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Résumé : Ce document contient une liste d’exemples relatifs a I'utilisation du code Mird.
11 est destiné a servir a la fois de tutoriel et de base de cas test servant a la non régression
du code. Les rédacteurs de ce manuel se sont efforcés de couvrir de fagon la plus exhaustive
possible les fonctionnalités de Mird, notamment au niveau des modéles physiques.



LE GUIDE utilisateur & manuel de référence du logiciel Mird V1.0 [1] contient un

ensemble de cas tests qui ont servi a la premiére recette du code. Les développements
et les améliorations du code qui ont conduit a figer une version V2.0 [2]|, une version
V3.0 [3] puis une version 4.0 [4] ont nécessité de multiplier les cas tests qu'ils soient
unitaires ou composés. La mise sur document de ces tests nous apparait nécessaire pour
trois raisons essentielles:

— procéder a des tests de non régression pour les prochaines versions du code (no-
tamment au moyen d’une routine automatique comparant les résultats de chaque cas test
avec ceux obtenus pour une version antérieure) ;

- garantir les fonctionnalités du code;

— donner un certain nombre d’exemples aux utilisateurs afin d’illustrer les possibilités
et les limites de 1'utilisation de Mird.

Le volume de ces cas tests s’accroissant, il a été choisi de les mettre dans un docu-
ment séparé du guide utilisateur. Par ailleurs ’ensemble des jeux de données, résultats
et compte-rendus de simulation sont archivés de fagon a pouvoir établir rapidement des
comparatifs.

Le document se divise en deux parties: les cas tests unitaires sur chacun des com-
posants et les cas composés pour valider les effets combinés de la propagation et des
différentes interactions. Pour chaque cas, le méme plan est grosso-modo reproduit, :

— Objectif : donner le concept optique ou informatique testé;

- Schéma : donner la représentation de la construction des composants dans la feuille
graphique de Muro ;

- Données: donner les paramétres des différents composants (seuls sont spécifiés
les paramétres différents des valeurs par défaut de Miré pour le composant ; par ailleurs
les composants « propagateur » ne sont explicitement mentionnés que si I'un de leurs
paramétres différe de sa valeur par défaut);

- Interprétation: donner les résultats du calcul Mird et comparer si possible avec
une solution analytique. Les courbes présentées sont obtenues par le logiciel Gnuplot pour
faciliter une intégration dans le texte (directement sous BTEX).

En général, la durée des calculs Mird correspondant aux exemples de ce manuel ne
dépasse pas quelques secondes sur une station de travail de type SUN Ultra. Il existe
quelques exceptions cependant, qui sont signalées explicitement.

Dans cette édition, la liste des cas tente d’étre exhaustive mais elle est loin d’étre
fermée. Les propositions des utilisateurs seront bienvenues (miro@bordeaux.cea.fr).
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Chapitre 1. Tests Unitaires

1. Amplificateur

a) Objectif

Le but de ce calcul est de vérifier ’amplification saturée de Frantz et Nodvik. On
considere la propagation d'un faisceau de profil uniforme dans un amplificateur plaque
dont le gain G(z,y) est linéaire en y. La fluence en sortie de plaque Fyuie S'exprime en
fonction de la fluence d’entrée Feyree pour un composant sous incidence normale par la

formule :

Fsortie (x,y) - Fsat In {1 + G($7y) [eXp (

ou Fi,; est la fluence de saturation de la plaque.

b) Schéma

c¢) Données

F, entrée -1
F ?

sat

1- Source rectangulaire | Energie 5.10% J
Largeur 4m
Hauteur 4 m
Exposant spatial en X 400
Exposant spatial en Y 400

3- Amplificateur plaque | Epaisseur 3,363.107% m
Indice de réfraction 1,522
Transmission face d’entrée 1
Transmission face de sortie 1
Normale theta 0°
Fluence de saturation 10* J/m?
Gain gain.lin
Hauteur 2 m
Largeur 2 m |

Paramétres Optique géométrique 3D
X Om;1m;1

Y

—1m; 1lm; ZOOJ

Le fichier gain.lin!

I’expression analytique 1+499.5% (y+1).

d) Interprétation

(L1)

est un profil linéaire de gain. Il est possible de le remplacer par

En optique géométrique 3D, la différence entre la valeur de la fluence calculée sous
Mathematica et celle obtenue par Mird est du bruit numérique. Les formules sont en fait

1.1l a la forme suivante (« | » signifie un passage & la ligne) :

2221.1.1.0 | X=-1.

=-1 | 1.1,

Y= 1. | 1.e3 1.e3



1. Amplificateur

strictement identiques. Sur ce type de cas test pour les amplificateurs, des différences
apparaissent uniquement en cas de multi-passages et pour une pupille (ou boite) de calcul
différente de la pupille de ’amplificateur. Dans ce cas les points d’échantillonnage du gain
sont différents de ceux du faisceau et une interpolation est effectuée entre les deux. Le
choix de l'interpolation temporelle ne joue pas sur la fluence totale de sortie de chaine
mais uniquement sur la répartition entre les différentes intensités.

En optique géométrique 1D, la fluence d’entrée du faisceau est de 3,125.10% J.m ™2, la
valeur analytique et celle donnée par Miré en fin de chaine sont identiques:

analytique: Fye = 2,82658.10% Mird: Fye = 2,826 58. 10%.

60000 1 | T T T 1 T
M
50000 analytique - -

40000 ~ —

30000 -

T

F (J/m?)

20000 - .

10000 N

0 | 1 1 { i ] 1 1
-1 -0,8 —06 —04 —02 0 0,2 0,4 0,6 0,8 1
y (m)

F1G. 1.1 - Fluence analytique en trait continu et calculée en pointillés.

0,06 T T T I | T

0,04 - -

0,02 F A i

O L R

—0,04 - i

FMurs _ pAn. (J/mZ)

_._0’06 { 1 1 I 1 | | 1
—1 -08 —06 —04 —02 0 0,2 0,4 0,6 0,8 1
y (m)

F1G. 1.2 — Différence absolue entre la fluence analytique et celle calculée.



8 Chapitre 1. Tests Unitaires

2. Amplification en spectre large
a) Objectif

Ce cas test vise a valider le module d’amplification spectre large de Mird. Pour ce
faire, nous effectuons des comparaisons avec le modéle analytique de Frantz et Nodvik
dans certaines configurations o un tel test est possible (faisceau monochromatique, &
résonance ou hors résonance). Nous effectuons également le test pour un faisceau a spectre
large, modulé en phase. Dans ce cas le test n’est que qualitatif.

Lors des simulations spectre large, la principale limitation provient de la quantité de
mémoire requise, essentiellement en raison de la discrétisation temporelle nécessaire. Il est
toutefois possible d’économiser de la mémoire en ne traitant qu’une tranche temporelle
de I'impulsion, & condition de connaitre 1’état des amplificateurs pendant le passage de
I'impulsion. L’exemple que nous fournissons au paragraphe [.2.f montrera a I'utilisateur
comment procéder.

Pour tous ces exemples nous nous placons dans le cas d’un amplificateur de fort gain,
en double passage et dans un régime fortement saturant. De cette fagon nous pouvons
mettre en évidence simultanément des effets de saturation et des effets de spectre large.

b) Schéma

¢) Données

Nous considérons successivement les 3 situations suivantes:
~ (a) modéle de spectre étroit (Frantz et Nodvik);
- (b) résolution en spectre large pour une impulsion monochromatique résonnante;

- (¢) résolution en spectre large pour une impulsion monochromatique hors réso-
nance. Si Aw est I’écart & la pulsation résonnante, alors on peut compenser cet écart en
corrigeant les paramétres de 'amplification (gain G et fluence de saturation Fg,;) de la
facon suivante:

G — GHATE (12.a
Fat — Faa/(1 + AW*TY) . (1.2.b)

~—

Dans I'exemple nous prenons |AwTy| = 1 (7, désigne le temps de cohérence de la raie).

On s’attend a ce que les trois cas fournissent le méme résultat. Notons que pour ces
trois exemples nous ne faisons pas « fonctionner » le modulateur de phase (épaisseur nulle
pour le composant).



2. Amplification en spectre large

0- Source analytique Energie 0J
Expression de l'intensité I(x,y,t) Voir expression jointe
Expression de la phase 0 (a,b)

1e13*t (¢)

1- Modulateur sinusoidal Epaisseur 0m
Profondeur de modulation 10 rad
Fréquence de modulation 170 GHz

2- Amplificateur « plaque » | Indice non linéaire 0
Transmission face d’entrée 1
Transmission face de sortie 1
Normale theta 0°
Dispersion des vitesses de groupe 0s?/m
Fluence de saturation 4,52.10* J/m?(a,b)

2,26.10* J/m?(c)
Gain 3 (a,b)
9 (¢)

Discrétisation des gains suivant X 0
Discrétisation des gains suivant Y 0
Temps de cohérence de la raie 100 fs

3- Miroir Coefficient de réflexion 1
Normale theta 180°

Paramétres Optique géométrique 3D (a)
Spectre large (b,c)
Temps —5.107 5;5.107 1t 551024
X —0,25m;0,25m; 1
Y —0,25m; 0,25 m; 1
Déphasage maximal du pas fractionnaire 0,01
Nombre maximal d’itérations 100
Nombre de pixels de recouvrement 20

Expression analytique a fournir pour I'intensité :
(exp(-(t*2%(1log(2))"0.05/8e-11)720))*1.261e14/0.25

d) Interprétation

Sur les figures 1.3 et [.4 nous comparons le résultat obtenu par le modéle de Frantz et
Nodvik (optique géométrique 3D), et le résultat obtenu par le mode spectre large dans le
cas résonnant et dans le cas non résonnant. On trouve une différence de I'ordre du pour-
cent, comparable a la précision que nous avons demandée pour effectuer le calcul en spectre
large (107?). La courbe de différence absolue dans le cas résonnant est intéressante, car
elle met en évidence le positionnement des fenétres temporelles utilisées pour la résolution
en spectre large.
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4,5 1014
4,10
3,5.101%
3.1014
2,5.1014
2,104
1,5.101%
1014

5,103

1

i

I I I T

spectre large ——
Frantz & Nodvik

1 I |

—50

—-40 —-30 -20 —10 0 10 20 30 40

t (ps)

FiG. 1.3 — A gauche, courbe amplifiée (aprés deuz passages dans l'amplificateur) par un
caleul spectre large a résonance (en trait plein), et par le modéle Frantz et Nodvik (en
pointillés). A droite, calcul spectre large hors résonance et Frantz-Nodvik.

5 14
4,5.10 T T T T T — ] ]
1101 - spectre large —
3,5.10% Frantz & Nodvik
3.10M = R
—
:g 2,5.101% = N
-
Q > 108 - _
1,5.10M |
10t = j
5,101 |
0 1 L L1 | l [
~50 —40 —-30 -20 —10 O 10 20 30 40 50
t (ps)
4.101% T T T I
z T M 1
=
. 0 aN
4
3 —2.1012 |- |
%
—4.10%? B
| B
& —6.10'2 4
2]
=
s —8&.10'2 = B
@
. —-1013 |- B
—1,2.1013 i ! 1 | 1 | !

—-50

—40 —-30 —-20 —-10 o0 10 20 30 40

L (ps)

50

Psp- large __ PF & N (W)

3.1012
2,5.10'2
2.1012
1,5.1012
1012

5.10'1

50

b 1 L

—40 —-30 —-20 —-10 ¢Q 10 20 30 40

t (ps)

F1G. 1.4 - A gauche, différence absolue entre la courbe spectre large et la courbe Frantz et
Noduvik, o résonance. A droite, la méme chose hors résonance.

50



2. Amplification en spectre large 11

e) Cas ou Uimpulsion est modulée en phase

Nous mettons maintenant « en route » le modulateur de phase, c’est-a dire que par
rapport au cas (b) du paragraphe précédent nous effectuons la modification présentée
dans le tableau infral. Notons que ce cas test est uniquement qualitatif.

1- Modulateur sinusoidal | Epaisseur 1 um
(pour mémoire) Profondeur de modulation | 10 rad
Fréquence de modulation | 170 GHz

14
6.10 T T T T T T T T
modulée —
5.1014 |- non modulée -
4101 - .
=
ETIC = —
Q.
2,101 -
1014 — —
0
—50 —40 —30 —20 —10 10 20 30 40 50

t (ps)

Fic. 1.5 — Amplification spectre large d’une impulsion initialement modulée sinusoidale-
ment en phase. Puissance obtenue en spectre large (en trait plein) et en spectre étroit (en
pointillés).

La figure 1.5 présente la courbe de puissance de I'impulsion amplifiée (en spectre
large) compte tenu de la modulation. On constate globalement une légére perte d’énergie
(20,730 kJ au lieu de 21,805 kJ) et une trés forte modulation d’amplitude sur le champ
amplifié (4 la fréquence double de la fréquence de modulation). A titre d’information
nous fournissons aussi la courbe obtenue par le modéle de Frantz et Nodvik c’est-a dire
ne tenant pas compte de la modulation de phase. Lorsque ’amplificateur ne sature pas
la courbe spectre étroit doit coincider avec les maxima de la courbe spectre large. Par
contre la saturation intervient plus rapidement en spectre étroit qu’en spectre large. A la
limite d’une trés forte saturation on doit obtenir la méme énergie en spectre large et en
spectre étroit. C’est ce que ’on observe qualitativement sur la courbe.

f) Stockage des gains au cours de l’amplification ; application a la dis-
crétisation temporelle partielle d’une tmpulsion

Les simulations spectre large nécessitent beaucoup de pas de temps: de 1024 (pour
une impulsion de I'ordre de 100 ps) & 65536 pour une impulsion type Mégajoules, de durée

1. Signalons que les paramétres de la modulation {10 rad de profondeur & la fréquence de 170 GHz)
sont trés exagérés par rapport a ceux du lissage LDS (SSD) sur le laser Mégajoules.
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10 ns. Compte tenu des mémoires actuellement disponibles sur la plupart des machines
ces exigences sont incompatibles avec une discrétisation spatiale (méme trés grossiére) de
I'impulsion.

Une solution pour contourner ce probléme consiste a ne traiter qu'une tranche tem-
porelle de I'impulsion (inférieure a 100 ps). Toutefois, on est géné par la saturation des
amplificateurs, plus précisément par le fait que le gain évolue sur des durées comparables a
la durée de I'impulsion (1 ns). Miré offre une solution partielle & ce probléme: le stockage
des gains au cours du passage de I'impulsion. Concrétement, ['utilisateur pourra procéder
en deux étapes: tout d’abord, il discrétisera entiérement son impulsion en temps, avec
la précision requise pour le spectre large, mais il ne retiendra qu’un seul pixel spatial.
Les gains des amplificateurs prendront une valeur scalaire, par exemple la moyenne du
profil de gain mesuré ou calculé par les codes de pompage. Au cours de cette simulation,
on stockera les gains résiduels dans des fichiers ASCII, a un instant donné ¢; du profil
temporel de I'impulsion. Cet instant peut par exemple correspondre au pic principal du
profil temporel.

Dans un deuxiéme temps, on se restreindra & une tranche temporelle de I'impulsion
commencant 3 l'instant ¢, (avec par exemple 128 pas de temps). Cette nouvelle simula-
tion lira & chaque passage les fichiers de gain résiduel enregistrés lors de la simulation
précédente. Ceci permettra donc de tenir compte de la saturation « a long terme » des
amplificateurs. Comme nous utilisons moins de pas de temps, nous pourrons maintenant
discrétiser I'une des dimensions spatiales, voire les deux sur une machine trés puissante.
Nous pourrons donc modéliser des effets spatio-temporels comme le chromatisme latéral
induit par un prisme ou un réseau, ou encore l'autofocalisation pour un faisceau spatia-
lement incohérent. La seule restriction apportée par la méthode est la suivante: comme
la premiére étape ne comprenait qu'un seul pas d’espace, il n’est pas possible de tenir
compte des profils de gain des amplificateurs®.

Dans ce cas test nous nous contentons de tester la validité de cette méthode. Nous
vérifions que lors de la deuxiéme étape I'amplification est la méme que lors de la premiére.
Nous ne choisissons donc qu’un seul pas d’espace pour la deuxiéme étape (comme pour
la premiére).

Pour effectuer le cas test on part de I’exemple précédent (amplification spectre large
d’un faisceau modulé en phase, § 1.2.¢), et on effectue pour la premiére étape les modi-

1. Remarque: la routine d’amplification spectre large & été congue & une époque ou le choix du lissage
par fibre sur le Mégajoules semblait le plus probable. Finalement c’est le LDS (SSD) qui a été retenu
et la routine ne lui est pas adaptée de fagon optimale. En effet, en lissage LDS I’évolution des gains par
saturation est peu affectée par la largeur de bande. Pour effectuer un calcul spectre large sur une tranche
temporelle, dans le cas ou la tranche n’est pas située & la fin de I'impulsion, on aurait tout intérét a
évaluer les gains résiduels a l'instant correspondant & cette tranche par un calcul préalable en spectre
étroit (qui permettrait de prendre en compte le profil spatial avec peu de mémoire). Malheureusement
ceci n’est pas possible dans la version actuelle de Mirg.

En attendant une évolution du code, nous suggérons la solution suivante: calculer en spectre étroit
'amplification sur trois passages (pendant lesquels il y a peu de saturation), puis — grice & un apodiseur
fichier utilisé avec une formule analytique — supprimer la fin du profil temporel de I'impulsion. Les
fichiers de gains résiduels ainsi obtenus pourron étre réutilisés pour le calcul en spectre large.
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fications suivantes:

2- Amplificateur plaque | Délai de stockage des gains —20 ps
Fichier de stockage des gains g

Pour la deuxiéme étape on repart du cas test du paragraphe 1.2.¢ et 'on effectue les
changements suivants

2- Amplificateur plaque | Gain g+
Fichier de stockage des gains (pas de nom)
| Parameétres | Temps | —2.100Ts; —10""'s; 128 ‘

La figure 1.6 présente le résultat: en pointillés le résultat de la premiére étape (ana-
logue au paragraphe 1.2.e, mais dont nous n’avons retenu qu’une portion), et en continu
le résultat de la deuxiéme étape utilisant les gains stockés. On trouve que 'accord est
excellent, sauf sur les premiers pixels de la simulation ou ’on observe des effets de bord.

4,5. 101 ] T | | 1

gain stocké —
discr. complete

]

4.1014 -

3,510 |-

3,101

P (W)

5. 101

W
w

1014

[~

1,5. 1014
—22 —20 —~18 —16 —14 —12 —10 -8

t (ps)

F1G. 1.6 — Puissance obtenue en ne simulant qu’une tranche temporelle et en utilisant des
fichiers de gain résiduel & un temps intermédiaire. En pointillés, simulation de référence
ot U'ensemble de 'impulsion est discrétisée.
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3. Amplification avec dérive de fréquence: modéle
« Frantz & Nodvik modifié »

a) Objectif

L’objectif est de tester la routine d’amplification d’impulsions & dérive de fréquence
basée sur la formule de Frantz et Nodvik. Bien que non justifiable analytiquement lorsqu’il
y a de la saturation cette formule fournit des résultats corrects & quelques pour-cent prés,
méne en cas de trés forte saturation. C’est ce que nous allons tester ici dans une confi-
guration multipassages, en comparant le résultat avec celui obtenu par le mode « spectre
large ».

Nous rappelons que les formules d’amplification de Frantz et Nodvik modifiée s’écrit

BF(Ost)/Fsat G(Z,t)
1+ (eFOD/Fae — 1)G(2t)

I(z,t) = Io(t) (L.3)

ol nous définissons la fluence effective par

Flat) = / t Iz at' | (1.4)

oo L+ T wp, + w(t') — wa)?

avec w(t) = 20t (b étant la dérive de fréquence du faisceau), Ty, wp et wy, étant respective-
ment le temps de cohérence de la raie d’amplification, la longueur d’onde d’amplification
et la longueur d’onde du laser. Le gain effectif G est défini a l'instant ¢t par:

G(zt) = G(z’o)[1+T22(wL+w(t)“wA)2]—l ’ (1.5)

(' désignant le gain petit signal pour une impulsion monochromatique. Le gain résiduel
apreés un passage est quant-a lul donné par

?(Z,OO) — —g—o(z)e—ﬁ‘(z,t)/Fsat ) (16)

b) Schéma




3. Amplification avec dérive de fréquence: modéle « Frantz & Noduvik modifié » 15
c¢) Données
0- Source rectangulaire Normale theta 180°
Energie 10 pJ
Dérive de fréquence 0s™? (a)
4.10% 572 (b, ¢)
Durée 1 ns
1- Multiplexeur Scénario 3%0 1
2- Miroir Nom de I’élément gauche
Coeflicient de réflexion 1
3- Amplificateur « plaque » | Epaisseur 4 cm
Indice de réfraction 1,505
Indice non linéaire 0 m?/W
Transmission face d’entrée 1
Transmission face de sortie 1
Normale theta 0°
Fluence de saturation 4,52.10* J/m?
Gain 1000
4- Miroir Nom de I’élément droite
Coefficient de réflexion 1
Normale theta 180°
Paramétres Diffraction de Fresnel (a,b)
Spectre large (¢)
Temps -2.107%5;2.107° 5; 256 (a,b)
—2.107%5;2.107% 5; 16 384 (c)
X —~0,25m; 0,25 m; 1
Y -0,25m; 0,25 m; 1
Nombre de pixels de recouvrement 200 (c) J

Le cas (a) est une amplification de référence en spectre étroit. Le cas (b) est un calcul
par Frantz & Nodvik modifié. Enfin le cas (¢) est un calcul en spectre large.

d) Interprétation

La figure (I.7) présente les résultats obtenus. On constate que l'effet du rétrécissement
spectral par le gain se fait fortement sentir dans les cas (b) et (¢) ou I'impulsion est a
dérive de fréquence. L’impulsion est donc beaucoup plus courte. Par contre, la saturation
est tellement forte que 1’énergie est du méme ordre dans les trois cas®. On observe donc une
puissance créte plus forte pour des impulsions a dérive de fréquence. Une telle propriété
ne pourrait pas étre observée dans un régime sans saturation (la puissance créte serait
alors la méme).

On observe en outre une petite différence entre les résultats (b) et (c), due a la dif-
féerence de modeéle. Cette différence est négligeable en régime linéaire et croit avec la
saturation, comme le montre la table 1.1 qui compare les énergies. C’est le cas (¢) en
spectre large qui utilise la méthode la plus rigoureuse, donc qui est le plus exact. Tou-
tefois, le temps de calcul est aussi considérablement plus long (18 min sur un processeur
DEC a 400 MHz). La courbe du cas (c¢) est également bruitée, ce qui est dii au fenétrage
de I'impulsion dans le calcul d’amplification spectre large saturée. On peut limiter cet effet

1. L’¢énergie finale est donnée dans la derniére colonne du tableau 1.1 dans les cas (b) et (¢). Pour le
cas (a) Pénergie finale vaut 69,532 20 kJ.
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90 T . T | T

80 L _.:" Spectre étroit (a) o
- Frantz & Nodvik mod€ (b) -

70 + Spectre large (c —

P (TW)

F1G. 1.7 — Comparaison des résultats obtenus en spectre étroit (a), par le modéle Frantz
¢ Nodvik modifié (b) et en spectre large (c), aprés 4 passages dans U'amplificateur.

TaB. 1.1 - Comparaison des énergies dans les cas (b) et (c), aprés chaque passage dans
Pamplificateur!.

Passage 1 2 3 4
Energie (b) | 8,526560 mJ | 7,535050 J | 5,510600 kJ | 67,619 40
Energie (c) | 8,526130 mJ | 7,534330 J | 5,329780 kJ | 65,34050

E*/E* 1,000 050 1,000 095 1,033926 | 1,034877

Nous rappelons que dans Mird les diagnostics sont établis & ’entrée de chaque composant. Les
passages 1 a 3 correspondent donc respectivement & des diagnostics sur ’amplificateur pour des numéros
de passage 2 & 4; le passage 4 est un diagnostic sur la source au 2¢ passage.

en augmentant la précision du calcul (déphasage maximal du pas fractionnaire) ainsi que
le recouvrement des fenétres temporelles, mais ceci aurait pour effet d’augmenter encore
le temps de calcul.
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4. Amplificateur « dynamique »
a) Objectif

Le but de ce calcul est de tester le composant « amplificateur dynamique », qui éva-
lue I'amplification d’un faisceau laser en tenant compte de la désexcitation du niveau
quantique inférieur. Soient 7y, la durée de vie de ce niveau inférieur, et T la durée de
I'impulsion. Le composant « amplificateur dynamique » fournit le méme résultat que le
composant « amplificateur » dans deux cas de figure:

— lorsque T' >> Ty, en prenant les mémes paramétres ;

— lorsque T < Tiye, avec

ampl. dyna __ ampli
F sat - 2F‘sat '

Ld i . : .
FoiPm ™ et Fop™" étant respectivement les fluences de saturation de 'amplificateur

dynamique et de I’amplificateur.

Ce calcul reprend donc le schéma et les paramétres du cas test de 'amplificateur
(§ I.1), a la fluence de saturation pres.

b) Schéma

¢) Données

[ 1= Source rectangulaire Energie 5.10% J
Largeur 4 m
Hauteur 4 m
Durée 10711 s (a), 1077 s (b)
Exposant temporel 200
Exposant spatial en X 400
Exposant spatial en Y 400

3- Amplificateur « dynamique » plaque | Epaisseur 3,363.107° m

Indice de réfraction 1,522
Indice non linéaire 0 m?/W
Transmission face d’entrée 1
Transmission face de sortie 1
Normale theta 0°
Fluence de saturation 2.10* J/m?(a), 10* J/m*(b)
Gain gain.lin
Hauteur 2m

| Largeur 2 m

Parameétres Optique géométrique 3D

Temps 0s; 107 s (a) ou 1077 s (b); 1
X Om;1m;1

L Y —1m;1m; 200
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Le fichier gain.lin est le méme que pour le cas test du composant « amplificateur »
(p. 6). Il y a deux cas tests (a) et (b) qui différent au niveau de la durée de la source, de
I'intervalle temporel de discrétisation et de la fluence de saturation de 'amplificateur.

d) Interprétation

Dans les deux cas de figure cités ci-dessus, les différences entre amplificateur et ampli-
ficateur dynamique sont minimes. Elles sont dues au fait que I'infiniment petit considéré
(T /7ins ou Tine/T selon le cas) n’est pas rigoureusement nul.

En optique géométrique 1D, la fluence d’entrée est 31,25 J/m?. Les fluences de sortie
sont les suivantes:

~ amplificateur « dynamique », T = 10 ps: Fi,; = 2,826 240.10* J/m?;
— amplificateur « dynamique », T = 10 us: Fy, = 2,805170.10* J/m?;
— amplificateur ordinaire (rappel), T = 10 ps: Fy = 2,82658.10* J/m?.

Les résultats obtenus en optique géométrique 3D sont représentés sur les figures 1.8 et

1.9. La différence relative de X et YV est (X —Y)/|X +Y/|.

6_104III|||IIIIIIII|IIII

—— normal, T =10 ps | A
21040 ] - dynam., T =10 ps | T
""""" dynam., T = 10 us :

OIIJI[J_LlI‘lllllllll

-1 -0,5 0 0,5 1

y (m)

Fi1G. 1.8 -~ Fluence comparée entre amplificateur dynamique et amplificateur ordinaire

Remarque : lorsque I'on effectue une comparaison entre le calcul inverse et le calcul
direct sur 'amplificateur dynamique, sans se placer dans un cas ou le résultat peut étre
retrouvé avec Frantz et Nodvik, on trouve que I’accord n’est pas excellent (quelques pour-
cent d’écart). Ceci prouve que la méthode consistant & remplacer la fluence de saturation
par une fluence de saturation équivalente (7.e. la méthode qui est choisie en calcul inverse)
n’est pas tout a fait correcte.
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0,002 . :
0,001 F ]
O =10 ps .
C —— T =10 ps ]
—0,001F .
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-1 -0,5 0 0,5 1

y (m)

F1G. 1.9 — Différence relative des fluences entre l'amplificateur dynamique et amplificateur

ordinaire, pour le cas (a) (pointillés) et le cas (b) (trait continu).
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5. Amplificateur « dynamique »: caractérisation du
composant

Amplification d’une impulsion a prépalier

Le composant « amplificateur dynamique » de Miré permet de tenir compte de la
durée de vie du niveau inférieur de la transition laser. Plutot que d’utiliser ce composant
toutefois, il est généralement admis que I'on peut utiliser 'amplificateur ordinaire (formule
de Frantz et Nodvik) en corrigeant la valeur de la fluence de saturation. Le but de ce
paragraphe est de fournir des informations relatives a la validité de ce remplacement.

a) Objectif

Le raisonnement qualitatif montrant qu’il est possible d’utiliser la formule de Frantz
et Nodvik en corrigeant la fluence de saturation fait 'hypothése que la forme temporelle
de I'impulsion est carrée. Dans cet exemple au contraire, 'impulsion ne sera pas carrée,
mais constituée de deux pas de temps: un premier pas de temps de durée 10 ns, suivi d’un
second de durée 50 ps, les deux pas ayant la méme énergie. La durée du premier pas est
trés supérieure a celle du niveau inférieur de la transition laser, tandis que celle du second
pas lui est trés inférieur. Par conséquent, si l'on applique Frantz et Nodvik, il faudrait ne
pas corriger la fluence de saturation pour le premier pas de temps, et la diviser par deux
pour le second. On s’attend donc a ne jamais obtenir la bonne fluence de saturation pour
les deux pas de temps, quelle que soit la fluence de saturation équivalente choisie.

b) Schéma

Le cas test consiste a relier les propagateurs soit a 'amplificateur « dynamique » (voie
du haut), soit a amplificateur ordinaire (voie du bas), et & comparer les résultats.

ichier disque
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¢) Données

0- Source fichier Energie 10 kJ
Section 1,6.107!' m
Fichier temporel source t

1- Amplificateur « dynamique » disque | Transmission face d’entrée 1
Transmission face de sortie 1
Normale theta 0°
Gain 3
Fluence de saturation 4,707.10* J/m?

2- Miroir Normale theta 270°

3- Amplificateur disque Transmission face d’entrée 1
Transmission face de sortie 1
Normale theta 0°
Gain 3
Fluence de saturation Foa

Parameétres Optique géométrique 1D
Temps 0s;4107%s;0

Le fichier t sert & définir la forme temporelle & deux pas de temps'. Dans le cas ou
I'on effectue le test avec 'amplificateur standard, on modifie éventuellement la valeur de
la fluence de saturation (valeur par défaut 4,707.10* J/m?).

d) Résultats

Les résultats des calculs sont présentés sur la figure 1.10. Avec 'amplificateur « dy-
namique » (fluence de saturation 4,707.10* J/m®), on obtient une intensité de
1,001.10'2 W/m? pour le premier pas de temps et 1,253.10"* W/m?pour le second (énergie
16,27 kJ). Sur la figure, nous avons tracé pour chacun des deux pas de temps, et pour
différentes valeurs de la fluence de saturation Fg,; de I'amplificateur ordinaire, la quantité
Ildov—dd — 1. On constate que 'accord entre les deux courbes est toujours plus médiocre
que 2 % sur 'un des deux pas de temps au moins.

e) Conclusion

[ écart entre les deux modéles (amplificateur ordinaire ou « dynamique ») ne joue qu’en
régime de saturation, c¢’est-a dire a la fin de l'amplification sur une chaine de puissance.
A ce titre il n’est pas étonnant que les énergies et les puissances obtenues par l'une ou
lautre méthode ne différent rarement davantage que quelques pour-cent. L’utilisation de
I'amplificateur standard (Frantz et Nodvik) pour des impulsions de durée équivalente de
Vordre de 7, est donc le plus souvent licite, a condition toutefois de connaitre a quelques
pour-cent prés la valeur ad hoc pour la fluence de saturation. Le recours au composant
« amplificateur dynamique » sera justifié pour déterminer cette derniere.

1.1l a la forme suivante: 3 1 1 0 | T=0 le-8 1.005e-8 | 1 200 0, le symbole « | » désignant le
retour A la ligne.
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Fi1G. 1.10 - Comparaison enire Uamplification par Frantz et Noduik, et Uamplification

« dynamique », pour une impulsion & deuz pas de temps (cf. texte). La fluence de saturation

de Uamplificateur « dynamique » est 4,707.10% J/m?. En abscisse, la fluence de saturation
IOTd’LrL

de U'amplificateur Frantz et Nodvik; en ordonnée, la quantité q—gmam— — 1 exprimée en %
pour chacun des deuz pas de temps .
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6. Amplificateur « dynamique »: cas test analytique
a) Objectif

Le but de ce cas test est de tester le composant « amplificateur dynamique » par une
formule analytique, dans un cas qui n’est pas soluble par Frantz et Nodvik : une impulsion
dont I'intensité décroit exponentiellement en fonction du temps.

L’équation d’évolution du coefficient de gain g (gain par unité de longueur) est donnée
par

dez T dt | Fu

dg, 1dg_ 1 (23 + —1-> (1)), (17)

dt T

7, étant la durée de vie du niveau laser inférieur et Fy,, la fluence de saturation. On
suppose que l'intensité du laser I varie en fonction du temps sous la forme

I(t) = Ipe 7 . (1.8)

Le coeflicient de gain obéit alors a 1’équation

d2§ 1 IO __t dg
R — 2 27 - = 0 . 19
az ' (n teRL© > dt (19)

Cette équation est soluble analytiquement. On trouve (en supposant que la population
du niveau laser inférieur initiale est nulle) que

7(t) = (0) - {1 — exp {—i - (1- e_%)] } | (10)

Au cours de son amplification, 'impulsion ne conservera, pas sa dépendance temporelle
exponentielle. Nous nous placerons donc dans un régime perturbatif ot 'amplification de
I'impulsion est faible (donc le gain est proche de 1).

b) Schéma
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¢) Données

0- Source analytique Energie 2.10% J
Section 0,16 m?
Expression de l'intensité I{x,y,t) exp(-t/be-10)

1- Amplificateur « dynamique » disque { Transmission face d’entrée 1
Transmission face de sortie 1
Normale theta 0°
Gain 1,01
Fluence de saturation 4,707.10* J/m?
Diameétre 10 m

2- Lame Epaisseur 0 m

Paramétres Optique géométrique 1D ]
Temps 0s;0,995.107° s5; 200
X —02m;0,2m; 2
Y -0,2m; 0,2m; 2

d) Résultat

La courbe de la figure I.11 représente le gain de puissance lumineuse (Pt — pentrée)
en fonction du temps, obtenues par la formule analytique (I.10) et par le calcul Miré. On
constate un bon accord entre les deux courbes, comme le confirme la figure .12 (différence
absolue entre les deux courbes). Sur la figure I.11 nous avons également affiché I'intensité
aprés passage dans un amplificateur de type Frantz et Nodvik, avec le méme gain (1,01)
et une fluence de saturation de 3,756 5.10* J/m?(valeur qui a été évaluée de fagon a ce
que énergie en sortie (2,005770.10* J) soit la méme que dans le cas de 'amplificateur
« dynamique »). On peut remarquer que cette derniére courbe ne coincide guére avec les
deux autres mais il ne faut pas oublier que effet est amplifié par le fait que les courbes
sont affichées en échelle logarithmique.
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1012 | T T T T | T ] 3
Miré — 1
Analytique i
Frantz & Nodvik ©
= 10" F 3
é L g, ]
/'1 ....................... |
o Ry,
> 1010 é. ,,,,,,,,,,,,,,,,,
1009 ! I t |
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0.8 0,9 1

FiG. 1.11 — Intensité gagnée, tracée en fonction du temps, pour un farsceau initialement
exponentiellement décroissant, et amplifié dans un amplificateur dynamique de gain 1,01.
Comparaison entre le calcul Mird, le calcul analytique et le calcul Mird par Frantz et
Noduvik en ayant corrigé la fluence de saturation.

— 1010 T T T T T i T T T
0
= —10'
—2.10%
=_3.10%°
—4.101°
—5.10%0
—6.1010
—7.1010
—8.100

—9. 1010 | ] ] 1 | ] 1 | 1
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
t (us)

FiG. 1.12 - Différence absolue entre l'intensité calculée analytiquement et celle obtenue
avec Mir6 (courbes de la figure 1.11).
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7. Analyseur de surface d’onde
a) Objectif

L’objectif est de tester le composant « analyseur de surface d’onde ». Pour ce faire
nous appliquons a un faisceau de front d’onde initialement parfait une perturbation de
phase (que nous créons & I’aide d’une lentille de trés grande focale). Puis nous corrigeons
le front d’onde ; nous vérifions (qualitativement) sur la phase du champ et sur son spectre
que le front d’onde a effectivement été corrigé.

Dans un deuxiéme temps, nous nous assurons que la correction du front d’onde est
bien « réversible »: nous appliquons au faisceau corrigé précédent une perturbation de
phase exactement opposée a la premiére. Puis nous corrigeons une deuxiéme fois le front
d’onde. A D’arrivée, on doit récupérer une onde plane.

Remarque : ce cas test demande 4 min 40 s de calcul sur une station de travail de
type Sun Ultra.

b) Schéma

CONYRra.

| Lentine

c) Données

0- Source rectangulaire Exposant spatial en X 20
Exposant spatial en Y 20

1- Leuntille Nom de l’élément converg.
Epaisseur 2.107 % m
Indice non linéaire 0 m?/W
Focale 10 km
Type de traitement [0/1/2] 0

2- Analyseur de surface d’onde | Nom de I'élément corr.1
Fichier de phase du miroir adaptatif /tmp/corr. 1
Coté du miroir adaptatif 0,4 m
Distance caractéristique 0,08 m

3- Lame Nom de I’élément, masque 1
Epaisseur 1079
Indice non linéaire 0 m*/W
Fichier masque de phase statique /tmp/corr. 1

4- Lentille Nom de I’élément diverg.
Epaisseur 2.10°m
Indice non linéaire 0 m?/W
Focale —10 km
Type de traitement [0/1/2] 0

5- Analyseur de surface d’onde | Nom de ’élément corr.2
Fichier de phase du miroir adaptatif /tmp/corr.2
Coété du miroir adaptatif 04 m
Distance caractéristique 0,08 m
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6- Lame Nom de I’élément masque 2
Epaisseur 1079
Indice non linéaire 0 m?/W
Fichier masque de phase statique /tmp/corr.2

7- Lame Nom de I’élément finale
Epaisseur 0 m

Parameétres Optique géométrique 3D
Temps 0s;107%s; 1
X —0,25:0,25; 128
Y —0,25:0,25; 128

d) Interprétation

L’onde du faisceau initial est plane. Aprés le passage de la lentille convergente, voici

lallure du front d’onde (phase brute & gauche, redressée a droite) :

corr,1

£=0,000e+00

grille=64x64d

xmin=~2,500e-01
xmax=2,500e-01

ymin=-2,500e-01
ymax=2,500e-01

zmin=-3,133e+00
zmax=3,137e+00

corr.,1

£=0,000e+00

grille=64x64

xmin=-2,500e-01
xmax=2,500e-01

ymin=-2,500e-01
ymax=2,500e-01

zmin=0,000e+00
zmax=2,856e+01

L’analyseur de surface d’onde calcule la correction mais n’agit pas sur le faisceau. La
correction est appliquée au niveau de la lame « masque 1 ». Voici la phase (redressée) du

faisceau aprés correction:

diverg.

t=0,000e+00

grille=6dx64d

xmin=-2,500e-01
xmax=2,500e-01

ymin=-2,500e-01
ymax=2,500e-01

zmin=-3.643e+00
zmax=8,403e+00
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Pour donner au lecteur une idée du role que pourrait jouer la correction de surface
d’onde sur une chaine de puissance, nous donnons le spectre spatial du faisceau avant (a
gauche) et aprés correction (a droite). Ce spectre correspond & allure de la tache focale
au foyer d’une lentille de focalisation®. On voit donc que la correction de surface d’onde
réduit la tache focale de maniére significative.

corr.1

t=0,000e+00

grille=64x64

xmin=-8,042e+02
xmax=8,042e+02

ymin=-8, 042e+02
ymax=8,042e+02

zmin=2,202e-19
zmax=2,860e+05

diverg.

t=0,000e+00

grille=64x64

xmin=-8, 042e+02
xmax=8,042e+02

ymin=-8,042e+02
ymax=8,042e+02

zmin=1,227e-09
zmax=8,410e+06

La deuxiéme partie du cas test ne présente pas d’intérét physique : son role est juste de
montrer que 1’algorithme de minimisation d’erreur utilisé fonctionne correctement. Si I'on
part d’un masque de phase constitué d’une combinaison de supergaussiennes positionnées
de la méme facon que les actionneurs du miroir, le systéme de correction de surface d’onde
doit étre en mesure de corriger rigoureusement le front d’onde. Voici le front d’onde aprés
la lentille divergente (compensant exactement la premiére lentille), au niveau du deuxiéme
analyseur (ce que nous visualisons est en fait la correction de phase du premier systéme
de correction ; elle est donc composée de supergaussiennes).

corr.2

£=0,000e+00

grille=64x6d

xmin=-2,500e-01
xmax=2,500e-01

ymin=-2,500e-01
ymax=2,500e-01

zmin=-2,650e+01
zZmax=2,931e+00

Et voici maintenant la phase de 'onde finale. Aux erreurs d’arrondis pres, nous avons
retrouvé une onde plane.

1. Bien sdr nous oublions que nous sommes ici dans un cas particulier : le masque perturbatif a été
créé avec une lentille, et il suffirait donc pour rétrécir la tache focale de déplacer légérement la lentille de
focalisation !
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finale

£=0,000e+00

grille=64x64

xmin=-2,500e-01
xmax=2,500e~01

ymin=-2,500e-01
ymax=2,500e-01

zmin=-1,000e-05
zmax=1,000e-05
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8. Apodiseur

a) Objectif

On considére un faisceau uniforme qui est successivement découpé par un trou dur
carré de coté 2, un disque inscrit dans ce carré et un triangle inscrit dans ce disque. La
surface du faisceau au passage de ces différentes pupilles doit étre de 4 puis 7 et enfin
3v/3/4.

Attention: ce cas test requiert une grand nombre de points d’échantillonnage, et par
suite une mémoire importante. Si I’on utilise une station de travail (par exemple une SUN
Ultra), par manque de mémoire la machine risque d’utiliser la partition d’échange de son
disque dur (« swap »). Le temps de calcul peut alors atteindre une vingtaine de minutes.

b) Schéma

c¢) Données

1- Source rectangulaire | Largeur 4 m j
Hauteur 4 m
Exposant spatial en X 200
Exposant spatial en Y 200

3- Apodiseur analytique | Déf. analytique des trous R((0,0),2,2;1)

5- Apodiseur analytique { Déf. analytique des trous D((0,0),2;1)

7- Apodiseur analytique

Déf. analytique des trous

P((1,0),(-0.5,0.866025),(-0.5, -0.866025) ;1)

TPararnétres Optique géométrique 3D
Temps 0s;107%s;1
X —2m;2m; 1024
Y —-2m;2m; 1024

d) Interprétation

On note successivement la surface du faisceau aprés le passage de chaque apodiseur.
Les calculs par 'optique géométrique 1D et 3D donnent presque les mémes résultats.

=

] 1- apodiseur ] 2- apodiseurTS— apodiseur ]

Section analytique 4 m? 3,14159 m? | 1,299 04 m?
Section calculée 3D | 4,01564 m? | 3,14116 m? | 1,30243 m*
Section calculée 1D | 4,01564 m? | 3,14113 m? | 1,30244 m?
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9. Conversion de fréquence : évaluation des
parameétres scalaires
a) Objectif

L’évaluation des parameétres scalaires du composant « convertisseur de fréquence »
de Mird est une opération particuliérement délicate pour qui n’est pas un expert en
conversion de fréquence. Les difficultés sont les suivantes:

— d’une part il faut entrer les valeurs correctes pour tous les paramétres angulaires,
lesquels dépendent de la configuration de conversion souhaitée (doublement ou triple-
ment, type I ou II), ce qui fait le role de chaque angle doit étre parfaitement compris de
I'utilisateur ;

— d’autre part il faut entrer la bonne valeur pour le paramétre « intensité de conver-
sion », et en fait étre en mesure de la calculer soi-méme car dans la littérature les définitions
utilisées varient énormément d’un auteur a l’autre (certaines personnes utilisent la quan-
tité dipolaire dzg, d’autres introduisent un deg, d’autres encore utilisent une puissance
critique... alors que c’est une intensité de conversion que ’on doit entrer dans Mird) ;

— pour compliquer encore les choses, beaucoup d’auteurs sont adeptes du systéme
CGS;; or les conversions CGS — SI ne sont pas spécialement triviales (cf. annexe A).

Afin de faciliter la tache de 'utilisateur de Mirg, des macros génériques ont été rendues
accessibles dans la version Unix du code depuis la fenétre Mird (via 'icone « macro » en
bas & gauche). Ces macros contiennent un composant KDP dont les paramétres sont
ajustés pour qu’il y ait accord de phase pour chacune des configurations « usuelles »
(doubleur type I ou II, tripleur type I ou II, avec un KDP non deutéré et A =1,053 pm).

Si 'on veut simuler la conversion de fréquence sur une chaine de type Mégajoules ou
Phébus, il suffit d’utiliser ces macros comme des boites noires (en modifiant éventuellement
quelques paramétres tels que l’épaisseur ou l’inclinaison), sans qu’il soit nécessaire de
comnprendre comment elles ont été calculées. Par contre, dés qu’on souhaite passer a une
situation un peu plus exotique (par exemple changer de longueur d’onde), il faut recalculer
tous les parametres.

L’objectif de ce paragraphe est d’aider un utilisateur a calculer les paramétres d’un
convertisseur de fréquence. Pour ce faire, nous indiquerons comment les coeflicients pré-
sents dans les macros génériques ont été calculés. Ce paragraphe a été rédigé a partir de
la these d’A. Boscheron [5], & laquelle nous renvoyons le lecteur pour toute information
complémentaire.

b) Calcul des angles

Avant d’orienter un KDP, la premiére chose i faire est de connaitre les indices de
réfraction N, et N, correspondant aux axes propres du cristal. Nous donnons dans la
table 1.3 les valeurs pour le KDP non deutéré.

La figure .13 permettra & I'utilisateur de repérer les différents angles intervenant dans
le réglage des KDP. L’angle de coupe 8 est I’angle séparant ’axe optique du cristal et la
normale & la surface du composant (qui est aussi la direction du vecteur d’onde car on
suppose que I'on travaille en autocollimation). Connaissant €, on en déduit 'indice vu par
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TAB. 1.2 — Indices de réfraction (pour des directions de polarisation paralléles aux azes du
cristal) pour un KDP non deutéré, et pour une longueur d’onde fondamentale de 1,053 pm.

A (m) || 3,510.1077 | 5,265.10~" | 1,053.107°
N, | 15323807 |1,5131859 | 1,4945153
N, || 1,4868956 | 1,4711416 | 1,4603937

Axe optique
z

)/'

b
Ll

Axe du
cristal

Axe du
cristal

FiG. 1.13 ~ Angles utilisés pour définir un cristal de KDP. L’angle © est ’angle d’accord
de phase ; ’angle 2 est ajusté de fagon & mazimiser le couplage non linéaire d’ordre 2;
Langle @ sert & faire coincider les azes ordinaire et extraordinaire avec les polarisations
des faisceaur incidents ; enfin, o est l’angle de double réfraction.

une onde de polarisation extraordinaire, via la formule

1+ tan?6
N\ 2 '
1+(E) tan® 6

L’angle # correspond au paramétre « angle theta du cristal » du composant. Notons que
ce sont les indices principaux (N, et N,) qu'il faut entrer dans le fichier « indice » du
composant, pour chacune des longueurs d’onde intervenant.

ne(#) = N, (1.11)

En général, on choisit 'angle # pour qu’il y ait accord de phase. Deux cas de figure
se présentent selon que 'on est en présence d’un type I ou d’un type II. En type I on a
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simplement

2

(wlNél) + UJQNCSQ))

2
o)

(wlNél) + wQN(?))

N ()

en type II, il faut résoudre numériquement 1’équation

1 —

fap = Arctan 5 ; (I.12)

UJlNo(UJl) + UJQTLQ(UJQ,Q) = wgne(wg,e) 5 (113)

en utilisant la définition (I.11); w; (i = 1,2,3) est la pulsation de 'onde n°i. Notons que
ces équations ne sont valables que pour des cristaux uniaxes.

Les angles de double réfraction «; se calculent quant & eux, pour chaque onde extra-
ordinaire, par la formule [5, p. 83]

(1.14)

a; = Arctan ( (Ng(wi) —Ng (wi» sin 20 ) )

2 (N2(w;) sin® @ + N2(w;) cos? 0)

c) Coefficient de couplage non linéaire d’ordre 2

On traduit le couplage non linéaire d’ordre 2 via un tenseur d’ordre 2, en écrivant que

E%
NL EY
Py din diz dis dia dis dig £
PRV ) =co | dar doy doz dos dos dys 2EZE (I.15)
Pyt N dip ds dsu dss dss ) | 55 5
{d) 9Ey Ey

Dans le cas du KDP et si les axes de coordonnées sont les axes cristallins, seuls les
éléments de la matrice [d] se rapportant a trois directions de I’espace différentes sont non
nuls; il n’y a qu’un seul coefficient

d=dg = dys = dss -
Pour le KDP non deutéré, la valeur numérique est
d=0,39 pm/V. (1.16)

Le paramétre « intensité de conversion » de Mird est relié a d par la relation

CEy
L= grge

(1.17)
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En prenant ¢ =2,99792458.10% m/s, g = 107 /(4wc?) SI, on obtient
I. =2,21.10° W/m?. (1.18)

Plutét que les valeurs de dsg ou de lintensité de conversion, on utilise parfois la
quantité deg: c’est la quantité qui intervient directement dans les équations de conversion.

Toutefois, son expression différe en fonction de la configuration de conversion (type I ou
I1), i.e.

det = dsin(6 — a3) sin 2€2 pour un type I, (I.19.a)
deg = dsin(20 — oy — a3) cos 2) pour un type 11 (1.19.b)

ey et vy étant les angles de double réfraction des ondes 2 et 3 (extraordinaires), 8 1'angle
d’accord de phase et ) 'orientation du cristal.

Enfin, une autre quantité permet de caractériser ’efficacité du couplage non linéaire : la
puissance de conversion [5, p. 40] P.. Elle est définie de telle sorte que pour un doublement
ou un triplement équiphotonique avec accord de phase parfait, 'intensité de I’harmonique

3 créée soit donnée par
2 [

I, étant la somme des intensités des faisceaux en entrée du cristal. La puissance critique
P, est reliée au coefficient de couplage effectif deg par la relation

P Eocnlngng/\l/\g
c 2 92 I
8m2dig

(1.21)

les n,; ¢tant les indices vus par les différentes ondes, qui, pour des ondes extraordinaires,
se calculent a partir des indices du cristal via la formule (1.11).

d) Le choix de la bonne unité

Lorsqu’on trouve dans la littérature une valeur numérique pour dsg ou deg, deux pro-
blémes sont susceptibles de se poser:
la. définition du champ électrique complexe pent varier d’un facteur 2 d’'un auteur
a Pautre ;
— beaucoup d’auteurs (surtout pour des articles relativement anciens) emploient le
systéme d’unités CGS (les charges étant exprimeées en unités électrostatiques: ues ou esu).
On pourra trouver davantage de détails sur ces problémes de conversion d’unités en
consultant ’annexe A.
Concernant le premier point, nous avons adopté dans ce texte les conventions sui-
varntes:
— si € désigne le champ électrique réel, i.e. évoluant dans le temps en sin(wyt), alors
le champ compleze E lui est relié par la formule

E(t) = % (Ee™' + c.c.) ;
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— en unité SI la densité de dipoles P s’écrit sous la forme:
P =eox\VE + &o[x?] : EE |
N ——’
PNL

[x?] étant le tenseur de susceptibilité d’ordre 2. Sachant que la quantité complexe non
linéaire PN est définie par

PNE(t) = = (PNt ccl)

DN | =

on tire I’équation
P =¢y[d] : EE
avec la définition [d] = 2[x¥].
En ce qui concerne la conversion d’unités, on peut appliquer la formule [6, 7] (voir
aussi I'annexe A)
d§S 11 1 c

dSL T 4m /Imeg /10 ~ 4710
Pour le KDP, le coefficient ds exprimé en unités CGS est de I'ordre de 107 ¢m/+/dyn.

~ 2.385672.10% . (1.22)

e) Table de valeurs

Nous donnons pour chaque type de conversion les différentes valeurs numériques in-
tervenant dans la conversion de fréquence. Les données de base sont les indices N, et N,
fournis dans la table 1.3, et le coefficient d3g qui vaut 0,39 pm/V. Les autres quantités se
déduisent de la facon suivante:

— l'angle d’accord de phase 6, par ’équation (I1.12) pour un type I, et en résolvant le
systéme constitué par les équations (1.11) et (1.13) pour un type II;

~ l'orientation du cristal €2 est choisie de facon & maximiser le coefficient de couplage
effectif dog; en général on choisit 45° pour un type I et 0° pour un type II;

- l'angle ¢ du cristal sert & faire coincider la polarisation du faisceau incident avec
les axes ordinaires ou extraordinaires du KDP ; pour ¢ = 0 ’axe ordinaire correspond &
une polarisation selon ¥ ;

— D'intensité de conversion I. se déduit du coefficient dzg via la formule (1.17).

Les paramétres suivants n’ont pas besoin d’étre entrés dans Mird (ils sont calculés auto-
matiquement par le code):

— connaissant # on peut en déduire les indices vus par les harmoniques & partir de la
formule (I1.11);

— les angles de double réfraction «; (7 = 1,2,3) se calculent pour toute onde extraor-
dinaire en utilisant la formule (1.14);

I’équation (I1.19) permet de calculer dg & partir des valeurs des angles de double

réfraction ;

— la puissance critique P, se déduit avec la formule (I1.21).
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TAB. 1.3 — Table des valeurs numériques intervenant dans le composant KDP pour les
différentes configurations. Les paramétres en gras sont ceuz qu’il est nécessaire d’entrer

dans Mir6.
Configuration doublement type I doublemeunt type 11
o (° 41,187653 59,228 918
Q (°) 45 0
degr (pm/V) 0,265 0,334
P (GW) 1,77 1,09
I. (W/m?) 2,21.10%°
polarisation o] 0 e 0 e e
A (pm) 1,053 1,053 0,526 5 1,053 1,053 0,526 5
indice 1,4945153 | 1,4945153 | 1,4945153 || 1,4945153 | 1,4690985 | 1,4818069
a (°) 0 0 —1,605 40 0 —1,15038 | —1,39998
Configuration triplement type I triplement type II
g (°) 47,734 862 59,069 674
Q(°) 45 0
degt (pm/V) 0,296 0,335
P. (GW) 0,723 0,553
I. (W/m?) 2,21.10%0
polarisation o) o) e o) e e
A {(um) 1,053 0,526 5 0,351 0,526 5 1,053 0,351
indice 1,4945153 | 1,5131859 | 1,5069624 | 1,5131859 | 1,4691806 | 1,4985175
a (°) 0 0 —1,71263 0 -1,15395 | —1,50026
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Les valeurs prises pour les constantes sont ¢ =2,997924 58.10% m/s, £y = 107/(4nc?) SI
m =3,141 592653 589 79.

Les valeurs numériques pour les coefficients énumérés ci-dessus sont reportées dans la
table I1.4. Attention au cas du tripleur type II: ¢’est 'onde & 2w qui est ’onde ordinaire.
On remarquera que les valeurs de deg et de la puissance critique P, sont passablement
différentes de celles proposées dans la référence {5]: c’est dit au fait qu’au contraire de
cette référence, Miré prend en compte la contribution de I’angle de double réfraction dans
le calcul de deg.

b

f) Objectif des cas tests

Les cas tests visent & vérifier la formule (1.20) : on se place & I’accord de phase, dans le
cas d’une répartition équiphotonique des pompes ; on choisit I; = P,/¢?, ¢ étant ’épaisseur
du KDP. Alors l'intensité convertie vaut I, x th*(1) ~ 0,580 02566 I,.

Remarque : pour la précision des tests la valeur de I'intensité de conversion choisie
ici contient davantage de chiffres significatifs que dans le tableau 1.4 ou dans les gammes
de composants de Mird. Dans la réalité ce coefficient est connu de maniére trés imprécise.

g) Doubleur type I
i) Schéma

it) Données

0- Source analytique | Energie 1,772630.10%% J
Section 1 m?

1- KDP Nom de I’élément doubl tI
Epaisseur 1 cm
Indice de réfraction KDP_1053
Indice non linéaire 0 m?/W
Angle theta du cristal 41,187 65°
Angle phi du cristal 90°
Orientation du cristal 45°
Intensité de conversion 2,210296.10*° W/m?
Analytique/Runge Kutta 0

2- Lame Epaisseur 0 m

Parameétres Optique géométrique 3D (a)
Optique géométrique 1D (b)
Temps 0s;1s:1
X -0,5m;0,5m;1
Y —0,5m;0,5m;1

Le fichier KDP_1053 contient les indices principaux du KDP non deutéré pour une lon-
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gueur d’onde fondamentale de 1,053 um!. Ce fichier existe dans le répertoire $MIRG_HOME/
ext/xxx ($MIRO_HOME/lib/data en ce qui concerne Miré 2000) et l'utilisateur n’a pas
besoin de le recréer dans le répertoire courant.

ii) Interprétation

L’épaisseur du KDP est ¢ = 1 cm ; la puissance critique étant P, =1,772630 GW, on a
choisi I’énergie de la source incidente de telle sorte que I'intensité vaille 1,772 630 GW /cm?.

En optique géométrique 1D tout comme en optique géométrique 3D, on trouve en
sortie une énergie 2w de 1,028 620. 10'3 J; 'énergie incidente était de 1,772 630. 103 J. Le
rendement est donc de 58,027 902 %, valeur proche de la valeur théorique (58 002 566 %).

h) Doubleur type II
i) Schéma

Le schéma est le méme qu’au paragraphe précédent.

i) Données

0- Source analytique | Energie 1,085 409.103 J
Section 1 m?

1- KDP Nom de I’élément doubl tII
Epaisseur 1 cmn
Indice de réfraction KDP_1053
Indice non linéaire 0 m?/W
Angle theta du cristal 59,228 92°
Angle phi du cristal -45°
Orientation du cristal 0°
Intensité de conversion 2,210296.10%° W /m?
Analytique/Runge Kutta 0

2- Lame Epaisseur 0 m

Paramétres Optique géomeétrique 3D (a)
Optique géométrique 1D (b)
Temps 0s;1s;1
X ~0,5m;0,5m;1
Y -0,5m;0,5m; 1

Le fichier d’indice est le méme que pour le cas test précédent. La puissance critique
dans ce cas vaut 1,085409415 GW.

i)  Interprétation

En optique géométrique 3D, on trouve une énergie 2w convertie de 6,299120.10'2 J
pour une énergie incidente de 1,085 410. 10! J, ce qui donne un rendement de 58,034 475 %.

En optique géométrique 1D, on trouve une énergie 2w de 6,301090.10'* J, soit
58,052 625 % de rendement.

1.Il alaformesuivante:3 2 1 1 110 | X= 0.351e-6 0.5265e-6 1.053e-6 | 0=1 | 1.5323807
1.5131859 1.4945153 | E=2 | 1.4868956 1.4711416 1.4603937.
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1) Tripleur type I
i) Schéma

it) Données

0- Source analytique | Nom de I’élément analyt. 1
Energie 2,411 240.10'2 J
Section 1 m?

1- Source analytique | Nom de 1’élément analyt. 2
Energie 4,822480.10*2 J
Longueur d’onde 0,526 5 nm
Section 1 m?2

3- KDP Nom de I’élément tripl t1
Epaisseur 1 cm
Indice de réfraction KDP_1053
Indice non linéaire 0 m?/W
Angle theta du cristal 47,734 86°
Angle phi du cristal 90°
Orientation du cristal 45°
Intensité de conversion 2,210296.10%° W/m?
Analytique/Runge Kutta 0

4- Lame Epaisseur 0m

Paramétres Optique géométrique 3D (a)
Optique géométrique 1D (b)
Temps 0s;1s;1
X -0,6m;0,5m; 1
Y —-0,5m;0,5m; 1

ii1) Interprétation

La puissance critique pour un triplement type I est 0,723 3720706 GW. La somme des
énergies lw et 2w incidentes est 7,233 720. 10'2 J. En sortie, on convertit 4,197 810. 1012 J
a 3w, en 1D comme en 3D. Le rendement correspondant est donc 58,031 138 %.

j) Tripleur type II
i) Schéma

Le schéma, est le méme qu’au paragraphe précédent.
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i) Données

0- Source analytique | Nom de ’élément analyt. 1
Energie 1,844 086.10'2 J
Section 1 m?

1- Source analytique | Nom de 1’¢lément analyt. 2
Energie 3,688173.10'2 ]
Longueur d’onde 0,526 5 pm
Angle de polarisation 90°
Section 1 m?

3- KDP Nom de I’élément tripl tII
Epaisseur 1 cm
Indice de réfraction KDP_1053
Indice non linéaire 0 m%/W
Angle theta du cristal 59,069 67°
Angle phi du cristal 0°
Orientation du cristal 0°
Intensité de conversion 2,210296.10%° W /m?
Analytique/Runge Kutta 0

4- Lame Epaisseur 0m

Paramétres Optique géométrique 3D (a)
Optique géométrique 1D (b)
Temps 0s;1s;1
X —0,5m;0,5m;1
Y —-0,5m;0,5m;1

wi)  Interprétation

La puissance critique vaut 0,553 2259997 GW. Dans les deux modes de calcul (1D et
3D), on trouve une énergie 3w convertie de 3,210780.10'% J. L’énergie incidente totale
étant de 5,532 260.10'? J, le rendement vaut 58,037 40 %.
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10. Convertisseur de fréquence: cas perturbatif
a) Objectif

Pour des données initiales de faible intensité, les rendements de conversion de fréquence
sont faibles. Dans ce cas, les ondes créées sont de bien plus faible intensité que celles de
la pompe. On peut considérer que la pompe n’est pas dépeuplée. On est donc dans un
régime perturbatif.

On considéere une onde pompe & 1,064 um d’intensité uniforme I, de 1 MW /cm? et de
phase courbe pour une focalisation & 5 m qui est doublée en fréquence selon un schéma de
conversion de type I. Dans I'hypothése d’une faible déplétion de la pompe, ’onde créée a
0,532 pm est solution de 1’équation :

OE, OE, w3 ce
= ¢t e
0z an 5 ox

E2 . .
0o 1 _ikx?/f
— 0 — B)—eM =/, 1.23

Zk;202 cos? B\ 8m2], sin p) 4 ¢ (1.23)

La solution se calcule explicitement :
ky c*eq cos(f)
Wo 2

1 f I3 1 sin®(0-B)

8\ I, ndcos? Btan? B

L(z,z) = By (,2) 2

2

Erf (\ / —zﬁfl—(a: + tan ﬁz)) — Erf (\ / —z%x)

(1.24)

L’angle de double réfraction vaut:

o(2w)?
B = 8 — arctan (E—E-Q&%—?- tan 0> = —1,44961°.
ne (2w

b) Schéma

¢) Données

1- Source rectangulaire | Energie 1076 J
Longueur d’onde 1,064.1075 m
Largeur 1m
Hauteur lm
Exposant spatial en X 200
Exposant spatial en Y 200

3- Lentille Indice de réfraction 1,5
Indice non linéaire 0 m?/W
Focale 5m
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5- KDP Epaisseur 0,05 m
Indice de réfraction KDP_1064
Indice non linéaire 0 m?/W
Angle Theta du cristal 36,53961°
Angle Phi du cristal 90°
Orientation du cristal —45°
Intensité de conversion 2,5.1018 W
Analytique / Runge-Kutta [0/1] 1
Paramétres Optique géométrique 3D
Temps 0s;107%s;1
X —~5.1073m; 510 % m; 1
Y —1072 m; 1072 m; 2048
Déphasage maximal du pas fractionnaire 0,5 rad

Le fichier KDP_1064 contient la liste de indices suivant chacune des direction des axes
optiques!. Attention: la valeur choisie ici pour l'intensité de conversion (2,5.10'® W/m?)
1’a rien & voir avec la « véritable » valeur pour le KDP (2,21.10%° W/m?).

d) Interprétation

La solution calculée par Miré est comparée a la solution analytique évaluée par le
logiciel Mathematica. Les deux figures suivantes présentent respectivement les profils d’in-
tensité obtenus par le calcul Mird et le calcul par Mathematica et la différence des deux
solutions. Au centre du faisceau ’écart est de l'ordre de quelques pour-cent. Quand le
nombre de points de ’échantillonnage augmente la précision s’améliore. Il apparait en
outre une erreur sur le bord gauche du domaine ou il n'y a pas de signal. Cette erreur
est due au schéma de résolution de la double réfraction par l'algorithme de TFR. Un
algorithme de différence finie standard pourrait atténuer ce défaut si ce probleme est un
obstacle a une simulation.

e) Variante du cas test

Il est également possible d’obtenir ce résultat en diffraction de Fresnel adaptative (par
exemple en choisissant 64 pas de discrétisation selon y). Le calcul est alors systématique-
ment effectué par Runge-Kutta.

1.1l a la forme suivante (« | » signifie un passage a la ligne):
2211110 | X=5.32-7 1.064e-6 | 0=1 | 1.50734 1.49314 | E=2 | 1.46828 1.45824
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2500 l T | T | | | T
Miré —
2000 |- analytique
& 1500 | -
E
fay
e
2 1000 | .
500 _
0 l 4 — | | I e
—0,01 —0,008 —0,006 —0,004 -—0,002 0 0,002 0,004 0,006 0,008 0,01
Y (m)
F1G. 1.14 — Intensité analytique en trait continu et calculée en pointillés.
100 T T T T T T T
80 - N
. 60 - N
E 40 -
z 20 7\\‘\/\ -
z 0
wy
! —20 -
S —40 -
T—60 | .
—80 4
_100 { { { 1 1 1 1 1
—0,01 —0,008 -0,006 —0,004 -—0,002 0 0,002 0,004 0,006 0,008 0,01
Yy (m)

F1G. 1.15 — Différence absolue entre l'intensité analytique et celle calculée.
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11. Convertisseur de fréquence: cas saturé
a) Objectif

Pour un cristal de faible épaisseur, l'effet de la double réfraction peut étre négligé.
Dans ce cas il est possible de déterminer analytiquement les solutions a 1’aide des fonctions
elliptiques. On considére le cas particulier d’'un doublement de fréquence de type I. L’onde
pompe E; et 'harmonique E, sont solutions du systéme d’équations:

2

Wy * _—1Akz
= —p—r———dgEEle™ 25.;
0,E; ZklcQ o degEnEle (1.25.a)
2 2
Wy El 1Akz
By = 2 g ke 1.25.b
0:E» Zk)262 cos? qry 9 ¢ ( )
ol
CEy .

i =g sin’(0 - 8), (1.26)

et 0 est ’angle entre le vecteur d’onde de la pompe et ’axe principal du cristal et 3 I’angle
de double réfraction qui est défini dans la section précédente 1.10. On suppose que

B, (2,0) = %-;(nil) (1.27)

On considére dans I’exemple un profil linéaire de lintensité I,(z) suivant une direction
transverse. Soient :

L(z)z%sin?(0 — B) N Ak?2? L Ak2I,(z) 24 sin®(6 — ) N Ak4z4
n2nyI )\ 8 41 .\? 64

(1.28)

ri(r,z) =

L'intensité de ’onde créée est définie par:

3 2
ny cos BATL.

B ‘ 9 r_(z,z)
I(z,2) = mn(l,z) sn < ry(z,2), ) . (1.29)

ri(2,2)

b) Schéma

¢) Données

1- Source analytique | Energie 108 J
Longueur d’onde 1,064.107% m
Expression de lintensité I(x,y,t) y+0.5
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3- KDP Epaisseur 0,001 m
Indice de réfraction KDP_1064
Indice non linéaire 0 m?/W
Angle Theta du cristal 35°
Angle Phi du cristal 90°
Orientation du cristal —45°
Intensité de conversion 2,5.10"% W

Paramétres Optique géométrique 3D
Temps 0s;107%s; 1
X Om;0,5m;1
Y —0,5m; 0,5 m; 256
Déphasage maximal du pas fractionnaire 0,1 rad

Le fichier KDP_1064 est défini dans la section précédente .10 (il n’est pas nécessaire
de le créer). Nous rappelons par ailleurs que la valeur de l'intensité de conversion utilisée
ici n’est pas la bonne. -

d) Interprétation

La solution calculée par Mird est comparée a la solution analytique évaluée par le
logiciel Mathematica. Les deux figures suivantes présentent respectivement les profils d’in-
tensité obtenus par le calcul Mird et le calcul par Mathematica et la différence des deux
solutions. L’écart entre les deux solutions de 'ordre de un pour-cent s’explique par une
difference sur le calcul du coefficient de couplage effectif et par un effet résiduel de la
double réfraction.

2,5.10%° T T l T T 1 T T

Mure —
analytique .

2,101 A

e
— 10 .
5.10% - -
0 e | 1 2 L I
—0,5 —0,4 —0,3 —0,2 —0,1 0 0,1 0,2 0,3 0,4 0,5

F1G. 1.16 — Intensité analytique en trait continu et calculée en pointillés.
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| 1 | L

Fig. .17

—0,3 —02 —0,1 0
y (m)

Différence absolue entre l'intensité

0,1 0,2 0,3 0,4

analytique et celle calculée.

0,5



12. Conversion de fréquence en présence d’absorption 47

12. Conversion de fréquence en présence d’absorp-
tion
a) Objectif

L’objectif est de tester les équations de conversion de fréquence lorsque le milieu est
absorbant (et que I'on néglige la double réfraction). Ces derniéres s’écrivent

(9E1 UJZ ;

+ , E _ 1 d E E* —iAkz . K
5z, Zklcg cos2 B 2 (1.30.2)
aEQ (,U“Z .
—_— By, = —i——2——dgEEte 0k .30.
Cp + vk Z’CQCQ cosZ o LenBsEre (L.30.b)
aEg UJZ ;

E - 3 de E.E. 1Akz 30.c

—az + vskig 'L——‘——kBCQ COSQ o g Bne , (I 30 C)

Uj i=1,..,3 étant les coefficients d’absorption des ondes 1 & 3. Posant E; = pi(z)ei“’i("’), et
séparant parties réelles et imaginaires, on aboutit &

dp; ‘U% .

= = ————d 0 1.31.
dz et kyc? cos? oy eftf2p3 St ( )
dp, w3 - ‘
— + v = - 0 I.31.b
dz + V2P koc? cos? g o103 SLt ( )
dpg (Ug .

— U3y = e, sin 6 [.31.c
dz + Usp k3c? cos? as fiP1P2 5 ( )

de
dz

ot 8(2) = ¢1(2) + va(z) — ps(z) + Akz.
Nous nous placerons dans le cas particulier ou v; = vy = v3 = v, et ol le désaccord

de phase Ak est nul. Dans ce cas, il est possible d’effectuer le changement de variable et
de fonction (8, § V.Cl:

d
= cotanf x (Ul + Uy + vz + o ln(p1p2p3)> + Ak, (1.31.d)

1 — e V2
y = e (1.32.a)
v
p1 = pe’’ (1.32.b)
P2 = poe’’ (1.32.¢)
/73 = pgevz . (132d)
On aboutit alors au systéme d’équations
dp, w? e .
— = —————d, 0 1.33.c
dy kic? cos? ag ff2/03 SN ( 2)
dﬁg UJ% ~ o~ .
—_— = ————d, 0 1.33.b
dy koc? cos? as ek ( )
dﬁ3 UJ% ~ o~ .
— = ————d, 0 1.33.
dy PR, ff01 02 S111 ( c)
dé

d -~
m = cotanG@ In(p10203) - (1.33.d)



48 Chapitre 1. Tests Unitaires

On reconnait la les équations de conversion d’'un KDP non absorbant & I’accord de
phase.

Ce cas test permet de comparer le résultat Miré avec la formule analytique évaluée
par Mathematica. Afin de corser la difficulté nous avons choisi une configuration ou les
ondes pompes ne sont pas équiphotoniques. La situation est un doublement de type II.

Pour évaluer une solution analytique, nous employons ’expression suivante qui est
tirée de {5, p. 203], et qui donne l'intensité Iy, en fonction de z:

_ , 1 _ I, 1—e™ (|cosy| + |sinep|)?
Iy = Le | sin 29| th® { = argth 24/ sin 2] —
2 e V| sin 24| 5 argth | sn | sin LMPC X = 2[sin20)]

(L.34)

I, étant I'intensité totale du faisceau incident, ¥ I’angle de polarisation entre la polarisation
de la source et laxe extraordinaire du KDP (¢ = 30°dans Pexemple), et P, la puissance
critique définie par la formule (I1.21).

b) Schéma

c) Données

0- Source analytique | Energie 2107 J
Angle de polarisation 30°
Section 1m?
Expression de lintensité I(x,y,t) y+0.5

1- KDP Nom de l'élément doubl tII
Epaisseur 1 mm
Indice de réfraction KDP_1053
Indice non linéaire 0 m?/W
Coefficient d’absorption 400 m~1
Angle theta du cristal 59,228 92°
Angle phi du cristal 0°
Orientation du cristal 0°
Intensité de conversion 2,21.10%° W/m?
Analytique/Runge Kutta 0

2- Lame Epaisseur 0m

Paramétres Diffraction de Fresnel
Temps 0s;107%s;1
X —~0,0m; 0,0m;1
Y —0,5 m; 0,5 m; 256
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d) Interprétation

9.10%° T ]

8.10%°

T T
Mathematica —

Mire

7_1015 -
6.10% -
=5.101 -
Fa.100 .
3.101 i
2.10% S
1015 b —

0 1 | | 1 I { 1
—05 —04 —03 —02 —01 0 0,1 0,2 0,3 04 0,5
T (m)

FiG. 1.18 — KDP & l'accord de phase avec absorption : résultat Mird et résultat théorique

obtenu avec Mathematica.

2.1014 T T
1,5.10"
1014 L

510 17N
= 0

—3.10 ' ‘

1

I

1

1 1

—0,4 —0,3

—0,2

—0,1

T

0

(

m)

0,1

0,2

0,3 0,4

Fi1G. 1.19 — Différence absolue entre les deux courbes de la figure 1.18.
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1,2.10 T ] I T T T — T

. Mathematica —
1016 - Mire ]

8.10" —1

—
)

36,10 4

4.10%

2.10%

0 { t 1 | i |

—-05 —04 —03 —02 —0,1 0 0,1 0,2 0,3
T (m)

F1G. 1.20 — KDP & l’accord de phase sans absorption : résultat Mird et résultat théorique
obtenu avec Mathematica.

La figure 1.18 permet de comparer le résultat Mir¢ avec la courbe théorique obtenue
avec Mathematica. La différence entre les deux courbes est tracée sur la figure 1.19. Enfin,
nous donnons a titre de comparaison sur la figure 1.20 la courbe correspondant au cas non
absorbant (résultats Mird et Mathematica).

Remarque : ce cas test ne peut pas tourner en optique géomeétrique 1D (cas il nécessite
de découper le KDP en tranches le long de son épaisseur; or la conversion de fréquence
1D ne fonctionne que pour la création d’harmoniques).
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13. Convertisseur de fréquence: effet cascade
a) Objectif

Dans ce cas test, nous vérifions avec Mird une propriété remarquable des convertis-
seurs de fréquence fonctionnant loin de 'accord de phase: lorsqu’il y a faible déplétion de
I’onde pompe, le déphasage induit sur cette derniére par la traversée du milieu devient
proportionnel & 'intensité. Autrement dit, tout se passe comme si nous étions en présence
d’effet Kerr. Cette propriété consistant a créer un (¥ effectif a partir d’'un matériau a y?
est appelée effet cascade (cascading dans la littérature anglo-saxonne). Pour une descrip-
tion détaillée des phénomeénes physiques entrant en jeu, le lecteur est invité & consulter
les références |9, 10, 11]. Ce cas test vise & reproduire la figure 1 de la référence [11].

—|AKL| =3

2+ |AKL| =6

| - |AKL| = 20

25F o KL =50,/
I -
2 .
=
a1t

1,5f

0 I ! |

0 10 20 30 40 50

r2r?

FiG. 1.21 — Reproduction de la figure 1 de la référence [11]. En abscisse, I'*L%, ou I' =

W d,g/ (¢/Tzi07).

On écrit tout d’abord les équations de doublement de fréquence en type I (en négligeant
la double réfraction)®:

K1
———

OE,; . W% —iAk

AN S o R T} 0 1.35.
0z Zlclccos%yl 2t e V1t (1.35.2)
OE, . W% 2 _iAk

OBg _ ;W 4 g2tk p 1.35.h
0z Z?kQCCOSQQQ fi 1€ vata ( )

K2

1. Ici nous utilisons des champs E; dimensionnés en unité de champ électrique et non d’intensité;
I'intensité I; de Pharmonique ¢ est reliée au champ E; par:

ni€gcC .
Iy = —12_|Ei|2 ,
n; étant lindice de réfraction vu par harmonique i. Le champ électrique réel &;, solution des équations

de Maxwell, est la partie réelle de E;e*(@t=%2),
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les n; ;=12 étant les indices vus par les ondes 1 et 2 (ils sont définis par la formule (I.11)
pour une onde extraordinaire) ; les v; sont les coefficients d’absorption, et les «; les angles
de double réfraction.

Dans la suite on suppose que l'onde 1 n’est pas absorbée (v, = 0) et que le rendement

de conversion est petit devant 1. De cette fagon, on peut intégrer I’équation (1.35.b) en
posant que E;(z) ~ E;(0). On obtient alors

HQEQ(O) - iAk
E _ vez __ iAkzY . I.
2(2:) Ak ZUQ (e € ) ? ( 36)
I'équation (1.35.a) devient dés lors
aEl 1— e—vzz—iAkz
= El———— 1.37
z = i By B Ak — vy (1.37)

Nous rappelons que I’équation de propagation dans un milieu & effet Kerr est

OE

= —'L—’}’IE (1.38)
0z

I étant P'intensité. L’équation (1.37) ne peut donc pas étre directement identifiée a I'équa-
tion (1.38) car le v effectif y dépend de z. Toutefois, si le milieu n’est pas absorbant

(v, = 0) et dans la limite Akz — oo on trouve (en moyennant I’exponentielle complexe
de (1.37) a zéro):

2
eff _ _ 47rdeff
goA1cning cos? oy cos? anAk’

(1.39)

les n; ;=12 étant les indices vus par les ondes 1 et 2.

Dans ce cas test nous choisissons une onde dont intensité croit linéairement avec
x, et nous regardons son déphasage aprés traversée de L = 1 mm de KDP. L’intensité
maximale choisie correspond & I’abscisse maximale de la figure 1 de la référence [11] (soit
50), ce qui donne

M2 ggening
4r QdefL2 '

[max =50 x

b) Schéma




13. Convertisseur de fréquence : effet cascade 53

c) Données

0- Source analytique | Energie 4,490910.10° J (a)
4,451900.10° J (b)
4,860 330.10° J (¢)
5,689 490.10° J (d)
Section 1 m?
Expression de l'intensité I(x,y,t) y+0.05
1- KDP Nom de I’élément doubl tI
Epaisseur 1 mm
Indice de réfraction KDP_1053
Indice non linéaire 0 m?/W
Angle theta du cristal 40,843 59°(a)
40,499 10°(b)
38,884 20°(c)
35,361 46°(d)
Angle phi du cristal 90°
Orientation du cristal —45°
Intensité de conversion 2,21.10%° W/m?
Analytique/Runge Kutta 0
2- Lame Epaisseur 0 m
Paramétres Diffraction de Fresnel
Temps 0s;107%s;1
X —~0,05 m; 0,05 m; 1
Y —0,05 m; 0,05 m; 128

Dans ce tableau nous avons introduit quatre jeux de paramétres repérés par les lettres
a, b, ¢ et d. Ils correspondent & des valeurs du désaccord de phase satisfaisant AkL = 3,
6, 20 et 50: ce sont les valeurs utilisées dans article [11]. Remarquons par ailleurs que
les ordres de grandeur des paramétres utilisés (une fraction de mégajoule sur 1 dm?!)
ne correspondent pas du tout & ceux d’une expérience réalisable. En fait, les expériences
d’effet cascade n’utilisent pas le KDP mais des matériaux organiques, a x(¥ beaucoup
plus élevé.

d) Interprétation

La figure 1.22 montre le résultat de la simulation Miré (déphasage vu par 'onde
pompe lors de la traversée du KDP!). On constate que la figure reproduit fidélement
celle de 'article [11]. Le déphasage est linéaire lorsque le désaccord de phase tend vers
I'infini. Dans le cas AkL = 50, et en employant I’expression (I1.39) on trouve un déphasage
maximal d’environ 1 rad, ce qui est conforme a ce qui est représenté sur la courbe.

1. Repérage des différentes courbes: lorsque z et maximal I'ordonnée des points est fonction décrois-
sante du désaccord de phase Ak.
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—2 } i 1 | | 1 | {

—0,05 -—-0,04 -—0,03 —-0,02 —0,01 0 0,01 0,02 0,03 0,04 0,05
T (m)

F1G. 1.22 - Déphasage induit sur l’onde fondamentale par la traversée de 1 mm de KDP,
en fonction de x (i.e. de la puissance). A grand désaccord de phase le déphasage est
proportionnel a la puissance (création d’un ng effectif).
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14. Calcul inverse dans les convertisseurs de
fréquence
a) Objectif

Le calcul inverse dans les convertisseurs de fréquence utilise un algorithme (dichotomie)
qui est différent de celui utilisé pour la partie 1w de la chaine. Les modalités de mise
en ceuvre du calcul (réglage des paramétres) peuvent s’avérer délicates dans certaines
configurations. Le probléme est rendu complexe par le fait que les fonctions de transfert des
KDP sont hautement non linéaires d’une part, et surtout non monotones. Par suite, si I’on
fixe une valeur pour l'intensité 3w de sortie, il existe une infinité de valeurs de 1w a ’entrée
des KDP qui conviennent. L’utilisateur souhaite en général que soit retenue la solution de
plus basse intensité mais 'algorithme n’est pas congu pour converger automatiquement
vers cette solution. Tout dépendra en fait de la largeur de I'’encadrement initial : si cette
largeur est trop importante, il peut exister plusieurs racines dans l'intervalle et le résultat
ne sera vraisemblablement pas celui souhaité. L’utilisateur aura donc intérét a rétrécir
I’encadrement initial mais ceci se fera au détriment du temps de calcul.

Ce paragraphe comprend deux parties: tout d’abord nous fournirons un exemple de
calcul inverse (1D et 3D ) qui fonctionne; puis nous présenterons quelques unes des pa-
thologies qui peuvent parfois survenir.

b) Schéma

c¢) Données

Le cas (a) est congu pour le calcul inverse 3D tandis que le cas (b) sert au calcul
inverse 1D. Avant d’effectuer le calcul inverse il faut passer le cas correspondant en calcul
direct (optique géométrique 3D ou 1D) pour créer le fichier de fluence ou de puissance
utilisé par la source de fin de chaine.

0- Source rectangulaire | Energie 2,2.10% J (a)
3,1.10* J (b)
Largeur 1m
Hauteur 0,2618052 m (a)
0,4 m (b)
Exposant spatial en X 10
1- KDP Nom de I’élément doubleur
Epaisseur 1,06.1072 m
Indice de réfraction KDP_1053
Indice non linéaire 0 m?/W
Angle theta du cristal 41,2°
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2- KDP Nom de ’élément tripleur
Epaisseur 1072 m
Indice de réfraction KDP_1053
Indice non linéaire 0 m?/W
Angle theta du cristal 59,069 7°
Angle phi du cristal 0°
Orientation du cristal 0°

3- Source fichier Fichier des résultats resultat
Energie 01J
Longueur d’onde 3,51.107" m
Section 0,4 m?

Fichier temporel source
Fichier spatial source

/tmp/resultat.pui
/tmp/resultat.flu

Paramétres

Optique géométrique 3D

Optique géométrique inverse 3D (a)
Optique géométrique 1D

Optique géométrique inverse 1D (b)
Nom de I'étude

Temps

X
Y
Précision de encadrement

/tmp
0s5;4.107% s; 1 (a)
05s;4.107% s; 64 (b)

Om;0,25m;1
—0,5m; 0,5m; 64
0,005 (a)

0,01 (%)

d) Interprétation

T

F1G. 1.23 - Calcul inverse incluant des convertisseurs de fréquence. Fn pointillés, la source
initiale du calcul direct, qui donc constitue la référence pour le calcul inverse. En trait
plein, résultat de calcul inverse. A gauche, calcul en optique géométrique SD. A droite,

optique géométrique 1D.

La figure 1.23 représente la forme spatiale requise pour le faisceau en début de chaine

(source de départ pour le calcul direct initial), en fonction de y (calcul 3D) ou en fonction
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F1G. 1.24 - Différence absolue entre le résultat du
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Fic. 1.25 - Intensité 3w en fin de chaine pour un faisceau injecté correspondant a la
figure 1.23.

de t (calcul 1D). Dans les deux cas il s’agit d’une gaussienne. Sur la méme figure nous
présentons le résultat du calcul inverse. La différence absolue des deux courbes est montrée
sur la figure 1.24. On constate que 'accord entre les deux courbes est excellent en calcul
1D. En calcul 3D, une différence sensible due aux effets de la double réfraction' apparait
14 ot le gradient de I'intensité est le plus fort. L’allure du faisceau 3w en fin de chaine est
présentée sur la figure 1.25.

Avec le calcul inverse 3D nous obtenons une énergie lw en début de chaine de
21,99224 kJ (pour 22 kJ demandés). Pour arriver a ce résultat il a fallu 62 itérations en
encadrement et 22 en dichotomie. En 1D les résultat sont 30,999 98 kJ au lieu de 31 kJ,
68 itérations pour encadrer et 22 pour trouver le résultat.

1. La double réfraction est prise en compte pour le calcul direct en 3D mais pas pour le calcul inverse
3D. Elle est négligée en calcul 1D direct et inverse.
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e) Quelgues problémes liés au calcul inverse en présence de convertis-
seurs de fréquence

Rappelons tout d’abord qu’avant d’effectuer un calcul inverse avec des KDP il convient
de régler la fréquence de la source finale a celle de ’harmonique ; la polarisation doit aussi,
pour certains cas (doubleur seul notamment), étre tournée de 90°. Sans ces ajustements le
programine renvoie un message d’erreur signifiant que le KDP n’est pas du tout a 'accord
de phase.

Dans ce paragraphe nous allons étudier une cause possible de problémes, trés spécifique
du cas des convertisseurs de fréquence. Pour ce faire, reprenons le cas 3D précédent ; un
lecteur attentif aura remarqué que nous avons abaissé & 0,005 la valeur du parametre
« précision de 'encadrement », alors que pour l’exemple en calcul inverse 1D la valeur
plus lache de 0,01 avait été retenue.

Si 'on effectue le calcul inverse 3D en portant la valeur de ce parameétre & 0,01, on
trouve au lieu de 22 kJ une énergie de début de chaine de 22,5 kJ environ. Par ailleurs, si
I’on trace 'intensité du faisceau en fonction de ¥, on obtient la courbe de la figure .26,
qui n’est pas une gaussienne (au point central prés).

. 14
1,2.10 T T

1014 - —

8.101% =~ 7]

.10%8 —

Ilu) (W/mz)

4.10'% -

2.101% - 1

~0,6 -0,4 -0,2 0 0,2 0,4 0,6

Fi1G. 1.26 — Résultat du calcul inverse 3D lorsque le parameétre « précision de ['encadre-
ment » vaut 0,01.

L’explication & cette anomalie peut étre comprise en regardant I’allure de la fonction
de transfert du systéme doubleur/tripleur de I’exemple (intensité 3w en sortie du tripleur
tracée en fonction de l'intensité lw en entrée du doubleur, fig. 1.27). On constate que
cette fonction est monotone pour une intensité lw incidente inférieure a 7,87.10 W/m?
(intensité 3w correspondante: 7,84.10" W/m?: on voit donc que le rendement est proche
de 1). Au-dela de cette valeur, la fonction décroit puis admet des minima et des maxima
successifs.

L’algorithme de calcul inverse commence par évaluer un minorant et un majorant de la
solution. Le minorant vaut I;5, = IS¢ et le majorant est obtenu a partir du minorant par
incrémentations successives. La largeur des sauts effectués pour rechercher ce majorant
est directement liée a la valeur du parameétre « précision de ’encadrement ».

Dans ’exemple précédent, certains points se situent au voisinage du premier maximum
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2.10% T | T T
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F1G. 1.27 — Efficacité de conversion (intensité 3w en sortie tracée en fonction de l'intensité
1w incidente) pour le systéme doubleur/tripleur considéré dans ces exemples.

de la fonction de transfert, pour lequel le rendement de conversion est voisin de 1. Le
minorant /5 est en fait trés proche de la bonne solution. Si la taille de pas choisie pour
la recherche du majorant est trop importante, le programme ne trouvera pas de majorant
sur le premier pic de la fonction de transfert et recherchera donc au-dela (cf. fig. 1.28).
Le majorant retenu se situera finalement sur le deuxiéme pic de la fonction de transfert
(correspondant dans notre cas 4 une intensité lw supérieure a 10'* W/m?). Deés lors
'algorithme de dichotomie convergera vers une racine qui n’est pas celle de plus petite
énergie: c’est pourquoi nous observons ces intensités anormalement élevées au centre de
la figure 1.26.

De facon générale le calcul inverse des convertisseurs de fréquence est susceptible de
poser probléme lorsque 'intensité 3w demandée en fin de chaine approche le premier
maximum de la fonction de transfert des KDP: c’est malheureusement souvent le cas
sur les chaines de puissance ou les KDP sont optimisés pour fournir un rendement créte
voisin de 1. Dans la mesure ou la valeur de ce maximum n’est pas dépassée, on peut en
général parvenir au résultat correct en abaissant la valeur du parameétre « précision de
I’encadrement » — mais ceci a un prix: 'augmentation du nombre d’itérations nécessaires.
En fait l'utilisateur devra déterminer une valeur acceptable pour ce paramétre par des
essais successifs sur un petit nombre de pixels.

Il peut également arriver que la valeur créte de l'intensité 3w demandée dépasse le
premier maximum de la fonction de transfert'. Dans ce cas, la racine de plus basse énergie
sera située sur le deuxiéme pic de cette fonction : on aboutira & des valeurs d’intensités en
général inacceptables. Dans la pratique 'utilisateur devra réviser a la baisse ses prétentions

1. Dans ’exemple précédent nous avons effectué un calcul inverse 4 partir du résultat d’un calcul
direct, et ce probléme ne pouvait pas survenir. Toutefois dans la pratique on effectue plutét le contraire:
on fixe arbitrairement une forme d’impulsion en fin de chaine, on effectue le calcul inverse puis on vérifie
éventuellement le résultat par calcul direct. Dés lors il peut exister un risque important pour qu’en certains
points 'intensité 3w demandée soit située au-deld du maximum de la fonction de transfert.
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FIG. 1.28 — Scénario permettant d’expliquer que le programme ne converge pas vers la
solution de plus basse énergie pour certains points de la figure 1.26.

en terme d’énergie: 1a aussi un certain nombre d’essais/erreurs avec peu de pixels seront
nécessaires pour déterminer une énergie de fin de chaine acceptable.

Ces surintensités auxquelles peut aboutir le calcul inverse de la conversion de fréquence
peuvent par ailleurs conduire & des effets dramatiques si I'on effectue le calcul avec une
chaine de puissance compléte (amplificateurs et convertisseurs de fréquence). En effet, si
les amplificateurs fonctionnent en régime saturé, ces intensités peuvent correspondre a
des énergies supérieures a ’énergie stockée dans les amplificateurs. Par suite la chaine de
puissance ne sera pas en mesure de fournir les fluences correspondantes. Dans ce cas, il
est fréquent que la méthode de Newton qui est mise en ceuvre pour I'inversion de la partie
1w de la chaine ne parvienne pas & converger vers un résultat.

Par conséquent, pour la mise au point du calcul inverse sur une structure de chaine
donnée, nous conseillons fortement de séparer dans un premier temps les convertisseurs de
fréquence du reste de la chaine. On s’assurera d’abord que le calcul inverse sur les KDP
aboutit partout & une solution située en-de¢a du maximum de la fonction de transfert; ce
n’est que dans un deuxiéme temps que le calcul inverse sur I’ensemble de la chaine pourra
étre envisagé.
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15. Conversion de fréquence en spectre large
a) Objectif

Ce cas test vise a tester I'influence de la largeur spectrale sur la conversion de fréquence,
i.e. la chute de rendement due a I’écart entre les vitesses de groupe des différentes harmo-
niques. Nous cherchons pour cela & reproduire via Mird les résultats de la référence [12]
(fig. .15.a). On considére un faisceau dont la phase est modulée sinusoidalement ; dans un
premier temps, on cherche a le tripler en fréquence au moyen d’un systéme type II/type
I1. On constate alors une chute de rendement. Dans un deuxiéme temps, on disperse préa-
lablement ce faisceau au moyen d’un réseau dont les traits sont convenablement orientés.
On peut alors obtenir un bon rendement (en fait le méme qu’en spectre étroit, en 1’ab-
sence de modulation). Notons que c’est par cette méthode qu’il est prévu de convertir les
faisceaux lissés sur le laser Mégajoules (implantation de réseaux en fin de chaine).

L’expression du champ électrique non dispersé est

E = Eo(l,’y)e~t2/-r2e—iosin(wmt) ’ (140)

o étant la profondeur de modulation et wp, la fréquence de modulation. Aprés passage
dans un réseau de temps de retard par unité de longueur & le champ devient

E = EO(:r,y)e‘(t’ég”)zﬁ2 exp { —io sin (wn(t — £2))} . (1.41)

On suppose par la suite que I’enveloppe est de spectre étroit c’est-a dire que {z < 7. On
peut alors remplacer I'enveloppe e~#=¢2)*/7 par e=t*/7".

Le traitement d’'une impulsion modulée en phase revient a considérer qu’il existe une
« fréquence instantanée » qui dépend du temps. La conversion de fréquence peut ainsi
étre traitée en introduisant un désaccord de phase effectif qui varie en fonction du temps
en méme temps que la fréquence instantanée. En ajustant correctement la dispersion du
réseau £ il est toutefois possible de compenser a chaque instant le désaccord de phase
effectif : la condition & remplir est (pour un cristal dont z est la direction extraordinaire)

> w31 (U21 1

f(ﬂtanag—(—u—gtanag—tanal + == - ——=-—=0, (1.42)

w1 w1

w; (1 = 1,2,3) désignant la fréquence de chaque harmonique, vé la vitesse de groupe de
I’harmonique 7 et «; son angle de double réfraction .

Pour retrouver ces résultats avec Miré nous utilisons une source analytique afin de
reproduire le champ dispersé aprés le réseau; en effet le composant « réseau » n’était pas
encore disponible dans le code & ’heure ou ce cas test a été rédigé. Les valeurs numériques
de la simulation sont Ipay = [Eo]? = 1,5.101 W/m?2 7 = 595 ps, £ = A;/¢x1,68.10° m™!.
Le doubleur et le tripleur sont tous deux de type II, et réglés a I'accord de phase pour
1,053 pm. L’axe z correspond a P’axe ordinaire du doubleur et & I’axe extraordinaire du
tripleur. La polarisation incidente du faisceau est réglée de telle sorte que 2/3 de I’énergie
soit polarisée sur I’axe ordinaire du doubleur. Dans la simulation nous avons ajouté une
enveloppe spatiale supergaussienne au faisceau, afin d’éviter les effets de bord.

1. Dans ce cas test la condition (1.42) est satisfaite sur le tripleur. Sur le doubleur ce n’est pas nécessaire
car I'acceptance spectrale de la conversion est plus importante.
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FiG. 1.29 — Reproduction de la figure 8 de la référence [12]. En haut, conversion 3w pour
une impulsion non dispersée. En bas, conversion 3w avec dispersion par un réseau. A
gauche, intensités en fonction du temps; & droite, spectres.
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Remarque : la simulation comprend trois cas de figure:
— sans dispersion (a);
- avec une dispersion modélisée par une phase spatio-temporelle () ;
- avec une dispersion modélisée par le formalisme des ondes inhomogeénes (c).

Le cas b nécessite a la fois un grand nombre de pas spatiaux et temporels. Sa durée de
simulation est d’environ 50 minutes sur une station de travail DEC alpha 500.

b) Schéma

c¢) Données

0- Source analytique Energie 0J
Angle de polarisation 35,264 39°
Inhomogénéité suivant X 0 s/m (a,b)
5,9008822697.10° s/m (c)
Expression de 'intensité 1.5e13*exp(-2x(t/595e-12) "2) *exp (- (x*x/0.172) "6)
Expression de la phase -15*s5in(2*pi*2.5e9*t) (a,c)
-15*sin(2+pi*2.5e9*(t-5.9008822697e-9*x)) (b)
1- Convertisseur de fréquence | Nom de 1’élément doubleur
Epaisseur 1,5 cm
Indice de réfraction KDP_1053
Indice non linéaire 0 m?/W
Coefficient d’absorption abs_KDP
Ecart des vitesses de groupe KDP_1053-evg_dII
Angle theta du cristal 59,228 90°
Angle phi du cristal 90°
Orientation du cristal 0°
2- Convertisseur de fréquence | Nom de 1’élément tripleur
Epaisseur 1,5 cm
Indice de réfraction KDP_1053
Indice non linéaire 0 m?/W
Coefficient d’absorption abs_KDP
Ecart des vitesses de groupe KDP_1053-evg_tII
Angle theta du cristal 59,069 70°
Angle phi du cristal 0°
Orientation du cristal 0°
3- Lame Epaisseur 0m
Paramétres Spectre large
Temps —-107%s5;107%5; 1024
X 0m;0,05m;1 (a)
—0,05 m; 0,05 m; 256 (b)
Y Om;1lm;1
Déphasage maximal du
pas fractionnaire 0,1 rad




I (x10'3 W/m?)

I (x10"® W/m?)
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Les fichiers utilisés pour ce cas test sont les suivants' (le symbole « | » désignant le
retour a la ligne) :

-~ KDP_1053:3 21 1110 | X= 0.351e-6 0.5265e-6 1.053e-6
1.5323807 1.5131859 1.4945153 | E=2 |

| 0=1 |
1.4868956 1.4711416 1.4603937

— abs_KDP:3 211110 | L=351e-9 526.5e-9 1053e-9 | 0=1 | 0. 0. 4.
| E=2 | 0. 0. 4.

— KDP_1053-evg_dII: 2 2111 10 | L=526.5e-9 1053e-9 | 0=1 | 0. 0. |
E=2 | -0.0552e-9 -0.1321e-9

— KDP_1053-evg_tII: 3211110 |
0. 0.201e-9 0. | E=2 | 0.249e-9 0. 0.

L=351e-9 526.5e-9 1053e-9 | 0=1 |

d) Interprétation

1,4 T ) I — —
1,2 - . g
T~
1 : “
0,8 - - 5
0,6 - - =
X
04 - —
02 - - g
0 | | w’\*
—1000  —500 0 500 1000 —03 —02 —01 0 01 02
t (ps) v (THz)

F1G. 1.30 — cas (a) (faisceau modulé en phase sans dispersion). A gauche, forme temporelle
du faisceau 3w. A droite, spectre temporel de cette impulsion.

1>4 ¥ I

12 - . B

™~

1h - 2

08 F - -

0,6 - =

X

04 F _ 2

0,2 H

0 : : =
—1000  —500 0 500 1000 —-03 —02 —01 0 01 02

t (ps) v (THz)

F1G. 1.31 - cas (b) (Prise en compte de la dispersion dans les réseauz). Les courbes
correspondent au pizel spatial en x n° 128.

1. A Pexception du fichier abs_KDP, les fichiers de ce cas test figurent normalement dans le répertoire
$MIRO_HOME/ext/xxx, de telle sorte qu’ils sont automatiquement reconnus par Mirdé. L'utilisateur n’a
donc pas besoin de les retranscrire dans son répertoire de travail. Dans Mird 2000, les fichiers sont dans
le répertoire $MIR0O_HOME/1lib/data.
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La figure 1.30 présente le faisceau converti & 3w en ’absence de dispersion par un
réseau (cas a). La figure .31 contient le résultat pour le faisceau dispersé (cas b). On
constate que la présence du réseau de dispersion permet de récupérer un rendement de
conversion équivalent a celui que l'on aurait en spectre étroit. La courbe obtenue dans le
cas ¢ est en tout point analogue. Qualitativement on vérifie que les résultats sont bien les
mémes que dans 'article.

Test de non régression: dans le cas a I’énergie 3w finale est 380,5344 J. Dans le
cas ¢ elle vaut 452,4589 J.
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16. Convertisseur de fréquence: calcul des indices
non linéaires

Dans ce paragraphe nous contrélons le calcul des indices non linéaires d’'un KDP par
les régles de Miller.

a) Calcul analytique

Nous considérons dans ce calcul le cas d’un tripleur de fréquence de type II. Le contenu
de ce paragraphe est repris de [13].

Les régles de Miller vont nous donner le x®® dans la base cristallographique. On en
déduit les coeflicients dans la base du faisceau grace & la matrice de passage [©]. Dans
le cas d’un triplement type II nous avons {2 = 0 (orientation du cristal) et ¢ = 0 (la
polarisation selon z correspond & I’axe extraordinaire). La matrice [O] s’écrit :

0 1 0
[O]=] —cosf® 0 —sinh | . (1.43)
—sinf 0 cosé

Le changement de repére pour la susceptibilité s’écrit :
Xabed = Z ©ea©pBOccOupXaBcp , (1.44)
ABCD

les indices abed se rapportant aux polarisations du faisceau et les indices ABC' D aux axes
cristallographiques (axe optique étant axe Z). Nous en déduisons les relations:

Xeeee = XXXXX COS4 7}
+ [Xxxz7z + Xxzx2 + Xx22x + Xzxx2z + Xzx2X + XZ22XX] cos? fsin2 0

+ Xzzzz5n" 8 (1.45.a)
Xeooe = XXvYX €080 + Xzyyzsin® 0 (L.45.b)
Xoeeo = Xy XXy €08° 0 + Xy zzy sin” § (L.45.c)
Xoooo = XYYYY - (L.45.d)

Cette expression se simplifie compte tenu des conditions de symétrie de Kleinman [14,
p. 147} en

Yeeee = Xxx COS* 0 + 6Yxz cos?Osin? @ + xzzsin* § (1.46.a)
Xeooe = XXy COS- 0 + xxzsin 6 (1.46.b)
Xoeeo = Xxy OS> 0 + x xzsin’ 6 (1.46.c)
Xoooo = XXX » (1-46-d)

avec
XXX = XXXXX = XYYYy
Xzz = XzzzzZ
XXY = XXXYY = XXYXY = XXYYX — XYXXY — XYXYX = XYYXX
XXZ = XXX2Z = XXZXZ = XXZZX = XzZXXZ = XZXZX = XZZXX

= XYYZZ = XY2ZYZ = XyZzy = XZYYZ = XZYZY — XZZYY
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L’étape suivante consiste & appliquer les régles de Miller afin de déduire les indices
non linéaires sur les harmoniques et les indices non linéaires croisés entre harmoniques des
indices non linéaires & 1w et des indices linéaires. Nous utilisons les notations suivantes
pour désigner les indices non linéaires & 1w:

Xxx (w,w W) = Xwxx (L.47.a)
Xzz(w,w W) = Xwzz (1.47.b)
Xxy (w,w W) = Xuwxy (1.47.¢)
Xxz(w,w W) = XXz (L.47.d)
On en déduit les relations:
Xeeee (Wyw, — w,w) = Xoxx €08* 0 + 6x,xz cos® §sin® § + x,zz sin* @ (1.48.a)
Xa(2w) 2 -2
Xeooe (W,2w, — 2w,w) = XO2 ) [Xwxy cos® 6 + xwxz sin® 6] (1.48.b)
2
: _ Xo(3w) 4
Xeeee(wagwy 3w,w) = X%(w) XwXXx CO8 0
2 2
XoBw)  Xo(Bw)xe(Bw) | xz(3w) 9.2
+ | =2 4 < wxzcos” fsin” 0
[ B@ T xe@xe@) | xEw) | X7
X2(3w) - 4
+ =5 Xwzzsin" 0 (148.c)
X2 (w)
XOEEO(2waw7 - w72w) = Xeooe(w 2w, — 2‘*}7‘*)) (I48d)
ol2w
Xoooo(2w,2w, — 2w,2w) = X 4(( )) XwX X (L.48.¢)
X3 (2w) [Xo(3w) Xe(3w) X: (3w) .
veeo(2wW,3w, — 3w, 2w) = =4 : wXxy cos? § + 2L wXy sin” @ 1481
Xoeeal Ton TR 2w 2w~ (1480
Xeeee(3w>wa - w73w) = Xeecee (wa3wa - 3w7w) (I48g)
Xeooe (3w,2w, — 2w,3w) = Xoeeo(2w,3w, — 3w,2w) (1.48.h)
4
. _ Xo(3w) 4
Xeeee (3w,3w, — 3w,3w) = i) XwXX COS" 8
2
+6 [M} XwXxz c0s® fsin? @
Xo(w)Xe(w)
4
Xe(3w) .4 .
+ ) Xwzz sin™ 6 (1.48.1)

Nous avons dans ce systéme introduit les susceptibilités linéaires: x; = N? — 1, N;
étant l'indice selon ’axe propre considéré et a la fréquence considérée. Les valeurs de ces
indices pour le KDP sont fournis dans la table 1.3.

Pour effectuer le calcul numériquement nous rajoutons une régle reliant les suscepti-
bilités non linéaires pour I’harmonique lw:

1

gXwxx (1.49.a)

XwZZ = XwXX - (I49b)

XwXY = XwXZ =
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Ensuite nous passons des susceptibilités aux indices non linéaires +;j par la formule:

302 = b )X
i dn;njcey

(1.50)

Les formules de se paragraphe ont été portées dans un programme écrit sous Mathe-
matica. On trouve le résultat numérique suivant :

1,03479  0,732165 2,34616
=+~ 0732165 1,1656  0,83007
2,34616  0,83007  1,33003

: (151)

v étant I'indice non linéaire d’une onde 1w ordinaire .

Nous nous proposons de vérifier que Mird utilise bien ces valeurs pour les coeffi-
cients d’indice non linéaire dans le KDP. Nous controlons les valeurs grace au fichier
/tmp/miro_utilisateur .err.

b) Schéma

c¢) Données

0- Source analytique Nom de ’élément 1w
Energie 10 kJ

1- Source analytique Nom de I’élément 2w
Energie 20 kJ
Longueur d’onde 0,526 5 pm
Angle de polarisation 90°

3- Convertisseur de fréquence | Epaisseur 1 cm
Indice non linéaire 1 m?/W
Angle theta du cristal 59,069 70°
Angle phi du cristal 0°
Orientation du cristal 0°
Méthode de saisie de 'indice non linéaire [0/1/2] 0

Parametres Optique géométrique 3D

d) Interprétation
Voici le contenu du fichier /tmp/miro_uttlisateur .err aprés le calcul:

Bienvenue sur MIRO.

1. Sachant que pour le triplement type II 'onde 1w est extraordinaire.
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Calcul en cours

gamma_ee
gamma_eo
gamma_ee
gamma_oe
gamma_oo
gamma_oe
gamma_ee
gamma_eo
gamma_ee

Delta k :

Durée du

(1.
(1.
(1.
(5.
(5.
(5.
(3.
(3.
(3.

053e-06,
053e-06,
053e-06,
265e-07,
265e-07,
265e-07,
51e-07,

51e-07, 5.265e-07)
51e-07, 3.51e-07) =
-2.351e-01 , pas fractionnaire

1.053e-06) = 1.03479
5.265e-07) = 0.723066
3.51e-07) = 2.34614
1.053e-06) = 0.723066
5.265e-07) = 1.1656
3.51e-07) = 0.833141
1.053e-06) = 2.34614

= 0.833141

1.33001

1 /1

calcul: 0.00°04"

Il ne reste plus qu’a controler les valeurs de l'indice non linéaire les unes aprés les
autres. On constate que les coefficients sont égaux, sauf les quatre coefficients couplant
une onde ordinaire et une onde extraordinaire. Ceci est dii au fait que la convention
retenue par C. Sauteret dans son calcul n’est pas exactement la méme que celle de Mir¢ L
Cette différence n’est pas bien grave car de toutes fagon les indices non linéaires ne sont
pas connus & mieux que 10 %.

1. Par exemple & la place de ’équation (1.48.b) le calcul Mird revient & écrire:

Xeooe (W,2w, — 2w,w)

x5 (2w)
X2 (w)

wXY COS2 0
X

X3(2w) 4X0(2w)X8(2w)

+

X2 (2w)

+

X5 (w) Xo(w)Xe(w)

Xoxzsin?8. (1.52)

X3 (w)

Dans la réalité la régle de Miller est incompatible avec la condition de Kleinman donc aucune des deux
relations n’est vraie!
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17. Effet Kerr dans un convertisseur de fréquence
a) Objectif

L’objectif est de tester le bon fonctionnement du calcul de I'effet Kerr dans les conver-
tisseurs de fréquence. On se base pour ce faire sur les résultats de C. J. McKinstrie et
X. D. Cao [15] qui fournissent pour certains cas de figure une formulation analytique de
la conversion de fréquence en prenant en compte l'effet Kerr.

i) Résolution analytique présentée dans Uarticle : formalisme général

Les équations de propagation résolues par les auteurs sont les suivantes® [15, éq. (2.1)]

3
0,A1 = —iAs Ay +i| 61+ Alj;AjP) A, (1.53.a)
7=1
3
OyAy = —iAz AT +i [ &+ A2j|Aj12> A, (1.53.b)
ji=1
3
85A3 = —iAlAg +1 (53 + Z Agj‘Ajlz) A3 . (I53C)
7=1

Dans ce systéme s est la longueur de propagation adimensionnée. Les d; traduisent le
désaccord de phase. Les \;; sont (a des constantes prés, cf. infra) les indices non linéaires
directs et croisés.

On effectue a partir de (1.53) le changement de variable

A; =+/F e, (1.54)

et
P=3— 1~ P2 (1.55)
On obtient le systéme
0, F, = 27/ F1FoF3singp (I.56.a)
OSFQ =2 FlFQFg SiIlgO (156b)
0,F3 = =24/ F\FyF3sing (1.56.c)
3
EyF: ‘
dupr = —1/ ; Scosp+ [ a4+ Alj)Aj|2> (1.56.d)
1 "
=1
3
F\F:
Bsipy = — ; Scosp+ |62+ > Agj;Aj[2> (1.56.€)
2 :
71=1
F\F, ’ ‘
83@3 = — ;7 2 cosS @ + 53 + Z Aglejl‘Z) . (I56f)
3 :
7=1

1. Nous avons permuté les indices (; =3 ,3 —1) afin de conserver les conventions habituelles de Miré
(Pharmonique créée est ’harmonique 3).
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Dans le cas ou la matrice des coefficients A;; est symétrique (i.e. A;; = );;), on peut
montrer que I’hamiltonien défini par

3 3
1
H=2 FngFg cos @ — E ((51 + 5 E /\UF]> F; (157)
i=1

i=1
est un invariant du mouvement. Les équations (1.56) s’écrivent

OF, _oH dp _ 0H
ds Oy, ds  OF;

(L58)

On peut également vérifier les équations de Manley-Rowe traduisant la conservation de
I'énergie : '

35(F1+F3):0, 65(F2+F3):0 (159)

NB: dans le cas ou les coefficients A;; ne forment pas une macrice symétrique, il est
néanmoins possible d’effectuer un changement de variable non linéaire pour aboutir au
formalisme hamiltonien.

ii) Application au cas de la génération d’harmonique

Nous posons comme conditions initiales
F)=1, FKO0)=1+¢, F;30)=0. (1.60)

Notons qu’il n’est pas nécessaire que le parameétre € soit petit devant 1. D’aprés les rela-
tions de Manley-Rowe (1.59) on peut écrire pour tout s

Fi(s)=1-F(s), Fy(s)=14+e—-F(s), Fs(s)=F(s). (1.61)

L’équation d’évolution de la fonction F' est donnée par
(0, F)? =4F[(1+e¢ - F)(1 - F) - F(0 + AF)%, (1.62)

ou 'on a défini les quantités suivantes:

X = %(Agi — A — Ay) Vi (1.63.a)
A= — A — XA (1.63.b)
3= %(53 by — ) (1.63.c)
§=0+2\ +2X(1+¢). (1.63.d)

L’article [15] résout I’équation (I.61) uniquement dans le cas particulier ou il est pos-
sible d’obtenir un rendement de conversion de fréquence maximal égal & 1 — ¢, c’est-a dire
uniquement limité par le déséquilibre entre les deux pompes. Ce cas de figure est atteint
lorsque le désaccord de phase du convertisseur compense 'effet Kerr. La condition s’écrit :

5=\ (1.64)
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Nous nous plagons en outre dans le cas ou || <1 (la non-linéarité du troisiéme ordre est

plus petite que celle du deuxiéme ordre). La solution de 'équation (I.61) s’écrit lorsque
< (A2 —1)2/(4)?):

(1 — f_)sn?(ks,m)

F(s) = Iy rpe Ty (1.65)
i —(1=22) & \é(;— A2)2 — 4e )2 (1.66.0)
k2= =M1 - f)f- (1.66.b)
m? = —(fy — F)/1(L~ f)f ). (L66.0)

Lorsque € > (A2 — 1)2/(42?) on a
B afl — cn(ks,m))

Fls) = a+ B — (a—B)cen(ks,m)’ (1.67)
o = (14¢€)/)\ (1.68.a)
Br=¢e/N (1.68.b)
k2 = 4X%af (1.68.c)
m? =[1 - (a - B)}/(4aB). (1.68.d)

i) Liaison avec les notations en vigueur dans le code Mir6

Les équations adimensionnées qui sont résolues dans le code Mird en I'absence d’effet
Kerr sont les suivantes:

Oyuq = —i'u,gu;e_iMs (1.69.a)
Dyus = —iugule 2 (1.69.b)
Ouz = —iuguet0s (1.69.¢)

On peut se ramener au systéme (1.53) en écrivant

A= —ule (1.70.a)

]

NG =20=063—6 — 6. (1.70.b)

Nous rappelons que les équations dimensionnées résolues dans Mird s’écrivent pour
I’harmonique 7 :

3El— LWy .
FEY ;%’J’[J'Ei =

Y B R gt dke (L71)

cn; cos? o
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le champ E; (en caractére droit) étant exprimé en unités SI, ¢’est-a-dire que 'intensité T;
vaut

T;CE

I =|E|* = ZT|E1'|2, (1.72)

le champ FE; (en italique) étant la variable propagée dans le code, i.e. la racine de l’in-

tensité. Dans I’équation (I.71) n; = k;c/w; est I'indice de réfraction vu par I'onde i les

indices j et k se référent aux deux autres ondes. Les réels e, = +1 valent 1 si et seulement

si ¢ = 3, et 'opérateur ()< est la conjugaison complexe si ¢ = 1 et Iidentité si € = —1.
Les v sont les angles de double réfraction et deg est le coefficient de couplage effectif.

Sachant que la loi d’adimensionnement (permettant de relier (1.69) et (1.71)) s’écrit

pour s = z/e:

E,; = U; \/Tc /\j/\kninjnkc—os*aekg% (173)

Ty

(e étant I’épaisseur du composant, /. I'intensité de conversion 5%, mes A; les longueurs
d’onde et cor = degr/d), on peut calculer les \;; (coefficients non linéaires réduits dans [15])
en fonction des v;;

3

1 I, ,

Aij = “Yijwi/\ 5 5 H Agnip COS™ g .
5 c0s? a; ce(Cesr) e

(L.74)

w) Principe du cas test

Nous vérifions la dépendance en z de I'intensité convertie, en présence et en l’absence
d’effet Kerr. Le KDP utilisé est un doubleur type 11, et le désaccord de phase est ajusté
en fonction de 'indice non linéaire de fagon & respecter la condition (I1.64). Les cas testés
sont rassemblés dans le tableau ci-dessous:

Cas a b c d
11 (m?/W) 0 0 2,7.10720 2,7.10=20
33 (m?/W) 0 2,7.10720 0 5,4.10~20
113 (m2/W) 0 0 5,4.107%0 5,4.10720
Al 0 0 0,0873346 | 0,0873346
A1z 0 0 0,086 5048 | 0,0865048
21 0 0 0,0873346 | 0,0873346
22 0 0 0,086 5048 | 0,086 5048
A3 0 0 0,349 547 0,349 547
As1 0 0 0,349 338 0,349 338
a3 0 0 0,349 547 0,349 547
32 0 0 0,346 019 0,346 019
A33 0 0,349 547 0 0,699 094
A 0 —0,0873867 | 0,261693 | 0,0869197
Ak (m™1) 0 —174,773 173,978 —175,569
Ocrist (°) | 59,228919 | 59268028 | 59,190018 | 59,268 206 65

Dans le tableau ci-dessus 'indice 1 se référe a I’onde 1w ordinaire, l'indice 2 4 'onde 1w
extraordinaire, 'indice 3 & 'onde 2w extraordinaire. Notons que dans le cas d’un conver-
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tisseur doubleur type II, on a nécessairement vy, = Y12 = Y21 = Yoo !. Nous choisissons en
outre 3 = Vo3 = Y32 = V13 bien que le code permette de prendre v3; # ;3. A cause des
différences d’indices et d’angles de double réfraction entre les ondes 1 et 2, la condition
de symétrie Ay = A9 est violée. Toutefois la disymeétrie est suffisamment faible pour le
pas trop fausser le résultat.

L’intensité et la polarisation du faisceau initial sont calculées de maniére & ce que
les champs normalisés des ondes 1 et 2 vaillent respectivement 1 et 1,01 (on prend donc
¢ = 0,01). Les facteurs de normalisation sont supposés indépendants du cas considéré.

Le composant « convertisseur » de Mird ne permet pas de faire un fractionnement en
z pour disposer de diagnostics dans ’épaisseur, car le champ est renormalisé au début
du composant et le retour dans les unités dimensionnées n’a lieu qu’a la sortie. Afin de
pouvoir tracer ’intensité 2w en fonction de z, nous avons artificiellement sectionné le KDP
(nous utilisons un KDP mince dans lequel nous passons 51 fois, grace 4 un composant
« multiplexeur »).

b) Schéma

1. En fait, la situation est un peu plus compliquée: le code applique le méme déphasage non linéaire
aux deux polarisations lw, compte tenu de la normalisation. En toute rigueur on a donc ya2 = 112 =
(r1/72)*11, r; étant le facteur de normalisation en champ.

2. Cette possibilité sera introduite dans Miré 2000.
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c¢) Données

0- Source analytique Energie 0J
Angle de polarisation 45,142 53°
Expression de l'intensité I(x,y,t) 1.089599047e15
1- Multiplexeur Scénario 1 50%0 1
2- Convertisseur de fréquence | Epaisseur 0,2 mm
Indice non linéaire INL
Angle theta du cristal )
Angle phi du cristal 90°
Orientation du cristal 0°
Analytique/Runge Kutta [0/1] 1
Méthode de saisie des indices NL [0/1/2] 2
Paramétres Diffraction de Fresnel
Temps 0s5;4.10795;1
X —0,25m; 0,25 m:; 1
Y —0,25m; 0,25 m; 1

La valeur de Pangle du cristal § doit étre réglée en fonction du cas considéré (derniére
ligne du tableau de la page 73). L’intitulé du fichier INL est le suivant:

~ cas a: pas de fichier (mettre une valeur nulle pour I'indice non linéaire).

~casb:2211110 | I=0.5265e-6 1.053e-6 | J=0.5265e-6 | 2.7e-20
0 | J=1.053e-6 | 0 O;

~casc:2211110 | I= 0.5265e-6 1.053e-6 | J=0.5265e-6 | O
5.4e-20 | J=1.053e-6 | 5.4e-20 2.7e-20;

~casd:2211110 | I= 0.5265e-6 1.053e-6 | J=0.5265e-6 | 5.4e-20
5.4e-20 | J=1.053e-6 | 5.4e-20 2.7e-20. Le symbole « | » désigne le retour a la
ligne.

d) Interprétation

1,2 T T T ; T

athematica

0,8

E (u)
T

0,4

L

0 2 4 6 8 10 12
2 {(mm)

F1G. 1.32 — Energie en fonction de z, en l'absence d’effet Kerr.
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E (1)

0,6

NS — _— Mir —
- .. Mathematica -
I _
| i
i ) ) VA J
0 2 4 6 8 10
2 (mm)

F1G. 1.33 — Energie en fonction de z, lorsque seul yy5 est non nul.

12
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1.2 T T

0,8 +—

E (pnd)

02 |-

0 1 I I 1 1

0 2 4 6 8 10 12
z (mm)

F1G. 1.34 — Energie en fonction de z, lorsque les indices non linéaires autres que yss sont
non nuls.

1,2 T T T T =T
T = e Miré —

1+ g athematica *

0.8 1 y
= . A
\Ei; 0,6 — ° : .
€3]

0,4 |

02 - -

0 1 ! L AR !

0 2 4 6 8 10 12
Z (mm)

F1G. 1.35 - Energie en fonction de z, lorsque tous les indices non linéaires sont non nuls.

Nous comparons sur les figures 1.32 a 1.35 le calcul Mird (trait plein) et le calcul
Mathematica (en pointillés). Dans chacun des cas étudiés nous avons tracé I'intensité en
fonction de z. On constate que 'accord entre les deux courbes est variable selon le cas
considéré. Nous devons toutefois souligner que nous ne nous attendions pas & avoir un
accord parfait puisque la condition de symétrie des A;; n’est pas vérifiée. Toutefois, le cas
le plus mauvais est celui de la figure (1.33), qui est pourtant le seul cas pour lequel la
matrice est symétrique. Ce comportement n’a pas pu étre expliqué.

Remarque: si I'on supprime l'indice non linéaire pour l'une des courbes 1.34 a 1.35,
ou bien si I’on remet le KDP 4 accord de phase, on observe une courbe trés différente
avec deux ou trois arches au minimum. Ceci prouve que le cas test tel qu’il a été congu
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avait bien un sens (nous compensons avec une précision significative l'effet Kerr par un
désaccord de phase).
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18. Fichier de biréfringence
a) Objectif

Un faisceau est modulé en amplitude par une rotation des polarisations dans une
lentille axisymétrique biréfringente. On suppose que la variation d’indice est uniquement
radiale et linéaire en r. Pour une donnée initiale polarisée rectilignement, le champ aprés
passage de la lentille biréfringente est donné par la formule suivante:

E.(z,y,2) = (€7 cos® 6 + sin® 0) e’ﬁ%Eo(:E,y) (1.75.a)
o2
Ey(z,y,z) = ((e7" — 1) sin 6 cos §) eligf_Eo(:E,y), (L.75.b)

ou (r,d) sont les coordonnées polaires du point (x,y). L’intensité de la polarisation suivant
l'axe des z est donc en un point (z,y):

2,,2

L(zy) = (1 - 4(_{%7 sin’ (%\/:EZ n y2)> Io(z.y). (L.76)

T2 + y?

b) Schéma

c¢) Données

1- Source rectangulaire | Energie 17
Largeur 4m
Hauteur 4 m
Exposant spatial en X 200
Exposant spatial en Y 200

3- Lentille Fichier masque de biréfringence fich.bir

Parameétres Optique géométrique 3D
Temps 0s;1s;1
X 0,5m;1m;1
Y —1m;1m; 200

Le fichier fich.bir est un fichier de masque de biréfringence A, ,Agy?.

Remarque : la lentille n’est utilisée ici que via son fichier de biréfringence ; le masque
de phase quadratique qu’elle induit ne joue aucun réle en optique géométrique 3D.

1.1l a la forme suivante (« | » signifie un passage & la ligne): 1411 | v=0.0.10.20.3 .4
0.5 .6 0.70.80.91. 1.1 1.21.3 | (1,00 (1,00 | (-1,0) (1,0 | (1,0) (1,00 | (-1,0) (1,0)
| (1,00 (1,00 | (-1,0) (1,00 | (1,00 (1,00 | (-1,00 (1,00 | (1,0) (1,00 | (-1,00 (1,0)

(1,00 (1,00 | (1,00 (1,00 | (1,00 (1,00 | (-1,00 (1,0)
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d) Interprétation

La différence relative entre le tracé analytique calculé par Mathematica et celui obtenu
par Mird est infinitésimale (et uniquement due aux erreurs d’arrondis) car les points de
grille et ceux du fichier de masque de biréfringence coincident parfaitement. Si le nombre
de points d’échantillonnage est par exemple 256, une petite différence apparait due aux
erreurs d’interpolation.

1

0,9 F
0,8 |
0,7
0,6 -
0,5 |
0,4
0,3
0,2 F
0,1

I (W/m?)

T

1

T
Mir
nalytiqu

1

0

-0,8

-0,6

04

~0,2

0 0,2
y (m)

0,6

0,8

F1G. 1.36 — Intensité analytique en trait continu et calculée en pointillés.

6.10707
4.10797 -

2.10797 ﬂ

—2.10797 H

IMiro' _ 1:\11. (\V/mz)

—4.10797 |

B

1

|

1

|

|

1

—6.10797
-1

_..078

06

~0,4

0.2 0 0,

y (m)

2

0,4

0,6

F1G. .37 — Différence absolue entre l'intensité analytique et celle calculée.

e) Variante du cas test

0,8

Le lecteur pourrait se demander quelle est I'origine de la fonction oscillante de la figure
1.36. C’est pourquoi nous proposons une variante 2D du cas test offrant une meilleure
vision de la situation.
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i) Schéma

cipc.

Source Lentille Lame

it) Données

0- Source circulaire | Diamétre 0,2 m
Exposant spatial 400
3- Lentille Fichier masque de biréfringence fich.bir
Parameétres Optique géométrique 3D
Temps 0s;4.107%s; 1
X —0,15m; 0,15 m; 250
Y —0,15m; 0,15 m; 250
Afficher 'animation

Le fichier fich.bir est le méme que dans le cas test précédent.
itt) Résultat
Nous fournirons juste (via un traitement par Adonis) I'intensité du faisceau en sortie,

selon ses deux polarisations. Signalons que le cas test précédemment présenté (p. 79)
correspond & une coupe paralléle & ’axe des X et excentrée.

oJSF A et 0,15 [Ty
o.10fF % o.10F .
s ]
0.05f . 0.05f j
_o.00k ] -0.00F j
~0.05 . -0.05} .
TS 3 -o.10fF .
-0.15 S BN EUPEE SN SR B »—-0,15£ . I N [N B

-0.15 -0.10 -0.05 -0.00 0.05 0.10 0.15 -0.15 -0.10 -0.05 -0.00 0.05 0.10 0.5

F1G. 1.38 — Intensité apres la lentille biréfringente, selon la polarisation X (& gauche) et
Y (a droite). Les zones en rouge correspondent auzr maxima d’intensité.
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19. Lame biréfringente
a) Objectif

Ce cas test, d’une simplicité extréme, permettra de tester la non-régression du code
dans le composant « lame biréfringente », qui n’est utilisé dans aucun autre cas test.

Le schéma utilise deux lames dont les paramétres par défaut sont conservés; ce sont
donc des lames A\/4. La premiére lame, dont l'orientation est réglée a 45°, donne au
faisceau une polarisation V. La deuxiéme lame rend & nouveau la polarisation linéaire,
mais avec une direction qui n’est pas paralléle 4 la direction initiale, 4 cause de orientation
« quelconque » choisie pour ce composant (12°).

Au retour, le faisceau est polarisé o~ . En sortie des lames, la polarisation est linéaire,
de méme direction que la polarisation initiale?.

b) Schéma

c¢) Données

0- Source circulaire
1- Lame Epaisseur 0m
Indice non linéaire 0 W/m?
2- Lame biréfringente
3- Lame biréfringente | Orientation 12°
4- Miroir Coefficient de réflexion 1
Normale theta 180°
Parameétres Optique géométrique 3D
Temps 0s;4.107%s;1
X —0,25m; 0,25 m; 16
Y —0,25m; 0,25 m; 16

1. Les faisceaux d’aller et de retour sont polarisés respectivement ot et o~, 4 condition de considérer
la polarisation dans un méme repére fixe. L’hélicité des deux faisceaux (i.e. leur polarisation par rapport
a un repére lié 3 la direction de propagation) est en fait la méme.

2. Pour la culture générale du lecteur, nous signalerons que la configuration du faisceau de ce cas test
(faisceau passant dans deux lames quart d’onde, puis rétroréfléchi) est trés utilisée par les physiciens
réalisant du refroidissement d’atomes avec des lasers.
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d)

Résultats

Voici les résultats obtenus en optique 3D ; ces résultats numériques se lisent en affichant

les nappes*.

Composant L2 (W) | I7* (W) | pg (rad) @y (rad) Dép.
Lame (1¢r passage) 2,591.10° 0 0 0
Propag. (1¢f passage) 1,57.10716 1,571 0,5
Miroir 7687.108 | 1,823.10° | 9,948.107! | 9,948.10~" | 7,034. 10~
Propag. (2¢passage) —1,152 0,4189 0,5
Lame (2¢ passage) 2,591.10° 0 0

On constate un déphasage de 7/2 entre les phases des deux polarisations, lorsque le
faisceau est situé entre les deux lames quart d’onde. Ceci confirme que le faisceau est
polarisé circulairement. Aprés le passage de la seconde lame, le déphasage entre les deux
polarisations est 0 (donc la polarisation est linéaire), et le rapport des amplitudes des deux
polarisations est tan(45° — 12°). Enfin, aprés le passage des deux lames en sens inverse,
on retombe bien sur la méme polarisation qu’au début (linéaire).

1. Les nappes ne figurent pas dans ce manuel car elles ne présentent aucun intérét physique.



84 Chapitre 1. Tests Unitaires

20. Lame de phase « kinoforme »
a) Objectif

La lame de phase « kinoforme » est un composant a part dans Mird ; tout d’abord, son
calcul s’effectue indépendamment des paramétres du faisceau!. D’autre part, il présente un
caractére plus technologique que scientifique. En particulier, la convergence de 1’algorithme
proposé [16] n’a pas été démontrée rigoureusement 2.

Ce premier cas test de la lame « kinoforme » n’est que qualitatif: on montre qu’il est
possible d’obtenir une tache focale en forme de croix. Les résultats scalaires du calcul (tels
que le taux de modulation), bien que sans intérét physique, pourront servir aux tests de
non-régression du code.

Attention : le temps de calcul de ce cas test n’est pas instantané (2 minutes sur une
SUN Ultra).

b) Schéma

¢) Données

1- Source circulaire Diameétre 0,2 m
Exposant spatial 8

3- Lame de phase « kinoforme » | Indice de réfraction 1
Indice non linéaire 0 m?/W
Fichier spatial au foyer 3 croix.foyer
Distance focale de calcul 7m
Largeur devant la lame 0,2 m
Exposant spatial en X devant la lame 8
Exposant spatial en Y devant la lame 0

5- Lentille Epaisseur 1079 m
Focale 7m
Type de traitement [0/1/2] 0

6- Propagateur Longueur 7m
Indice de réfraction 1
Indice non linéaire 0 m?/W

1. L’opportunité que ce soit Miré qui fasse ce calcul et non un code externe a d’ailleurs été discutée.
2. Depuis que ce composant a été mis en ceuvre, d’autres algorithmes plus performants de lame de
phase (lames distribuées) ont été mis au point [17}.

3. Le fichier croix.foyer a la forme suivante: 11 11 0 1.5923 1.5923 1 0 | X=-5e-4 -4e-4
-3e-4 -2e-4 -le-4 0 le-4 2e-4 3e-4 4e-4 5e-4 | Y=-5e-4 | 110000000 11| Y=-4e-4
|11100000111|Y=-3-4]01110001110]|Y=-2-4{0011101110
0] Y=-1e-4 [ 00011111000 |Y=0[00001110000]7Y=1e-4{000111
11000 |Y=2e-4 | 00111011100]|Y=3e-4[01110001110] Y=4e-4]1
1100000111|Y—5e4|11000000011|,
le symbole « | » désignant un passage & la ligne.
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Parameétres Diffraction de Fresnel adaptative
Temps 0s;4.107%s: 1
X —-0,25m; 0,25 m; 512
Y -0,25 m; 0,25 m; 512
Afficher I'animation

d) Résultat

La forme spatiale du faisceau au foyer peut étre visualisée (en version Unix) grace a
I’animation en haut a gauche de la fenétre Miré. On peut également mettre en évidence
la tache cruciforme grace au diagnostic en « vue de dessus » (disponible dans I’interface
Miré sous Unix en appuyant sur la touche « Echap » lorsqu’une nappe est affichée, et
sous Windows grace au bouton Iso). La tache focale est présentée sur la figure 1.39.

t=0,000e+00

grille=64x64

xmin=-3,774e-03
xmax=3,774e-03

ymin=-3,774e-03
ymax=3,774e-03

zmin=8,933e+04
zmax=5,628e+14d

©=0.000e+00

grille=512x512

J =min=-3.,774e-03

xmax=3,77d4e~-03

ymin=-3,774e-03
umax=3,774e-03

zmin=8.933e+04

zmax=5,.628e+14

F1G. 1.39 - Visualisation de la tache focale d’un faisceau passé a travers une lame de phase
« kinoforme ». Malgré la présence de tavelures la forme de croiz est aisément reconnais-
sable en « vue de dessus ».

Voici quelques résultats scalaires permettant de tester la bonne conservation du code:
~ taux de modulation sur la lame: 86,973 88 ;
— section: 3,835974.107% m?;
- nombre d’itérations nécessaires & la convergence de 1’algorithme de la lame kino-
forme: 7.

Remarque : nous avons choisi de fabriquer une focale cruciforme car le fichier de
profil au foyer est suffisamment petit pour pouvoir étre entré a la main (et le cas test est
ainsi reproductible). Toutefois, il est tout & fait possible de créer des taches focales de
forme beaucoup plus complexe. Sur la figure 1.40 nous avons reproduit le logo du laser
Mégajoules®. On constate que le dessin est aisément reconnaissable, méme s’il devient plus
flou au fur et & mesure que ’on s’éloigne du centre de la tache. Ceci permet d’apporter
quelques garanties concernant la « souplesse » du composant « lame kinoforme ».

1. Le fichier de profil focal a été créé de la fagon suivante: I'image bitmap d’origine a été traduite au
format Tiff, puis via le logiciel Adonis au format Prop’92 qui est le format des fichiers lisibles par Mird.
Nous avons réutilisé pour la simulation Miré les paramétres du cas test du profil cruciforme.
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pT+opET g=xouz
80+89TZ " G=uTWzZ

£0-9245° T=xeuh
£0-92£5° T-=uTwh

£0-92.G " T=xeux
£0-8245° T-=utux "7 gK

y (m)

8zIxg21=2 11748

00+8000"0=3

—0.0015-0,0010-0.0005 0.0000 0.0005 0.0010 0.0015
x (m)

F1G. 1.40 - Tache focale pour une lame de phase kinoforme construite & partir du logo du
laser Mégajoules.

e) Variante du cas test de la lame « kinoforme »

Le lecteur pourra trouver les cas tests précédents quelque peu superficiels: on se
contente de controler I'allure de la tache focale sans confirmer la moindre grandeur nu-
mérique (telle que par exemple la taille de la tache focale).

Dans cette variante du cas test on cherche & fabriquer une tache focale supergaussienne
(de taille bien supérieure a la limite de diffraction). Par ailleurs, nous avons choisi pour les
cellules de la lame une taille plus petite, i.e. 0,3 mm (dans les conditions expérimentales
usuelles on a des cellules submillimétriques [18], voire une lame de phase continue [19]).
Ceci implique d’effectuer le calcul en 1D transverse (sinon nous n’aurions pas assez de
mémoire).

i) Schéma
cipc. inoforne
Source | Phase Lentille Lame

it) Données

0- Source circulaire Diametre 0,2 m
exposant spatial

1- Lame de phase « kinoforme » | Indice de réfraction 1
Indice non linéaire 0 m?/W
Largeur 3.107*m
Hauteur 0,6 m
Coté d’une cellule 3.107*m
Dimension au foyer 1 mm
Exposant spatial au foyer 8
Distance focale de calcul 7m
Largeur devant la lame 0,2m
Exposant spatial en X devant la lame 8
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Exposant spatial en Y devant la lame 0

Précision de convergence 5.1073
2- Lentille Epaisseur 1079 m

Focale 7m

Type de traitement [0/1/2] 0
4- Propagateur Longueur 7m

Indice de réfraction ' 1

Indice non linéaire 0 m?/W ]
Parameétres Diffraction de Fresnel

Temps 0s;4.107%s;1

X Om;2.107%m; 1

Y —0,25m; 0,25 m; 16 384

Remarque: c’est la diffraction de Fresnel standard, et non la diffraction de Fresnel
adaptative, qui a été choisie, car le nombre de pas de discrétisation est trés important (en
diffraction de Fresnel adaptative, Mirg traiterait en fait le cas comme en diffraction de
Fresnel sans changer la taille de la boite).

wi) Résultat

WWTENSFTE en X a Tr O
B e B i R R

F1G. [.41 — Allure de la tache focale, pour un faisceau passé au travers d’une lame de
phase « kinoforme ». En pointillés, la forme (supergaussienne) de la tache requise.

La figure 1.41 montre ’allure du faisceau au voisinage du foyer, ainsi que la supergaus-
sienne théorique. Cette courbe a été retraitée avec Adonis afin de réaliser un agrandisse-
ment. On remarquera que:

— la forme supergaussienne de la tache focale est bien perceptible; pour s’en
convaincre il suffit de refaire tourner Mird en requérant une tache focale gaussienne et de
constater la différence;;

— toutefols, on ne peut s’affranchir d’un bruit important (tavelures). On voit sur la
figure que la taille de ces grains de tavelure est inférieure au dixiéme de millimétre. Or,
la taille attendue pour les grains de tavelure est ¢ = Af/a, avec A = 1,053 um, f =7 m,
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et @ = 0,5 m (a est la taille du faisceau arrivant sur la lame « kinoforme »). On trouve
c¢=1,47.10"° m; on obtient donc le bon ordre de grandeur.
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21. Prise en compte de I’épaisseur des lentilles
a) Objectif

Le but de ce cas test est de tester la fagon dont Mird prend en compte ’épaisseur des
lentilles. Nous rappelons que le code remplace une lentille épaisse d’épaisseur e, d’indice
n, de rayons de courbures algébriques R, et R, et de focale f, par la séquence suivante :
propagation dans le vide sur une distance

|

e en—1

n n Ry ’

— lame de verre d’indice n et d’épaisseur €
— lentille infiniment mince de focale f;
— propagation dans le vide sur une distance

en—1

n R
Dans le cas test qui suit nous recherchons a réaliser I'image d’un objet & travers une
lentille épaisse dans la géométrie 2 f-2f. L’épaisseur de la lentille est 10 cm, son indice de
réfraction 1,5, et ses rayons de courbure valent respectivement —20 m et 30 m. On trouve
en utilisant les définitions

L _ ey 1o

;= e <R2 Rl) (L77.2)
1 1

Y = E(E};_}_EQ_) (I??b)

que la focale f de la lentille vaut 24,0160l m et que sa cambrure v vaut
—8,33333.1073 m~1.

Pour que ’imagerie soit conservée, il faut que la distance optique séparant 1’'objet de
la lentille infiniment mince équivalente soit 2f, et que a distance optique séparant cette
méme lentille mince et I'image soit aussi 2f. On en déduit que la distance séparant ’objet
du bord gauche de la lentille réelle est

en—1
dy=2f - f—
1 f fn R2 3
tandis que la distance séparant le bord droit de la lentille réelle et I'image est
en—1
dy =2 —
2 f+7 n R

Numeériquement, on trouve respectivement 48,005 33 m et 47,991 99 m.

Dans ce cas test, nous cherchons a vérifier que 'imagerie est conservée quelle que soit
le sens de traversée de la lentille par le faisceau. Pour ce faire nous utilisons une deuxiéme
lentille qui est une lentille mince et dont le réle est de rendre le faisceau paralléle, puis
un miroir qui réfléechit le faisceau afin qu’il parcoure le systéme en sens inverse. Nous
effectuons le test pour des lentilles isolées, et également pour les lentilles d’un filtre. Dans
ce deuxiéme cas, la valeur de d; n’a pas & étre entrée car Mird régle automatiquement la
distance entre les deux lentilles d’un filtrage pour que le systéme soit afocal.
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b) Schéma

c¢) Données

On reliera au choix la source avec la chaine supérieure (succession de deux lentilles,
cas @ et ¢) ou inférieure (trou de filtrage, cas b et d). Les deux options doivent donner le
meéme résultat. Ce cas test est également prévu pour fonctionner en diffraction de Fresnel
adaptative (cas c et d).

Passage supérieur

0- Source circulaire | Exposant spatial 500

1- Lame Nom de I’élément supérieure
Epaisseur 0m

9- Propagateur Longueur 48,00553 m
Indice non linéaire 0m?/W

2- Lentille Nom de V’élément épaisse
Epaisseur 0,1 m
Indice non linéaire 0 m?*/W
Focale 2401601 m
Cambrure —8,33333.103 m™!
Type de traitement [0/1/2] 1

10- Propagateur Longueur 47,99199 m
Indice non linéaire 0 m?/W

3- Lentille Nom de 1’é}ément mince
Epaisseur 107 m
Indice non linéaire 0 m?/W
Focale 24,016 01 m
Type de traitement [0/1/2] 0

4- Miroir Nom de I’élément supérieur
Coefficient de réflexion 1
Normale theta 180°

Passage inférieur
5- Lame Nom de 1’élément inférieure
L Epaisseur 0m
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Diffraction de Fresnel adaptative (¢), (d)

Temps
X
Y

Seuil du rapport signal sur bruit
Pas maximal de diffraction

12- Propagateur | Longueur 48,005 53 m
Indice non linéaire 0 m?/W

6- Filtre 1 trou | Indice de réfraction des lentilles 1,5
Type de traitement [0/1/2] 1
Indice non linéaire 0 m?/W
Focale gauche 24,016 01 m
Focale droite 24,016 01 m
Epaisseur de la lentille de gauche 0,1m
Epaisseur de la lentille de droite 1079 m
Cambrure gauche —8,333333.10 3 m™!
Diamétre du trou 10° m

7- Lame Epaisseur 0m

8- Miroir Nom de I’élément inférieur
Coeflicient de réflexion 1
Normale theta 180°

Parameétres Diffraction de Fresnel (a), (b)

0s;4.107%s: 1
Om;0,25m; 1
—0,25m; 0,25 m; 32768 (a), (b)
—0,25 m; 0,25 m; 256 (c), (d)
0,5
1m

d) Interprétation

La figure .42 présente le taux de modulation tracé en fonction de la distance mé-
canique, dans les deux cas passés en diffraction de Fresnel (a et ). On trouve comme
attendu que ce taux est égal & 1 14 ou le faisceau est imagé et supérieur ailleurs.

sigma

:+00
1.487e+00Q
.—"_'—d——_——-
-
3+00’l 1,001e+00
2+00
0z+00 1e+02 2e+02

D_meca (m)

D+ 00 g2
e, e ————— 1.2
1e+00 \ 1.¢C
0e+Q0
0e+00 1e+02 2e+02

F1G. 1.42 — Tauz de modulation tracé en fonction de la distance optique, pour une suc-
cession de deux lentilles (0 gauche), et pour un trou de filtrage (a4 droite). Ce tauz de
modulation décroit sensitblement la ou il y a imagerie.

En diffraction de Fresnel adaptative, on vérifie simplement que la courbure du faisceau

D_meca (m)



92

Chapitre 1. Tests Unitaires

est nulle et que la phase redressée du champ ne présente pas un comportement quadratique
qui serait caractéristique d’une mauvaise imagerie.

Pour les tests de non destruction du code, nous donnons les valeurs du taux de modu-
lation et de la fluence créte sur les composants suivants: lame supérieure et lame inférieure
pour les 1€T et 2€ passages, miroir supérieur et miroir inférieur, et ce en diffraction de
Fresnel (cas a et b) et en diffraction de Fresnel adaptative (cas ¢ et d).

Diffraction de Fresnel

Diffraction de Fresnel adaptative

Fluence créte (J/m?)

Taux de modulation

Fluence créte (J/m?)

Taux de modulation

Lame sup'® 1er passge 12,908 62 1,001 198 12,891 69 1,000 869
Miroir supérieur 1291112 1,001 392 12,891 70 1,000 869
Lame sup™™® 2€ passg® 12,913 30 1,001 561 12,891 75 1,000873
Lame infre 1€r passge 12,908 62 1,001 198 12,891 69 1,000 869
Miroir inférieur 12,908 62 1,001198 12,891 70 1,000 869
Lame infre 28 passge 12,908 62 1,001198 12,891 69 1,000 869
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22. Lentille boule
a) Objectif

L’objectif de ce cas test est de vérifier que la formalisme de lentille épaisse mis en place
dans Miro fonctionne bien dans le cas d’une lentille boule.

lentille boule

rayon
incident

F1G. 1.43 - Géométrie du cas test.

La géométrie de I'exemple est la suivante (fig. 1.43) : on considére une lentille boule de
rayon R et d’indice n. Le faisceau incident fait un angle o avec ’axe (Oz), et arrive sur
la lentille de telle facon que son axe de propagation passe par le centre de la lentille. On
s’attend donc a ce que le faisceau ne soit pas dévié.

Dans le cas d’une lentille boule la focale est donnée par

nk

T (1.78)

f:

et la cambrure est nulle. Dans le cas test on choisit @ = 1072 rad, n = 1,5et R =1 m, ce
qui donne une focale de 1,5 m.

Remarque : ce cas test permet de valider & la fois le concept du traitement des lentilles
épaisses (remplacement par une lame, une lentille mince et des distances de propagation),
et sa mise en ceuvre dans le code.

b) Schéma
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c) Données

0- Source circulaire | Delta theta - 0,572957 7°
Position X —1 cm
1- Lentille Epaisseur 2 m
Indice de réfraction 1,5
Indice non linéaire 0 m?/W
Focale 1,5m
Type de traitement [0/1/2] 1
2- Lame Epaisseur 0Om
Paramétres Diffraction de Fresnel
Temps 0s5;4107%s;1
X ~5.107?m; 5.107%2 m; 16384
Y Om;5.107%2m; 1 |

d) Interprétation

On vérifiera que la position X du faisceau en fin de chaine (1,000044 cm) est & peu
prés Popposée de la position en entrée (—1 cm). On constate aussi que la direction de
propagation du faisceau est pour ainsi dire inchangée (I’« angle delta theta du faisceau »
vaut 0,572 957 7° avant traversée de la lentille et 0,572 945 0° aprés). Tout ceci prouve que
le faisceau est bien passé par le centre de la lentille sans déviation.

e) Variante du cas test

Dans le cas test précédent le faisceau restait toujours centré par rapport a la boite
de discrétisation. Le multiplexage angulaire était traité au moyen d’un déplacement de la
position de cette boite par rapport au repére de référence. Par suite nous avons simplement
vérifié que les changements de direction de propagation aux interfaces des lentilles épaisses
se faisaient correctement. Par contre rien ne prouve que la diffraction & l'intérieur de la
lentille ait aussi été traitée correctement.

Pour tester la diffraction, on peut essayer de créer un faisceau multiplexé angulaire-
ment, tout en forcant la boite de discrétisation a se propager parallélement a la direction
(Oz). Pour ce faire, une possibilité est d’utiliser un composant « mélangeur » et d’implan-
ter la source multiplexée sur la branche secondaire. La déviation angulaire du faisceau
apparaitra alors sous forme d’un déphasage dépendant linéairement de z ; par diffraction
on verra le faisceau se décaler par rapport & la boite de discrétisation !.

1. Autre possibilité (apparue dans le code aprés la conception de ce cas test): utiliser une source
analytique avec pour expression de la phase: 0.01%x.
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i) Schéma

FoUrce

it) Données

0- Source circulaire | Nom de 1’élément, boite
Longueur d’onde 5,265.1077 m

1- Mélangeur

2- Lame Nom de I'élément entrée
Epaisseur 0m

3- Lentille Epaisseur 2 m
Indice de réfraction 1,5
Indice non linéaire 0 m?/W
Focale 1,5 m
Type de traitement [0/1/2] 1

4- Lame Nom de Vélément sortie
Epaisseur 0m

5- Source circulaire | Nom de 1’élément source
Delta theta 0,5729577°
Position x —1 cm

Parameétres Diffraction de Fresnel
Temps 0s;4.107%s; 1
X —5.107%2m;5.107? m; 16384
Y 0m;5.102m;1

i11) Résultats

La figure 1.44 représente la fluence du faisceau (2€fréquence) avant et aprés la lentille
boule. On constate que le faisceau est bien centré 1a ou on l'attend. Remarquons aussi

que son diamétre & diminué car il a commencé & focaliser a 'intérieur de la lentille.
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12000 | T T , — 1 | —
sortie —
10000 - entrée -
NE 8000 =
=
o 6000 - =
[
=1
(b}
= 4000 |- -
2000 + |
0 I L | ' e / [ | |
—-0,06 —0,04 —0,03 —0,02 -—0,01 0 0,01 0,02 0,03 0,04 0,05
T

Fi1G. 1.44 - Fluence du faisceau avant la lentille boule (en pointillés) et aprés (en trait
plein).
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23. Aberrations des lentilles
a) Objectif

Les deux cas test calculent les aberrations de lentilles (une lentille convexe-plan a
incidence normale pour le premier cas, une lentille équiconvexe & incidence oblique pour
le second). La validité du calcul est contrdlée de deux fagons:

— par comparaison avec un calcul effectué a l'aide du logiciel Solstis (de la société

Optis);
— par le test du miroir & conjugaison de phase.
b) 187 cas test: lentille convexe-plan a incidence normale
i) Schéma
it) Données

0- Source circulaire | Diamétre 0,5 m
Exposant spatial 20

1- Lentille Epaisseur 2,5 cm
Indice de réfraction 1,450 29
Indice non linéaire 0 m?/W
Focale 4,441582 m
Cambrure ~0,25 m™!
Type de traitement [0/1/2] 2

2- Lame Nom de ’élément Solstis
Epaisseur 1 nm
Indice non linéaire 0 m?/W
Fichier masque de phase statique cp4.abr

Parameétres Diffraction de Fresnel adaptative
X —0,298156 7 m; 0,298 1567 m ; 512
Y 0m; —0,2981567 m; 1
Seuil du rapport signal sur bruit 0

Le masque de phase cp4.abr contient I’aberration de la lentille calculée par le logiciel
Solstis (puis transféré au format Miré par une moulinette appropriée). Nous ne fournissons
pas la procédure de construction de ce fichier car nous ne supposons pas que l’utilisateur
ait le logiciel Solstis & sa disposition (et il serait trop fastidieux de saisir le fichier & la
main). L’utilisateur pourra se contenter de tester ’allure de ’aberration calculée par Mir¢
ainsi que le retour par le miroir & conjugaison de phase.

iii) Résultat

Sur la figure 1.45, nous représentons les aberrations calculées par Miré et par Sol-
stis. On trouve deux courbes trés semblables, au signe prés. La différence provient de la
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200 T T T 0
180 —20
160 —40
140 —60
5 120 = —80
£ 100 = 100
S &0 S
60 —120
40 —140
20 —160
0 | 1 l —180 1 ] I | |
-0,3 —0,2 —-0,1 0 0,1 02 03 -0,3 -0,2 -0,1 0 0,1 0,2
T (m) Z (m)

F1G. 1.45 — A gauche, aberration de la lentille calculée par Mird; & droite, aberration
calculée par Solstis.

30 T T l | T
. 25 —
=
g
z =
) <
% 2
b N
pS
5.
0 i | ! 1
03 —02 —01 0 01 02 03 —03 —02 —01 0 01 02
T (m) Z (m)

F1G. 1.46 - A gauche, différence absolue entre I’aberration calculée par Mird et celle cal-
culée par Solstis ; & droite, phase du faisceau apreés réflexion par le miroir & conjugaison
de phase.

0,3
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convention de signe sur le champ discrétisé dans Mird [14, chap. 2] (onde quasi-plane en
ek} qui n’est pas la méme que dans Solstis.

La figure 1.46 présente d’une part la différence absolue entre les deux aberrations (en
fait la somme des deux courbes de la figure 1.45 compte tenu des conventions de signe).
On observe une bonne compensation, sauf sur les bords de la pupille. L’écart (sans signe
systématique) est lié a la routine d’interpolation. D’autre part, nous avons tracé la phase
du champ sur la source, aprés réflexion par le miroir & conjugaison de phase. La phase en
ce point devrait étre rigoureusement nulle. La différence que 'on observe (compensation
a 1 %) est due au fait que les rayons utilisés par Mird dans la routine d’aberrations ne
sont pas les mémes a ’aller et au retour. On met 1a en évidence une limitation de principe
du calcul effectué par Miro.

c) 2€cas test: lentille équiconveze a incidence oblique

Le cas d’une lentille inclinée est plus difficile & valider car le résultat dépend fortement
des conventions géométriques retenues. Par exemple, sil’'on bascule une lentille d’un angle
0 (paramétre Normale theta dans Mird), la lentille est basculée autour de son centre dans
Mird (cette convention nous a semblé préférable pour éviter les ambiguités en cas de
multipassage). Dans Solstis, la lentille est inclinée autour du centre de la face d’entrée.
Pour limiter les écarts entre les logiciels, nous avons dans ’exemple infra incliné le faisceau
incident plutot que la lentille.

Par ailleurs les conventions définissant les aberrations ne sont pas les mémes d’un
logiciel & ’autre. Dans Mirg le fait de traverser une lentille avec aberrations a incidence
oblique modifie la direction de propagation du faisceau réel. La partie linéaire de la phase
1’est donc pas appliquée (la phase admet toujours une tangente horizontale au centre de la
pupille). A contrario dans Solstis, on considére que la déviation fait partie des aberrations
et on la traite comme telle. Enfin, il existe une différence sur la courbure de référence’ :
dans Miré les aberrations sont calculées par rapport au foyer géométrique de la lentille
(caractérisé par le paramétre « courbure » du faisceau). Dans Solstis on les calcule par
rapport au meilleur foyer (dont la position est fournie en sortie de Solstis).

i) Schéma

1. Dans le premier exemple cette différence n’apparaissait pas car elle avait été corrigée a la main en
sortie de Solstis.
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it)  Données

0- Source circulaire | Delta theta —20 ]
Diamétre 0,25 m
Exposant spatial en X 20
1- Lentille Kpaisseur 1 cm
Indice de réfraction 1,450 29
Indice non linéaire 0 m%/W
Focale 2,222512 m
Type de traitement [0/1/2] 2
3- Lame Nom de I’élément phi-incl
Epaisseur 1 nm
Indice non linéaire 0m?/W
Fichier masque de phase statique | (-2+1.996890)*pi/180*2xpi/1.053e-6*x
| 4- Lame Nom de ’élément phi-tirage
Epaisseur 1 nm
Indice non linéaire 0 m?/W
Fichier masque de phase statique pi/1.053e-6*(4.506370e-01
-1./2.20292)*(x"2+y"2)
Paramétres Diffraction de Fresnel adaptative
X —0,1483197 m; 0,148 3197 m ; 2048 (a)
Y 0m; —0,1483197 m; 1 (a)
X 0m; —0,1483197 m; 1 (b)
Y —-0,148 3197 m; 0,148 3197 m; 2048 (b)
i Seuil du rapport signal sur bruit 10—4

Le cas (a) permet de tracer une coupe en X de la phase, le cas (b) une coupe en Y.
Les parameétres des masques de phase analytiques ajoutés sur les lames ont été déterminés
comme suit: & la sortie de la lentille au premier passage 'angle delta du faisceau vaut
1,996 890°au lieu de 2°. Nous appliquons la différence sous forme de masque de phase.

Par ailleurs on trouve que la courbure du faisceau vaut 0,4506370 m~

L alors que dans

Solstis les aberrations sont calculées par rapport au meilleur foyer situé a 2,20292 m.
La différence entre ces deux courbures est également appliquée sous forme de masque de

phase.

it1)  Résultats

Phase

cong.

%

1e+01

3,215e+00

Qe+00

£

-1e+01

£ N

Rt -

~2e+01 v N

-3e+01 !

-de+01 /

\.\“H

-He+01

-6e+01 I

-7e+01 7

-8e+01

-8,735e+01

~9e+01

-2e-01-1e-01 0e+00 1le-01 2e-01

F1G. 1.47 — Aberrations calculées par Mir6 :

X

cong.

Phase X

0e+00
-1e+01 7
-2e+01 7
-3e+01 7/ \
—4e+01
-5e+01 ti Y
-6e+01
-7e+01
-8e+01
—8e+01 -8.567e+01

-2e-01-1e-01 0e+00 1le-01 2e-01
Y

-5,715e-04

[ N

coupe en X (@ gauche) et eny (a4 droite).
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Ph b
7er01 ase Be+01 Phase X
Borol 6,295e+01 7a+01 7.254e+01
Be+01 A A 6e+01 3 -
dor01 X L\ 5e+01 v 4
foi) de+01
Ze+01 b /
- \ ! Ze+01
2e+01 5 ! 2e+01 A /
\ Vi
ée*gé \ { 1e+01 o
e+ | Ly 0e+00 -9, 420e-01
-1e+01 -6.,283e+00 —1e+01 €

~-2e-01-1e~-01 0e+00 1e-01 2e-01

Y

F1G. 1.48 — Aberrations calculées par Solstis

circ,
Phase X
0e+00 /
-1e+00 /
~2e+00 #
-3e+00 SR //
Vst
—-de+0

0,000e+00

X

-3,610e+00

0
-2e-01-1e-01 0e+00 1e-01 2e-01

-2e-01-1e-01 0e+00 1e-01 2e-01

X

: coupe en X (a4 gauche) et en'y (a droite).

0e+00

Phase X

circ,

-1e+00

-2e+00

-3e+00

-4e+00

-2.487e+00
-3.142e+00

~2e-01-1e-01 Oe+00 1e-01 2e-01

Y

F1G. 1.49 — Phase sur la source au 2¢ passage : coupe en X (& gauche) et en'y (a droite).

Les figures 1.47, 1.48 et 1.49 présentent les résultats. On constate que les courbes
calculées par Mird et par Solstis ont la méme allure, mais ne coincident pas exactement. Il
faut savoir que le résultat est trés sensible vis & vis de divers paramétres comme les valeurs
des courbures ou encore les positions des axes de rotation. Il parait donc difficile d’obtenir
exactement le méme résultat, d’autant plus que nous ne savons pas exactement de quelle
facon Solstis effectue son calcul. La compensation par le miroir & conjugaison de phase
n’est elle non plus pas parfaite, méme si le résidu reste petit devant ’aberration. En fait
Ierreur devient non négligeable 14 ou 'aberration est importante, ce qui est normal puisque
dans ce cas les rayons utilisés par Mird dans son calcul deviennent non orthogonaux a la
surface d’onde.
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24. Lentille de Fresnel: focalisation
a) Objectif

Ce cas test permet de s’assurer du bon fonctionnement du composant « lentille de
Fresnel ». On envoie un faisceau gaussien sur le composant et on regarde ou il focalise.
Les parameétres choisis correspondent aux rayons X.

b) Schéma

L. Fresnel

c) Données

0- Source circulaire | Longueur d’onde 8,67.107 1% m
Diamétre 1,5.1074 m
Exposant spatial 200

4- Propagateur Indice non linéaire 0m?/W

2- Lentille de Fresnel | Epaisseur de la couche 410" m
Indice de la couche 1,083 750.103
Absorption de la couche 3.107¢

5- Propagateur Longueur 5,07.10~2 m/m,
Indice non linéaire 0 m?/W

3- Miroir Normale theta 135°

Parameétres Diffraction de Fresnel
Temps 0s;4 107 %s; 1
X —10~* m; 10~ m; 16 384
Y 0m;5,5.107° m; 1
Afficher ’animation

L’entier m, présent dans le tableau permet d’explorer les foyers d’ordre supérieur. On
le mettra & 1 par défaut.

d) Interprétation

La figure [.50 montre 'intensité du champ a la distance f,/m, de la lentille (avec
f1 =5,07.107% m), m, prenant les valeurs 1, 2, 3 et 5. Les valeurs impaires de m, corres-
pondent & la position d’un foyer!. Par contre il n’y a pas de foyer pour m, = 2, ce qui est
conforme aux prédictions théoriques.

e) Variante du cas test

En réalité, le cas test précédent est biaisé par le fait que la simulation a été réalisée
en 1D. Certes la position des foyers est correcte; mais l'intensité relative des différents

1. Les foyers ne sont pas trés visibles. En regardant les figures attentivement, on repérera sur trois
d’entre elles, pour X = 0, un trait vertical trés fin: c’est le foyer !
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TEx2 | 2
20418 —— 2ev17 ]
1.525¢+18
1.196e+17
1e+18 1e+17
R ow—_ bt 1,050e+12 0e+00 ; R e i 1.622e+11
-1e-04 0e+00 1e-04 -le-04 0e+00 1e-04
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2 1Ex? |
peety o] devt7 —
5,418e+17
5e+17 3.31de+17
3e+l7
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% P

F1G. 1.50 — Allure de l'intensité du champ auz distances f;/m,, avecm, = 1, 2, 3 et 5
(respectivement en haut & gauche, en haut a droite, en bas & gauche et en bas a droite).
On met en évidence la présence d’un foyer (repérable sous la forme d’un trait vertical trés
fin, au milieu de la courbe) pour toutes les valeurs impaires de m,.
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foyers, ou encore ’allure de l'intensité du faisceau au voisinage d’un foyer, sont fausses.

Comme variante de ce cas test, nous proposons donc une simulation en 3D. Afin de
ne pas étre limité par la résolution au niveau des derniéres zones de la lentille de Fresnel,
la taille de la boite sera divisée par deux. Voici donc les nouvelles données :

Temps
X
Y

Afficher ’animation

0- Source circulaire | Longueur d’onde 867.1071% m
Diameétre 7,5.107% m
Exposant spatial 200

4- Propagateur Indice non linéaire 0 m®>/W

2- Lentille de Fresnel | Epaisseur de la couche 4107" m
Indice de la couche 1,083750.1073
Absorption de la couche 3.107*

5- Propagateur Longueur 5,07.10~% m
Indice non linéaire 0 m?/W

| 3- Miroir Normale theta 135°
Paramétres Diffraction de Fresnel

0s;4 107951

—5.107° m; 5.107% m; 512
-5.107% m; 5.107° m; 512

Avec ces données, on trouve une intensité créte de 1,158.10%° W/m? pour le foyer
d’ordre 1, et 8,25.10'° W/m? pour le foyer d’ordre 3. On rappelle que la théorie prévoit
qu’en 3D Vintensité créte est indépendante de I'ordre du foyer.

Enfin, nous fournirons pour le plaisir des yeux I'allure du faisceau juste aprés le passage
de la lentille de Fresnel (fig. 1.51).
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-2x10731—
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FiG. [.51 — Intensité du faisceau juste apres le passage de la lentille de Fresnel.
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25. Lentille de Fresnel : imagerie
a) Objectif

Ce cas test vise a réaliser I'image par une lentille de Fresnel d’un certain objet (ici une
double fente, créée par un apodiseur). L’idée sous-jacente est de simuler un diagnostic
de physique des plasmas [20] (imagerie aux rayons X du plasma créé par laser dans une
chambre d’expérience).

b) Schéma

¢) Données

0- Source rectangulaire | Longueur d’onde 8,67.10710m
Largeur 9.107° m
Hauteur 9.107° m
Exposant spatial en X 400
Exposant spatial en Y 400

4- Propagateur

1- Apodiseur analytique | Epaisseur 1077 m
Définition des trous F(grille)

5- Propagateur Longueur 0,5 m
Indice non linéaire 0 m?2/W

2- Lentille de Fresnel Epaisseur de la couche 410" m
Indice de la couche 1,083 750.1073
Absorption de la couche 3.10~¢

6- Propagateur Longueur 5,642110.10~2
Indice non linéaire 0 m?/W

| 3- Miroir Normale theta 135°

Paramétres Diffraction de Fresnel
Temps 0s:4 10795s:1
X —7.1075m; 7.107° m; 16 384
Y 0m;5,510%m:1
Afficher I’animation
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Le fichier grille sert a définir la forme de I'objet!.

d) Interprétation

1,6.1017 T 6.1017 T T
1,4.1017 = I L
T s.10f7 = -
1,2.1017 -1 g
o7 b | E 4107 = -
-
8.1010 = 7 @ 5107 | -
)
6 |- | =
6.10 & 2.1017 | _
4.1016 — %
N — 1017 ]
2,100 — -
o e A A i 4 TN AV IIN o | |
~1079% —5.10706 0 5.10~06 10708 ~5.107096 0 5.10706
z (m) T (m)

F1G. 1.52 — Image d’une double fente, par une lentille de Fresnel (a gauche), et par une
lentille ordinaire de méme focale (4 droite).

La figure 1.52 montre le résultat obtenu, en effectuant la comparaison avec une lentille
ordinaire?. On constate que la figure est sensiblement la méme pour les deux types de
lentille, et que I’échelle en z est celle que I'on attend ; ’échelle des puissances est toutefois
différente, car dans le cas de la lentille de Fresnel, une grande partie de la lumiére est
focalisée ailleurs ou n’est pas focalisée du tout.

On pourrait également critiquer le fait que I'imagerie n’est pas trés « propre » (aussi
bien d’ailleurs pour la lentille de Fresnel que pour la lentille ordinaire). En fait, on s’aper-
¢oit qu’avec les paramétres choisis la limite de diffraction est de I'ordre du micron; elle
n’est donc pas négligeable devant la taille de la figure.

Remarque : on pourrait a prior: penser qu’il est préférable de choisir une géométrie
2f-2f; de cette facon la taille de I'image serait la méme que celle de 1'objet, donc bien
supérieure & la limite de diffraction. En fait, cette configuration ne fonctionne pas bien
avec la lentille de Fresnel car la partie de la lumiére qui n’est pas déviée par la lentille
vient se superposer a l'image que 'on cherche & mettre en évidence, rendant la figure
illisible?.

1. 11 a la forme suivante (« | » désignant un retour a la ligne) :

R((0,0),110e-6,110e-6;1) | R((0,0),20e-6,20e-6;0) | R((40e-6,0),20e-6,20e-6;0) |
R((-40e-6,0),20e-6,20e-6;0).

2. Le retraitement des résultats avec Adonis est nécessaire, afin de réaliser un changement d’échelle;
avec Mirg, les pics sont & peine visibles au centre de la figure.

3. En fait, sur une réelle expérience de physique des plasmas, les paramétres ne sont pas ceux choisis
ici: c’est ’objet qui est placé prés de la lentille et I'image loin, et non 'inverse (par suite, sur l'expérience,
la taille de I'image est bien supérieure a la limite de diffraction). Toutefois, une simulation par Miré des
conditions expérimentales réelles poserait des problémes d’échantillonnage difficilement solubles (4 moins
peut-étre d’utiliser la diffraction de Fresnel adaptative).

10795
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Enfin, on s’assurera de la non-régression du code en controlant les parameétres suivants
(ils sont sans intérét physique) sur le miroir de sortie de chaine:

Energie: 0,2571883 J;
Taux de modulation: 17,01950.
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26. Meélangeur
a) Objectif

Ce cas teste le bon fonctionnement du composant « mélangeur », en se plagant dans
plusieurs cas de figure « typiques ». Ce composant réalise ’addition des champs électriques
de deux faisceaux, un faisceau principal et un faisceau secondaire. C’est la grille d’échan-
tillonnage du faisceau principal qui sera utilisée pour le faisceau somme. Si la grille du
faisceau secondaire ne coincide pas, une interpolation est réalisée avec passage par une
grille intermédiaire [14, p. 194].

Ce test vise a vérifier la pertinence du rééchantillonnage et la conservation {ou la non
conservation...) de ’énergie.

b) Schéma
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¢) Données

0- Source circulaire Nom de I’élément source 1
Position X 0,1 m
Energie 107117
Longueur d’onde 5.107" m

1- Filtre spatial 1 trou | Indice non linéaire 0 m2/W
Focale gauche 10 m
Focale droite 17 m
Diameétre du trou 10° m

3- Source circulaire Nom de ’élément source 2
Diamétre 0,1m

5- Source circulaire Nom de ’élément, source 3
Energie 2]
Angle de polarisation 45°
Diamétre 0,1m

7- Source circulaire Nom de I’élément source 4
Position X —0,2m
Position Y 0,425 m
Longueur d’onde 2.107% m
Diamétre 0,1m

9- Lame Epaisseur 0m

Paramétres Optique géométrique 3D
Temps 0s;4 107%s;1
X —0,25 m; 0,25 m; 256
Y —0,25 m; 0,25 m ; 256

d) Interprétation

On souhaite vérifier ici non seulement 'addition des champs électriques, mais aussi
le bon rééchantillonnage. Pour tester spécifiquement ce dernier on utilise des faisceaux
de fréquences différentes (il n'y a alors pas d’addition et les champs correspondants sont
traités séparément par le code).

Ainsi le faisceau principal est un faisceau de fréquence différente des autres, dont la
fonction n’est que de fixer la boite d’échantillonnage principale. Grace au filtre spatial on
agrandit la taille de cette boite. La source est également décalée spatialement. Pour tous
les faisceaux secondaires il y aura donc un rééchantillonnage.

La source 2 est une gaussienne de 1 J, polarisée selon X. Aprés le mélangeur, son
énergie est conservée, puisque la boite principale est plus grande que la boite secondaire.
Voici les résultats correspondants (fréquence 2) :

Energie: 1 J;
Taux de modulation : 9,208 666.

La source 3 est une gaussienne de 2 J, avec un angle de polarisation de 45°; il y a
donc un joule suivant la polarisation X et un joule suivant la polarisation Y. Le champ

suivant X est exactement le méme que le champ de la source 2; il va donc s’y ajouter de
facon cohérente. On trouve également que le champ somme est gaussien. Voici finalement
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les résultats numériques (fréquence 2):
Energie: 5 J;
Taux de modulation : 9,208 666.

Remarque (en forme d’énigme) : la source 2 a pour énergie 1 J et la source 3, 2 J. Aprés
le mélangeur on obtient 5 J: apparemment Mird est en mesure de résoudre définitivement
la crise énergétique... Que se passe-t-il en fait sur une véritable expérience?

La source 4, de fréquence différente des sources 2 et 3 (différente de la source 1 aussi),
vise a tester le cas ou la boite d’échantillonnage secondaire n’est pas incluse dans la
boite principale. L’énergie n’a donc pas a étre conservée, puisque une partie du faisceau
va « tomber » en dehors de la boite. Ici les paramétres sont choisis de telle sorte que
la moitié de I’énergie de la source 4 soit perdue. Voici les résultats du faisceau apreés le
mélangeur (fréquence 3):

Energie: 0,5155975 J;

Taux de modulation: 9,020 647;

Intensité créte: 2,206736.10'° W/m?.

Pour mémoire, voici les mémes résultats pour le faisceau sortant de la source 4:
Energie: 1 J;

Taux de modulation: 9,212 362;

Intensité créte: 2,206 356.10'° W/m?.

Conclusion : 'intensité créte n’est pas altérée (du moins jusqu’a la 4€ décimale) par le
rééchantillonnage. Ceci justifie pleinement la méthode utilisée. Remarquons toutefois que
I’énergie de sortie n’est pas rigoureusement la moitié de 'énergie d’entrée. C’est dii au fait
que le bord de la boite principale ne coincide pas avec les pixels de la boite secondaire (la
précision serait accrue en augmentant le nombre de pas d’échantillonnage). Ce point est
cependant secondaire, 1’essentiel étant que l'intensité lumineuse du faisceau mélangé soit
la bomne.
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27. Miroir & conjugaison de phase
a) Objectif

Ce cas test met en évidence 'une des propriétés les plus spectaculaires du miroir 4
conjugaison de phase: l'effet de « renversement du temps » et la possibilité de restituer
naturellement la cohérence initiale d’'un faisceau.

Le cas test compare le miroir & conjugaison de phase avec un miroir ordinaire. On
considére un faisceau cohérent que I'on fait passer dans une lame de phase aléatoire,
puis que l'on laisse diffracter sur une grande longueur. Au bout de cette longueur, la
modulation de phase s’est transformée en modulation d’amplitude. On réfléchit le faisceau
sur lui-méme par 'un des deux miroirs, puis on regarde son allure aprés le parcours dans
l'autre sens de la distance de diffraction. Dans le cas du miroir a conjugaison de phase,
on doit retrouver le faisceau cohérent initial.

b) Schéma
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c) Données

0- Source rectangulaire

1- Polariseur Epaisseur 1m
Indice non linéaire 0 m?/W
Normale theta —45°

2- Lame de phase aléatoire Largeur 1m
Hauteur 1m

3 - Cellule de Pockels Indice non linéaire 0 m?/W
Scénario 01

11 - Propagateur Longueur 100 m
Indice non linéaire 0 m?/W

4 - Lame Nom de ’élément mince
Epaisseur 0m

5 - Miroir & conjugaison de phase | Coefficient de réflexion 1

6 - Miroir (ordinaire) Coeflicient de réflexion 1
Normale theta 180°

7 - Lame Nom de I’élément résultats
Epaisseur 0m
Normale theta 90°

Paramétres Diffraction de Fresnel
Temps 0s;4.107%5s;1
X —0,5m; 0,5m; 128
Y —0,5m; 0,5 m; 128
Afficher I’animation

Le propagateur 11 est situé entre la cellule de Pockels et la lame « mince ».
Pour comparaison, on remplace le miroir & conjugaison de phase par un miroir ordinaire
avec les mémes parameétres.

d) Interprétation

La figure 1.53 montre l'allure de la fluence dans la direction de polarisation Y, dans
le cas du miroir & conjugaison de phase (& gauche), et dans le cas du miroir ordinaire (a
droite). Les résultats sont conformes aux prévisions.

Pour tester la non-régression du code, voici le résultat pour le taux de modulation sur
la lame de verre placée en fin de chaine:

— avec un miroir a conjugaison de phase: 5,551923;
- avec un miroir ordinaire: 27,233 17.
Voici maintenant 'intensité créte:
— avec un miroir a conjugaison de phase: 1,387981.10° W/m?;
- avec un miroir ordinaire: 7,101 341.10° W/m? .

Enfin, nous terminerons la présentation de ce cas test par une énigme. Lorsque le
faisceau se propage par diffraction dans le sens du retour, entre la lame n° 3 et la cellule
de Pockels, il évolue naturellement d’un état désordonné (figure de tavelures) vers un état
ordonné (profil gaussien). Pourquoi ceci n’est-il pas contradictoire avec le second principe
de la thermodynamique?
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résultats

grille=64x6d

xmin=-5,000e~-01
xmax=5,000g-01

ymin=-5,000e-01
ymax=5,000e-01

zmin=9,58de-04
zmax=5.552e+00

résultats

grille=64x64

xmin=-5,000e-01
xmax=5.000e-01

ymin=-5,000e-01
ymax=5.000e~01

zmin=6.412e-06
zmax=2,915e+01

FiG. 1.53 - Cartes de fluence obtenues sur la lame placée au-dessous du polariseur, pour
un miroir a conjugaison de phase (G gauche) et pour un miroir ordinaire (G droite). Seul
le miroir o conjugaison de phase permet de restituer un profil dimpulsion régulier.
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28. Dispersion par un réseau droit
a) Objectif

Ce cas test se propose de tester la dispersion d’un faisceau par un réseau droit et
le formalisme des ondes inhomogénes. On considére une impulsion bréve dispersée par
un réseau droit. Du fait de la différence de marche entre les fréquences rouges et les
fréquences bleues, un décalage temporel apparait entre ces derniéres (et donc une dérive
de fréquence). L’'impulsion est étirée. Si I’expression avant étirement du champ est

E = Ey e ¥/ (1.79)
nous avons apres étirement
E=E, %(;)_eib(z)t2 ei<I>(z)e—t2/7'(z)2 : (180)
avec
k
b(z) = — ‘ (1.81.a)

(2) =75 {1 + <2Z!El2)2} (I81.b)

&(z) = Arctan (2Z|€|2> , (L.81.c)

£ étant le vecteur inhomogénéité.
Dans notre exemple, nous considérons un réseau a l’incidence de 7 = 25° avec
N =8,026 937. 10° traits par métre. L’angle de sortie est donné par

sina =sini — NA (1.82)

soit « = —25°. L’inhomogénéité selon z (le retard par unité de longueur) est donnée (dans
le cas particulier d’un réseau & la condition de Bragg) par

&| = 21ane (1.83)

c

soit |£,] = 3,110869.107° s/m.
Aprés diffraction sur une longueur L, nous placons un afocal de grandissement 2, puis
nous nous propageons jusqu’au point image. Nous devons retrouver une impulsion bréve.

b) Schéma
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c¢) Données

0- Source rectangulaire | Durée 1ps

1- Réseau droit Nom de I’élément droit 1
Indice non linéaire 0 m?/W
Dispersion des vitesses de groupe 0s%/m
Efficacité de diffraction 1

6- Propagateur Longueur 10 m
Indice non linéaire 0 m?/W

2- Filtre 1 trou Indice non linéaire 0 m*/W
Type de traitement [0/1/2] 0
Normale theta 50°
Focale gauche 10 m
Focale droite 20 m
Epaisseur de la lentille de gauche 107° m
Epaisseur de la lentille de droite 107° m
Diameétre du trou 10° m

7- Propagateur Longueur 20 m
Indice non linéaire 0 m?/W

3- Réseau droit Nom de I’élément droit 2
Indice non linéaire 0 m?/W
Orientation des traits 180°
Dispersion des vitesses de groupe 0s?/m
Efficacité de diffraction 1

4- Lame Epaisseur 0m

Paramétres Spectre large
Temps —107105: 10710 5; 512
X —0,25m;0,25m; 1
Y —-0,25m; 0,25 m; 1

d) Interprétation

Les résultats de la simulation (a lentrée du filtre, c’est-a dire aprés 10 m de propaga-
tion) sont présentés sur les figures 1.54 et 1.55. La durée équivalente de I'impulsion en ce

point est 47,88 ps.

Au niveau de la lame (plan image de la source de départ), on constate que I'impulsion
est redevenue bréve (durée équivalente 1,09 ps).
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9.101° T f

8.1010 Miré — -
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F1G. 1.54 — Intensité a ’entrée du filtrage spatial. Résultat Mird en continu et résultat
théorique en pointillés.

300 M”:O —
théorie -

—~50 | 1

-100 -50 0 50 100

t (ps)

F1G. 1.55 - Phase redressée a l’entrée du filtrage spatial. Résultat Mird en continu et
résultat théorique en pointillés.
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29. Réseaux de diffraction et aberrations temporelles
a) Objectif

Ce cas test vise a valider le calcul des « aberrations temporelles » induites par la diffrac-
tion sur les réseaux [21, 22]. Nous nous plagons dans le cadre des expériences d’impulsions
bréves pour lesquelles on utilise une paire de réseaux droits paralléles pour étirer I'impul-
sion avant amplification, et une seconde paire identique a la premiére pour la comprimer
en fin de chaine.

Idéalement, la paire de réseaux applique au faisceau un masque de phase dépendant
quadratiquement de w, proportionnel & la distance entre les réseaux. Cette hypothése
permet de retrouver en fin de chaine — pourvu que la bande passante de ’amplifica-
tion soit suffisamment large — une impulsion aussi bréve qu’en entrée. Dans la pratique
toutefois, le masque de phase apporté par la paire de réseaux contient aussi des termes
en w? et d’ordre supérieur. Ces termes (dit d’aberrations temporelles) sont nocifs car ils
empéchent une recompression parfaite. En particulier les termes d’ordre 3 font apparaitre
une pré-impulsion ou une post-impulsion qui peut étre trés génante dans les expériences
d’interaction.

En fait, dans le cas ou les systémes allongeur et compresseur sont exactement symé-
triques, les termes d’ordre 3 se compensent. Ce sont des défauts d’alignement (angles
d’attaque différents, grandissement du téléscope de l'allongeur différent de 1) qui em-
péchent cette compensation et qui font apparaitre les pré ou post-impulsions. Il est en
théorie possible de modéliser ces défauts d’alignement dans Miré. En fait, les aberrations
temporelles ne sont significatives que pour un étirement trés important, de 'ordre de la
nanoseconde. Simuler un tel étirement requiert plusieurs dizaines de milliers de pas de
temps, ce qui est impossible sur une simple station! (car une discrétisation spatiale est
également requise). C’est pourquoi nous avons choisi de simuler une situation ou nous éti-
rons Uimpulsion via la dispersion dans un matériau, et ou seule la compression est réalisée
avec des réseaux. De plus nous supposons que le matériau n’apporte pas de déphasage du
troisieme ordre. Dans ces conditions nous faisons apparaitre uniquement les aberrations
temporelles d’une paire de réseaux.

Nous considérons donc dans Miré un systéme allongeur et un systéme compresseur.
Les réseaux du compresseur sont traités par le formalisme des ondes inhomogénes qui
permet de prendre en compte la phase en w? sans discrétisation spatiale. Pour traiter les
termes d’ordre 3 on fait appel & un masque de phase appliqué spatialement.

L’expression du terme de troisiéme ordre créé par la paire de réseaux figure dans la
référence [21, appendice 1]. Le déphasage spectral de la paire peut s’écrire

1 1 1
olw) =Tiw+ §T2w2 + 6T3w3 + 54—171&)4 4 (1.84)

le terme T traduit juste un décalage temporel (délai de propagation). Le terme T3 (dé-
phasage quadratique) est & 'origine de ’étirement ou de la compression. Le terme T3 est,

1. Le mode de calcul w(t) permettra toutefois une telle simulation (pour 'instant ce mode ne traite
pas les réseaux).
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celui qui nous intéresse: son expression (pour un réseau en réflexion) est

N2X* 1 —sinisina

472¢3 cos® o

T3 =3R (1.85)

Dans I'équation(1.85) i est I’angle d’attaque du premier réseau de la paire, o est 'angle

de diffraction ; R est la distance orthogonale entre les deux plans des réseaux (la distance

parcourue par le faisceau entre les deux réseaux est R/ cosa); N est la densité de traits.
On considére maintenant une impulsion initiale de forme temporelle gaussienne :

t2
Eentrée(t) = EO eXp <_@) . (186)

Si 'impulsion subit au cours de I’étirement et de la compression un terme de phase cubique
Ty, alors la forme temporelle de 'impulsion recomprimée est donnée par [21, éq. (13)}:

9 1/3 9 4 2 2 1/3 9 2
e 3 s 55 ()7 6-5)

T3 T3 373
(1.87)
Nous rappelons que la fonction d’Airy Ai est définie par
3 1/3 400
Ai[(3a)"' 2] = (3a) / cos(at® + xt) dt . (1.88)
T 0

b) Schéma

c) Données

0- Source rectangulaire | Largeur 0,12 m
Hauteur 0,2m
Durée 50 fs
Exposant temporel 2
Exposant spatial en X 10
Exposant spatial en Y 10

1- Lame Nom de P’élément dispersion
Longueur 0,6 m
Indice non linéaire 0 m?/W
Dispersion des vitesses de groupe | —8,10927.1072% g2 /m

2- Réseau droit Nom de I’élément droit 1
Epaisseur 107 m
Indice de réfraction 1
Indice non linéaire 0 m?/W
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Normale theta 25°
Dispersion des vitesses de groupe 0s%/m
Efficacité de diffraction 1
Aberrations (négligées=0) [0/1] 1
Densité de traits 8,026934.10%5 m™!
6- Propagateur Longueur 0,05 m
Indice non linéaire 0 m?/W
3- Réseau droit Nom de I’élément droit 2
Epaisseur 1079 m
Indice de réfraction 1
Indice non linéaire 0 m?/W
Normale theta 25°
Orientation des traits 180°
Dispersion des vitesses de groupe 0 s%/m
Efficacité de diffraction 1
Disperseur /Rassembleur [0/1] 1
Aberrations (négligées=0) [0/1] 1
Densité de traits 8,026 934.10° m™!
4- Lame Epaisseur 0 m
Parameétres Spectre large
Temps —107''5; 1071 5: 512
X —0,13 m; 0,13 m; 256
Y —0,25m; 0,25 m; 1

d) Interprétation

Nous avons tracé sur la figure (1.56) la puissance en fonction du temps pour I'impulsion
recomprimée! (courbe en traits pleins). Nous la comparons avec le résultat de la formule
(1.87) évalué grace & Mathematica.

On constate un bon accord entre les deux courbes.

Tests de non-régression: la durée équivalente de I'impulsion en fin de chaine vaut
102,9635 fs et la puissance créte 9,710 TW (pour respectivement 53,5354 fs et 18,68 TW

en début).

1. la courbe correspond en fait & une simulation réalisée avec 2048 pas de temps. Nous avons utilisé
Adonis pour extraire une portion de la courbe.
Remarque : avec 512 pas de temps la phase du réseau n’est pas sous-échantillonnée. Avec 2048 elle 'est
(d’apreés les massages apparaissant au bas de la fenétre Mird). En fait ce n’est pas grave puisque dans ce
cas de figure le spectre n’est pas rempli.
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10 T T . T T
o= Miré —
s L Mathematica - |
. L N
5 6 —
=
= ;
~ 4 — —
3 - —
2 - —
1 —
0 L [} 1 s )
—0.,8 —0,6 —0,4 —-0,2 0 0,2 0,4 0,6 0,8
t (ps)

F1G. 1.56 — Puissance du faisceau recomprimé (le faisceau a été étiré par dispersion qua-
dratique dans un matériau, puis recomprimé par une paire de réseauxr avec aberrations).
En trait plein, calcul Mird. En pointillés, résultat analytique évalué par Mathematica.
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30. Réseau focalisant et aberrations chromatiques
a) Objectif

Ce cas test vise a tester le calcul des aberrations spatiales induites par un réseau
focalisant qui n’est pas utilisé a sa longueur d’onde d’enregistrement. La validation est ef-
fectuée en comparant les résultats avec ceux obtenus par le logiciel Zemaz (code d’optique
géométrique par tracé de rayon).

La situation considérée est la suivante: le réseau a été enregistré a 351 nm, avec deux
ondes d’indidence +30°. La focale du réseau (distance entre Porigine de ’onde sphérique
et le centre du réseau focalisant) est de 8 m. Nous envoyons sur ce réseau un faisceau d’en-
veloppe supergaussienne, et de longueur d’onde 351,5 nm. La figure 1.57 montre I’allure de
la tache focale attendue, au niveau du foyer nominal et quelques centimétres avant celui-
ci. On observe essentiellement de 'astigmatisme, c’est-a dire une focalisation différente
sur l'axe sagittal et sur ’axe transverse.

F1G. 1.57 — Diagramme d’impact effectué avec le logiciel Zemax pour un réseau focalisant
enregistré a 351 nm et utilisé a 351,5 nm.

b) Schéma

4 mm
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c¢) Données

0- Source circulaire | Longueur d’onde 351,5 nm
Diamétre 0,56 m
Exposant spatial 30

1- Réseau focalisant | Indice de réfraction 1
Indice non linéaire 0 m?/W
Normale theta 30°
Longueur d’onde retenue 351,5 nm
Efficacité de diffraction 1
Onde inhomogéne/Masque de phase [0/1] 1
Aberrations (négligées = 0) 1
Longueur d’onde d’enregistrement 351 nm
Angle d’incidence de 'onde plane -30°
Angle de diffraction de 'onde foc. 30°
Distance focale nominale 8 m

2- Focaliseur Focale 8 m
Longueur d’onde principale 351,5 nm

3- Lame Nom de 1’élément foyer
Epaisseur 0m

9- propagateur Longueur —15 mm
Indice non linéaire 0 m?/W

4- Lame Nom de I’élément —15 mm
Epaisseur 0 m

10- propagateur Longueur —15 mm
Indice non linéaire 0 m?/W

5- Lame Nom de I'élément —30 mm
Epaisseur 0 m

Parameétres Diffraction de Fresnel
Temps 0s;4.107% 551
X —0,4m; 0,4 m; 1024
Y —0,4m;0,4m; 1024
Afficher 'animation

Attention : ce cas test dure cing minutes environ sur une station de travail de forte
puissance.

d) Résultats

La figure 1.58 présente I'allure du faisceau en vue de dessus, 30 mm avant le foyer,
15 mm puis au foyer. On constate que les tailles et les formes de taches sont comparables.
On remarquera toutefois des variations d’intensité a I'intérieur de la tache qui ne sont pas
prévues par le calcul en tracé de rayons. Elles pouraient étre liées a ’approximation qui
est faite dans Murd et qui consiste a ne pas prendre en compte la distorsion d’intensité en
champ proche (traitement du réseau focalisant uniquement via un masque de phase).

e) Obtention du résultat en diffraction adaptative astigmate

Le méme résultat peut étre obtenu avec beaucoup moins de mémoire, grace au mode
de calcul D2A. En effet, dans ce mode de calcul la partie quadratique de la phase du
réseau n’a plus besoin d’étre échantillonnée, seuls les termes d’ordre 3 ou supérieur le



124

Chapitre 1. Tests Unitaires

—-30 mm

t=0,000e+00

grille=1024x1024

xmin=—-1,801e~-03
xmax=1,801e-03

ymin=-1,800e-03
ymax=1,800e-03

zmin=1, 805e-08
zmax=2,962e+15

foyer

t=0,000e+00

grille=1024x1024

xmin=-1,801e-03
xmax=1,801e-03

ymin=-1,800e-03
ymax=1,800e-03

zmin=1,226e-08
zmax=2,601e+14

—15 mm

t=0,000e+00

grille=1024%1024

xmin==~1,801e-03
xmax=1,801e-03

ymin=-1,800e-03
ymax=1,800e-03

zmin=8,652e~10
zmax=1,970e+15

FiG. 1.58 — Taches focale obtenues par un calcul Mird, auz positions suivantes : a gauche,
30 mm avant le foyer nominal; & droite, 15 mm avant le foyer nominal; en bas, au foyer

nominal.



30. Réseau focalisant et aberrations chromatiques

125

doivent.

Voici les paramétres de la simulation effectuée en D2A (rien n’est changé au niveau

des composants) :

Paramétres

Diffraction adaptative astigmate

Temps

X

Y

Afficher 'animation

0s;4.107%s; 1
—0,4 m; 0,4 m; 256
—04m; 0,4 m; 256

=30 mm
t=0,000e+00
grille=256x256

xmin=-4,487e-04
xmax=4,487e-04

ymin=-9, 323e-04
ymax=9,323e-04

zmin=4,010e-05
zmax=3,482e+15

foyer
t=0, 000e+00

grille=256x256

| xmin=-1,332e-03

xmax=1, 332e-03

ymin=-5,698e-04
ymax=5,698e-04

zmin=2,379e-06
Zmax=2,599e+149

-15 mm
t=0,000e+00
grille=256x256

xmin=-5,801e-04
xmax=5,801e~04

ymin=-4,491e-04
ymax=94,491e-04

zmin=8,228e-07
zmax=1,948e+15

Fi1G. 1.59 - Taches focale obtenues par un calcul en D2A, aux positions sutvantes: a
gauche, 30 mm avant le foyer nominal; a droite, 15 mm avant le foyer nominal; en bas,

au foyer nominal.

La figure 1.59 présente les résultats. Afin de visualiser I’astigmatisme nous avons tracé
des vues de dessus tenant compte des vecteurs de base (ce type de vue est disponible
uniquement sous Unix par la pression simultanée des touches CTRL et ECHAP lorsque
la vue de dessus standard est affichée). On trouve des résultats similaires & ceux obtenus

en diffraction de Fresnel standard.
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31. Reéseau focalisant et calcul de temps de retard
a) Objectif

Ce cas test vise a valider le calcul du réseau focalisant en spectre large. Ce composant
est calculé dans Mird par application d’'un masque de phase (dépendant de = et de w) sur
le champ électrique dont on a préalablement réalisé une transformée de Fourier temporelle.
Cela revient & dire que le réseau dévie les rayons d’un angle dépendant de la fréquence
temporelle.

Z

F1G. 1.60 — Géométrie caractéristique du réseau focalisant. Le retard apparaissant entre le
front de phase et le front de groupe est visualisé par la distance HP + PF' — f.

11 est toutefois possible de considérer le réseau focalisant en terme de temps de retard
apparaissant entre le front de phase et le front de groupe (fig. 1.60). En effet, immédiate-
ment aprés le réseau le front de phase est sphérique tandis que le front de groupe reste
plan. Ce temps de retard est proportionnel & la différence de chemin optique parcouru
par les différents rayons de la pupille. Ces deux fagons d’« approcher » le réseau focali-
sant (angle dépendant de la fréquence ou bien temps de retard) sont en fait strictement
équivalentes.

Dans le cas particulier ou la direction de propagation et la longueur d’onde du faisceau
incident sont confondues avec la direction de propagation et la longueur d’onde de 1’onde
plane d’enregistrement, alors le faisceau émergent focalise en un point F qui est l'origine
de I’'onde sphérique d’enregistrement. Dans ce cas particulier, le temps de retard s’exprime
en fonction de la position (z,y) sur la pupille de sortie par

Tretara (T,Y) = % |:Xp(a:,y) sini + \/(Xp(a:,y) — fsin a)2 + (Yp(z,y))? + fcos?a — f] ,

(1.89)

ot Xp(z) correspond a la position sur le réseau du point P représenté sur la figure 1.60,
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1.€.

T 1
XP (l‘,y) -

cosa 1+ %tan o (1.90.2)

Y
Y. =22
P(xay) 1 %tana (IQOb)

Dans les équations (1.89)-(1.90), ¢ est I’angle d’incidence du faisceau (et de 'onde d’enregis-
trement), o 'angle de diffraction (nombre relatif), f la focale du réseau. Les coordonnées
x et y se référent a un repérage dans le plan de la pupille de sortie (orthogonal a la di-
rection de propagation z), en faisant I’hypothése que les traits du réseau au centre de la
pupille sont paralléles a la direction y.

Les cas test que nous proposons ici fonctionnent de la maniére suivante : nous envoyons
sur le réseau une impulsion bréve et nous controlons la fagon dont elle a été retardée en
fonction de la position sur la pupille de sortie. Pour pouvoir tracer le retard en fonction
de x ou y, nous avons mis au point une petit programme de dépouillement en C++ dont
le source figure en annexe. Le test est réalisé successivement en fonction de y dans le
formalisme de masque de phase (a), en fonction de z dans le formalisme d’onde inhomo-
gene (b), puis en fonction de z (c) et de y (d) dans le formalisme d’onde inhomogéne
et en considérant la juxtaposition d'un réseau droit et d’'un réseau focalisant paralléles.
Cet ensemble de deux réseaux est en fait équivalent & un réseau focalisant d’angles i et «
égaux. Le traitement par ondes inhomogénes (cas b a4 d) améne a soustraire du masque
de phase appliqué le masque d’un réseau droit de méme nombre de traits, juxtaposé a
une lentille chromatique de focale f. Le temps de retard d’un tel systéme est donné par

L 1 x?
idéal —
Tretard (sz) - E

(sing — sin a)

— . 1.91
COS (v +2f (1.91)

Nous devons donc vérifier que Mird apporte & l'impulsion le retard Tieiaq(z,y) —
Tetara (z.y)-

b) Schéma (cas a et b)
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c) Données (cas a et b)

0- Source rectangulaire | Largeur 0,8 m
Hauteur 0,8 m
Durée 10 ps
Exposant spatial temporel 2
Exposant spatial en X 30
Exposant spatial en Y 30
1- Reéseau focalisant Indice de réfraction 1
Indice non linéaire 0 m?*/W
Dispersion des vitesses de groupe 0s*/m
Longueur d’onde retenue 1,053 pm
Efficacité de diffraction 1
Réseau disperseur /rassembleur [0/1] 0
Onde inhomogéne/masque de phase [0/1] 1 (a)
Onde inhomogéne/masque de phase [0/1] 0 (b)
Aberrations (négligées=0) [0/1] 1
Longueur d’onde d’enregistrement 1,053 um
Angle d’incidence de 1'onde plane —25°
Angle de diffraction de ’onde foc. 25°
2- Lame Epaisseur Om
Parameétres Spectre large
Temps —2,5.10"0 5: 25107195128
X Om;0,5m; 1 (a)
Y -0,5m; 0,5m; 512 (a)
X —0,5m; 0,5 m; 128 ()
L Y Om;0,5m;1 (d)

d) Schéma (cas c et d)

e) Données (cas c et d)

0- Source rectangulaire | Largeur 2,5 m
Hauteur 2,5m
Durée 10 ps (¢)

1 ps (d)

Exposant spatial temporel 2
Exposant spatial en X 30
Exposant spatial en Y 30

1- Réseau standard Epaisseur 107 m
Indice de réfraction 1
Indice non linéaire 0m?/W
Normale theta 25°
Dispersion des vitesses de groupe 0m?/W
Efficacité de diffraction 1
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Aberrations (négligées=0) [0/1] 1
Densité de traits 8,026 938.10°% m~1
2- Résean focalisant Epaisseur 10=% m
Indice de réfraction 1
Indice non linéaire 0 m?/W
Dispersion des vitesses de groupe 0s?/m
Longueur d’onde retenue 1,053 pm
Efficacité de diffraction 1
Réseau disperseur/rassembleur {0/1] 1
Onde inhomogéne/masque de phase [0/1] 0
Aberrations (négligées=0) {0/1] 1
Longueur d’onde d’enregistrement 1,053 um
Angle d’incidence de ’onde plane 25°
Angle de diffraction de ’onde foc. —25°
2- Lame Epaisseur 0Om
Paramétres Spectre large
Cas (c) Temps —5.10711 555107 5; 128
X —0,5m; 0,5 m; 128
Y Om;0,5m;1
Cas (d) Temps —107 5; 107! 5; 64
X Om;0,5m;1
Y —0,0m; 0,5 m; 64

f) Interprétation

Les quatre figures 1.61, 1.62, 1.63 et [.64 présentent le résultat pour les cas (a), (b), (¢)
et (d). On trouve un accord convenable entre les prédictions théoriques et les résultats
Maro.

60 ! T T T

Mirg
Analytiqge - - -

50
40 — —
30 —]

20 —

retard (ps)

10 —

—0,6 —0,4 -~0,2

Y (m)

F1G. 1.61 — Temps de retard tracé en fonction de'y, dans le cas (a) (déphasage du réseau
focalisant entiérement pris en compte). Résultat Mird en trait plein, résultat analytique
en pointillés.
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T T T
8. Mire -
a0 o Analytique - - -

retard (ps)

..........

~0,4 —0,2 0 0,2 0,4

Fic. 1.62 — Temps de retard tracé en fonction de x, dans le cas (b) (configuration en
« ondes inhomogénes » pour laquelle les termes dominants du déphasage du réseau focali-
sant ne sont pas appliqués sur le faisceau). Résultat Mir6 en trait plein, résultat analytique
en pointillés.

Test de non-régression: dans le cas (¢) la durée équivalente de I'impulsion finale
est 10,644 67 ps. Les conditions de bon échantillonnage (affichées en bas de l'interface au
passage du réseau) sont 33,300 et 65,976 pour le réseau droit, 16,099 et 9,226 pour le
réseau focalisant.

g) Anneze: le programme de dépouillement

Le dépouillement des exemples présentés dans ce paragraphe a nécessité la mise en
ceuvre d’un petit programme en C++ afin de pouvoir tracer le temps de retard en fonction
de z ou y. L’intitulé de ce programme est présenté infra. Connaissant le champ en fonction
des variables spatiales et du temps, le temps de retard est défini comme le barycentre de
lintensité :

Tn)ax
/ B (e,,0)dt
T;‘etard (lE,y) - Tinin (192)

711113)( )
/ |E(z,y,t)|*dt

Tmin

C’est cette définition qui a été discrétisée. Pour dépouiller I'un des cas de calcul il est
nécessaire de sauvegarder le champ complexe sur la lame finale (au moyen du bouton
Sauver accessible dans la fenétre de dépouillement) dans un fichier ASCII résultat .mcx.
On exécute ensuite la commande

a.out < résultat .mcx > tracé
oll a.out est le nom de I'exécutable obtenu par compilation du fichier ci-dessous!. Le
fichier obtenu tracé (au format ascii x/y, avec séparateur espace) contient le temps de

1. Pour compiler: cxx maximum.C -1m -lcomplex sur DEC, g++ maximum.C sur PC linux.
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2 T 1 T I
1,5 - A4ird i
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2 | | 1 |
~0,4 -0,2 0 0,2 0,4
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Fic. 1.63 — Temps de retard tracé en fonction de x, dans le cas (c) (configuration avec
deuz réseauz, traitement en « ondes inhomogenes » ). Résultat Mird en trast plein, résultat
analytique en pointillés.

retard tracé selon le cas en fonction de z ou y.

#include <iostream.h>

#include <math.h>

#include <complex.h>

// Compilation : g++ maximum.C (sous Linux)

// cxx maximum.C -1lm -lcomplex (sur DEC)

//  Programme lisant un résultat de simulation spectre large (.mcx)
// et tragant le temps de retard en fonction de X ou Y

//  Pour obtenir la sortie ASCII faire

// cat cas.mcx | a.out > sortie.ep

#ifdef __GNUC__
#define complex double_complex
#endif

int construire_tableau_3d (complex***&,int ,int ,int);
void detruire_tableau_3d (complex*#*&);

int main ()

{

int nx, ny, nt, nl ;
int i, j, k ;

int ik, jk ;

double * x;

doublex y;

doublex t ;

double xx, num, den ;
char sl ;

double s ;
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Fi1G. 1.64 — Temps de retard tracé en fonction de y, dans le cas (d) (configuration avec
deux réseaur, traiternent en « ondes inhomogénes » ). Résultat Mir6 en trait plein, résultat
analytique en pointillés.

// facteur multiplicatif sur les temps
double facteur_t=1l.el12 ;

// Lecture de 1l’en-téte
cin >> nx >> ny >> nt ;
cin >> s > s >> s >> s >> nl ;
x= new double [nx] ;
y= new double [ny] ;
t= new double [nt] ;
complex *¥*x E ;
construire_tableau_3d(E, nt, nx, ny) ;
// Lecture des abcisses
cin >> sl >> sl ;
for (i=0 ; i<mx ; i++ )
cin >> x[il ;
// Lecture des ordonnées
cin >> s1 >> sl ;
for (j=0 ; j<my ; j++ )
cin >> y[j] ;

// Lecture des temps
for (k=0 ; k<mt ; k++) {

cin >> sl >> sl ;

cin >> tl[k] ;

for (i=0 ; i<nx ; i++ ) {
for (j=0 ; j<my ; j++ ) {

cin >> E[kI[i]1[j] ;

}

}

// Calcul du retard en fonction de la coordomnée ol il y a plus d’un pas de temps
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if (nx == 2) nl=ny ;

if (ny == 2) nl=nx ;

for (i=0 ; i<nl ; i++) {
if (nl == ny) {

ik=0 ;
jk=1 ;
xx=y[i] ;
} else {
ik=1 ;
jk=0 ;
xx=x[1i] ;
}
num=0. ;
den=0. ;

// calcul de barycentre
for (k=0 ; k<nt ; k++) {
num+=norm(E (k] [ik] [jk]) *t [k] ;
den+=norm(E[k] [ik] [jk]) ;

}
if (den ==0.) break ;
cout << xx << " " << facteur_t*num/den << endl ;

}

delete [] x

delete []1 vy ;
detruire_tableau_3d(E) ;

int construire_tableau_3d (complex*** & t, int nl, int n2, int n3)

{
int ier=0;
int 1i;

t = new complex ** [nl1];
if (' t) {

return (-1);

}

t[0] = new complex * [n1*n2];

if (' tf0]l ) {
return (-2);

}

+t[0] [0] = new complex [n1*n2*n3];
for (i=1; i<n2; i++)

t[0][i] = t[0][i-1] + n3;
for (i=1; i<n1; i++) {

t[i] = t[i-1] + n2;

t{i1[0] = t[i-1]1[0] + n2*n3;

for (int j=1; j<n2; j++)

t[13[3] = t[i1[j-1] + n3;

}

return (ier);
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void detruire_tableau_3d (complex*** & t)
{
if (¢t != NULL) {
delete [1 t[01[0];
delete [1 t[0];
delete []1 t;
t = NULL;
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32. Rotateur de Faraday, lame a pouvoir rotatoire
a) Objectif

Ce cas test controle le bon fonctionnement du rotateur de Faraday et de la lame a
pouvoir rotatoire, en 1D et en 3D. La différence de comportement des deux composants
pour un double passage est mise en évidence.

b) Schéma

\0/

c¢) Données

0- Source rectangulaire
1- Polariseur Indice non linéaire 0 m?/W
Normale theta —45°
2- Rotateur « Faraday » | Indice non linéaire 0m?2/W
3- Rotateur « Quartz » | Indice non linéaire 0 m?/W
4- Miroir Normale theta 180°
5- Lame Normale theta 90°
Parameétres Optique géométrique 1D (a), (c)
Optique géomeétrique 3D (b), (d)

Dans les cas (a) et (b), on fera passer I'impulsion par le rotateur de Faraday (comme
sur le schéma). Dans les cas (c¢) et (d), on la fera passer par le rotateur & quartz en
déplacant deux propagateurs.

d) Interprétation

En optique géométrique 3D, on constate que pour les deux types de rotateur (cas (b)
et (d)), la polarisation tourne de 45° au 1€T passage. En effet, la dépolarisation vaut %,
et les phases des champs en X et Y valent respectivement 0 et 7 rad (si la polarisation
était circulaire le déphasage entre les deux composantes vaudrait 7 /2).

Au 2¢ passage dans le cas du rotateur de Faraday (a), la polarisation tourne encore
de 45° dans le méme sens. Par suite le faisceau est réfléchi par le polariseur. Dans le cas
de la lame & quartz (d), la polarisation tourne dans 'autre sens, et donc le faisceau est
transmis par le polariseur.

En optique géométrique 1D on ne peut pas contréler la polarisation du faisceau. Par
contre on peut vérifier que le transfert du polariseur au 2¢ passage se comporte correcte-
ment en fonction du type de rotateur traversé.
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33. Source « tavelure »: dépouillement par Adonzs
a) Objectif

Il ne s’agit pas d’un véritable cas test: nous nous contentons de retraiter par Adonis
le champ créé par la source « tavelure ».

b) Schéma

c) Données

0- Source « tavelure » ;| Exposant spatial en X 100
Exposant spatial en Y 100
Largeur spectrale spatiale 102 m™!
Exposant spectral spatial 800
Fraction d’énergie bruitée 1
Paramétres Optique géométrique 3D
Temps 0s;4 107%s;1
X —-0,25 m; 0,25 m; 256
Y —0,25 m; 0,25 m; 256
Afficher 'animation

d) Interprétation

Le faisceau sortant de la source « tavelure » a été traité avec Adonis. Les courbes
correspondantes sont présentées sur la figure 1.65. On constate que ’histogramme des
intensités admet une décroissance exponentielle, ce qui est caractéristique d’une statistique
gaussienne. Par contre le spectre ne présente pas véritablement un caractére supergaussien
comme demandé, car il est trés bruité.
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F1G. 1.65 — Caractéristiques de la source « tavelure ». En haut & gauche, lintensité du
faisceau (les zones rouges correspondent auz maxima d’intensité). En haut & droite, une
coupe de cette image. En bas & gauche, le spectre spatial du faisceau vu en coupe. Enfin,
en bas a droite, [’histogramme des intensités.
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34. Source « tavelure »: calcul de la fonction d’auto-
corrélation
a) Objectif

L’objectif de ce cas test est de contréler le bon fonctionnement de la source « tavelure ».
Ce controle sera effectué via la fonction d’autocorrélation des intensités.

Pour accéder & 'autocorrélation C(||pl|) = (I(r)I(r + p)), on mélange deux faisceaux
de tavelure identiques (méme réalisation), mais de polarisations orthogonales et en ayant
préalablement effectué une symétrie selon z sur I'un des deux faisceaux. Grace & un
convertisseur de fréquence taillé en type I, on obtient un signal proportionnel au produit
des intensités des deux champs. On accéde donc ainsi & I(z,y)I(—z,y). On réitére ensuite
le processus en prenant plusieurs pas de temps puis on intégre en temps. La fluence
calculée par Miré est donc proportionnelle & (I(z,y)I(~z,y))

Ce cas test est inspiré d’une expérience réalisée en 1996 & Limeil par L. Videau [23,
Annexe 2]!. Ici, nous prenons une dimension de pupille beaucoup plus grande de fagon a
ce que les effets de diffraction et de double réfraction restent négligeables.

b) Théorie

Nous rappelons tout d’abord comment on calcule (analytiquement) la fonction de
corrélation. On définit le spectre du champ

h(k) = /d2r E(r)e*T. (1.93)

Alors la fonction de corrélation en champ vérifie

(B (r—2)E(r+2)) = /dgk (B (k)| y e (1.94)

La fonction de corrélation en intensité (i.e. celle qui nous intéresse) est reliée a celle en
champ par la formule

(I(r=8)I(r+8)=(I(r=8) (I (r+8))+[(B(r—5)E(r+8)[ . (19)
En négligeant la contribution de ’enveloppe on peut en outre supposer que

(I(r+8§))=(I(r=8§)=((r) VYo (1.96)
Dans Mird la fonction {|h?(k)|) est la fonction de filtrage de la source tavelure. Dans
notre cas il s’agit d’une gaussienne. Nous écrivons donc

({|R*(k)|) = exp (—lg—gln 2) : (1.97)

& étant la largeur spectrale spatiale entrée par l'utilisateur. On déduit immédiatement

que
(I(=2)1(3)) _ —g2a?
(I(O))Q =1+exp—— (1.98)

2In2
1. Dans cette expérience la symétrie unidimensionnelle était réalisée au moyen d’un prisme de Dowe.
La moyenne était effectuée & la fois sur le temps et sur la dimension y.
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c) Schéma

d) Données

L’inversion d’image est effectuée grice a un filtre spatial (seule la dimension z est
échantillonnée). Afin de restituer I'imagerie, les deux propagateurs situés de part et d’autre
du filtre ont pour longueur 1 m.

Temps
X

0- Source « tavelure » | Energie 10 kJ
Durée 1s
Exposant spatial en X 100
Exposant spatial en Y 100
Largeur spectrale spatiale 10> m™!
Exposant spectral spatial 2
Fraction d’énergie bruitée 1
Tavelure fixe/variable [0/1] 1

2- Source « tavelure » | Angle de polarisation 90°

Pour les autres paramétres, voir la source 0

8- Propagateur Longueur 1m
Indice non linéaire 0 m?/W

3- Filtre 1 trou Indice non linéaire 0 m?/W
Type de traitement [0/1/2] 0
Focale gauche 1m
Focale droite Ilm
Epaisseur de la lentille de gauche 1 nm
Epaisseur de la lentille de droite 1 nm
Diamétre du trou 10° m

9- Propagateur Longueur 1m
Indice non linéaire 0 m?/W

4- Lame Epaisseur 0m

5- KDP Epaisseur 10 pm
Indice de réfraction KDP_1053
Angle theta du cristal 59,228 9°
Angle phi du cristal 0°
Orientation 0°
Intensité de conversion 2,21.10%° W
Analytique/Runge Kutta 0

6- Lame Epaisseur 0m

Paramétres Diffraction de Fresnel

0s;4 1079 s; 256

—0,25 m; 0,25 m; 256
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Y Om; 0,25 m; 1
Afficher 'animation

Le fichier KDP_1053 est le fichier normalement utilisé pour convertir des faisceaux de
longueur d’onde 1,053 um*. Ce fichier fait partie de D'installation de Mird, il n’est pas
nécessaire de le saisir.

e) <« Mesure » de la fonction de corrélation

T
Courbe théorique
1,8 - Maird

1,6 -

1,2 -

F5.. (unité normalisée)

0.8 |-

O,G I | L

—0,1 —0,05 0 0,05

FiG. 1.66 — Allure d’un grain de tavelure. En abscisse, la position X dans la stmulation
Mir6 (x/2 dans la formule (1.98)). En ordonnée, la fluence 2w obtenue par Mird, renor-
malisée pour que le sommet vaille 2 (en pointillés), et le résultat théorique de la formule
(1.98) (en continu,).

La figure 1.66 permet de comparer la gaussienne théorique de la formule (1.98) avec les
résultats Miré (nous n’affichons pas toute la pupille). On constate que I'accord entre les
deux courbes est passable: la largeur du pic est la méme, mais la fonction de corrélation
du champ semble prendre des valeurs négatives sur les deux cotés du pic (intensité 2w
inférieure a son asymptote). Ce comportement semble assez répétitif, mais nous n’avons
pas pu en fournir une explication satisfaisante.

1.1l a la forme suivante, « | » désignant comme d’habitude le retour & la ligne:
3211.1.1. 0| X=0.351e-6 0.5265e-6 1.053e-6 | 0= 1 | 1.5323807 1.5131859
1.4945153 | E= 2 | 1.4868956 1.4711416 1.4603937.

0,1
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1. Autofocalisation
a) Objectif

On teste dans cette partie les effets combinés de la non-linéarité Kerr et de la diffrac-
tion. En une seule dimension transverse de diffraction, I’équation de Schrédinger admet
des solutions réguliéres pour toute distance de propagation si la donnée initiale est ré-
guliére. En dimension supérieure, il existe un phénoméne d’autofocalisation, c’est & dire
une concentration ponctuelle de I’énergie. La solution de ’équation de Schrodinger cu-
bique perd ses propriétés de régularité. Un critére suffisant permet de déterminer si le
phénomeéne d’autofocalisation est dominant :

1 ) 1 [ w? s
5 |VE|“dzdy — 1 -C7’y|E| dzdy < 0. (IL.1)

Cette condition n’est pas homogéne suivant le champ électrique. En augmentant progres-
sivement le champ électrique, il existe un point au deld duquel il est certain que le faisceau
autofocalise. Pour un profil de faisceau donné, il est possible d’affiner le critére en donnant
une condition nécessaire et suffisante. Des études numériques ont été effectuées pour les
faisceaux gaussiens. Pour une puissance supérieure & une puissance dite puissance critique
d’autofocalisation des faisceaux gaussiens:

)\2
STy

P, =372 (IL.2)

le faisceau autofocalise, pour une valeur inférieure il ne focalise pas.

La concentration est diagnostiquée par une explosion de la norme L* de la solution,
¢’est & dire que D'intensité créte du faisceau est infinie aprés une propagation sur une
distance finie. Le maximum de I'intensité tend vers I’infini au voisinage du point de focali-
sation comme dans une caustique dans I’approximation de 'optique géométrique linéaire.
La distance a laquelle se produit la concentration a été déterminée par des simulations
numériques 1D radiales [24] :

~ 0,183 5 ko D?
2102,/ (\/P/E; — 0,852)? — 0,0219

Zf

(1L.3)

Cette valeur peut étre comparée aux résultats des calculs effectués par Murd.

b) Schéma




1. Autofocalisation

143

c) Données

0- Source circulaire | Energie px0,0148 ]
Longueur d’onde 1075 m
Diamétre 0,01 m

2- Propagateur Longueur 45 m
Indice non linéaire 10720 m? /W

1- Miroir Normale theta 135°

Parameétres Diffraction de Fresnel
Temps 0s;107%s;1
X —0,02m; 0,02 m; 128
Y —0,02m; 0,02 m; 128
Pas maximal de diffraction 0,5m
Déphasage maximal du pas fractionnaire 10? rad

| Afficher ’animation

Le facteur p est le nombre de puissances critiques.

d) Interprétation

Le tableau suivant retrace les valeurs de distance de focalisation « théorique » et celles
qui sont calculées par Mird. La valeur calculée par Mir¢ est estimée en prenant le point
ou l'intensité est maximale (cf. figure II1.1). On remarquera que le calcul n’a plus de sens
une fois le point de focalisation passé.

I P 2 P, 3 P, 4 P, 8 P, }
Zfth 153,34 m 95,87m 73,06 m 42,20 m
2§, Mirs 145 m 104 m 72 m 42 m
1,2.10 T T T T T ] T ]
Reésultat Mirg

1014 -

8. 1013 L
B

EG. 1013 |

<4108 F

2.10

0 1 L 1 :.l
0 ) 10 15 20 25

F1G. I1.1 — Mazimum de lintensité au cours de l'autofocalisation d’un faisceau gaussien

de 8 puissances critiques.
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2. Autofocalisation : problémes de discrétisation
a) Objectif

Ce cas test vise & mettre en évidence une limitation du code Mird concernant le trai-
tement de 'autofocalisation, liée a la précision de 1’échantillonnage utilisé. On considére
pour cela un faisceau initialement gaussien, que 'on amplifie dans un disque comportant
un indice non linéaire. Dans I'expérience, on observe que le faisceau autofocalise globale-
ment, pourvu que sa puissance soit supérieure a une puissance critique donnée par:

~

11.4
8mny’ (IL.4)

n étant I'indice du milieu et -y l'indice non linéaire. Dans la simulation Mird ci-dessous, la
puissance du faisceau vaut 10'° W, tandis que la puissance critique vaut 10¢® W. Le seuil
d’autofocalisation est donc largement dépassé.

Un autre comportement, observé souvent sur les lasers de puissance, est la segmenta-
tion du faisceau en de multiples filaments, chaque filament « contenant » approximative-
ment la puissance critique. La filamentation apparait notamment lorsque le faisceau initial
est supergaussien et comprend de petites inhomogénéités (ce qui est toujours le cas en
pratique). Sur certaines expériences on peut observer une disposition quasi-réguliére des
filaments, selon une géométrie de type hexagonale. Ce phénoméne n’a jamais été observé
sur une simulation Mird.

Dans 'exemple ci-dessous nous considérons 'autofocalisation globale d’un faisceau
gaussien. Lorsque la discrétisation spatiale est trop faible on voit apparaitre du bruit
purement numérique a la fréquence de discrétisation de la simulation. Ce bruit n’est donc
en aucun cas un phénomene de filamentation.

b) schéma
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c) Données

Le nombre n de pas d’espace par coté sera porté successivement a 128, 256 et 512.

0- Source circulaire Energie 5J
Diamétre 4 mm
Durée 0,5 ns

1- Amplificateur disque | Epaisseur 0,44 m
Indice de réfraction 1,522
Indice non linéaire 2,89.107%0 m? /W
Transmission face d’entrée 0,95
Transmission face de sortie 0,95
Normale theta 0°
Fluence de saturation 4,9.10* J /m?
Gain 100
Diamétre 16 mm

2- Lame Epaisseur 0m

Paramétres Diffraction de Fresnel
Temps 0s;2.1079s;1
X —9mm; 9 mm;n
Y —9mm; 9mm;n

d) Interprétation

1621
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Fi1G. I1.2 — Coupe du faisceau en sortie de l'amplificateur. La résolution de la simulation
est 158 x 128 (a gauche), 256 x 256 (au milieu) et 512 x 512 (4 droite).

La figure I1.2 représente le résultat de la simulation (intensité en fonction de z) pour

difféerentes valeurs de n. On constate la présence de bruit numérique (oscillations de pé-
riode égale & 1 pixel) lorsqu’il y a 128 points et son absence & partir de 256 points. Un
calcul correct nécessite donc 256 points au minimum.

La figure I1.3 fournit le spectre spatial pour 128 et 256 points. On constate que méme
avec 128 points il y a peu d’intensité aux fréquences spatiales les plus élevées (moins de
1 %o du pic). L’examen du spectre spatial n’est donc en aucun cas un critére suffisant
pour savoir si une simulation est correctement échantillonnée.
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F1G. I1.3 ~ Spectre spatial pour une résolution en 128 x 128 (& gauche et au milieu), et
en 256 x 256 (a droite).

e) Calcul unidimensionnel en espace

Comme nous l'avons vu, le calcul correct de l'autofocalisation nécessite un grand
nombre de pas spatiaux; dans de nombreux cas la capacité mémoire des machines sera
vite dépassée.

Pour contourner ce probléme, une solution consiste a ne discrétiser qu’une seule des
deux dimensions spatiales. Cette solution peut aboutir & des résultats qualitativement
corrects a condition que ’autofocalisation ne soit pas trop importante®. C’est ce que nous
allons vérifier ici.

Les schéma simulé est le méme qu’a la section précédente ; nous n’'indiquons que ceux
des parameétres qui ont changé.

| 0- Source circulaire Energie 1,174616 J
Ll— Amplificateur disque | Discrétisation des gains suivant Y 100
Parameétres Diffraction de Fresnel
Temps 0s;2.107%s; 1
X —9 mm; 9 mm; 256
Y Omm; 1 mm;1

L’énergie a été ajustée de facon a ce que l'intensité créte du faisceau reste la méme
qu’au paragraphe précédent.

Nous fournissons le profil spatial du faisceau pour 256 points de discrétisation en
x (fig. 11.4), et nous le comparons au cas 256 x 256 du paragraphe précédent!. Cette
comparaison montre comme attendu que I’allure du faisceau est qualitativement la méme,
mais que la valeur de I'intensité créte différe de 10 %.

En conclusion, on retiendra qu’une simulation unidimensionnelle avec beaucoup de
points sur la direction discrétisée peut s’avérer préférable a4 une simulation 2D dans laquelle

1. Lorsque les effets non linéaires sont importants le calcul 1D ne peut pas donner le bon résultat;
en effet le faisceau se filamente en ondes solitaires qui se propagent sans se déformer. En 2D les solitons
n’existent pas et I’équation de Schrédinger non linéaire n’admet plus de solution au-dela d’une certaine
distance.

1. Nous ne fournissons pas ici le résultat pour 128 points ou bien pour davantage de points (512, 1024,
etc.). On constaterait comme pour la simulation 2D que du bruit numérique est présent en-dega de 256
points.
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FIG. I1.4 — Simulation avec 256 points de discrétisation selon x. A gauche, simulation 1D
(256 x 1). A droite, simulation 2D (256 x 256 ).

on serait amené a « économiser » abusivement des pixels.

Test de non régression: dans le cas 1D, l'intensité créte aprés propagation vaut
2,5188.10* W/m?.



148 Chapitre II. Tests Composés

3. Effet Kerr: modéle de Bespalov-Talanov
a) Objectif

L’objet de ce cas test est de valider le traitement Miré de V'effet Kerr via le modéle
analytique de Bespalov et Talanov [25].

Nous rappelons ici briévement les conditions d’application et les résultats de ce mo-
déle. On considére une onde plane progressive de forte intensité, a laquelle on superpose
une petite perturbation sinusoidale, de haute fréquence spatiale. Du fait de 'effet Kerr,
la perturbation va peu & peu s’amplifier au dépens de Ponde principale. Le modéle de
Bespalov-Talanov consiste a traiter 'onde sinusoidale perturbativement, de facon a linéa-
riser le probléme. Le calcul que nous présentons ici n’est pas & proprement parler celui de
Bespalov et Talanov, mais une version plus sophistiquée [26, p. 201] tenant compte des
phases relatives de la perturbation et de l'onde incidente.

On écrit que le champ incident suit I’expression

E(z,y,2) = Eq (1 + a(z)s(sc,y)) gthr? (IL.5)
ou e(x,y) = sin(kz) dans notre cas particulier. La fonction ¢ vérifie I'équation
Aje+r* =0 (I1.6)

qui est une équation aux valeurs propres.
On injecte I’expression (I1.5) dans I’équation de Schrédinger non linéaire (pour une
polarisation linéaire)
OF
2tk o+ ALE+ 262 |EPE =0 (IL.7)
z n

(n étant Uindice de réfraction du milieu et y I'indice non linéaire). Aprés linéarisation on
obtient I’équation sur le coefficient a:

da  ix?
— = —a— 2tk :
P 2kLa ikpuiRe(a), (I1.8)
ol p est la variation d’indice due & effet Kerr, donnée par
E 2
p=TEL (IL9)
n

On écrit a(2) = u(z) +iv(z) pour aboutir au systéme d’équations différentielles couplées:

du K?

— = - [.10.
dz 2kLU (I 0 a)
dv K2

Ce systéme se résout en dérivant I’équation (II.10.a) et en l'injectant dans (II.10.b),
pour se ramener a un systéme du second ordre & coefficients constants. La solution s’écrit :

] =[5 k1] e
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ou
8= (I1.12)
et
S = Qijf . (I1.13)

b) Schéma

La perturbation sinusoidale est réalisée a 'aide d’une source analytique. Afin de pou-
voir visualiser la courbe directement dans Mird la fréquence spatiale de la perturbation
dépend linéairement du temps (le temps est égal a 'angle en degrés).

Apres la traversée du milieu non linéaire, on élimine le faisceau principal afin de
pouvoir effectuer un diagnostic. Pour ce faire, on effectue une interférence destructive
avec un faisceau non perturbé identique au faisceau principal, ayant passé dans un milieu
non linéaire identique. Afin d’accélérer le calcul le passage de ce milieu est effectué sur un

seul pas de temps (nous utilisons un composant « Echantillon »).

¢) Donnees

0- Source analytique | Energie 0J
Expression de 'intensité I(x,y,t) cf. infra
Expression de la phase PHI(x,y,t) 0

1- Lame Epaisseur 0,5 m
Indice de réfraction 1,505
Indice non linéaire 2,89.107%° m? /W

3- Source analytique | Nom de 1’élément destr
Energie 0J
Expression de 'intensité I(x,y,t) 2.017128e13*creneau(1-10*abs(x))
Expression de la phase PHI(x,y,t) pi

4- Echantillon T min 0,02 s
T max 0,2s
Nombre de pas de temps 1

5- Lame idem lame n° 1

6- Echantillon T min 0,02s
T max 0,2s
Nombre de pas de temps 100
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7- Lame Nom de I’élément sortie
Epaisseur 0m
Paramétres Diffraction de Fresnel
Temps 0,02 s;,0,2 s; 100
X —-0,125 m: 0,125 m; 2048
Y Om; 0,125 m; 1
L Afficher 'animation

L’expression de 'intensité entrée dans la source principale est :
2.017128e13*creneau(1-10*abs(x))*(1+0.05*sin(2*pi*t/1.053e-6*pi/180%*x))

Attention: ce cas test est relativement long (1 heure sur un PC pentium 90 MHz
sous Linux). Pour accélérer le calcul on peut prendre moins de pas de temps (on aura
juste moins de points sur la courbe). Il faut changer le nombre de pas de temps a la fois
au niveau des parameétres généraux et au niveau de 1’échantillon n° 6.

d) Résultats

Les résultats sont présentés sur la figure I1.5. La courbe en continu correspond au
résultat analytique (IL11): la puissance tracée est (i une constante prés) u?(L) + v*(L)
(L étant la longueur de la lame, i.e. 0,5 m) sachant que u*(0) o< 2 J, et que v(0) = 0. Les
valeurs numériques prises sont k;, = n2mw /Ay, avec n =1,505, Ar, =1,053 pm; I'indice non
linéaire est v = 2,89.1072° m? /W et I'intensité du faisceau principal 2,017128.10' W/m?.
Enfin,  est relié a Pangle 8 en radians par la relation k = 2m6/A .

On constate qu’il y a un relativement bon accord entre le résultat des simulations Mird
et la courbe théorique : ’écart n’est que de quelques pour-cent. Cet écart pourrait étre da
a des effets d’ordre supérieur qui sont négligés dans le modéle théorique. Signalons par
exemple que dans Mird on observe I'apparition d’harmoniques (spatiales) de la pertur-
bation (le rapport d’intensité entre 'harmonique et la fréquence fondamentale étant de
'ordre du pour-cent).

Test de non régression Avec 100 pas de temps 'énergie finale est de 209,1380 MJ
(cette valeur n’a bien sir aucun sens physique).

1. L’angle 8 correspond & la propagation de la perturbation dans le vide, et non & Pintérieur de la
lame.
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|
Modeéle de Besp[dlov—Talané)v
Mg ©

0 | Y . oS g b
0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2
Angle (°)

FiG. I1.5 — Comparaison entre les résultats analytiques du modéle de Bespalov-Talanov
amélioré (courbe continue), et ceur de simulations Mird (un point correspond & une nou-
velle sitnulation). En abeisse, l'angle © séparant les directions de propagation des faisceaur
principal et secondaire, en degrés. En ordonnée, l’énergie dans le faisceau secondaire apres
traversée d’une plaque de verre de 50 cm.
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4. Calcul inverse en 1D et en 3D
a) Objectif

L’objectif de ce cas est de tester le calcul inverse de Mird (4 1w), aussi bien en optique
géométrique 1D qu’en optique géométrique 3D. Point n’est besoin pour ce faire de trouver
un cas soluble analytiquement ; il suffit de montrer qu’aprés un « aller-retour » par Miré
on retrouve bien 'impulsion que 'on avait au départ. Le cas choisi ici est un cas un peu
compliqué, faisant intervenir des amplificateurs en multipassage, fonctionnant dans un
régime saturé. C'est en effet ce cas qui est le plus critique vis-a-vis du calcul inverse.

b) Schéma

¢) Données

Injection':

1- Source fichier | Normale theta 270° T
Fichier des résultats source (a)
Fichier des résultats sourcelD (c¢)
Energie 01J
Section . 0,03 m?

Fichier temporel source | /tmp/source.pui (b)
Fichier temporel source | /tmp/sourcelD.pui (d)

Fichier spatial source /tmp/source.flu (b)
2- Propagateur | Longueur 40 m
Indice non linéaire 0 m?/W

1. La nomenclature (injection cavité, prélévement, fin de chaine) reprend celle du laser Mégajoules. Les
non-initiés se référeront au schéma: I'injection est ce qui est au-dessus du filtre multi-passages, la cavité
ce qui est & gauche, le prélévement ce qui est dessous et la fin de chaine ce qui est & droite.
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Filtre multi-passages:

Cavité:

Fluence de saturation
Gain

1- Filtre multi-passages | Indice non linéaire 0 m?/W
Coeflicient, de bruit caractéristique 0
Type de traitement [0/1/2] 0
Focale gauche 20 m
Epaisseur lentille de gauche 10710 m
Focale droite 10 m
Epaisseur lentille de droite 10710 m
Focale injection 10 m
Epaisseur lentille d’injection 1071 m
Focale prélévement 20 m
Epaisseur lentille de prélévement | 10719 m
Diamétre du trou 1 109 m
Diamétre du trou 2 10° m
Diameétre du trou 3 1019 m
Diamétre du trou 4 10 m
1- Propagateur Longueur 50 m
Indice non linéaire 0 m?/W
2- Amplificateur — plaque | Epaisseur 150 m
Indice de réfraction 1,522
Indice non linéaire 0 m2/W
Transmission face d’entrée 1
Transmission face de sortie 1
Normale theta 56,693 90°

4,707.10% J/m?
6.274852% (1-x*x)

Discrétisation des gains suivant X 32
Discrétisation des gains suivant X 1
Largeur 2m
Hauteur 2m
3- Propagateur Longueur 50 m
4- Filtre 1 trou Indice non linéaire 0 m?/W
Coeflicient de bruit caractéristique 0
Type de traitement [0/1/2] 0
Focale gauche 200 m
Focale droite 200 m
Epaisseur lentille de gauche 1070 m
Epaisseur lentille de droite 1079
Diamétre du trou 101 m
5- Propagateur Longueur 50 m
Indice non linéaire 0 m?/W

6- Amplificateur — plaque

Paramétres identiques & ceux de |

amplificateur n°® 2

7- Propagateur Longueur 50 m
Indice non linéaire 0 m*/W
8- Miroir Coefficient de réflexion 1
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Prélévement :

1- Propagateur | Longueur 10 m
Indice non linéaire 0 m?/W
2- Polariseur Epaisseur 100 m
Indice de réfraction 2
Indice non linéaire 0 % /W
Normale theta 120°
3- Propagateur | Longueur 10 m
Indice non linéaire 0 m*/W
4- Miroir Coefficient de réflexion 1
Normale theta 90°
Fin de chaine:
1- Propagateur Longueur 80 m
Indice non linéaire 0 m?/W
2- Source - analytique | Normale theta 180°
Energie 15 kJ (a)
5 kJ (¢)
Section 3.1072 m?
Expression de U'intensité I(x,y,t) | creneau(1-50%x"2)

Parameétres
Paramétres Optique géométrique 3D inverse (@)
Optique géométrique 3D (b)
Optique géométrique 1D inverse (¢)
Optique géométrique 1D (d)
Nom de 'étude /tmp
Temps 0s;107%s; 32
X —0,2m; 0,2m; 32
Y Om;0,1m;1
Précision de la convergence 104

d) Résultats et interprétation

En fin de chaine, on impose une impulsion constante dans le temps (quoique discrétisée
sur 10 pas de temps), et en forme de créneau spatialement.

En entrée de chaine pour un calcul 3D, la saturation modifie les profils spatial et
temporel du faisceau. La figure 11.6 montre les profils de puissance et de fluence obtenus.
Lorsque 1'on effectue le calcul direct correspondant, on retrouve exactement les profils
plats finals.

Le calcul 1D fonctionne sur le méme principe (ici seule la forme temporelle est testée).
On trouve une énérgie injectée beaucoup plus importante, la valeur du gain prise en 1D
étant plus faible car moyennée sur toute la taille de 'ampli.
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Fluence X
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F1G. I1.6 — Profils de puissance et de fluence obtenus en début de chaine pour un calcul
inverse 3D.

e) Pathologies pouvant survenir en calcul inverse

L’exemple que nous venons de présenter est plus « commercial » que réaliste: dans la
majorité des cas le calcul inverse ne fonctionne pas aussi bien. Pour nous en convaincre,
nous allons reprendre ’exemple précédent et modifier les paramétres suivants :

2- Amplificateur — plaque | Transmission face d’entrée 0,9
Transmission face de sortie | 0,9
6- Amplificateur — plaque | Transmission face d’entrée 0,9
Transmission face de sortie 0,9

| Paramétres | Précision de la convergence | 107 |

Lorsque la transmission linéaire des éléments de la chaine ne vaut pas 1, des effets
de couplage spatio-temporels apparaissent, c’est-a dire que I'impulsion obtenue par calcul
inverse en entrée de chaine n’est pas de la forme F(z,y)G(t). Par ailleurs, la convergence est
beaucoup plus difficile. Dans le cas présent, nous requérons une précision de convergence
de 0,01 et n’obtenons la convergence qu’au bout de 26 itérations®. Dans certains cas,
lorsque I’énergie requise en fin de chaine est trop importante, il arrive que ’algorithme de
Newton ne converge pas du tout.

Aprés le calcul direct de confirmation on trouve une énergie de 14,9778 kJ au lieu des
15 demandés (ce qui n’est pas une erreur importante compte tenu de la précision requise
pour le calcul inverse). Par contre on observe que les profils d’intensité spatiaux ne sont
pas plats, comme le montre la figure I1.7. Les effets de couplage spatio-temporels ont donc
été mis en évidence.

0. On remarquera que la valeur affichée en bas de la fenétre Miré (erreur relative) est inférieure a 0,01
aprés quelques itérations seulement, mais que le calcul continue. En fait le critére de convergence de la
boucle se base sur les intensités des différents pas d’espace et de temps (qui doivent avoir tous convergé),
tandis que la valeur affichée porte sur ’énergie du faisceau.

0,000¢e
2e-01
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analytique

analytique
6e+1d 1Ex? | cerld 1Ex21
Se+14 — ] 5.366e+14 cer1d i 5.453e+14
de+14 ‘J \\ de+14 l( ]L
Jer1d | 3e+ld }
2erld | | 2e+14 ! \
ler1d ; l\ le+14 ; 1&
Oe+‘020e~01 -1e-01 0Qe+00 1e-01 28—810005+00 Oe+-0209-01 -1le-01 08*:00 18;01 28—810008+00
% %

F1G. I1.7 — Intensité du faisceau en sortie pour une chaine de transmission linéaire infé-
rieure a 1, aprés réinjection en calcul direct du profil obtenu en calcul inverse. A gauche,
premier pas de temps; & droite, dernier pas de temps.
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5. Calcul inverse 1D en présence de multiplexage
a) Objectif

Signalons tout d’abord que Miro ne permet pas de réaliser du calcul inverse 3D
lorsqu’il y a du multiplexage angulaire. En effet, lorsqu’il y a des amplificateurs avec
saturation, le multiplexage couple entre eux des pixels spatiaux voisins. Or, la méthode
de Newton qui est mise en ceuvre dans Miré pour le calcul inverse ne tient pas compte
d’un tel couplage.

Dans le paragraphe ci-dessous nous présentons un cas de calcul inverse 1D avec multi-
plexage. La seule raison d’étre de ce cas test est d’aider I'utilisateur a comprendre comment
orienter angulairement les sources et les miroir lorsqu’il y a du multiplexage.

Nous rappelons tout d’abord les régles selon lesquelles la source de fin de chaine doit
étre orientée. Le guide utilisateur [27, p. 79] précise que la source de fin de chaine doit
étre orientée « comme s'il s’agissait d’un calcul direct se propageant vers le début de la
chaine ». Concrétement, I’opération d’orientation doit étre effectuée en 2 étapes:

— déterminer par un calcul direct en optique géométrique 1D les paramétres du fais-
ceau en fin de chaine (orientation de référence, orientation réelle, et position par rapport
au faisceau de référence). La position du faisceau (paramétres Az et Ay) est directement
accessible en placant un diagnostic sur le dernier composant. Les angles 6 et ¢ du fais-
ceau de référence ont en général des valeurs simples (0 ou 90°)'. Les paramétres Af et
Ay positionnant le faisceau réel par rapport au faisceau de référence apparaissent parmi
les diagnostics scalaires (angle theta et angle phi du faisceau);

- « retourner » la direction de propagation afin de régler la source pour le calcul
inverse. Les régles a appliquer sont:

Osource = 0+ 180° (I1.14.a)
Psource = (I1.14.b)
Absource = AF (IL.14.c)
Apsource = —Ap (I1.14.d)
AXguce = —AX (IL.14.e)
AYjource = AY. (I1.14.f)

b) Schéma

Le schéma de la figure I1.8 représente la chaine multiplexée de notre simulation. I
s’agit d’une chaine de type Mégajoules trés simplifiée. Ls source d’injection n’est pas
désaxée, et le multiplexage est introduit via le décalage du miroir d’injection du filtrage
multipassage.

Voici le schéma de la feuille Mirg :

1. Dans le cas contraire on peut faire apparaitre leur valeur en les démasquant au niveau du dictionnaire
miro.cfg.
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scpurc?
L

-
I

N N I N T T f

F1G. 11.8 — Schéma de principe de la chaine utilisée pour tester le multiplezage angulaire.

L’angle © est petit (0,01 rad dans notre ezemple). Les focales f et ' valent respectivement
20 et 10 m.

c) Données

Injection

0- Source « fichier » | Normale theta 270°
Fichier des résultats source
Fichier temporel source | /tmp/source.pui
Fichier spatial source /tmp/source.flu

1- Lame Epaisseur 0Om
Normale theta 270°

8- Propagateur Longueur 40 m
Indice non linéaire 0 m?/W
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Filtre multipassages

2- Filtre multipassages | Nom de ’élément multi
Indice non linéaire des lentilles 0
Type de traitement [0/1/2] 0
Focale gauche 20 m
Epaisseur de la lentille de gauche 107 m
Focale droite 20 m
Epaisseur de la lentille de droite 10719 m
Focale d’injection 20 m
Epaisseur de la lentille d’injection 10799 m
Focale de prélévement 20 m
Epaisseur de la lentille de prélévement 10719 m
Ecartement des trous suivant X 0,4 m
Diametre du trou 1 1 cm
Diameétre du trou 2 1 cm
Diameétre du trou 3 1 cm
Diameétre du trou 4 1cm
Position X du miroir d’injection 0,3 m
Position Z du miroir d’injection 10 m
Delta theta du miroir d’injection 0,286 478 8°
Position X du miroir de prélévement -0,3m
Position Z du miroir de prélévement 10 m
Delta theta du miroir de prélévement | —0,286478 8°
Cavité
10- Propagateur Longueur 10 m
Indice non linéaire 0 m*/W
3- Filtre « 4 trous » | Indice non linéaire 0 m?/W
Type de traitement [0/1/2] 0
Focale gauche 10 m
Focale droite 10 m
Epaisseur de la lentille de gauche | 1071% m
Epaisseur de la lentille de droite | 107! m
Ecartement des trous selon X 0,2m
Diamétre du trou 1 1 cm
Diamétre du trou 2 1 cm
Diameétre du trou 3 1 cm
Diameétre du trou 4 1 em
11- Propagateur Longueur 10 m
Indice non linéaire 0 m?/W
4- Miroir Nom de ’élément cavité
Coefficient de réflexion 1
Prélévement

12- Propagateur | Longueur 5m
Indice non linéaire 0 m?/W
5- Miroir Nom de ’élément prélév.t

Coefficient de réflexion 1
Normale theta 90°
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Fin de chaine

13- Propagateur Longueur 10 m
Indice non linéaire 0 m?/W
6- Lame Epaisseur 0m
8- Source rectangulaire | Normale theta 180°
Delta theta —0,5729577°
Position X —-0,3m
Parameétres Optique géométrique inverse 1D (a)
Optique géométrique 1D (b)
Nom de I’étude /tmp

d) Résultats

Aucun résultat de cette simulation n’est intéressant physiquement (le seul point cri-
tique était la construction de la chaine). Nous donnons & titre d’information la position

du faisceau selon X:

— pour le calcul inverse (au niveau de la source « fichier » de début de chaine:

3,003247.107* m;

— pour le calcul direct (au niveau de la source rectangulaire de fin de chaine):

0,299979 7 m.
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6. Diffraction : faisceau gaussien
a) Objectif

Un faisceau gaussien se propage dans le vide de fagon auto-similaire, c’est a dire que
le profil spatial transverse reste gaussien. Si on perturbe la phase de la source gaussienne
par une phase linéaire, le faisceau se décale en plus en espace. On considére le probléme
1D transverse suivant :

0F O

2k + = =0, E(z,0) = e %/
tho—+ 53 (z,0)=¢ (I1.15)
La solution s’écrit:
<m oz )2
1 2 r kur
E(z,z) = —1————2—;—exp <—z% - zam) exp —:_ﬁzk;;— . (I1.16)
B kLTQ ker

L’intensité maximale du faisceau décroit au cours de la propagation suivant une loi en

1+ 422/k?rt. Dans le cas d’une diffraction suivant n dimensions d’espace transverses,
le taux de décroissance de l'intensité maximale est en (1 + 422/k2r%)~™2 et le champ est
de la forme:

(z oz >
1 2 kur
E(z,2) = exp (—-’Lia— - zax) exp A UV (I1.17)

2z \ ? 2k 2z
1—2 1—2 2
kLT2 kLT

Le décalage du faisceau en z est équivalent a celui obtenu par un faisceau gaussien de
vecteur d’onde légérement désaxé par rapport au faisceau précédent dans la limite des
faibles angles.

b) Schéma

c¢) Données

1- Source circulaire | Energie 1,064467.1072 ]
Diameétre 0,01 m
3- Lame Fichier de masque de phase statique ~-pi+5*pi*y
4- Propagateur Longueur 1000 m
Parameétres Diffraction de Fresnel
Temps 0s;1s;1
X Om;1m;1
Y —-0,1m; 0,1 m; 1024
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d) Interprétation

La différence relative entre le tracé analytique calculé par Mathematica et celui obtenu
par Mird est de 'ordre de 107°. Des oscillations apparaissent sur le bord du domaine de
calcul. Elles sont dues & absence de conditions aux limites absorbantes.

IM'iT(ﬁ _ IAn. (V\'/,’m‘l)

0,25 — 1 1 T T 1 |
Miré —
02 L analytique
& 015 - -
&
3
—~ 071 B -
0,05 |- -
O A 1 1 | | Il L 1
—0,1 —008 —006 —004 =002 0 002 004 006 0,08 0,1
y (m)
FiG. 11.9 — Intensité analytique en trait continu et calculée en pointillés.
1,2.107% T T T T ] T T
10——05 _
8.107% -
6. 10—06 L
4.107% - 7
2.107% /\ 7
/\ A A Am WA NANN /\J\ /\ [\
AN B o VU
—2.107% | .
—4.10796 i ! 1 ) ] I | |
—0,1 —0,08 —0,06 —0,04 —0,02 0 0,02 0,04 0,06 0,08 0,1

y (m)

FiG. I1.10 - Différence absolue entre l'intensité analytique et celle calculée.
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7. Diffraction : imagerie
a) Objectif

Dans le cas de propagation de Fresnel dans des milieux d’indice radial et quadratique,
il est possible de ramener la propagation sur un ensemble de dioptres a la propagation
sur un dioptre équivalent en suivant le formalisme des matrices ABCD. A des distances
précises de la source, sur les plans images (ou B = 0), on retrouve la répartition spatiale
d’intensité. Le but de ce cas test est de vérifier la capacité de Miré & simuler 'optique
linéaire classique. On construit un cas test comprenant différentes optiques disponibles
dans la boite a outils de Miré et 'on vérifie les différentes propriétés d’imagerie.

On rappelle les 4 matrices ¢lémentaires pour le calcul des chaines optiques traitées par
Miro ;

— propagation dans un milieu d’indice n sur distance e:
(1 e/n\
M = ( 01 ) ; (11.18)

— propagation & travers une lentille infiniment mince de focale f:

M= ( _11/f ! ) ; (IL.19)

~ traversée d’un plan incliné d’un angle 6 entre deux milieux d’indices n; et ny:

cos(arcsin( % sin 6)) 0
plan tangentiel : M = 005‘9 s ; (11.20.a)
cos(arcsin(% sin 8))
. 10
plan sagittal: M = 01 ) (I1.20.b)

A titre d’exemple, on peut vérifier que pour un filtrage spatial (deux lentilles de focales
f1 et fy distantes de f) + fo) la matrice vaut:

—L A+ f
M:( K 1_% . (11.21)

Pour une lame d’indice n, d’épaisseur e, inclinée a Brewster, on a:

1 ev14n2 1 e\/1‘+n'2
plan tangentiel : M = < 0 7114 ) ; plan sagittal : M = 0 7112
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b) Schéma

c¢) Données

Tous les coefficients de non-linéarité Kerr des composants sont mis & 0. L'imagerie
est faite de telle sorte que les miroirs sont des plans images tangentiels de la source. Les
distances ont été calculées par le formalisme ABC D sous Mathematica. Dans ce cas test
les lentilles des filtres multi-passages sont prises infiniment minces. Il serait possible de le
modifier pour prendre en compte ’épaisseur des lentilles.

Injection:
1- Source rectangulaire | Normale theta 270°
Largeur 0,1 m
Hauteur 0,1 m

Exposant spatial en X 100
Exposant spatial en Y 100
2- Propagateur Longueur 40 m
Indice non linéaire 0 m?/W

Filtre multi-passages :

1- Filtre multi-passages | Indice non linéaire 0 m?/ WT
Type de traitement [0/1/2] 0
Focale gauche 20 m
Epaisseur lentille de gauche 1071 m
Focale droite 10 m
Epaisseur lentille de droite 1079 m
Focale injection 10 m
Epaisseur lentille d’injection 107 m
Focale prélévement 20 m
Epaisseur lentille de prélévement | 1071 m
Diamétre du trou 1 10 m
Diamétre du trou 2 101° m
Diamétre du trou 3 101 m
Diamétre du trou 4 1019 m
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Cavité:

Prélévement :

Fin de chaine:

1- Propagateur | Longueur 50 m
Indice non linéaire 0 m%2/W
2- Lame Epaisseur 100 m
Indice de réfraction 2
Indice non linéaire 0 m?2/W
Normale theta, 63,435°
3- Propagateur | Longueur 50 m
Indice non linéaire 0 m%/W
4- Filtre 1 trou | Indice non linéaire 0m?/W
Type de traitement [0/1/2] 0
Focale gauche 200 m
Focale droite 200 m
Epaisseur lentille de gauche | 107 m
Epaisseur lentille de droite 10710 m
Diameétre du trou 1019 m
5- Propagateur | Longueur 25 m
Indice non linéaire 0 m?/W
6- Lame Epaisseur 150 m
Indice de réfraction 1,5
Indice non linéaire 0 m?/W
Normale theta 45°
Normale phi 90°
7- Propagateur | Longueur 47,6352 m
Indice non linéaire 0m?/W
8- Miroir Coefficient de réflexion 1
1- Propagateur | Longueur 10 m
Indice non linéaire 0m?/W
2- Polariseur Epaisseur 100 mn
Indice de réfraction 2
Indice non linéaire 0m?/W
Normale theta 120°
3- Propagateur | Longueur 10 m
Indice non linéaire 0 m?/W
4- Lentille Epaisseur 1075 m
Indice non linéaire 0 m?/W
Normale theta 90°
focale 100 m
Type de traitement [0/1/2] 0
5- Propagateur | Longueur 44,036 7 m
Indice non linéaire 0 m?/W
6- Miroir Coefficient de réflexion 1
Normale theta 90°
1- Propagateur { Longueur 80 m
Indice non linéaire | 0 m?/W
2- Lame Epaisseur 10 %m
Indice non linéaire | 0 m>/W
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Parameétres de calcul pour le plan tangentiel :

Paramétres | Diffraction de Fresnel

T 0s;107%s; 1

X —-0,0m; 0,5 m; 8192
Y Om;0,1m;1
Seuil du rapport signal/bruit 0,1

Pas maximal de diffraction 10 m

Parameétres de calcul pour le plan sagittal:

Parameétres | Diffraction de Fresnel
T 0s;107%s;1
X Om;0,1lm;1
Y —0,0m; 0,5 m; 8192
Seuil du rapport signal /bruit 0,1
Pas maximal de diffraction 10 m

d) Interprétation

24 71 T T T T 1 24 T T T T T T
2,2 | — 2,2 —
g
. . 3 2 | -
3]
=
=]
1,8 — ) 1,8 _
I g
1,6 + — [ob] 1,6 - —
e~
>
1,4 = — 3 14 -
i -
=
L2 — 1,2 | ] —
1 { L. { L | | | 1 | 1 1 1 L1
8] 500 1000 1500 2000 2500 3000 3500 4000 4500 4] 500 1000 1500 2000 2500 3000 3500 4000 4500
z (m) z (m)

Fic. 11.11 — Evolution du taur de modulation en fonction de la distance de propagation
a gauche pour la direction de calcul tangentielle et a droite pour une direction de calcul

sagittale.

La matrice ABCD de la chaine s’écrit :

. 2,79082 — 0,044 7706 x d —39,9998 + 0,999998 x d
Plan tangentiel :

—0,0447 706 0,999 998
Dl sasittal 264321 — 0,044 7706 x d —27,9879 + 0,852 387 x d
an sagittas - —0,0447706 0,852 387

ou d est la longueur du dernier propagateur. L’image dans le plan tangentiel (respective-
ment sagittal) se forme & la distance:
~ 39,9998
0,999998

27,9879

_ 4 L= 2heY
0 (resp 0,852 387

= 32,8347)
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FIG. I1.12 - A gauche différence entre l'intensité dans le plan source et celle du plan image
tangentiel, a droite différence entre lintensité dans le plan source dilaté de 0,852 384 1 en
intensité et 1,179 18 en espace et intensité dans le plan sagittal (ces courbes contiennent
moins de points que la simulation).

et les grossissements dans ces deux plans sont respectivement :

r=279082 —0,044770 x 40 = 1 et

1,2. 1011

1011

& 1010

6. 1010

I (W/m?)

4.1010

21010

0

-0,2 -0,15 —0,1 —0,05

0,05 0,1 0,16

0,2

r=2,64321 —0,0447706 x 32,8347 = 1,173 18.

9.10'°
8.1010
7.1010
6.1010
5.1010

4.1010

I (W/m?)

3.1010
2.1010
1010

0

1

1

| |

-0,2 -0,15 -0,1 -0,05

0,1 0,15 0,2

Fic. IL13 — A gauche profil suivant x de l'intensité dans le plan image tangentiel et
droite dans le plan image sagittal.

[ évolution du taux de modulation dans la figure I1.11 montre le passage par les plans

images sur les miroirs de fond de cavité et de fond de prélévement. Il est difficile de
déterminer 1’écart entre la position du plan image tangentiel et le plan image sagittal.

Afin de faire la différence, on compare en fin de chaine les effets de la diffraction

dans les différents plans par un recalcul sur le propagateur de fin de chaine. Dans le plan
tangentiel, & 40 m du filtrage spatial, 'image doit étre identique a celle de la source, ce
que 'on retrouve & 1074 prés. Dans le plan tangentiel, & 32,834 7 m, I'image est identique
a celle de la source grossie d’'un facteur 1,173 18 & nouveau a 10™* preés.
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1,4.1011 T T T T T T 9.1010 L T T T T T
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Fic. I.14 — A gauche profil suivant y de Uintensité dans le plan image tangentiel et a
droite dans le plan 1mage sagittal.

e) Discussion

Si le volume focal, c’est a dire la zone ou la forme de faisceau est peu sensible a la
diffraction, était supérieur a I’écart entre les distances focales le cas test ne permettrait
pas de faire la différence entre les différentes imageries. La forme de la source avec un profil
supergaussien trés raide permet de déterminer une zone focale trés petite et les effets de
diffraction sont visibles d’une image a Pautre. Si on regarde un faisceau tangentiel dans
le plan sagittal, des oscillations apparaissent et de méme pour un faisceau sagittal dans
le plan tangentiel.

Le cas test demande un échantillonnage important suivant les deux directions de dif-
fraction. Pour une simulation 2D, il faudrait une pupille comprenant 8192 x 8192 points ce
qui est ponctuellement possible mais difficile & envisager pour des simulations de concep-
tion de chaine optique. Cet échantillonnage est dit & deux raisons qui peuvent intervenir
dans deux contextes différents mais qui reviennent au méme au niveau de contraintes
sur I'échantillonnage. Il s’agit simplement de résoudre la plus petite échelle spatiale des
faisceaux simulés. Cette échelle peut étre bien plus petite que la taille du faisceau ou de
la boite de calcul dans deux cas:

— Un faisceau admettant des variations d’amplitude importantes. Ceci est le cas pour
un faisceau super-gaussien avec une puissance élevée. La différence entre les deux rayons
pour lesquels I'intensité passe de 0,1 & 0,9 est de:

5 = _;Q ((Jn(g,l)) v (_@(_;)@)”‘1) (I1.22)

ou D est la largeur & mi-hauteur de la super-gaussienne et ¢ la puissance. Dans le cas
test, elle est de 0,1 et 'exposant est de 100, on a alors:

Sz =1,5.10"% m.

On doit mettre au moins 10 points pour échantillonner un gradient. Cela conduit & ’ordre
de grandeur du nombre de points choisi pour le cas test.
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— Une lentille multiplie la phase d'un faisceau par une phase quadratique en la dis-
tance & l'axe. Cette phase peut avoir de grandes variations si la pupille du faisceau est
grande. Le nombre de sauts de 7 est donné par:

D‘Z

N=37

(11.23)

ot D est la taille du faisceau, A la longueur d’onde du faisceau et f la focale de la lentille.
On doit par ailleurs remarquer que sur la lentille, la taille du faisceau initial a été multipliée
par 2 du fait du grossissement des filtrages spatiaux. Pour le cas test on a précisément :

N = 37987.

Ce nombre est plus grand que le nombre de pixels que 'on a effectivement retenu pour la
simulation (8192)!. En fait, nous sommes « sauvés » ici par le fait que la taille du faiscean
sur la lentille est bien plus petite que la boite: 0,2 m au premier passage et 0,11 m au
second (pour une boite de 2 m). Par conséquent le nombre de sauts de 7 sur ’étendue
réelle du faisceau (au 1€ passage) vaut environ 380.

f) Traitement en diffraction adaptative astigmate

Ce mode de calcul permet de s’affranchir de 1’échantillonnage des phases quadratiques
des lentilles. Ce résultat est obtenu en faisant varier la taille de la grille d’échantillonnage
(cette derniére reste réguliére mais cesse d’étre carrée) '

Lorsque l'on effectue le calcul en D2A; on choisit les parameétres de discrétisation
suivants:

Parameétres | Diffraction adaptative astigmate
T 0s;107%s:1
X —0,1 m; 0,1 m; 256
Y —0,1m; 0,1 m; 256
Seuil du rapport signal/bruit 0,1
Pas maximal de diffraction 10 m

Cet échantillonnage est insuffisant pour échauntillonner les flancs de la supergaus-
sienne!. Malgré cela, on peut aisément différentier le plan image tangentiel du plan image
sagittal en effectuant les recalculs correspondants.

1. C’est pourquoi le message de sous-échantillonnage apparait au bas de la fenétre Mire...

1. Comme nous sommes ici en présence d’astigmatisme, le mode D2A est préférable au mode DFA qui
ne permettrait pas de rendre compte des effets correctement, & moins d’employer un échantillonnage trés
serré (1024x1024).

1. Les gradients d’amplitude ne pourraient étre traités que par des maillages adaptatifs. Ceci ne peut
se concevoir que dans une méthode d’éléments finis. Cette amélioration qui ferait évoluer le code vers des
meéthodes de résolutions numériques peu classiques en optique mais bien familiéres du calcul scientifique
n’est pas a ’ordre du jour car les échelles caractéristiques que ’on souhaite simuler pour le laser Mégajoules
dans le cas de faisceaux cohérents ne nécessitent pas un échantillonnage trop élevé. Dans le cas de faisceaux
incohérents, un maillage adaptatif est de peu de secours dans la mesure ot deux échelles sont présentes
en tout point de la pupille. Dans ce cas le recours a une machine vectorielle disposant de beaucoup de
mémoire semble 'unique recours actuel.
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8. Diffraction : lentille
a) Objectif

On considére la focalisation par une lentille de focale f d’un faisceau gaussien. Afin
d’avoir un cas comparable a celui de la section 11.9, le faisceau est apodisé par une fonction
de troncature h(z). La traversée d’une lentille a pour effet de multiplier la donnée initiale
par un facteur de phase quadratique:

- - IZ
E(2,0) = VIpe " 5 h(z), (11.24)
h(z) =1 pour |z|€[-A,A4], h(z) =0 sinon.

Au foyer, c’est a dire aprés une propagation sur une distance f, le champ se calcule par
une transformée de Fourier:

'n./Z 12 b B P 0T
E(x,f) = /1 (XZ_) e—zﬁgf_ e—yl/rlh(y)emé‘gf{dy (11_25)
<

ol n est la dimension d’espace suivant les directions transverses diffractantes. En dimen-
sion 1, on obtient :

1/2 22 A ‘ »
Ble,f) = \/f(; (—)\1—) e_l%f— / \/Ivoe—yz/ﬂh(y)emﬂz}f_dy
o —A

A koxr A koxr
i —Erfl =2 -
Erf(r 12f> rf( " 12f>

_ (%)1/2T46-1£g;—2(1—153;—2)
4

b) Schéma

circa

¢) Données

1- Source circulaire Energie 1,064467 kJ
Longueur d’onde 1 pm
Diamétre 0,01 m
3- Lentille Epaisseur 107 % m
Indice non linéaire 0 m?/W
Focale 18,0337 m
Type de traitement [0/1/2] 0
5- Apodiseur Analytique | Définition analytique des trous | D((0,0),0.0025;1)
6- Propagateur Longueur 18,0337 m
Indice non linéaire 0 m%/W
Paramétres Diffraction de Fresnel
Temps 0s;107%s; 1
X Om;1m;1
Y —-0,1m; 0,1 m; 8192
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d) Interprétation

La différence relative entre le tracé analytique calculé par Mathematica et celui obtenu
par Mird est de Pordre de 1072, La présence du bord dur de I’apodiseur rend les spectres
trés larges. Il faut donc un nombre de points de discrétisation relativement élevé afin de
pouvoir échantillonner a la fois 'espace et ’espace de Fourier. L’imagerie rigoureuse en
deux dimensions se révéle par conséquent couteuse en échantillonnage pour des faisceaux
comprenant de forts gradients.

3,5.1013 T T ] T l T | T
13 Mir¢ —
3.10 analytique - 7|

2,5.10 -

™

2.10%3 | -

0 L — - b, - L

—0,1 —008 —006 —004 —002 0 002 004 006 008 01
Yy (m)

Fi1G. 11.15 - Intensité analytique en trait continu et calculée en pointillés.
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—2.101

—4.104
—0,1 —0,08 —0,06 —004 —0,02 0 002 004 006 0,08 0,1

F1G. 11.16 — Différence absolue entre intensité analytique et celle calculée.
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9. Diffraction : lentille non linéaire
a) Objectif

Un faisceau gaussien de forte intensité subit a la traversée d’une lame de verre mince
d’épaisseur e une auto-modulation de phase qui agit comme une lentille au centre du
faisceau. Afin de ne garder que la partie focalisante du faisceau, il suffit d’apodiser le
falsceau a la sortie de la lame par un trou dur de taille plus petite que celle du faisceau.
En négligeant la diffraction dans la lame, la donnée initiale est donc le produit du faisceau
gaussien par le masque de phase quadratique et de la fonction de troncature h(x):

—2:2/7‘2

E(L,O) — 106—12/r26~ik07106 eh< ) [Oevzz/ e~zko'y[o(1 212 13 )ch< ) (IIQﬁ)

avec
h(z) =1 pour |z|€[-A,A], h(z)=0 sinon,
et ou ky est le vecteur d’onde dans le vide. La distance focale est donc:

Tz

= . .27
46’)/[() ( )

Au foyer, c’est a dire aprés une propagation sur une distance f, le champ se calcule par
une transformée de Fourier:

E(x.f) = \/7(/\2) 6_1‘%f_ e“yz/rzh(y)em&gf_ydy (11.28)

oil 1 est la dimension d’espace suivant les directions transverses diffractantes. En dimen-
sion 1, on obtient :

b) Schéma
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c¢) Données

1- Source circulaire Energie 1,064 467 kJ
Longueur d’onde 1 pm
Diamétre 0,01 m
3- Lame Epaisseur 103 m
Indice non linéaire 107" m?/W
5- Apodiseur Analytique | Définition analytique des trous | D((0,0),0.0025;1)
6- Propagateur Longueur 18,0337 m
Parameétres Diffraction de Fresnel
Temps 0s;107%s;1
X Om;1m;1
Y —0,1m; 0,1 m; 8192

d) Interprétation

La différence relative entre le tracé analytique calculé par Mathematica et celui obtenu
par Mird est de I'ordre de 1072, L’approximation de I'intensité gaussienne sur la pupille de
I’apodiseur par une parabole n’est pas a l'origine de I'erreur car le résultat est comparable
& celui obtenu avec une lentille statique comme le montre la section I1.8. L’erreur vient
de la discrétisation et de la difficulté a propager rigoureusement un faisceau comprenant
de forts gradients.

4.10%3 T I T 1 T T T T

. Mirg —

13 L

3,5.10 analytique
3.101 F 7

2,5.101 7

e

EQ. 10 B

~,5.101% - 7

1013 4

5. 101‘2 L ]
0 ] _ —_— e ! ]
—0,1 —0,08 —008 —004 —002 0 002 004 006 008 01

Y (m)

F1G. 11.17 — Intensité analytique en trait continu et calculée en pointillés.
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—10'?
-0,1 —0,08 —0,06 —0,04 —0,02 0 0,02 0,04 0,06 0,08 0,1

Fic. I1.18 — Différence absolue entre 'intensité analytique et celle calculée.
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10. Diffraction de Fresnel adaptative : focalisation
d’un faisceau gaussien
a) Objectif

Le but de ce cas test est de vérifier le bon fonctionnement du mode de calcul « dif-
fraction de Fresnel adaptative » dans un certain nombre de cas de figure. La situation
choisie est la focalisation d'un faisceau gaussien, qui peut étre résolue analytiquement,
pour 'amplitude comme pour la phase. Plusieurs tests spécifiques seront effectués ici:

— le fait que 'on récupére bien une courbure nulle et un facteur d’homothétie de 1
apres le passage d’un systéme afocal de grandissement 1;

— que la courbure du front d’onde [28] devient nulle au bon endroit, en un point qui
n’est pas le foyer mais qui le précéde quelque peu;

— que le code se comporte normalement au passage d’un miroir situé a 'intérieur de
la zone de focalisation.

L’expression du champ créé par un faisceau gaussien se propageant dans la direction
z est [29]

E = EO;%) exp <—z2 szz) (% + y2)> exp (i®(z)) exp <~‘7":;(:')/2> , (I1.29)

R(z) = = {1 v (”—”Zaﬂ , (I1.30)

P2 (2) = ph [1 + (%)2} : (11.31)

‘*t B(2) = Arctan (%) | (11.32)

po étant le col du faisceau (i.e. sa taille minimale). Dans les formules (I1.29) a (I1.32),
lorigine des z est située au point O ou la taille du faisceau est minimale, et oi la courbure
de la phase est nulle. Ce point ne coincide pas avec le foyer F' de la lentille (méme s’il en
est. proche). Pour déterminer la distance entre F' et O on écrit que le déphasage induit

par la lentille est
exp zk—L( 248 ).
2f

La position z, de la lentille (par rapport a O) vérifie donc f = —R(z;). On déduit finale-
ment que

f=lzl=f (%)2 : (11.33)

avec pg X p(f) =~ \f/m.
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b) Schéma

c) Données

0- Source circulaire | Diamétre 2.10?m

1- Lentille Epaisseur 10~° m
Indice non linéaire 0 m?2/W
Focale 10 m
Type de traitement [0/1/2] 0

8- Propagateur Longueur 9,998 650 578 m
Indice non linéaire 0 m?/W

2- Lame Nom de 1’élément test
Epaisseur 0Om

9- Propagateur Longueur 1,34942 mm
Indice non linéaire 0 m?/W

3- Lame Nom de ’élément foyer
Epaisseur 10 m
Indice de réfraction 2
Indice non linéaire 0 m?/W

4- Miroir Coefficient de réflexion 1
Normale theta 135°

10- Propagateur Longueur 5m
Indice non linéaire 0 m?/W

5- Lentille Epaisseur 10~° m
Indice non linéaire 0 m?/W
Normale theta 90°
Focale 10 m
Type de traitement [0/1/2] 0

6- Lame Nom de I’élément sortie
Epaisseur 0 m
Normale theta 90°

[ Paramétres Diffraction de Fresnel adaptative

Temps 0s;4.107% 551
X ~0,25 m; 0,25 m; 128
Y ~0,25m; 0,25 m; 128
Afficher I’animation
Pas maximal de diffraction 0,2 m

d) Interprétation

La figure I1.19 représente la courbure du faisceau et le facteur d’homothétie, affichés
en fonction de la distance mécanique. On pourra vérifier
— que la courbure est nulle avant, aprés le systéme afocal, ainsi qu’au voisinage du
foyer (et notamment sur la lame « test »);
— que le facteur d’homothétie vaut 1 avant et apres le systéme afocal, et 5,391 36.10*
au foyer ; ceci est conforme avec la valeur théorique, donnée par NAf/D? (D étant la taille
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Courbure (m"i-13)

3 Grandissement
2::38 ’ 2.5008+00 1e+00 7 1.0006+00
1e+00 o 4 9e-01 \ /
0e+00 p— Be-01
-1e+00 S - \ /
7e-01 7
-2&+00 f \ /
~3e+00 / be-01 \
~de+00 { Se-01 \\ e
~5e+00 de-01 X £
-be+00 3e-01
~-7e+00 \
~82+00 2e-01 \\
~92+00 1e-01
-1le+01 -1,000e+01 0e+0Q0 5.391e-03
0e+00 1e+01 2e+01 3e+01 e+0e+00 1e+01 2e+01 3e+01 ©
D_meca {(m) D_meca {m)

F1G. I11.19 — Rayon de courbure, et facteur d’homothétie, tracés en fonction du numéro du
composant dans la chaine. On vérifiera que la courbure est nulle avant et apres le systéme
afocal, ainsi qu’au voisinage du foyer. Le facteur d’homothétie vaut 1 avant et apres le
systéme afocal.

de la zone échantillonnée, N le nombre de pixels par dimension, f la focale de la lentille
et A la longueur d’onde).

La figure I1.20 représente la phase (non dépliée) au niveau de la lame de verre « test ».
La courbure de la phase est bien nulle & cet, endroit (du moins la ou il y a de la lumiére)
ce qui valide le code.

Phase X 12e+00 test
test coupe X=0,000e+00
26400 Phase X
£=0,000e+00
1,559%+00
grille=64x6d ©
xmin=-1,348e-03 1e+00
xmax=1,348e-03
ymin=-1,348e-03
ymax=1,348e-03
% Y
0e+00 0,000e+00
-2e-03 -18-03 0e+00 1e-03 2e-03

zmin=0,000e+00
zmax=1,559e+00

e—
Y

F1G. 11.20 — Phase du faisceau, au niveau de la lame « test ». Cette lame (d’épaisseur
nulle) a été placée avant le foyer, de telle sorte que la courbure du front d’onde y sout
nulle.

Remarque : on peut aussi faire tourner ce cas test en diffration adaptative astigmate.
On obtient en fin de chaine le méme résultat. Par contre la courbure de la phase sur la
lame « test » n’est pas nulle: elle compense le tenseur de courbure du faisceau qui est lui
aussi non nul.
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11. Diffraction de Fresnel adaptative : reconstruction
d’un trou de filtrage
a) Objectif

Le composant « trou de filtrage » est traité differemment par Mird selon que 1'uti-
lisateur choisit le mode de calcul « diffraction de Fresnel » ou « diffraction de Fresnel
adaptative ». En diffraction de Fresnel ordinaire, le code effectue la transformée de Fou-
rier du champ incident, coupe les fréquences spatiales les plus élevées tout en appliquant
au spectre le masque sphérique ad hoc, puis effectue une deuxiéme transformée de Fou-
rier. En diffraction de Fresnel adaptative, Miré décompose le composant en 5 éléments
successifs : lentille de focale f,, propagateur de longueur f;, apodiseur, propagateur de
focale f, et lentille de focale fy; il propage le faisceau par diffraction adaptative dans ces
D composants.

Le but de ce cas test est de comparer le résultat du passage d’un trou de filtrage par
les deux méthodes. Un troisieme test consistant & reconstruire « & la main » le trou de
filtrage sera par ailleurs effectué. La source choisie est une source « tavelure » de large
spectre spatial, de fagon a ce que l'effet du filtrage soit important (perte des deux tiers
de la puissance).

b) Schéma

Selon le cas 'utilisateur reliera par un propagateur la source « tavelure » avec le filtre
1 trou (cas (a) et (b)), ou bien avec la lentille « entrée » (cas (c) ).

¢) Données

0- Source « tavelure » Exposant spatial en X 10 ]
Exposant spatial en Y 10
Largeur spectrale spatiale 500 m~!
Exposant spectral 2
Fraction d’énergie bruitée 1

1- Filtre spatial 1 trou | Indice non linéaire 0 m?/W
Type de traitement [0/1/2] 0
Focale gauche 10 m
Focale droite 10 m
Epaisseur de la lentille de gauche 1079 m
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Epaisseur de la lentille de droite 107° m
Diameétre du trou 1 mm

2- Lame Nom de ’élément, S filtre
Epaisseur 0Om

3- Lentille Nom de I’élément entrée
Epaisseur 107° m
Indice non linéaire 0 m?/W
Focale 10 m
Type de traitement [0/1/2] 0

8- Propagateur Longueur 10 m
Indice non linéaire 0 m?/W

4- Apodiseur analytique | Définition analytique des trous D((0,0),1e-3;1)

9- Propagateur Longueur 10 m
Indice non linéaire 0 m?/W

5- Lentille Nom de ’élément sortie
Epaisseur 1079 m
Indice non linéaire 0 m%2/W
Focale 10m
Type de traitement [0/1/2] 0

2- Lame Nom de I’élément S afocal
Epaisseur 0m

Parameétres Diffraction de Fresnel (a)

Diffraction de Fresnel adaptative (b), (c)

Temps
X
Y

Afficher I'animation

0s5;4.107%s; 1
—0,25 m; 0,25 m; 128
—0,25 m; 0,25 m; 128

d) Résultats

L’énergie de la source est 1 J. Voici I’énergie en sortie du trou de filtrage ou de ’afocal :
Cas (a) (Trou de filtrage en diffraction de Fresnel): 0,346 284 J;
Cas (b) (Trou de filtrage en diffraction de Fresnel adaptative) : 0,346284 J;
Cas (c) (Systéme afocal muni d’un apodiseur, en diffraction de Fresnel adaptative):

0,346 284 J.

Conclusion : les trois méthodes donnent le méme résultat.
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12. Diffraction de Fresnel adaptative: cas complé-
mentaires

Les exemples de ce paragraphe ne présentent aucun intérét physique. Leur seul but
est de fournir pour la maintenance du code une batterie de cas tests la plus exhaustive
possible. La mise en ceuvre de la diffraction de Fresnel adaptative s’est en effet avérée
relativement complexe en raison de la grande diversité des situations possibles et des trai-
tements spécifiques qu’il est nécessaire de leur associer. Aussi les cas que nous présentons
ici recherchent-il volontairement des situations quelque peu « exotiques ».

a) Cas d’une lentille de grande focale

i) Objectif

2p

S G

En fonctionnement standard, la diffraction de Fresnel adaptative utilise une trans-
formation conforme de maniére & « adapter » la taille de la boite d’échantillonnage afin
qu’elle suive la taille du faisceau. Au voisinage du foyer toutefois, on arréte la transfor-
mation conforme, le diamétre de la zone discrétisée restant alors constant. La distance p
a laquelle a lieu ce basculement est donnée par

Af?

— 11.34
AzD’ ( )

p =
f étant la focale de la lentille, D le diamétre initial de la zone échantillonnée et Az la
taille de pixel initiale. On voit donc que lorsque la focale f tend vers +o0, p croit comme
{2 Au-dela d’une certaine valeur de f, p sera supérieur & la focale de la lentille: dans ce
cas, la diffraction adaptative ne pourra plus fonctionner selon le schéma traditionnel.

Le choix effectué dans ce cas par Miré est de ne pas adapter la boite, et de traiter
le passage de la lentille via un masque de phase comme pour la diffraction de Fresnel
ordinaire. En effet ce cas de figure est celui ou le masque de phase est suffisamment peu
important pour étre échantillonnable. Dans cette configuration, la focale de la lentille est
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supérieure a la distance caractéristique de diffusion d’un pixel dy,ox = DAz/). Comme il
est expliqué dans la documentation [14, p. 31], la taille de la boite d’échantillonnage va
alors augmenter & partir de z = dpay, afin de suivre ’évolution des plus hautes fréquences
spatiales prises en compte par la simulation. Dans notre cas de figure, la taille de la boite

évoluera donc indépendamment de la lentille que nous avons placée au départ.

it) Schéma

i) Données

boite
adaptative

0- Source circulaire | Diamétre 0,1 m
1- Lentille Epaisseur 107% m
Indice non linéaire 0m?/W
Focale 5 km
Type de traitement [0/1/2] 0
5- Propagateur Longueur 1 km
Indice non linéaire 0m?/W
2- Lame Epaisseur 0 m
6- Propagateur Longueur 4 km
Indice non linéaire 0 m?/W
3- Lame Epaisseur Om
Paramétres Diffraction de Fresnel adaptative
Temps 0s5;107%s; 1
X —0,25m: 0,25 m; 64
Y —0,25m; 0,25 m; 64
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w) Interprétation

La derniére lame se situe au foyer de la lentille. La taille de la boite d’échantillonnage
a commencé a croitre.

Voici les parameétres scalaires que I'on peut noter sur les différents composants ou des
résultats ont été demandés:

Paramétre Source (0) | Propagateur (5) | Lame (2) | Lame (3)
Courbure (m™!) 0 0 0 —2.10*
Grandissement, 1 1 1 1,347 840

| Phase maximale (rad) 0 19,27 14,56 1,571

La phase maximale est controlable en visualisant la nappe « phase redressée ».

b) Imagerie par des lentilles de grande focale
i) Objectif

Dans ce cas test, nous utilisons des lentilles de grande focale (5 km). Nous plagons
un objet (source supergaussienne) a la distance f de la premiére lentille. Nous plagons la
deuxiéme lentille & la distance 2f de la premiére. Enfin, nous recherchons une image a la
distance f de la derniére lentille.

Comme dans le cas test précédent, nous allons observer une évolution de la boite

quelque peu inattendue. Toutefois nous retrouverons bien une image de la source de
départ a la cote 4f.

it) Schéma
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ii1) Données

0- Source circulaire | Diamétre 0,2 m
Exposant spatial 25

4- Propagateur Longueur 5 km
Indice non linéaire 0 m?/W

1- Lentille Epaisseur 10 °m
Indice non linéaire 0 m%/W
Focale 5 km
Type de traitement {0/1/2] 0

5- Propagateur Longueur 10 km
Indice non linéaire 0 m2/W

2- Lentille Epaisseur 107°m
Indice non linéaire 0m?/W
Focale 5 kin
Type de traitement [0/1/2] 0

6- Propagateur Longueur 10 km
Indice non linéaire 0 m?/W

3- Lame Epaisseur 0 m

Parameétres Diffraction de Fresnel adaptative
Temps 0s;107%s;1
X ~0,25 m: 0,25 m; 64
Y ~0,25 m; 0,25 m; 64

iv) Résultats

Nous donnons tout d’abord ’évolution de la courbure (& gauche) et du grandissement
du faisceau (a droite), en fonction du numéro de 'élément. On voit donc que ces para-
meétres ne sont pas directement liés aux positions et aux focales des lentilles que nous
avons placées.

le-04

Oe+00

-1e-04

~2e-04

0e+00 1e+00 2e+00 3e+00 4e+00 5e+00 6e+00 7e+00

Courbure (m~£-13)

1.000e-04 2e+00

\

\ o/

le+0Q0

\/

~2,000e-04 Oe

Element

Grandissement

Element

2.000e+00

1,000e+00

+00
0e+00 1e+00 2e+00 3e+00 4e+00 5e+00 6e+00 7e+00

Afin de vérifier 'imagerie, nous donnons maintenant le profil d’intensité (a4 gauche)
et la phase vue en coupe (& droite) de 'objet (en haut), ainsi que les mémes paramétres
pour I'image (en bas).
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circ.
circ, coupe Y=0,000e+00
Phase X
ie+00 T
t=0,000e+00
grille=6ax6d : !
- -
xmin=-2,500e-01 0e+00 : s : 0.000e+00
xmax=2,500e-01 ! !
ymin=-2.500e-01 :
¢ i
ymax=2,500e-01 : :
i
-1e+Q0 - : -
Zmin=0. 0008+ 00 ~3e-01 -2e-01 -1e-01 -3e-17 1e-01 2Ze-01 3e-01
N x
zmax=8. 051e+ 09
coupe Y=0,000e+00
Phase X
1e+01 T T T
£=0.,000e+00 i i i
i i i
i i i
grille=64x64 i l
0e+00 6.790e-01
xmin=-3,370e-01 i \J
xmax=3.,370e-01 1
_1e+01 H i —
ynin=-3,370e-01 : : ! ' “t.Etlecol
ymax=3,370e-01
-2e+01 . } :
Zmin=3.398e-01 ~de-0+38-012e-0t1le-0Me+001e-012e-013e-014e-01
. X
zmax=6,318e+09

On peut donc constater que la phase de l'image est plate (du moins 1a ou il y a de
la lumiére). Ceci confirme le fait que I'image se situe bien la ol on l'attend. Par contre,
la forme du profil d’intensité est dégradée. En réalité, ceci est di & une insuffisance de
'échantillonnage!. A titre indicatif, voici P’allure du faisceau sur la 17€lentille:

coupe Y=0.000e+00

1Ex21
2e+10
1,437e+10
le+10
0e+00 - - - 2.517e+05
—~d4e-0t3e-0r2e-0r1le-010e+001e-012e-01 3e-01de~01

X

1. La taille de la boite est modifiée alors que le champ est le méme: tout se passe donc comme si on
avait rééchantillonné le faisceau.
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c) Aberrations chromatiques en diffraction de Fresnel adaptative
i)  Objectif

M:ire peut traiter les aberrations chromatiques des lentilles: il suffit d’entrer comme
paramétre d’indice un fichier (afin de permettre a I'indice n de dépendre de la longueur
d’onde). Dans ce cas, la focale f dépendra de la longueur d’onde selon la loi

(n — 1) f indépendant de la fréquence ; (I1.35)

Le paramétre « focale » correspond a la focale de ’harmonique fondamentale ®.

Dans I’exemple ci-dessous, la paire de lentilles constitue un systéme afocal pour ’har-
monique, mais non pour la fréquence fondamentale. L’adaptation de la boite est calculée
a partir de la fréquence fondamentale: par conséquent le facteur d’homothétie en fin de
chaine ne vaut pas 1. On vérifie par contre que la phase de I’onde harmonique en sortie
est plate, contrairement a celle de 'onde fondamentale.

ii) Schéma

iti) Données

0- Source circulaire | Nom de I'élément fondam.
Exposant spatial 80

1- Source circulaire | Nom de ’élément harm.
Longueur d’onde 0,526 5 um
Exposant spatial 80

3- Lentille Nom de 1’élément entrée
Epaisseur 107° m
Indice de réfraction indice_dichr
Indice non linéaire 0 m?/W
Focale 100,2004 m
Type de traitement {0/1/2] 0

9- Propagateur Longueur 200 m
Indice non linéaire 0 m?/W

1. La formule (IL.35) n’est pas valable dans le cas des lentilles épaisses (les lentilles épaisses présentant
des aberrations chromatiques ne sont pas traitées correctement par Mird). Par ailleurs le module « dif-
fraction de Fresnel adaptative » de Mird ne traite pas correctement la traversée d’un milieu dont 'indice
dépend de la longueur d’onde.
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4- Lentille Nom de l’élément sortie ]
Epaisseur 1079 m
Indice de réfraction indice_dichr
Indice non linéaire 0 m?2/W
Focale 100,2004 m
Type de traitement [0/1/2] 0
5- Lame Epaisseur 0m
Paramétres Diffraction de Fresnel adaptative
Temps 0s;4107%s; 1
X —0,25 m: 0,25 m; 256
Y 0Om;0,25m;1

Le fichier indice_dichr sert & fournir un indice qui dépend de la longueur d’onde!.

iv) Interprétation

En sortie du systéme de lentilles, le facteur d’homothétie vaut 0,996. La figure 11.21
représente la phase redressée de onde fondamentale et de 'onde harmonique. Comme
attendu, on trouve une phase quadratique pour 'onde fondamentale et une phase plane

pour I'harmonique.

Phase X

,,//F N

1.571e+00

~1.,402e+00

00
-3e-01 —2e-01 -1e-01 -3e-17 1e-01 2e-01 3e-01

(a) Onde fondamentale

X

2e+00

1e+00

Oe+0

Phase X

(b) Onde harmonique

F1G. I1.21 ~ Phase redressée de chacune des harmoniques a la sortie du systéme de lentilles.
La phase de I’harmonique est plate, car le systéme est afocal pour cette longueur d’onde.

1.11 a la forme suivante: 2 2 1 1 1 1 0 | X=0.5265e-6 1.053e-6 | D=1 | 1.5 1.499 | D=2 |
1.5 1.499 , le symbole « | » désignant le retour & la ligne.

0
-3e-01 -2e-01 -1e-01 -3e-17 1le-01 2e-01 3e-

X

1,57de+(

0, 000e+(
01



13. Diffraction adaptative astigmate : passage de lentille cylindriques 187

13. Diffraction adaptative astigmate : passage de len-

tille cylindriques
a) Objectif

L’objectif de ce cas test est de tester le traitement de l'astigmatisme en mode D2A.
On utilise pour ce faire des lentilles cylindriques qui permettent de créer un faisceau trés
astigmate. On vérifie que pour une propagation sur une distance 2f, f étant la focale de
la lentille, on retrouve le profil de faisceau initial. Cette propriété doit étre vérifiée quelle
que soit l'orientation de la lentille cylindrique (notamment lorsque ’axe neutre n’est pas
paralléle & 'un des vecteurs de base de la grille de discrétisation).

b) Schéma

¢) Données

0- Source rectangulaire | Largeur 0,25 m
Hauteur 0,25 m
Exposant spatial en X 16
Exposant spatial en Y 16

1- Multiplexeur Scénario 0 10*1 0

2- Lentille cylindrique | Epaisseur 1 nm
Indice non linéaire 0 m*/W
Orientation a
Focale 10 m
Type de traitement [0/1/2] 0

3- Lame Epaisseur 20 m
Indice 1,5
Indice non linéaire 0 m?/W

4- Lentille cylindrique Paramétres identiques a la

lentille n° 2, sauf:

Orientation [ Ji]

Parameétres Diffraction adaptative astigmate N
Temps 0s;4.107%5; 1
X —0,25 m; 0,25 m; 64
Y —0,25 m; 0,25 m; 64
Afficher 'animation

Trois cas seront, successivement testés:

—cas (a): o= [ =20°
—cas (b): a = =45°;

— cas (¢): a = 45°, = 20°.
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d) Interprétation

On constate aprés N passages dans le doublet de lentilles que le faisceau conserve bien
son allure carrée. Toutefois, la discrétisation du faisceau est souvent bruitée. Ce bruit est
di au fait que le faisceau n’est pas discrétisé sur la méme grille qu’au départ. Notons que
le bruit apparait dés le premier passage mais qu’il n’augmente pas sensiblement ensuite.
En outre on peut diminuer le bruit en augmentant la résolution (nombre de pas d’espace).

rect,

t=0,000e+00

grille=64x64

xmin=-2,500e-01
xmax=2,500e-01

ymin=-2,500e-01
ymax=2,500e-01

zmin=7,386e+01
zmax=4,276e+09

rect,

£=0,000e+00

grille=64x64

xmin=-2,500e-01
xmax=2,500e-01

ymin=-2,500e-01
ymax=2,500e-01

zmin=8, 934e+00
zmax=4,092e+09

rect.

t=0,000e+00

grille=6d4x64

xmin=-2,500e-01
xmax=2, 500e-01

ymin=-2,500e-01
ymax=2,500e-01

zmin=1,970e+01
zmax=4, 316e+09

F1G. I11.22 — Allure du faisceau apres 11 passages dans le doublet de lentilles cylindriques.
En haut & gauche, cas (a) (deuz lentilles orientées a 20°); en haut & droite, cas (b)
(deuz lentilles orientées & 45°); en bas, cas (c) (la premiére lentille est orientée & 45°et
la seconde a 20°).

Le cas a 45 degrés (cas b) est le cas le moins bruité car la boite est quasiment la méme
qu’au départ. Le cas ou les deux lentilles ne sont pas paralléles (cas ¢) est le plus bruiteé.
Notons que dans ce cas les axes propres de la matrice de courbure sont redéfinis un grand
nombre de fois. La simulation fonctionne bien car cette redéfinition a lieu & un moment
ot la boite est carrée. Par contre, si ’on change la distance entre les deux lentilles dans le
cas (c) (si par exemple on la porte a 50 m), des problémes se produisent: la boite devient
instable, le faisceau devient trés bruité et finalement la simulation s’arréte aprés quelques
tours.
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14. Utilisation du composant « échantillon »
a) Objectif

L’objectif de ce cas test est de fournir un exemple pratique d’utilisation du composant
« ¢chantillon ». Ses principales fonctionnalités (rééchantillonnage du faisceau, changement
de mode de calcul conservatif ou non conservatif) seront présentées.

L’exemple de calcul choisi est une chaine Pétawatt stylisée. A époque oul ce cas test
a été rédigé (avril 1999), le mode de calcul « modulation de phase » n’était opérationnel
que pour certains composants. L’exemple qui suit tient compte de cette circonstance,
dans la mesure ou 'on fait appel a des composants « échantillon » de maniére & utiliser
le mode modulation de phase dans la partie de la chaine ou c’est possible, et d’autres
modes de calcul 1a ou ce n’est pas possible. Il est évident qu’a terme le méme calcul sera
réalisable (quasi)exclusivement en mode modulation de phase, et donc beaucoup moins de
composants « échantillon » seront nécessaires. Toutefois, il n’est pas prévu de faire évoluer
ce cas test. Le but est que 'utilisateur comprenne & travers cet exemple la philosophie du
composant échantillon. Il pourra ensuite adapter cette philosophie en fonction de 1’état
d’avancement du code Miré & un moment donné.

b) Schéma

c¢) Description du schéma

La chaine optique commence par une impulsion bréve (durée a mi-hauteur 150 fs).
Cette impulsion est étirée en mode modulation de phase par un systéme de deux réseaux.
Une distance négative a été placée entre ces deux réseaux: a terme il sera possible de
simuler vraiment un étireur au moyen d’un filtrage spatial.

Aprés étirement on s’apercoit que la durée de 'impulsion est trés inférieure a la taille
temporelle de la boite. On met en ceuvre un rééchantillonnage pour ne pas gacher de
la mémoire. Une autre solution eiit été d’ajuster la boite de départ (en I’agrandissant).
Toutefois la mise au point du calcul est plus difficile si I’on procéde ainsi. Le composant
échantillon utilisé dans cette optique peut donc apporter une aide non négligeable a la
mise au point d’un cas.

On notera qu’on utilise d’abord un autre échantillon pour basculer en mode spectre
large. Ce choix est effectué pour avoir une interpolation temporelle de type P1. En effet,
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dans tous les autres modes de calcul la réinterpolation est P0O. Une autre fonctionnalité
du composant échantillon est donc de pouvoir contourner certaines conventions imposées
par les développeurs de Mird...

Apres D'étirement, I'impulsion est amplifiée (aprés un filtrage qui agrandit la taille
du faisceau). A la date du 9 avril 1999 ni le filtrage spatial ni amplificateur n’étaient
disponibles en mode modulation de phase. Le calcul est donc effectué en mode diffraction
de Fresnel. Notons que dans ce mode de calcul un modéle de type « Frantz & Nodvik
adapté » permet de tenir compte de la dérive de fréquence lors de 'amplification. A terme
I'amplification en mode « modulation de phase » n’utilisera pas ce modéle; on fera appel
4 une routine numérique, moins rapide mais plus exacte. Si toutefois, avec les futures
versions de Mirg, I'utilisateur désire quand méme utiliser le modéle « Frantz & Nodvik
adapté » pour un calcul en modulation de phase, il devra faire appel & un composant
« échantillon » pour passer provisoirement en mode « diffraction de Fresnel ».

L’amplification a donc lieu en mode « diffraction de Fresnel ». Ensuite, on repasse en
mode modulation de phase pour la compression. Au cours de ce passage on récupére le
tableau des fréquences instantanées ainsi que la dérive de fréquence qu’on avait laissés au
précédent échantillon: ceci est vrai parce que les changements de mode sont conservatifs.
Si I’on était passé en diffraction de Fresnel pas un changement non conservatif le tableau
des fréquences instantanées aurait été détruit. Au cours de l'amplification en mode dif-
fraction, la dérive de fréquence n’a pas été modifiée. Si le calcul avait été effectué en mode
modulation de phase (bien sar il eiit fallu que ce soit possible), on aurait observé de légéres
modifications (négligeables toutefois) a cause de la dispersion dans les matériaux.

Aprés la compression par réseau on effectue un doublement de fréquence de I'impulsion
comprimée. Ce doublement ne peut actuellement étre effectué en modulation de phase (la
routine n’existe pas). Donc on passe en mode spectre large (pour tenir compte de la
largeur de bande lors de la compression). Notons que dans ce cas le changement de mode
est non conservatif: en effet il n’est pas prévu de revenir en modulation de phase derriére.
De plus, si les réseaux de compression n’avaient pas été bien alignés, on aurait pu avoir
une dérive de fréquence résiduelle au niveau du KDP. Avec un changement conservatif
la valeur du paramétre de dérive de fréquence aurait été ignorée lors de la conversion,
aboutissant donc & un résultat faux. Lorsque I'on fait un passage non conservatif la dérive
de fréquence résiduelle est traduite sous forme d’une phase temporelle qui est appliquée
au champ. De cette facon on est siir que les effets de cette phase seront pris en compte
par la conversion spectre large (& condition toutefois que ’échantillonnage soit correct).

La paire de réseaux située derriére le KDP est en fait une astuce d’exploitation. Nous
souhaitons effectuer une focalisation par un calcul en D2A (voir infra). Le probléme est
que les calculs en DFA et D2A sont uni-harmoniques: les tailles de boite sont évaluées
en fonction de la longueur d’onde de I’harmonique fondamentale. Pour les harmoniques
supérieures les risques de sous-échantillonnages sont trés importants. Or dans le cas pré-
sent c¢’est 'harmonique supérieure qui nous intéresse, le lw n’étant qu’un résidu. Nous
souhaitons donc adapter la boite en fonction du 2w. Il faut pour ce faire supprimer du
faisceau I'harmonique fondamentale, et la seule solution avec la version actuelle de Miro
consiste a passer dans un composant réseau. Dans le cas test nous avons pris une ligne a
dispersion nulle (réseaux accolés). Physiquement un tel systéme n’agit pas sur le faisceau,
mais informatiquement il permet d’éliminer ’harmonique que nous ne retenons pas (pour
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étre encore plus sir de ne pas perturber le faisceau nous passons les réseaux en mode
« optique géométrique 3D »).

Pour terminer, nous focalisons le faisceau par un miroir sphérique hors axe. Un tel
systéme engendre de 'astigmatisme, et le seul mode de calcul capable de le traiter sans
trop de besoins mémoire est la D2A. Le probléme est que la D2A ne fonctionne que
pour des discrétisations 2D avec autant de nceuds sur chaque dimension. Nous avons
donc di rééchantillonner le faisceau. Pour économiser de la mémoire nous avons aussi
rééchantillonné l'intervalle temporel, de fagon a éliminer les intervalles de temps ot il n’y
a pas de lumiére. Ces opérations sont effectuées par le dernier échantillon qui passe en
outre en D2A de facon non conservative.

La fin du calcul consiste uniquement & focaliser le faisceau par le miroir sphérique.
Pour la cible nous avons fait appel & une macro uniquement pour disposer d’une icone
originale.

d) Données

0- Source rectangulaire Energie 10 mJ
Largeur 3 cm
Hauteur 0,4 m
Durée 150 fs
Exposant temporel 2
Exposant spatial en X 20
Exposant spatial en Y 2

1- Réseau Nom de 'élément étireur G
Epaisseur 1 nm
Indice de réfraction 1
Normale theta 25°
Normale phi 90°
Efficacité de diffraction 1
Densité de traits 8,026937.10° m~!

21- Propagateur Longueur —2m
Indice non linéaire 0 m?/W

2- Réseau Nom de ’élément étireur D

Parameétres identiques au réseau 1, sauf:

Orientation des traits 180°

3- Echantillon Nom de ’élément sl C
Nouveau mode de calcul sl

4- Echantillon Nom de ’élément éch
T min —200 ps
T max 200 ps
Nombre de pas de temps 512

5- Echantillon Nom de ’élément df C
Nouveau mode de calcul daf

6- Filtre 1 trou Indice non linéaire 0 m?*/W
Type de traitement [0/1/2] 0
Focale gauche Im
Focale droite 10 m
Epaisseur de la lentille de gauche 1 nm
Epaisseur de la lentille de gauche 1 nm
Diameétre du trou 1,065 mm
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\ | Contenu: une lame d’ép. nulle, reliée & la connexion gauche |

Parameétres Modulation de phase
Temps —5.107¥ 5: 5107 1% 5; 512
X —0,025 m: 0,025 m ; 64
Y Om; 0,05 m; 1

e) Interprétation

Il n’y a pas d’interprétation a faire pour ce cas. On constatera qualitativement que les
effets d’étirement, amplification avec rétrécissement spectral par le gain, recompression &
une durée moins bréve qu’a l'origine, doublement avec augmentation du contraste, sont
bien observés.

Pour la non-régression du code on note les résultats suivants: sur la derniére lame (a
Vintérieur de la macro) I’énergie vaut 47,438 60 J et la durée équivalente 300,156 0 fs.
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15. Effet Kerr: rotation de polarisation et croisement
entre harmoniques
a) Objectif

L’objet de ce cas test est de controler ’action de I'effet Kerr sur la polarisation. D’ une
part (pour une polarisation elliptique) on observe une rotation de polarisation (pouvoir
rotatoire induit) ; d’autre part, lorsqu’il y a plusieurs harmoniques avec des polarisations
différentes, chaque harmonique induit sur les autres de la biréfringence.

L’équation d’évolution qui est résolue pour une seule harmonique (lorsque I’on ne tient
pas compte de la diffraction) est la suivante:

aE WL, *
—ig— 5 (2|E|’E + (E - E)E") . (11.36)

Sachant que le terme entre parenthéses s’écrit aussi 3|E|?E + EA(E*AE) et que E*AE
est un invariant du mouvement, le systéme peut étre résolu analytiquement :

LW 2 2
E(z) = e e Bz (E)% |E* A E| Z> E(0), (I1.37)

ou R(6f) désigne la rotation d’axe z et d’angle 6.
Dans le cas ou il y a deux harmoniques, ’équation de propagation de I’harmonique 2
s’écrit :

_ "5E2 W

2 82: + ‘?:E"YQQ (2!E2,2E2 + (E2 . EQ)E;)
w . R
+ 590 (By B)Ey + (Ey- B Ey + (Ey - Bo)E7) . (IL38)

Malheureusement cette équation n’est pas soluble analytiquement lorsque la polarisation
de '’harmonique 1 tourne.

Le cas test a été concu de la fagon suivante: 'harmonique 2 a une intensité beaucoup
plus faible que I’harmonique 1. L’harmonique 1 est donc solution de I’équation (I1.36)
tandis que I’harmonique 2 suit ’équation (I1.38). Pour I’harmonique 1 nous observons
donc simplement la rotation de polarisation (la polarisation incidente est elliptique). Pour
I’harmonique 2 nous ne possédons pas de solution analytique mais il est possible de ré-
soudre ’équation différentielle sous Mathematica. De cette facon nous pouvons valider la
résolution de Miro.

b) Schéma
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c¢) Données

Temps
X
Y

0- Source analytique | Nom de 1’élément 1w
Energie 5 kJ
Longueur d’onde 1,053 pm
Dépolarisation [-1,1] 0,5
Expression de 'intensité I(x,y,t) t/4.e-9
1- Source analytique | Nom de ’élément 2w
Energie 1]
Longueur d’onde 0,526 5 pm
3- Lame Nom de I'élément Kerr
Epaisseur 25 m
Indice non linéaire INLO
Dispersion des vitesses de groupe 0s?/m
4- Lame Epaisseur 0m
Paramétres Spectre large

0s;4.107% s; 256
—0,25m; 0,25 m; 1
—0,25m; 0,25 m; 1

Le fichier INLO contient les indices non linéaires directs et croisés de ’élément . Notons
que le mode spectre large a été choisi ici uniquement pour des raisons de commodité?.

d) Interprétation

Les figures (I1.23) et (I1.24) permettent de comparer les résultats obtenus par Miro et
sous Mathematica. On constate un bon accord entre les deux.

1.1l ala syntaxe suivante: 2 2 1 1 1 1 0 | I= 0.5265e-6 1.053e-6 | J=0.5265e-6 | 2.97e-20
2.97e-20 | J=1.053e-6 | 2.97e-20 2.97e-20, le symbole | désignant le retour a la ligne. Notons qu'’il
ne serait pas équivalent de ne pas utiliser de fichier et d’entrer le coefficient 2,97.10720 m?/W : en effet
dans ce cas Miré prend par convention des indices croisés doubles des indices non croisés.

1. Le mode spectre large est le seul qui permette un affichage en fonction du temps. On aurait certes
pu faire dépendre l'intensité de z et calculer en diffraction de Fresnel, mais la diffraction dans la lame
aurait perturbé le résultat (alors que dans le domaine temporel il est toujours possible de mettre a zéro la
dispersion des vitesses de groupe). Quant-3 un calcul en optique géométrique 3D, il est impossible dans
la version actuelle du code car il n’y a pas de fractionnement en z (ce point changera avec Miré 2000).
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F1G. I1.23 — Intensité selon x pour londe 1w, par un calcul Mir6 et un calcul Mathema-
tica. On observe un effet de pouvoir rotatoire induit.

st T T T T T T T n
oo | % _ Miré —
e b s Mathematica -
0,7

o~

= 0.6 +—

g 0,5 -

]

~ 0,4 -

o

b~y
0,3
02 -
0,1 I~

F1G. 11.24 - Intensité selon x pour l'onde 2w, par un calcul Mird et un calcul Mathema-
tica. On observe un effet de biréfringence induite.
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16. Multiplexage
a) Objectif

Le but de ce paragraphe est de suivre les effets de désalignement de faisceau. Le code
propage une position centrale de faisceau en suivant les lois de Descartes. Dans la limite
des directions de propagation voisines de I’axe de référence du faisceau, cette position
peut étre suivie par le formalisme des matrices ABCD. On reprend ici le cas de calcul
présenté dans la section I1.7 (p. 163).

b) Schéma

¢) Données

Les données sont identiques a celles de la section I1.7. Seuls les parameétres de la source
sont modifiés pour désaligner le faisceau. Les paramétres supplémentaires sont :

1- Source rectangulaire | Delta theta 0,01°
Delta phi 75°
Position X 0,01 m
Position Y 0,01l m
| Parameétres | Optique géométrique 1D | ]

d) Interprétation

Les matrices ABCD sont respectivement :

Plan tangentiel : —0,790828 40 )

—0,0447706 0,999 998
—0,938439 40,203 )

Plan sagittal : —0,044 7706 0,852 387

Le faisceau incident admet pour données initiales les vecteurs:

(0,01; tan(0,01) cos 75°)  dans le plan tangentiel et
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(0,01; tan(0,01)sin 75°)  dans le plan sagittal.

On obtient alors le tableau de comparaison suivant :

\ | Position dans le plan tangentiel I Position dans le plan sagittal |

Matrice ABCD —6,10138.103 —2,60674.10~°
Miré —6,10484.1073 ~2,61034.1073

Les valeurs ne différent que de quelques pour-mille. Cet écart va en diminuant quand
les angles et les distances & l'axe tendent vers zéro car le formalisme ABCD est une
approximation paraxiale des lois de Descartes.
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17. Modulation de phase: dispersion d’un faisceau
modulé sinusoidalement
a) Objectif

Dans ce cas test nous envoyons dans un matériau un faisceau initialement modulé
sinusoidalement en phase. La dispersion fait apparaitre des modulations d’amplitude.
Nous comparons les résultats obtenus par les modes « Spectre large » et « Modulation
de phase ». Le but est de valider le mode « Modulation de phase » dans le régime ou le
calcul est effectué sans coupler les pas de temps (« termes complémentaires » négligés).

b) Schéma

c) Données

Le cas (a) est passé en spectre large avec 1024 pas de temps, le cas (b) en modulation
de phase avec 200 pas de temps.

Modulation de phase (b)

0- Source rectangulaire Durée 1 ns
Exposant temporel 20

1- Modulateur de phase sinusoidal | Profondeur de modulation 20 rad
Fréquence de modulation 10 GHz

2- Lame Nom de ’élément dispersion
Epaisseur 50 m
Indice non linéaire 0 m2/W
Dispersion des vitesses de groupe —3.10726 §2/m

3- Lame Epaisseur 0m

Paramétres Spectre large (a)

Temps —0,6 ns; 0,6 ns; 1024 (a)
~0,6 ns; 0,6 ns; 200 (b)

X ~0,25m: 025 m: 1

Y —0,25m;0,25m; 1

d) Interprétation

La figure 11.25 présente les résultats obtenus dans les deux modes de calcul (sur la
courbe correspondant au spectre large, seul un point sur trois est tracé). On constate une
forte similitude entre les deux.
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Fig. I11.25 — Résultat de la simulation : a gauche en mode modulation de phase, & droite
en mode spectre large.
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18. Filtres spatiaux: rééchantillonnage du faisceau
au foyer

a) Objectif

Les faisceaux parasites sont produits par des réflexions sur 'une des faces d’une lentille
dans une chaine de puissance. Le faisceau obtenu qui se propage dans la chaine contient
une faible énergie, mais focalise en des points aléatoires. Si un foyer est situé a ’'intérieur
d’'un composant optique, des dommages risquent de se produire. D’ou I'importance de
I'étude exhaustive des positions de ces foyers parasites. Pour ce faire, il existe des logiciels
comme Calipso [30] qui permettent de déterminer les positions d’un grand nombre de
foyers, associés a des réflexions différentes.

Lorsque qu’un faisceau parasite traverse un trou de filtrage, il ne focalise pas au foyer
du trou mais en amont ou en aval. Au niveau du trou, le faisceau a une taille beaucoup
plus grande que celle du trou, et seule une petite partie de la lumiére peut passer a travers
le trou. Pour la suite de la propagation, le trou se comporte en général comme un objet
ponctuel qui va diffracter. Aprés la lentille de sortie, le faisceau issu du trou sera donc
paralléle et refocalisera au foyer du filtrage suivant. Dés lors il pourra se propager sur une
grande partie de la chaine sans nouvelle perte d’énergie, étre amplifié et venir finalement
endommager les optiques du pilote. Ce type de faisceau (résidu d’une réflexion parasite
traversant un trou de filtrage) est appelé « pinceau parasite ».

Le code Miré permet de simuler la propagation d’un pinceau parasite, grace aux modes
de calcul « diffraction de Fresnel adaptative » ou « diffraction adaptative astigmate ».
Au niveau du trou de filtrage ou le pinceau est filtré, la taille de la boite incidente est
généralement beaucoup plus grande que la taille du trou (parfois méme le trou est plus
petit qu’un pixel de discrétisation). Pour que la suite de la simulation soit significative,
un rééchantillonnage du faisceau doit étre mis en ceuvre. L’utilisateur peut opter pour le
rééchantillonnage grace au parameétre « scénario ».

Le cas test présenté ici modélise la réflexion parasite par une lentille. On franchit un
filtrage dans lequel un rééchantillonnage a lieu. On compare les résultats obtenus en DFA
et en D2A.

b) Schéma
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c) Données

0- Source rectangulaire | Largeur 0,4 m
Hauteur 04 m
Exposant spatial en X 16
Exposant spatial en Y 16

1- Lentille Epaisseur 1 nm
Indice non linéaire 0 m2/W
Focale 10 m
Type de traitement [0/1/2] 0

2- Filtre 1 trou Indice non linéaire 0 m?/W
Type de traitement [0/1/2] 0
Scénario 1
Focale gauche 10 m
Focale droite 10 m
Epaisseur de la lentille de gauche 1 nm
Epaisseur de la lentille de droite 1 nm
Diamétre du trou 1 mm

3- Lame Epaisseur 0 m

Parameétres Diffraction de Fresnel adaptative (a)
Diffraction adaptative astigmate (b)
Temps 0s;4.107%5;1
X —-0,25m; 0,25 m; 64
Y —0,25m; 0,25 m; 64

d) Interprétation

La figure 11.26 montre I'intensité obtenue sur la lame, pour un calcul en DFA et en
D2A. Dans les deux cas, un rééchantillonnage a été effectué au niveau du trou. Notons
que la taille de la boite n’est pas exactement la méme pour les deux modes de calcul. Par
contre le profil du faisceau est naturellement le méme.

t=0,000e+00

grille=32x32

xmin=-4,212e-02
xmax=4,212e~-02

ymin=-4,212e-02
ymax=4,212e-02

zmin=2,545e+00
zmax=8, 393e+06

t=0.000e+00

grille=32x32

xmin=-4,215e-02
xmax=4,215e-02

ymin=-4,215e-02
ymax=4,215e-02

zmin=1,784e+00
zmax=8, 393e+06

F1G. 11.26 — Simulation d’un pinceau parasite. A gauche,

en D2A.

calcul en DFA. A droite, calcul

Notons qu'il serait possible de comparer cette nappe avec une expression analytique
basée sur une fonction de Bessel.
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19. Spectre large : automodulation de phase dans une
fibre monomode
a) Objectif

Ce cas test vise & simuler la propagation d’une impulsion bréve dans une fibre mono-
mode de grande longueur (quelques dizaines de métres), lorsque la dispersion est normale
o < 0. Au début de la propagation, 'automodulation de phase qui est relativement im-
portante induit une déformation de la forme temporelle de I'impulsion (celle-ci devient
carrée), ainsi qu’un élargissement du spectre. Dans la suite de la propagation la dispersion
des vitesses de groupe étire peu a peu I'impulsion temporellement. L’'impulsion obtenue
en sortie de fibre est nettement plus longue que 'impulsion initiale, et posséde une dérive
de fréquence quasiment linéaire. Une telle impulsion peut ensuite étre amplifiée dans une
chaine de puissance, puis recomprimée a ’aide d’une paire de réseaux. Rappelons que c’est
par cette méthode que les impulsions & dérive de fréquence de la chaine P102 du CEA-LV
étaient fabriquées pendant les premiéres années de fonctionnement (voir par exemple [22,
p. 26]).

Sachant qu’a notre connaissance il n’existe pas d’expression analytique pour I'impul-
sion étirée via une fibre, nous nous contenterons ici de reproduire les figures d’un article
de la littérature [31]. Nous simulerons tout d’abord ’étirement dans la fibre monomode
de facon & reproduire la figure I1.27; ensuite nous regarderons la recompression de I'im-
pulsion (fig. I1.28). Comme les réseaux n’étaient pas encore disponibles dans Mird lorsque
ce cas test fut rédigé, nous simulons la compression via la propagation & travers un milieu
de dispersion anormale et d’indice non linéaire nul.

Ce cas test est simulable par le mode « spectre large », mais aussi par le mode « mo-
dulation de phase ». C’est donc une bonne occasion pour comparer les deux modes de
calcul.

b) Propagation dans la fibre et étirement par automodulation de phase

L’équation de propagation est donnée par

—i— ooy T+ 77|E|2E =0, (I1.39)

o étant le terme de dispersion des vitesses de groupe et v l'indice non linéaire. Les valeurs
numeériques sont ¢ = —3.1072¢ §2/m, et v = 2,97.107% m?/W.
L’équation (I1.39) est a rapprocher de ’équation (1) dans [31]*:

ov T A%
—3 = | 1L 9V]? ) 11.40
‘S = 4 A V] (1140)
L’identification donne
Tt
-0 11.41.
2 10| ( a)
T gy (IL.41.b)
me

1. Nous modifions au passage le signe devant le terme de dispersion des vitesses de groupe.
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Le parameétre ¢, reste libre. Dans cette simulation nous prenons tq = 1 ps. La figure (11.27)
est réalisée avec un champ initial en

V:5sechi.
to

(la notation sech désignant la fonction 1/ch); la distance de propagation est z = z,/2.

0,6

S b)
a
) s b
g T 23t
% ?) 2 =
2 oaf 2
1 P
0 Ll 0 N L
—12 —6 0 6 12 —16 -8 0 8 16
t/to (w—‘CUQ)tQ

Fi1G. 11.27 - Reproduction de la figure 2 de la référence [31]. A gauche, lintensité en
fonction du temps. A droite, ['intensité spectrale.

c) Recompression via un milieu a dispersion anormale

Tr
6
5..
N
':7'; 4+
g
E°T
2.—
1+
0 L1 [} U T W
-6 -3 0 3 6
t/to

F1G. 11.28 — Reproduction de la figure 5.a de la référence [31].

L’équation de propagation dans un milieu linéaire de dispersion anormale (o > 0) est
donnée par

i 0= =0. (11.42)
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Cette équation se résout spectralement en
E(z + Azw) = E(zw) expliow?Az) (11.43)

¢’est a dire qu'un masque de phase quadratique est appliqué au spectre du faisceau. On
sait d’aprés la table 1 de la référence [31] que pour comprimer au mieux 'impulsion il
faut lui appliquer un masque spectral en

exp(0,24 x it2w?).

On en déduit la distance de compression correspondante pour o = +3.10726 s2/m: Az =
8 m'. L’objectif est d’obtenir une impulsion comprimée comparable & celle de la figure
11.28.

d) Schéma

e) Données

Le cas (a) est effectué en spectre large avec 512 pas de temps. Le cas (b) utilise le mode
« modulation de phase » avec 128 pas de temps, en partant d’une fenétre de discrétisation
plus petite.

0- Source analytique | Energie 01J
Expression de l'intensité I(x,y,t) | 8.464149e12/(ch(t/le-12))"2
1- lame Nom de ’élément fibre
Epaisseur 13,08996 m
Indice de réfraction 1
Indice non linéaire 2,97.1072° m?/W
Dispersion des vitesses de groupe -3.10726 ¢ /m
2- lame Nom de ’élément compression
Epaisseur 14,54498 m
Indice de réfraction 1
Indice non linéaire 0 m?/W
Dispersion des vitesses de groupe +3.10725 52 /m
Parameétres Spectre large (a)
Modulation de phase (b)
Temps —12 ps; 12 ps; 512 (a)
Temps —5 ps; 5ps; 128 (b)
X —0,0m; 0,5m;1
Y —0,5m;0,5m;1

1. En fait le tableau 1 de [31] correspond & une longueur de fibre de zy/4 (alors que dans notre exemple
la longueur de la fibre est z9/2). La distance choisie ici pour la compression « rattrape » cette différence:
d = Az + zp/4 = 14,54498 m. Les résultats que nous obtiendrons pour la recompression ne coincideront
pas exactement avec ceux de la référence (nous sommes génés par le fait que dans [31] ils ne choisissent
pas les mémes parameétres d’une figure a Pautre...).
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NB': la constante 8,464 149.10'2 (W/m?) correspond a I'expression A?)|o|/(7yt2), en

reprenant les notations précédentes.

f) Interprétation

2.1012 T
1,8.10'2
1,6.102
1,4.10'% -
1,2.10'2
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1011 L
10k
.1011 L

.1011 -
0 - I 1 1 1

I (W/m?)

RIS N

-15 —10 -5 0 5 10
t.(ps)

15

Intensité spectrale (x10712 J.s/m?)

14
12

10

L => TG o]

0

L f T T T I ‘1
:
A
:
- .
|- n
i 1 i 1
—20 —15—10 —5 0 5 10 15 20

w (x10'% rad/s)

F1G. 11.29 — Dépendance temporelle (4 gauche) et spectre temporel (a droite) d’une im-
pulsion initialement en sécante hyperbolique aprés étirement dans 13,08 m de fibre. Cette
figure est & comparer & la figure IL27 (to = 1 ps).
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FiG. 11.30 — Dépendance temporelle (& droite) de la méme impulsion recomprimée (a
comparer avec la figure I1.28). A gauche, 'impulsion sécante hyperbolique initiale (avant

étirement).

La figure 11.29 montre, pour le calcul en spectre large, la forme temporelle et le spectre
de impulsion étirée (i.e. & 'entrée de la lame « compression »). Cette figure est & com-
parer & la figure I1.27. On constate que 'accord est qualitativement bon. La figure 11.30
montre I'impulsion recomprimée (toujours pour un calcul en spectre large). Cette courbe
ne coincide pas tout a fait avec celle de la figure I1.28, mais les conditions ne sont pas non

15
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F1G. 11.31 - A gauche, intensités en fonction du temps en mode spectre large. A droite,
puissances en mode modulation de phase. En haut, impulsion d’origine; au milieu, im-

pulsion étirée; en bas, impulsion recomprimeée.
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plus tout & fait les mémes. Enfin la figure (I1.31) compare les résultats des deux modes

de calcul, sur les trois lames ot des résultats sont fournis®.

1. Les courbes en spectre large sont des intensités en fonction du temps, celles en modulation de phase
. . . . . i
sont des puissances. Les deux coincident parce que la section du faisceau vaut 1 m~.



20. Spectre large : soliton 209

20. Spectre large: soliton
a) Objectif

Ce cas test vise a vérifier une propriété remarquable de ’équation de Schrédinger non
linéaire unidimensionnelle : 'existence d’ondes solitaires, qui se propagent sans déforma-
tion sur une longueur infinie [32].

Pour ce cas test nous nous placerons en spectre large dans le cas d’une dispersion
anormale (o > 0); dans le cas 0 <0 il n’existe pas de soliton de durée finie. L’équation de
propagation est

OE  O°E ,

On peut alors vérifier que le champ défini pour Ey réel par

K k
E(z,t) = Eysech <E0 2%%) exp (i—?ESz) (IL.45)

est solution de (11.44)!. L’expression (I1.45) est appelée soliton fondamental. Elle se pro-
page sans déformation parce que lautomodulation de phase compense exactement les
effets de la dispersion des vitesses de groupe. Il existe des solitons d’ordre plus élevé,
qui ne se propagent pas sans déformation mais qui redeviennent identiques a4 eux-mémes
au bout d’une distance de propagation donnée. Tous ces solitons sont caractérisés par la
quantité

+00
A= / E(0,y)dt.

Le rapport entre A et Ay (correspondant au soliton fondamental) est un entier appelé
ordre du soliton.

Dans ce cas test nous créons un soliton fondamental est nous regardons son compor-
tement au bout d’une certaine distance de propagation.

b) Schéma

1. Rappel : sechz = 1/chz.
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c¢) Données

0- Source analytique | Energie 0J
Expression de l'intensité I(x,y,t) 3.385659e11/(ch(t/1e-12))"2
2- Propagateur Longueur 1 km

Indice non linéaire
Dispersion des vitesses de groupe

2,97.1020 m?/W
+3.10726 s%/m

1- Lame

Epaisseur

0Om

Parameétres

Spectre large

Temps

X

Y

Pas maximal de diffraction

—20 ps; 20 ps; 512
-0,5m; 0,5m; 1
—0,0m;0,5m; 1

10 m

NB : la constante 3,385659.10'" W/m? correspond a o)/(myt2), avec &y = 1 ps, o
(dispersion des vitesses de groupe) et v (indice non linéaire) ayant les valeurs du tableau.

d) Interprétation

3,5. 10! T ]  — | 5.1037

11 sortie — _| 4.10%

3.10 entrée 3.10%7
25101 |- T 2

E 2.10% ] NE 10 0
E 1,5.10M | 7 Z —10%
~ 3 —2.10%7
10t F T —3.1077

_ —4.10%7
1010 + 7 5 10%7
1 —6.10%7

U L i
—20 —-15—-10 =5 0

t (ps)

5 10 15 20

i I { 1 1

—20 —-15—-10 =5 O 5 10 15

t (ps)

F1G. 11.32 — A gauche dépendance temporelle de Iimpulsion avant et apreés propagation
(en pointillés et en trait plein respectivement). A droite, différence absolue entre les deu.

La figure 11.32 montrer ’allure de I'impulsion avant et aprés propagation, ainsi que la
différence absolue entre les deux. La figure 11.33 montre la phase temporelle de I'impulsion
aprés propagation. On constate que la forme de I'impulsion s’est trés bien conservée et que
la phase reste quasiment plate 1a ot il y a de la lumiére, et ce malgré une intégrale B créte
de 59,909 90 rad. Notons qu’il est possible d’améliorer encore la précision en diminuant le

pas fractionnaire mais ceci est au prix du temps de calcul.

20
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F1G. I1.33 — Phase temporelle de I'impulsion aprées propagation.
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21. Simulation d’une cavité laser; génération d’un
mode gaussien a partir du bruit

Miro est un code de propagation pour les lasers de puissance qui n’a pas été concu a
l'origine pour simuler d’autres types de systémes optiques, comme par exemple les cavités
laser. Ce cas test présente une tentative pour réaliser une telle simulation et analyse les
difficultés rencontrées. Notons qu’il s’agit d’un cas test essentiellement qualitatif.

a) Difficultés liées a la simulation de cavités par Mird

amplificateur

miroir

miroir sphérique

L, L,

amplificateur . injection

polariseur multiplexeur

M,

apodiseur

F1G. I1.34 — Schéma de la cavité laser & simuler (17€ligne) et du schéma équivalent im-
planté dans Miro (2€ ligne).

Le dispositif & simuler est présenté sur la figure I1.34. On considére une cavité comprise
entre deux miroirs, I'un sphérique et ’autre plan. Cette cavité comprend un mode gaussien
stable. La cavité contient un amplificateur & gain non uniforme (il y a plus de gain au
centre que sur les bords), et un systéme de blocage cellule de Pockels/polariseur. L'un des
miroirs n’est que partiellement réfléchissant : une partie de la lumiére est transmise vers
I’extérieur, donnant naissance a I'impulsion laser proprement dite.

A Dinstant ¢ = 0, le systéme de blocage est fermé ; il n’y a pas de lumiére dans la cavité
si ce n’est le bruit thermique de photons. On ouvre alors le systéme de blocage. Peu a
peu, ce bruit de photons va progressivement s’amplifier de maniére cohérente. Il apparaitra
spontanément une onde stationnaire dans le mode de la cavité, dont ’énergie ira croissant.
Cette onde stationnaire restera présente jusqu’a ce que 'amplificateur commence a saturer.
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Alors les pertes deviendront supérieures au gain et la lumiére disparaitra. Pendant tout
le temps ol l'onde stationnaire est présente dans la cavité, elle transmet & chaque aller-
retour un peu de photons & 'extérieur. La durée de 'impulsion laser « utile » (i.e. se
propageant hors de la cavité) est ainsi directement reliée a la durée de vie du mode de la
cavité.

Une telle cavité laser ne peut pas étre simulée de fagon exacte avec Miro car le code
11e permet pas traiter les ondes stationnaires. La procédure employée consiste a remplacer
I’'onde stationnaire par une impulsion qui effectuera des aller-retours dans la cavité. Avec
une telle méthode nous ne prenons pas en compte les recouvrements de la lumiére sur
elle-méme ; dans la réalité 'onde stationnaire présente des nceuds et des ventres qui font
notamment que 'amplificateur sature plus rapidement sur les ventres et ne sature pas sur
les nceuds. Cet effet n’est pas traité dans notre simulation. Pour simuler la naissance de
I'onde & partir du bruit nous injectons dans la cavité un faisceau incohérent (tavelure).
Au cours de la propagation on voit les gains disparaitre et un faisceau gaussien cohérent
se creéer.

<
f

Fi1G. 11.35 — L’origine des problémes liés a la simulation d’une cavité en diffraction de
Fresnel adaptative

Ce cas test a été congu a une époque ot le composant « miroir sphérique » n’existait pas
dans Mird : nous ’avons sans inconvénient remplacé par la combinaison d’un miroir plan
et d’une lentille. Comme il s’agit d’une lentille isolée on utilise la diffraction de Fresnel
adaptative. L’utilisation sans précautions de la diffraction de Fresnel adaptative risque
cependant de créer des problémes. En effet, si le mode gaussien est stable la longueur £
de la cavité au sens de l'optique de Gauk (c’est-a-dire ou 'on remplace les longueurs L
parL/n, n étant 'indice) n’est pas égale & la focale f de la lentille (fig. 11.35). Elle lui est

reliée par la formule
m2\>
f=c {1 + (A—rf) } , (11.46)

A étant la longueur d’onde, et ¢y désignant le col du faisceau — c’est-a-dire que sur le
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miroir de droite M5 1a ot le faisceau est le plus petit!, le champ s’écrit

2 2
E x exp (____x :;y ) ) (I1.47)
0

La différence entre les longueurs f et £ provient du fait que si I’on focalise un faisceau
initialement paralléle, le minimum du diameétre du faisceau ne coincide pas avec le foyer
géomeétrique dans la lentille, sauf dans la limite otu la taille du faisceau incident est infini-
ment grande. Par conséquent et par souci de symétrie, pour récupérer un faisceau de la
méme taille que le faisceau initial, il faut parcourir la distance 2L et non pas 2f. Par suite
dans notre cas la longueur d’un aller-retour de la cavité sera 2L. Pour la diffraction de
Fresnel adaptative de Mird, la taille de la boite « accompagne » la focalisation du faisceau
mais sans tenir compte de la différence entre f et £, c’est-a dire que la boite revient a sa
taille initiale au bout de la distance 2f. Dans le cas de la cavité, la taille de la boite ne
sera pas la méme d’un passage sur l’autre. Ceci n’est pas admissible car au bout de N
passages la taille de la boite aura divergé et n’aura plus aucun rapport avec la taille du
faisceau.

Pour contrdler cette obstacle, nous utilisons deux lentilles minces accolées: I'une (L)
de focale £, et 'autre (L) de focale f' = (1/f — 1/L£)"". En fait la focale de la deuxieme
lentille L; est suffisamment longue pour que la phase quadratique qu’elle crée puisse étre
directement échantillonnée via le tableau de champ électrique. A son passage Mird n’a
donc pas besoin d’effectuer de transformation conforme de telle sorte que le parameétre
« rayon de courbure » reste nul et que le facteur d’homothétie reste égal & l'unité. La
transformation conforme et le changement de taille de la boite n’ont lieu qu’avec la len-
tille de focale £. Comme la focale est alors égale a la longueur de la cavité la facteur
d’homothétie reste stable d’'un passage sur 'autre.

Remarque : cette solution (au demeurant peu élégante) n’est pas applicable dans tous
les cas car le masque de la lentille L; pourrait trés bien ne pas étre échantillonnable. Un
tel cas de figure peut notamment se produire pour des cavités ot la taille du faisceau sur
les deux miroirs est comparable (cas expérimental fréquent). Dans ce cas, on doit adapter
les courbures par une autre méthode.

Certaines versions commerciales de Mird comportent un mode de calcul dévolu a la
simulation des cavités (décrit dans un manuel séparé diffusé uniquement en interne a la
DAM). Avec ce mode de calcul la taille de la boite est automatiquement stable, il n’y a
plus & s’en préoccuper.

b) Situation simulée

Afin de mieux sélectionner le mode de la cavité nous choisissons pour ’amplificateur
un gain qui n’est pas uniforme, mais de forme gaussienne. Nous introduisons également
un apodiseur (fichier) dont la transmission dépend des coordonnées spatiales selon une
formule gaussienne. La cavité peut ainsi étre modélisée au moyens de matrices ABCD
complexes ainsi qu’il est décrit dans [33, p. 786]. La matrice ABCD de la cavité est

1. « col » est la traduction frangaise de waiste.
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donnée par

M = MapodiseurMlentillestistanceMPockelsMampli
X MampliMPockelstistanceMlentillesMapodiseur (1148)

avec

Mapodlseur = < —ZAQ% 1 ) y M]entllles - ( —]./f 0 ) ) Mdlstance - ( 0 1 ) )

1 e,/n 1 0 1 eq/nq
MPockelS - ( 0 p{ P )7 Ma.mp[i - ( _Z_)\g,_z 1 ) ( 0 ¢ {n > (1149)

27

avec: f focale de lentille, L distance séparant la lentille de la cellule de Pockels, e, et
n, épaisseur et indice de la cellule de Pockels, e, et n, épaisseur et indice de 'amplifi-
cateur, et a; et a, parametres de largeur des profils d’apodisation et de gain respective-
ment : au passage de I'apodiseur (resp. de 'amplificateur) l'intensité est multipliée par
texp|—a, (2% + y?)] (resp. par gexp[—ax(z* + y?)]), t et g (qui n’interviennent pas dans le
calcul des matrices ABCD) étant respectivement la transmission maximale de 'apodiseur
et le gain maximal de I’amplificateur.

Dans le cas des faisceaux gaussiens les matrices ABCD complexes doivent étre utilisées
de la maniére suivante [33]: soient ¢(z) le col du faisceau (au sens de 1’équation (I1.47)) a
I'entrée du systéme, et R(z) le rayon de courbure de la phase. Alors on définit le nombre
complexe ¢(z) par

1 1 A
= -4 ) I1.50
0(z) _ R(z)  'mc(z) (1L.50)
Le paramétre g(2') a la sortie du systéme optique ABCD est alors donné par
Aq(z) + B
= — . I1.51
1) = Go D (1L51)

Les matrices ABCD des composants de la cavité ont été entrées dans le logiciel Ma-
thematica. En les multipliant entre elles nous pouvons obtenir la matrice ABCD de la
cavité. On peut en déduire le mode propre de la cavité en faisant ¢ = ¢g. Nous trouvons
finalement un faisceau de col 9,444 94 mm sur le miroir M,.

c) Schéma

lentille

d) Données
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0- Source tavelure Normale theta 180°
Energie 10 fJ
Longueur d’onde 1,053 pm
Largeur 1,5 mm
Hauteur 1,5 mm
Durée 0,1 ns
Exposant temporel 10
Exposant spatial en X 30
Exposant spatial en Y 30
Largeur spectrale spatiale 5.10* m™!
Exposant spatial spectral 10
Fraction d’énergie bruitée 1

1- Miroir Nom de I’élément M2
Coeflicient de reflexion 0,9
Normale theta 180°

2- Multiplexeur Scénario 151:0 1

3- Amplificateur « disque » | Nom de ’élément gaussien
Epaisseur 0,01 m
Indice de réfraction 1,82
Indice non linéaire 0 m?*/W
Transmission face d’entrée 0,992
Transmission face de sortie 0,992
Normale theta 0°
Fluence de saturation 45,2 kJ /m?
Gain 2.%exp(-2.eb* (x*x+y*y))
Diamétre 3 mm

4- Polariseur Epaisseur 5,265 cm
Indice de réfraction 1,5
Indice non linéaire 0 m?/W
Transmission longitudinale 1
Reéflexion perpendiculaire 0

14- Propagateur Longueur 0,44 m
Indice non linéaire 0 m?/W

5- Lame Nom de I’élément nulle
Epaisseur 0 m

6- Lentille Nom de I’élément lentille
Epaisseur 1 nm
Indice de réfraction 1,5
Indice non linéaire 0 m?/W
Focale 0,4805954 m
Type de traitement [0/1/2] 0

7- Lentille Nom de ’élément masque
Epaisseur 1 nm
Indice de réfraction 1,5
Indice non linéaire 0 m?/W
Focale —14,242 17 m
Type de traitement [0/1/2] 0

8- Apodiseur « fichier » Epaisseur 1 um
Fichier des transmissions spatiales | 0.9*exp(-2.6eb* (x*x+y*y))

9- Miroir Nom de ’élément M1
Coeflicient de réflexion 1

| Paramétres

Diffraction de Fresnel adaptative |
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Temps Ons; 0,15ns;1
X —1,35 mm; 1,35 mm; 64
Y —1,35 mm; 1,35 mm ; 64
Format d’enregistrement

du fichier binaire 1

Afficher ’animation

NB : l'afffichage de l’animation fournit des renseignements intéressants mais rallentit
considérablement le calcul: avec ’animation ce dernier prend cinq minutes sur une sta-
tion « rapide » (SUN Ultra par exemple). Par ailleurs le fichier Miro.res créé est assez
volumineux (une dizaine de Mo en simple précision).

e) Résultats et interprétation

Les figures 11.36 et 11.37 présentent l’allure du faisceau sur la lentille L, pour diffé-
rentes distances de propagation. Le profil passe successivement par trois étapes: du bruit
incohérent initial on arrive a un aspect constitué de deux taches. Apreés un certain nombres
de passages, le faisceau évolue peu & peu vers le mode propre de la cavité. Enfin, dans le
régime o amplificateur commence & saturer (& partir de 40 m de propagation), le profil
de gain vu par le faisceau n’est plus le méme de telle sorte que le mode change.

La figure 11.38 représente 1’énergie et la section du faisceau, tracés en fonction de
la distance. Le courbe en énergie présente deux régimes: une croissance exponentielle
jusqu’a 40 m, apres lesquels amplificateur sature. Du fait de I’absorption dans certains
composants la croissance ralentit alors, puis ’énergie diminue. Notons que sur un véritable
laser, une partie de 1’énergie est transmise & chaque passage a travers le miroir pour
constituer le faisceau « utile ». La courbe de la figure 11.38 (gauche) revient donc a tracer
'allure de I'impulsion sortant du laser. La durée de 'impulsion est obtenue en divisant la
longueur en abscisse par ¢: on trouve environ 3,3 ns & mi-hauteur.

La courbe de section présente également un intérét car elle permet de visualiser les
régimes successifs de fonctionnement de la cavité. Pendant les 10 premiers métres on voit
la section chuter de 1 a4 0,2 cm? environ: le bruit incohérent se transforme peu a peu en
un faisceau cohérent. Les 30 métres suivants ol la section évolue lentement correspondent
au passage & un mode gaussien constitué d’une seule tache. Enfin au cours de la derniére
étape (3 partir de 40 m de propagation) 'amplification commence & saturer et I’on voit
la section crofitre & nouveau.

Enfin, il est intéressant de comparer le profil transverse du mode avec le profil gaus-
sien théorique. Cette comparaison est effectuée sur la figure I11.39. On trouve un résultat
satisfaisant.

Test de non-régression : 'énergie maximale atteinte (visible sur le tracé de 'énergie
en fonction de z) est de 1,248 mJ. A la fin de la simulation lorsque le faisceau retourne
sur la source tavelure, son énergie vaut 38,297 28 nJ.
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Fi1G. 11.36 — Allure du faisceau sur le miroir My, pour les numéros de passage suivants
(dans l'ordre de gauche & droite et de haut en bas) : 1, 3, 5, 15, 30, 40, 64, 71, et 76. Les

distances de propagation correspondantes (en métres) sont respectivement 0,5, 2,5, 4,5,
14,6, 29,7, 39,7, 63,8, 70,9, et 75,9.
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F1G. 11.37 — Vue en perspective de Uimpulsion sur M; au 5€ (@ gauche) et au 40€ passage

(a droite).
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FiGg. 11.38 — A gauche, énergie de "impulsion en fonction de la distance mécanique de
propagation. A droite, section du faisceau en fonction de la distance mécanique de propa-

gation.
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Fi1G. 11.39 — Profil transverse du mode obtenu par Mird apreés 40 passages (en continu),
et profil gaussien théorique sur Ly (col: 0,970 728 mm) (en pointillés).
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22. Problémes liés & la propagation sur une longue
distance ; utilisation de la couche limite absor-
bante

a) Objectif

Cet ultime cas test permettra & I'utilisateur de se rendre compte qu’il existe un certain
nombre de situations que Mird n’est pas en mesure de traiter de facon totalement satis-
faisante. Lorsque ’on effectue sans précautions particuliéres une simulation en diffraction
de Fresnel, avec des pas d’espace trés serrés (aussi bien d’ailleurs en 1D transverse qu’en
2D), et sur une distance relativement longue, le résultat de la simulation a de bonnes
chances d’étre complétement faux. La distance de propagation a ne pas dépasser est de
I'ordre de

Néz?
i ~ Ax , (IL.52)

N étant le nombre de pas d’échantillonnage, dx le pas d’échantillonnage et A la longueur
d’onde. Cette distance maximale est celle pour laquelle la lumiére issue d’un petit défaut
de la taille d’un pixel aura atteint par diffraction les bords de la boite de discrétisation.
Au-dela de cette distance, du bruit d’origine numérique est susceptible d’apparaitre®.

Le but de ce paragraphe est de mettre en évidence ce probléme au moyen d’'un exemple,
et d’expliquer les raisons de ce dysfonctionnement, afin que tout utilisateur ait bien
conscience de cet écueil qu’il lui faut éviter. Nous présentons aussi un moyen implanté
dans Mird qui permet de contourner partiellement la difficulté : ’utilisation d’une couche
limite absorbante.

Le cas test présenté ici est extrémement simple: on part d’une source gaussienne, de
trés petite taille (20 um), et on la fait diffracter sur 10 m en prenant un pas d’échantillon-
nage de 7,6 um.

b) Schéma

1. Mir¢ prévient 'utilisateur par un message en bas de la fenétre lorsque la distance dpax est dépassée.
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c) Paramétres

0- Source circulaire | Diamétre o (2.107° m)
2- Propagateur Longueur L (10 m)
Indice non linéaire 0m?/W
1- Miroir Normale theta 135°
Parameétres Diffraction de Fresnel
Temps 0s;4107%s; 1
X ~0,25 m; 0,25 m; 65536
Y Om;0,25m; 1

Les parameétres o (largeur de la source) et L (longueur du propagateur) seront modifiés
dans certains cas.

d) Résultats de la simulation

Les résultats de la simulation sont présentés sur la figure [1.40. On peut y voir la forme
spatiale de Pimpulsion aprés une distance de propagation L de 5 m et de 10 m, ainsi que
le spectre spatial de Pimpulsion. On constate que si la diffraction du faisceau au bout de
5 m semble correcte, le faisceau & 10 m présente des modulations & trés haute fréquence
qui n’ont aucune signification physique. Ces modulations ne sont pourtant pas présentes
sur la derniére image de la figure I1.40 (en bas, a droite) ou pourtant le faisceau a la méme
taille que sur 'image d’au-dessus.
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F1G. I1.40 - Faisceau issu d’une source gaussienne de largeur a mi-hauteur 20 pm, propagé
sur 5 m (en haut a gauche) et 10 m (en haut & droite). En bas, a gauche, le spectre spatial
de la source. Enfin, en bas a droite, diffraction sur 10 m d’une Source gaussienne de
largeur 0,282 8 m. La largeur de la fenétre d’échantillonnage est 0,5 m, et il y a 65536
pas en X.

Remarque: Sil'on compare la taille d'un pixel (7,6 pum) avec la taille de la gaus-
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sienne initiale (20 um), on pourrait étre tenté de penser que cette derniére n’est pas
suffisamment échantillonnée, ce qui pourrait expliquer ce comportement étrange. Toute-
fois, on remarquera que le spectre de la source est correctement échantillonné. De plus,
I’allure du faisceau aprés 5 m de propagation parait normale.

e) Origine de Uerreur

[l existe deux fagons de comprendre 'origine de cette erreur: I’une spectrale ’autre
spatiale. Pour la visualisation spectrale pour pourra se reporter au manuel de référence de
Miré [14] chapitre I, au paragraphe 1.6.b, p. 27. La résolution numérique de I’équation de
Schrodinger est effectuée en prenant la transformée de Fourier du champ, et en appliquant
au spectre le masque de phase

K2+ KD
Déphasage = exp o2 ) (I1.53)

ks (resp. k,) étant la fréquence spatiale selon z (resp. y), k le vecteur d’onde et z la
distance de propagation.

Lorsque la taille du pas d’échantillonnage est petite, cela signifie que Miré traite de
grandes fréquences spatiales. Par conséquent le déphasage (I1.53) peut devenir important.
Lorsque d’un pixel spectral au voisin, la différence de déphasage devient de l'ordre de
I'unité, des problémes risquent de se produire. La plus grande fréquence spatiale traitée
étant exactement 7/dx, on trouve la condition (I1.52) en écrivant que le déphasage entre
deux pixels du bord du spectre vaut 7.

La méthode spatiale de visualisation se référe a ce que nous avons dit en introduction :
les oscillations apparaissent lorsque la lumiére issue d’un petit défaut (la source gaussienne
dans notre exemple) atteint les bords de la boite. On peut exprimer les choses de maniere
encore plus précise: on sait que le traitement spectral de Mird revient a stipuler que les
conditions aux bords sont périodiques. Lorsque par diffraction la lumiére issue du petit
défaut atteint un bord, elle est de fait instantanément « transportée » sur le bord opposé.
Mais sur I’autre bord (fig. I1.41), il y a aussi de la lumiére qui se propage selon un angle
différent. Les deux champs vont interférer, d’ol des oscillations que ’on voit apparaitre a
la simulation.

I'1G. 11.41 — Interprétation géométrique des oscillations numériques observées.
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Revenons maintenant & notre exemple: la distance critique vaut 60 cm environ. Or
il est possible de propager le faisceau sur plus de 5 m sans voir les effets du mauvais
échantillonnage spectral. Cela est di au fait que la source est plus grande que la taille
d’'un pixel; autrement dit, il n’y a pas d’énergie sur les fréquences spatiales les plus
¢levées, i.e. celles qui devraient poser des problémes avant 5 m (on peut le vérifier en
regardant le spectre). Dans le cas de la source de diamétre 0,2323 m (en bas a droite
de la figure I1.40), le spectre est treés étroit, de telle sorte qu’il n’y a absolument pas
d’énergie sur les fréquences spatiales dont la phase est mal échantillonnée. C’est pourquoi
la propagation est correcte, malgreé le fait que le faisceau « touche » les bords de la boite
(selon l'interprétation spatiale, la lumiére qui se situe sur les bords ne se propage pas selon
un angle ; comme les champs sont égaux aux deux bords la périodicité des conditions aux
limites ne donne donc pas lieu & des interférences. De telles interférences apparaitraient
s1 nous décentrions la source par rapport a la boite de discrétisation).

f) Conséquences concrétes du probleme

Le lecteur pourra trouver que l'exemple exposé ci-dessus est un cas d’école sans rap-
port avec les conditions d’utilisation de Mird les plus usuelles. Il est exact que pour une
simulation « classique » du laser Mégajoules (512 x 512 points, pour une pupille de 40 cm),
de tels problémes d’effets de bord ne se produisent jamais: la distance critique est alors
de lordre de 50 m, ce qui est supérieur a la distance séparant deux lentilles consécutives.
Par contre, si I’on veut simuler le laser Mégajoules avec 1 X 65536 pas d’espace, ou encore
si Pon conserve 512 x 512 points, mais que I'on étudie une sous-pupille?, des problémes
vont survenir. De facon générale, on ne peut pas simuler le laser Mégajoules de cette fagon
avec une précision meilleure que 1 mm.

g) Une solution au probléme : la couche limite absorbante

Remarquons tout d’abord que dans ’exemple que nous avons présenté, il est possible
d’éliminer les problémes de facon trés simple: il suffit de choisir le mode de calcul « dif-
fraction de Fresnel adaptative » (fig 11.42). Dans ce cas la taille de la boite se met a
croitre au-dela d’une certaine distance de propagation, de telle sorte que la lumiére n’at-
teint jamais les bords. La simulation est donc exacte mais ne correspond pas toujours au
comportement souhaité par I'utilisateur. En effet 'augmentation de la taille de la boite
s’accompagne d’une perte de précision de I’échantillonnage qui peut étre facheuse si l'on
souhaite calculer des effets non linéaires par exemple, ou encore si l’on se propage dans une
chaine laser dont les optiques sont de taille identique. Dans certain cas, il est préférable
que la taille de la boite et la précision du calcul restent constants, quitte a perdre un peu
d’énergie quand les hautes fréquences spatiales diffractent vers les bords et sortent de la
boite. Il faut donc trouver le moyen de s’affranchir des effets de bords et de I'apparition
du bruit numeérique.

Pour résoudre ce probléme, une possibilité serait de changer de méthode numérique

2. Pour une telle simulation, on voit apparaitre aprés une certaine distance de propagation un grand
nombre de modulations & haute fréquence. Certains utilisateurs seraient alors tentés de les interpréter
comme de la filamentation dans les optiques — alors qu’il s’agit en réalité d’un effet du mauvais échan-
tillonnage de la phase spectrale!
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FiG. 11.42 — Méme simulation que sur la figure I1.40 en haut & droite, mais en choisissant
le mode de calcul « diffraction de Fresnel adaptative ».

et d'introduire des conditions aux limites absorbantes (c’est-a-dire une relation spécifique
faisant intervenir le champ sur les bords et ses dérivées). Ce type de solution n’a pas été
implanté dans Mird pour des raisons de complexité de mise en ceuvre et de temps de
calcul. La méthode proposée consiste simplement & introduire un coefficient d’absorption
sur une zone étroite autour de la zone discrétisée. De cette fagon, le champ sur les bords
s’annule peu a peu de telle sorte que les discontinuités liées a la périodicité des conditions
aux limites disparaissent.

Afin de tester Defficacité de la couche limite absorbante (CLA) nous reprenons
I’exemple ci-dessus.

0- Source circulaire | Diamétre 21075 m
2- Propagateur Longueur 10 m
Indice non linéaire 0 m2/W
1- Miroir Normale theta 135°
Parameétres Diffraction de Fresnel
Temps 0s;4107%s: 1
X —0,25 m; 0,25 m; 65536
Y O0m;0,25m;1
Couche limite absorbante 0,025 m
Coefficient d’absorption de la CLA 9,53 m~!

Le résultat de la simulation est présenté sur la figure 11.43: on peut constater la quasi-
disparition des oscillations, tandis que la taille globale du faisceau reste la méme. Le
concept a donc bien fonctionné.

Toutefois, en regardant le résultat de prés (essayer d’agrandir la fenétre de résultats
et bien regarder sur les bords du faisceau) on constate qu’il reste un peu d’oscillations:
la méthode n’est donc pas parfaite. Ces oscillations sont d’une part dues au fait que la
couche limite n’absorbe pas totalement la lumiére, et d’autre part causées par la réflexion
d’une partie de la lumiére.

Afin de mieux visualiser les dysfonctionnements de la CLA nous proposons la simula-
tion suivante, ou la totalité du faisceau est envoyée dans la couche absorbante :



226

Chapitre II. Tests Composés

5e+09
4e+09
3e+09 / \
2e+09
1e+09

0e+00
-3e-01 ~2e-01 -1e-01 -3e-17 1e-01 2e-01 3e-01

{Ex? |

/N

4,047e+09

/

/ \

/ N

I AW

8,210e+00
Y

F1G. 11.43 ~ Résultat de la simulation mettant en euvre une couche limite absorbante (a
comparer avec celui de la figure I1.40).

[ 0- Source circulaire | Diamétre 21072 m ]
1- Lame Epaisseur 1077 m
Indice non linéaire 0 m*/W
Fichier masque de phase statique y*2e4d
4- Propagateur Longueur 100 m
Indice non linéaire 0 m?/W
2- Miroir Normale theta 135°
Parameétres Diffraction de Fresnel
Temps 0s;4.107%5s; 1
X 0m;0,25m;1
Y ~0,25 m; 0,25 m; 4096
Pas maximal de diffraction 10 m
Couche limite absorbante 0,025 m
Coefficient d’absorption de la CLA 9,53 m!

La figure 11.44 présente le profil d’intensité obtenu pour différentes distances de propa-
gation dans le propagateur. On s’attendrait a ce que la lumiére soit absorbée a l'intérieur
de la CLA et que I’énergie s’annule. On observe en fait qu'une partie de 'énergie (environ
4 %) est réflechie. Cette réflexion parasite (bruit numérique), méme si elle est d’énergie
faible, peut constituer un obstacle a certaines simulations car le bruit de haute fréquence
réflechi peut ensuite étre amplifié par effet non linéaire.

Test de conservation du code: 3,886 140 mJ aprés 100 m de propagation.
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F1G. I1.44 — De gauche a droite et de bas en haut, propagation du faisceau dans le propa-
gateur sur des longueurs de 60, 70, 80 et 90 métres (on effectue un « recalcul » a chaque
fois). On constate que la CLA n’absorbe pas toute l’énergie mais en réfléchit une partie.



Annexe A

Conversion CGS — SI

Le probléme des conversions d’'unité est trés fréquemment rencontré en optique non
linéaire. En effet, méme si le systéme international (SI, ou MKS) a tendance & s’imposer
ces derniéres années (y compris dans la littérature provenant d’outre-atlantique), les pu-
blications antérieures aux années quatre-vingts utilisent presque exclusivement le systéme
CGS. Le but de cette annexe est d’aider l'utilisateur a effectuer les conversions. Plutot
de se contenter de formules de conversion sans explication, nous avons choisi d’expliquer
la « philosophie » des deux systémes d’unités. De cette facon le lecteur sera en mesure
d’effectuer des conversions méme pour des grandeurs que nous n’avons pas prévues.

1. Expression des grandeurs physiques dans les deux
systémes d’unités
a) Systéme SI (ou MKS)

Dans ce systéme, quatre unités fondamentales ont été définies:
- T'unité de longueur (métre);
— l'unité de masse (kilogramme);
~ l'unité de temps (seconde);
— et enfin I'unité d’intensité électrique (ampére).
Nous rappelons que MKS signifie « métre-kilogramme-seconde », 'ampére étant sous-
entendu. Toutefois il y a bien quatre unités fondamentales, les grandeurs électriques
n’étant pas définies a partir des autres unités.
D’autres unités sont définies a partir de ces unités fondamentales via des formules
simples. En voici une liste non exaustive :
- grandeurs non électriques:
— énergie (joule):

1
EO) — _2_M<kg) (V<m/s>)2 , (A1)

- puissance (watt):

PW) =g )T (A.2)
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— force (newton):

F®N) = pplke) glm/s?) (A.3)
— grandeurs électriques:
— charge (coulomb):
C(O) = [WT6) (A.4)
soit 1 C=1 A.s;
~ tension (volt):
PW) = gV fAa) (A.5)

soit 1 V=1m? kg.s%. A7,

— champ électrique (Volt par métre): pour mémoire,

— on définit également la capacité en farads (Q©) = CTUM  soit
1 F =1 m?2kg's*"A?, linductivitt en henrys (U = LE[A)/TE)  soit
IH = 1 m?2kg.s2. A7) et la résistance en ohms (UY = ROWIA) | soit 1 Q =
1 m? kg.s7%. A7?), etc.

Le systéme SI fait intervenir des constantes électromagnétiques dimensionnées: £q
(permittivité électrique du vide) et gy (permeéabilité magnétique du vide). Par définition
110US avons

- ¢=299792458 m/s;

— g = 471077 F.s2.m™3;

- gollgc® = 1.
La derniére condition permet de calculer: gy = 8,854187817...1072 F.m~!. Ces
constantes permettent d’équilibrer dans certaines relation la « contribution en am-
péres » (exposant du terme en ampéres dans la décomposition en unités élémentaires).
Par exeniple nous avons les relations suivantes:

- force de Coulomb: FN) = (47gq)~! (Q(C))Q/ (D(m))z;

— densité volumique d’énergie électrostatique : E (\J,) = (E(V/m))g.
Les relations faisant intervenir le champ magnétique s’expriment plus facilement avec pg.
Les deux constantes gy et pg apparaissent naturellement dans les équations de Maxwell :

divD =p (A.6.a)

divB =0 (A.6.h)
0B

tE=——— Ab.c

ro En (A.6.c)

D
rot H = %t— +j (A.6.d)
B = uguH (A.6.¢e)



2. Conversions entre les deux systémes 231

b) Systéme CGS

Le sigle CGS signifie: centimétre-gramme-seconde. Ceci signifie que toutes les quan-
tités non électriques sont définies & partir de ces trois unités de base. La conséquence
est l'introduction de facteurs puissances de 10 pour passer d’un systéme & l'autre. Par
exemple, pour relier une énergie exprimée en unité CGS avec une énergie en joules, nous
aurons d’aprés ’équation (A.1):

E (€09 = Ly (yioms)?
2
1
= 5 x 1000009 (1005¢19)"

d’on

[ (CGS) — 1¢7R (S
Quelques unités autres que les unités fondamentales portent explicitement un nom : ainsi
l'unité d’énergie est appelée « erg » (donc 1 erg = 10~7 J) , 'unité de force « dyne », avec
1 dyn =10"° N.

En systéme CGS il n’y a pas d’unité électrique de référence: la constante &y est prise
sans dimension (égale a 1/(4m)) ce qui permet d’exprimer toutes les quantités électriques
en fonction des trois unités de référence. Les équations de Maxwell dans le systéme CGS
s’écrivent :

div D = 4mp (A.7.a)
divB =0 (A.7.b)
10B
E=--2" AT
rot p (A.7.c)
10D 4mj
rot H = ~—> 4+ =7 (A.7.d)
c Ot c
B=uH (A.7.e)
D=E+4rP (A.7.f)

Il est a noter que dans le vide nous avons D = FE ce qui n’est pas le cas en SI.

2. - Conversions entre les deux systémes
a) Conversion des champs

Pour obtenir les formules de conversion entre les deux systémes pour des quantités élec-
tromagneétiques, nous commencons par poser qu’en CGS le champ magnétique s’exprime
en Gauss. Numériquement nous avons:

B(€%) = 10*B6Y (A.8)

Il est a noter que rigoureusement on ne peut pas dire que 1 T = 10* G puisqu’en SI un
champ magnétique ne s’exprime pas en fonction des unités de masse, distance et temps
alors qu'en CGS si.
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Partant de la on peut rapprocher les équations (A.7.c) et (A.6.c) afin d’établir une
équation de conversion sur le champ électrique (ne pas oublier que le rotationnel en CGS
est en cm™! alors qu’en ST il est en m~'). On arrive & 1'équation de conversion :

E(CGS) — lgl_E(SI) (A.9)
(5D) . ok
Cette équation de conversion sur le champ est par exemple compatible avec la formule
numeérique proposée dans [34, 6] 1.
De la comparaison des équations (A.7.f) et (A.6.f) on peut déduire les équations de
transformation pour D et P:

100 g .
oGS _ (S?) DO = 476D19-3 DD (A.10.a)
C [}
(CGS) 10 (sn) —3,(81) p(SD)
PO = = PO = 107350 PV, (A.10.b)
e o

Les secondes expressions ont été obtenues grace a 1'identité gquoc® = 1 et pp = 4w1077 SL.
L’expression sur D peut étre vérifiée dans [6).
b) Conversion des charges

En comparant les équations (A.7.a) et (A.6.a) (sachant que p est une densité volumique
de charge, le volume s’exprimant en cm® dans le systéme CGS et en m? en SI), on déduit
une équation de conversion des charges électriques:

(€5 = 10D ¢S | (A.11)

L'unité de charge CGS est souvent notée ues (unité electrostatique), ou esu dans les
ouvrages anglo-saxons. Nous pouvons calculer la charge de I’électron:

e =1,6021892.10""° C = 4,803242. 107" ues.

c) Conversion des potentiels électromagnétiques

Dans le systéme SI les potentiels électromagnétiques sont définis comme suit :

oFE
E = —gradV — e (A12.a)
B =rotA. (A.12.b)
Dans le systéme CGS ces équations deviennent :
1 OFE
E = —gradV - E@g)—_ét_ (A13&)
B=rot A, (A.13.b)
On peut en déduire les équations de conversion :
6
1y (CGs) _1O_V(SI) (A.14.a)
(sD)
AlCES) =108 46D, (A.14.b)

1. EBD = 3.10% E(CGS)
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d) Equations complémentaires de l’électromagnétisme

Voici quelques équations de 1'électromagnétisme exprimées dans les deux systémes
d’unités’®.

— force de Lorentz:

SI: F=q¢(E+vAB) (A.15.a)
CGS: F=gq (E + 30’- A B) : (A.15.b)

— Potentiels en jauge de Coulomb:

1 q
SI: V= = 16.
pr— > (A.16.2)
charges
Ho I
A=— — 16.
™ 2 (A.16.b)
courants
q
CGS: = = 16.
S: V=Y . (A.16.c)
charges
1 I
courants
— densité d’énergie:
€0E2 .B2
SI: E, = — A7.
ST (A-1T2)
CGS: E, = E*4 B? (A.17.b)
(NB: E 9 = 10E )y
- vecteur de Poynting:
EANB
st: =0 (A.18.2)
Ho
CGS: II=cEANB (A.18.b)
(H(CGS) = 1000 H(SI)) :
— jauge de Lorentz:
SI: divA+ %‘—;— =0 (A.19.a)
1
CGS: divA+ —a—v~ =0. (A.19.b)
c Ot

1. Lorsque la vitesse de la lumiére ¢ apparait dans une équation CGS elle est exprimée en cm/s.
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e) Conversion des susceptibilités et des polarisabilités

Dans ce paragraphe nous revenons au domaine de ’optique non linéaire pour convertir
les susceptibilités. Nous commencons par les grandeurs microscopiques. On convertir un
dipole microscopique par

p(CG8) — 136D D (A.20)

Sachant que p = ggaE, « étant la susceptibilité linéaire (en CGS p = aE) , on déduit la
relation sur «:

1
(O68) = —— a1, A2l
“ ar10-6 (A-21)

Nous définissons ensuite les polarisabilités macroscopiques :

o h 3 :
PO = g | xlgy B + x(ap (BED)? + Xy (BOY + } (A.22.a)
oG 3 18\
peGs) _ ngcs) E(CGs) | XE?GS)( E(COSH2 4 XEC)QS)(E@CS)P + ... (A.22.b)

Nous pouvons calculer grace a (A.9) et (A.10.b):

NO TN A N
X(cas) = 4 <i_0—4> X(st) - (A.23)

Le terme en x est le terme d’effet Kerr (variation d’indice proportionnelle & U'inten-
sité). On écrit cette variation d’indice sous la forme? [35, p. 36):

n=ng+n(E*) =ng++I, (A.24)

(E?) étant le champ moyenné sur plusieurs cycles, et I l'intensité. En systéme SI, on a
les relations:

3
ng = —x (A.25.a)
477,0
I = noceo( B?) (A.25.b)
3)
gl X (A.25.¢)

noceg  Andegg

En systéme CGS on écrit:

ng = ESIXB) (A.26.a)
Mo
I = ngc!°S9(E?) (A.26.b)

Dans la pratique on utilise rarement v dans le systéme CGS.

2. Attention la définition de no varie selon l'auteur (& un facteur 2 prés).
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De ces relations on peut tirer les équations de conversion :

(CGS) (3) 9

ny X(ces) ¢

—— =A4r = — (A.27.a)
(SD) (3) 8

Ty X(SI) 10

ngCGS) eno

~@1) = 10n (A.27.b)

On peut vérifier la relation (A.27.b) sur certaines tables rédigées dans les deux systémes
dunites [36] 1.

3. Reécapitulatif: tableau de conversion

Nous récapitulons dans ce tableau la plupart des formules de conversions obtenues
précédemment. Pour chaque grandeur physique nous exprimons le coefficient de conversion
littéralement puis numériquement. Dans les formules littérales la vitesse de la lumiére ¢
est prise en SI (¢ = 2,997 924. 10° m/s).

Grandeur p u€SI | u¢CGS | plC8) /pGD Titt. | p(CE8) /56D pum. |
Longueur L m cm 100 100
Masse M kg g 1000 1000
Energie E J erg 107 107
Force F N dyn 10° 10°
Champ magn. B T G 10* 10
Champ élec. E | V/m 10%/c 3,335640.107°
Polarisation P ues/cm? 1073¢ 2,997924. 105
Induction élec. D 4me 1073 3,767303.10°
Ind magné. H 471073 1,256 637. 102
Deusité de ch. p 10~°¢c 2,997924. 10°
Courant de ch. 7 1073¢ 2,997 924.10°
Charge élec. q C esu 10¢ 2,997 924. 101
Potentiel élec. \Y% \Y% erg/esu 105/c 3,335640.1073
Potentiel vect. A 10° 108
Dipdéle élec. p 10%¢ 2,997 924. 10
Susceptibilité a m? cm? 1/(471075) 7957 747.10*
Polaris. linéaire | x{V 1/(4n) 7,957 747.1072
Polaris. quadrat. | x® c/(4m 10%) 2,385672. 103
Polaris. cubique | x® c?/(4m 108) 7,152 066.107
Polaris. ordre n. | x™ (1074c)"~1/(4n)

1. Pour les indices non linéaires croisés, il convient de multiplier par 2 les expressions (A.25.a)-(A.25.¢)
et (A.26.a)-(A.26.c) dés que les harmoniques ¢ et j considérées sont différentes. L’expression (A.25.c) est
remplacée par :

Ny 3x®
= (2 - dy)

vij = (2 = 6i; X
i = ”)niceo dn;njcep

(A.28)

ou l'on a considéré les indices n; et n; vus par les deux harmoniques.
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Intensiteé I | W/m? 10? 103
Puissance P W erg/s 107 107
Fluence F | J/m? | erg/cm? 10? 10°
Indice non linéaire | ny | m?/V? /108 8,987 551. 108
Indice non linéaire! | v | m?/W cng /(407) 2,385672.10° ng

1. Nous donnous le rapport n.(ZCGS)/fy(SU.
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