)した場合 熱処理材: ほとんど影響なし。 : 強度、延性が向上。 /ッチ付与の効果 熱処理材: 耐力向上、延性の低下。 : バランスの良い特性向上。 0.2% 耐力>500MPa、伸び>3% 印が熱処理と冷間圧延の組み合わせ II) Ftyの値は、ホール・ペッチの式よ の影響のほか、亜結晶粒による強化; 能性がある。 MST状態では回復が不完全なため、[TT状態よりも高い耐力を示す。(Fig.6 熟間圧延材の機械的特性の向上は、新 と合物が CST状態の時よりも小さく; こもよる。 加工効果指数がやや大きいため、2 動度が高く、また延性も大きくなる。				

出典 Scripta Metallurgia et Materialia, <u>25</u>[8] (1992),1833-1838

[B-2-5]-5b

おわりに

通商産業省工業技術院、工業技術院名古屋工業技術試験所、中部通商産業局、新エネル ギー・産業技術総合開発機構(NEDO)のご指導のもとで、再委託先各研究機関をはじめ関 係各位のご尽力とご協力を得て進めてきたNEDO委託事業・「複合材料新成形技術の研究開 発(高効率発電用部材創製技術開発)」の平成4年度「総合調査研究」の成果を集成して、 関係各位のご高覧に供しうる運びにいたったことはよろこびにたえない。関係各方面から 賜ったご指導とご援助に対し、更めて衷心からお礼申しあげる次第である。

超塑性加工技術の適用を目指し複合材料の成形技術を開発しようとするこのプロジェクトが今後クリアすべき課題は多く、その難度も高い。執筆者各位のご尽力を結集したこの報告書が、未踏分野にいどむ本プロジェクト推進の中で良き指針となり、効率の良い研究 開発が進められることを念願してやまない。

> 財団法人 中部科学技術センター 専務理事 複合材料新成形技術研究開発センター

所長 長瀬俊治