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Résumé : Ce document contient une liste d'exemples relatifs à l'utilisation du code Miré.
Il est destiné à servir à la fois de tutoriel et de base de cas test servant à la non régression
du code. Les rédacteurs de ce manuel se sont efforcés de couvrir de façon la plus exhaustive
possible les fonctionnalités de Mirô, notamment au niveau des modèles physiques.



L E GUIDE utilisateur & manuel de référence du logiciel Mirô VI.0 [1] contient un
ensemble de cas tests qui ont servi à la première recette du code. Les développements

et les améliorations du code qui ont conduit à figer une version V2.0 [2], une version
V3.0 [3] puis une version 4.0 [4] ont nécessité de multiplier les cas tests qu'ils soient
unitaires ou composés. La mise sur document de ces tests nous apparaît nécessaire pour
trois raisons essentielles :

- procéder à des tests de non régression pour les prochaines versions du code (no-
tamment au moyen d'une routine automatique comparant les résultats de chaque cas test
avec ceux obtenus pour une version antérieure) ;

- garantir les fonctionnalités du code ;
- donner un certain nombre d'exemples aux utilisateurs afin d'illustrer les possibilités

et, les limites de l'utilisation de Miré.

Le volume de ces cas tests s'accroissant, il a été choisi de les mettre dans un docu-
ment séparé du guide utilisateur. Par ailleurs l'ensemble des jeux de données, résultats
et compte-rendus de simulation sont archivés de façon à pouvoir établir rapidement des
comparatifs.

Le document se divise en deux parties : les cas tests unitaires sur chacun des com-
posants et les cas composés pour valider les effets combinés de la propagation et des
différentes interactions. Pour chaque cas, le même plan est grosso-modo reproduit :

- Objectif : donner le concept optique ou informatique testé ;
- Schéma : donner la représentation de la construction des composants dans la feuille

graphique de Mirô ;
Données : donner les paramètres des différents composants (seuls sont spécifiés

les paramètres différents des valeurs par défaut de Mirô pour le composant ; par ailleurs
les composants « propagateur » ne sont explicitement mentionnés que si l'un de leurs
paramètres diffère de sa valeur par défaut) ;

- Interprétation : donner les résultats du calcul Mirô et comparer si possible avec
une solution analytique. Les courbes présentées sont obtenues par le logiciel Gnuplot pour
faciliter une intégration dans le texte (directement sous I^TEX).

En général, la durée des calculs Mirô correspondant aux exemples de ce manuel ne
dépasse pas quelques secondes sur une station de travail de type SUN Ultra. Il existe
quelques exceptions cependant, qui sont signalées explicitement.

Dans cette édition, la liste des cas tente d'être exhaustive mais elle est loin d'être
fermée. Les propositions des utilisateurs seront bienvenues (miro@bordeaux.cea.fr).
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Chapitre I. Tests Unitaires

1. Amplificateur
a) Objectif

Le but de ce calcul est de vérifier l'amplification saturée de Frantz et Nodvik. On
considère la propagation d'un faisceau de profil uniforme dans un amplificateur plaque
dont le gain G(x,y) est linéaire en y. La fluence en sortie de plaque Fsortie s'exprime en
fonction de la fluence d'entrée Fentrée pour un composant sous incidence normale par la
formule :

FS0Ttie{x,y) = Fsax In < 1 + G(x,y) exp

où Fsat est la fluence de saturation de la plaque.

b) Schéma

-^entrée

sat
(1.1)

rect.

Source
-D-

c) Données

1- Source rectangulaire

3- Amplificateur plaque

Paramètres

Energie
Largeur
Hauteur
Exposant spatial en X
Exposant spatial en Y
Epaisseur
Indice de réfraction
Transmission face d'entrée
Transmission face de sortie
Normale thêta
Fluence de saturation
Gain
Hauteur
Largeur
Optique géométrique 3D
X
Y

5.103 J
4 m
4 m
400
400

3,363.ÎO""2 m
1,522

1
1

0°
104 J/m2

gain. l in
2 m
2 m

0 m ; 1 m ; 1
- 1 m; 1 m; 200

Le fichier g a i n . l i n 1 est un profil linéaire de gain. Il est possible de le remplacer par
l'expression analytique 1+499.5*(y+1).

d) Interprétation

En optique géométrique 3D, la différence entre la valeur de la fluence calculée sous
Mathematica et celle obtenue par Miré est du bruit numérique. Les formules sont en fait

1. Il a la forme suivante (« | » signifie un passage à la ligne) :
2 2 2 1 . 1 . 1 . 0 I X= - 1 . 1. I Y= -1 1 . 1 . Y= 1. I . e3 I . e3



1. Amplificateur

strictement identiques. Sur ce type de cas test pour les amplificateurs, des différences
apparaissent uniquement en cas de multi-passages et pour une pupille (ou boîte) de calcul
différente de la pupille de l'amplificateur. Dans ce cas les points d'échantillonnage du gain
sont différents de ceux du faisceau et une interpolation est effectuée entre les deux. Le
choix de l'interpolation temporelle ne joue pas sur la fluence totale de sortie de chaîne
mais uniquement sur la répartition entre les différentes intensités.

En optique géométrique ID, la fluence d'entrée du faisceau est de 3,125.102 J.m~2, la
valeur analytique et celle donnée par Miré en fin de chaîne sont identiques :

analytique : Fsortie = 2,826 58.104 Mirô : Fsortie = 2,826 58.104.

60000

- 1 - 0 ,8 -0 ,6 - 0 , 4 - 0 , 2 0 0,2 0,4 0,6 0

FlG. 1.1 - Fluence analytique en trait continu et calculée en pointillés.

- 1 - 0 , 8 - 0 , 6 - 0 , 4 - 0 , 2 0 0,2 0,4 0,6
V (m)

FlG. 1.2 - Différence absolue entre la fluence analytique et celle calculée.
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2. Amplification en spectre large
a) Objectif

Ce cas test vise à valider le module d'amplification spectre large de Mirô. Pour ce
faire, nous effectuons des comparaisons avec le modèle analytique de Frantz et Nodvik
dans certaines configurations où un tel test est possible (faisceau monochromatique, à
résonance ou hors résonance). Nous effectuons également le test pour un faisceau à spectre
large, modulé en phase. Dans ce cas le test n'est que qualitatif.

Lors des simulations spectre large, la principale limitation provient de la quantité de
mémoire requise, essentiellement en raison de la discrétisation temporelle nécessaire. Il est
toutefois possible d'économiser de la mémoire en ne traitant qu'une tranche temporelle
de l'impulsion, à condition de connaître l'état des amplificateurs pendant le passage de
l'impulsion. L'exemple que nous fournissons au paragraphe 1.2./ montrera à l'utilisateur
comment procéder.

Pour tous ces exemples nous nous plaçons dans le cas d'un amplificateur de fort gain,
en double passage et dans un régime fortement saturant. De cette façon nous pouvons
mettre en évidence simultanément des effets de saturation et des effets de spectre large.

b) Schéma

-D-

inusoidal

-a-
MocLFttue

-D-

c) Données

Nous considérons successivement les 3 situations suivantes :

- (a) modèle de spectre étroit (Frantz et Nodvik) ;

- (b) résolution en spectre large pour une impulsion monochromatique résonnante;

- (c) résolution en spectre large pour une impulsion monochromatique hors réso-
nance. Si Aw est l'écart à la pulsation résonnante, alors on peut compenser cet écart en
corrigeant les paramètres de l'amplification (gain G et fluence de saturation Fsat) de la
façon suivante :

G
F8at/(1 Aw 2 T 2

2 ) .

Dans l'exemple nous prenons |AwT2| = 1 (T2 désigne le temps de cohérence de la raie).

On s'attend à ce que les trois cas fournissent le même résultat. Notons que pour ces
trois exemples nous ne faisons pas « fonctionner » le modulateur de phase (épaisseur nulle
pour le composant).



2. Amplification en spectre large

0- Source analytique

1- Modulateur sinusoïdal

2- Amplificateur « plaque »

3- Miroir

Paramètres

Energie
Expression de l'intensité I(x,y,t)
Expression de la phase

Epaisseur
Profondeur de modulation
Fréquence de modulation
Indice non linéaire
Transmission face d'entrée
Transmission face de sortie
Normale thêta
Dispersion des vitesses de groupe
Fluence de saturation

Gain

Discrétisation des gains suivant X
Discrétisation des gains suivant Y
Temps de cohérence de la raie
Coefficient de réflexion
Normale thêta
Optique géométrique 3D (a)
Spectre large (b,c)
Temps
X
Y
Déphasage maximal du pas fractionnaire
Nombre maximal d'itérations
Nombre de pixels de recouvrement

0 J
Voir expression jointe

0(a,b)

Iel3*t (c)
0 m

lOrad
170 GHz

0
1
1
0°

0 s2/m
4,52.104 J/m2(a,6)
2,26.104 J/m2(c)

3 (a,b)
9(c)

0
0

100 fs
1

180°

-5.10"11 s; 5.10-11 s; 1024
-0,25 m; 0,25 m; 1
-0,25 m; 0,25 m; 1

0,01
100
20

Expression analytique à fournir pour l'intensité :
(exp(-(t*2*(log(2))"0.05/8e-ll)"20))*1.261el4/0.25

d) Interprétation

Sur les figures 1.3 et 1.4 nous comparons le résultat obtenu par le modèle de Frantz et
Nodvik (optique géométrique 3D), et le résultat obtenu par le mode spectre large dans le
cas résonnant et dans le cas non résonnant. On trouve une différence de l'ordre du pour-
cent, comparable à la précision que nous avons demandée pour effectuer le calcul en spectre
large (1CT2). La courbe de différence absolue dans le cas résonnant est intéressante, car
elle met en évidence le positionnement des fenêtres temporelles utilisées pour la résolution
en spectre large.
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FlG. 1.3 - À gauche, courbe amplifiée (après deux passages dans Vamplificateur) par un
calcul spectre large à résonance (en trait plein), et par le modèle Frantz et Nodvik (en
pointillés). À droite, calcul spectre large hors résonance et Frantz-Nodvik.

z
•a

fa

- 4 . 10'

- 6 . 101

- 8 . 101

- 1 0 1

! 1 1 1

1 1 1 1

1 1 1 1

1 
1 

1 
1 

1

- 5 0 - 4 0 -30 - 2 0 - 1 0 0 10 20 30 40 50

i(ps)

3.1012

2,5. 101

2. 10l

1,5. 10

- 5 . 1011 -

12 _

12 _

12 _

12 _

11 _

12

1 1

1,

1
iËbïn,,,,,,

i i

!

1 1

-

-

-

-

mmmiWUb.

1

- 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 10 20 30 40 50

t(ps)

FlG. 1.4 - A gauche, différence absolue entre la courbe spectre large et la courbe Frantz et
Nodvik, à résonance. A droite, la même chose hors résonance.



2. Amplification en spectre large 11

e) Cas où l'impulsion est modulée en phase

Nous mettons maintenant « en route » le modulateur de phase, c'est-à dire que par
rapport au cas (b) du paragraphe précédent nous effectuons la modification présentée
dans le tableau infra1. Notons que ce cas test est uniquement qualitatif.

1- Modulateur sinusoïdal
(pour mémoire)

Épaisseur
Profondeur de modulation
Fréquence de modulation

10 rad
170 GHz

4 . 1 0 1 4

3 . 1 0 1 4

modulée
non modulée

FIG. 1.5 - Amplification spectre large d'une impulsion initialement modulée sinusoïdale-
ment en phase. Puissance obtenue en spectre large (en trait plein) et en spectre étroit (en
pointillés).

La figure 1.5 présente la courbe de puissance de l'impulsion amplifiée (en spectre
large) compte tenu de la modulation. On constate globalement une légère perte d'énergie
(20,730 kJ au lieu de 21,805 kJ) et une très forte modulation d'amplitude sur le champ
amplifié (à la fréquence double de la fréquence de modulation). À titre d'information
nous fournissons aussi la courbe obtenue par le modèle de Frantz et Nodvik c'est-à dire
ne tenant pas compte de la modulation de phase. Lorsque l'amplificateur ne sature pas
la courbe spectre étroit doit coïncider avec les maxima de la courbe spectre large. Par
contre la saturation intervient plus rapidement en spectre étroit qu'en spectre large. À la
limite d'une très forte saturation on doit obtenir la même énergie en spectre large et en
spectre étroit. C'est ce que l'on observe qualitativement sur la courbe.

f) Stockage des gains au cours de l'amplification ; application à la dis-
crétisation temporelle partielle d'une impulsion

Les simulations spectre large nécessitent beaucoup de pas de temps : de 1 024 (pour
une impulsion de l'ordre de 100 ps) à 65 536 pour une impulsion type Mégajoules, de durée

1. Signalons que les paramètres de la modulation (10 rad de profondeur à la fréquence de 170 GHz)
sont très exagérés par rapport à ceux du lissage LDS (SSD) sur le laser Mégajoules.
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10 ns. Compte tenu des mémoires actuellement disponibles sur la plupart des machines
ces exigences sont incompatibles avec une discrétisation spatiale (même très grossière) de
l'impulsion.

Une solution pour contourner ce problème consiste à ne traiter qu'une tranche tem-
porelle de l'impulsion (inférieure à 100 ps). Toutefois, on est gêné par la saturation des
amplificateurs, plus précisément par le fait que le gain évolue sur des durées comparables à
la durée de l'impulsion (1 ns). Mirô offre une solution partielle à ce problème : le stockage
des gains au cours du passage de l'impulsion. Concrètement, l'utilisateur pourra procéder
en deux étapes : tout d'abord, il discrétisera entièrement son impulsion en temps, avec
la précision reqtiise pour le spectre large, mais il ne retiendra qu'un seul pixel spatial.
Les gains des amplificateurs prendront une valeur scalaire, par exemple la moyenne du
profil de gain mesuré ou calculé par les codes de pompage. Au cours de cette simulation,
on stockera les gains résiduels dans des fichiers ASCII, à un instant donné ts du profil
temporel de l'impulsion. Cet instant peut par exemple correspondre au pic principal du
profil temporel.

Dans un deuxième temps, on se restreindra à une tranche temporelle de l'impulsion
commençant à l'instant ts (avec par exemple 128 pas de temps). Cette nouvelle simula-
tion lira à chaque passage les fichiers de gain résiduel enregistrés lors de la simulation
précédente. Ceci permettra donc de tenir compte de la saturation « à long terme » des
amplificateurs. Comme nous utilisons moins de pas de temps, nous pourrons maintenant
discrétiser l'une des dimensions spatiales, voire les deux sur une machine très puissante.
Nous pourrons donc modéliser des effets spatio-temporels comme le chromatisme latéral
induit par un prisme ou un réseau, ou encore l'autofocalisation pour un faisceau spatia-
lement incohérent. La seule restriction apportée par la méthode est la suivante : comme
la première étape ne comprenait qu'un seul pas d'espace, il n'est pas possible de tenir
compte des profils de gain des amplificateurs1.

Dans ce cas test nous nous contentons de tester la validité de cette méthode. Nous
vérifions que lors de la deuxième étape l'amplification est la même que lors de la première.
Nous ne choisissons donc qu'un seul pas d'espace pour la deuxième étape (comme pour
la première).

Pour effectuer le cas test on part de l'exemple précédent (amplification spectre large
d'un faisceau modulé en phase, § 1.2.e), et l'on effectue pour la première étape les modi-

1. Remarque : la routine d'amplification spectre large à été conçue à une époque ou le choix du lissage
par fibre sur le Mégajoules semblait le plus probable. Finalement c'est le LDS (SSD) qui a été retenu
et la routine ne lui est pas adaptée de façon optimale. En effet, en lissage LDS l'évolution des gains par
saturation est peu affectée par la largeur de bande. Pour effectuer un calcul spectre large sur une tranche
temporelle, dans le cas où la tranche n'est pas située à la fin de l'impulsion, on aurait tout intérêt à
évaluer les gains résiduels à l'instant correspondant à cette tranche par un calcul préalable en spectre
étroit (qui permettrait de prendre en compte le profil spatial avec peu de mémoire). Malheureusement
ceci n'est pas possible dans la version actuelle de Mirô.

En attendant une évolution du code, nous suggérons la solution suivante : calculer en spectre étroit
l'amplification sur trois passages (pendant lesquels il y a peu de saturation), puis — grâce à un apodiseur
fichier utilisé avec une formule analytique — supprimer la fin du profil temporel de l'impulsion. Les
fichiers de gains résiduels ainsi obtenus pourron être réutilisés pour le calcul en spectre large.
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fications suivantes :

2- Amplificateur plaque Délai de stockage des gains
Fichier de stockage des gains

-20 ps
g

Pour la deuxième étape on repart du cas test du paragraphe 1.2.e et l'on effectue les
changements suivants

2- Amplificateur plaque

Paramètres

Gain
Fichier de stockage des gains

Temps

g+
(pas de nom)

-2.1CT11 s; -1CT11 s; 128

La figure 1.6 présente le résultat : en pointillés le résultat de la première étape (ana-
logue au paragraphe 1.2.e, mais dont nous n'avons retenu qu'une portion), et en continu
le résultat de la deuxième étape utilisant les gains stockés. On trouve que l'accord est
excellent, sauf sur les premiers pixels de la simulation où l'on observe des effets de bord.

4,5. 1 0 1 4

4 . 1 0 1 4

3,5. 101

2,5. 1 0 1 4

gain stocké
discr. complète

t(ps)

FlG. 1.6 - Puissance obtenue en ne simulant qu'une tranche temporelle et en utilisant des
fichiers de gam résiduel à un temps intermédiaire. En pointillés, simulation de référence
où l'ensemble de l'impulsion est discrétisée.
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3. Amplification avec dérive de fréquence : modèle
« Frantz & Nodvik modifié »

a) Objectif

L'objectif est de tester la routine d'amplification d'impulsions à dérive de fréquence
basée sur la formule de Frantz et Nodvik. Bien que non justifiable analytiquement lorsqu'il
y a de la saturation cette formule fournit des résultats corrects à quelques pour-cent près,
même en cas de très forte saturation. C'est ce que nous allons tester ici dans une confi-
guration multipassages, en comparant le résultat avec celui obtenu par le mode « spectre
large ».

Nous rappelons que les formules d'amplification de Frantz et Nodvik modifiée s'écrit

!,t)=I0(t)-
DF(0,t)/F,at G(z,t)

- l)G{z,t)
(1.3)

où nous définissons la fluence effective par

rdf, (1.4)

avec w(t) — 2bt (b étant la dérive de fréquence du faisceau), T2, WA et CJL étant respective-
ment le temps de cohérence de la raie d'amplification, la longueur d'onde d'amplification
et la longueur d'onde du laser. Le gain effectif G est défini à l'instant t par :

G(z,t) = (1.5)

G désignant le gain petit signal pour une impulsion monochromatique. Le gain résiduel
après un passage est quant-à lui donné par

b) Schéma

g(z,oc) = U

-o-
Miroir

(1.6)
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c) Données

0- Source rectangulaire

1- Multiplexeur
2- Miroir

3- Amplificateur « plaque »

4- Miroir

Paramètres

Normale thêta
Energie
Dérive de fréquence

Durée
Scénario
Nom de l'élément
Coefficient de réflexion
Epaisseur
Indice de réfraction
Indice non linéaire
Transmission face d'entrée
Transmission face de sortie
Normale thêta
Fluence de saturation
Gain
Nom de l'élément
Coefficient de réflexion
Normale thêta

Diffraction de Fresnel (a,b)
Spectre large (c)
Temps

X
Y
Nombre de pixels de recouvrement

180°
10 MJ

0 s ' 2 (a)
4.1021 s"2 (b, c)

1 ns
3*0 1
gauche

1
4 cm
1,505

0m 2 /W
1
1

0°
4,52.104 J/m2

1000
droite

1
180°

- 2 . HT9 s; 2.10"9 s; 256 (a,b)
-2 .10" 9 s; 2.10~9 s; 16384 (c)

-0,25 m; 0,25 m; 1
-0,25 m; 0,25 m; 1

200 (c)

Le cas (a) est une amplification de référence en spectre étroit. Le cas (b) est un calcul
par Frantz & Nodvik modifié. Enfin le cas (c) est un calcul en spectre large.

d) Interprétation

La figure (1.7) présente les résultats obtenus. On constate que l'effet du rétrécissement
spectral par le gain se fait fortement sentir dans les cas (b) et (c) où l'impulsion est à
dérive de fréquence. L'impulsion est donc beaucoup plus courte. Par contre, la saturation
est tellement forte que l'énergie est du même ordre dans les trois cas1. On observe donc une
puissance crête plus forte pour des impulsions à dérive de fréquence. Une telle propriété
ne pourrait pas être observée dans un régime sans saturation (la puissance crête serait
alors la même).

On observe en outre une petite différence entre les résultats (b) et (c), due à la dif-
férence de modèle. Cette différence est négligeable en régime linéaire et croît avec la
saturation, comme le montre la table 1.1 qui compare les énergies. C'est le cas (c) en
spectre large qui utilise la méthode la plus rigoureuse, donc qui est le plus exact. Tou-
tefois, le temps de calcul est aussi considérablement plus long (18 min sur un processeur
DEC à 400 MHz). La courbe du cas (c) est également bruitée, ce qui est dû au fenêtrage
de l'impulsion dans le calcul d'amplification spectre large saturée. On peut limiter cet effet

1. L'énergie finale est donnée dans la dernière colonne du tableau 1.1 dans les cas (b) et (c). Pour le
cas (a) l'énergie finale vaut 69,532 20 kJ.
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Spectre étroit (a) o
Frantz & Nodvik modé(&i

Spectre large (c)

1,5

FlG. 1.7 - Comparaison des résultats obtenus en spectre étroit (a), par le modèle Frantz
& Nodvik modifié (b) et en spectre large (c), après 4 passages dans l'amplificateur.

TAB. I.I - Comparaison des énergies dans les cas (h) et (c), après chaque passage dans
l'amplificateur1.

Passage
Energie (b)
Énergie (c)

Eb/Ec

1
8,526 560 mJ
8,526130 mJ

1,000 050

2
7,535 050 J
7,534 330 J
1,000 095

3
5,510 600 kJ
5,329 780 kJ

1,033 926

4
67,619 40
65,340 50
1,034 877

Nous rappelons que dans Mirô les diagnostics sont établis à l'entrée de chaque composant. Les
passages 1 à 3 correspondent donc respectivement à des diagnostics sur l'amplificateur pour des numéros
de passage 2 à 4 ; le passage 4 est un diagnostic sur la source au 2e passage.

en augmentant la précision du calcul (déphasage maximal du pas fractionnaire) ainsi que
le recouvrement des fenêtres temporelles, mais ceci aurait pour effet d'augmenter encore
le temps de calcul.



4. Amplificateur « dynamique 17

4. Amplificateur « dynamique »
a) Objectif

Le but de ce calcul est de tester le composant « amplificateur dynamique », qui éva-
lue l'amplification d'un faisceau laser en tenant compte de la désexcitation du niveau
quantique inférieur. Soient Tjnf la durée de vie de ce niveau inférieur, et T la durée de
l'impulsion. Le composant « amplificateur dynamique » fournit le même résultat que le
composant « amplificateur » dans deux cas de figure :

- lorsque T 3> rm{, en prenant les mêmes paramètres ;

- lorsque T <C Tjnf, avec
l. dyna

-'sat

yna e t FsaxP1 étant respectivement les fluences de saturation de l'amplificateur
dynamique et de l'amplificateur.

Ce calcul reprend donc le schéma et les paramètres du cas test de l'amplificateur
(§ 1.1), à la fluence de saturation près.

b) Schéma

c) Données

1- Source rectangulaire

3- Amplificateur « dynamique » plaque

Paramètres

Energie
Largeur
Hauteur
Durée
Exposant temporel
Exposant spatial en X
Exposant spatial en Y
Epaisseur
Indice de réfraction
Indice non linéaire
Transmission face d'entrée
Transmission face de sortie
Normale thêta
Fluence de saturation
Gain
Hauteur
Largeur
Optique géométrique 3D
Temps
X
Y

5.103 J
4 m
4 m

HT11 s (a), 10~7 s (6)
200
400
400

3,363.10~2 m
1,522

0 m2/W
1
1
0°

2.104 J/m2(a), 104 J/m2(6)
gain . l in

2 m
2 m

0 s; 10"11 s (a) ou 10"7 s (6) ; 1
0 m ; 1 m ; 1

- 1 m; 1 m; 200
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Le fichier g a i n . l i n est le même que pour le cas test du composant « amplificateur »
(p. 6). Il y a deux cas tests (a) et (b) qui diffèrent au niveau de la durée de la source, de
l'intervalle temporel de discrétisation et de la fluence de saturation de l'amplificateur.

d) Interprétation

Dans les deux cas de figure cités ci-dessus, les différences entre amplificateur et ampli-
ficateur dynamique sont minimes. Elles sont dues au fait que l'infiniment petit considéré
(T/Tjnf ou rjnf/T selon le cas) n'est pas rigoureusement nul.

En optique géométrique ID, la fluence d'entrée est 31,25 J/m2. Les fluences de sortie
sont les suivantes :

- amplificateur « dynamique », T = 10 ps : Fsor = 2,826 240.104 J/m2 ;
- amplificateur « dynamique », T = 10 \is : Fsor = 2,805 170.104 J/m2 ;
- amplificateur ordinaire (rappel), T = 10 ps : Fsor = 2,826 58.104 J/m2.

Les résultats obtenus en optique géométrique 3D sont représentés sur les figures 1.8 et
1.9. La différence relative de X et Y est [X - Y)/\X + Y\.

6.104

4.104 "

2.104

y

i i i i i | i i i i i i i i

normal, T — 10 ps
dynam., T = 10 ps
dynam., T — 10 \is

i i i i i i . i i i i i i i

-

- 1 -0,5 0

y M

0,5

FlG. 1.8 - Fluence comparée entre l'amplificateur dynamique et l'amplificateur ordinaire

Remarque : lorsque l'on effectue une comparaison entre le calcul inverse et le calcul
direct sur l'amplificateur dynamique, sans se placer dans un cas où le résultat peut être
retrouvé avec Frantz et Nodvik, on trouve que l'accord n'est pas excellent (quelques pour-
cent d'écart). Ceci prouve que la méthode consistant à remplacer la fluence de saturation
par une fluence de saturation équivalente (i.e. la méthode qui est choisie en calcul inverse)
n'est pas tout à fait correcte.
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0,003

0,002 :

0,001

0

-0,001

-0,002
-0 ,5

....

y

i i

0

(m)

T = 10
10

l
0,5

ps

I I

FIG. 1.9 - Différence relative des fluences entre l'amplificateur dynamique et l'amplificateur
ordinaire, pour le cas (a.) (pointillés) et le cas (h) (trait continu).
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5. Amplificateur « dynamique » : caractérisation du
composant

Amplification d'une impulsion à prépalier

Le composant « amplificateur dynamique » de Miré permet de tenir compte de la
durée de vie du niveau inférieur de la transition laser. Plutôt que d'utiliser ce composant
toutefois, il est généralement admis que l'on peut utiliser l'amplificateur ordinaire (formule
de Frantz et Nodvik) en corrigeant la valeur de la fluence de saturation. Le but de ce
paragraphe est de fournir des informations relatives à la validité de ce remplacement.

a) Objectif

Le raisonnement qualitatif montrant qu'il est possible d'utiliser la formule de Frantz
et Nodvik en corrigeant la nuence de saturation fait l'hypothèse que la forme temporelle
de l'impulsion est carrée. Dans cet exemple au contraire, l'impulsion ne sera pas carrée,
mais constituée de deux pas de temps : un premier pas de temps de durée 10 ns, suivi d'un
second de durée 50 ps, les deux pas ayant la même énergie. La durée du premier pas est
très supérieure à celle du niveau inférieur de la transition laser, tandis que celle du second
pas lui est très inférieur. Par conséquent, si l'on applique Frantz et Nodvik, il faudrait ne
pas corriger la fluence de saturation pour le premier pas de temps, et la diviser par deux
pour le second. On s'attend donc à ne jamais obtenir la bonne nuence de saturation pour
les deux pas de temps, quelle que soit la fluence de saturation équivalente choisie.

b) Schéma

Le cas test consiste a relier les propagateurs soit à l'amplificateur « dynamique » (voie
du haut), soit à l'amplificateur ordinaire (voie du bas), et à comparer les résultats.

+ichi*ro
Source

disque

Ampli dyw
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c) Données

0- Source fichier

1- Amplificateur « dynamique » disque

2- Miroir
3- Amplificateur disque

Paramètres

Energie
Section
Fichier temporel source
Transmission face d'entrée
Transmission face de sortie
Normale thêta
Gain
Fluence de saturation
Normale thêta
Transmission face d'entrée
Transmission face de sortie
Normale thêta
Gain
Fluence de saturation

Optique géométrique ID
Temps

10 kJ
Î^.IO"1 m

t
1
1

0°
3

4,707.104 J/m2

270°
1
1

0°
3

•Fsat

0 s; 4.10"9 s; 0

Le fichier t sert à définir la forme temporelle à deux pas de temps1. Dans le cas où
l'on effectue le test avec l'amplificateur standard, on modifie éventuellement la valeur de
la fluence de saturation (valeur par défaut 4,707.104 J/m2).

d) Résultats

Les résultats des calculs sont présentés sur la figure 1.10. Avec l'amplificateur « dy-
namique » (fluence de saturation 4,707.104 J/m2), on obtient une intensité de
l,001.1012 W/m2 pour le premier pas de temps et 1,253.1014 W/m2pour le second (énergie
16,27 kJ). Sur la figure, nous avons tracé pour chacun des deux pas de temps, et pour
différentes valeurs de la fluence de saturation Fsat de l'amplificateur ordinaire, la quantité
/.-Cnlm. » — 1 • On constate que l'accord entre les deux courbes est toujours plus médiocre
que 2 % sur l'un des deux pas de temps au moins.

e) Conclusion

L'écart entre les deux modèles (amplificateur ordinaire ou « dynamique ») ne joue qu'en
régime de saturation, c'est-à dire à la fin de l'amplification sur une chaîne de puissance.
À ce titre il n'est pas étonnant que les énergies et les puissances obtenues par l'une ou
l'autre méthode ne diffèrent rarement davantage que quelques pour-cent. L'utilisation de
l'amplificateur standard (Frantz et Nodvik) pour des impulsions de durée équivalente de
l'ordre de r t est donc le plus souvent licite, à condition toutefois de connaître à quelques
pour-cent près la valeur ad hoc pour la fluence de saturation. Le recours au composant
« amplificateur dynamique » sera justifié pour déterminer cette dernière.

1. Il a la forme suivante : 3 1 1 0
retour à la ligne.

I T=0 le-8 1.005e-8 I 1 200 0, le symbole désignant le
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3,4 3,6 3,8 4 4,2
Fsat (xlO4J/m2)

4,4

FlG. 1.10 - Comparaison entre l'amplification par Frantz et Nodvik, et l'amplification
« dynamique », pour une impulsion à deux pas de temps (cf. texte). La fluence de saturation
de l'amplificateur « dynamique » est 4,707.10J> J/rn2. En abscisse, la fluence de saturation
de l'amplificateur Frantz et Nodvik; en ordonnée, la quantité v,

 ldylZn. „ — 1 exprimée en %
pour chacun des deux pas de temps .
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6. Amplificateur « dynamique » : cas test analytique

a) Objectif

Le but de ce cas test est de tester le composant « amplificateur dynamique » par une
formule analytique, dans un cas qui n'est pas soluble par Frantz et Nodvik : une impulsion
dont l'intensité décroît exponentiellement en fonction du temps.

L'équation d'évolution du coefficient de gain ~g (gain par unité de longueur) est donnée
par

l2—

n dt Fsat
(1.7)

Tj étant la durée de vie du niveau laser inférieur et Fsat la fiuence de saturation. On
suppose que l'intensité du laser / varie en fonction du temps sous la forme

= V (1.8)

Le coefficient de gain obéit alors à l'équation

g
dt

= 0. (1.9)

Cette équation est soluble analytiquement. On trouve (en supposant que la population
du niveau laser inférieur initiale est nulle) que

(1.10)

Au cours de son amplification, l'impulsion ne conservera pas sa dépendance temporelle
exponentielle. Nous nous placerons donc dans un régime perturbatif où l'amplification de
l'impulsion est faible (donc le gain est proche de 1).

b) Schéma
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c) Données

0- Source analytique

1- Amplificateur « dynamique » disque

2- Lame
Paramètres

Energie
Section
Expression de l'intensité I(x,y,t)
Transmission face d'entrée
Transmission face de sortie
Normale thêta
Gain
Fluence de saturation
Diamètre
Epaisseur
Optique géométrique ID
Temps
X
Y

2.104 J
0,16 m2

exp(-t/5e-10)
1
1

0°
1,01

4,707.104 J/m2

10 m
0 m

0 s; 0,995.10~9 s; 200
-0,2 m; 0,2 m; 2
-0,2 m ; 0,2 m ; 2

d) Résultat

La courbe de la figure 1.11 représente le gain de puissance lumineuse (Fsort ie — pentree^
en fonction du temps, obtenues par la formule analytique (1.10) et par le calcul Mirô. On
constate un bon accord entre les deux courbes, comme le confirme la figure 1.12 (différence
absolue entre les deux courbes). Sur la figure 1.11 nous avons également affiché l'intensité
après passage dans un amplificateur de type Frantz et Nodvik, avec le même gain (1,01)
et une fluence de saturation de 3,7565.104 J/m2(valeur qui a été évaluée de façon à ce
que l'énergie en sortie (2,005 770.104 J) soit la même que dans le cas de l'amplificateur
« dynamique »). On peut remarquer que cette dernière courbe ne coïncide guère avec les
deux autres mais il ne faut pas oublier que l'effet est amplifié par le fait que les courbes
sont affichées en échelle logarithmique.
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10

"s îo1

101

12

1009

Mirô —
Analytique

Frantz & Nodvik o

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
t (ns)

FlG. 1.11 - Intensité gagnée, tracée en fonction du temps, pour un faisceau initialement
exponentiellement décroissant, et amplifié dans un amplificateur dynamique de gain 1,01.
Comparaison entre le calcul Mirô, le calcul analytique et le calcul Mirô par Frantz et
Nodvik en ayant corrigé la fluence de saturation.

FlG. 1.12 - Différence absolue entre l'intensité calculée analytiquement et celle obtenue
avec Mirô (courbes de la figure 1.11).
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7. Analyseur de surface d'onde
a) Objectif

L'objectif est de tester le composant « analyseur de surface d'onde ». Pour ce faire
nous appliquons à un faisceau de front d'onde initialement parfait une perturbation de
phase (que nous créons à l'aide d'une lentille de très grande focale). Puis nous corrigeons
le front d'onde ; nous vérifions (qualitativement) sur la phase du champ et sur son spectre
que le front d'onde a effectivement été corrigé.

Dans un deuxième temps, nous nous assurons que la correction du front d'onde est
bien « réversible » : nous appliquons au faisceau corrigé précédent une perturbation de
phase exactement opposée à la première. Puis nous corrigeons une deuxième fois le front
d'onde. À l'arrivée, on doit récupérer une onde plane.

Remarque : ce cas test demande 4 min 40 s de calcul sur une station de travail de
type Sun Ultra.

b) Schéma

o
corr.l

Analyseur
-Or -D-

di v «r-g.

0
Lentille

-o-
Analyseur

nasgu* 2

Lame

qu* 2 fina

D H> D
f inal*

Lame

c) Données

0- Source rectangulaire

1- Lentille

2- Analyseur de surface d'onde

3- Lame

4- Lentille

5- Analyseur de surface d'onde

Exposant spatial en X
Exposant spatial en Y
Nom de l'élément
Epaisseur
Indice non linéaire
Focale
Type de traitement [0/1/2]
Nom de l'élément
Fichier de phase du miroir adaptatif
Côté du miroir adaptatif
Distance caractéristique
Nom de l'élément
Épaisseur
Indice non linéaire
Fichier masque de phase statique
Nom de l'élément
Epaisseur
Indice non linéaire
Focale
Type de traitement [0/1/2]
Nom de l'élément
Fichier de phase du miroir adaptatif
Côté du miroir adaptatif
Distance caractéristique

20
20

converg.
2.10"9 m
0 m'2/W

10 km
0

corr.l
/tmp/corr.1

0,4 m
0,08 m

masque 1
10"9

0 m2/W
/tmp/corr.1

diverg.
2.10"9 m
0m2 /W
-10 km

0
corr.2

/tmp/corr.2
0,4 m
0,08 m
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6- Lame

7- Lame

Paramètres

Nom de l'élément
Épaisseur
Indice non linéaire
Fichier masque de phase statique
Nom de l'élément
Épaisseur
Optique géométrique 3D
Temps
X
Y

masque 2
10~9

0 m2/W
/tmp/corr.2

finale
0 m

0 s; 10"9 s; 1
-0,25: 0,25; 128
-0,25: 0,25; 128

d) Interprétation

L'onde du faisceau initial est plane. Après le passage de la lentille convergente, voici
l'allure du front d'onde (phase brute à gauche, redressée à droite) :

Phase X ' -4e+00
•3e+00 | _

Y

corr.1

t=0.000e+00

gr i l le=64x64

xmin=-2.500e-01

xmax=2.500e-01

ymin=-2.500e-01

ymax=2,500e-01

zmin=-3.133e+00

zmax=3.137e*00

corr.1

t=0.0Û0et00

grille=64x64

xmin=-2.500e-01

xmax=2.500e-01

ymin=-2.500e-01

Umax=2.500e-01

zmin=0.000e+00

zmax=2.8S6e*01

L'analyseur de surface d'onde calcule la correction mais n'agit pas sur le faisceau. La
correction est appliquée au niveau de la lame « masque 1 ». Voici la phase (redressée) du
faisceau après correction :

Phase X t 9 e * 0 0

-8e+00
• 00
too

diverg.

t=0.000e*00

grille=64x64

xmin=-2.500e-01

xmax=2.500e-01

ymin=-2.500e-01

ymax=2.500e-01

zmin=-3.643e+00

zmax=B.403e+00
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Pour donner au lecteur une idée du rôle que pourrait jouer la correction de surface
d'onde sur une chaîne de puissance, nous donnons le spectre spatial du faisceau avant (à
gauche) et après correction (à droite). Ce spectre correspond à l'allure de la tache focale
au foyer d'une lentille de focalisation1. On voit donc que la correction de surface d'onde
réduit la tache focale de manière significative.

IEx=l

(

x ::?\
f

•3e+05 _

É+05

corr.l

t=0.000e*00

grille=64x64

xmin=-8.042e+02

xmax=8.042e*02

ymin=-8.042e+02

Umax=8.042e+02

zmin=2.202e-19

zmax=2.860e*05

I E x 2 l • 9e*06
8e+06
7e+06
•6s+ 06

'5e+ 06
-4e*06
•3e+06

•2e+06

•le+06

!

Y

diverg*

t=O.000e-<-00

grille=64x64

xmin=-8.042e*02

xmax=8.042e+02

Mmin=-8.042e+02

ymax=8.042e+02

zmin=1.227e-Û9

zmax=8.410e+06

La deuxième partie du cas test ne présente pas d'intérêt physique : son rôle est juste de
montrer que l'algorithme de minimisation d'erreur utilisé fonctionne correctement. Si l'on
part d'un masque de phase constitué d'une combinaison de supergaussiennes positionnées
de la même façon que les actionneurs du miroir, le système de correction de surface d'onde
doit être en mesure de corriger rigoureusement le front d'onde. Voici le front d'onde après
la lentille divergente (compensant exactement la première lentille), au niveau du deuxième
analyseur (ce que nous visualisons est en fait la correction de phase du premier système
de correction; elle est donc composée de supergaussiennes).

xmin=-2.500e-01

xmax=2.500e-01

ymin=-2.500e-01

ymax=2.500e-01

zmin=-2.650e*01

zmax=2.931e*00

Et voici maintenant la phase de l'onde finale. Aux erreurs d'arrondis près, nous avons
retrouvé une onde plane.

1. Bien sûr nous oublions que nous sommes ici dans un cas particulier: le masque perturbatif a été
créé avec une lentille, et il suffirait donc pour rétrécir la tache focale de déplacer légèrement la lentille de
focalisation !
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finale

t=0.O00e+OO

grille=64x64

xmin=-2.500e-01

xmax=2.500e-01

amln=-2.500e-01

ymax=2.500e-01

zmin=-1.000e-05

zmax=1.000e-05
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8. Apodiseur
a) Objectif

On considère un faisceau uniforme qui est successivement découpé par un trou dur
carré de côté 2, un disque inscrit dans ce carré et un triangle inscrit dans ce disque. La
surface du faisceau au passage de ces différentes pupilles doit être de 4 puis TT et enfin
3x/3/4.

Attention : ce cas test requiert une grand nombre de points d'échantillonnage, et par
suite une mémoire importante. Si l'on utilise une station de travail (par exemple une SUN
Ultra), par manque de mémoire la machine risque d'utiliser la partition d'échange de son
disque dur (« swap »). Le temps de calcul peut alors atteindre une vingtaine de minutes.

b) Schéma

c) Données

1- Source rectangulaire

3- Apodiseur analytique
5- Apodiseur analytique
7- Apodiseur analytique
Paramètres

Largeur
Hauteur
Exposant spatial en X
Exposant spatial en Y
Déf. analytique des trous
Déf. analytique des trous
Déf. analytique des trous
Optique géométrique 3D
Temps
X
Y

4 m
4 m
200
200

R ( ( 0 , 0 ) , 2 , 2 ; l )
D((0,0) ,2;1)

P ( ( 1 , 0 ) , ( - 0 . 5 , 0 . 8 6 6 0 2 5 ) , ( - 0 . 5 , -0.866025); 1)

0 s; HT 9 s; 1
- 2 m; 2 m; 1024
- 2 m; 2 m; 1024

d) Interprétation

On note successivement la surface du faisceau après le passage de chaque apodiseur.
Les calculs par l'optique géométrique ID et 3D donnent presque les mêmes résultats.

Section analytique
Section calculée 3D
Section calculée ID

1- apodiseur
4 m2

4,015 64 m2

L4,015 64m2

2- apodiseur

3,14159 m2

3,14116 m2

3,14113 m2

3- apodiseur

1,299 04 m2

1,302 43 m2

1,302 44 m2
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9. Conversion de fréquence : évaluation des
paramètres scalaires

a) Objectif

L'évaluation des paramètres scalaires du composant « convertisseur de fréquence »
de Mirô est une opération particulièrement délicate pour qui n'est pas un expert en
conversion de fréquence. Les difficultés sont les suivantes :

- d'une part il faut entrer les valeurs correctes pour tous les paramètres angulaires,
lesquels dépendent de la configuration de conversion souhaitée (doublement ou triple-
ment, type I ou II), ce qui fait le rôle de chaque angle doit être parfaitement compris de
l'utilisateur ;

- d'autre part il faut entrer la bonne valeur pour le paramètre « intensité de conver-
sion », et en fait être en mesure de la calculer soi-même car dans la littérature les définitions
utilisées varient énormément d'un auteur à l'autre (certaines personnes utilisent la quan-
tité dipolaire d^, d'autres introduisent un deg, d'autres encore utilisent une puissance
critique... alors que c'est une intensité de conversion que l'on doit entrer dans Mirô) ;

- pour compliquer encore les choses, beaucoup d'auteurs sont adeptes du système
CGS ; or les conversions CGS —> SI ne sont pas spécialement triviales (cf. annexe A).

Afin de faciliter la tâche de l'utilisateur de Mirô, des macros génériques ont été rendues
accessibles dans la version Unix du code depuis la fenêtre Mirô (via l'icône « macro » en
bas à gauche). Ces macros contiennent un composant KDP dont les paramètres sont
ajustés pour qu'il y ait accord de phase pour chacune des configurations « usuelles »
(doubleur type I ou II, tripleur type I ou II, avec un KDP non deutéré et À =1,053 yim).

Si l'on veut simuler la conversion de fréquence sur une chaîne de type Mégajoules ou
Phébus, il suffit d'utiliser ces macros comme des boîtes noires (en modifiant éventuellement
quelques paramètres tels que l'épaisseur ou l'inclinaison), sans qu'il soit nécessaire de
comprendre comment elles ont été calculées. Par contre, dès qu'on souhaite passer à une
situation un peu plus exotique (par exemple changer de longueur d'onde), il faut recalculer
tous les paramètres.

L'objectif de ce paragraphe est d'aider un utilisateur à calculer les paramètres d'un
convertisseur de fréquence. Pour ce faire, nous indiquerons comment les coefficients pré-
sents dans les macros génériques ont été calculés. Ce paragraphe a été rédigé à partir de
la thèse d'A. Boscheron [5], à laquelle nous renvoyons le lecteur pour toute information
complémentaire.

b) Calcul des angles

Avant d'orienter un KDP, la première chose à faire est de connaître les indices de
réfraction No et iVe correspondant aux axes propres du cristal. Nous donnons dans la
table 1.3 les valeurs pour le KDP non deutéré.

La figure 1.13 permettra à l'utilisateur de repérer les différents angles intervenant dans
le réglage des KDP. L'angle de coupe 9 est l'angle séparant l'axe optique du cristal et la
normale à la surface du composant (qui est aussi la direction du vecteur d'onde car on
suppose que l'on travaille en autocollimation). Connaissant 8, on en déduit l'indice vu par
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TAB. 1.2 - Indices de réfraction (pour des directions de polarisation parallèles aux axes du
cristal) pour un KDP non deutéré, et pour une longueur d'onde fondamentale de 1,053 jim.

A (m)

Ne

3,510.10~7

1,532 380 7
1,486 895 6

5,265.10"7

1,5131859
1,4711416

l,053.1(r6

1,494 515 3
1,460 393 7

Axe optique

Z

\Plan de
taille

Axe du
cristal

X
Axe du
cristal

FlG. 1.13 - Angles utilisés pour définir un cristal de KDP. L'angle 9 est l'angle d'accord
de phase; l'angle Q est ajusté de façon à maximiser le couplage non linéaire d'ordre 2;
l'angle <p sert à faire coïncider les axes ordinaire et extraordinaire avec les polarisations
des faisceaux incidents ; enfin, oc est l'angle de double réfraction.

une onde de polarisation extraordinaire, via la formule

\

1 + tan2 9

1 +

(1.11)

tan2fl

L'angle 9 correspond au paramètre « angle thêta du cristal » du composant. Notons que
ce sont les indices principaux (A ô et iVe) qu'il faut entrer dans le fichier « indice » du
composant, pour chacune des longueurs d'onde intervenant.

En général, on choisit l'angle 9 pour qu'il y ait accord de phase. Deux cas de figure
se présentent selon que l'on est en présence d'un type I ou d'un type IL En type I on a
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simplement

#AP = Arctan

\

(3)

(1.12)

) \ 2

e ;

- 1

en type II, il faut résoudre numériquement l'équation

en utilisant la définition (1.11) ; coi {i = 1,2,3) est la pulsation de l'onde n° i. Notons que
ces équations ne sont valables que pour des cristaux uniaxes.

Les angles de double réfraction ai se calculent quant à eux, pour chaque onde extra-
ordinaire, par la formule [5, p. 83]

= Arctan
-N*fo)) sin 29

2 (iV0
2(u;,) sin2 9 + 7Ve

2(Wi) cos2 9)
(1.14)

c) Coefficient de couplage non linéaire d'ordre 2

On traduit le couplage non linéaire d'ordre 2 via un tenseur d'ordre 2, en écrivant que

ï?2 \
t-J v \

pNL
1 Y
pNL

3̂4 ^ 36

Ey
El

V

(1.15)

Dans le cas du KDP et si les axes de coordonnées sont les axes cristallins, seuls les
éléments de la matrice [d] se rapportant à trois directions de l'espace différentes sont non
nuls ; il n'y a qu'un seul coefficient

Pour le KDP non deutéré, la valeur numérique est

d = 0,39pm/V. (1.16)

Le paramètre « intensité de conversion » de Miré est relié à d par la relation

h = 7 ^ - (1-17)
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En prenant c =2,997924 58.108 m/s, e0 = 107/(4TTC2) SI, on obtient

Ic = 2,21.1020 W/m2 . (1.18)

Plutôt que les valeurs de d36 ou de l'intensité de conversion, on utilise parfois la
quantité rieff : c'est la quantité qui intervient directement dans les équations de conversion.
Toutefois, son expression diffère en fonction de la configuration de conversion (type I ou
II), i.e.

deg = dsm(9 — a3) sin 2CI pour un type I, (I.19.a)

deff = dsm(28 — a2 — a3) cos2Q pour un type II, (I.19.b)

a2 et a:i étant les angles de double réfraction des ondes 2 et 3 (extraordinaires), 8 l'angle
d'accord de phase et Cl l'orientation du cristal.

Enfin, une autre quantité permet de caractériser l'efficacité du couplage non linéaire : la
puissance de conversion [5, p. 40] Pc. Elle est définie de telle sorte que pour un doublement
ou un triplement équiphotonique avec accord de phase parfait, l'intensité de l'harmonique
3 créée soit donnée par

/ rr \
(1.20)

I{ étant la somme des intensités des faisceaux en entrée du cristal. La puissance critique
Pc est reliée au coefficient de couplage effectif des par la relation

p _ £ocnin2n3AiA2 n
C ~ 8 ^ ' ( L

les n, étant les indices vus par les différentes ondes, qui, pour des ondes extraordinaires,
se calculent à partir des indices du cristal via la formule (1.11).

d) Le choix de la bonne unité

Lorsqu'on trouve dans la littérature une valeur numérique pour d36 ou des, deux pro-
blèmes sont susceptibles de se poser :

la définition du champ électrique complexe peut varier d'un facteur 2 d'un auteur
à l'autre ;

- beaucoup d'auteurs (surtout pour des articles relativement anciens) emploient le
système d'unités CGS (les charges étant exprimées en unités électrostatiques : ues ou esu).

On pourra trouver davantage de détails sur ces problèmes de conversion d'unités en
consultant l'annexe A.

Concernant le premier point, nous avons adopté dans ce texte les conventions sui-
vantes :

- si S désigne le champ électrique réel, i.e. évoluant dans le temps en sin(cG>L£), alors
le champ complexe E lui est relié par la formule
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- en unité SI la densité de dipôles *P s'écrit sous la forme :

[x(2)] étant le tenseur de susceptibilité d'ordre 2. Sachant que la quantité complexe non
linéaire P N L est définie par

on tire l'équation
P N L = e0 [d] : EE

avec la définition [d] = 2[x(2)].
En ce qui concerne la conversion d'unités, on peut appliquer la formule [6, 7] (voir

aussi l'annexe A)

dCGS 1 1 1 c
36 - - - 2 , 3 8 5 6 7 2 . 1 0 3 . (1.22)rfgg 4TT y/AlTEo y/ÎÔ 47T104

Pour le KDP, le coefficient d36 exprimé en unités CGS est de l'ordre de 10~9 cm/i/dyn.

e) Table de valeurs

Nous donnons pour chaque type de conversion les différentes valeurs numériques in-
tervenant dans la conversion de fréquence. Les données de base sont les indices JV0 et Ne

fournis dans la table 1.3, et le coefficient rf36 qui vaut 0,39 pm/V. Les autres quantités se
déduisent de la façon suivante :

- l'angle d'accord de phase 9, par l'équation (1.12) pour un type I, et en résolvant le
système constitué par les équations (1.11) et (1.13) pour un type II;

l'orientation du cristal fi est choisie de façon à maximiser le coefficient de couplage
effectif deff ; en général on choisit 45° pour un type I et 0° pour un type II ;

- l'angle <p du cristal sert à faire coïncider la polarisation du faisceau incident avec
les axes ordinaires ou extraordinaires du KDP ; pour ip — 0 l'axe ordinaire correspond à
une polarisation selon y ;

- l'intensité de conversion Ic se déduit du coefficient d36 via la formule (1.17).
Les paramètres suivants n'ont pas besoin d'être entrés dans Mirô (ils sont calculés auto-
matiquement par le code) :

- connaissant 9 on peut en déduire les indices vus par les harmoniques à partir de la
formule (1.11) ;

- les angles de double réfraction «j (i = 1,2,3) se calculent pour toute onde extraor-
dinaire en utilisant la formule (1.14) ;

l'équation (L19) permet de calculer des à partir des valeurs des angles de double
réfraction ;

- la puissance critique Pc se déduit avec la formule (1.21).
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TAB. 1.3 - Table des valeurs numériques intervenant dans le composant KDP pour les
différentes configurations. Les paramètres en gras sont ceux qu'il est nécessaire d'entrer
dans Mirô.

Configuration

en
deff (pm/V)
Pc (GW)
Ic (W/m a )
polarisation
A (u-m)
indice
a(°)

doublement type I
41,187653

45
0,265
1,77

doublement type II
59,228 918

0
0,334
1,09

2,21.1020

o
1,053

1,494 515 3
0

0

1,053
1,494 515 3

0

e
0,526 5

1,494515 3
-1,605 40

0

1,053
1,494 515 3

0

e
1,053

1,469 098 5
-1,150 38

e
0,526 5

1,481806 9
-1,399 98

Configuration

en

Pc (GW)
Ic (W/m2)
polarisation
A (fini)
indice

triplement type I
47,734 862

45
0,296
0,723

0

1,053
1,494 515 3

0

0

0,526 5
1,5131859

0

2,21
e

0,351
1,506 962 4
-1,712 63

triplement type II
59,069 674

0
0,335
0,553

1020

0

0,526 5
1,5131859

0

e
1,053

1,469180 6
-1,153 95

e
0,351

1,498 517 5
-1,500 26
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Les valeurs prises pour les constantes sont c =2,997 924 58.108 m/s, s0 = 107/(4TTC2) SI,
n =3,141592 653 589 79.

Les valeurs numériques pour les coefficients énumérés ci-dessus sont reportées dans la
table 1.4. Attention au cas du tripleur type II : c'est l'onde à 2co qui est l'onde ordinaire.
On remarquera que les valeurs de deff et de la puissance critique Pc sont passablement
différentes de celles proposées dans la référence [5] : c'est dû au fait qu'au contraire de
cette référence, Mirô prend en compte la contribution de l'angle de double réfraction dans
le calcul de

f) Objectif des cas tests

Les cas tests visent à vérifier la formule (1.20) : on se place à l'accord de phase, dans le
cas d'une répartition équiphotonique des pompes ; on choisit / t = Pc/£

2, £ étant l'épaisseur
du KDP. Alors l'intensité convertie vaut / t x th2(l) ~ 0,580025 66It.

Remarque : pour la précision des tests la valeur de l'intensité de conversion choisie
ici contient davantage de chiffres significatifs que dans le tableau 1.4 ou dans les gammes
de composants de Mirô. Dans la réalité ce coefficient est connu de manière très imprécise.

g) Doubleur type I

i) Schéma

mal y tique

Source

ii) Données

0- Source analytique

1- KDP

2- Lame
Paramètres

Energie
Section
Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Angle thêta du cristal
Angle phi du cristal
Orientation du cristal
Intensité de conversion
Analytique/Runge Kutta
Epaisseur
Optique géométrique 3D (a)
Optique géométrique ID (6)
Temps
X
Y

1,772 630.1013 J
l m 2

doubl tl
1 cm

KDP_1053
0m 2 /W

41,187 65°
90°
45°

2,210 296.1020 W/m2

0

0 m

0 s; 1 s; 1
—0,5 m ; 0,5 m ; 1
—0,5 m ; 0,5 m ; 1

Le fichier KDP_1053 contient les indices principaux du KDP non deutéré pour une Ion-
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gueur d'onde fondamentale de 1,053 [uxi1. Ce fichier existe dans le répertoire $MIR0_H0ME/
ext/xxx ($MIRD_HOME/lib/data en ce qui concerne Miro 2000) et l'utilisateur n'a pas
besoin de le recréer dans le répertoire courant.

iii) Interprétation

L'épaisseur du KDP est £ = 1 cm ; la puissance critique étant Pc =1,772 630 GW, on a
choisi l'énergie de la source incidente de telle sorte que l'intensité vaille 1,772 630 GW/cm2.

En optique géométrique ID tout comme en optique géométrique 3D, on trouve en
sortie une énergie 2u de 1,028 620.1013 J ; l'énergie incidente était de 1,772 630.1013 J. Le
rendement est donc de 58,027902 %, valeur proche de la valeur théorique (58 002 566 %).

h) Doubleur type II

i) Schéma

Le schéma est le même qu'au paragraphe précédent.

ii) Données

0- Source analytique

1- KDP

2- Lame

Paramètres

Energie
Section
Nom de l'élément
Epaisseur
Indice de réfraction
Indice non linéaire
Angle thêta du cristal
Angle phi du cristal
Orientation du cristal
Intensité de conversion
Analytique/Runge Kutta
Epaisseur

Optique géométrique 3D (a)
Optique géométrique ID (b)
Temps
X
Y

1,085 409.1013 J
l m 2

doubl tll
1 cm

KDP_1053
0m 2 /W

59,228 92°
-45°
0°

2,210296.1020 W/m2

0
0 m

0 s; 1 s; 1
—0,5 m ; 0,5 m ; 1
-0,5 m; 0,5 m; 1

Le fichier d'indice est le même que pour le cas test précédent. La puissance critique
dans ce cas vaut 1,085 409 415 GW.

iii) Interprétation

En optique géométrique 3D, on trouve une énergie 2w convertie de 6,299 120.1012 J
pour une énergie incidente de 1,085 410.1013 J, ce qui donne un rendement de 58,034 475 %.

En optique géométrique ID, on trouve une énergie 2co de 6,301090.1012 J, soit
58,052 625 % de rendement.

1. Il a la forme suivante: 3 2 1 1 1 1 0 | X= 0.351e-6 0.5265e-6 1.053e-6 I 0=1 I 1.5323807
1.5131859 1.4945153 I E=2 | 1.4868956 1.4711416 1.4603937.
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i) Tripleur type I

i) Schéma

ii) Données

0- Source analytique

1- Source analytique

3-KDP

4- Lame

Paramètres

Nom de l'élément
Énergie
Section
Nom de l'élément
Énergie
Longueur d'onde
Section
Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Angle thêta du cristal
Angle phi du cristal
Orientation du cristal
Intensité de conversion
Analytique/Runge Kutta
Epaisseur
Optique géométrique 3D (a)
Optique géométrique ID (b)
Temps
X
Y

analyt. 1
2,411240.1012 J

1 m2

analyt. 2
4,822 480.1012 J

0,526 5 (im
1 m2

tripl tl
1 cm

KDP_1053
0 m2/W

47,734 86°
90°
45°

2,210 296.1020 W/m2

0
0 m

0 s ; 1 s; 1
—0,5 m ; 0,5 m ; 1
—0,5 m ; 0,5 m ; 1

iii) Interprétation

La puissance critique pour un triplement type I est 0,723 372 070 6 GW. La somme des
énergies lu et 2cu incidentes est 7,233 720.1012 J. En sortie, on convertit 4,197810.1012 J
à 3a;, en ID comme en 3D. Le rendement correspondant est donc 58,031138 %.

j) Tripleur type II

i) Schéma

Le schéma est le même qu'au paragraphe précédent.
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ii) Données

0- Source analytique

1- Source analytique

3-KDP

4- Lame

Paramètres

Nom de l'élément
Énergie
Section
Nom de l'élément
Énergie
Longueur d'onde
Angle de polarisation
Section
Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Angle thêta du cristal
Angle phi du cristal
Orientation du cristal
Intensité de conversion
Analytique/Runge Kutta
Epaisseur

Optique géométrique 3D (a)
Optique géométrique ID (&)
Temps
X
Y

analyt. 1
1,844086.1012 J

l m 2

analyt. 2
3,688173.1012 J

0,526 5 [im
90°

l m 2

tripl tll
1 cm

KDP_1053
0 m2/W

59,069 67°
0°
0°

2,210 296.1020 W/m2

0
0 m

0 s ; 1 s; 1
—0,5 m ; 0,5 m; 1
—0,5 m ; 0,5 m ; 1

iii) Interprétation

La puissance critique vaut 0,553 225 999 7 GW. Dans les deux modes de calcul (ID et
3D), on trouve une énergie 3w convertie de 3,210 780.1012 J. L'énergie incidente totale
étant de 5,532 260.1012 J, le rendement vaut 58,03740 %.
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10. Convertisseur de fréquence : cas perturbatif
a) Objectif

Pour des données initiales de faible intensité, les rendements de conversion de fréquence
sont faibles. Dans ce cas, les ondes créées sont de bien plus faible intensité que celles de
la pompe. On peut considérer que la pompe n'est pas dépeuplée. On est donc dans un
régime perturbatif.

On considère une onde pompe à 1,064 (j.m d'intensité uniforme Ip de 1 MW/cm2 et de
phase courbe pour une focalisation à 5 m qui est doublée en fréquence selon un schéma de
conversion de type I. Dans l'hypothèse d'une faible depletion de la pompe, l'onde créée à
0,532 (i.m est solution de l'équation :

dE2 dE2

dz r dx k2c
2 cos2 (3 V 8TT2/C

La solution se calcule explicitement :

k2 c
2

(1.23)

h(x,z) =
, COS

E2
2

1 sin2(fl-
8 Ai Ic n\ cos3

L'angle de double réfraction vaut :

- Erf

° ) \ tan g) = -1,449 61°.
)

b) Schéma

(1.24)

rect.

Source

c) Données

1- Source rectangulaire

3- Lentille

Energie
Longueur d'onde
Largeur
Hauteur
Exposant spatial en X
Exposant spatial en Y
Indice de réfraction
Indice non linéaire
Focale

îcr6 J
l,064.1(r6 m

1 m
1 m
200
200
1,5

0m2 /W
5 m
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5- KDP

Paramètres

Epaisseur
Indice de réfraction
Indice non linéaire
Angle Thêta du cristal
Angle Phi du cristal
Orientation du cristal
Intensité de conversion
Analytique / Runge-Kutta [0/1]

Optique géométrique 3D
Temps
X
Y
Déphasage maximal du pas fractionnaire

0,05 m
KDP_1064
0 m2/W
36,53961°

90°
-45°

2,5.1018 W
1

Os; HT9 s; 1
-5.10"3 m; 5.10"3 m; 1
-10" 2 m; 10~2 m; 2 048

0,5 rad

Le fichier KDP_1064 contient la liste de indices suivant chacune des direction des axes
optiques1. Attention: la valeur choisie ici pour l'intensité de conversion (2,5.1018 W/m2)
n'a rien à voir avec la « véritable » valeur pour le KDP (2,21.1020 W/m2).

d) Interprétation

La solution calculée par Mirô est comparée à la solution analytique évaluée par le
logiciel Mathematica. Les deux figures suivantes présentent respectivement les profils d'in-
tensité obtenus par le calcul Mirô et le calcul par Mathematica et la difference des deux
solutions. Au centre du faisceau l'écart est de l'ordre de quelques pour-cent. Quand le
nombre de points de l'échantillonnage augmente la précision s'améliore. Il apparaît en
outre une erreur sur le bord gauche du domaine où il n'y a pas de signal. Cette erreur
est due au schéma de résolution de la double réfraction par l'algorithme de TFR. Un
algorithme de différence finie standard pourrait atténuer ce défaut si ce problème est un
obstacle à une simulation.

e) Variante du cas test

II est également possible d'obtenir ce résultat en diffraction de Fresnel adaptative (par
exemple en choisissant 64 pas de discrétisation selon y). Le calcul est alors systématique-
ment effectué par Runge-Kutta.

1. Il a la forme suivante (« | » signifie un passage à la ligne) :
2 2 1 1 1 1 0 | X= 5.32e-7 1.064e-6 | 0= 1 | 1.50734 1.49314 E= 2 | 1.46828 1.45824



10. Convertisseur de fréquence : cas perturbatif 43

2500

-0,01 -0,008 -0,006 -0,004 -0,002 0 0,002 0,004 0,006 0,008 0,01
V (m)

FlG. 1.14 - Intensité analytique en trait continu et calculée en pointillés.
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y (m)

FlG. 1.15 - Différence absolue entre l'intensité analytique et celle calculée.
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11. Convertisseur de fréquence: cas saturé
a) Objectif

Pour un cristal de faible épaisseur, l'effet de la double réfraction peut être négligé.
Dans ce cas il est possible de déterminer analytiquement les solutions à l'aide des fonctions
elliptiques. On considère le cas particulier d'un doublement de fréquence de type I. L'onde
pompe Ei et l'harmonique E2 sont solutions du système d'équations :

= -i

a.\

dzE2 = -i
U)Z rAkz

k2c
z cos"' a 2 2

ou

8ir2L

(1.25.a)

(1.25.b)

(1.26)

et 6 est l'angle entre le vecteur d'onde de la pompe et l'axe principal du cristal et /3 l'angle
de double réfraction qui est défini dans la section précédente HO. On suppose que

(1.27)

On considère dans l'exemple un profil linéaire de l'intensité Ip(x) suivant une direction
transverse. Soient :

± ( L 2 8 )

L'intensité de l'onde créée est définie par :

T ( \ 1 cos
z2 sin2 {6-f3)

I—1 V r-(x,z) (1.29)

b) Schéma

c) Données

1- Source analytique Energie
Longueur d'onde
Expression de l'intensité I(x,y,t)

106 J
1,064.1CT6 m

y+0.5
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3-KDP

Paramètres

Epaisseur
Indice de réfraction
Indice non linéaire
Angle Thêta du cristal
Angle Phi du cristal
Orientation du cristal
Intensité de conversion

Optique géométrique 3D
Temps
X
Y
Déphasage maximal du pas fractionnaire

0,001 m
KDP_1064
0m 2 /W

35°
90°

-45°
, 2,5.1018W

0 s ; 10"9 s ; 1
0 m ; 0,5 m ; 1

-0,5 m; 0,5 m; 256
0,1 rad

Le fichier KDP_1064 est défini dans la section précédente 1.10 (il n'est pas nécessaire
de le créer). Nous rappelons par ailleurs que la valeur de l'intensité de conversion utilisée
ici n'est pas la bonne.

d) Interprétation

La solution calculée par Mirô est comparée à la solution analytique évaluée par le
logiciel Mathematica. Les deux figures suivantes présentent respectivement les profils d'in-
tensité obtenus par le calcul Mirô et le calcul par Mathematica et la différence des deux
solutions. L'écart entre les deux solutions de l'ordre de un pour-cent s'explique par une
différence sur le calcul du coefficient de couplage effectif et par un effet résiduel de la
double réfraction.

2,5.1015

2.1015 -

-0 ,5 -0 ,4 -0 ,3 -0,2 -0 ,1 0 0,1 0,2 0,3 0,4 0,5

FlG. 1.16 - Intensité analytique en trait continu et calculée en pointillés.
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G.1013

4.1013

0

^ 2 . 1 0 1 3

I
-4.1O13 -

131-6.10

.1013

- 1 0 1 4

1,2.1014

-0,5 -0,4 -0,3 -0,2 -0,1 0
y (m)

0,1 0,2 0,3 0,4 0,5

FIG. 1.17 Différence absolue entre l'intensité analytique et celle calculée.
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12. Conversion de fréquence en présence d'absorp-
tion

a) Objectif

L'objectif est de tester les équations de conversion de fréquence lorsque le milieu est
absorbant (et que l'on néglige la double réfraction). Ces dernières s'écrivent

— ^ + v1El = -i 2
Ul deïïE,E*2e-lAkz (I.30.a)

oz kic2 cos2 ai
A ^ (I.30.b)+ v2E2 i \ deffE3Ee

oz k2c
2 cos"1 a2

* * ( I . 3 0 . c )
OZ K3C2 COS2 Qf3

'-)i,(=i,...,3 étant les coefficients d'absorption des ondes 1 à 3. Posant Ej = pi{z)elipi^z\ et
séparant parties réelles et imaginaires, on aboutit à

~ + vipi = --:—5—-i-r—deSp2p3 sin 6> (1.31.a)
dz KiC^cos^cti

^ = -7—Ô~S—<Wip3sin0 (1.31. b)
K2C

2 COS2 «2

= -,—5—S—deffPiP2sin6/ (I.31.c)
K3C2 cos2 a3

— = cotan 6 x f f 1 + Î;2 + ^3 + T~ ln(pi/92P3) 1 + A/c, (1.31.d)
d^ \ dz /

où 0(z) = (fii{z) + (f2(z) — Vziz)
Nous nous placerons dans le cas particulier où v\ = v2 = V3 = t;, et où le désaccord

de phase Ak est nul. Dans ce cas, il est possible d'effectuer le changement de variable et
de fonction [8, § V.C] :

1 — p~vz

y = t—-—- (I.32.a)

P! = Ple
v* (I.32.b)

P2 = P2evz (I.32.C)

P3 = P3e"2- (I.32.d)

On aboutit alors au système d'équations

dpi u\

dy kid2 cos2 a\

dp2 UJ2

dy k2c
2 cos2 «2

sin 9 (1.33.a)

sin 8 (I.33.b)

W3 j ~ ~ . i n ^ (1.33-c)
dy A;3c

2 cos2 a3

-— = cotan^-—ln(pip2P3). (I.33.d)
dy dy
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On reconnaît là les équations de conversion d'un KDP non absorbant à l'accord de
phase.

Ce cas test permet de comparer le résultat Mirô avec la formule analytique évaluée
par Mathematica. Afin de corser la difficulté nous avons choisi une configuration où les
ondes pompes ne sont pas équiphotoniques. La situation est un doublement de type IL

Pour évaluer une solution analytique, nous employons l'expression suivante qui est
tirée de [5, p. 203], et qui donne l'intensité 72w en fonction de z :

-2t>zi sin 201 th2 { -argth sn | 2Wlsin2'0|-J- x cos- sin'0|)5

v 2|sin2V;

(1.34)

It étant l'intensité totale du faisceau incident, ip l'angle de polarisation entre la polarisation
de la source et l'axe extraordinaire du KDP (ip = 30°dans l'exemple), et Pc la puissance
critique définie par la formule (1.21).

b) Schéma

inilytiquc

(S
Source

-D-

type I I

^ ^
KDP

-D- y
Lame

c) Données

0- Source analytique

1- KDP

2- Lame

Paramètres

Energie
Angle de polarisation
Section
Expression de l'intensité I(x,y,t)
Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Coefficient d'absorption
Angle thêta du cristal
Angle phi du cristal
Orientation du cristal
Intensité de conversion
Analytique/Runge Kutta
Epaisseur
Diffraction de Fresnel
Temps
X
Y

2.107 J
30°

l m 2

y+0.5
doubl tll

1 mm
KDP_1053
0m 2 /W
400 m"1

59,228 92°
0°
0°

2,21.1020 W/m2

0
0 m

0 s; 10~9 s; 1
-0,5 m; 0,5 m; 1

-0,5 m; 0,5 m; 256
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d) Interprétation

- 0 , 5 - 0 , 4 - 0 , 3 -0 ,2 - 0 , 1 0 0,1
x (m)

0,2 0,3 0,4 0,5

FlG. 1.18 - KDP à l'accord de phase avec absorption : résultat Mirô et résultat théorique
obtenu avec Mathematica.

2.1014

1,5.1014

1014

5.1013

5 °
"Ï5.1013

<i - i o 1 4

-1,5.1014

-2 .10 1 4

-2,5.1014

-3 .10 14

- 0 , 5 - 0 , 4 - 0 , 3 - 0 , 2 - 0 , 1 0 0,1 0,2 0,3 0,4 0,5
x (m)

FlG. 1.19 - Différence absolue entre les deux courbes de la figure 1.18.
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Mathematica

0,5 - 0 , 4 - 0 , 3 -0 ,2 - 0 , 1 0 0,1 0,2 0,3 0,4 0,5

FlG. 1.20 - KDP à l'accord de phase sans absorption: résultat Mirô et résultat théorique
obtenu avec Mathematica.

La figure 1.18 permet de comparer le résultat Mirô avec la courbe théorique obtenue
avec Mathematica. La différence entre les deux courbes est tracée sur la figure 1.19. Enfin,
nous donnons à titre de comparaison sur la figure 1.20 la courbe correspondant au cas non
absorbant (résultats Mirô et Mathematica).

Remarque : ce cas test ne peut pas tourner en optique géométrique ID (cas il nécessite
de découper le KDP en tranches le long de son épaisseur ; or la conversion de fréquence
ID ne fonctionne que pour la création d'harmoniques).
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13. Convertisseur de fréquence : effet cascade
a) Objectif

Dans ce cas test, nous vérifions avec Mirô une propriété remarquable des convertis-
seurs de fréquence fonctionnant loin de l'accord de phase : lorsqu'il y a faible depletion de
l'onde pompe, le déphasage induit sur cette dernière par la traversée du milieu devient
proportionnel à l'intensité. Autrement dit, tout se passe comme si nous étions en présence
d'effet Kerr. Cette propriété consistant à créer un x^ effectif à partir d'un matériau à x^
est appelée effet cascade [cascading dans la littérature anglo-saxonne). Pour une descrip-
tion détaillée des phénomènes physiques entrant en jeu, le lecteur est invité à consulter
les références [9, 10, 11]. Ce cas test vise à reproduire la figure 1 de la référence [11].

2

_ 2 , 5
2
>€H
<L i

1,5

n

— |AfcL| =

-•- |AfcL| =

. |AJbL| =

3 ^ ^ ^

6 X .....-••••
20 / • • - • • • • - •

10 20 30

r2r2
40 50

FlG. 1.21 - Reproduction de la figure 1 de la référence [11]. En abscisse, F2L2, où F =

On écrit tout d'abord les équations de doublement de fréquence en type I (en négligeant
la double réfraction)x :

dz
dE2

dz

= — i

2k2ccos2

(1.35.a)

(I.35.b)

1. Ici nous utilisons des champs Ej dimensionnés en unité de champ électrique et non d'intensité;
l'intensité h de l'harmonique i est reliée au champ Ej par :

ni étant l'indice de réfraction vu par l'harmonique i. Le champ électrique réel £u solution des équations
de Maxwell, est la partie réelle de Eie1^'1-^.
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les 711,1=1,2 étant les indices vus par les ondes 1 et 2 (ils sont définis par la formule (1.11)
pour une onde extraordinaire) ; les V{ sont les coefficients d'absorption, et les ctj les angles
de double réfraction.

Dans la suite on suppose que l'onde 1 n'est pas absorbée (vi = 0) et que le rendement
de conversion est petit devant 1. De cette façon, on peut intégrer l'équation (I.35.b) en
posant que Ei(z) ~ Ei(0). On obtient alors

Ak — iv2

(1.36)

l'équation (1.35.a) devient dès lors

- e-
V2Z~iAkz

Ôz 1 Ak-iv2
(1.37)

Nous rappelons que l'équation de propagation dans un milieu à effet Kerr est

dE
—
OZ

(1.38)

/ étant l'intensité. L'équation (1.37) ne peut donc pas être directement identifiée à l'équa-
tion (1.38) car le 7 effectif y dépend de z. Toutefois, si le milieu n'est pas absorbant
(v2 = 0) et dans la limite Akz —>• 00 on trouve (en moyennant l'exponentielle complexe
de (1.37) à zéro) :

eff

cos2 et\ cos2 a2 Ak '
(1.39)

les 71̂ 1=1,2 étant les indices vus par les ondes 1 et 2.
Dans ce cas test nous choisissons une onde dont l'intensité croît linéairement avec

x, et nous regardons son déphasage après traversée de L — 1 mm de KDP. L'intensité
maximale choisie correspond à l'abscisse maximale de la figure 1 de la référence [11] (soit
50), ce qui donne

A2

/max = 50 X
47T 2d2

ffL
2

b) Schéma

mal y t i qu«

Source
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c) Données

0- Source analytique

1- KDP

2- Lame
Paramètres

Energie

Section
Expression de l'intensité I(x,y,t)
Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Angle thêta du cristal

Angle phi du cristal
Orientation du cristal
Intensité de conversion
Analytique/Runge Kutta
Épaisseur

Diffraction de Fresnel
Temps
X
Y

4,490910.105 J (a)
4,451 900.105 J (6)
4,860330.105 J (c)
5,689 490.105 J (d)

l m 2

y+0.05
doubl tl

1 mm
KDP_1053
0 m 2 / W

40,843 59°(a)
40,499 10°(6)
38,884 20°(c)
35,36146°(d)

90°
-45°

2,21.1O20 W/m2

0
0 m

0 s; 10"9 s; 1
-0,05 m; 0,05 m; 1

-0,05 m; 0,05 m; 128

Dans ce tableau nous avons introduit quatre jeux de paramètres repérés par les lettres
a, b, c et d. Ils correspondent à des valeurs du désaccord de phase satisfaisant AkL = 3,
6, 20 et 50: ce sont les valeurs utilisées dans l'article [11]. Remarquons par ailleurs que
les ordres de grandeur des paramètres utilisés (une fraction de mégajoule sur 1 dm2!)
ne correspondent pas du tout à ceux d'une expérience réalisable. En fait, les expériences
d'effet cascade n'utilisent pas le KDP mais des matériaux organiques, à x^ beaucoup
plus élevé.

d) Interprétation

La figure 1.22 montre le résultat de la simulation Mirô (déphasage vu par l'onde
pompe lors de la traversée du KDP1). On constate que la figure reproduit fidèlement
celle de l'article [11]. Le déphasage est linéaire lorsque le désaccord de phase tend vers
l'infini. Dans le cas AkL = 50, et en employant l'expression (1.39) on trouve un déphasage
maximal d'environ 1 rad, ce qui est conforme à ce qui est représenté sur la courbe.

1. Repérage des différentes courbes : lorsque x et maximal l'ordonnée des points est fonction décrois-
sante du désaccord de phase Ak.
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0,5 -

- 0 , 5 -

- 1 -

-1 ,5 -

- 2

1 1 1 1

1 1 1 1

1 1 1 1

AkL = 50
AÀ>L-=-20 -

....-• AkL = 6 ..-..--
. . . • ••••• A-ifc£,- = ' 3 •

i i i

-0 ,05 -0 ,04 -0 ,03 -0 ,02 -0 ,01 0
X (m)

0,01 0,02 0,03 0,04 0,05

FlG. 1.22 - Déphasage induit sur l'onde fondamentale par la traversée de 1 mm de KDP,
en fonction de x (i.e. de la puissance). A grand désaccord de phase le déphasage, est
proportionnel à la puissance (création d'un ns effectif).
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14. Calcul inverse dans les convertisseurs de
fréquence

a) Objectif

Le calcul inverse dans les convertisseurs de fréquence utilise un algorithme (dichotomie)
qui est différent de celui utilisé pour la partie lu; de la chaîne. Les modalités de mise
en œuvre du calcul (réglage des paramètres) peuvent s'avérer délicates dans certaines
configurations. Le problème est rendu complexe par le fait que les fonctions de transfert des
KDP sont hautement non linéaires d'une part, et surtout non monotones. Par suite, si l'on
fixe une valeur pour l'intensité 3a; de sortie, il existe une infinité de valeurs de lu à l'entrée
des KDP qui conviennent. L'utilisateur souhaite en général que soit retenue la solution de
plus basse intensité mais l'algorithme n'est pas conçu pour converger automatiquement
vers cette solution. Tout dépendra en fait de la largeur de l'encadrement initial : si cette
largeur est trop importante, il peut exister plusieurs racines dans l'intervalle et le résultat
ne sera vraisemblablement pas celui souhaité. L'utilisateur aura donc intérêt à rétrécir
l'encadrement initial mais ceci se fera au détriment du temps de calcul.

Ce paragraphe comprend deux parties : tout d'abord nous fournirons un exemple de
calcul inverse (ID et 3D ) qui fonctionne ; puis nous présenterons quelques unes des pa-
thologies qui peuvent parfois survenir.

b) Schéma

r*ct.

O
Source

-o- -D-

c) Données

Le cas (a) est conçu pour le calcul inverse 3D tandis que le cas (b) sert au calcul
inverse ID. Avant d'effectuer le calcul inverse il faut passer le cas correspondant en calcul
direct (optique géométrique 3D ou ID) pour créer le fichier de fluence ou de puissance
utilisé par la source de fin de chaîne.

0- Source rectangulaire

1-KDP

Energie

Largeur
Hauteur

Exposant spatial en X
Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Angle thêta du cristal

2,2.104 J (a)
3,1.104 J (6)

1 m
0,261805 2 m (a)

0,4 m (b)
10

doubleur
1,06.ÎO"2 m
KDP_1053
0m 2 /W

41,2°
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2- KDP

3- Source fichier

Paramètres

Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Angle thêta du cristal
Angle phi du cristal
Orientation du cristal
Fichier des résultats
Energie
Longueur d'onde
Section
Fichier temporel source
Fichier spatial source
Optique géométrique 3D
Optique géométrique inverse 3D (a)
Optique géométrique ID
Optique géométrique inverse ID (6)
Nom de l'étude
Temps

X
Y
Précision de l'encadrement

tripleur
10-2 m

KDP_1053
0m2/W
59,069 7°

0°
0°

résultat
0 J

3,51.10-7 m
0,4 m2

/ tmp/resultat .pui
/ tmp/resultat . f lu

/tmp
0 s;4.10-9 s; 1 (a)
Os; 4.10-9 s; 64 (6)

0 m; 0,25 m; 1
-0,5 m; 0,5 m; 64

0,005 (a)
0,01 (b)

d) Interprétation

«: 4.1013

3 3.1013

-̂ r
2.1013

10130

- 0 , 6

calcul inverse
rce initiale

0,6

3 . 1 0 1 3

2,5. 1 0 1 3

2. 1 0 1 3

1,5. 1 0 1 3

1O13

5 . 1 0 1 2

T I 1

ul inverse
:e initiale

FIG. I.23 - Calcul inverse incluant des convertisseurs de fréquence. En pointillés, la source
initiale du calcul direct, qui donc constitue la référence pour le calcul inverse. En trait
plein, résultat de calcul inverse. A gauche, calcul en optique géométrique 3D. A droite,
optique géométrique ID.

La figure 1.23 représente la forme spatiale requise pour le faisceau en début de chaîne
(source de départ pour le calcul direct initial), en fonction de y (calcul 3D) ou en fonction
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<i

0,5

FlG. 1.24 - Différence absolue entre le résultat du calcul inverse et la référence (calcul 3D
à gauche, ID à droite).

8. 10*1J -

7. i O 1 3 "

6 . 1 0 1 3 ~

•5. 10 1 3 -

4 . 1 0 1 3 "

2. 1 0 1 3 -

i o 1 3 -

n _

1 1 7 K 1 1

/ \
/ \

/ \J V
/ \

/ V
y \ i i v_ i

- 0 , 4 - 0 , 2 0

y (m)
0,2 0,4 0,6

5.1012 -

3,5

FlG. 1.25 - Intensité 3w en fin de chaîne pour un faisceau injecté correspondant à la
figure 1.23.

de t (calcul ID). Dans les deux cas il s'agit d'une gaussienne. Sur la même figure nous
présentons le résultat du calcul inverse. La différence absolue des deux courbes est montrée
sur la figure 1.24. On constate que l'accord entre les deux courbes est excellent en calcul
ID. En calcul 3D, une différence sensible due aux effets de la double réfraction1 apparaît
là où le gradient de l'intensité est le plus fort. L'allure du faisceau 3a; en fin de chaîne est
présentée sur la figure 1.25.

Avec le calcul inverse 3D nous obtenons une énergie ILJ en début de chaîne de
21,992 24 kJ (pour 22 kJ demandés). Pour arriver à ce résultat il a fallu 62 itérations en
encadrement et 22 en dichotomie. En ID les résultat sont 30,999 98 kJ au lieu de 31 kJ,
68 itérations pour encadrer et 22 pour trouver le résultat.

1. La double réfraction est prise en compte pour le calcul direct en 3D mais pas pour le calcul inverse
3D. Elle est négligée en calcul ID direct et inverse.
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e) Quelques problèmes liés au calcul inverse en présence de convertis-
seurs de fréquence

Rappelons tout d'abord qu'avant d'effectuer un calcul inverse avec des KDP il convient
de régler la fréquence de la source finale à celle de l'harmonique ; la polarisation doit aussi,
pour certains cas (doubleur seul notamment), être tournée de 90°. Sans ces ajustements le
programme renvoie un message d'erreur signifiant que le KDP n'est pas du tout à l'accord
de phase.

Dans ce paragraphe nous allons étudier une cause possible de problèmes, très spécifique
du cas des convertisseurs de fréquence. Pour ce faire, reprenons le cas 3D précédent ; un
lecteur attentif aura remarqué que nous avons abaissé à 0,005 la valeur du paramètre
« précision de l'encadrement », alors que pour l'exemple en calcul inverse ID la valeur
plus lâche de 0,01 avait été retenue.

Si l'on effectue le calcul inverse 3D en portant la valeur de ce paramètre à 0,01, on
trouve au lieu de 22 kJ une énergie de début de chaîne de 22,5 kJ environ. Par ailleurs, si
l'on trace l'intensité du faisceau en fonction de y, on obtient la courbe de la figure 1.26,
qui n'est pas une gaussienne (au point central près).

1,2. 1014

-0,6 -0,4 -0,2 0 0,2 0,4 0,6

FlG. 1.26 - Résultat du calcul inverse 3D lorsque le paramètre « précision de l'encadre-
ment » vaut 0,01.

L'explication à cette anomalie peut être comprise en regardant l'allure de la fonction
de transfert du système doubleur/tripleur de l'exemple (intensité 3a; en sortie du tripleur
tracée en fonction de l'intensité ico en entrée du doubleur, fig. I.27). On constate que
cette fonction est monotone pour une intensité lu; incidente inférieure à 7,87.1013 W/m2

(intensité 3w correspondante: 7,84.1013 W/m2 : on voit donc que le rendement est proche
de 1). Au-delà de cette valeur, la fonction décroît puis admet des minima et des maxima
successifs.

L'algorithme de calcul inverse commence par évaluer un minorant et un majorant de la
solution. Le minorant vaut / ^ = /f°rtie et le majorant est obtenu à partir du minorant par
incrémentations successives. La largeur des sauts effectués pour rechercher ce majorant
est directement liée à la valeur du paramètre « précision de l'encadrement ».

Dans l'exemple précédent, certains points se situent au voisinage du premier maximum
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0 5.101 3 1014 1,5.1014 2.1O14 2,5.1O14 3 .101 4 3,5.101 4 4.1O14

jentrée (W/m2)

FlG. 1.27 - Efficacité de conversion (intensité 3 tu en sortie tracée en fonction de l'intensité
1 tu incidente) pour le système doubleur/tripleur considéré dans ces exemples.

de la fonction de transfert, pour lequel le rendement de conversion est voisin de 1. Le
minorant Ifw est en fait très proche de la bonne solution. Si la taille de pas choisie pour
la recherche du majorant est trop importante, le programme ne trouvera pas de majorant
sur le premier pic de la fonction de transfert et recherchera donc au-delà (cf. fig. I.28).
Le majorant retenu se situera finalement sur le deuxième pic de la fonction de transfert
(correspondant dans notre cas à une intensité lw supérieure à 1014 W/m2). Dès lors
l'algorithme de dichotomie convergera vers une racine qui n'est pas celle de plus petite
énergie : c'est pourquoi nous observons ces intensités anormalement élevées au centre de
la figure 1.26.

De façon générale le calcul inverse des convertisseurs de fréquence est susceptible de
poser problème lorsque l'intensité 3w demandée en fin de chaîne approche le premier
maximum de la fonction de transfert des KDP : c'est malheureusement souvent le cas
sur les chaînes de puissance où les KDP sont optimisés pour fournir un rendement crête
voisin de 1. Dans la mesure où la valeur de ce maximum n'est pas dépassée, on peut en
général parvenir au résultat correct en abaissant la valeur du paramètre « précision de
l'encadrement » — mais ceci a un prix : l'augmentation du nombre d'itérations nécessaires.
En fait l'utilisateur devra déterminer une valeur acceptable pour ce paramètre par des
essais successifs sur un petit nombre de pixels.

11 peut également arriver que la valeur crête de l'intensité 3a; demandée dépasse le
premier maximum de la fonction de transfert l. Dans ce cas, la racine de plus basse énergie
sera située sur le deuxième pic de cette fonction : on aboutira à des valeurs d'intensités en
général inacceptables. Dans la pratique l'utilisateur devra réviser à la baisse ses prétentions

l.Dans l'exemple précédent nous avons effectué un calcul inverse à partir du résultat d'un calcul
direct, et ce problème ne pouvait pas survenir. Toutefois dans la pratique on effectue plutôt le contraire :
on fixe arbitrairement une forme d'impulsion en fin de chaîne, on effectue le calcul inverse puis on vérifie
éventuellement le résultat par calcul direct. Dès lors il peut exister un risque important pour qu'en certains
points l'intensité 3w demandée soit située au-delà du maximum de la fonction de transfert.
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/"sortie rsortie
J3w

L

racine
finale

0 1 2 3 4 rentrée

Encadrement Dichotomie

FIG. 1.28 - Scénario permettant d'expliquer que le programme ne converge pas vers la
solution de plus basse énergie pour certains points de la figure 1.26.

en terme d'énergie : là aussi un certain nombre d'essais/erreurs avec peu de pixels seront
nécessaires pour déterminer une énergie de fin de chaîne acceptable.

Ces surintensités auxquelles peut aboutir le calcul inverse de la conversion de fréquence
peuvent par ailleurs conduire à des effets dramatiques si l'on effectue le calcul avec une
chaîne de puissance complète (amplificateurs et convertisseurs de fréquence). En effet, si
les amplificateurs fonctionnent en régime saturé, ces intensités peuvent correspondre à
des énergies supérieures à l'énergie stockée dans les amplificateurs. Par suite la chaîne de
puissance ne sera pas en mesure de fournir les fluences correspondantes. Dans ce cas, il
est fréquent que la méthode de Newton qui est mise en œuvre pour l'inversion de la partie
lu de la chaîne ne parvienne pas à converger vers un résultat.

Par conséquent, pour la mise au point du calcul inverse sur une structure de chaîne
donnée, nous conseillons fortement de séparer dans un premier temps les convertisseurs de
fréquence du reste de la chaîne. On s'assurera d'abord que le calcul inverse sur les KDP
aboutit partout à une solution située en-deçà du maximum de la fonction de transfert ; ce
n'est que dans un deuxième temps que le calcul inverse sur l'ensemble de la chaîne pourra
être envisagé.
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15. Conversion de fréquence en spectre large
a) Objectif

Ce cas test vise à tester l'influence de la largeur spectrale sur la conversion de fréquence,
i.e. la chute de rendement due à l'écart entre les vitesses de groupe des différentes harmo-
niques. Nous cherchons pour cela à reproduire via Mira les résultats de la référence [12]
(fig. I.15.a). On considère un faisceau dont la phase est modulée sinusoïdalement ; dans un
premier temps, on cherche à le tripler en fréquence au moyen d'un système type Il/type
II. On constate alors une chute de rendement. Dans un deuxième temps, on disperse préa-
lablement ce faisceau au moyen d'un réseau dont les traits sont convenablement orientés.
On peut alors obtenir un bon rendement (en fait le même qu'en spectre étroit, en l'ab-
sence de modulation). Notons que c'est par cette méthode qu'il est prévu de convertir les
faisceaux lissés sur le laser Mégajoules (implantation de réseaux en fin de chaîne).

L'expression du champ électrique non dispersé est

E = E0{x,y)e-t2lr2e-ms^mt), (1.40)

a étant la profondeur de modulation et um la fréquence de modulation. Après passage
dans un réseau de temps de retard par unité de longueur £ le champ devient

(1-41)

On suppose par la suite que l'enveloppe est de spectre étroit c'est-à dire que Çx <C T. On
peut alors remplacer l'enveloppe e'^~^ /T par e~* / r .

Le traitement d'une impulsion modulée en phase revient à considérer qu'il existe une
« fréquence instantanée » qui dépend du temps. La conversion de fréquence peut ainsi
être traitée en introduisant un désaccord de phase effectif qui varie en fonction du temps
en même temps que la fréquence instantanée. En ajustant correctement la dispersion du
réseau £ il est toutefois possible de compenser à chaque instant le désaccord de phase
effectif: la condition à remplir est (pour un cristal dont x est la direction extraordinaire)

<- fuz <- ^2 * *• \ o;3 1 o;2 1 1 n AOs
f — tan «3 tan a2 — tan ai H r r r = u, U-42)

u)t (i = 1,2,3) désignant la fréquence de chaque harmonique, vl
g la vitesse de groupe de

l'harmonique i et c^ son angle de double réfraction1.
Pour retrouver ces résultats avec Miré nous utilisons une source analytique afin de

reproduire le champ dispersé après le réseau ; en effet le composant « réseau » n'était pas
encore disponible dans le code à l'heure où ce cas test a été rédigé. Les valeurs numériques
de la simulation sont Jmax = \E0\

2 = 1,5.1013 W/m2, r = 595 ps, f = Xx/cx l,68.106 m"1.
Le doubleur et le tripleur sont tous deux de type II, et réglés à l'accord de phase pour
1,053 [J.m. L'axe x correspond à l'axe ordinaire du doubleur et à l'axe extraordinaire du
tripleur. La polarisation incidente du faisceau est réglée de telle sorte que 2/3 de l'énergie
soit polarisée sur l'axe ordinaire du doubleur. Dans la simulation nous avons ajouté une
enveloppe spatiale supergaussienne au faisceau, afin d'éviter les effets de bord.

1. Dans ce cas test la condition (1.42) est satisfaite sur le tripleur. Sur le doubleur ce n'est pas nécessaire
car l'acceptance spectrale de la conversion est plus importante.
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FlG. 1.29 - Reproduction de la figure 3 de la référence [12]. En haut, conversion Sa) pour
une impulsion non dispersée. En bas, conversion 5tu avec dispersion par un réseau. À
gauche, intensités en fonction du temps ; à droite, spectres.
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Remarque : la simulation comprend trois cas de figure :

- sans dispersion (a) ;

- avec une dispersion modélisée par une phase spatio-temporelle (b) ;

- avec une dispersion modélisée par le formalisme des ondes inhomogènes (c).

Le cas b nécessite à la fois un grand nombre de pas spatiaux et temporels. Sa durée de

simulation est d'environ 50 minutes sur une station de travail DEC alpha 500.

b) Schéma

inalytiqiw

Source

-D-

doubleup

®}
KDP

-D-

tripleur

^ ^
KDP

-D- [J
Lanu

c) Données

0- Source analytique

1- Convertisseur de fréquence

2- Convertisseur de fréquence

3- Lame

Paramètres

Energie
Angle de polarisation
Inhomogénéité suivant X

Expression de l'intensité
Expression de la phase

Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Coefficient d'absorption
Écart des vitesses de groupe
Angle thêta du cristal
Angle phi du cristal
Orientation du cristal
Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Coefficient d'absorption
Écart des vitesses de groupe
Angle thêta du cristal
Angle phi du cristal
Orientation du cristal
Epaisseur

Spectre large
Temps
X

Y
Déphasage maximal du

pas fractionnaire

0 J
35,264 39°

0 s/m (a,b)
5,900 882 269 7.10"9 s/m (c)

1.5el3*exp(-2*(t/595e-12)"2)*exp(-(x*x/0.1~2)~6)
-15*sin(2*pi*2.5e9*t) (a,c)

-15*sin(2*pi*2.5e9*(t-5.9008822697e-9*x)) (b)
doubleur
1,5 cm

KDP_1053
0m2/W
abs_KDP

KDP_1053-evg_dII
59,228 90°

90°
0°

tripleur
1,5 cm

KDP_1053
0m2/W
abs_KDP

KDP_1053-evg_tII
59,069 70°

0°
0°

0 m

- 1 0 " 9 s; 10~9 s; 1024
0 m; 0,05 m; 1 (a)

-0,05 m; 0,05 m; 256 (b)
0 m ; 1 m ; 1

0,1 rad
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Les fichiers utilisés pour ce cas test sont les suivants1 (le symbole « I » désignant le
retour à la ligne) :

- KDP.1053: 3 2 1 1 1 1 0 1 X= 0.351e-6 0.5265e-6 1.053e-6 | 0=1 I
1.5323807 1.5131859 1.4945153 I E=2 | 1.4868956 1.4711416 1.4603937

- abs_KDP: 3 2 1 1 1 1 0 1 L=351e-9 526.5e-9 1053e-9 I 0=1 | 0. 0 . 4 .
I E=2 I 0. 0. 4 .

- KDP_1053-evg_dI I : 2 2 1 1 1 1 0

E=2 | - 0 . 0 5 5 2 e - 9 - 0 . 1 3 2 1 e - 9

- K D P _ 1 0 5 3 - e v g _ t I I : 3 2 1 1 1 1 0
0 . 0 . 2 0 1 e - 9 0 . | E=2 | 0 . 2 4 9 e - 9 0 . 0 .

d) Interprétation

L=526.5e-9 1053e-9 | 0=1 | 0. 0.

L=351e-9 526.5e-9 1053e-9 | 0=1

g

o
X

'—H

1,4
1,2

1

0,8
0,6
0,4
0,2

0
-1000 1000

o
X

-0,3 -0,2 -0,1 0 0,1 0,2 0,3
V (THz)

FlG. 1.30 - cas (a) (faisceau modulé en phase sans dispersion). À gauche, forme temporelle
du faisceau 3 tu. À droite, spectre temporel de cette impulsion.
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FlG. 1.31 - cas (h) (Prise en compte de la dispersion dans les réseaux). Les courbes
correspondent au pixel spatial en x n° 128.

1. À l'exception du fichier abs_KDP, les fichiers de ce cas test figurent normalement dans le répertoire
$MIR0_HDME/ext/xxx, de telle sorte qu'ils sont automatiquement reconnus par Mira. L'utilisateur n'a
donc pas besoin de les retranscrire dans son répertoire de travail. Dans Mira 2000, les fichiers sont dans
le répertoire $MIR0_H0ME/lib/data.
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La figure 1.30 présente le faisceau converti à 3a; en l'absence de dispersion par un
réseau (cas a). La figure 1.31 contient le résultat pour le faisceau dispersé (cas b). On
constate que la présence du réseau de dispersion permet de récupérer un rendement de
conversion équivalent à celui que l'on aurait en spectre étroit. La courbe obtenue dans le
cas c est en tout point analogue. Qualitativement on vérifie que les résultats sont bien les
mêmes que dans l'article.

Test de non régression: dans le cas a l'énergie 3w finale est 380,534 4 J. Dans le
cas c elle vaut 452,458 9 J.
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16. Convertisseur de fréquence : calcul des indices
non linéaires

Dans ce paragraphe nous contrôlons le calcul des indices non linéaires d'un KDP par
les règles de Miller.

a) Calcul analytique

Nous considérons dans ce calcul le cas d'un tripleur de fréquence de type IL Le contenu
de ce paragraphe est repris de [13].

Les règles de Miller vont nous donner le x^ dans la base cristallographique. On en
déduit les coefficients dans la base du faisceau grâce à la matrice de passage [G]. Dans
le cas d'un triplement type II nous avons Cl = 0 (orientation du cristal) et ip = 0 (la
polarisation selon x correspond à l'axe extraordinaire). La matrice [G] s'écrit :

0 1 0 "
[G] = -cos# 0 -sinfl . (1.43)

— sin 9 0 cos 9

Le changement de repère pour la susceptibilité s'écrit :

Xabcd = Y2 ®a,A<dbB®cC®dDXABCD , (1-44)
ABCD

les indices abcd se rapportant aux polarisations du faisceau et les indices ABCD aux axes
cristallographiques (l'axe optique étant l'axe Z). Nous en déduisons les relations:

Xeeee = XXXXX COS4 9

+ [xxxzz + Xxzxz + Xxzzx + Xzxxz + Xzxzx + Xzzxx} cos2 9 sin2 9

+ Xzzzz sin4 9 (1.45.a)

Xeooe = XXYYX cos2 9 + XZYYZ sin2 9 (I.45.b)

Xoeeo - XYXXY cos2 9 + XYZZY sin2 9 (I.45.c)

Xoooo = XYYYY • (I.45.d)

Cette expression se simplifie compte tenu des conditions de symétrie de Kleinman [14,
p. 147] en

Xeeee = Xxx cos4 9 + &xxz cos2 9 sin2 9 + \zz ^ 9 (I.46.a)

Xeooe = XXY COS2 9 + \XZ SH12 9 (I.46.b)

Xoeeo = XXY cos2 9+ xxz sin2 9 (I.46.c)

Xoooo = Xxx , (1.46.d)

avec

Xxx = Xxxxx — XYYYY

Xzz = Xzzzz

XXY = XXXYY = XXYXY = XXYYX = XYXXY = XYXYX = XYYXX

Xxz — Xxxzz = Xxzxz = Xxzzx — Xzxxz — Xzxzx = Xzzxx

= XYYZZ — XYZYZ — XYZZY = XZYYZ — XZYZY — XZZYY ,



16. Convertisseur de fréquence : calcul des indices non linéaires 67

L'étape suivante consiste à appliquer les règles de Miller afin de déduire les indices
non linéaires sur les harmoniques et les indices non linéaires croisés entre harmoniques des
indices non linéaires à lu et des indices linéaires. Nous utilisons les notations suivantes
pour désigner les indices non linéaires à lu :

(I.47.a)

,u, - u,u) = Xuzz (I.47.b)

,UJ, - u,u) = XUJXY (I .47.C)

(I.47.d)

On en déduit les relations :

Xeeee (w,w, - w,w) = Xu,xx cos4 8 + QXUJXZ cos2 9 sin2 9 + Xuzz sin4 9 (1.48.a)

^ S [XY COS'2 e + *"xz sin2 °] (I.48.b)XeoOe(w,2w, 2w,u) = r S r [X

Xeeee (w,3w, - 3u),U>) = ° . , XuXX COS4 8

+ I ̂ 1 + A ^ j ^ ± + â ^ l \ z cog2 9 gin2 Q

T^-Xuzz sin4 9 (I.48.c)

,oe(u),2u), — 2<jj,u>) (I.48.d)

^ ^1 y V Y CI 4« pï

^ f f ^ x . x y cos2 9 + ^ ^ x . x r sin2 o] (I.48.f)
XoM L XoM XeH Xe(w) J

,W, - W,3w) = Xeeee (w,3w, - 2,LJ,Lo) (I-48.g)

;! - 3w,2w) (I.48.h)

Xeeee (3w,3w, - 3w,3w) = ° XUJXX COS4 61

Xo v^J

XwXZCO!

+ T T T T W Z sin4 ô (I.48.1)

Nous avons dans ce système introduit les susceptibilités linéaires: Xi = Nf — 1, Ni
étant l'indice selon l'axe propre considéré et à la fréquence considérée. Les valeurs de ces
indices pour le KDP sont fournis dans la table 1.3.

Pour effectuer le calcul numériquement nous rajoutons une règle reliant les suscepti-
bilités non linéaires pour l'harmonique lu :

XUJXY = XuXZ = XXUJXX (1.49.a)

(I.49.b)
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Ensuite nous passons des susceptibilités aux indices non linéaires jij par la formule :

_
lij —

(1.50)

Les formules de se paragraphe ont été portées dans un programme écrit sous Mathe-
matica. On trouve le résultat numérique suivant :

1,03479 0,732165 2,34616
0,732165 1,1656 0,83007
2,34616 0,83007 1,33003

(1.51)

7 étant l'indice non linéaire d'une onde lu ordinaire1.
Nous nous proposons de vérifier que Miré utilise bien ces valeurs pour les coeffi-

cients d'indice non linéaire dans le KDP. Nous contrôlons les valeurs grâce au fichier
I'trap /miro_ut il is at eur .err .

Schéma

Données

lu

©
Source

2u

Source

-D- -D-
Mélangeur

0- Source analytique

1- Source analytique

3- Convertisseur de fréquence

Paramètres

Nom de l'élément
Energie
Nom de l'élément
Energie
Longueur d'onde
Angle de polarisation
Epaisseur
Indice non linéaire
Angle thêta du cristal
Angle phi du cristal
Orientation du cristal
Méthode de saisie de l'indice non linéaire [0/1/2]
Optique géométrique 3D

lw
10 kJ

2w
20 kJ

0,526 5 [im
90°

1 cm
1 m 2 /W

59,069 70°
0°
0°
0

d) Interprétation

Voici le contenu du fichier / trap/mix o_ut il is at eur .e r r après le calcul:

Bienvenue sur MIRD.

1. Sachant que pour le triplement type II l'onde lw est extraordinaire.
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Calcul en cours ...

gamma_ee
gamma_eo
ganuna_ee
gamma_oe
gamma_oo
gamma_oe
gamma_ee
gamma_eo
gamma_ee
De l t a k

(1.053e-06,

(1.053e-06,

(1.053e-06,
(5.265e-07,
(5.265e-07,
(5.265e-07,
(3.51e-07,
(3.51e-07,
(3.516-07,

1.0536-06)

5.265e-07)

3.51e-07) =

1.0536-06)
5.265e-07)
3.516-07) =
1.053e-06) =
5.265e-07) =
3.51e-07) -

= 1.03479
= 0.723066
: 2.34614
= 0.723066
= 1.1656
= 0.833141
•• 2.34614

•• 0.833141

1.33001

-2.351e-01 , pas fractionnaire : 1 / 1

Durée du calcul: 0.00'04"

II ne reste plus qu'à contrôler les valeurs de l'indice non linéaire les unes après les
autres. On constate que les coefficients sont égaux, sauf les quatre coefficients couplant
une onde ordinaire et une onde extraordinaire. Ceci est dû au fait que la convention
retenue par C. Sauteret dans son calcul n'est pas exactement la même que celle de Mirô1.
Cette différence n'est pas bien grave car de toutes façon les indices non linéaires ne sont
pas connus à mieux que 10 70.

1. Par exemple à la place de l'équation (I.48.b) le calcul Mirô revient à écrire :

. (1.52)

Dans la réalité la règle de Miller est incompatible avec la condition de Kleinman donc aucune des deux
relations n'est vraie!
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17. Effet Kerr dans un convertisseur de fréquence
a) Objectif

L'objectif est de tester le bon fonctionnement du calcul de l'effet Kerr dans les conver-
tisseurs de fréquence. On se base pour ce faire sur les résultats de C. J. McKinstrie et
X. D. Cao [15] qui fournissent pour certains cas de figure une formulation analytique de
la conversion de fréquence en prenant en compte l'effet Kerr.

i) Résolution analytique présentée dans l'article: formalisme général

Les équations de propagation résolues par les auteurs sont les suivantes1 [15, éq. (2.1)]

M = -iA3A*2

dsA2 = -iAzA\ + il 52 + A2

(1.53.a)

(I.53.b)

dsA3 = -iAxA2 + i I <53 (I.53.c)

Dans ce système s est la longueur de propagation adimensionnée. Les 4 traduisent le
désaccord de phase. Les À^ sont (à des constantes près, cf. infra) les indices non linéaires
directs et croisés.

On effectue à partir de (1.53) le changement de variable

et

On obtient le système

= y/Fi

if = (Ç-i -

(1.54)

(1.55)

(1.56.a)

(I.56.b)

(I.56.c)

(I.56.d)

(I.56.e)

(I.56.f)

1. Nous avons permuté les indices (1 ->3 ,3 - h ) afin de conserver les conventions habituelles de Mirô
(l'harmonique créée est l'harmonique 3).
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Dans le cas où la matrice des coefficients A^ est symétrique {i.e. \i3 = Xjt), on peut
montrer que l'hamiltonien défini par

H =

est un invariant du mouvement. Les équations (1.56) s'écrivent

ds ~ dipi ds~~W%- ( L 5 8 )

On peut également vérifier les équations de Manley-Rowe traduisant la conservation de
l'énergie :

ds{Fl+F3) = 0, ds{F2 + F3)=0. (1.59)

NB : dans le cas où les coefficients A^ ne forment pas une macrice symétrique, il est
néanmoins possible d'effectuer un changement de variable non linéaire pour aboutir au
formalisme hamiltonien.

ii) Application au cas de la génération d'harmonique

Nous posons comme conditions initiales

Fx(0) = l , F2(0) = l + e, F3(0) = 0. (I.60)

Notons qu'il n'est pas nécessaire que le paramètre e soit petit devant 1. D'après les rela-
tions de Manley-Rowe (1.59) on peut écrire pour tout s

F1(s) = l - F ( s ) , F2(s) = l + e-F(s), F3(s) = F {s) . (1.61)

L'équation d'évolution de la fonction F est donnée par

{ÔSF)2 = 4F[(1 + e-F){l-F)-F{5 + XF)2}, (1.62)

où l'on a défini les quantités suivantes :

\ = \{XSi-Xu~X2l) \/i (I.63.a)

A = Â3 - Ai - Â2 (I.63.b)

6=\{ô3-ôl-ô2) (I.63.c)

Â Â e ) . (I.63.d)

L'article [15] résout l'équation (1.61) uniquement dans le cas particulier où il est pos-
sible d'obtenir un rendement de conversion de fréquence maximal égal à 1 — e, c'est-à dire
uniquement limité par le déséquilibre entre les deux pompes. Ce cas de figure est atteint
lorsque le désaccord de phase du convertisseur compense l'effet Kerr. La condition s'écrit :

ô = -A . (1.64)
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Nous nous plaçons en outre dans le cas où |A| < 1 (la non-linéarité du troisième ordre est
plus petite que celle du deuxième ordre). La solution de l'équation (1.61) s'écrit lorsque
e < (A2 - 1)2/(4A2) :

(1 - /-)sn2(Ks,m)
F(s) = —-t—;—2? r ' (L65)

—/_ + sn2 {Ks,m)

avec

/ ± = — —!• )L~ - (1.66.a)

K2 = -A2(l - /+)/_ (I.66.b)

m2 = - ( / + - / _ ) / [ ( l - / + ) / _ ] . (I.66.C)

Lorsque e > (A2 - 1)2/(4A2) on a

F(s) = —-, ^—r-̂ —j- r , (1-67)

avec

(I.68.a)

= e/X2 (I.68.b)

= 4A2a/? (I.68.c)

^ ) . (I.68.d)

uij Liaison avec les notations en vigueur dans le code Mirô

Les équations adimensionnées qui sont résolues dans le code Mirô en l'absence d'effet
Kerr sont les suivantes :

dsUl = -iuzu*2e-lMs (I.69.a)

dsu2 = -iu3u*ie-
iAes (I.69.b)

dsu3 = -iulU2é
Ms. (I.69.c)

On peut se ramener au système (1.53) en écrivant

Ai =-u*ie-
iSiS Vi (I.TO.a)

2ô = 53-6l-Ô2- (I.70.b)

Nous rappelons que les équations dimensionnées résolues dans Mirô s'écrivent pour
l'harmonique i :

dEi LJi-sr-^ UJj (*)£ (*)e j Afc2

— hz— > Jilj& = Î ^—«ff^ tj e
c '—' cni cosz at

3
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le champ
vaut

(en caractère droit) étant exprimé en unités SI, c'est-à-dire que l'intensité

h - l (1.72)

le champ Ei (en italique) étant la variable propagée dans le code, i.e. la racine de l'in-
tensité. Dans l'équation (1.71) n* = kic/uji est l'indice de réfraction vu par l'onde i ; les
indices j et A; se réfèrent aux deux autres ondes. Les réels Et = ±1 valent 1 si et seulement
si l = 3, et l'opérateur (*)* est la conjugaison complexe si s — 1 et l'identité si s = —1.
Les o^ sont les angles de double réfraction et deg est le coefficient de couplage effectif.

Sachant que la loi d'adimensionnement (permettant de relier (1.69) et (1.71)) s'écrit
pour s = z/e :

COS Oùk COS
(1.73)

(e étant l'épaisseur du composant, Ic l'intensité de conversion 8 ^ 2 > rnes Aj les longueurs
d'onde et ceff = def[/d), on peut calculer les Â - (coefficients non linéaires réduits dans [15])
en fonction des 7JJ :

1 L
COS2 ttj Ce(Ceff)2 fj^

- I I Xi ne cos2 (1.74)

iv) Principe du cas test

Nous vérifions la dépendance en z de l'intensité convertie, en présence et en l'absence
d'effet Kerr. Le KDP utilisé est un doubleur type II, et le désaccord de phase est ajusté
en fonction de l'indice non linéaire de façon à respecter la condition (1.64). Les cas testés
sont rassemblés dans le tableau ci-dessous :

Cas

Tu K/W)
733 (m'2/W)
713 (m2/W)

An
A12

A21

A22

Al3

A31

A23

A32

A33
A

Afc (m"1)
^cristal (°)

a
0
0
0
0
0
0
0
0
0
0
0
0
0
0

59,228 919

b
0

2,7.10-2°
0
0
0
0
0
0
0
0
0

0,349 547
-0,087 386 7

-174,773
59,268 028

c
2,7. lu"2 0

0
5,4.10~20
0,087334 6
0,086 504 8
0,0873346
0,086 504 8
0,349 547
0,349 338
0,349 547
0,346 019

0
0,261693
173,978

59,190 018

d
2,7.10-2°
5,4.10-2°
5,4. lu" 2 0

0,087 3346
0,086 504 8
0,087334 6
0,086 504 8
0,349 547
0,349 338
0,349 547
0,346 019
0,699 094

0,086 919 7
-175,569

59,268 206 65

Dans le tableau ci-dessus l'indice 1 se réfère à l'onde lu ordinaire, l'indice 2 à l'onde IUJ
extraordinaire, l'indice 3 à l'onde 2u extraordinaire. Notons que dans le cas d'un conver-
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tisseur doubleur type II, on a nécessairement 7a = 712 = 721 = 7221- Nous choisissons en
outre 731 = 723 = 732 = 713 bien que le code permette de prendre 731 7̂  713. À cause des
différences d'indices et d'angles de double réfraction entre les ondes 1 et 2, la condition
de symétrie A12 = A2i est violée. Toutefois la disymétrie est suffisamment faible pour le
pas trop fausser le résultat.

L'intensité et la polarisation du faisceau initial sont calculées de manière à ce que
les champs normalisés des ondes 1 et 2 vaillent respectivement 1 et 1,01 (on prend donc
s = 0,01). Les facteurs de normalisation sont supposés indépendants du cas considéré.

Le composant « convertisseur » de Mira ne permet pas de faire un fractionnement en
z pour disposer de diagnostics dans l'épaisseur, car le champ est renormalisé au début
du composant et le retour dans les unités dimensionnées n'a lieu qu'à la sortie2. Afin de
pouvoir tracer l'intensité 2u en fonction de z, nous avons artificiellement sectionné le KDP
(nous utilisons un KDP mince dans lequel nous passons 51 fois, grâce à un composant
« multiplexeur »).

b) Schéma

1. En fait, la situation est un peu plus compliquée: le code applique le même déphasage non linéaire
aux deux polarisations lw, compte tenu de la normalisation. En toute rigueur on a donc 722 = 712 =
(7i/r2)27ii, ri étant le facteur de normalisation en champ.

2. Cette possibilité sera introduite dans Mirô 2000.
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c) Données

0- Source analytique

1- Multiplexeur
2- Convertisseur de fréquence

Paramètres

Energie
Angle de polarisation
Expression de l'intensité I(x,y,t)
Scénario
Epaisseur
Indice non linéaire
Angle thêta du cristal
Angle phi du cristal
Orientation du cristal
Analytique/Runge Kutta [0/1]
Méthode de saisie des indices NL [0/1/2]
Diffraction de Fresnel
Temps
X
Y

0 J
45,142 53°

1.089599047el5
1 50*0 1
0,2 mm

INL
9

90°
0°
1
2

0 s; 4.10"9 s; 1
-0,25 m; 0,25 m; 1
-0,25 m; 0,25 m; 1

La valeur de l'angle du cristal 9 doit être réglée en fonction du cas considéré (dernière
ligne du tableau de la page 73). L'intitulé du fichier INL est le suivant :

- cas a : pas de fichier (mettre une valeur nulle pour l'indice non linéaire).

0- c a s 6: 2 2 1 1 1 1
0 | J=1.053e-6 1 0 0;

- cas c: 2 2 1 1 1 1 0 I 1= 0.5265e-6 1.053e-6
5.4e-20 | J=1.053e-6 I 5.4e-20 2.7e-20;

1 0 11= 0.5265e-6 1.053e-6
| 5.4e-20 2.7e-20. Le symbole

- 0.5265e-6 1.053e-6 | J=0.5265e-6 I 2.7e-20

- cas d : 2 2 1 1 1
5.4e-20 | J=1.053e-6
ligne.

J=0.5265e-6 I 0

J=0.5265e-6 I 5.4e-20
I » désigne le retour à la

d) Interprétation

z (mm)

FlG. 1.32 - Energie en fonction de z, en l'absence d'effet Kerr.
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Z (mm)

FlG. 1.33 - Energie en fonction de z, lorsque seul y3S est non nul.
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1—5

z (mm)

FlG. 1.34 - Énergie en fonction de z, lorsque les indices non linéaires autres que y33 sont
non nuls.

1-5

z (mm)

FlG. 1.35 - Énergie en fonction de z, lorsque tous les indices non linéaires sont non nuls.

Nous comparons sur les figures 1.32 à 1.35 le calcul Mirô (trait plein) et le calcul
Mathematica (en pointillés). Dans chacun des cas étudiés nous avons tracé l'intensité en
fonction de z. On constate que l'accord entre les deux courbes est variable selon le cas
considéré. Nous devons toutefois souligner que nous ne nous attendions pas à avoir un
accord parfait puisque la condition de symétrie des \j n'est pas vérifiée. Toutefois, le cas
le plus mauvais est celui de la figure (1.33), qui est pourtant le seul cas pour lequel la
matrice est symétrique. Ce comportement n'a pas pu être expliqué.

Remarque : si l'on supprime l'indice non linéaire pour l'une des courbes 1.34 à 1.35,
ou bien si l'on remet le KDP à l'accord de phase, on observe une courbe très différente
avec deux ou trois arches au minimum. Ceci prouve que le cas test tel qu'il a été conçu
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avait bien un sens (nous compensons avec une précision significative l'effet Kerr par un
désaccord de phase).
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18. Fichier de biréfringence
a) Objectif

Un faisceau est modulé en amplitude par une rotation des polarisations dans une
lentille axisymétrique biréfringente. On suppose que la variation d'indice est uniquement
radiale et linéaire en r. Pour une donnée initiale polarisée rectilignement, le champ après
passage de la lentille biréfringente est donné par la formule suivante :

Ex(x,y,z) = (e~iar cos2 9 + sin2 0) el^TE0(x,y)

Ey{x,y,z) = ((e-iar - I)sin0cos0) e'^TEo{x,y

(I.75.a)

(I.75.b)

où (r,9) sont les coordonnées polaires du point (x,y). L'intensité de la polarisation suivant
l'axe des x est donc en un point (x,y) :

i x { x , y ) = 1 - 4

b) Schéma

2 2

(L76)

0
Lentille

c) Données

1- Source rectangulaire

3- Lentille
Paramètres

Energie
Largeur
Hauteur
Exposant spatial en X
Exposant spatial en Y
Fichier masque de biréfringence
Optique géométrique 3D
Temps
X

1 J
4 m
4 m
200
200

fich.bir

Os; 1 s; 1
0,5 m ; 1 m ; 1

- 1 m; 1 m; 200

Le fichier f i c h . b i r est un fichier de masque de biréfringence Arr,Aggl.

Remarque : la lentille n'est utilisée ici que via son fichier de biréfringence ; le masque
de phase quadratique qu'elle induit ne joue aucun rôle en optique géométrique 3D.

1. Il a la forme suivante («
0 . 5 . 6 0 . 7 0 . 8 0 . 9 1 . 1 . 1 1 . 2 1 . 3

I ( 1 , 0 ) ( 1 , 0 )

» signifie un passage à la ligne) : 14 1 1 v = 0 . 0 . 1 0 . 2 0 . 3 . 4

( 1 , 0 ) ( 1 , 0 )

( 1 , 0 ) ( 1 , 0 ) | ( - 1 , 0 ) ( 1 , 0 )

( - 1 , 0 ) ( 1 , 0 ) | ( 1 , 0 ) ( 1 , 0 ) ( - 1 , 0 ) ( 1 , 0 ) |

( - 1 , 0 ) ( 1 , 0 ) | ( 1 , 0 ) ( 1 , 0 ) | ( - 1 , 0 ) ( 1 , 0 )

( 1 , 0 ) ( 1 , 0 ) I ( - 1 , 0 ) ( 1 , 0 )

( 1 , 0 ) ( 1 , 0 ) I ( - 1 , 0 ) ( 1 , 0 )
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d) Interprétation

La différence relative entre le tracé analytique calculé par Mathematica et celui obtenu
par Mirô est infinitésimale (et uniquement due aux erreurs d'arrondis) car les points de
grille et ceux du fichier de masque de biréfringence coïncident parfaitement. Si le nombre
de points d'échantillonnage est par exemple 256, une petite différence apparaît due aux
erreurs d'interpolation.

FlG. 1.36 - Intensité analytique en trait continu et calculée en pointillés.

- 1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,
- 6 . 1 0 - 0 7

FlG. 1.37 - Différence absolue entre l'intensité analytique et celle calculée.

e) Variante du cas test

Le lecteur pourrait se demander quelle est l'origine de la fonction oscillante de la figure
1.36. C'est pourquoi nous proposons une variante 2D du cas test offrant une meilleure
vision de la situation.
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i) Schéma

0
Lentille

ii) Données

0- Source circulaire

3- Lentille
Paramètres

Diamètre
Exposant spatial
Fichier masque de biréfringence
Optique géométrique 3D
Temps
X
Y
Afficher l'animation

0,2 m
400

fich.bir

0s;4.10-9 s; 1
-0,15 m; 0,15 m; 250
-0,15 m; 0,15 m; 250

Le fichier f i c h . b i r est le même que dans le cas test précédent.

iii) Résultat

Nous fournirons juste (via un traitement par Adonis) l'intensité du faisceau en sortie,
selon ses deux polarisations. Signalons que le cas test précédemment présenté (p. 79)
correspond à une coupe parallèle à l'axe des X et excentrée.

0.15

0.10

0.05

-0.00

-0.05

-0.10

-0.15 I

0.15

0.10

0.05

-0.00

-0.05

-0.10

-0.15

^ l I I r - | - i . r T-r . I r - ! - | 1 i t ~ i - | i T- i -r | i i I i

• - • m :

i i

-0.15 -0.10 -0.05 -0.00 0.05 0.10 0.15 -0.15 -0.10 -0.05 -0.00 0.05 0.10 0.15

FIG. I.38 - Intensité après la lentille biréfringente, selon la polarisation X (à gauche) et
Y (à droite). Les zones en rouge correspondent aux maxima d'intensité.
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19. Lame biréfringente

a) Objectif

Ce cas test, d'une simplicité extrême, permettra de tester la non-régression du code
dans le composant « lame biréfringente », qui n'est utilisé dans aucun autre cas test.

Le schéma utilise deux lames dont les paramètres par défaut sont conservés ; ce sont
donc des lames À/4. La première lame, dont l'orientation est réglée à 45°, donne au
faisceau une polarisation a+. La deuxième lame rend à nouveau la polarisation linéaire,
mais avec une direction qui n'est pas parallèle à la direction initiale, à cause de l'orientation
« quelconque » choisie pour ce composant (12°).

Au retour, le faisceau est polarisé a~l. En sortie des lames, la polarisation est linéaire,
de même direction que la polarisation initiale2.

b) Schéma

c) Données

0- Source circulaire
1- Lame

2- Lame biréfringente
3- Lame biréfringente
4- Miroir

Paramètres

Epaisseur
Indice non linéaire

Orientation
Coefficient de réflexion
Normale thêta
Optique géométrique 3D
Temps
X
Y

0 m
0 W/m2

12°
1

180°

Os; 4. HT9 s; 1
-0,25 m; 0,25 m; 16
-0,25 m; 0,25 m; 16

1. Les faisceaux d'aller et de retour sont polarisés respectivement a+ et a , à condition de considérer
la polarisation dans un même repère fixe. L'hélicité des deux faisceaux (i.e. leur polarisation par rapport
à un repère lié à la direction de propagation) est en fait la même.

2. Pour la culture générale du lecteur, nous signalerons que la configuration du faisceau de ce cas test
(faisceau passant dans deux lames quart d'onde, puis rétroréfiéchi) est très utilisée par les physiciens
réalisant du refroidissement d'atomes avec des lasers.
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d) Résultats

Voici les résultats obtenus en optique 3D ; ces résultats numériques se lisent en affichant
les nappes1.

Composant
Lame (1 e r passage)
Propag. (1 e r passage)
Miroir
Propag. (2e passage)
Lame (2e passage)

/™ax (W)
2,591.109

7,687.108

2,591.109

/™ax (W)
0

l,823.109

0

<px (rad)
0

1,57.10"16

9 ,948 .1G- 1

-1,152

ipy (rad)

1,571
9,948.10-1

0,418 9

Dép.
0

0,5
7,034.10-1

0,5
0

On constate un déphasage de 7r/2 entre les phases des deux polarisations, lorsque le
faisceau est situé entre les deux lames quart d'onde. Ceci confirme que le faisceau est
polarisé circulairement. Après le passage de la seconde lame, le déphasage entre les deux
polarisations est 0 (donc la polarisation est linéaire), et le rapport des amplitudes des deux
polarisations est tan(45° — 12°). Enfin, après le passage des deux lames en sens inverse,
on retombe bien sur la même polarisation qu'au début (linéaire).

1. Les nappes ne figurent pas dans ce manuel car elles ne présentent aucun intérêt physique.
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20. Lame de phase « kinoforme »
a) Objectif

La lame de phase « kinoforme » est un composant à part dans Miré ; tout d'abord, son
calcul s'effectue indépendamment des paramètres du faisceau1. D'autre part, il présente un
caractère plus technologique que scientifique. En particulier, la convergence de l'algorithme
proposé [16] n'a pas été démontrée rigoureusement2.

Ce premier cas test de la lame « kinoforme » n'est que qualitatif: on montre qu'il est
possible d'obtenir une tache focale en forme de croix. Les résultats scalaires du calcul (tels
que le taux de modulation), bien que sans intérêt physique, pourront servir aux tests de
non-régression du code.

Attention : le temps de calcul de ce cas test n'est pas instantané (2 minutes sur une
SUN Ultra).

b) Schéma

cire .

O
Source

- ° - m
Fhue

-*- 0
Lentille

D
Lame

c) Données

1- Source circulaire

3- Lame de phase « kinoforme »

5- Lentille

6- Propagateur

Diamètre
Exposant spatial
Indice de réfraction
Indice non linéaire
Fichier spatial au foyer 3

Distance focale de calcul
Largeur devant la lame
Exposant spatial en X devant la lame
Exposant spatial en Y devant la lame
Epaisseur
Focale
Type de traitement [0/1/2]
Longueur
Indice de réfraction
Indice non linéaire

0,2 m
8
1

0m 2 /W
croix.foyer

7m
0,2 m

8
0

10~9 m
7m

0
7m

1
0 m'2/W

1. L'opportunité que ce soit Miré qui fasse ce calcul et non un code externe a d'ailleurs été discutée.
2. Depuis que ce composant a été mis en œuvre, d'autres algorithmes plus performants de lame de

phase (lames distribuées) ont été mis au point [17].
3. Le fichier croix.foyer a la forme suivante: 11 11 0 1.5923 1.5923 1 0 | X=-5e-4 -4e-4

-3e-4 -2e-4 - l e -4 0 le-4 2e-4 3e-4 4e-4 5e-4 | Y=-5e-4 | 1 1 0 0 0 0 0 0 0 1 1 | Y=-4e-4
| 1 1 1 0 0 0 0 0 1 1 l | Y=-3e-4 | 0 1 1 1 0 0 0 1 1 1 0 | Y=-2e-4 | 0 0 1 1 1 0 1 1 1 0
0 | y=-le-4 | 0 0 0 1 1 1 1 1 0 0 0 | Y=0 J O O 0 0 1 1 1 0 0 0 0 Y=le-4 | 0 0 0 1 1 1
1 1 0 0 0 | Y=2e-4 | 0 0 1 1 1 0 1 1 1 0 0 | Y=3e-4 | 0 1 1 1 0 0 0 1 1 1 0 | Y=4e-4 | 1
1 1 0 0 0 0 0 1 1 1 | Y=5e-4 | 1 1 0 0 0 0 0 0 0 1 1 |,
le symbole « | » désignant un passage à la ligne.
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Paramètres Diffraction de Fresnel adaptative
Temps
X
Y
Afficher l'animation

- 0
- 0

Os
,25
,25

;4 .
m;
m;

io-9

0,25
0,25

s ;
m
m

1
; 512
; 512

d) Résultat

La forme spatiale du faisceau au foyer peut être visualisée (en version Unix) grâce à
l'animation en haut à gauche de la fenêtre Mira. On peut également mettre en évidence
la tache cruciforme grâce au diagnostic en « vue de dessus » (disponible dans l'interface
Mirô sous Unix en appuyant sur la touche « Échap » lorsqu'une nappe est affichée, et
sous Windows grâce au bouton Iso). La tache focale est présentée sur la figure 1.39.

1 Ex* 1 ••6e*14

•4e+l<

•3e+l<
t=O.OOOe«OO

gri l le=64x64

xmin=-3.774e-03

xmax=3.774e-03

Umin=-3.774e-03

amax=3.774e-03

zmin=8.933e»04

zmax=5.628e+14

t=O.OOOe+OO

inl le=512x512

xmin=-3.774e-02

xmax=3.774e-03

ymin=-3.774e-Û3

ymax=3.774e-03

2m in=8.933=.04

zmax=5.628e»14

FIG. I.39 - Visualisation de la tache focale d'un faisceau passé à travers une lame de phase
« kinoforme ». Malgré la présence de tavelures la forme de croix est aisément reconnais-
sable en « vue de dessus ».

Voici quelques résultats scalaires permettant de tester la bonne conservation du code :
- taux de modulation sur la lame : 86,973 88 ;
- section: 3,835974.10"5 m2;
- nombre d'itérations nécessaires à la convergence de l'algorithme de la lame kino-

forme : 7.

Remarque : nous avons choisi de fabriquer une focale cruciforme car le fichier de
profil au foyer est suffisamment petit pour pouvoir être entré à la main (et le cas test est
ainsi reproductible). Toutefois, il est tout à fait possible de créer des taches focales de
forme beaucoup plus complexe. Sur la figure 1.40 nous avons reproduit le logo du laser
Mégajoules1. On constate que le dessin est aisément reconnaissable, même s'il devient plus
flou au fur et à mesure que l'on s'éloigne du centre de la tache. Ceci permet d'apporter
quelques garanties concernant la « souplesse » du composant « lame kinoforme ».

1. Le fichier de profil focal a été créé de la façon suivante : l'image bitmap d'origine a été traduite au
format Tiff, puis via le logiciel Adonis au format Prop '92 qui est le format des fichiers lisibles par Mirô,
Nous avons réutilisé pour la simulation Mirô les paramètres du cas test du profil cruciforme.
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00*0000-0=1

È
MM

-0.00151
-0.0015-D.0010-0.0005 0.0000 0.0005 0.0010 0.0015

x (m)

FIG. I.40 - Tache focale pour une lame de phase kinoforme construite à partir du logo du
laser Mégajoules.

e) Variante du cas test de la lame « kinoforme »

Le lecteur pourra trouver les cas tests précédents quelque peu superficiels : on se
contente de contrôler l'allure de la tache focale sans confirmer la moindre grandeur nu-
mérique (telle que par exemple la taille de la tache focale).

Dans cette variante du cas test on cherche à fabriquer une tache focale supergaussienne
(de taille bien supérieure à la limite de diffraction). Par ailleurs, nous avons choisi pour les
cellules de la lame une taille plus petite, i.e. 0,3 mm (dans les conditions expérimentales
usuelles on a des cellules submillimétriques [18], voire une lame de phase continue [19]).
Ceci implique d'effectuer le calcul en ID transverse (sinon nous n'aurions pas assez de
mémoire).

i) Schéma

Source
0

Lentille

ii) Données

0- Source circulaire

1- Lame de phase « kinoforme »

Diamètre
exposant spatial
Indice de réfraction
Indice non linéaire
Largeur
Hauteur
Côté d'une cellule
Dimension au foyer
Exposant spatial au foyer
Distance focale de calcul
Largeur devant la lame
Exposant spatial en X devant la lame

0,2 m
8
1

0 m'2/W
3. lu"4 m

0,6 m
3.10-4 m

1 mm
8

7 m
0,2 m

8
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2- Lentille

4- Propagateur

Paramètres

Exposant spatial en Y devant la lame
Précision de convergence
Epaisseur
Focale
Type de traitement [0/1/2]
Longueur
Indice de réfraction
Indice non linéaire
Diffraction de Fresnel
Temps
X
Y

0
5.10-3

10~9 m
7m

0
7m

1
0 m2/W

0 s ; 4.10~9 s ; 1
0 m; 2.10~4 m; 1

-0,25 m; 0,25 m; 16 384

Remarque : c'est la diffraction de Fresnel standard, et non la diffraction de Fresnel
adaptative, qui a été choisie, car le nombre de pas de discrétisation est très important (en
diffraction de Fresnel adaptative, Mirô traiterait en fait le cas comme en diffraction de
Fresnel sans changer la taille de la boîte).

iii) Résultat

FIG. I.41 - Allure de la tache focale, pour un faisceau passé au travers d'une lame de
phase « kinoforme ». En pointillés, la forme (supergaussienne) de la tache requise.

La figure 1.41 montre l'allure du faisceau au voisinage du foyer, ainsi que la supergaus-
sienne théorique. Cette courbe a été retraitée avec Adonis afin de réaliser un agrandisse-
ment. On remarquera que :

- la forme supergaussienne de la tache focale est bien perceptible ; pour s'en
convaincre il suffit de refaire tourner Mirô en requérant une tache focale gaussienne et de
constater la différence ;

- toutefois, on ne peut s'affranchir d'un bruit important (tavelures). On voit sur la
figure que la taille de ces grains de tavelure est inférieure au dixième de millimètre. Or,
la taille attendue pour les grains de tavelure est c = Xf/a, avec A = 1,053 \xm, / = 7 m,
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et a = 0,5 m (a est la taille du faisceau arrivant sur la lame « kinoforme »). On trouve
c = l,47.10^5 m; on obtient donc le bon ordre de grandeur.
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21. Prise en compte de l'épaisseur des lentilles
a) Objectif

Le but de ce cas test est de tester la façon dont Mirô prend en compte l'épaisseur des
lentilles. Nous rappelons que le code remplace une lentille épaisse d'épaisseur e, d'indice
n, de rayons de courbures algébriques Ri et R2 et de focale / , par la séquence suivante :

- propagation dans le vide sur une distance

e e n — 1

n n R2

- lame de verre d'indice n et d'épaisseur e ;
- lentille infiniment mince de focale / ;
- propagation dans le vide sur une distance

en— 1
n Ri

Dans le cas test qui suit nous recherchons à réaliser l'image d'un objet à travers une
lentille épaisse dans la géométrie 2 / - 2 / . L'épaisseur de la lentille est 10 cm, son indice de
réfraction 1,5, et ses rayons de courbure valent respectivement —20 m et 30 m. On trouve
en utilisant les définitions

1 6 in ~ 1)2 + (n - 1) (±- - ~) (I-77.a)
n txiJX2 \-ri2 T̂-i

(I.77.b)

que la focale / de la lentille vaut 24,016 01 m et que sa cambrure 7 vaut
-8,333 33.10"3 m"1.

Pour que l'imagerie soit conservée, il faut que la distance optique séparant l'objet de
la lentille infiniment mince équivalente soit 2 / , et que a distance optique séparant cette
même lentille mince et l'image soit aussi 2/ . On en déduit que la distance séparant l'objet
du bord gauche de la lentille réelle est

n R2

tandis que la distance séparant le bord droit de la lentille réelle et l'image est

2 / / ^
n Ri

Numériquement, on trouve respectivement 48,005 33 m et 47,991 99 m.
Dans ce cas test, nous cherchons à vérifier que l'imagerie est conservée quelle que soit

le sens de traversée de la lentille par le faisceau. Pour ce faire nous utilisons une deuxième
lentille qui est une lentille mince et dont le rôle est de rendre le faisceau parallèle, puis
un miroir qui réfléchit le faisceau afin qu'il parcoure le système en sens inverse. Nous
effectuons le test pour des lentilles isolées, et également pour les lentilles d'un filtre. Dans
ce deuxième cas, la valeur de d2 n'a pas à être entrée car Mirô règle automatiquement la
distance entre les deux lentilles d'un filtrage pour que le système soit afocal.
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b) Schéma

htltUL
dXD
Filtre

D
Lame Miroir

c) Données

On reliera au choix la source avec la chaîne supérieure (succession de deux lentilles,
cas a et c) ou inférieure (trou de filtrage, cas 6 et d). Les deux options doivent donner le
même résultat. Ce cas test est également prévu pour fonctionner en diffraction de Fresnel
adaptative (cas c et d).

Passage supérieur

0- Source circulaire
1- Lame

9- Propagateur

2- Lentille

10- Propagateur

3- Lentille

4- Miroir

Exposant spatial
Nom de l'élément
Épaisseur
Longueur
Indice non linéaire
Nom de l'élément
Epaisseur
Indice non linéaire
Focale
Cambrure
Type de traitement [0/1/2]
Longueur
Indice non linéaire
Nom de l'élément
Épaisseur
Indice non linéaire
Focale
Type de traitement [0/1/2]
Nom de l'élément
Coefficient de réflexion
Normale thêta

500
supérieure

0 m
48,005 53 m

0m2/W
épaisse
0,1 m

0m2/W
24,016 01 m

-8,333 33.10"3 m-1

1
47,991 99 m

0m2/W
mince
10"9 m
0m2/W

24,016 01m
0

supérieur
1

180°

Passage inférieur

5- Lame Nom de l'élément
Épaisseur

inférieure
0 m
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12- Propagateur

6- Filtre 1 trou

7- Lame
8- Miroir

Paramètres

Longueur
Indice non linéaire
Indice de réfraction des lentilles
Type de traitement [0/1/2]
Indice non linéaire
Focale gauche
Focale droite
Épaisseur de la lentille de gauche
Épaisseur de la lentille de droite
Cambrure gauche
Diamètre du trou
Epaisseur
Nom de l'élément
Coefficient de réflexion
Normale thêta
Diffraction de Fresnel (o), (&)
Diffraction de Fresnel adaptative (c), (d)
Temps
X
Y

Seuil du rapport signal sur bruit
Pas maximal de diffraction

48,005 53 m
0m2/W

1,5
1

0m2/W
24,016 01m
24,016 01 m

0,1 m
HT9 m

-8,333 333.10~3 m^1

109 m
0 m

inférieur
1

180°

0 s; 4.10"9 s; 1
0 m; 0,25 m; 1

-0,25 m; 0,25 m; 32 768 (a), (6)
-0,25 m; 0,25 m; 256 (c), (d)

0,5
1 m

d) Interprétation

La figure 1.42 présente le taux de modulation tracé en fonction de la distance mé-
canique, dans les deux cas passés en diffraction de Fresnel (a et b). On trouve comme
attendu que ce taux est égal à 1 là où le faisceau est imagé et supérieur ailleurs.

sigma
2e + 00

sigma

1.487e+00

1.001e+00 le+00

0e+00 le+02 2e+02
D_meca (m)

Oe+OÛ

1.2

l.C

Oe+00 le+02 2e + 02

D_meca (m)

FlG. 1.42 - Taux de modulation tracé en fonction de la distance optique, pour une suc-
cession de deux lentilles (à gauche), et pour un trou de filtrage (à droite). Ce taux de
modulation décroît sensiblement là où il y a imagerie.

En diffraction de Fresnel adaptative, on vérifie simplement que la courbure du faisceau
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est nulle et que la phase redressée du champ ne présente pas un comportement quadratique
qui serait caractéristique d'une mauvaise imagerie.

Pour les tests de non destruction du code, nous donnons les valeurs du taux de modu-
lation et de la fluence crête sur les composants suivants : lame supérieure et lame inférieure
pour les 1 e r et 2e passages, miroir supérieur et miroir inférieur, et ce en diffraction de
Fresnel (cas a et b) et en diffraction de Fresnel adaptative (cas c et d).

Lame supre 1er pass§e

Miroir supérieur
Lame sup re 2e passëe

Lame infe 1er passSe

Miroir inférieur
Lame inPe 2e passé*3

Diffraction de Fresnel
Fluence crête (J/m2)

12,908 62
12,91112
12,913 30
12,908 62
12,90862
12,908 62

Taux de modulation
1,001198
1,001392
1,001561
1,001198
1,001198
1,001198

Diffraction de Fresnel adaptative
Fluence crête (J/m2)

12,89169
12,89170
12,89175
12,89169
12,89170
12,89169

Taux de modulation
1,000869
1,000 869
1,000 873
1,000869
1,000 869
1,000 869
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22. Lentille boule
a) Objectif

L'objectif de ce cas test est de vérifier que la formalisme de lentille épaisse mis en place
dans Mirô fonctionne bien dans le cas d'une lentille boule.

lentille boule

a

FlG. 1.43 - Géométrie du cas test.

La géométrie de l'exemple est la suivante (fig. I.43) : on considère une lentille boule de
rayon R et d'indice n. Le faisceau incident fait un angle a avec l'axe (Oz), et arrive sur
la lentille de telle façon que son axe de propagation passe par le centre de la lentille. On
s'attend donc à ce que le faisceau ne soit pas dévié.

Dans le cas d'une lentille boule la focale est donnée par

/ =
nR

(1.78)

et la cambrure est nulle. Dans le cas test on choisit a = 10 2 rad, n = 1,5 et R = 1 m, ce
qui donne une focale de 1,5 m.

Remarque : ce cas test permet de valider à la fois le concept du traitement des lentilles
épaisses (remplacement par une lame, une lentille mince et des distances de propagation),
et sa mise en œuvre dans le code.

b) Schéma

Source Lentille
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c) Données

0- Source circulaire

1- Lentille

2- Lame
Paramètres

Delta thêta -
Position X
Epaisseur
Indice de réfraction
Indice non linéaire
Focale
Type de traitement [0/1/2]
Épaisseur
Diffraction de Fresnel
Temps
X
Y

0,572 957 7°
— 1 cm

2 m
1,5

0m2 /W
1,5 m

1
0 m

0 s; 4.10-9 s; 1
-5.10~2 m ; 5.10"2 m ; 16 384

0 m; 5.10-2 m; 1

d) Interprétation

On vérifiera que la position X du faisceau en fin de chaîne (1,000 044 cm) est à peu
près l'opposée de la position en entrée (—1 cm). On constate aussi que la direction de
propagation du faisceau est pour ainsi dire inchangée (l'« angle delta thêta du faisceau »
vaut 0,572 957 7° avant traversée de la lentille et 0,572 945 0° après). Tout ceci prouve que
le faisceau est bien passé par le centre de la lentille sans déviation.

e) Variante du cas test

Dans le cas test précédent le faisceau restait toujours centré par rapport à la boîte
de discrétisation. Le multiplexage angulaire était traité au moyen d'un déplacement de la
position de cette boîte par rapport au repère de référence. Par suite nous avons simplement
vérifié que les changements de direction de propagation aux interfaces des lentilles épaisses
se faisaient correctement. Par contre rien ne prouve que la diffraction à l'intérieur de la
lentille ait aussi été traitée correctement.

Pour tester la diffraction, on peut essayer de créer un faisceau multiplexe angulaire-
ment, tout en forçant la boîte de discrétisation à se propager parallèlement à la direction
{Oz). Pour ce faire, une possibilité est d'utiliser un composant « mélangeur » et d'implan-
ter la source multiplexée sur la branche secondaire. La déviation angulaire du faisceau
apparaîtra alors sous forme d'un déphasage dépendant linéairement de x ; par diffraction
on verra le faisceau se décaler par rapport à la boîte de discrétisation1.

1. Autre possibilité (apparue dans le code après la conception de ce cas test) : utiliser une source
analytique avec pour expression de la phase: 0.01*x.
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i) Schéma

-Q- -u-

ii) Données

0- Source circulaire

1- Mélangeur
2- Lame

3- Lentille

4- Lame

5- Source circulaire

Paramètres

Nom de l'élément
Longueur d'onde

Nom de l'élément
Épaisseur
Epaisseur
Indice de réfraction
Indice non linéaire
Focale
Type de traitement [0/1/2]
Nom de l'élément
Épaisseur
Nom de l'élément
Delta thêta
Position x
Diffraction de Fresnel
Temps
X
Y

boîte
5,265.10"7 m

entrée
0 m
2 m
1,5

0 m'2/W
1,5 m

1
sortie
0 m

source
0,572 957 7°

— 1 cm

Os; 4.10-9 s; 1
-5.10"2 m ; 5.10"2 m ; 16 384

0 m; 5.10"2 m; 1

iii) Résultats

La figure 1.44 représente la fluence du faisceau (2e fréquence) avant et après la lentille
boule. On constate que le faisceau est bien centré là où on l'attend. Remarquons aussi
que son diamètre à diminué car il a commencé à focaliser à l'intérieur de la lentille.
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12000

10000

^T 8000

1—3

^T 6000
o
el

£ 4000

2000

0

-0,05 -0 ,04 -0 ,03 -0 ,02 -0 ,01 0 0,01 0,02 0,03 0,04 0,05
X

FIG. 1.44 - Fluence du faisceau avant la lentille boule (en pointillés) et après (en trait
plein).

1 1 1

i I 1 — - ^ * { "*s_

1 1

sortie
entrée •
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23. Aberrations des lentilles
a) Objectif

Les deux cas test calculent les aberrations de lentilles (une lentille convexe-plan à
incidence normale pour le premier cas, une lentille équiconvexe à incidence oblique pour
le second). La validité du calcul est contrôlée de deux façons :

- par comparaison avec un calcul effectué à l'aide du logiciel Solstis (de la société
Optis);

- par le test du miroir à conjugaison de phase.

b) 1er cas test: lentille convexe-plan à incidence normale

i) Schéma

-D- -D-

•:onj.

v
Miroir ¥

ii) Données

0- Source circulaire

1- Lentille

2- Lame

Paramètres

Diamètre
Exposant spatial
Epaisseur
Indice de réfraction
Indice non linéaire
Focale
Cambrure
Type de traitement [0/1/2]
Nom de l'élément
Epaisseur
Indice non linéaire
Fichier masque de phase statique
Diffraction de Fresnel adaptative
X
Y
Seuil du rapport signal sur bruit

0,5 m
20

2,5 cm
1,450 29
0m2/W

4,441582 m
-0,25 m"1

2
Solstis
1 nm

0 m2/W
cp4.abr

-0,298 156 7 m ; 0,298 156 7 m ; 512
0 m; -0,2981567m; 1

0

Le masque de phase cp4. abr contient l'aberration de la lentille calculée par le logiciel
Solstis (puis transféré au format Miré par une moulinette appropriée). Nous ne fournissons
pas la procédure de construction de ce fichier car nous ne supposons pas que l'utilisateur
ait le logiciel Solstis à sa disposition (et il serait trop fastidieux de saisir le fichier à la
main). L'utilisateur pourra se contenter de tester l'allure de l'aberration calculée par Miré
ainsi que le retour par le miroir à conjugaison de phase.

iii) Résultat

Sur la figure 1.45, nous représentons les aberrations calculées par Miré et par Sol-
stis. On trouve deux courbes très semblables, au signe près. La différence provient de la
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-d
03

S-

- 0 , 3 - 0 , 2 - 0 , 1 0 0,1 0,2 0,3
x (m)

- 0 , 3 - 0 , 2 -0 ,1 0 0,1 0,2 0,3
x (m)

FlG. 1.45 - À gauche, aberration de la lentille calculée par Mirô; à droite, aberration
calculée par Solstis.

-a

D-

- 0 , 3 - 0 , 2 - 0 , 1 0 0,1 0,2 0,3
X (m)

- 0 , 3 - 0 , 2 - 0 , 1 0 0,1 0,2 0,3
x (m)

FlG. 1.46 - À gauche, différence absolue entre l'aberration calculée par Mirô et celle cal-
culée par Solstis ; à droite, phase du faisceau après réflexion par le miroir à conjugaison
de phase.
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convention de signe sur le champ discrétisé dans Mira [14, chap. 2] (onde quasi-plane en

e
iuit—kz\ , qui n'est pas la même que dans Solstis.

La figure 1.46 présente d'une part la différence absolue entre les deux aberrations (en
fait la somme des deux courbes de la figure 1.45 compte tenu des conventions de signe).
On observe une bonne compensation, sauf sur les bords de la pupille. L'écart (sans signe
systématique) est lié à la routine d'interpolation. D'autre part, nous avons tracé la phase
du champ sur la source, après réflexion par le miroir à conjugaison de phase. La phase en
ce point devrait être rigoureusement nulle. La différence que l'on observe (compensation
à 1 %) est due au fait que les rayons utilisés par Mirô dans la routine d'aberrations ne
sont pas les mêmes à l'aller et au retour. On met là en évidence une limitation de principe
du calcul effectué par Mirô.

c) 2e cas test : lentille équiconvexe à incidence oblique

Le cas d'une lentille inclinée est plus difficile à valider car le résultat dépend fortement
des conventions géométriques retenues. Par exemple, si l'on bascule une lentille d'un angle
9 (paramètre Normale thêta dans Mirô), la lentille est basculée autour de son centre dans
Mirô (cette convention nous a semblé préférable pour éviter les ambiguïtés en cas de
multipassage). Dans Solstis, la lentille est inclinée autour du centre de la face d'entrée.
Pour limiter les écarts entre les logiciels, nous avons dans l'exemple infra incliné le faisceau
incident plutôt que la lentille.

Par ailleurs les conventions définissant les aberrations ne sont pas les mêmes d'un
logiciel à l'autre. Dans Mirô le fait de traverser une lentille avec aberrations à incidence
oblique modifie la direction de propagation du faisceau réel. La partie linéaire de la phase
n'est donc pas appliquée (la phase admet toujours une tangente horizontale au centre de la
pupille). A contrario dans Solstis, on considère que la déviation fait partie des aberrations
et on la traite comme telle. Enfin, il existe une différence sur la courbure de référence1 :
dans Mirô les aberrations sont calculées par rapport au foyer géométrique de la lentille
(caractérisé par le paramètre « courbure » du faisceau). Dans Solstis on les calcule par
rapport au meilleur foyer (dont la position est fournie en sortie de Solstis).

i) Schéma

cire «

( )
Source

-D- 0
Lentille

phi-incX

D
Lame

-D-

'hi-tiras*

D
Lame

-D-

conji

A

Miroir?

1. Dans le premier exemple cette différence n'apparaissait pas car elle avait été corrigée à la main en
sortie de Solstis.
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ii) Données

0- Source circulaire

1- Lentille

3- Lame

4- Lame

Paramètres

Delta thêta
Diamètre
Exposant spatial en X
Epaisseur
Indice de réfraction
Indice non linéaire
Focale
Type de traitement [0/1/2]
Nom de l'élément
Épaisseur
Indice non linéaire
Fichier masque de phase statique
Nom de l'élément
Épaisseur
Indice non linéaire
Fichier masque de phase statique

Diffraction de Fresnel adaptative
X
Y
X
Y
Seuil du rapport signal sur bruit

—2°
0,25 m

20
1 cm

1,450 29
0m2/W

2,222 512 m
2

phi-incl
1 nm

0m2/W
(-2+1.996890)*pi/180*2*pi/1.053e-6*x

phi-tirage
1 nm

0m2/W
pi/1.053e-6*(4.506370e-01

-l./2.20292)*(x~2+y~2)

-0,148 319 7 m ; 0,148 319 7 m ; 2048 (a)
0 m; -0,1483197m; 1 (a)
0 m; -0,1483197 m; 1 (6)

-0,1483197m; 0,148 3197m; 2048 (b)
10^4

Le cas (a) permet de tracer une coupe en X de la phase, le cas (6) une coupe en Y.
Les paramètres des masques de phase analytiques ajoutés sur les lames ont été déterminés
comme suit : à la sortie de la lentille au premier passage l'angle delta du faisceau vaut
1,996 890°au lieu de 2°. Nous appliquons la différence sous forme de masque de phase.
Par ailleurs on trouve que la courbure du faisceau vaut 0,450 6370 m"1, alors que dans
Solstis les aberrations sont calculées par rapport au meilleur foyer situé à 2,202 92 m.
La différence entre ces deux courbures est également appliquée sous forme de masque de
phase.

iii) Résultats

conj.

Phase

01-le-01Oe+00 le-01 2e-01

-3.215e+00

-8.735e+01

0e+00
-le+01
-2e+01
-3e+01
-4e+01
-5e+01
-6e+01
-7e+01
-8e+01
-9e+01

-2e

conj.

Phase X
-5.715e-04

-8.567e+01

-Ol-le-01Oe+00 le-01 2e-01
Y

FlG. 1.47 - Aberrations calculées par Mirô ; coupe en x (à gauche) et en y (à droite).
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7e*
6e<
5en
4e<
3ei
2e<
lei
Oen

Phase X

T! î r
Y ! 7

6.295e+01

-6.283e+00
-2e-01-le-01 Oe+00 le-01 2e-01

Y

8e+01
7e+01
6e+01
5e+01
4e+01
3e+01
2e+01
le+01
Oe+00
-le+01

-2e

Phase X

"=z

: 1

Y::::i::::3=
-X { 4-A
X-+J'- i

7.254e+01

-9.420e-01

-Ol-le-01Oe+00 le-01 2e-01
X

FlG. 1.48 - Aberrations calculées par Solstis : coupe en x (à gauche) et en y (à droite).

Oe+00

-le+00

-2e+00

-3e+00

-4e+00

cire.

Phase X

I J]/
0.000e+00

-3.610e+00

Oe+00

-le+00

-2e+00

-3e+00

-2e-01-le-01 Oe+00 le-01 2e-01
X

-4e+00

cire.

Phase X

-2.487e+O0

-3.142e+00

-2e-01-le-01Oe+00 le-01 2e-0i
Y

FlG. 1.49 - Phase sur la source au 2epassage: coupe en x (à gauche) et en y (à droite).

Les figures 1.47, 1.48 et 1.49 présentent les résultats. On constate que les courbes
calculées par Miré et par Solstis ont la même allure, mais ne coïncident pas exactement. Il
faut savoir que le résultat est très sensible vis à vis de divers paramètres comme les valeurs
des courbures ou encore les positions des axes de rotation. Il paraît donc difficile d'obtenir
exactement le même résultat, d'autant plus que nous ne savons pas exactement de quelle
façon Solstis effectue son calcul. La compensation par le miroir à conjugaison de phase
n'est elle non plus pas parfaite, même si le résidu reste petit devant l'aberration. En fait
l'erreur devient non négligeable là où l'aberration est importante, ce qui est normal puisque
dans ce cas les rayons utilisés par Mira dans son calcul deviennent non orthogonaux à la
surface d'onde.
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24. Lentille de Fresnel : focalisation
a) Objectif

Ce cas test permet de s'assurer du bon fonctionnement du composant « lentille de
Fresnel ». On envoie un faisceau gaussien sur le composant et on regarde où il focalise.
Les paramètres choisis correspondent aux rayons X.

b) Schéma

Source

c) Données

0- Source circulaire

4- Propagateur
2- Lentille de Fresnel

5- Propagateur

3- Miroir
Paramètres

Longueur d'onde
Diamètre
Exposant spatial
Indice non linéaire
Epaisseur de la couche
Indice de la couche
Absorption de la couche
Longueur
Indice non linéaire
Normale thêta
Diffraction de Fresnel
Temps
X
Y
Afficher l'animation

8,67.10"lu m
1,5.10"4 m

200
0 m2/W
4.10"7 m

1,083 750.10"3

3.10~4

5,07.10~2 m/mo

0m2 /W
135°

0 s; 4 HT9 s; 1
-HT 4 m; 10~4 m; 16 384

0 m; 5,5.HT5 m; 1

L'entier mo présent dans le tableau permet d'explorer les foyers d'ordre supérieur. On
le mettra à 1 par défaut.

d) Interprétation

La figure 1.50 montre l'intensité du champ à la distance f\/m0 de la lentille (avec
/i =5,07.10~2 m), m0 prenant les valeurs 1, 2, 3 et 5. Les valeurs impaires de m0 corres-
pondent à la position d'un foyer1. Par contre il n'y a pas de foyer pour m0 — 2, ce qui est
conforme aux prédictions théoriques.

e) Variante du cas test

En réalité, le cas test précédent est biaisé par le fait que la simulation a été réalisée
en ID. Certes la position des foyers est correcte; mais l'intensité relative des différents

1. Les foyers ne sont pas très visibles. En regardant les figures attentivement, on repérera sur trois
d'entre elles, pour X = 0, un trait vertical très fin : c'est le foyer !



24. Lentille de Fresnel : focalisation 103
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FlG. 1.50 - Allure de l'intensité du champ aux distances f?/m0, avec m0 = 1, 2, 3 et 5
(respectivement en haut à gauche, en haut à droite, en bas à gauche et en bas à droite).
On met en évidence la présence d'un foyer (repérable sous la forme d'un trait vertical très
fin, au milieu de la courbe) pour toutes les valeurs impaires de mo.
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foyers, ou encore l'allure de l'intensité du faisceau au voisinage d'un foyer, sont fausses.
Comme variante de ce cas test, nous proposons donc une simulation en 3D. Afin de

ne pas être limité par la résolution au niveau des dernières zones de la lentille de Fresnel,
la taille de la boîte sera divisée par deux. Voici donc les nouvelles données :

0- Source circulaire

4- Propagateur
2- Lentille de Fresnel

5- Propagateur

3- Miroir
Paramètres

Longueur d'onde
Diamètre
Exposant spatial
Indice non linéaire
Epaisseur de la couche
Indice de la couche
Absorption de la couche
Longueur
Indice non linéaire
Normale thêta
Diffraction de Fresnel
Temps
X
Y
Afficher l'animation

8,67.10"lu m
7,5.10~5 m

200
0 m2/W
4.10-7 m

l,083750.10~3

3.10-4

5,07.10"2 m
0m2 /W

135°

0 s; 4 10"9 s; 1
-5.10"5 m; 5.10"5 m; 512
-5.10"5 m; 5.10"5 m; 512

Avec ces données, on trouve une intensité crête de l,158.1020 W/m2 pour le foyer
d'ordre 1, et 8,25.1019 W/m2 pour le foyer d'ordre 3. On rappelle que la théorie prévoit
qu'en 3D l'intensité crête est indépendante de l'ordre du foyer.

Enfin, nous fournirons pour le plaisir des yeux l'allure du faisceau juste après le passage
de la lentille de Fresnel (fig. I.51).
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-2x10 5 —

-4x10 5 -2x10

FlG. 1.51 - Intensité du faisceau juste après le passage de la lentille de Fresnel.
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25. Lentille de Fresnel : imagerie
a) Objectif

Ce cas test vise à réaliser l'image par une lentille de Fresnel d'un certain objet (ici une
double fente, créée par un apodiseur). L'idée sous-jacente est de simuler un diagnostic
de physique des plasmas [20] (imagerie aux rayons X du plasma créé par laser dans une
chambre d'expérience).

b) Schéma

c) Données

0- Source rectangulaire

4- Propagateur
1- Apodiseur analytique

5- Propagateur

2- Lentille de Fresnel

6- Propagateur

3- Miroir
Paramètres

Longueur d'onde
Largeur
Hauteur
Exposant spatial en X
Exposant spatial en Y

Epaisseur
Définition des trous
Longueur
Indice non linéaire
Epaisseur de la couche
Indice de la couche
Absorption de la couche
Longueur
Indice non linéaire
Normale thêta
Diffraction de Fresnel
Temps
X
Y
Afficher l'animation

8,67.1(T10 m
9.1Cr5 m
9.10"5 m

400
400

10"9 m
F(gri l le)

0,5 m
0 m2/W
4.10-' m

1,083 750.10"3

3.10"4

5,642 110.10"2

0 m2/W
135°

0 s; 4 10"9 s; 1
-7.HT5 m; 7.10~5 m; 16 384

0 m; 5,5.10~5 m; 1
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Le fichier g r i l l e sert à définir la forme de l'objet1.

d) Interprétation
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FlG. 1.52 - Image d'une double fente, par une lentille de Fresnel (à gauche), et par une
lentille ordinaire de même focale (à droite).

La figure 1.52 montre le résultat obtenu, en effectuant la comparaison avec une lentille
ordinaire2. On constate que la figure est sensiblement la même pour les deux types de
lentille, et que l'échelle en x est celle que l'on attend ; l'échelle des puissances est toutefois
différente, car dans le cas de la lentille de Fresnel, une grande partie de la lumière est
focalisée ailleurs ou n'est pas focalisée du tout.

On pourrait également critiquer le fait que l'imagerie n'est pas très « propre » (aussi
bien d'ailleurs pour la lentille de Fresnel que pour la lentille ordinaire). En fait, on s'aper-
çoit qu'avec les paramètres choisis la limite de diffraction est de l'ordre du micron ; elle
n'est donc pas négligeable devant la taille de la figure.

Remarque : on pourrait a priori penser qu'il est préférable de choisir une géométrie
2 / - 2 / ; de cette façon la taille de l'image serait la même que celle de l'objet, donc bien
supérieure à la limite de diffraction. En fait, cette configuration ne fonctionne pas bien
avec la lentille de Fresnel car la partie de la lumière qui n'est pas déviée par la lentille
vient se superposer à l'image que l'on cherche à mettre en évidence, rendant la figure
illisible3.

1. Il a la forme suivante (« I » désignant un retour à la ligne) :
R((0,0) ,110e-6, l l0e-6;l) | R((0,0),20e-6,20e-6;0)I R((40e-6,0),20e-6,20e-6;0)I
R((-40e-6,0),20e-6,20e-6;0).

2. Le retraitement des résultats avec Adonis est nécessaire, afin de réaliser un changement d'échelle;
avec Mira, les pics sont à peine visibles au centre de la figure.

3. En fait, sur une réelle expérience de physique des plasmas, les paramètres ne sont pas ceux choisis
ici : c'est l'objet qui est placé près de la lentille et l'image loin, et non l'inverse (par suite, sur l'expérience,
la taille de l'image est bien supérieure à la limite de diffraction). Toutefois, une simulation par Miré des
conditions expérimentales réelles poserait des problèmes d'échantillonnage difficilement solubles (à moins
peut-être d'utiliser la diffraction de Fresnel adaptative).
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Enfin, on s'assurera de la non-régression du code en contrôlant les paramètres suivants
(ils sont sans intérêt physique) sur le miroir de sortie de chaîne :
Énergie : 0,257188 3 J;
Taux de modulation : 17,019 50.
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26. Mélangeur
a) Objectif

Ce cas teste le bon fonctionnement du composant « mélangeur », en se plaçant dans
plusieurs cas de figure « typiques ». Ce composant réalise l'addition des champs électriques
de deux faisceaux, un faisceau principal et un faisceau secondaire. C'est la grille d'échan-
tillonnage du faisceau principal qui sera utilisée pour le faisceau somme. Si la grille du
faisceau secondaire ne coïncide pas, une interpolation est réalisée avec passage par une
grille intermédiaire [14, p. 194].

Ce test vise à vérifier la pertinence du rééchantillonnage et la conservation (ou la non
conservation...) de l'énergie.

b) Schéma

ource

O
Source
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c) Données

0- Source circulaire

1- Filtre spatial 1 trou

3- Source circulaire

5- Source circulaire

7- Source circulaire

9- Lame

Paramètres

Nom de l'élément
Position X
Energie
Longueur d'onde
Indice non linéaire
Focale gauche
Focale droite
Diamètre du trou
Nom de l'élément
Diamètre
Nom de l'élément
Energie
Angle de polarisation
Diamètre
Nom de l'élément
Position X
Position Y
Longueur d'onde
Diamètre
Epaisseur

Optique géométrique 3D
Temps
X
Y

source 1
0,1 m

lu" 1 1 J
5.10"7 m
0 m 2 /W

10 m
17 m
105 m

source 2
0,1 m

source 3
2 J
45°

0,1 m
source 4
-0,2 m
0,425 m

2.10"6 m
0,1 m
0 m

0 s; 4 10~9 s; 1
-0,25 m ; 0,25 m ; 256
-0,25 m; 0,25 m; 256

d) Interprétation

On souhaite vérifier ici non seulement l'addition des champs électriques, mais aussi
le bon rééchantillonnage. Pour tester spécifiquement ce dernier on utilise des faisceaux
de fréquences différentes (il n'y a alors pas d'addition et les champs correspondants sont
traités séparément par le code).

Ainsi le faisceau principal est un faisceau de fréquence différente des autres, dont la
fonction n'est que de fixer la boîte d'échantillonnage principale. Grâce au filtre spatial on
agrandit la taille de cette boîte. La source est également décalée spatialement. Pour tous
les faisceaux secondaires il y aura donc un rééchantillonnage.

La source 2 est une gaussienne de 1 J, polarisée selon X. Après le mélangeur, son
énergie est conservée, puisque la boîte principale est plus grande que la boîte secondaire.
Voici les résultats correspondants (fréquence 2) :

Énergie : 1 J ;
Taux de modulation : 9,208 666.

La source 3 est une gaussienne de 2 J, avec un angle de polarisation de 45° ; il y a
donc un joule suivant la polarisation X et un joule suivant la polarisation Y. Le champ
suivant X est exactement le même que le champ de la source 2 ; il va donc s'y ajouter de
façon cohérente. On trouve également que le champ somme est gaussien. Voici finalement
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les résultats numériques (fréquence 2) :
Énergie : 5 J ;
Taux de modulation : 9,208 666.

Remarque (en forme d'énigme) : la source 2 a pour énergie 1 J et la source 3, 2 J. Après
le mélangeur on obtient 5 J : apparemment Mira est en mesure de résoudre définitivement
la crise énergétique... Que se passe-t-il en fait sur une véritable expérience?

La source 4, de fréquence différente des sources 2 et 3 (différente de la source 1 aussi),
vise à tester le cas où la boîte d'échantillonnage secondaire n'est pas incluse dans la
boîte principale. L'énergie n'a donc pas à être conservée, puisque une partie du faisceau
va « tomber » en dehors de la boîte. Ici les paramètres sont choisis de telle sorte que
la moitié de l'énergie de la source 4 soit perdue. Voici les résultats du faisceau après le
mélangeur (fréquence 3) :
Énergie: 0,515 597 5 J;
Taux de modulation : 9,020 647 ;
Intensité crête: 2,206736.1010 W/m2.

Pour mémoire, voici les mêmes résultats pour le faisceau sortant de la source 4 :
Énergie : 1 J ;
Taux de modulation: 9,212 362;
Intensité crête: 2,206356.1010 W/m2.

Conclusion: l'intensité crête n'est pas altérée (du moins jusqu'à la 4e décimale) par le
rééchantillonnage. Ceci justifie pleinement la méthode utilisée. Remarquons toutefois que
l'énergie de sortie n'est pas rigoureusement la moitié de l'énergie d'entrée. C'est dû au fait
que le bord de la boîte principale ne coïncide pas avec les pixels de la boîte secondaire (la
précision serait accrue en augmentant le nombre de pas d'échantillonnage). Ce point est
cependant secondaire, l'essentiel étant que l'intensité lumineuse du faisceau mélangé soit
la bonne.
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27. Miroir à conjugaison de phase
a) Objectif

Ce cas test met en évidence l'une des propriétés les plus spectaculaires du miroir à
conjugaison de phase : l'effet de « renversement du temps » et la possibilité de restituer
naturellement la cohérence initiale d'un faisceau.

Le cas test compare le miroir à conjugaison de phase avec un miroir ordinaire. On
considère un faisceau cohérent que l'on fait passer dans une lame de phase aléatoire,
puis que l'on laisse diffracter sur une grande longueur. Au bout de cette longueur, la
modulation de phase s'est transformée en modulation d'amplitude. On réfléchit le faisceau
sur lui-même par l'un des deux miroirs, puis on regarde son allure après le parcours dans
l'autre sens de la distance de diffraction. Dans le cas du miroir à conjugaison de phase,
on doit retrouver le faisceau cohérent initial.

b) Schéma

rc-c t .

Source
o-/

Polariieur
-D- -D- -D- D

Lame

-D-
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c) Données

0- Source rectangulaire
1- Polariseur

2- Lame de phase aléatoire

3 - Cellule de Pockels

11 - Propagateur

4 - Lame

5 - Miroir à conjugaison de phase
6 - Miroir (ordinaire)

7 - Lame

Paramètres

Epaisseur
Indice non linéaire
Normale thêta
Largeur
Hauteur
Indice non linéaire
Scénario
Longueur
Indice non linéaire
Nom de l'élément
Épaisseur
Coefficient de réflexion
Coefficient de réflexion
Normale thêta
Nom de l'élément
Épaisseur
Normale thêta
Diffraction de Fresnel
Temps
X
Y
Afficher l'animation

1 m
0m2/W

-45°
1 m
1 m

0 m2/W
0 1

100 m
0m2 /W
mince
0 m

1
1

180°
résultats

0 m
90°

0 s; 4.10~9 s; 1
-0,5 m; 0,5 m; 128
-0,5 m; 0,5 m; 128

Le propagateur 11 est situé entre la cellule de Pockels et la lame « mince ».
Pour comparaison, on remplace le miroir à conjugaison de phase par un miroir ordinaire

avec les mêmes paramètres.

d) Interprétation

La figure 1.53 montre l'allure de la fluence dans la direction de polarisation Y, dans
le cas du miroir à conjugaison de phase (à gauche), et dans le cas du miroir ordinaire (à
droite). Les résultats sont conformes aux prévisions.

Pour tester la non-régression du code, voici le résultat pour le taux de modulation sur
la lame de verre placée en fin de chaîne :

- avec un miroir à conjugaison de phase : 5,551 923 ;
- avec un miroir ordinaire : 27,233 17.

Voici maintenant l'intensité crête :
- avec un miroir à conjugaison de phase: 1,387981.109 W/m2 ;
- avec un miroir ordinaire: 7,101341.109 W/m2 .

Enfin, nous terminerons la présentation de ce cas test par une énigme. Lorsque le
faisceau se propage par diffraction dans le sens du retour, entre la lame n° 3 et la cellule
de Pockels, il évolue naturellement d'un état désordonné (figure de tavelures) vers un état
ordonné (profil gaussien). Pourquoi ceci n'est-il pas contradictoire avec le second principe
de la thermodynamique?
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FlG. 1.53 - Cartes de fluence obtenues sur la lame placée au-dessous du polariseur, pour
un miroir à conjugaison de phase (à gauche) et pour un miroir ordinaire (à droite). Seul
le miroir à conjugaison de phase permet de restituer un profil d'impulsion régulier.
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28. Dispersion par un réseau droit
a) Objectif

Ce cas test se propose de tester la dispersion d'un faisceau par un réseau droit et
le formalisme des ondes inhomogènes. On considère une impulsion brève dispersée par
un réseau droit. Du fait de la différence de marche entre les fréquences rouges et les
fréquences bleues, un décalage temporel apparaît entre ces dernières (et donc une dérive
de fréquence). L'impulsion est étirée. Si l'expression avant étirement du champ est

E = Eoe-t2/ro ,

nous avons après étirement

avec

b(z) = -

(1.79)

(1.80)

(1.81.a)

= Arctan ( '

£ étant le vecteur inhomogénéité.
Dans notre exemple, nous considérons un réseau à l'incidence de i = 25° avec

N =8,026 937.105 traits par mètre. L'angle de sortie est donné par

sin a = sin i — NX (1.82)

soit a = —25°. L'inhomogénéité selon x (le retard par unité de longueur) est donnée (dans
le cas particulier d'un réseau à la condition de Bragg) par

le*
2 tan

(1.83)

soit l&l = 3,110869.10"9 s/m.
Après diffraction sur une longueur L, nous plaçons un afocal de grandissement 2, puis

nous nous propageons jusqu'au point image. Nous devons retrouver une impulsion brève.

b) Schéma

o
Source

-D- -D- -O-
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c) Données

0- Source rectangulaire
1- Réseau droit

6- Propagateur

2- Filtre 1 trou

7- Propagateur

3- Réseau droit

4- Lame
Paramètres

Durée
Nom de l'élément
Indice non linéaire
Dispersion des vitesses de groupe
Efficacité de diffraction
Longueur
Indice non linéaire
Indice non linéaire
Type de traitement [0/1/2]
Normale thêta
Focale gauche
Focale droite
Épaisseur de la lentille de gauche
Épaisseur de la lentille de droite
Diamètre du trou
Longueur
Indice non linéaire
Nom de l'élément
Indice non linéaire
Orientation des traits
Dispersion des vitesses de groupe
Efficacité de diffraction
Epaisseur
Spectre large
Temps
X
Y

1 ps
droit 1

0m2/W
0 s2/m

1
10 m

0m2/W
0 m"7W

0
50°

10 m
20 m

HT9 m
10"9 m
109 m
20 m

0 m'2/W
droit 2

0 m 2 /W
180°

0 s2/m
1

0 m

-1O~1 0 s; 10"10 s; 512
-0,25 m; 0,25 m; 1
-0,25 m; 0,25 m; 1

d) Interprétation

Les résultats de la simulation (à l'entrée du filtre, c'est-à dire après 10 m de propaga-
tion) sont présentés sur les figures 1.54 et 1.55. La durée équivalente de l'impulsion en ce
point est 47,88 ps.

Au niveau de la lame (plan image de la source de départ), on constate que l'impulsion
est redevenue brève (durée équivalente 1,09 ps).



28. Dispersion par un réseau droit 117

FIG. I.54 - Intensité à l'entrée du filtrage spatial. Résultat Mirô en continu et résultat
théorique en pointillés.
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FIG. I.55 - Phase redressée à l'entrée du filtrage spatial. Résultat Mirô en continu et
résultat théorique en pointillés.
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29. Réseaux de diffraction et aberrations temporelles
a) Objectif

Ce cas test vise à valider le calcul des « aberrations temporelles » induites par la diffrac-
tion sur les réseaux [21, 22]. Nous nous plaçons dans le cadre des expériences d'impulsions
brèves pour lesquelles on utilise une paire de réseaux droits parallèles pour étirer l'impul-
sion avant amplification, et une seconde paire identique à la première pour la comprimer
en fin de chaîne.

Idéalement, la paire de réseaux applique au faisceau un masque de phase dépendant
quadratiquement de UJ, proportionnel à la distance entre les réseaux. Cette hypothèse
permet de retrouver en fin de chaîne — pourvu que la bande passante de l'amplifica-
tion soit suffisamment large — une impulsion aussi brève qu'en entrée. Dans la pratique
toutefois, le masque de phase apporté par la paire de réseaux contient aussi des termes
en eu3 et d'ordre supérieur. Ces termes (dit d'aberrations temporelles) sont nocifs car ils
empêchent une recompression parfaite. En particulier les termes d'ordre 3 font apparaître
une pré-impulsion ou une post-impulsion qui peut être très gênante dans les expériences
d'interaction.

En fait, dans le cas où les systèmes allongeur et compresseur sont exactement symé-
triques, les termes d'ordre 3 se compensent. Ce sont des défauts d'alignement (angles
d'attaque différents, grandissement du télescope de l'allongeur différent de 1) qui em-
pêchent cette compensation et qui font apparaître les pré ou post-impulsions. Il est en
théorie possible de modéliser ces défauts d'alignement dans Mirô. En fait, les aberrations
temporelles ne sont significatives que pour un étirement très important, de l'ordre de la
nanoseconde. Simuler un tel étirement requiert plusieurs dizaines de milliers de pas de
temps, ce qui est impossible sur une simple station1 (car une discrétisation spatiale est
également requise). C'est pourquoi nous avons choisi de simuler une situation où nous éti-
rons l'impulsion via la dispersion dans un matériau, et où seule la compression est réalisée
avec des réseaux. De plus nous supposons que le matériau n'apporte pas de déphasage du
troisième ordre. Dans ces conditions nous faisons apparaître uniquement les aberrations
temporelles d'une paire de réseaux.

Nous considérons donc dans Mirô un système allongeur et un système compresseur.
Les réseaux du compresseur sont traités par le formalisme des ondes inhomogènes qui
permet de prendre en compte la phase en u2 sans discrétisation spatiale. Pour traiter les
termes d'ordre 3 on fait appel à un masque de phase appliqué spatialement.

L'expression du terme de troisième ordre créé par la paire de réseaux figure dans la
référence [21, appendice 1]. Le déphasage spectral de la paire peut s'écrire

<p{u) = 7 > + l-T2u
2 + ^T3co3 + ^T4u

4 + • • • . (1.

le terme 7\ traduit juste un décalage temporel (délai de propagation). Le terme T2 (dé-
phasage quadratique) est à l'origine de retirement ou de la compression. Le terme T3 est

1. Le mode de calcul u>(t) permettra toutefois une telle simulation (pour l'instant ce mode ne traite
pas les réseaux).
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celui qui nous intéresse : son expression (pour un réseau en réflexion) est

.iV2A4 1 — sin i sin a
47T2c3 cos5 a

(1.85)

Dans l'équation(1.85) i est l'angle d'attaque du premier réseau de la paire, a est l'angle
de diffraction ; R est la distance orthogonale entre les deux plans des réseaux (la distance
parcourue par le faisceau entre les deux réseaux est R/ cos a) ; iV est la densité de traits.

On considère maintenant une impulsion initiale de forme temporelle gaussienne :

•^entrée W — EQ Aa
(1.86)

Si l'impulsion subit au cours de retirement et de la compression un terme de phase cubique
Ta, alors la forme temporelle de l'impulsion recomprimée est donnée par [21, éq. (13)] :

^ sortie = >TT A i
2

Nous rappelons que la fonction d'Airy Ai est définie par

(3a)1/3

Ai[(3a r1/3xl =

b) Schéma

7T

1/3

/

+oo
cos (at3 + xt) dt .

_

T*

(1.87)

(1.88)

- -D- -a-

c) Données

0- Source rectangulaire

1- Lame

2- Réseau droit

Largeur
Hauteur
Durée
Exposant temporel
Exposant spatial en X
Exposant spatial en Y
Nom de l'élément
Longueur
Indice non linéaire
Dispersion des vitesses de groupe
Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire

0,12 m
0,2 m
50 fs

2
10
10

dispersion
0,5 m

0m2/W
-8,109 27.10-26 s2/m

droit 1
10~9 m

1
0 m2/W
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6- Propagateur

3- Réseau droit

4- Lame
Paramètres

Normale thêta
Dispersion des vitesses de groupe
Efficacité de diffraction
Aberrations (négligées=0) [0/1]
Densité de traits
Longueur
Indice non linéaire
Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Normale thêta
Orientation des traits
Dispersion des vitesses de groupe
Efficacité de diffraction
Disperseur/Rassembleur [0/1]
Aberrations (négligées=0) [0/1]
Densité de traits
Epaisseur
Spectre large
Temps
X
Y

25°
Os2 /m

1
1

8,026 934. ^ m - 1

0,05 m
0m2/W
droit 2
10"9 m

1
0m2/W

25°
180°

0 s2 /m
1
1
1

8,026 934.105 m-1

0 m

-10- 1 1 s; 10"11 s; 512
-0,13 m; 0,13 m; 256
-0,25 m ; 0,25 m ; 1

d) Interprétation

Nous avons tracé sur la figure (1.56) la puissance en fonction du temps pour l'impulsion
recomprimée1 (courbe en traits pleins). Nous la comparons avec le résultat de la formule
(1.87) évalué grâce à Mathematica.

On constate un bon accord entre les deux courbes.
Tests de non-régression : la durée équivalente de l'impulsion en fin de chaîne vaut

102,9635 fs et la puissance crête 9,710 TW (pour respectivement 53,5354 fs et 18,68 TW
en début).

1. la courbe correspond en fait à une simulation réalisée avec 2048 pas de temps. Nous avons utilisé
Adonis pour extraire une portion de la courbe.

Remarque : avec 512 pas de temps la phase du réseau n'est pas sous-échantillonnée. Avec 2048 elle l'est
(d'après les massages apparaissant au bas de la fenêtre Mirô). En fait ce n'est pas grave puisque dans ce
cas de figure le spectre n'est pas rempli.
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1 
! 

1 
1 

! 
1 

1 
1 

1

1 1 1

Miré
Mathematica •

l/W^̂ .... ,
-0,6 -0,2

t (ps)
0,2 0,4 0,6 0,8

FlG. 1.56 - Puissance du faisceau recomprimé (le faisceau a été étiré par dispersion qua-
dratique dans un m,atériau, puis recomprimé par une paire de réseaux avec aberrations).
En trait plein, calcul Mirô. En pointillés, résultat analytique évalué par Mathematica.
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30. Réseau focalisant et aberrations chromatiques

a) Objectif

Ce cas test vise à tester le calcul des aberrations spatiales induites par un réseau
focalisant qui n'est pas utilisé à sa longueur d'onde d'enregistrement. La validation est ef-
fectuée en comparant les résultats avec ceux obtenus par le logiciel Zemax (code d'optique
géométrique par tracé de rayon).

La situation considérée est la suivante: le réseau a été enregistré à 351 nm, avec deux
ondes d'indidence ±30°. La focale du réseau (distance entre l'origine de l'onde sphérique
et le centre du réseau focalisant) est de 8 m. Nous envoyons sur ce réseau un faisceau d'en-
veloppe supergaussienne, et de longueur d'onde 351,5 nm. La figure 1.57 montre l'allure de
la tache focale attendue, au niveau du foyer nominal et quelques centimètres avant celui-
ci. On observe essentiellement de l'astigmatisme, c'est-à dire une focalisation différente
sur l'axe sagittal et sur l'axe transverse.

FlG. 1.57 - Diagramme d'impact effectué avec le logiciel Zemax pour un réseau focalisant
enregistré à 351 nm et utilisé à 351,5 nm.

b) Schéma

• . X I * . •o
Source

-D- -O- d>
Focalifeui

-D- -D- -n- T
Lame
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c) Données

0- Source circulaire

1- Réseau focalisant

2- Focaliseur

3- Lame

9- propagateur

4- Lame

10- propagateur

5- Lame

Paramètres

Longueur d'onde
Diamètre
Exposant spatial
Indice de réfraction
Indice non linéaire
Normale thêta
Longueur d'onde retenue
Efficacité de diffraction
Onde inhomogène/Masque de phase [0/1]
Aberrations (négligées = 0)
Longueur d'onde d'enregistrement
Angle d'incidence de l'onde plane
Angle de diffraction de l'onde foc.
Distance focale nominale
Focale
Longueur d'onde principale
Nom de l'élément
Epaisseur
Longueur
Indice non linéaire
Nom de l'élément
Epaisseur
Longueur
Indice non linéaire
Nom de l'élément
Epaisseur

Diffraction de Fresnel
Temps
X
Y
Afficher l'animation

351,5 nm
0,56 m

30
1

0 m 2 / W
30°

351,5 nm
1
1
1

351 nm
-30°
30°
8 m
8 m

351,5 nm
foyer
0 m

— 15 mm
0 m 2 /W
— 15 mm

0 m
— 15 mm
0 m'2/W
-30 mm

0 m

0 s;4.10~9 s; 1
-0,4 m; 0,4 m; 1024
-0,4 m; 0,4 m; 1024

Attention : ce cas test dure cinq minutes environ sur une station de travail de forte
puissance.

d) Résultats

La figure 1.58 présente l'allure du faisceau en vue de dessus, 30 mm avant le foyer,
15 mm puis au foyer. On constate que les tailles et les formes de taches sont comparables.
On remarquera toutefois des variations d'intensité à l'intérieur de la tache qui ne sont pas
prévues par le calcul en tracé de rayons. Elles pouraient être liées à l'approximation qui
est faite dans Mirô et qui consiste à ne pas prendre en compte la distorsion d'intensité en
champ proche (traitement du réseau focalisant uniquement via un masque de phase).

e) Obtention du résultat en diffraction adaptative astigmate

Le même résultat peut être obtenu avec beaucoup moins de mémoire, grâce au mode
de calcul D2A. En effet, dans ce mode de calcul la partie quadratique de la phase du
réseau n'a plus besoin d'être échantillonnée, seuls les termes d'ordre 3 ou supérieur le
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-30 mm

t=0.000e+00

grille=l024x1024

xmin=-1.801e-03

xmax=1.801e-03

ymin=-1.800e-03

ymax=1.800e-03

znran=1.805e-08

zmax=2.962e+15

•Foyer

t=0.000e+00

grille=1024xl024

xmin=-1.801e-03

xmax=l.B01e-03

ymin=-1.800e-03

ymax=1.800e-03

zmin=1.226e-08

zmax=2.601e+14

—15 mm

t=0.000e+00

grille=1024xl024

xmin=-1.801e-03

xmax=1.801e-03

ymin=-1.800e-03

ymax=1.800e-03

zmin=8.652e-10

zmax=1.975e+15

FlG. 1.58 - Taches focale obtenues par un calcul Mirô, aux positions suivantes : à gauche,
30 mm avant le foyer nominal; à droite, 15 mm avant le foyer nominal; en bas, au foyer
nominal.
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doivent.
Voici les paramètres de la simulation effectuée en D2A (rien n'est changé au niveau

des composants) :

Paramètres Diffraction adaptative astigmate
Temps
X
Y
Afficher l'animation

0 s; 4.
-0,4 m ;
-0,4 m;

HT9 s;
0,4 m;
0,4 m ;

1
256
256

J

J

-

-30 mm

t=0.000e+00

grille=256x256

xmin=-4.487e-04
xmax=4.487e-04

ymin=-9.323e-04
ymax=9,323e-04

zmin=4.010e-05
zmax=3.482e+15

F™"*

mm*

foyer

t=0.000e+00

grille=256x256

xmin=-1.332e-03
xmax=1.332e-03

ymin=-5,698e-04
ymax=5,698e-04

zmin=2,379e-06
zmax=:2.599e+14

-15 mm

t=0,000e+00

grille-256x256

xmin=-5.801e-04
xmax=5.801e-04

ymin=-4.491e-04
ymax=4.491e-04

zmin=8.228e-07
zmax=1.948e+15

FlG. 1.59 - Taches focale obtenues par un calcul en D2A, aux positions suivantes: à
gauche, 30 mm avant le foyer nominal; à droite, 15 mm avant le foyer nominal; en bas,
au foyer nominal.

La figure 1.59 présente les résultats. Afin de visualiser l'astigmatisme nous avons tracé
des vues de dessus tenant compte des vecteurs de base (ce type de vue est disponible
uniquement sous Unix par la pression simultanée des touches CTRL et ÉCHAP lorsque
la vue de dessus standard est affichée). On trouve des résultats similaires à ceux obtenus
en diffraction de Fresnel standard.
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31. Réseau focalisant et calcul de temps de retard
a) Objectif

Ce cas test vise à valider le calcul du réseau focalisant en spectre large. Ce composant
est calculé dans Mira par application d'un masque de phase (dépendant de r et de a;) sur
le champ électrique dont on a préalablement réalisé une transformée de Fourier temporelle.
Cela revient à dire que le réseau dévie les rayons d'un angle dépendant de la fréquence
temporelle.

H
M (x,y)

FIG. 1.60 - Géométrie caractéristique du réseau focalisant. Le retard apparaissant entre le
front de phase et le front de groupe est visualisé par la distance HP -h PF — f.

Il est toutefois possible de considérer le réseau focalisant en terme de temps de retard
apparaissant entre le front de phase et le front de groupe (fig. I.60). En effet, immédiate-
ment après le réseau le front de phase est sphérique tandis que le front de groupe reste
plan. Ce temps de retard est proportionnel à la différence de chemin optique parcouru
par les différents rayons de la pupille. Ces deux façons d'« approcher » le réseau focali-
sant (angle dépendant de la fréquence ou bien temps de retard) sont en fait strictement
équivalentes.

Dans le cas particulier où la direction de propagation et la longueur d'onde du faisceau
incident sont confondues avec la direction de propagation et la longueur d'onde de l'onde
plane d'enregistrement, alors le faisceau émergent focalise en un point F qui est l'origine
de l'onde sphérique d'enregistrement. Dans ce cas particulier, le temps de retard s'exprime
en fonction de la position (x,y) sur la pupille de sortie par

.ï/) = - Up(x,y) sin i + ̂ J (XP{x,y) - f sin a)2 + {YF(x,y))2 + f cos2 a - / ,

(1.89)

où Xp(x) correspond à la position sur le réseau du point P représenté sur la figure 1.60.
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i.e.

XP(x,y) =

YP(x,y) =

x
cos a 1 + j tan a

y
1 + jtan a

(1.90.a)

(I.90.b)

Dans les équations (1.89)-(1.90), i est l'angle d'incidence du faisceau (et de l'onde d'enregis-
trement), a l'angle de diffraction (nombre relatif), / la focale du réseau. Les coordonnées
x et y se réfèrent à un repérage dans le plan de la pupille de sortie (orthogonal à la di-
rection de propagation z), en faisant l'hypothèse que les traits du réseau au centre de la
pupille sont parallèles à la direction y.

Les cas test que nous proposons ici fonctionnent de la manière suivante : nous envoyons
sur le réseau une impulsion brève et nous contrôlons la façon dont elle a été retardée en
fonction de la position sur la pupille de sortie. Pour pouvoir tracer le retard en fonction
de x ou y, nous avons mis au point une petit programme de dépouillement en C-\—h dont
le source figure en annexe. Le test est réalisé successivement en fonction de y dans le
formalisme de masque de phase (a), en fonction de x dans le formalisme d'onde inhomo-
gène (b), puis en fonction de x (c) et de y (d) dans le formalisme d'onde inhomogène
et en considérant la juxtaposition d'un réseau droit et d'un réseau focalisant parallèles.
Cet ensemble de deux réseaux est en fait équivalent à un réseau focalisant d'angles i et a
égaux. Le traitement par ondes inhomogènes (cas b à d) amène à soustraire du masque
de phase appliqué le masque d'un réseau droit de même nombre de traits, juxtaposé à
une lentille chromatique de focale / . Le temps de retard d'un tel système est donné par

X2

- retard '
i r x

= - (sin i - sin a) + ^-r
c [cos a 2/

(1.91)

Nous devons donc vérifier que Mira apporte à l'impulsion le retard Tretard(x,y) —

b) Schéma (cas a et h)

-D- -D-
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c) Données (cas a et h)

0- Source rectangulaire

1- Réseau focalisant

2- Lame
Paramètres

Largeur
Hauteur
Durée
Exposant spatial temporel
Exposant spatial en X
Exposant spatial en Y
Indice de réfraction
Indice non linéaire
Dispersion des vitesses de groupe
Longueur d'onde retenue
Efficacité de diffraction
Réseau disperseur/rassembleur [0/1]
Onde inhomogène/masque de phase [0/1]
Onde inhomogène/masque de phase [0/1]
Aberrations (négligées=0) [0/1]
Longueur d'onde d'enregistrement
Angle d'incidence de l'onde plane
Angle de diffraction de l'onde foc.
Epaisseur
Spectre large
Temps
X
Y
X
Y

0,8 m
0,8 m
10 ps

2
30
30
1

0 m2/W
0 s2/m

1,053 um
1
0

1(«)
0(6)

1
1,053 um

-25°
25°
0 m

-2,5.10"10 s; 2,5.10-10 s; 128
0 m; 0,5 m; 1 (a)

-0,5 m; 0,5 m; 512 (a)
-0,5 m; 0,5 m; 128 (b)

0 m; 0,5 m; 1 (6)

d) Schéma (cas c et d)

rect.

O
Source

-Q-

e) Données (cas c et d)

0- Source rectangulaire

1- Réseau standard

Largeur
Hauteur
Durée

Exposant spatial temporel
Exposant spatial en X
Exposant spatial en Y
Epaisseur
Indice de réfraction
Indice non linéaire
Normale thêta
Dispersion des vitesses de groupe
Efficacité de diffraction

2,5 m
2,5 m

10 ps (c)
1 ps {d)

2
30
30

10"9 m
1

0m2/W
25°

0m2/W
1
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2- Réseau focalisant

2- Lame
Paramètres
Cas (c)

Cas (d)

Aberrations (négligées=O) [0/1]
Densité de traits
Epaisseur
Indice de réfraction
Indice non linéaire
Dispersion des vitesses de groupe
Longueur d'onde retenue
Efficacité de diffraction
Réseau disperseur/rassembleur [0/1]
Onde inhomogène/masque de phase [0/1]
Aberrations (négligées=0) [0/1]
Longueur d'onde d'enregistrement
Angle d'incidence de l'onde plane
Angle de diffraction de l'onde foc.
Epaisseur
Spectre large
Temps
X
Y
Temps
X
Y

1
8,026 938.105 m"1

10~9 m
1

0 m2/W
0 s2 /m

1,053 |_im
1
1
0
1

1,053 \xm
25°

-25°
0 m

-5.10"11 s; 5.10-11 s; 128
-0,5 m; 0,5 m; 128

0 m; 0,5 m; 1
-10"1 1 s; 10~n s; 64

0 m ; 0,5 m ; 1
-0,5 m; 0,5 m; 64

f) Interprétation

Les quatre figures 1.61, 1.62, 1.63 et 1.64 présentent le résultat pour les cas (a), (6), (c)
et (d). On trouve un accord convenable entre les prédictions théoriques et les résultats
Mirô.

1 1

1 1

Miré '

- 0 , 4 O

y (m)
0,2 0,4 0,6

FlG. 1.61 - Temps de retard tracé en fonction de y, dans le cas (a,) (déphasage du réseau
focalisant entièrement pris en compte). Résultat Mirô en trait plein, résultat analytique
en pointillés.
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ci

"5

50

45

40

35

30

20

15

10

1 1

1 1

1 1

Mirô • -
Analytique

i i

-0,2 0

x (m)
0,4

FlG. 1.62 - Temps de retard tracé en fonction de x, dans le cas (b) (configuration en
« ondes inhomogènes » pour laquelle les termes dominants du déphasage du réseau focali-
sant ne sont pas appliqués sur le faisceau). Résultat Mirô en trait plein, résultat analytique
en pointillés.

Test de non-régression: dans le cas (c) la durée équivalente de l'impulsion finale
est 10,644 67 ps. Les conditions de bon échantillonnage (affichées en bas de l'interface au
passage du réseau) sont 33,300 et 65,976 pour le réseau droit, 16,099 et 9,226 pour le
réseau focalisant.

g) Annexe : le programme de dépouillement

Le dépouillement des exemples présentés dans ce paragraphe a nécessité la mise en
œuvre d'un petit programme en C++ afin de pouvoir tracer le temps de retard en fonction
de x ou y. L'intitulé de ce programme est présenté infra. Connaissant le champ en fonction
des variables spatiales et du temps, le temps de retard est défini comme le barycentre de
l'intensité :

Tretard(x,y) =

•* max

t\E(x,y,t)\2dt
J min

Tm a

J- ni in

(1.92)

\E{x,y,t)\2dt

C'est cette définition qui a été discrétisée. Pour dépouiller l'un des cas de calcul il est
nécessaire de sauvegarder le champ complexe sur la lame finale (au moyen du bouton
Sauver accessible dans la fenêtre de dépouillement) dans un fichier ASCII résultat .mcx.
On exécute ensuite la commande

a.out < résultat .mcx > tracé
où a. out est le nom de l'exécutable obtenu par compilation du fichier ci-dessous1. Le
fichier obtenu tracé (au format ascii x/y, avec séparateur espace) contient le temps de

1. Pour compiler: cxx maximum.C -lm -lcomplex sur DEC, g++ maximum.C sur PC linux.
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1,5

1

0,5

-0,5

- 1

-1,5

9

1

-

. . • • ' '

. - • •

- '

1 1

1 1

Mirô •
Analytique

. . • -

. . - • • • '

-

-

-

i i

-0,4 -0,2 0

X (m)
0,2

FIG. 1.63 - Temps de retard tracé en fonction de x, dans le cas (c) (configuration avec
deux réseaux, traitement en « ondes inhomogènes »). Résultat Mirô en trait plein, résultat
analytique en pointillés.

retard tracé selon le cas en fonction de x ou y.

#include <iostream.h>

#include <math.h>
#include <complex.h>
// Compilation : g++ maximum.C (sous Linux)

// cxx maximum.C -lm -lcomplex (sur DEC)

// Programme lisant un résultat de simulation spectre large (.mcx)

// et traçant le temps de retard en fonction de X ou Y

// Pour obtenir la sortie ASCII faire

// cat cas.mcx I a.out > sortie.ep

#ifdef __GNUC__
#define complex double_complex

#endif

int construire_tableau_3d (complex***&,int , int ,int);

void detruire_tableau_3d (complex***&);

int main ()

int nx, ny, nt, ni ;
int i , j , k ;
int ik, jk ;
double * x;
double* y;
double* t ;
double xx, num, den ;
char si ;
double s ;
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-0,01

-0,02

-0,03

-0,04

-0,05

o nfî

. . . v • • •

-

-

-

1 1

• • • ( , . . .

1

• ' • • • . - . . Mirô •

Analytique

• -

-

- 0 , 2 0

X (m)
0,2 0,4

FlG. 1.64 - Temps de retard tracé en fonction de y, dans le cas (d) (configuration avec
deux réseaux, traitement en « ondes inhomogènes »). Résultat Mirô en trait plein, résultat
analytique en pointillés.

Il facteur multiplicatif sur les temps
double facteur_t=l.el2 ;

// Lecture de l'en-tête
cin >> nx >> ny >> nt ;
cin >> s » s » s >> s » ni ;

x= new double [nx] ;
y= new double [ny] ;
t= new double [nt] ;

complex *** E ;
construire_tableau_3d(E, nt, nx, ny) ;

// Lecture des abcisses

cin >> si >> si ;

for (i=0 ; i<nx ; i++ )
cin » x[i] ;

// Lecture des ordonnées

cin >> si >> si ;
for (j=0 ; j<ny ; j++ )

cin » y[j] ;

// Lecture des temps
for (k=0 ; k<nt ; k++) {

cin >> si » si ;
cin » t[k] ;
for (i=0 ; i<nx ; i++ ) {

for (j=0 ; j<ny ; j++ ) {
cin » E[k][i] [j]

// Calcul du retard en fonction de la coordonnée où il y a plus d'un pas de temps
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if (nx == 2) nl=ny ;
if (ny == 2) nl=nx ;
for (i=0 ; i<nl ; i++) {

if (ni == ny) {
ik=0 ;
jk=i ;
xx=y[i] ;

} else {

ik=i ;
jk=O ;
xx=x[i] ;

}
num=0. ;
den=0.;

// calcul de barycentre

for (k=0 ; k<nt ; k++) {

num+=norm(E[k][ik][jk])*t[k] ;
den+=norm(E[k][ik][jk]) ;

}
if (den ==0.) break ;
coût << xx « " " « facteur_t*num/den « endl ;

}
delete [] x ;
delete [] y ;
detruire_tableau_3d(E) ;

int construire_tableau_3d (complex*** & t, int ni, int n2, int n3)

{
int ier=0;
int i ;

t = new complex ** [ni];
if ( ! t ) {

return (-1);
}
t[0] = new complex * [nl*n2];
if ( ! t[0] ) {

return (-2);
>
t[0][0] = new complex [nl*n2*n3];
for (i=l; i<n2; i++)

t[0][i] = t[0][i-l] + n3;
for (i=l; i<nl; i++) {

t[ i] = t [ i - l ] + n2;
t[i][0] = t[i-l][0] + n2*n3;
for (int j=l; j<n2; j++)

t[ i ] [ j ] = t [ i ] [ j - l ] + n3;
}
return (ier);
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void detruire_tableau_3d (complex*** & t)

if (t != NULL) {
delete [] t [0] [0] ;
delete [] t [0] ;
delete [] t ;
t = NULL;

}
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32. Rotateur de Faraday, lame à pouvoir rotatoire
a) Objectif

Ce cas test contrôle le bon fonctionnement du rotateur de Faraday et de la lame à
pouvoir rotatoire, en ID et en 3D. La différence de comportement des deux composants
pour un double passage est mise en évidence.

b) Schéma

-Q-

Faraday

Rotateur
-n-

c) Données

0- Source rectangulaire
1- Polariseur

2- Rotateur « Faraday »
3- Rotateur « Quartz »
4- Miroir
5- Lame
Paramètres

Indice non linéaire
Normale thêta
Indice non linéaire
Indice non linéaire
Normale thêta
Normale thêta
Optique géométrique ID (a), (c)
Optique géométrique 3D (b), (d)

0 nrVW
-45°

0 m2/W
0 m2/W

180°
90°

Dans les cas (a) et (b), on fera passer l'impulsion par le rotateur de Faraday (comme
sur le schéma). Dans les cas (c) et (d), on la fera passer par le rotateur à quartz en
déplaçant deux propagateurs.

d) Interprétation

En optique géométrique 3D, on constate que pour les deux types de rotateur (cas (b)
et (d)), la polarisation tourne de 45° au 1e r passage. En effet, la dépolarisation vaut | ,
et les phases des champs en X et Y valent respectivement 0 et TT rad (si la polarisation
était circulaire le déphasage entre les deux composantes vaudrait TT/2).

Au 2e passage dans le cas du rotateur de Faraday (a), la polarisation tourne encore
de 45° dans le même sens. Par suite le faisceau est réfléchi par le polariseur. Dans le cas
de la lame à quartz (d), la polarisation tourne dans l'autre sens, et donc le faisceau est
transmis par le polariseur.

En optique géométrique ID on ne peut pas contrôler la polarisation du faisceau. Par
contre on peut vérifier que le transfert du polariseur au 2e passage se comporte correcte-
ment en fonction du type de rotateur traversé.
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33. Source « tavelure » : dépouillement par Adonis
a) Objectif

II ne s'agit pas d'un véritable cas test : nous nous contentons de retraiter par Adonis
le champ créé par la source « tavelure ».

b) Schéma

c) Données

0- Source « tavelure »

Paramètres

Exposant spatial en X
Exposant spatial en Y
Largeur spectrale spatiale
Exposant spectral spatial
Fraction d'énergie bruitée

Optique géométrique 3D
Temps
X
Y
Afficher l'animation

100
100

102 m"1

800
1

0 s ; 4 10™9 s ; 1
-0,25 m; 0,25 m; 256
-0,25 m; 0,25 m; 256

d) Interprétation

Le faisceau sortant de la source « tavelure » a été traité avec Adonis. Les courbes
correspondantes sont présentées sur la figure 1.65. On constate que l'histogramme des
intensités admet une décroissance exponentielle, ce qui est caractéristique d'une statistique
gaussienne. Par contre le spectre ne présente pas véritablement un caractère supergaussien
comme demandé, car il est très bruité.
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4,5. 1009
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FIG. I.65 - Caractéristiques de la source « tavelure ». En haut à gauche, l'intensité du
faisceau (les zones rouges correspondent aux maxima d'intensité). En haut à droite, une
coupe de cette image. En bas à gauche, le spectre spatial du faisceau vu en coupe. Enfin,
en bas à droite, l'histogramme des intensités.
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34. Source « tavelure » : calcul de la fonction d'auto-
corrélation

a) Objectif

L'objectif de ce cas test est de contrôler le bon fonctionnement de la source « tavelure ».
Ce contrôle sera effectué via la fonction d'autocorrélation des intensités.

Pour accéder à l'autocorrélation C(||p||) = (I(r)I(r + p)), on mélange deux faisceaux
de tavelure identiques (même réalisation), mais de polarisations orthogonales et en ayant
préalablement effectué une symétrie selon x sur l'un des deux faisceaux. Grâce à un
convertisseur de fréquence taillé en type II, on obtient un signal proportionnel au produit
des intensités des deux champs. On accède donc ainsi à I(x,y)I(—x,y). On réitère ensuite
le processus en prenant plusieurs pas de temps puis on intègre en temps. La fluence
calculée par Mirô est donc proportionnelle à (I(x,y)I(—x,y))

Ce cas test est inspiré d'une expérience réalisée en 1996 à Limeil par L. Videau [23,
Annexe 2]1. Ici, nous prenons une dimension de pupille beaucoup plus grande de façon à
ce que les effets de diffraction et de double réfraction restent négligeables.

b) Théorie

Nous rappelons tout d'abord comment on calcule (analytiquement) la fonction de
corrélation. On définit le spectre du champ

h(k)= f d2r E(r)elkr . (1.93)

Alors la fonction de corrélation en champ vérifie

( £ * ( r - f ) £ ( r + § ) ) = f d2k (\h2(k)\) e~lkp . (1.94)

La fonction de corrélation en intensité (i.e. celle qui nous intéresse) est reliée à celle en
champ par la formule

(J (r - | ) / (r + f )) = (/ (r — f)) (/ (r + | ) ) + \(E* (r - f) E (r + | ) ) | . (1.95)

En négligeant la contribution de l'enveloppe on peut en outre supposer que

</(r + f)) ~ (I(r- §)) ~ (I(r)) Vp . (1.96)

Dans Mirô la fonction (\h2(k)\) est la fonction de filtrage de la source tavelure. Dans
notre cas il s'agit d'une gaussienne. Nous écrivons donc

(1.97)
*o

£0 étant la largeur spectrale spatiale entrée par l'utilisateur. On déduit immédiatement
que

(1.98)
2 In 2

1. Dans cette expérience la symétrie unidimensionnelle était réalisée au moyen d'un prisme de Dowe.
La moyenne était effectuée à la fois sur le temps et sur la dimension y.
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c) Schéma

tauelur*

-EH

f i Une.1

(M)
Filtre

-D- -O-

-O-

d) Données

L'inversion d'image est effectuée grâce à un filtre spatial (seule la dimension x est
échantillonnée). Afin de restituer l'imagerie, les deux propagateurs situés de part et d'autre
du filtre ont pour longueur 1 m.

0- Source « tavelure »

2- Source « tavelure »

Energie
Durée
Exposant spatial en X
Exposant spatial en Y
Largeur spectrale spatiale
Exposant spectral spatial
Fraction d'énergie bruitée
Tavelure fixe/variable [0/1]
Angle de polarisation

10 kJ
1 s
100
100

102 m"1

2
1
1

90°
Pour les autres paramètres, voir la source 0

8- Propagateur

3- Filtre 1 trou

9- Propagateur

4- Lame
5- KDP

6- Lame

Paramètres

Longueur
Indice non linéaire
Indice non linéaire
Type de traitement [0/1/2]
Focale gauche
Focale droite
Épaisseur de la lentille de gauche
Épaisseur de la lentille de droite
Diamètre du trou
Longueur
Indice non linéaire
Epaisseur
Epaisseur
Indice de réfraction
Angle thêta du cristal
Angle phi du cristal
Orientation
Intensité de conversion
Analytique/Runge Kutta
Epaisseur

Diffraction de Fresnel
Temps
X

1 m
0 m2/W
0m 2 /W

0
1 m
1 m

1 nm
1 nm
109 m
1 m

0m 2 /W
0 m

10 um
KDP_1053
59,228 9°

0°
0°

2,21.1020 W
0

0 m

0 s; 4 10"9 s; 256
-0,25 m; 0,25 m; 256
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Y
Afficher l'animation

0 m ; 0,25 m ; 1

Le fichier KDP_1053 est le fichier normalement utilisé pour convertir des faisceaux de
longueur d'onde 1,053 yim1. Ce fichier fait partie de l'installation de Mirô, il n'est pas
nécessaire de le saisir.

e) « Mesure » de la fonction de corrélation

a

a

- 0 , 1

FlG. 1.66 - Allure d'un grain de tavelure. En abscisse, la position X dans la simulation
Mirô (x/2 dans la formule (1.98)). En ordonnée, la fluence 2w obtenue par Mirô, renor-
malisée pour que le sommet vaille 2 (en pointillés), et le résultat théorique de la formule
(1.98) (en continu).

La figure 1.66 permet de comparer la gaussienne théorique de la formule (1.98) avec les
résultats Mirô (nous n'affichons pas toute la pupille). On constate que l'accord entre les
deux courbes est passable : la largeur du pic est la même, mais la fonction de corrélation
du champ semble prendre des valeurs négatives sur les deux côtés du pic (intensité 2to
inférieure à son asymptote). Ce comportement semble assez répétitif, mais nous n'avons
pas pu en fournir une explication satisfaisante.

1. Il a la forme suivante, « I » désignant comme d'habitude le retour à la ligne :
3 2 1 1 . 1 . 1 . 0 1 X=0.351e-6 0.5265e-6 1.053e-6 I 0= 1 I 1.5323807 1.5131859
1.4945153 I E= 2 I 1.4868956 1.4711416 1.4603937.
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1. Autofocalisation
a) Objectif

On teste dans cette partie les effets combinés de la non-linéarité Kerr et de la diffrac-
tion. En une seule dimension transverse de diffraction, l'équation de Schrôdinger admet
des solutions régulières pour toute distance de propagation si la donnée initiale est ré-
gulière. En dimension supérieure, il existe un phénomène d'autofocalisation, c'est à dire
une concentration ponctuelle de l'énergie. La solution de l'équation de Schrôdinger cu-
bique perd ses propriétés de régularité. Un critère suffisant permet de déterminer si le
phénomène d'autofocalisation est dominant :

*dxdy-^J^\E\4dxdy<0.

Cette condition n'est pas homogène suivant le champ électrique. En augmentant progres-
sivement le champ électrique, il existe un point au delà duquel il est certain que le faisceau
autofocalise. Pour un profil de faisceau donné, il est possible d'affiner le critère en donnant
une condition nécessaire et suffisante. Des études numériques ont été effectuées pour les
faisceaux gaussiens. Pour une puissance supérieure à une puissance dite puissance critique
d'autofocalisation des faisceaux gaussiens :

Pc = 3,72
A2

(II.2)

le faisceau autofocalise, pour une valeur inférieure il ne focalise pas.
La concentration est diagnostiquée par une explosion de la norme L°° de la solution,

c'est à dire que l'intensité crête du faisceau est infinie après une propagation sur une
distance finie. Le maximum de l'intensité tend vers l'infini au voisinage du point de focali-
sation comme dans une caustique dans l'approximation de l'optique géométrique linéaire.
La distance à laquelle se produit la concentration a été déterminée par des simulations
numériques ID radiales [24] :

0,183 5 k0D
2

(II.3)
2 In 2 ~ 0,852)2 - 0,021 9

Cette valeur peut être comparée aux résultats des calculs effectués par Miré.

b) Schéma

o
Source
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c) Données

0- Source circulaire

2- Propagateur

1- Miroir
Paramètres

Energie
Longueur d'onde
Diamètre
Longueur
Indice non linéaire
Normale thêta
Diffraction de Fresnel
Temps
X
Y
Pas maximal de diffraction
Déphasage maximal du pas fractionnaire
Afficher l'animation

px0,0148 J
10"6 m
0,01 m
45 m

10-20 m 2 / w

135°

Os; 10~9 s; 1
-0,02 m; 0,02 m; 128
-0,02 m; 0,02 m; 128

0,5 m
102 rad

Le facteur p est le nombre de puissances critiques.

d) Interprétation

Le tableau suivant retrace les valeurs de distance de focalisation « théorique » et celles
qui sont calculées par Mirô. La valeur calculée par Mirô est estimée en prenant le point
où l'intensité est maximale (cf. figure II.l). On remarquera que le calcul n'a plus de sens
une fois le point de focalisation passé.

P
Z/,th

Zf,Mirô

2 Pc

153,34 m
145 m

3 Pc

95,87 m
104 m

4 Pc

73,06 m
72 m

8 Pc

42,20 m
42 m

FlG. II.l - Maximum de l'intensité au cours de Vautofocalisation d'un faisceau gaussien
de 8 puissances critiques.
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2. Autofocalisation : problèmes de discrétisation

a) Objectif

Ce cas test vise à mettre en évidence une limitation du code Mirô concernant le trai-
tement de l'autofocalisation, liée à la précision de l'échantillonnage utilisé. On considère
pour cela un faisceau initialement gaussien, que l'on amplifie dans un disque comportant
un indice non linéaire. Dans l'expérience, on observe que le faisceau autofocalise globale-
ment, pourvu que sa puissance soit supérieure à une puissance critique donnée par :

A2

87TO7 '
(II.4)

n étant l'indice du milieu et 7 l'indice non linéaire. Dans la simulation Mirô ci-dessous, la
puissance du faisceau vaut 1010 W, tandis que la puissance critique vaut 106 W. Le seuil
d'autofocalisation est donc largement dépassé.

Un autre comportement, observé souvent sur les lasers de puissance, est la segmenta-
tion du faisceau en de multiples filaments, chaque filament « contenant » approximative-
ment la puissance critique. La filamentation apparaît notamment lorsque le faisceau initial
est supergaussien et comprend de petites inhomogénéités (ce qui est toujours le cas en
pratique). Sur certaines expériences on peut observer une disposition quasi-régulière des
filaments, selon une géométrie de type hexagonale. Ce phénomène n'a jamais été observé
sur une simulation Mirô.

Dans l'exemple ci-dessous nous considérons l'autofocalisation globale d'un faisceau
gaussien. Lorsque la discrétisation spatiale est trop faible on voit apparaître du bruit
purement numérique à la fréquence de discrétisation de la simulation. Ce bruit n'est donc
en aucun cas un phénomène de filamentation.

b) schéma

Source

-D-



2. Autofocalisation : problèmes de discrétisation 145

c) Données

0- Source circulaire

1- Amplificateur disque

2- Lame
Paramètres

Energie
Diamètre
Durée
Epaisseur
Indice de réfraction
Indice non linéaire
Transmission face d'entrée
Transmission face de sortie
Normale thêta
Fluence de saturation
Gain
Diamètre
Epaisseur
Diffraction de Fresnel
Temps
X
Y

5 J
4 mm
0,5 ns
0,44 m
1,522

2,89.10"20 m2/W
0,95
0,95
0°

4,9.104 J/m2

100
16 mm

0 m

0 s; 2.10"9 s; 1
—9 mm ; 9 mm;n
—9 mm ; 9 mm ; n

Le nombre n de pas d'espace par côté sera porté successivement à 128, 256 et 512.

d) Interprétation

coupe Y=0.000e*00

3e» 14

2e«14

le>14

IEx'1

/ •

i : ;ff|||
M / ! !
/ ; ; i ;

! i \

; \ :

H- -f—i"\

_J._J ; '_

r-i-j-U-

\ k! :

2e»14 - r n - r f -
i 1

i \ :
! i ;

i ! :
i i :

/ f i :

1 ;
i |\ i M i i ! i
! i \i j i : i ! i

i m i i l i i
M :\i M i ;M M\; M
! 1 : ! l\i 1 i
M i ! ; Ki :

coupe Y=0,000e+O0

2.764e*14

coupe Y=0.000e»00

FlG. II.2 - Coupe du faisceau en sortie de l'amplificateur. La résolution de la simulation
est 158 x 128 (à gauche), 256 x 256 (au milieu) et 512 y. 512 (à droite).

La figure II.2 représente le résultat de la simulation (intensité en fonction de x) pour
différentes valeurs de n. On constate la présence de bruit numérique (oscillations de pé-
riode égale à 1 pixel) lorsqu'il y a 128 points et son absence à partir de 256 points. Un
calcul correct nécessite donc 256 points au minimum.

La figure II.3 fournit le spectre spatial pour 128 et 256 points. On constate que même
avec 128 points il y a peu d'intensité aux fréquences spatiales les plus élevées (moins de
1 %o du pic). L'examen du spectre spatial n'est donc en aucun cas un critère suffisant
pour savoir si une simulation est correctement échantillonnée.
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Se»04

7e*C!4

6e*04

5s»04

4e*04

3e*O4

2e*04

le»04

Oe'00
; 4

; 1

!

L • i

coupe Y=O,0OOe+OO

7.678e*04

. l o g IEx'1
coupe Y=0.000e+00

7.678e»04

4.255V02

-ïe+04 -2e+04 -le+04 Oe+û0 le+04 2e+04 3e*04
X

-3e«04 -2e«04 -le»04 0a»00 le*04 2e'O4 3e*04

X

log IEx!l

—4—M—h

—H—r—1—4

—;»

-^ ii

î-ff-pf

coupe Y=0.000e+00

7.730e» 04

6.278e-04

FlG. II.3 - Spectre spatial pour une résolution en 128 x 128 (à gauche et au milieu), et
en 256 x 256 (à droite).

e) Calcul unidimensionnel en espace

Comme nous l'avons vu, le calcul correct de l'autofocalisation nécessite un grand
nombre de pas spatiaux; dans de nombreux cas la capacité mémoire des machines sera
vite dépassée.

Pour contourner ce problème, une solution consiste à ne discrétiser qu'une seule des
deux dimensions spatiales. Cette solution peut aboutir à des résultats qualitativement
corrects à condition que l'autofocalisation ne soit pas trop importante1. C'est ce que nous
allons vérifier ici.

Les schéma simulé est le même qu'à la section précédente ; nous n'indiquons que ceux
des paramètres qui ont changé.

0- Source circulaire
1- Amplificateur disque
Paramètres

Energie
Discrétisation des gains suivant Y
Diffraction de Fresnel
Temps
X
Y

1,174616 J
100

0 s; 2.10"9 s; 1
—9 mm ; 9 mm ; 256

0 mm; 1 mm; 1

L'énergie a été ajustée de façon à ce que l'intensité crête du faisceau reste la même
qu'au paragraphe précédent.

Nous fournissons le profil spatial du faisceau pour 256 points de discrétisation en
x (fig. II.4), et nous le comparons au cas 256 x 256 du paragraphe précédent1. Cette
comparaison montre comme attendu que l'allure du faisceau est qualitativement la même,
mais que la valeur de l'intensité crête diffère de 10 %.

En conclusion, on retiendra qu'une simulation unidimensionnelle avec beaucoup de
points sur la direction discrétisée peut s'avérer préférable à une simulation 2D dans laquelle

1. Lorsque les effets non linéaires sont importants le calcul ID ne peut pas donner le bon résultat;
en effet le faisceau se filamente en ondes solitaires qui se propagent sans se déformer. En 2D les solitons
n'existent pas et l'équation de Schrôdinger non linéaire n'admet plus de solution au-delà d'une certaine
distance.

1. Nous ne fournissons pas ici le résultat pour 128 points ou bien pour davantage de points (512, 1 024,
etc.). On constaterait comme pour la simulation 2D que du bruit numérique est présent en-deçà de 256
points.
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3e* 14

2e*14 - t - f

Oe*OO

2.519e*14

3e* 14

2e*14

coupe Y=0.000e*00

2.764e*14

6.788e*02 Oe*00 G.7B6e*02

FIG. II.4 - Simulation avec 256 points de discrétisation selon x. ,4 gauche, simulation ID
(256 x 1). À droite, simulation 2D (256 x 256).

on serait amené à « économiser » abusivement des pixels.

Test de non régression : dans le cas ID, l'intensité crête après propagation vaut
2,5188.1014 W/m2.
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3. Effet Kerr : modèle de Bespalov-Talanov
a) Objectif

L'objet de ce cas test est de valider le traitement Miro de l'effet Kerr via le modèle
analytique de Bespalov et Talanov [25].

Nous rappelons ici brièvement les conditions d'application et les résultats de ce mo-
dèle. On considère une onde plane progressive de forte intensité, à laquelle on superpose
une petite perturbation sinusoïdale, de haute fréquence spatiale. Du fait de l'effet Kerr,
la perturbation va peu à peu s'amplifier au dépens de l'onde principale. Le modèle de
Bespalov-Talanov consiste à traiter l'onde sinusoïdale perturbativement, de façon à linéa-
riser le problème. Le calcul que nous présentons ici n'est pas à proprement parler celui de
Bespalov et Talanov, mais une version plus sophistiquée [26, p. 201] tenant compte des
phases relatives de la perturbation et de l'onde incidente.

On écrit que le champ incident suit l'expression

E{x,y,z) =EO{1 + a(z)e(x,y)) e

où e(x,y) = sin(ftx) dans notre cas particulier. La fonction e vérifie l'équation

Axe + K2E = 0 (II.6)

qui est une équation aux valeurs propres.
On injecte l'expression (II.5) dans l'équation de Schrôdinger non linéaire (pour une

polarisation linéaire)

(J Z Iii

(n étant l'indice de réfraction du milieu et 7 l'indice non linéaire). Après linéarisation on
obtient l'équation sur le coefficient a :

Ct fi 7 K"

—- = — a - 2ifcL//3fce(a), (II.8)
dz ^fc]_,

où /i est la variation d'indice due à l'effet Kerr, donnée par

On écrit a(z) = u(z) + iv(z) pour aboutir au système d'équations différentielles couplées :

du K2 . T .

dl = 'WV (IL1(U)

Ce système se résout en dérivant l'équation (11.10.a) et en l'injectant dans (ILlO.b),
pour se ramener à un système du second ordre à coefficients constants. La solution s'écrit :

u(z) 1 _ [ à\(5z _§Mi 1 !" u(0)
v(z) I ~ I -Ssh/3z chpz I I u(0)
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ou

4k[ (11.12)

et

5 = (11.13)

b) Schéma

La perturbation sinusoïdale est réalisée à l'aide d'une source analytique. Afin de pou-
voir visualiser la courbe directement dans Mira la fréquence spatiale de la perturbation
dépend linéairement du temps (le temps est égal à l'angle en degrés).

Après la traversée du milieu non linéaire, on élimine le faisceau principal afin de
pouvoir effectuer un diagnostic. Pour ce faire, on effectue une interférence destructive
avec un faisceau non perturbé identique au faisceau principal, ayant passé dans un milieu
non linéaire identique. Afin d'accélérer le calcul le passage de ce milieu est effectué sur un
seul pas de temps (nous utilisons un composant « Échantillon »).

-o-

-D- D
Lame

6820
-D- D

Lame

sortit

D
Lame

c) Données

0- Source analytique

1- Lame

3- Source analytique

4- Echantillon

5- Lame
6- Echantillon

Énergie
Expression de l'intensité I(x,y,t)
Expression de la phase PHI(x,y,t)
Epaisseur
Indice de réfraction
Indice non linéaire
Nom de l'élément
Énergie
Expression de l'intensité I(x,y,t)
Expression de la phase PHI(x,y,t)
T min
T max
Nombre de pas de temps

idem
T min
T max
Nombre de pas de temps

0 J
cf. infra

0
0,5 m
1,505

2,89.10~20 m'2/W
destr
0 J

2.017128el3*creneau(l-10*abs(x))
Pi

0,02 s
0,2 s

1
lame n° 1

0,02 s
0,2 s
100
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7- Lame

Paramètres

Nom de l'élément
Epaisseur

Diffraction de Fresnel
Temps
X
Y
Afficher l'animation

sortie
0 m

0,02 s; ,0,2 s; 100
-0,125 m: 0,125 m; 2 048

0 m; 0,125 m; 1

L'expression de l'intensité entrée dans la source principale est :
2.017128el3*creneau(l-10*abs(x))*(1+0.05*sin(2*pi*t/l.053e-6*pi/180*x))

Attention: ce cas test est relativement long (1 heure sur un PC pentium 90 MHz
sous Linux). Pour accélérer le calcul on peut prendre moins de pas de temps (on aura
juste moins de points sur la courbe). Il faut changer le nombre de pas de temps à la fois
au niveau des paramètres généraux et au niveau de l'échantillon n° 6.

d) Résultats

Les résultats sont présentés sur la figure IL5. La courbe en continu correspond au
résultat analytique (11.11) : la puissance tracée est (à une constante près) u2(L) + v2(L)
(L étant la longueur de la lame, i.e. 0,5 m) sachant que u2(0) a 2 J, et que v(0) = 0. Les
valeurs numériques prises sont kh = n27r/AL avec n =1,505, AL =1,053 \xm ; l'indice non
linéaire est 7 = 2,89.10~20 m2/W et l'intensité du faisceau principal 2,017128.1013 W/m2.
Enfin, K est relié à l'angle 9 en radians par la relation K = 2TT9/XL

1.

On constate qu'il y a un relativement bon accord entre le résultat des simulations Mirô
et la courbe théorique : l'écart n'est que de quelques pour-cent. Cet écart pourrait être dû
à des effets d'ordre supérieur qui sont négligés dans le modèle théorique. Signalons par
exemple que dans Mirô on observe l'apparition d'harmoniques (spatiales) de la pertur-
bation (le rapport d'intensité entre l'harmonique et la fréquence fondamentale étant de
l'ordre du pour-cent).

Test de non régression Avec 100 pas de temps l'énergie finale est de 209,138 0 MJ
(cette valeur n'a bien sûr aucun sens physique).

1. L'angle 9 correspond à la propagation de la perturbation dans le vide, et non à l'intérieur de la
lame.
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Modèle de Bespalov-Talanov
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Angle (°)
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FlG. II.5 - Comparaison entre les résultats analytiques du modèle de Bespalov-Talanov
amélioré (courbe continue), et ceux de simulations Mirô (un point correspond à une nou-
velle simulation). En abeisse, l'angle 0 séparant les directions de propagation des faisceaux
principal et secondaire, en degrés. En ordonnée, l'énergie dans le faisceau secondaire après
traversée d'une plaque de verre de 50 cm.
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4. Calcul inverse en ID et en 3D
a) Objectif

L'objectif de ce cas est de tester le calcul inverse de Miré (à la;), aussi bien en optique
géométrique ID qu'en optique géométrique 3D. Point n'est besoin pour ce faire de trouver
un cas soluble analytiquement ; il suffit de montrer qu'après un « aller-retour » par Mirô
on retrouve bien l'impulsion que l'on avait au départ. Le cas choisi ici est un cas un peu
compliqué, faisant intervenir des amplificateurs en multipassage, fonctionnant dans un
régime saturé. C'est en effet ce cas qui est le plus critique vis-à-vis du calcul inverse.

b) Schéma

Polameut

Source

c) Données

Injection1 :

1- Source fichier

2- Propagateur

Normale thêta
Fichier des résultats
Fichier des résultats
Énergie
Section
Fichier temporel source
Fichier temporel source
Fichier spatial source
Longueur
Indice non linéaire

270°
source (a)

sourcelD (c)
0 J

0,03 m2

/tmp/source.pui (6)
/tmp/sourcelD.pui (d)

/tmp/source.flu (&)
40 m

0 m2/W

1. La nomenclature (injection cavité, prélèvement, fin de chaîne) reprend celle du laser Mégajoules. Les
non-initiés se référeront au schéma : l'injection est ce qui est au-dessus du filtre multi-passages, la cavité
ce qui est à gauche, le prélèvement ce qui est dessous et la fin de chaîne ce qui est à droite.
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Filtre multi-passages :

1- Filtre multi-passages Indice non linéaire
Coefficient de bruit caractéristique
Type de traitement [0/1/2]
Focale gauche
Épaisseur lentille de gauche
Focale droite
Épaisseur lentille de droite
Focale injection
Épaisseur lentille d'injection
Focale prélèvement
Épaisseur lentille de prélèvement
Diamètre du trou 1
Diamètre du trou 2
Diamètre du trou 3
Diamètre du trou 4

0m2/W
0
0

20 m
10-10 m

10 m
10-i° m

10 m
10-i° m

20 m
10"i° m

1010m
1010m
10i° m
1010 m

Cavité :

1- Propagateur

2- Amplificateur - plaque

3- Propagateur
4- Filtre 1 trou

5- Propagateur

6- Amplificateur - plaque
7- Propagateur

8- Miroir

Longueur
Indice non linéaire
Epaisseur
Indice de réfraction
Indice non linéaire
Transmission face d'entrée
Transmission face de sortie
Normale thêta
Fluence de saturation
Gain
Discrétisation des gains suivant X
Discrétisation des gains suivant X
Largeur
Hauteur
Longueur
Indice non linéaire
Coefficient de bruit caractéristique
Type de traitement [0/1/2]
Focale gauche
Focale droite
Épaisseur lentille de gauche
Epaisseur lentille de droite
Diamètre du trou
Longueur
Indice non linéaire

Paramètres identiques à ceux de 1
Longueur
Indice non linéaire
Coefficient de réflexion

50 m
0 m2/W

150 m
1,522

0 m'2/W
1
1

56,693 90°
4,707.104 J/m2

6.274852*(l-x*x)
32
1

2 m
2 m
50 m

0 m2/W
0
0

200 m
200 m

10-i° m
10-1° m

1010m
50 m

0m2 /W
'amplificateur n° 2

50 m
0m2 /W

1



154 Chapitre IL Tests Composés

Prélèvement

1- Propagateur

2- Polariseur

3- Propagateur

4- Miroir

Longueur
Indice non linéaire
Epaisseur
Indice de réfraction
Indice non linéaire
Normale thêta
Longueur
Indice non linéaire
Coefficient de réflexion
Normale thêta

10 m
0 m2/W
100 m

2
0 m2/W

120°
10 m

0 m'2/W
1

90°

Fin de chaîne :

1- Propagateur

2- Source - analytique

Longueur
Indice non linéaire
Normale thêta
Energie

Section
Expression de l'intensité I(x,y,t)

80 m
0 m2/W

180°
15 kJ (a)
5 kJ (c)

3.10"2 m2

créneau(1-50*x~2)

Paramètres

Paramètres

Nom de l'étude
Temps
X
Y
Précision de la convergence

Optique géométrique 3D inverse (a)
Optique géométrique 3D (6)

Optique géométrique ID inverse (c)
Optique géométrique ID (d)

/tmp
0 s; HT9 s; 32

-0,2 m ; 0,2 m ; 32
0 ni ; 0,1 m ; 1

HT 4

d) Résultats et interprétation

En fin de chaîne, on impose une impulsion constante dans le temps (quoique discrétisée
sur 10 pas de temps), et en forme de créneau spatialement.

En entrée de chaîne pour un calcul 3D, la saturation modifie les profils spatial et
temporel du faisceau. La figure II.6 montre les profils de puissance et de fluence obtenus.
Lorsque l'on effectue le calcul direct correspondant, on retrouve exactement les profils
plats finals.

Le calcul ID fonctionne sur le même principe (ici seule la forme temporelle est testée).
On trouve une énergie injectée beaucoup plus importante, la valeur du gain prise en ID
étant plus faible car moyennée sur toute la taille de l'ampli.
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2e+08
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le+08

Oe+00
Oe+00

1.389e+08
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FIG. II.6 - Profils de puissance et de fluence obtenus en début de chaîne pour un calcul
inverse 3D.

e) Pathologies pouvant survenir en calcul inverse

L'exemple que nous venons de présenter est plus « commercial » que réaliste : dans la
majorité des cas le calcul inverse ne fonctionne pas aussi bien. Pour nous en convaincre,
nous allons reprendre l'exemple précédent et modifier les paramètres suivants :

2- Amplificateur - plaque

6- Amplificateur - plaque

Transmission face d'entrée
Transmission face de sortie
Transmission face d'entrée
Transmission face de sortie

Paramètres | Précision de la convergence

0,9
0,9
0,9
0,9

io~-2

Lorsque la transmission linéaire des éléments de la chaîne ne vaut pas 1, des effets
de couplage spatio-temporels apparaissent, c'est-à dire que l'impulsion obtenue par calcul
inverse en entrée de chaîne n'est pas de la forme F(x,y)G(t). Par ailleurs, la convergence est
beaucoup plus difficile. Dans le cas présent, nous requérons une précision de convergence
de 0,01 et n'obtenons la convergence qu'au bout de 26 itérations0 . Dans certains cas,
lorsque l'énergie requise en fin de chaîne est trop importante, il arrive que l'algorithme de
Newton ne converge pas du tout.

Après le calcul direct de confirmation on trouve une énergie de 14,9778 kJ au lieu des
15 demandés (ce qui n'est pas une erreur importante compte tenu de la précision requise
pour le calcul inverse). Par contre on observe que les profils d'intensité spatiaux ne sont
pas plats, comme le montre la figure II.7. Les effets de couplage spatio-temporels ont donc
été mis en évidence.

7.575e

-01 -le-01 0e+00 le-01 2e-01
X

0.000e

0. On remarquera que la valeur affichée en bas de la fenêtre Mirô (erreur relative) est inférieure à 0,01
après quelques itérations seulement, mais que le calcul continue. En fait le critère de convergence de la
boucle se base sur les intensités des différents pas d'espace et de temps (qui doivent avoir tous convergé),
tandis que la valeur affichée porte sur l'énergie du faisceau.
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analytique
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FlG. II.7 - Intensité du faisceau en sortie pour une chaîne de transmission linéaire infé-
rieure à 1, après réinjection en calcul direct du profil obtenu en calcul inverse. A gauche,
premier pas de temps ; à droite, dernier pas de temps.



5. Calcul inverse ID en présence de multiplexage 157

5. Calcul inverse ID en présence de multiplexage

a) Objectif

Signalons tout d'abord que Mirô ne permet pas de réaliser du calcul inverse 3D
lorsqu'il y a du multiplexage angulaire. En effet, lorsqu'il y a des amplificateurs avec
saturation, le multiplexage couple entre eux des pixels spatiaux voisins. Or, la méthode
de Newton qui est mise en œuvre dans Mirô pour le calcul inverse ne tient pas compte
d'un tel couplage.

Dans le paragraphe ci-dessous nous présentons un cas de calcul inverse ID avec multi-
plexage. La seule raison d'être de ce cas test est d'aider l'utilisateur à comprendre comment
orienter angulairement les sources et les miroir lorsqu'il y a du multiplexage.

Nous rappelons tout d'abord les règles selon lesquelles la source de fin de chaîne doit
être orientée. Le guide utilisateur [27, p. 79] précise que la source de fin de chaîne doit
être orientée « comme s'il s'agissait d'un calcul direct se propageant vers le début de la
chaîne ». Concrètement, l'opération d'orientation doit être effectuée en 2 étapes:

- déterminer par un calcul direct en optique géométrique ID les paramètres du fais-
ceau en fin de chaîne (orientation de référence, orientation réelle, et position par rapport
au faisceau de référence). La position du faisceau (paramètres Ax et A y) est directement
accessible en plaçant un diagnostic sur le dernier composant. Les angles 9 et tp du fais-
ceau de référence ont en général des valeurs simples (0 ou 90°)1. Les paramètres A9 et
Aip positionnant le faisceau réel par rapport au faisceau de référence apparaissent parmi
les diagnostics scalaires (angle thêta et angle phi du faisceau) ;

- « retourner » la direction de propagation afin de régler la source pour le calcul

inverse. Les règles à appliquer sont :

Source = 6 + 180° (II.14.a)

ŝource = V9 (II.14.b)

Ajourée = A0 (II.14.c)

= —Aip (II.14.d)

= -AX (II.14.e)Lsource

AV — AV fil 14 f)

b) Schéma

Le schéma de la figure II.8 représente la chaîne multiplexée de notre simulation. Il
s'agit d'une chaîne de type Mégajoules très simplifiée. Ls source d'injection n'est pas
désaxée, et le multiplexage est introduit via le décalage du miroir d'injection du filtrage
multipassage.

Voici le schéma de la feuille Mirô :

1. Dans le cas contraire on peut faire apparaître leur valeur en les démasquant au niveau du dictionnaire
miro.cfg.
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r
I

source

30/2 x
-9

FlG. II.8 - Schéma de principe de la chaîne utilisée pour tester le multiplexage angulaire.
L'angle Q est petit (0,01 rad dans notre exemple). Les focales ï et f valent respectivement
20 et 10 m.

f i «hi en

O
Source

cavité

- ^
Miroir

-a-

-a- D
Lame

filtrï.4

axD
Filtre

-o

PF-*l*U.t

Miroir

\
nul t i

Filtre
nuitiDUi

r
D

Lame

-o- O
Source

c) Données

Injection

0- Source « fichier »

1- Lame

8- Propagateur

Normale thêta
Fichier des résultats
Fichier temporel source
Fichier spatial source
Epaisseur
Normale thêta
Longueur
Indice non linéaire

270°
source

/tmp/source.pui
/tmp/source.flu

0 m
270°
40 m

0 m'2/W
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Filtre multipassages

2- Filtre multipassages Nom de l'élément
Indice non linéaire des lentilles
Type de traitement [0/1/2]
Focale gauche
Epaisseur de la lentille de gauche
Focale droite
Épaisseur de la lentille de droite
Focale d'injection
Épaisseur de la lentille d'injection
Focale de prélèvement
Épaisseur de la lentille de prélèvement
Écartement des trous suivant X
Diamètre du trou 1
Diamètre du trou 2
Diamètre du trou 3
Diamètre du trou 4
Position X du miroir d'injection
Position Z du miroir d'injection
Delta thêta du miroir d'injection
Position X du miroir de prélèvement
Position Z du miroir de prélèvement
Delta thêta du miroir de prélèvement

multi
0
0

20 m
10-i° m

20 m
10~10 m

20 m
10-i° m

20 m
10"10 m
0,4 m
1 cm
1 cm
1 cm
1 cm
0,3 m
10 m

0,286 478 8°
-0,3 m
10 m

-0,286 478 8°

Cavité

10- Propagateur

3- Filtre « 4 trous »

11- Propagateur

4- Miroir

Longueur
Indice non linéaire
Indice non linéaire
Type de traitement [0/1/2]
Focale gauche
Focale droite
Épaisseur de la lentille de gauche
Épaisseur de la lentille de droite
Écartement des trous selon X
Diamètre du trou 1
Diamètre du trou 2
Diamètre du trou 3
Diamètre du trou 4
Longueur
Indice non linéaire
Nom de l'élément
Coefficient de réflexion

10 m
0m2/W

0 m2/W
0

10 m
10 m

10^10 m
10-i° m
0,2 m
1 cm
1 cm
1 cm
1 cm
10 m

0 m2/W
cavité

1

Prélèvement

12- Propagateur

5- Miroir

Longueur
Indice non linéaire
Nom de l'élément
Coefficient de réflexion
Normale thêta

5 m
0 m2/W
prélèv.t

1
90°
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Fin de chaîne

13- Propagateur

6- Lame
8- Source rectangulaire

Paramètres

Longueur
Indice non linéaire
Epaisseur
Normale thêta
Delta thêta
Position X
Optique géométrique inverse ID (a)
Optique géométrique ID (6)
Nom de l'étude

10 m
0 m2/W

0 m
180°

-0,572 957 7°
-0,3 m

/tmp

d) Résultats

Aucun résultat de cette simulation n'est intéressant physiquement (le seul point cri-
tique était la construction de la chaîne). Nous donnons à titre d'information la position
du faisceau selon X :

- pour le calcul inverse (au niveau de la source « fichier » de début de chaîne :
3,003 247.1(T4 m;

- pour le calcul direct (au niveau de la source rectangulaire de fin de chaîne) :
0,299 979 7 m.
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6. Diffraction : faisceau gaussien
a) Objectif

Un faisceau gaussien se propage dans le vide de façon auto-similaire, c'est à dire que
le profil spatial transverse reste gaussien. Si on perturbe la phase de la source gaussienne
par une phase linéaire, le faisceau se décale en plus en espace. On considère le problème
ID transverse suivant :

dE_ d^E_
' dz dx2 = 0, E(x,0) =_ e-x'2lr2+iax (11.15)

La solution s'écrit :

E(x,z) =
1 - i

2z
•exp I —

za
tax } exp

az

1 -i-
(11.16)

L'intensité maximale du faisceau décroît au cours de la propagation suivant une loi en
l /> / l + \z2 jk\r^. Dans le cas d'une diffraction suivant n dimensions d'espace transverses,
le taux de décroissance de l'intensité maximale est en (1 + 4Z2//CJ*T4)~"/'2 et le champ est
de la forme :

E{x,z) =
1 - i

2z

za2

lk~L
- tax 1 exp

(x
\r

1

az ^
kLr]
2z

ZfcLr2

(11.17)

Le décalage du faisceau en x est équivalent à celui obtenu par un faisceau gaussien de
vecteur d'onde légèrement désaxé par rapport au faisceau précédent dans la limite des
faibles angles.

b) Schéma

Source

c) Données

1- Source circulaire

3- Lame
4- Propagateur
Paramètres

Energie
Diamètre
Fichier de masque de phase statique
Longueur
Diffraction de Fresnel
Temps
X
Y

1,064 467.10"2 J
0,01 m

-pi+5*pi*y
1000 m

0 s; 1 s; 1
0 m ; 1 m ; 1

-0,1 m; 0,1 m; 1024
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d) Interprétation

La différence relative entre le tracé analytique calculé par Mathematica et celui obtenu
par Mirô est de l'ordre de 10~5. Des oscillations apparaissent sur le bord du domaine de
calcul. Elles sont dues à l'absence de conditions aux limites absorbantes.

0,25

te»

- 0 , 1 -0 ,08 -0 ,06 -0 ,04 -0,02 0 0,02 0,04 0,06 0,08 0,1
V (m)

FlG. II.9 - Intensité analytique en trait continu et calculée en pointillés.

1,2.1CT05

io-05

ç 8.i(r0fi

J 6.i(r06

Â 4.1CT06

J 2.1(T06

-2 .10

-4 .10

0

- 0 6

- 0 6

AA ZV/v- v/\ A

- 0 , 1 -0 ,08 -0 ,06 -0 ,04 -0,02 0 0,02 0,04 0,06 0,08 0,1
V (m)

FlG. 11.10 - Différence absolue entre l'intensité analytique et celle calculée.
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7. Diffraction : imagerie
a) Objectif

Dans le cas de propagation de Fresnel dans des milieux d'indice radial et quadratique,
il est possible de ramener la propagation sur un ensemble de dioptres à la propagation
sur un dioptre équivalent en suivant le formalisme des matrices ABCD. À des distances
précises de la source, sur les plans images (où B = 0), on retrouve la répartition spatiale
d'intensité. Le but de ce cas test est de vérifier la capacité de Mira à simuler l'optique
linéaire classique. On construit un cas test comprenant différentes optiques disponibles
dans la boîte à outils de Miro et l'on vérifie les différentes propriétés d'imagerie.

On rappelle les 4 matrices élémentaires pour le calcul des chaînes optiques traitées par
Miro ;

- propagation dans un milieu d'indice n sur distance e :

- propagation à travers une lentille infiniment mince de focale / :

M = ( \ u \ ) ; (11.19)

- traversée d'un plan incliné d'un angle 6 entre deux milieux d'indices n,\ et n2
 :

( cos(arcsin(^sin(?)) \

^ p cos g ) ; (11.20.a)
cos(arcsin(^ sin 8)) J

plan sagittal : M = ( J J "\ . (II.20.b)

À titre d'exemple, on peut vérifier que pour un filtrage spatial (deux lentilles de focales
,/i et f2 distantes de / i + /2) la matrice vaut :

Pour une lame d'indice n, d'épaisseur e, inclinée à Brewster, on a:

i

»4 ) ; plan sagittal : M = I
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b) Schéma

-a- -a-
filtr*.l

dXD
Filtre

-D-

-a-

0
Lentille

injection

O
Source

D
Lame

-o

-a-

/
Polarifeut

\

FiRre
miittnaH

Jr

fin de chai

-a- D
Lame

c) Données

Tous les coefficients de non-linéarité Kerr des composants sont mis à 0. L'imagerie
est faite de telle sorte que les miroirs sont des plans images tangentiels de la source. Les
distances ont été calculées par le formalisme ABCD sous Mathematica. Dans ce cas test
les lentilles des filtres multi-passages sont prises infiniment minces. Il serait possible de le
modifier pour prendre en compte l'épaisseur des lentilles.

Injection :

1- Source rectangulaire

2- Propagateur

Normale thêta
Largeur
Hauteur
Exposant spatial en X
Exposant spatial en Y
Longueur
Indice non linéaire

270°
0,1 m
0,1 m

100
100

40 m
0 m2 /W

Filtre multi-passages :

1- Filtre multi-passages Indice non linéaire
Type de traitement [0/1/2]
Focale gauche
Épaisseur lentille de gauche
Focale droite
Épaisseur lentille de droite
Focale injection
Épaisseur lentille d'injection
Focale prélèvement
Épaisseur lentille de prélèvement
Diamètre du trou 1
Diamètre du trou 2
Diamètre du trou 3
Diamètre du trou 4

0 m 2 / W
0

20 m
10^1° m

10 m
10-i° m

10 m
10-i° m

20 m
10"i° m
1010 m
101 0m
1O10 m
101 0m



7. Diffraction : imagerie 165

Cavité :

Prélèvement :

1- Propagateur

2- Lame

3- Propagateur

4- Filtre 1 trou

5- Propagateur

6- Lame

7- Propagateur

8- Miroir

Longueur
Indice non linéaire
Epaisseur
Indice de réfraction
Indice non linéaire
Normale thêta
Longueur
Indice non linéaire
Indice non linéaire
Type de traitement [0/1/2]
Focale gauche
Focale droite
Epaisseur lentille de gauche
Epaisseur lentille de droite
Diamètre du trou
Longueur
Indice non linéaire
Epaisseur
Indice de réfraction
Indice non linéaire
Normale thêta
Normale phi
Longueur
Indice non linéaire
Coefficient de réflexion

50 m
0m2/W
100 m

2
0m2/W
63,435°
50 m

0 m2/W
OmVW

0
200 m
200 m

ÎO"10 m
10^10 m
1010m
25 m

0 m2/W
150 m

1,5
0 m2/W

45°
90°

47,635 2 m
0m2/W

1

1- Propagateur

2- Polariseur

3- Propagateur

4- Lentille

5- Propagateur

6- Miroir

Longueur
Indice non linéaire
Epaisseur
Indice de réfraction
Indice non linéaire
Normale thêta
Longueur
Indice non linéaire
Epaisseur
Indice non linéaire
Normale thêta
focale
Type de traitement [0/1/2]
Longueur
Indice non linéaire
Coefficient de réflexion
Normale thêta

10 m
0 m2/W

100 m
2

0m2/W
120°
10 m

0 m2/W
ÎO"6 m
0m2/W

90°
100 m

0
44,036 7 m
0m2/W

1
90°

Fin de chaîne

1- Propagateur

2- Lame

Longueur
Indice non linéaire
Epaisseur
Indice non linéaire

80 m
0 m2/W
10"6 m
0m2/W
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Paramètres de calcul pour le plan tangentiel :

Paramètres Diffraction de Fresnel
T
X
Y
Seuil du rapport signal/bruit
Pas maximal de diffraction

0
-0,5

0

s;
m
m

10
; 0 ,
; 0

0
10

-

5
1
1

' s;
m ;
m ;

m

1
8192
1

Paramètres de calcul pour le plan sagittal :

Paramètres Diffraction de Fresnel
T
X

Y
Seuil du rapport signal/bruit
Pas maximal de diffraction

0
0

-0,5

s;
m
m

10

; 0

; o
0

10

" 9 s ;
,1 m;
5 m ;
,1
m

1
1
8192

d) Interprétation

2,4

J2"3-ao

o

I
"3
T3
o
S

0 500 1000 1500 2000 2500 3000 3500 4000 4500

z(m)
0 500 1000 1500 2000 2500 3000 3500 4000 4500

z (m)

FlG. 11.11 - Évolution du taux de modulation en fonction de la distance de propagation
à gauche pour la direction de calcul tangentielle et à droite pour une direction de calcul
sagittale.

La matrice ABCD de la chaîne s'écrit :

Plan tangentiel :

Plan sagittal :

2,790 82 - 0,044 770 6 x d -39,999 8 + 0,999 998 x d
-0,0447706 0,999 998

2,643 21 - 0,044 770 6 x d -27,987 9 + 0,852 387 x d
-0,044 770 6 0,852 387

où d est la longueur du dernier propagateur. L'image dans le plan tangentiel (respective-
ment sagittal) se forme à la distance :

S S = 32,834 7)
0,999 998 0,852 387
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3.

2,5.

5

i o 0 7

i o 0 7

1007

IO07

IO07

IO06

0

IO06

IO07

IO07

IO07 J I I

,2 -0,15 - 0 , 1 -0,05 0 0,05 0,1 0,15 0,2

X (m)

c-i 5. IO1

s

- 5 . 1 0 U D -

-1 ,5 . IO07

06

06

07

07

r
•

IlilM.. »»•

i i

1

1

1

-

-

-

1 1

-0 ,2 -0,15 -0 ,1 -0,05 0 0,05 0,1 0,15 0,2

y (m)

FlG. 11.12 - À gauche différence entre l'intensité dans le plan source et celle du plan image
tangentiel, à droite différence entre l'intensité dans le plan source dilaté de 0,852 384 1 en

intensité et 1,17318 en espace et l'intensité dans le plan sagittal (ces courbes contiennent
moins de points que la simulation).

et les grossissements dans ces deux plans sont respectivement :

r = 2,790 82 - 0,044 770 x 40 = 1 et r = 2,643 21 - 0,044 770 6 x 32,834 7 = 1,173 18.

1,2. IO 1 1

( i . l O l u -

10

10

10

10

1 1

-

-

-

-

1

-

-

-

-

1 1

10

10

10

10

10

10

10

10

n

1 1

-

-

-

-

-

-

-

1 1

1

1

1

1

1 1

-

-

-

-

-

-

-

1 1

-0 ,2 -0,15 -0 ,1 -0,05 0 0,05 0,1 0,15 0,2

x (m)
-0 ,2 -0,15 -0 ,1 -0,05 0 0,05 0,1 0,15 0,2

x (m)

FlG. 11.13 - À gauche profil suivant x de l'intensité dans le plan image tangentiel et à
droite dans le plan image sagittal.

L'évolution du taux de modulation dans la figure 11.11 montre le passage par les plans
images sur les miroirs de fond de cavité et de fond de prélèvement. Il est difficile de
déterminer l'écart entre la position du plan image tangentiel et le plan image sagittal.

Afin de faire la différence, on compare en fin de chaîne les effets de la diffraction
dans les différents plans par un recalcul sur le propagateur de fin de chaîne. Dans le plan
tangentiel, à 40 m du filtrage spatial, l'image doit être identique à celle de la source, ce
que l'on retrouve à 10~4 près. Dans le plan tangentiel, à 32,834 7 m, l'image est identique
à celle de la source grossie d'un facteur 1,173 18 à nouveau à 10~4 près.



168 Chapitre II. Tests Composés

1,4. iU

1,2. 10 1 1

H ) 1 1

->

3 S.1O10

S H.ÎO10

4.1O 1 U

2.1O 1 0

n

1 1 1

-

-

-

1 1 1

1 1 1

_

-

-

-

-

1 1 1

-0,2 -0,15 -0,1 -0,05 0 0,05 0,1 0,15 0,2

y (m)

iolu

io10

io10

io10

io 1 0

io 1 0

0

FlG. 11.14 - À gauche profil suivant y de l'intensité dans le plan image tangentiel et à
droite dans le plan image sagittal.

- 0 , 2 - 0 , 1 5 - 0 , 1 - 0 , 0 5 0 0,05 0,1 0,15 0,2

y ( m )

e) Discussion

Si le volume focal, c'est à dire la zone où la forme de faisceau est peu sensible à la
diffraction, était supérieur à l'écart entre les distances focales le cas test ne permettrait
pas de faire la différence entre les différentes imageries. La forme de la source avec un profil
supergaussien très raide permet de déterminer une zone focale très petite et les effets de
diffraction sont visibles d'une image à l'autre. Si on regarde un faisceau tangentiel dans
le plan sagittal, des oscillations apparaissent et de même pour un faisceau sagittal dans
le plan tangentiel.

Le cas test demande un échantillonnage important suivant les deux directions de dif-
fraction. Pour une simulation 2D, il faudrait une pupille comprenant 8192 x 8192 points ce
qui est ponctuellement possible mais difficile à envisager pour des simulations de concep-
tion de chaîne optique. Cet échantillonnage est dû à deux raisons qui peuvent intervenir
dans deux contextes différents mais qui reviennent au même au niveau de contraintes
sur l'échantillonnage. Il s'agit simplement de résoudre la plus petite échelle spatiale des
faisceaux simulés. Cette échelle peut être bien plus petite que la taille du faisceau ou de
la boîte de calcul dans deux cas :

- Un faisceau admettant des variations d'amplitude importantes. Ceci est le cas pour
un faisceau super-gaussien avec une puissance élevée. La différence entre les deux rayons
pour lesquels l'intensité passe de 0,1 à 0,9 est de :

/ ln(0,9)\
(11.22)

où D est la largeur à mi-hauteur de la super-gaussienne et q la puissance. Dans le cas
test, elle est de 0,1 et l'exposant est de 100, on a alors:

ôx = l,5.10"3 m.

On doit mettre au moins 10 points pour échantillonner un gradient. Cela conduit à l'ordre
de grandeur du nombre de points choisi pour le cas test.
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- Une lentille multiplie la phase d'un faisceau par une phase quadratique en la dis-
tance à l'axe. Cette phase peut avoir de grandes variations si la pupille du faisceau est
grande. Le nombre de sauts de n est donné par :

N = (11.23)

où D est la taille du faisceau, A la longueur d'onde du faisceau et / la focale de la lentille.
On doit par ailleurs remarquer que sur la lentille, la taille du faisceau initial a été multipliée
par 2 du fait du grossissement des filtrages spatiaux. Pour le cas test on a précisément :

iV = 37 987.

Ce nombre est plus grand que le nombre de pixels que l'on a effectivement retenu pour la
simulation (8 192)1. En fait, nous sommes « sauvés » ici par le fait que la taille du faisceau
sur la lentille est bien plus petite que la boîte: 0,2 m au premier passage et 0,11 m au
second (pour une boîte de 2 m). Par conséquent le nombre de sauts de TX sur l'étendue
réelle du faisceau (au 1 e r passage) vaut environ 380.

f) Traitement en diffraction adaptative astigmate

Ce mode de calcul permet de s'affranchir de l'échantillonnage des phases quadratiques
des lentilles. Ce résultat est obtenu en faisant varier la taille de la grille d'échantillonnage
(cette dernière reste régulière mais cesse d'être carrée) l.

Lorsque l'on effectue le calcul en D2A, on choisit les paramètres de discrétisation
suivants :

Paramètres Diffraction adaptative astigmate
T
X
Y
Seuil du rapport signal/bruit
Pas maximal de diffraction

- 0
- 0

0
,1
,1

s;
m
m

10™9

;0 , l
; 0,1
0,1

10 m

s ;
m
m

1
; 256
; 256

Cet échantillonnage est insuffisant pour échantillonner les flancs de la supergaus-
siennel. Malgré cela, on peut aisément différentier le plan image tangentiel du plan image
sagittal en effectuant les recalculs correspondants.

1. C'est pourquoi le message de sous-échantillonnage apparaît au bas de la fenêtre Mira...
1. Comme nous sommes ici en présence d'astigmatisme, le mode D2A est préférable au mode DFA qui

ne permettrait pas de rendre compte des effets correctement, à moins d'employer un échantillonnage très
serré (1024x1024).

1. Les gradients d'amplitude ne pourraient être traités que par des maillages adaptatifs. Ceci ne peut
se concevoir que dans une méthode d'éléments finis. Cette amélioration qui ferait évoluer le code vers des
méthodes de résolutions numériques peu classiques en optique mais bien familières du calcul scientifique
n'est pas à l'ordre du jour car les échelles caractéristiques que l'on souhaite simuler pour le laser Mégajoules
dans le cas de faisceaux cohérents ne nécessitent pas un échantillonnage trop élevé. Dans le cas de faisceaux
incohérents, un maillage adaptatif est de peu de secours dans la mesure où deux échelles sont présentes
en tout point de la pupille. Dans ce cas le recours à une machine vectorielle disposant de beaucoup de
mémoire semble l'unique recours actuel.
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8. Diffraction : lentille
a) Objectif

On considère la focalisation par une lentille de focale / d'un faisceau gaussien. Afin
d'avoir un cas comparable à celui de la section II.9, le faisceau est apodisé par une fonction
de troncature h(x). La traversée d'une lentille a pour effet de multiplier la donnée initiale
par un facteur de phase quadratique :

E(x,0) = y/^e-x2/r2el!^rh(x), (11.24)

h(x) = 1 pour \x\ Ç [—A,A], h(x) = 0 sinon.

Au foyer, c'est à dire après une propagation sur une distance / , le champ se calcule par
une transformée de Fourier :

E(xJ) = V/o ( £
ïl/2

2 / (11.25)

où n est la dimension d'espace suivant les directions transverses diifractantes. En dimen-
sion 1, on obtient :

Xz)

Xz

-A

Erf
A koxr\ ( A koxr\

7—2rJ-Erfl~-'irJ

b) Schéma

0
Lentille

-D-

c) Données

1- Source circulaire

3- Lentille

5- Apodiseur Analytique
6- Propagateur

Paramètres

Energie
Longueur d'onde
Diamètre
Epaisseur
Indice non linéaire
Focale
Type de traitement [0/1/2]
Définition analytique des trous
Longueur
Indice non linéaire
Diffraction de Fresnel
Temps
X
Y

1,064467 kj
1 (xm

0,01 m
10"6 m
0m2 /W

18,033 7 m
0

D((0,0),0.0025;l)
18,033 7 m
0m2 /W

0 s; 10"9 s; 1
0 m ; 1 m ; 1

-0,1 m; 0,1 m; 8192



8. Diffraction: lentille 171

d) Interprétation

La différence relative entre le tracé analytique calculé par Mathematica et celui obtenu
par Miré est de l'ordre de 10~2. La présence du bord dur de l'apodiseur rend les spectres
très larges. Il faut donc un nombre de points de discrétisation relativement élevé afin de
pouvoir échantillonner à la fois l'espace et l'espace de Fourier. L'imagerie rigoureuse en
deux dimensions se révèle par conséquent coûteuse en échantillonnage pour des faisceaux
comprenant de forts gradients.

3,5.1013 "

3.101 3 "

2,5.1013 -

Ç2.IO13 -

^ , 5 . 1 0 1 3 -

101 3 -

5.1012 -

0
- 0 , 1 -

~\ I

Mirô
analytique

0,08 -0 ,06 -0 ,04 -0 ,02 0
y (m)

0,02 0,04 0,06 0,08 0,1

FlG. 11.15 - Intensité analytique en trait continu et calculée en pointillés.

- 4
- 0 , 1 -0 ,08 -0 ,06 -0 ,04 -0,02 0 0,02 0,04 0,06 0,08 0,1

V (m)

FlG. 11.16 - Différence absolue entre l'intensité analytique et celle calculée.
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9. Diffraction : lentille non linéaire
a) Objectif

Un faisceau gaussien de forte intensité subit à la traversée d'une lame de verre mince
d'épaisseur e une auto-modulation de phase qui agit comme une lentille au centre du
faisceau. Afin de ne garder que la partie focalisante du faisceau, il suffit d'apodiser le
faisceau à la sortie de la lame par un trou dur de taille plus petite que celle du faisceau.
En négligeant la diffraction dans la lame, la donnée initiale est donc le produit du faisceau
gaussien par le masque de phase quadratique et de la fonction de troncature h(x) :

E(x,O) =

avec

h(x) = 1 pour \x\ G [—A,A], h(x) = 0 sinon,

et où kQ est le vecteur d'onde dans le vide. La distance focale est donc :

f =

(11.26)

(11.27)

Au foyer, c'est à dire après une propagation sur une distance / , le champ se calcule par
une transformée de Fourier :

E(xJ) = y/TA —
n/2

Je-fh(y)e *f ày (11.28)

où n est, la dimension d'espace suivant les directions transverses diffractantes. En dimen-
sion 1, on obtient :

E(xJ) = y/IQ \ —

Yzj ' 2

,-knx

-A

Frf I A i
r 2/

Frf ( A fi
\ r 2/

b) Schéma

*m 4 . I •_ •o
Source

-O- -D- -D-
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c) Données

1- Source circulaire

3- Lame

5- Apodiseur Analytique
6- Propagateur

Paramètres

Énergie
Longueur d'onde
Diamètre
Epaisseur
Indice non linéaire
Définition analytique des trous
Longueur
Diffraction de Fresnel
Temps
X
Y

1,064 467 kJ
1 \xm

0,01 m
10~3 m

10~17 m 2 /W
D((0 ,0 ) ,0 .0025 ; l )

18,033 7 m

0 s; 10"9 s; 1
0 m; 1 m; 1

-0 ,1 m; 0,1 m; 8192

d) Interprétation

La différence relative entre le tracé analytique calculé par Mathematica et celui obtenu
par Miré est de l'ordre de 10~2. L'approximation de l'intensité gaussienne sur la pupille de
l'apodiseur par une parabole n'est pas à l'origine de l'erreur car le résultat est comparable
à celui obtenu avec une lentille statique comme le montre la section II.8. L'erreur vient
de la discrétisation et de la difficulté à propager rigoureusement un faisceau comprenant
de forts gradients.

0,08 -0 ,06 -0 ,04 -0 ,02 0 0,02 0,04 0,06 0,08 0,1
V (m)

FlG. 11.17 - Intensité analytique en trait continu et calculée en pointillés.
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2.10

- 0 , 1 -0 ,08 -0 ,06 -0 ,04 -0 ,02 0 0,02 0,04 0,06 0,08 0,1
V (m)

FIG. II.18 - Différence absolue entre l'intensité analytique et celle calculée.
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10. Diffraction de Fresnel adaptative : focalisation
d'un faisceau gaussien

a) Objectif

Le but de ce cas test est de vérifier le bon fonctionnement du mode de calcul « dif-
fraction de Fresnel adaptative » dans un certain nombre de cas de figure. La situation
choisie est la focalisation d'un faisceau gaussien, qui peut être résolue analytiquement,
pour l'amplitude comme pour la phase. Plusieurs tests spécifiques seront effectués ici :

- le fait que l'on récupère bien une courbure nulle et un facteur d'homothétie de 1
après le passage d'un système afocal de grandissement 1 ;

- que la courbure du front d'onde [28] devient nulle au bon endroit, en un point qui
n'est pas le foyer mais qui le précède quelque peu ;

- que le code se comporte normalement au passage d'un miroir situé à l'intérieur de
la zone de focalisation.

L'expression du champ créé par un faisceau gaussien se propageant dans la direction
z est [29]

p{z)

k
'L (^ _L ^(x2 + y2)) exp {i*(z)) exp ( -

ou

n(z) =

p\z) = pi

1 +

1 +

Xz

Xz

et

= Arctan
Xz

("-29)

(11.30)

(11.31)

(11.32)

Po étant le col du faisceau (i.e. sa taille minimale). Dans les formules (11.29) à (11.32),
l'origine des z est située au point O où la taille du faisceau est minimale, et où la courbure
de la phase est nulle. Ce point ne coïncide pas avec le foyer F de la lentille (même s'il en
est proche). Pour déterminer la distance entre F et O on écrit que le déphasage induit
par la lentille est

La position zi de la lentille (par rapport à O) vérifie donc / = —IZ(ze). On déduit finale-
ment que

p(f)
avec p0 x p(f) ~ A//vr.
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b) Schéma

0
Lentille

-D- -D- -n-
Lentille

0 -n- D
sorti*

Lanu

c) Données

0- Source circulaire
1- Lentille

8- Propagateur

2- Lame

9- Propagateur

3- Lame

4- Miroir

10- Propagateur

5- Lentille

6- Lame

Paramètres

Diamètre
Epaisseur
Indice non linéaire
Focale
Type de traitement [0/1/2]
Longueur
Indice non linéaire
Nom de l'élément
Épaisseur
Longueur
Indice non linéaire
Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Coefficient de réflexion
Normale thêta
Longueur
Indice non linéaire
Epaisseur
Indice non linéaire
Normale thêta
Focale
Type de traitement [0/1/2]
Nom de l'élément
Épaisseur
Normale thêta
Diffraction de Fresnel adaptative
Temps
X
Y
Afficher l'animation
Pas maximal de diffraction

2. 10"2 m
10"9 m
0m2/W

10 m
0

9,998 650 578 m
0m2 /W

test
0 m

1,349 42 mm
0 m'2/W

foyer
10 m

2
0 m'2/W

1
135°
5 m

0 m2/W
10"9 m

0 m2/W
90°

10 m
0

sortie
0 m
90°

0 s;4.10~9 s; 1
-0,25 m; 0,25 m; 128
-0,25 m; 0,25 m; 128

0,2 m

d) Interprétation

La figure 11.19 représente la courbure du faisceau et le facteur d'homothétie, affichés
en fonction de la distance mécanique. On pourra vérifier

- que la courbure est nulle avant, après le système afocal, ainsi qu'au voisinage du
foyer (et notamment sur la lame « test ») ;

- que le facteur d'homothétie vaut 1 avant et après le système afocal, et 5,391 36.10"3

au foyer ; ceci est conforme avec la valeur théorique, donnée par NXf /D'2 (D étant la taille
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Courbure

+ 00

ËEÊE

j

1
;
i
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.....y,^^ZZ. |

2.500e+00
Grandissement

le+01 2e+01 3e+01

D_meca (m)

-1.000e+01
le+01

1.000e+00

2e+01 3e+01

D_rneca (m)

5.391e-03

FlG. 11.19 - Rayon de courbure, et facteur d'homothétie, tracés en fonction du numéro du
composant dans la chaîne. On vérifiera que la courbure est nulle avant et après le système
afocal, ainsi qu'au voisinage du foyer. Le facteur d'homothétie vaut 1 avant et après le
système afocal.

de la zone échantillonnée, N le nombre de pixels par dimension, / la focale de la lentille
et A la longueur d'onde).

La figure 11.20 représente la phase (non dépliée) au niveau de la lame de verre « test ».
La courbure de la phase est bien nulle à cet endroit (du moins là où il y a de la lumière)
ce qui valide le code.

Phase X

É

,.wfc&&ïi: \

+ 2e+Û0

+ le+00

l l l l bo
il;
1j|Jifejs

[—

^-

test

test

t=0.000e+00

grille=64x64

xmin=-1.348e-03

xmax=1.348e-03

ymin=-1.34Be-03

amax=1.346e-03

zmin=0.000e+00

zmax=1.559e+00

2e+00
Phase X

coupe X=0.000e+00

1.559e+00

le+OÛ

Oe+00
-2e-03 -le-03 0e+00

0.000e+00

FlG. 11.20 - Phase du faisceau, au niveau de la lame « test ». Cette lame (d'épaisseur
nulle) a été placée avant le foyer, de telle sorte que la courbure du front d'onde y soit
nulle.

Remarque : on peut aussi faire tourner ce cas test en diffration adaptative astigmate.
On obtient en fin de chaîne le même résultat. Par contre la courbure de la phase sur la
lame « test » n'est pas nulle : elle compense le tenseur de courbure du faisceau qui est lui
aussi non nul.
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11. Diffraction de Fresnel adaptative : reconstruction
d'un trou de filtrage

a) Objectif

Le composant « trou de filtrage » est traité différemment par Miré selon que l'uti-
lisateur choisit le mode de calcul « diffraction de Fresnel » ou « diffraction de Fresnel
adaptative ». En diffraction de Fresnel ordinaire, le code effectue la transformée de Fou-
rier du champ incident, coupe les fréquences spatiales les plus élevées tout en appliquant
au spectre le masque sphérique ad hoc, puis effectue une deuxième transformée de Fou-
rier. En diffraction de Fresnel adaptative, Mirô décompose le composant en 5 éléments
successifs: lentille de focale / i , propagateur de longueur / i , apodiseur, propagateur de
focale f-2 et lentille de focale /2 ; il propage le faisceau par diffraction adaptative dans ces
5 composants.

Le but de ce cas test est de comparer le résultat du passage d'un trou de filtrage par
les deux méthodes. Un troisième test consistant à reconstruire « à la main » le trou de
filtrage sera par ailleurs effectué. La source choisie est une source « tavelure » de large
spectre spatial, de façon à ce que l'effet du filtrage soit important (perte des deux tiers
de la puissance).

b) Schéma

tivïlurt

(3)
Source

filtrv.l

m
Filtre

/

entré»

0
Lentille

-D-

-D-

S filtr*

Lime

in-il'iti qu4

D
Afodiieut

-D-

sorti*

0
Lentille

-a-
Lame

Selon le cas l'utilisateur reliera par un propagateur la source « tavelure » avec le filtre
1 trou (cas (a) et (b) ), ou bien avec la lentille « entrée » (cas (c) ).

c) Données

0- Source « tavelure »

1- Filtre spatial 1 trou

Exposant spatial en X
Exposant spatial en Y
Largeur spectrale spatiale
Exposant spectral
Fraction d'énergie bruitée
Indice non linéaire
Type de traitement [0/1/2]
Focale gauche
Focale droite
Épaisseur de la lentille de gauche

10
10

500 m"1

2
1

0m2 /W
0

10 m
10 m

10~9 m



11. Diffraction de Fresnel adaptative : filtrage 179

2- Lame

3- Lentille

8- Propagateur

4- Apodiseur analytique
9- Propagateur

5- Lentille

2- Lame

Paramètres

Epaisseur de la lentille de droite
Diamètre du trou
Nom de l'élément
Épaisseur
Nom de l'élément
Épaisseur
Indice non linéaire
Focale
Type de traitement [0/1/2]
Longueur
Indice non linéaire
Définition analytique des trous
Longueur
Indice non linéaire
Nom de l'élément
Épaisseur
Indice non linéaire
Focale
Type de traitement [0/1/2]
Nom de l'élément
Épaisseur
Diffraction de Fresnel (a)
Diffraction de Fresnel adaptative (6), (c)
Temps
X
Y
Afficher l'animation

HT9 m
1 mm
S filtre

0m
entrée
10^9 m
0m2/W

10 m
0

10 m
0m2/W

D((0,0) , le-3; l)
10 m

0m2/W
sortie

10~9 m
0m2/W

10 m
0

S afocal
0 m

0 s;4.10~9 s; 1
-0,25 m; 0,25 m; 128
-0,25 m; 0,25 m; 128

d) Résultats

L'énergie de la source est 1 J. Voici l'énergie en sortie du trou de filtrage ou de l'afocal :

Cas (a) (Trou de filtrage en diffraction de Fresnel) : 0,346 284 J ;

Cas (6) (Trou de filtrage en diffraction de Fresnel adaptative) : 0,346 284 J ;

Cas (c) (Système afocal muni d'un apodiseur, en diffraction de Fresnel adaptative) :

0,346 284 J.

Conclusion : les trois méthodes donnent le même résultat.
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12. Diffraction de Fresnel adaptative : cas complé-
mentaires

Les exemples de ce paragraphe ne présentent aucun intérêt physique. Leur seul but
est de fournir pour la maintenance du code une batterie de cas tests la plus exhaustive
possible. La mise en œuvre de la diffraction de Fresnel adaptative s'est en effet avérée
relativement complexe en raison de la grande diversité des situations possibles et des trai-
tements spécifiques qu'il est nécessaire de leur associer. Aussi les cas que nous présentons
ici recherchent-il volontairement des situations quelque peu « exotiques ».

a) Cas d'une lentille de grande focale

i) Objectif

D

2p

En fonctionnement standard, la diffraction de Fresnel adaptative utilise une trans-
formation conforme de manière à « adapter » la taille de la boîte d'échantillonnage afin
qu'elle suive la taille du faisceau. Au voisinage du foyer toutefois, on arrête la transfor-
mation conforme, le diamètre de la zone discrétisée restant alors constant. La distance p
à laquelle a lieu ce basculement est donnée par

p =
A/2

(11.34)

/ étant la focale de la lentille, D le diamètre initial de la zone échantillonnée et Ax la
taille de pixel initiale. On voit donc que lorsque la focale / tend vers +oo, p croît comme
f2. Au-delà d'une certaine valeur de / , p sera supérieur à la focale de la lentille : dans ce
cas, la diffraction adaptative ne pourra plus fonctionner selon le schéma traditionnel.

Le choix effectué dans ce cas par Mirô est de ne pas adapter la boîte, et de traiter
le passage de la lentille via un masque de phase comme pour la diffraction de Fresnel
ordinaire. En effet ce cas de figure est celui où le masque de phase est suffisamment peu
important pour être échantillonnable. Dans cette configuration, la focale de la lentille est
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supérieure à la distance caractéristique de diffusion d'un pixel dmax = DAx/X. Comme il
est expliqué dans la documentation [14, p. 31], la taille de la boîte d'échantillonnage va
alors augmenter à partir de z = dmax, afin de suivre l'évolution des plus hautes fréquences
spatiales prises en compte par la simulation. Dans notre cas de figure, la taille de la boîte
évoluera donc indépendamment de la lentille que nous avons placée au départ.

faisceau

ii) Schéma

boîte
adaptative

Source

in) Données

0- Source circulaire
1- Lentille

5- Propagateur

2- Lame
6- Propagateur

3- Lame
Paramètres

Diamètre
Epaisseur
Indice non linéaire
Focale
Type de traitement [0/1/2]
Longueur
Indice non linéaire
Epaisseur
Longueur
Indice non linéaire
Epaisseur
Diffraction de Fresnel adaptative
Temps
X
Y

0,1 m
10"9 m

0 m2/W
5 km

0
1 km

0 m2/W
0 m
4 km

0m2 /W
0 m

0 s; 10~9 s; 1
-0,25 m: 0,25 m; 64
-0,25 m; 0,25 m; 64
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iv) Interprétation

La dernière lame se situe au foyer de la lentille. La taille de la boîte d'échantillonnage
a commencé à croître.

Voici les paramètres scalaires que l'on peut noter sur les différents composants où des
résultats ont été demandés :

Paramètre
Courbure (m""1)
Grandissement

Phase maximale (rad)

Source (0)
0
1
0

Propagateur (5)
0
1

19,27

Lame (2)
0
1

14,56

Lame (3)
-2.10~4

1,347840
1,571

La phase maximale est contrôlable en visualisant la nappe « phase redressée ».

b) Imagerie par des lentilles de grande focale

i) Objectif

Dans ce cas test, nous utilisons des lentilles de grande focale (5 km). Nous plaçons
un objet (source supergaussienne) à la distance / de la première lentille. Nous plaçons la
deuxième lentille à la distance 2 / de la première. Enfin, nous recherchons une image à la
distance / de la dernière lentille.

Comme dans le cas test précédent, nous allons observer une évolution de la boîte
quelque peu inattendue. Toutefois nous retrouverons bien une image de la source de
départ à la cote 4 / .

ii) Schéma

cire •

Source
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iii) Données

0- Source circulaire

4- Propagateur

1- Lentille

5- Propagateur

2- Lentille

6- Propagateur

3- Lame
Paramètres

Diamètre
Exposant spatial
Longueur
Indice non linéaire
Epaisseur
Indice non linéaire
Focale
Type de traitement [0/1/2]
Longueur
Indice non linéaire
Epaisseur
Indice non linéaire
Focale
Type de traitement [0/1/2]
Longueur
Indice non linéaire
Epaisseur
Diffraction de Fresnel adaptative
Temps
X
Y

0,2 m
25

5 km
0m2 /W
10"9 m
0m2 /W

5 km
0

10 km
0m2 /W
10~9 m
0 m'2/W

5 km
0

10 km
0 m2/W

0 m

0 s; 10"9 s; 1
-0,25 m: 0,25 m; 64
-0,25 m; 0,25 m; 64

iv) Résultats

Nous donnons tout d'abord l'évolution de la courbure (à gauche) et du grandissement
du faisceau (à droite), en fonction du numéro de l'élément. On voit donc que ces para-
mètres ne sont pas directement liés aux positions et aux focales des lentilles que nous
avons placées.

0e»00

1.000e-04
Grandissement

Oe+00 le+OO 2e*00 3e*00 4e+00 5e*00 6e*00 7e*00

Element

-2.000e-04

le* 00

Oe+00

2.000e*00

1.000e+00

0e*00 le'OO 2e+00 3e+00 4e*00 5e*00 6 B * 0 0 7e<-00

Element

Afin de vérifier l'imagerie, nous donnons maintenant le profil d'intensité (à gauche)
et la phase vue en coupe (à droite) de l'objet (en haut), ainsi que les mêmes paramètres
pour l'image (en bas).



184 Chapitre IL Tests Composés

cire.

ymin=-2.500e-01

ymax=2.500e-01

zmin=O.000e+00

zmax=8.051e+09

coupe Y=0,000e*00

-3e-01 -2e-01 -le-01 -3e-17 le-01 2e-01 3e-01

•-7e»09
--6e*09
--5e*09

! • !i
' 1 " » 8

••"• J * j

t=0.000e+00

grxlle=64x6-4

xmin=-3.370e-01

xmax=3.370e-01

ymin=-3.370e-01

ymax=3.370e-01

zmin=3.398e-ûl

2max=8.318e*09

coupe Y=0.000e+00

i 1
i
j

—.J - - -

-1.211e*01

-4e-0i3e-01-2o-01rle-0»e»001e-012B-013e-014e-01

On peut donc constater que la phase de l'image est plate (du moins là où il y a de
la lumière). Ceci confirme le fait que l'image se situe bien là où on l'attend. Par contre,
la forme du profil d'intensité est dégradée. En réalité, ceci est dû à une insuffisance de
l'échantillonnage1. À titre indicatif, voici l'allure du faisceau sur la l relentille:

coupe Y=0.0OOe*0O

L _ S

|

1

; i

I I \

-4e-0t3e-0t2e-01-le-010e»001e-012e-013e-014e-01

1. La taille de la boîte est modifiée alors que le champ est le même: tout se passe donc comme si on
avait rééchantillonné le faisceau.
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c) Aberrations chromatiques en diffraction de Fresnel adaptative

i) Objectif

Mirô peut traiter les aberrations chromatiques des lentilles : il suffit d'entrer comme
paramètre d'indice un fichier (afin de permettre à l'indice n de dépendre de la longueur
d'onde). Dans ce cas, la focale / dépendra de la longueur d'onde selon la loi

(n — 1)/ indépendant de la fréquence ; (11.35)

Le paramètre « focale » correspond à la focale de l'harmonique fondamentale1.
Dans l'exemple ci-dessous, la paire de lentilles constitue un système afocal pour l'har-

monique, mais non pour la fréquence fondamentale. L'adaptation de la boîte est calculée
à partir de la fréquence fondamentale : par conséquent le facteur d'homothétie en fin de
chaîne ne vaut pas 1. On vérifie par contre que la phase de l'onde harmonique en sortie
est plate, contrairement à celle de l'onde fondamentale.

ii) Schéma

-a-
sorti*

0
Lentille

-D-

iii) Données

0- Source circulaire

1- Source circulaire

3- Lentille

9- Propagateur

Nom de l'élément
Exposant spatial
Nom de l'élément
Longueur d'onde
Exposant spatial
Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Focale
Type de traitement [0/1/2]
Longueur
Indice non linéaire

fondam.
80

harm.
0,526 5 |xm

80
entrée
10"9 m

indice_dichr
0m2 /W

100,200 4 m
0

200 m
0m2 /W

1. La formule (11.35) n'est pas valable dans le cas des lentilles épaisses (les lentilles épaisses présentant
des aberrations chromatiques ne sont pas traitées correctement par Mirô). Par ailleurs le module « dif-
fraction de Fresnel adaptative » de Mirô ne traite pas correctement la traversée d'un milieu dont l'indice
dépend de la longueur d'onde.
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oo

00

00

00

4- Lentille

5- Lame
Paramètres

Nom de l'élément
Epaisseur
Indice de réfraction
Indice non linéaire
Focale
Type de traitement [0/1/2]
Epaisseur
Diffraction de Fresnel adaptative
Temps
X
Y

sortie
10~9 m

indice_dichr
0 m2/W

100,200 4 m
0

0 m

0 s; 4.1CT9 s; 1
-0,25 m: 0,25 m; 256

0 m; 0,25 m; 1

Le fichier indice_dichr sert à fournir un indice qui dépend de la longueur d'onde1.

iv) Interprétation

En sortie du système de lentilles, le facteur d'homothétie vaut 0,996. La figure 11.21
représente la phase redressée de l'onde fondamentale et de l'onde harmonique. Comme
attendu, on trouve une phase quadratique pour l'onde fondamentale et une phase plane
pour l'harmonique.

Phase X

/

/

7 1 \

2e+00
Phase X

1.571e+00

le+00

-1.402e+00

00
-3e-01 -2e-01 -le-01 -3e-17 le-01 2e-01 3e-01

0e+00

1.574e+(

X

(a) Onde fondamentale

-3e-01 -2e-01 -le-01 -3e-17 le-01 2e-01 3e-0Î

(6) Onde harmonique

0.000e+(

FlG. 11.21 - Phase redressée de chacune des harmoniques à la sortie du système de lentilles.
La phase de l'harmonique est plate, car le système est afocal pour cette longueur d'onde.

1. Il a la forme suivante: 2 2 1 1 1 1 0 1 X=0.5265e-6 1 .053e-6 I D=l I 1.5 1.499 I D=2 I
1.5 1.499 , le symbole « I » désignant le retour à la ligne.
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13. Diffraction adaptative astigmate : passage de len-
tille cylindriques

a) Objectif

L'objectif de ce cas test est de tester le traitement de l'astigmatisme en mode D2A.
On utilise pour ce faire des lentilles cylindriques qui permettent de créer un faisceau très
astigmate. On vérifie que pour une propagation sur une distance 2/ , / étant la focale de
la lentille, on retrouve le profil de faisceau initial. Cette propriété doit être vérifiée quelle
que soit l'orientation de la lentille cylindrique (notamment lorsque l'axe neutre n'est pas
parallèle à l'un des vecteurs de base de la grille de discrétisation).

b) Schéma

-o-
cylindr.

Lentille
-D- -O-

cylindr.

Lentille

c) Données

0-

1-
2-

3-

4-

Source rectangulaire

Multiplexeur
Lentille cylindrique

Lame

Lentille cylindrique

Paramètres

Largeur
Hauteur
Exposant spatial en X
Exposant spatial en Y
Scénario
Epaisseur
Indice non linéaire
Orientation
Focale
Type de traitement [0/1/2]
Epaisseur
Indice
Indice non linéaire

(

Paramètres identiques à la
lentille n° 2, sauf:

Orientation
Diffraction adaptative astigmate
Temps
X
Y
Afficher l'animation

Os;
-0,25
-0,25

0,25 m
0,25 m

16
16

) 10*1 0
1 nm

Onr/W
a

10 m
0

20 m
1,5

0m2/W

P

4.10"9 s; 1
m ; 0,25 m ; 64
m; 0,25 m; 64

Trois cas seront successivement testés :
- cas (a) : a = fi = 20° ;
- cas (b): a = ̂  = 45°;
- cas (c) : a = 45°, /? = 20°.
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d) Interprétation

On constate après N passages dans le doublet de lentilles que le faisceau conserve bien
son allure carrée. Toutefois, la discrétisation du faisceau est souvent bruitée. Ce bruit est
dû au fait que le faisceau n'est pas discrétisé sur la même grille qu'au départ. Notons que
le bruit apparaît dès le premier passage mais qu'il n'augmente pas sensiblement ensuite.
En outre on peut diminuer le bruit en augmentant la résolution (nombre de pas d'espace).

I E x 2 l "

m
JJI

5e+09

4e-<-09

1
j
i

3e+09

il
Sis!

rect.

t=0.0O0e+O0

grille=64x64

xmin=-2.500e-01

xmax=2.500e-01

umin=-2.500e-01

ymax=2.500e-01

zmin=7.386e+01

zmax=4.276e+09

IE

rect.

t=Û.000e+00

grille=64x64

xmin=-2.500e-01

xmax=2.500e-01

amin=-2.500e-01

ymax=2.500e-01

zmin=8.934e-00

zmax=4.092e+09

xmin=-2.500e-01

xmax=2.500e-01

amin=-2.500e-01

ymax=2.500e-01

zmin=1.970e+01

zmax=4.316e+09

FlG. 11.22 - Allure du faisceau après 11 passages dans le doublet de lentilles cylindriques.
En haut à gauche, cas (a) (deux lentilles orientées à 20°) ; en haut à droite, cas (b)
(deux lentilles orientées à 45°) ; en bas, cas (c) (la première lentille est orientée à 45° et
la seconde à 20°).

Le cas à 45 degrés (cas b) est le cas le moins bruité car la boîte est quasiment la même
qu'au départ. Le cas où les deux lentilles ne sont pas parallèles (cas c) est le plus bruité.
Notons que dans ce cas les axes propres de la matrice de courbure sont redéfinis un grand
nombre de fois. La simulation fonctionne bien car cette redéfinition a lieu à un moment
où la boîte est carrée. Par contre, si l'on change la distance entre les deux lentilles dans le
cas (c) (si par exemple on la porte à 50 m), des problèmes se produisent : la boîte devient
instable, le faisceau devient très bruité et finalement la simulation s'arrête après quelques
tours.
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14. Utilisation du composant « échantillon »
a) Objectif

L'objectif de ce cas test est de fournir un exemple pratique d'utilisation du composant
« échantillon ». Ses principales fonctionnalités (rééchantillonnage du faisceau, changement
de mode de calcul conservatif ou non conservatif) seront présentées.

L'exemple de calcul choisi est une chaîne Pétawatt stylisée. À l'époque où ce cas test
a été rédigé (avril 1999), le mode de calcul « modulation de phase » n'était opérationnel
que pour certains composants. L'exemple qui suit tient compte de cette circonstance,
dans la mesure où l'on fait appel à des composants « échantillon » de manière à utiliser
le mode modulation de phase dans la partie de la chaîne où c'est possible, et d'autres
modes de calcul là où ce n'est pas possible. Il est évident qu'à terme le même calcul sera
réalisable (quasi)exclusivement en mode modulation de phase, et donc beaucoup moins de
composants « échantillon » seront nécessaires. Toutefois, il n'est pas prévu de faire évoluer
ce cas test. Le but est que l'utilisateur comprenne à travers cet exemple la philosophie du
composant échantillon. Il pourra ensuite adapter cette philosophie en fonction de l'état
d'avancement du code Mirô à un moment donné.

b) Schéma

rtct.

cohpr D

KDP Rltcaii Réieau Miroir citlt

c) Description du schéma

La chaîne optique commence par une impulsion brève (durée à mi-hauteur 150 fs).
Cette impulsion est étirée en mode modulation de phase par un système de deux réseaux.
Une distance négative a été placée entre ces deux réseaux : à terme il sera possible de
simuler vraiment un étireur au moyen d'un filtrage spatial.

Après étirement on s'aperçoit que la durée de l'impulsion est très inférieure à la taille
temporelle de la boîte. On met en œuvre un rééchantillonnage pour ne pas gâcher de
la mémoire. Une autre solution eût été d'ajuster la boîte de départ (en l'agrandissant).
Toutefois la mise au point du calcul est plus difficile si l'on procède ainsi. Le composant
échantillon utilisé dans cette optique peut donc apporter une aide non négligeable à la
mise au point d'un cas.

On notera qu'on utilise d'abord un autre échantillon pour basculer en mode spectre
large. Ce choix est effectué pour avoir une interpolation temporelle de type PI. En effet,
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dans tous les autres modes de calcul la réinterpolation est PO. Une autre fonctionnalité
du composant échantillon est donc de pouvoir contourner certaines conventions imposées
par les développeurs de Miré...

Après retirement, l'impulsion est amplifiée (après un filtrage qui agrandit la taille
du faisceau). À la date du 9 avril 1999 ni le filtrage spatial ni l'amplificateur n'étaient
disponibles en mode modulation de phase. Le calcul est donc effectué en mode diffraction
de Fresnel. Notons que dans ce mode de calcul un modèle de type « Frantz & Nodvik
adapté » permet de tenir compte de la dérive de fréquence lors de l'amplification. À terme
l'amplification en mode « modulation de phase » n'utilisera pas ce modèle ; on fera appel
à une routine numérique, moins rapide mais plus exacte. Si toutefois, avec les futures
versions de Miré, l'utilisateur désire quand même utiliser le modèle « Frantz & Nodvik
adapté » pour un calcul en modulation de phase, il devra faire appel à un composant
« échantillon » pour passer provisoirement en mode « diffraction de Fresnel ».

L'amplification a donc lieu en mode « diffraction de Fresnel ». Ensuite, on repasse en
mode modulation de phase pour la compression. Au cours de ce passage on récupère le
tableau des fréquences instantanées ainsi que la dérive de fréquence qu'on avait laissés au
précédent échantillon : ceci est vrai parce que les changements de mode sont conservatifs.
Si l'on était passé en diffraction de Fresnel pas un changement non conservatif le tableau
des fréquences instantanées aurait été détruit. Au cours de l'amplification en mode dif-
fraction, la dérive de fréquence n'a pas été modifiée. Si le calcul avait été effectué en mode
modulation de phase (bien sûr il eût fallu que ce soit possible), on aurait observé de légères
modifications (négligeables toutefois) à cause de la dispersion dans les matériaux.

Après la compression par réseau on effectue un doublement de fréquence de l'impulsion
comprimée. Ce doublement ne peut actuellement être effectué en modulation de phase (la
routine n'existe pas). Donc on passe en mode spectre large (pour tenir compte de la
largeur de bande lors de la compression). Notons que dans ce cas le changement de mode
est non conservatif: en effet il n'est pas prévu de revenir en modulation de phase derrière.
De plus, si les réseaux de compression n'avaient pas été bien alignés, on aurait pu avoir
une dérive de fréquence résiduelle au niveau du KDP. Avec un changement conservatif
la valeur du paramètre de dérive de fréquence aurait été ignorée lors de la conversion,
aboutissant donc à un résultat faux. Lorsque l'on fait un passage non conservatif la dérive
de fréquence résiduelle est traduite sous forme d'une phase temporelle qui est appliquée
au champ. De cette façon on est sûr que les effets de cette phase seront pris en compte
par la conversion spectre large (à condition toutefois que l'échantillonnage soit correct).

La paire de réseaux située derrière le KDP est en fait une astuce d'exploitation. Nous
souhaitons effectuer une focalisation par un calcul en D2A (voir infra). Le problème est
que les calculs en DFA et D2A sont uni-harmoniques : les tailles de boîte sont évaluées
en fonction de la longueur d'onde de l'harmonique fondamentale. Pour les harmoniques
supérieures les risques de sous-échantillonnages sont très importants. Or dans le cas pré-
sent c'est l'harmonique supérieure qui nous intéresse, le lw n'étant qu'un résidu. Nous
souhaitons donc adapter la boîte en fonction du 2co. Il faut pour ce faire supprimer du
faisceau l'harmonique fondamentale, et la seule solution avec la version actuelle de Miré
consiste à passer dans un composant réseau. Dans le cas test nous avons pris une ligne à
dispersion nulle (réseaux accolés). Physiquement un tel système n'agit pas sur le faisceau,
mais informatiquement il permet d'éliminer l'harmonique que nous ne retenons pas (pour
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être encore plus sûr de ne pas perturber le faisceau nous passons les réseaux en mode
« optique géométrique 3D »).

Pour terminer, nous focalisons le faisceau par un miroir sphérique hors axe. Un tel
système engendre de l'astigmatisme, et le seul mode de calcul capable de le traiter sans
trop de besoins mémoire est la D2A. Le problème est que la D2A ne fonctionne que
pour des discrétisations 2D avec autant de nœuds sur chaque dimension. Nous avons
donc dû rééchantillonner le faisceau. Pour économiser de la mémoire nous avons aussi
rééchantillonné l'intervalle temporel, de façon à éliminer les intervalles de temps où il n'y
a pas de lumière. Ces opérations sont effectuées par le dernier échantillon qui passe en
outre en D2A de façon non conservative.

La fin du calcul consiste uniquement à focaliser le faisceau par le miroir sphérique.
Pour la cible nous avons fait appel à une macro uniquement pour disposer d'une icône
originale.

d) Données

0- Source rectangulaire

1- Réseau

21- Propagateur

2- Réseau

3- Echantillon

4- Echantillon

5- Echantillon

6- Filtre 1 trou

Energie
Largeur
Hauteur
Durée
Exposant temporel
Exposant spatial en X
Exposant spatial en Y
Nom de l'élément
Épaisseur
Indice de réfraction
Normale thêta
Normale phi
Efficacité de diffraction
Densité de traits
Longueur
Indice non linéaire
Nom de l'élément

10 mJ
3 cm
0,4 m
150 fs

2
20
2

étireur G
1 nm

1
25°
90°

1
8,02 693 7.105 m"1

- 2 m
0 m2/W
étireur D

Paramètres identiques au réseau 1, sauf:
Orientation des traits
Nom de l'élément
Nouveau mode de calcul
Nom de l'élément
T min
T max
Nombre de pas de temps
Nom de l'élément
Nouveau mode de calcul
Indice non linéaire
Type de traitement [0/1/2]
Focale gauche
Focale droite
Épaisseur de la lentille de gauche
Épaisseur de la lentille de gauche
Diamètre du trou

180°
s lC
s i
éch

-200 ps
200 ps

512
df C
df

0m2/W
0

1 m
10 m
1 nm
1 nm

1,065 mm
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Paramètres

Contenu : une lame d'ép.

Modulation
Temps
X
Y

de phase

nulle, reliée à la connexion gauche

- 5 . 1 0 " 1 3 s
-0,025 m

0 m;

; 5.HT13 s
: 0,025 m ;
0,05 m; 1

; 512
64

e) Interprétation

II n'y a pas d'interprétation à faire pour ce cas. On constatera qualitativement que les
effets d'étirement, amplification avec rétrécissement spectral par le gain, recompression à
une durée moins brève qu'à l'origine, doublement avec augmentation du contraste, sont
bien observés.

Pour la non-régression du code on note les résultats suivants : sur la dernière lame (à
l'intérieur de la macro) l'énergie vaut 47,438 60 J et la durée équivalente 300,156 0 fs.
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15. Effet Kerr : rotation de polarisation et croisement
entre harmoniques

a) Objectif

L'objet de ce cas test est de contrôler l'action de l'effet Kerr sur la polarisation. D'une
part (pour une polarisation elliptique) on observe une rotation de polarisation (pouvoir
rotatoire induit) ; d'autre part, lorsqu'il y a plusieurs harmoniques avec des polarisations
différentes, chaque harmonique induit sur les autres de la biréfringence.

L'équation d'évolution qui est résolue pour une seule harmonique (lorsque l'on ne tient
pas compte de la diffraction) est la suivante :

- i - x - + ^ 7 (2\E\2E + {E • E)E*) . (11.36)
(JZ OC

Sachant que le terme entre parenthèses s'écrit aussi 3\E\2E + E A (E* AE) et que E* A E
est un invariant du mouvement, le système peut être résolu analytiquement :

E(z) =
3c

\E* A E\ z) E(0), (11.37)

où 11(9) désigne la rotation d'axe z et d'angle 9.
Dans le cas où il y a deux harmoniques, l'équation de propagation de l'harmonique 2

s'écrit :

.dE2 u2 ,

+ - i 7 2 1 ((E, • E\)E2 + (E2 • E*l)E1 + (E, • E2)E\) . (11.38)
oC

Malheureusement cette équation n'est pas soluble analytiquement lorsque la polarisation
de l'harmonique 1 tourne.

Le cas test a été conçu de la façon suivante : l'harmonique 2 a une intensité beaucoup
plus faible que l'harmonique 1. L'harmonique 1 est donc solution de l'équation (11.36)
tandis que l'harmonique 2 suit l'équation (11.38). Pour l'harmonique 1 nous observons
donc simplement la rotation de polarisation (la polarisation incidente est elliptique). Pour
l'harmonique 2 nous ne possédons pas de solution analytique mais il est possible de ré-
soudre l'équation différentielle sous Mathematica. De cette façon nous pouvons valider la
résolution de Mirô.

b) Schéma

-D-
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c) Données

0- Source analytique

1- Source analytique

3- Lame

4- Lame
Paramètres

Nom de l'élément
Energie
Longueur d'onde
Dépolarisation [-1,1]
Expression de l'intensité I(x,y,t)
Nom de l'élément
Energie
Longueur d'onde
Nom de l'élément
Epaisseur
Indice non linéaire
Dispersion des vitesses de groupe
Epaisseur
Spectre large
Temps
X
Y

lw
5 k J

1,053 ^m
0,5

t /4 .e-9
2w
1 J

0,526 5 nm
Kerr
25 m
INLO

0 s2 /m
0 m

0 s; 4 .10" 9 s; 256
-0,25 m; 0,25 m ; 1
-0,25 m; 0,25 m; 1

Le fichier INLO contient les indices non linéaires directs et croisés de l'élément1. Notons
que le mode spectre large a été choisi ici uniquement pour des raisons de commodité1.

d) Interprétation

Les figures (11.23) et (11.24) permettent de comparer les résultats obtenus par Miro et
sous Mathematica. On constate un bon accord entre les deux.

1.Il a la syntaxe suivante: 2 2 1 1 1 1 0 11= 0.5265e-6 1.053e-6 I J=0.5265e-6 I 2.97e-20
2.97e-20 I J=1.053e-6 I 2.97e-20 2.97e-20, le symbole I désignant le retour à la ligne. Notons qu'il
ne serait pas équivalent de ne pas utiliser de fichier et d'entrer le coefficient 2,97.10~20 m2/W : en effet
dans ce cas Mirô prend par convention des indices croisés doubles des indices non croisés.

1. Le mode spectre large est le seul qui permette un affichage en fonction du temps. On aurait certes
pu faire dépendre l'intensité de x et calculer en diffraction de Fresnel, mais la diffraction dans la lame
aurait perturbé le résultat (alors que dans le domaine temporel il est toujours possible de mettre à zéro la
dispersion des vitesses de groupe). Quant-à un calcul en optique géométrique 3D, il est impossible dans
la version actuelle du code car il n'y a pas de fractionnement en z (ce point changera avec Mirô 2000).
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1,5 2

t (ns)
2,5 3,5

FlG. 11.23 - Intensité selon x pour l'onde lœ, par un calcul Mirô et un calcul Mathema-
tica. On observe un effet de pouvoir rotatoire induit.

s
- ?

0,5 3,5

FlG. 11.24 - Intensité selon x pour l'onde 2w, par un calcul Mirô et un calcul Mathema-
tica. On observe un effet de biréfringence induite.
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16. Multiplexage
a) Objectif

Le but de ce paragraphe est de suivre les effets de désalignement de faisceau. Le code
propage une position centrale de faisceau en suivant les lois de Descartes. Dans la limite
des directions de propagation voisines de l'axe de référence du faisceau, cette position
peut être suivie par le formalisme des matrices ABCD. On reprend ici le cas de calcul
présenté dans la section II.7 (p. 163).

b) Schéma

c)

Miroir
-D-

Données

D
Lame

i

-o-

Miroir

filtre.l

(M)
Filtre

-D-

0
Lentille

injection

O
Source

D
Lame

-o-

-D-
muttiDa»P

fi

-D-
n d« chat

Lame

Les données sont identiques à celles de la section II.7. Seuls les paramètres de la source
sont modifiés pour désaligner le faisceau. Les paramètres supplémentaires sont :

1- Source rectangulaire

Paramètres

Delta thêta
Delta phi
Position X
Position Y
Optique géométrique ID

0,01°
75°

0,01 m
0,01 m

d) Interprétation

Les matrices ABCD sont respectivement :

-0,790 828 40
-0,044 7706 0,999 998
-0,938439 40,203

-0,044 770 6 0,852 387

Plan tangentiel :

Plan sagittal :

Le faisceau incident admet pour données initiales les vecteurs :

(0,01 ; tan(0,01) cos 75°) dans le plan tangentiel et
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(0,01 ; tan(0,01) sin 75°) dans le plan sagittal.

On obtient alors le tableau de comparaison suivant :

Matrice ABCD
Mirô

Position dans le plan tangentiel

-6,101 38.10"3

-6,104 84.10-3

Position dans le plan sagittal

-2,606 74.10"3

-2,610 34.10"3

Les valeurs ne diffèrent que de quelques pour-mille. Cet écart va en diminuant quand
les angles et les distances à l'axe tendent vers zéro car le formalisme ABCD est une
approximation paraxiale des lois de Descartes.
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17. Modulation de phase : dispersion d'un faisceau
modulé sinusoïdalement

a) Objectif

Dans ce cas test nous envoyons dans un matériau un faisceau initialement modulé
sinusoïdalement en phase. La dispersion fait apparaître des modulations d'amplitude.
Nous comparons les résultats obtenus par les modes « Spectre large » et « Modulation
de phase ». Le but est de valider le mode « Modulation de phase » dans le régime où le
calcul est effectué sans coupler les pas de temps (« termes complémentaires » négligés).

b) Schéma

rect.

O
Source

lispersior

T
MocLPtiaie

Lame
-D-

c) Données

Le cas (a) est passé en spectre large avec 1 024 pas de temps, le cas (b) en modulation
de phase avec 200 pas de temps.

0- Source rectangulaire

1- Modulateur de phase sinusoïdal

2- Lame

3- Lame
Paramètres

Durée
Exposant temporel
Profondeur de modulation
Fréquence de modulation
Nom de l'élément
Epaisseur
Indice non linéaire
Dispersion des vitesses de groupe
Epaisseur
Spectre large (a)
Modulation de phase (&)
Temps

X
Y

1 ns
20

20 rad
10 GHz

dispersion
50 m

0m2/W
-3.10~26 s2/m

0 m

-0,6 ns; 0,6 ns ; 1024 (a)
-0,6 ns; 0,6 ns ; 200 (6)

-0,25 m; 0,25 m; 1
-0,25 m; 0,25 m; 1

d) Interprétation

La figure 11.25 présente les résultats obtenus dans les deux modes de calcul (sur la
courbe correspondant au spectre large, seul un point sur trois est tracé). On constate une
forte similitude entre les deux.
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a-,

- 0 , 6 - 0 , 4 - 0 , 2 0 0,2 0,4 0,6 0,8
t (ns)

O

1 , < ±

1,2

1

0,8

0,6

0,4

0,2

n

1 1
ft A A A

-

-

-

|\ ,
V v l i v v

- /

J ,

1 1
A A ft A 1 -

-V \J \J \J \
\ _
\ -

-

i i V

- 0 , 6 - 0 , 4 - 0 , 2 0 0,2 0,4 0,6
t (ns)

FlG. 11.25 - Résultat de la simulation: à gauche en mode modulation de phase, à droite
en mode spectre large.
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18. Filtres spatiaux: rééchantillonnage du faisceau
au foyer

a) Objectif

Les faisceaux parasites sont produits par des réflexions sur l'une des faces d'une lentille
dans une chaîne de puissance. Le faisceau obtenu qui se propage dans la chaîne contient
une faible énergie, mais focalise en des points aléatoires. Si un foyer est situé à l'intérieur
d'un composant optique, des dommages risquent de se produire. D'où l'importance de
l'étude exhaustive des positions de ces foyers parasites. Pour ce faire, il existe des logiciels
comme Calipso [30] qui permettent de déterminer les positions d'un grand nombre de
foyers, associés à des réflexions différentes.

Lorsque qu'un faisceau parasite traverse un trou de filtrage, il ne focalise pas au foyer
du trou mais en amont ou en aval. Au niveau du trou, le faisceau a une taille beaucoup
plus grande que celle du trou, et seule une petite partie de la lumière peut passer à travers
le trou. Pour la suite de la propagation, le trou se comporte en général comme un objet
ponctuel qui va diffracter. Après la lentille de sortie, le faisceau issu du trou sera donc
parallèle et refocalisera au foyer du filtrage suivant. Dès lors il pourra se propager sur une
grande partie de la chaîne sans nouvelle perte d'énergie, être amplifié et venir finalement
endommager les optiques du pilote. Ce type de faisceau (résidu d'une réflexion parasite
traversant un trou de filtrage) est appelé « pinceau parasite ».

Le code Miré permet de simuler la propagation d'un pinceau parasite, grâce aux modes
de calcul « diffraction de Fresnel adaptative » ou « diffraction adaptative astigmate ».
Au niveau du trou de filtrage ou le pinceau est filtré, la taille de la boîte incidente est
généralement beaucoup plus grande que la taille du trou (parfois même le trou est plus
petit qu'un pixel de discrétisation). Pour que la suite de la simulation soit significative,
un rééchantillonnage du faisceau doit être mis en œuvre. L'utilisateur peut opter pour le
rééchantillonnage grâce au paramètre « scénario ».

Le cas test présenté ici modélise la réflexion parasite par une lentille. On franchit un
filtrage dans lequel un rééchantillonnage a lieu. On compare les résultats obtenus en DFA
et en D2A.

b) Schéma

rect.o
Source

-D- -D- -o
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c) Données

0- Source rectangulaire

1- Lentille

2- Filtre 1 trou

3- Lame
Paramètres

Largeur
Hauteur
Exposant spatial en X
Exposant spatial en Y
Epaisseur
Indice non linéaire
Focale
Type de traitement [0/1/2]
Indice non linéaire
Type de traitement [0/1/2]
Scénario
Focale gauche
Focale droite
Épaisseur de la lentille de gauche
Epaisseur de la lentille de droite
Diamètre du trou
Epaisseur
Diffraction de Fresnel adaptative (a)
Diffraction adaptative astigmate (b)
Temps
X
Y

0,4 m
0,4 m

16
16

1 nm
0m2/W

10 m
0

0 m'2/W
0
1

10 m
10 m
1 nm
1 nm
1 mm
0 m

0 s;4.10"9 s; 1
-0,25 m ; 0,25 m ; 64
-0,25 m; 0,25 m; 64

d) Interprétation

La figure 11.26 montre l'intensité obtenue sur la lame, pour un calcul en DFA et en
D2A. Dans les deux cas, un rééchantillonnage a été effectué au niveau du trou. Notons
que la taille de la boîte n'est pas exactement la même pour les deux modes de calcul. Par
contre le profil du faisceau est naturellement le même.

I E x 2 l "

Ï

-9e+06
-8e+06
-7e+06
-6e+06
-5e+06
-4e+06
Ï3e+O6

^ÊÊÊÊÊÊ^«éÊÈÊÊÊÊk

i

^ .
W^ Y

t-O.OOOe+00

gril le=32x32

xmin=-4.212e-02
xmax=4.212e-02

ymin=-4.212e-02
ymax=4.212e-02

zmin=2.545e+00
zmax=8.393e+06

IEx2l •

i

-9e+06
-8e+06
•7e+06

-5e+06
•4e+06
r 3s + 06

Ile+oo

K

^ ^ Y

t-0.000e+00

gri l le=32x32

xmin=-4.215e-02
xmax=4.215e-02

ymin=-4.215e-02
ymax=4.215e-02

zmin=1.784e+00
zmax-8.393e+06

FlG. 11.26 - Simulation d'un pinceau parasite. À gauche, calcul en DFA. A droite, calcul
en D2A.

Notons qu'il serait possible de comparer cette nappe avec une expression analytique
basée sur une fonction de Bessel.
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19. Spectre large : automodulation de phase dans une
fibre monomode

a) Objectif

Ce cas test vise à simuler la propagation d'une impulsion brève dans une fibre mono-
mode de grande longueur (quelques dizaines de mètres), lorsque la dispersion est normale
a < 0. Au début de la propagation, l'automodulation de phase qui est relativement im-
portante induit une déformation de la forme temporelle de l'impulsion (celle-ci devient
carrée), ainsi qu'un élargissement du spectre. Dans la suite de la propagation la dispersion
des vitesses de groupe étire peu à peu l'impulsion temporellement. L'impulsion obtenue
en sortie de fibre est nettement plus longue que l'impulsion initiale, et possède une dérive
de fréquence quasiment linéaire. Une telle impulsion peut ensuite être amplifiée dans une
chaîne de puissance, puis recomprimée à l'aide d'une paire de réseaux. Rappelons que c'est
par cette méthode que les impulsions à dérive de fréquence de la chaîne P102 du CEA-LV
étaient fabriquées pendant les premières années de fonctionnement (voir par exemple [22,
p. 26]).

Sachant qu'à notre connaissance il n'existe pas d'expression analytique pour l'impul-
sion étirée via une fibre, nous nous contenterons ici de reproduire les figures d'un article
de la littérature [31]. Nous simulerons tout d'abord retirement dans la fibre monomode
de façon à reproduire la figure 11.27; ensuite nous regarderons la recompression de l'im-
pulsion (fig. II.28). Comme les réseaux n'étaient pas encore disponibles dans Mirô lorsque
ce cas test fut rédigé, nous simulons la compression via la propagation à travers un milieu
de dispersion anormale et d'indice non linéaire nul.

Ce cas test est simulable par le mode « spectre large », mais aussi par le mode « mo-
dulation de phase ». C'est donc une bonne occasion pour comparer les deux modes de
calcul.

b) Propagation dans la fibre et étirement par automodulation de phase

L'équation de propagation est donnée par

^ <IL39>
a étant le terme de dispersion des vitesses de groupe et 7 l'indice non linéaire. Les valeurs
numériques sont a = -3.1(T2 6 s2/m, et 7 = 2,97.Kr20 m2/W.

L'équation (11.39) est à rapprocher de l'équation (1) dans [31]x :

dV 7T
(11.40)

L'identification donne

z0 = —-j-̂ r (11.41.a)
4 \a\

v = 2wy^ ( I L 4 1 b )
TTC

1. Nous modifions au passage le signe devant le terme de dispersion des vitesses de groupe.
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Le paramètre t0 reste libre. Dans cette simulation nous prenons t0 = 1 ps. La figure (11.27)
est réalisée avec un champ initial en

V = 5 sech — .

(la notation sech désignant la fonction 1/ch) ; la distance de propagation est z = zo/2.

0,6

0,4

s 0,2

-12

a)

Sx \ . V I
- 6 0

. t/t0

6 12

5

4

en

I 2
s

i—i

1

-16
(UJ -

16

FlG. 11.27 - Reproduction de la figure 2 de la référence [31]. À gauche, l'intensité en
fonction du temps. À droite, l'intensité spectrale.

c) Recompression via un milieu à dispersion anormale

-ai

'en
Ca>

- 6 - 3 0 3 6
t/to

FlG. 11.28 - Reproduction de la figure 5.a de la référence [31J.

L'équation de propagation dans un milieu linéaire de dispersion anormale (a > 0) est
donnée par

dE d2E
i — + CT-— = 0.

dz dt2 (11.42)
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Cette équation se résout spectralement en

Ê(z + AZ,UJ) = Ê(z,u) exp(^crw2 Az), (11.43)

c'est à dire qu'un masque de phase quadratique est appliqué au spectre du faisceau. On
sait d'après la table 1 de la référence [31] que pour comprimer au mieux l'impulsion il
faut lui appliquer un masque spectral en

exp(0,24 x itluj2).

On en déduit la distance de compression correspondante pour a = +3.10~26 s2/m : Az =
8 m1. L'objectif est d'obtenir une impulsion comprimée comparable à celle de la figure
11.28.

d) Schéma

-o

e) Données

Le cas (a) est effectué en spectre large avec 512 pas de temps. Le cas (b) utilise le mode
« modulation de phase » avec 128 pas de temps, en partant d'une fenêtre de discrétisation
plus petite.

0- Source analytique

1- lame

2- lame

Paramètres

Energie
Expression de l'intensité I(x,y,t)
Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Dispersion des vitesses de groupe
Nom de l'élément
Epaisseur
Indice de réfraction
Indice non linéaire
Dispersion des vitesses de groupe
Spectre large (a)
Modulation de phase (b)
Temps
Temps
X
Y

0 J
8.464149el2/(ch(t/le-12))~2

fibre
13,089 96 m

1
2,97.10-20 m2/W
-3.10"26 s2/m

compression
14,54498 m

1
0m2/W

+3.10"26 s2/m

-12 ps; 12 ps; 512 (a)
- 5 ps; 5 ps; 128 {b)

-0,5 m; 0,5 m; 1
-0,5 m; 0,5 m; 1

1. En fait le tableau 1 de [31] correspond à une longueur de fibre de zo/4 (alors que dans notre exemple
la longueur de la fibre est zo/2). La distance choisie ici pour la compression « rattrape » cette différence :
d = Az + ZQ/4 = 14,54498 m. Les résultats que nous obtiendrons pour la recompression ne coïncideront
pas exactement avec ceux de la référence (nous sommes gênés par le fait que dans [31] ils ne choisissent
pas les mêmes paramètres d'une figure à l'autre...).
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NB : la constante 8,464 149.1012 (W/m2) correspond à l'expression À2\\a\/{-ïï^t^), en
reprenant les notations précédentes.

f) Interprétation

2.101 2

1,8.1012

1,6.1012

1,4.1012

a,2.io12

~ io12

; 8.1011

6.10u

4.1011

2.1011

0

i 1

r
i 

i 
i 

i 
i 

i 
i 

i 
i
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U (xl01 2rad/s)

FlG. 11.29 - Dépendance temporelle (à gauche) et spectre temporel (à droite) d'une im-
pulsion initialement en sécante hyperbolique après étirement dans 13,08 m de fibre. Cette
figure est à comparer à la figure 11.27 (to = 1 ps).

- 1 5 - 1 0 - 5 - 1 5 - 1 0 - 5

FlG. 11.30 - Dépendance temporelle (à droite) de la même impulsion recomprimée (à
comparer avec la figure 11.28). À gauche, l'impulsion sécante hyperbolique initiale (avant
étirement).

La figure 11.29 montre, pour le calcul en spectre large, la forme temporelle et le spectre
de l'impulsion étirée {i.e. à l'entrée de la lame « compression »). Cette figure est à com-
parer à la figure 11.27. On constate que l'accord est qualitativement bon. La figure 11.30
montre l'impulsion recomprimée (toujours pour un calcul en spectre large). Cette courbe
ne coïncide pas tout à fait avec celle de la figure 11.28, mais les conditions ne sont pas non
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FlG. 11.31 - À gauche, intensités en fonction du temps en mode spectre large. À droite,
puissances en mode modulation de phase. En haut, impulsion d'origine; au milieu, im-
pulsion étirée; en bas, impulsion recomprimée.
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plus tout à fait les mêmes. Enfin la figure (11.31) compare les résultats des deux modes
de calcul, sur les trois lames où des résultats sont fournis1.

1. Les courbes en spectre large sont des intensités en fonction du temps, celles en modulation de phase
sont des puissances. Les deux coïncident parce que la section du faisceau vaut 1 m2.
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20. Spectre large : soliton

a) Objectif

Ce cas test vise à vérifier une propriété remarquable de l'équation de Schrôdinger non
linéaire unidimensionnelle : l'existence d'ondes solitaires, qui se propagent sans déforma-
tion sur une longueur infinie [32].

Pour ce cas test nous nous placerons en spectre large dans le cas d'une dispersion
anormale (a > 0) ; dans le cas a < 0 il n'existe pas de soliton de durée finie. L'équation de
propagation est

(11.44)

On peut alors vérifier que le champ défini pour EQ réel par

E(z,t) = Eosech [ E0\l~t j exp ̂  g
(11.45)

est solution de (11.44)l. L'expression (11.45) est appelée soliton fondamental. Elle se pro-
page sans déformation parce que l'automodulation de phase compense exactement les
effets de la dispersion des vitesses de groupe. Il existe des solitons d'ordre plus élevé,
qui ne se propagent pas sans déformation mais qui redeviennent identiques à eux-mêmes
au bout d'une distance de propagation donnée. Tous ces solitons sont caractérisés par la
quantité

r+oo

A = E(0,y)dt.
J — oo

Le rapport entre A et AQ (correspondant au soliton fondamental) est un entier appelé
ordre du soliton.

Dans ce cas test nous créons un soliton fondamental est nous regardons son compor-
tement au bout d'une certaine distance de propagation.

b) Schéma

1. Rappel : sécha; = 1/ chx.
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c) Données

0- Source analytique

2- Propagateur

1- Lame
Paramètres

Energie
Expression de l'intensité I(x,y,t)
Longueur
Indice non linéaire
Dispersion des vitesses de groupe
Epaisseur
Spectre large
Temps
X
Y
Pas maximal de diffraction

0 J
3.385659ell/(ch(t/le-12))~2

1 km
2,97.10~20 m'2/W
+3.10"'26 s2/m

0 m

-20 ps; 20 ps; 512
—0,5 m ; 0,5 m; 1
-0,5 m; 0,5 m; 1

10 m

NB : la constante 3,385659.1011 W/m2 correspond à o-\/(irjtl), avec t0 = 1 ps, a
(dispersion des vitesses de groupe) et 7 (indice non linéaire) ayant les valeurs du tableau.

d) Interprétation
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5.1010

0

' ' '
- | sortie

l entrée

l.
1

_

-20 -15 -10 - 5 0 5
t(ps)

10 15 20

5.1007

4.100 7

3.100 7

2.100 7

1007

0
- 1 0 0 7

- 2 . 1 0 0 7

- 3 . 1 0 0 7

- 4 . 1 0 0 7

- 5 . 1 0 0 7

- 6 . 1 0 0 7

1 1 1

_, s\

; V
I
11. 1 

! 
1 

! 
1

-20 -15 -10 - 5 0
t(ps)

10 15 20

FlG. 11.32 - À gauche dépendance temporelle de l'impulsion avant et après propagation
(en pointillés et en trait plein respectivement). À droite, différence absolue entre les deux.

La figure 11.32 montrer l'allure de l'impulsion avant et après propagation, ainsi que la
différence absolue entre les deux. La figure 11.33 montre la phase temporelle de l'impulsion
après propagation. On constate que la forme de l'impulsion s'est très bien conservée et que
la phase reste quasiment plate là où il y a de la lumière, et ce malgré une intégrale B crête
de 59,909 90 rad. Notons qu'il est possible d'améliorer encore la précision en diminuant le
pas fractionnaire mais ceci est au prix du temps de calcul.
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FlG. 11.33 - Phase temporelle de l'impulsion après propagation.
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21. Simulation d'une cavité laser; génération d'un
mode gaussien à partir du bruit

Miré est un code de propagation pour les lasers de puissance qui n'a pas été conçu à
l'origine pour simuler d'autres types de systèmes optiques, comme par exemple les cavités
laser. Ce cas test présente une tentative pour réaliser une telle simulation et analyse les
difficultés rencontrées. Notons qu'il s'agit d'un cas test essentiellement qualitatif.

a) Difficultés liées à la simulation de cavités par Miré

amplificateur

LA

miroir sphérique

E)

miroir

amplificateur injection

^
polariseur multiplexeur

apodiseur

FlG. 11.34 - Schéma de la cavité laser à simuler (lre ligne) et du schéma équivalent im-
planté dans Mirô (2e ligne).

Le dispositif à simuler est présenté sur la figure 11.34. On considère une cavité comprise
entre deux miroirs, l'un sphérique et l'autre plan. Cette cavité comprend un mode gaussien
stable. La cavité contient un amplificateur à gain non uniforme (il y a plus de gain au
centre que sur les bords), et un système de blocage cellule de Pockels/polariseur. L'un des
miroirs n'est que partiellement réfléchissant : une partie de la lumière est transmise vers
l'extérieur, donnant naissance à l'impulsion laser proprement dite.

À l'instant t — 0, le système de blocage est fermé ; il n'y a pas de lumière dans la cavité
si ce n'est le bruit thermique de photons. On ouvre alors le système de blocage. Peu a
peu, ce bruit de photons va progressivement s'amplifier de manière cohérente. Il apparaîtra
spontanément une onde stationnaire dans le mode de la cavité, dont l'énergie ira croissant.
Cette onde stationnaire restera présente jusqu'à ce que l'amplificateur commence à saturer.
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Alors les pertes deviendront supérieures au gain et la lumière disparaîtra. Pendant tout
le temps où l'onde stationnaire est présente dans la cavité, elle transmet à chaque aller-
retour un peu de photons à l'extérieur. La durée de l'impulsion laser « utile » (i.e. se
propageant hors de la cavité) est ainsi directement reliée à la durée de vie du mode de la
cavité.

Une telle cavité laser ne peut pas être simulée de façon exacte avec Miré car le code
ne permet pas traiter les ondes stationnaires. La procédure employée consiste à remplacer
l'onde stationnaire par une impulsion qui effectuera des aller-retours dans la cavité. Avec
une telle méthode nous ne prenons pas en compte les recouvrements de la lumière sur
elle-même ; dans la réalité l'onde stationnaire présente des nœuds et des ventres qui font
notamment que l'amplificateur sature plus rapidement sur les ventres et ne sature pas sur
les nœuds. Cet effet n'est pas traité dans notre simulation. Pour simuler la naissance de
l'onde à partir du bruit nous injectons dans la cavité un faisceau incohérent (tavelure).
Au cours de la propagation on voit les gains disparaître et un faisceau gaussien cohérent
se créer.

FIG. II.35 - L'origine des problèmes liés à la simulation d'une cavité en diffraction de
Fresnel adaptative

Ce cas test a été conçu à une époque où le composant « miroir sphérique » n'existait pas
dans Mirô : nous l'avons sans inconvénient remplacé par la combinaison d'un miroir plan
et d'une lentille. Comme il s'agit d'une lentille isolée on utilise la diffraction de Fresnel
adaptative. L'utilisation sans précautions de la diffraction de Fresnel adaptative risque
cependant de créer des problèmes. En effet, si le mode gaussien est stable la longueur C
de la cavité au sens de l'optique de Gaula (c'est-à-dire où l'on remplace les longueurs L
parL/n, n étant l'indice) n'est pas égale à la focale / de la lentille (fig. II.35). Elle lui est
reliée par la formule

1 +
7Tc|Y

(11.46)

A étant la longueur d'onde, et c0 désignant le col du faisceau — c'est-à-dire que sur le
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miroir de droite M% là où le faisceau est le plus petit1, le champ s'écrit

2 (11.47)
co

La différence entre les longueurs / et C provient du fait que si l'on focalise un faisceau
initialement parallèle, le minimum du diamètre du faisceau ne coïncide pas avec le foyer
géométrique dans la lentille, sauf dans la limite où la taille du faisceau incident est infini-
ment grande. Par conséquent et par souci de symétrie, pour récupérer un faisceau de la
même taille que le faisceau initial, il faut parcourir la distance 2£ et non pas 2 / . Par suite
dans notre cas la longueur d'un aller-retour de la cavité sera 2£. Pour la diffraction de
Fresnel adaptative de Mirô, la taille de la boîte « accompagne » la focalisation du faisceau
mais sans tenir compte de la différence entre / et £, c'est-à dire que la boîte revient à sa
taille initiale au bout de la distance 2/ . Dans le cas de la cavité, la taille de la boîte ne
sera pas la même d'un passage sur l'autre. Ceci n'est pas admissible car au bout de iV
passages la taille de la boîte aura divergé et n'aura plus aucun rapport avec la taille du
faisceau.

Pour contrôler cette obstacle, nous utilisons deux lentilles minces accolées : l'une (L2)
de focale £, et l'autre (Lx) de focale / ' = ( 1 / / - l/C)~l. En fait la focale de la deuxième
lentille Lx est suffisamment longue pour que la phase quadratique qu'elle crée puisse être
directement échantillonnée via le tableau de champ électrique. À son passage Mirô n'a
donc pas besoin d'effectuer de transformation conforme de telle sorte que le paramètre
« rayon de courbure » reste nul et que le facteur d'homothétie reste égal à l'unité. La
transformation conforme et le changement de taille de la boîte n'ont lieu qu'avec la len-
tille de focale £. Comme la focale est alors égale à la longueur de la cavité la facteur
d'homothétie reste stable d'un passage sur l'autre.

Remarque : cette solution (au demeurant peu élégante) n'est pas applicable dans tous
les cas car le masque de la lentille L\ pourrait très bien ne pas être échantillonnage. Un
tel cas de figure peut notamment se produire pour des cavités où la taille du faisceau sur
les deux miroirs est comparable (cas expérimental fréquent). Dans ce cas, on doit adapter
les courbures par une autre méthode.

Certaines versions commerciales de Mirô comportent un mode de calcul dévolu à la
simulation des cavités (décrit dans un manuel séparé diffusé uniquement en interne à la
DAM). Avec ce mode de calcul la taille de la boîte est automatiquement stable, il n'y a
plus à s'en préoccuper.

b) Situation simulée

Afin de mieux sélectionner le mode de la cavité nous choisissons pour l'amplificateur
un gain qui n'est pas uniforme, mais de forme gaussienne. Nous introduisons également
un apodiseur (fichier) dont la transmission dépend des coordonnées spatiales selon une
formule gaussienne. La cavité peut ainsi être modélisée au moyens de matrices ABCD
complexes ainsi qu'il est décrit dans [33, p. 786]. La matrice ABCD de la cavité est

1. « col » est la traduction française de waiste.



21. Simulation d'une cavité laser; génération d'un mode gaussien à partir du bruit 215

donnée par

X A4ampliA4pockelsA4distance.Mientilles-A4apodiseur (11.48)

avec

M apodiseur
— l 2TT

M Pockels — 0

0

1

pi p

1

M lentilles

M ampli

1
-1//

1
Xa-2
2-ÏÏ

— l

0

0

0

1

Jv*- distance —
L
1

ea/na

1
(11.49)

avec : / focale de lentille, L distance séparant la lentille de la cellule de Pockels, ep et
np épaisseur et indice de la cellule de Pockels, ea et na épaisseur et indice de l'amplifi-
cateur, et ai et a^ paramètres de largeur des profils d'apodisation et de gain respective-
ment : au passage de l'apodiseur (resp. de l'amplificateur) l'intensité est multipliée par
texp[—a\{x2 + y2)] (resp. par gexp[—a2(x

2 + y2)]), t et g (qui n'interviennent pas dans le
calcul des matrices ABCD) étant respectivement la transmission maximale de l'apodiseur
et le gain maximal de l'amplificateur.

Dans le cas des faisceaux gaussiens les matrices ABCD complexes doivent être utilisées
de la manière suivante [33] : soient c(z) le col du faisceau (au sens de l'équation (11.47)) à
l'entrée du système, et R(z) le rayon de courbure de la phase. Alors on définit le nombre
complexe q(z) par

^y= W) " l^W) ' (IL50)

Le paramètre q(z') à la sortie du système optique ABCD est alors donné par

(11.51)
^ J Cq(z) + D'

Les matrices ABCD des composants de la cavité ont été entrées dans le logiciel Ma-
thematica. En les multipliant entre elles nous pouvons obtenir la matrice ABCD de la
cavité. On peut en déduire le mode propre de la cavité en faisant q' — q. Nous trouvons
finalement un faisceau de col 9,444 94 mm sur le miroir M\.

c) Schéma

Hi

Miroir
-D- •

d)

-D- J
Lentille

Données

l*ntill*

0
Lentille

' nul l*

^ D
| Lame Polarifeut

-a-
fjcateiir

-D-

/

EH '&-**)

Multi-
plexeur

/
J

-a-

(A)
Source

M;

- ^
Miroir
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0- Source tavelure

1- Miroir

2- Multiplexeur
3- Amplificateur « disque »

4- Polariseur

14- Propagateur

5- Lame

6- Lentille

7- Lentille

8- Apodiseur « fichier »

9- Miroir

Paramètres

Normale thêta
Énergie
Longueur d'onde
Largeur
Hauteur
Durée
Exposant temporel
Exposant spatial en X
Exposant spatial en Y
Largeur spectrale spatiale
Exposant spatial spectral
Fraction d'énergie bruitée
Nom de l'élément
Coefficient de réflexion
Normale thêta
Scénario
Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Transmission face d'entrée
Transmission face de sortie
Normale thêta
Fluence de saturation
Gain
Diamètre
Epaisseur
Indice de réfraction
Indice non linéaire
Transmission longitudinale
Réflexion perpendiculaire
Longueur
Indice non linéaire
Nom de l'élément
Épaisseur
Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Focale
Type de traitement [0/1/2]
Nom de l'élément
Épaisseur
Indice de réfraction
Indice non linéaire
Focale
Type de traitement [0/1/2]
Epaisseur
Fichier des transmissions spatiales
Nom de l'élément
Coefficient de réflexion

Diffraction de Fresnel adaptative

180°
10 O

1,053 p.m
1,5 mm
1,5 mm
0,1 ns

10
30
30

5.104 m- 1

10
1

M2
0,9

180°
151:0 1
gaussien
0,01 m

1,82
0m2/W

0,992
0,992

0°
45,2 kj/m2

2.*exp(-2.e5*(x*x+y*y))
3 mm

5,265 cm
1,5

0 m2/W
1
0

0,44 m
0 m'2/W

nulle
0 m

lentille
1 nm
1,5

0m 2 /W
0,480 595 4 m

0

masque
1 nm
1,5

0m2/W
-14,24217 m

0
1 \±m

0.9*exp(-2.6e5*(x*x+y*y))
Ml

1
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Temps
X
Y
Format

du
Afficher

d'enregistrement
fichier binaire
l'animation

- 1
- 1

0
,35
,35

ns;
mm
mm

0,15 ns; 1
; 1,35 mm;
; 1,35 mm ;

1

64
64

NB : l'afffichage de l'animation fournit des renseignements intéressants mais rallentit
considérablement le calcul : avec l'animation ce dernier prend cinq minutes sur une sta-
tion « rapide » (SUN Ultra par exemple). Par ailleurs le fichier Miro.res créé est assez
volumineux (une dizaine de Mo en simple précision).

e) Résultats et interprétation

Les figures 11.36 et 11.37 présentent l'allure du faisceau sur la lentille L2 pour diffé-
rentes distances de propagation. Le profil passe successivement par trois étapes : du bruit
incohérent initial on arrive à un aspect constitué de deux taches. Après un certain nombres
de passages, le faisceau évolue peu à peu vers le mode propre de la cavité. Enfin, dans le
régime où l'amplificateur commence à saturer (à partir de 40 m de propagation), le profil
de gain vu par le faisceau n'est plus le même de telle sorte que le mode change.

La figure 11.38 représente l'énergie et la section du faisceau, tracés en fonction de
la distance. Le courbe en énergie présente deux régimes: une croissance exponentielle
jusqu'à 40 m, après lesquels l'amplificateur sature. Du fait de l'absorption dans certains
composants la croissance ralentit alors, puis l'énergie diminue. Notons que sur un véritable
laser, une partie de l'énergie est transmise à chaque passage à travers le miroir pour
constituer le faisceau « utile ». La courbe de la figure 11.38 (gauche) revient donc à tracer
l'allure de l'impulsion sortant du laser. La durée de l'impulsion est obtenue en divisant la
longueur en abscisse par c: on trouve environ 3,3 ns à mi-hauteur.

La courbe de section présente également un intérêt car elle permet de visualiser les
régimes successifs de fonctionnement de la cavité. Pendant les 10 premiers mètres on voit
la section chuter de 1 à 0,2 cm2 environ : le bruit incohérent se transforme peu à peu en
un faisceau cohérent. Les 30 mètres suivants où la section évolue lentement correspondent
au passage à un mode gaussien constitué d'une seule tache. Enfin au cours de la dernière
étape (à partir de 40 m de propagation) l'amplification commence à saturer et l'on voit
la section croître à nouveau.

Enfin, il est intéressant de comparer le profil transverse du mode avec le profil gaus-
sien théorique. Cette comparaison est effectuée sur la figure 11.39. On trouve un résultat
satisfaisant.

Test de non-régression : l'énergie maximale atteinte (visible sur le tracé de l'énergie
en fonction de z) est de 1,248 mJ. À la fin de la simulation lorsque le faisceau retourne
sur la source tavelure, son énergie vaut 38,29728 nJ.
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FIG. 11.36 - Allure du faisceau sur le miroir Mj, pour les numéros de passage suivants
(dans l'ordre de gauche à droite et de haut en bas) : 1, 3, 5, 15, 30, 40, 64, 71, et 76. Les
distances de propagation correspondantes (en mètres) sont respectivement 0,5, 2,5, 4,5,
14,6, 29,7, 39,7, 63,8, 70,9, et 75,9.
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FIG. II.37 - Vue en perspective de l'impulsion sur Mt au 5e (à gauche) et au 40epassage
(à droite).
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FIG. II.38 - A gauche, énergie de l'impulsion en fonction de la distance mécanique de
propagation. A droite, section du faisceau en fonction de la distance mécanique de propa-
gation.
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H,

-0,006 0,004 0,006

FlG. 11.39 - Profil transverse du mode obtenu par Mirô après \0 passages (en continu),
et profil gaussien théorique sur L2 (col: 0,970 728 mm) (en pointillés).
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22. Problèmes liés à la propagation sur une longue
distance ; utilisation de la couche limite absor-
bante

a) Objectif

Cet ultime cas test permettra à l'utilisateur de se rendre compte qu'il existe un certain
nombre de situations que Mirô n'est pas en mesure de traiter de façon totalement satis-
faisante. Lorsque l'on effectue sans précautions particulières une simulation en diffraction
de Fresnel, avec des pas d'espace très serrés (aussi bien d'ailleurs en ID transverse qu'en
2D), et sur une distance relativement longue, le résultat de la simulation a de bonnes
chances d'être complètement faux. La distance de propagation à ne pas dépasser est de
l'ordre de

N5x2

A
(11.52)

N étant le nombre de pas d'échantillonnage, ôx le pas d'échantillonnage et A la longueur
d'onde. Cette distance maximale est celle pour laquelle la lumière issue d'un petit défaut
de la taille d'un pixel aura atteint par diffraction les bords de la boîte de discrétisation.
Au-delà de cette distance, du bruit d'origine numérique est susceptible d'apparaître1.

Le but de ce paragraphe est de mettre en évidence ce problème au moyen d'un exemple,
et d'expliquer les raisons de ce dysfonctionnement, afin que tout utilisateur ait bien
conscience de cet écueil qu'il lui faut éviter. Nous présentons aussi un moyen implanté
dans Mirô qui permet de contourner partiellement la difficulté : l'utilisation d'une couche
limite absorbante.

Le cas test présenté ici est extrêmement simple : on part d'une source gaussienne, de
très petite taille (20 |o.m), et on la fait diffracter sur 10 m en prenant un pas d'échantillon-
nage de 7,6 \xm.

b) Schéma

Source

1. Mirô prévient l'utilisateur par un message en bas de la fenêtre lorsque la distance dmax est dépassée.
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c) Paramètres

0- Source circulaire
2- Propagateur

1- Miroir
Paramètres

Diamètre
Longueur
Indice non linéaire
Normale thêta
Diffraction de Fresnel
Temps
X
Y

a (2.HT5 m)
L (10 m)
0m 2 /W

135°

Os; 4.10-9 s; 1
-0,25 m; 0,25 m; 65 536

0 m ; 0,25 m ; 1

Les paramètres o (largeur de la source) et L (longueur du propagateur) seront modifiés
dans certains cas.

d) Résultats de la simulation

Les résultats de la simulation sont présentés sur la figure 11.40. On peut y voir la forme
spatiale de l'impulsion après une distance de propagation L de 5 m et de 10 m, ainsi que
le spectre spatial de l'impulsion. On constate que si la diffraction du faisceau au bout de
5 m semble correcte, le faisceau à 10 m présente des modulations à très haute fréquence
qui n'ont aucune signification physique. Ces modulations ne sont pourtant pas présentes
sur la dernière image de la figure 11.40 (en bas, à droite) où pourtant le faisceau a la même
taille que sur l'image d'au-dessus.

-3e-01 -2e-01 -le-01 -3e-17 le-01 2e-01 3e-01

4. 058e*09

- 4.090e*09

-3e-01 -2e-01 -le-01 -3e-17 le-Ol 2e-01 3e-01

FlG. 11.40 - Faisceau issu d'une source gaussienne de largeur à mi-hauteur 20 //m, propagé
sur 5 m (en haut à gauche) et 10 m (en haut à droite). En bas, à gauche, le spectre spatial
de la source. Enfin, en bas à droite, diffraction sur 10 m d'une source gaussienne de
largeur 0,232 3 m. La largeur de la fenêtre d'échantillonnage est 0,5 m, et il y a 65 536
pas en X.

Remarque : Si l'on compare la taille d'un pixel (7,6 |J.m) avec la taille de la gaus-
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sienne initiale (20 M-m), on pourrait être tenté de penser que cette dernière n'est pas
suffisamment échantillonnée, ce qui pourrait expliquer ce comportement étrange. Toute-
fois, on remarquera que le spectre de la source est correctement échantillonné. De plus,
l'allure du faisceau après 5 m de propagation paraît normale.

e) Origine de l'erreur

II existe deux façons de comprendre l'origine de cette erreur : l'une spectrale l'autre
spatiale. Pour la visualisation spectrale pour pourra se reporter au manuel de référence de
Miré [14] chapitre I, au paragraphe 1.6.6, p. 27. La résolution numérique de l'équation de
Schrôdinger est effectuée en prenant la transformée de Fourier du champ, et en appliquant
au spectre le masque de phase

Déphasage = exp [i x^ yz) , (11.53)

KX (resp. Ky) étant la fréquence spatiale selon x (resp. y), fc le vecteur d'onde et z la
distance de propagation.

Lorsque la taille du pas d'échantillonnage est petite, cela signifie que Mirô traite de
grandes fréquences spatiales. Par conséquent le déphasage (11.53) peut devenir important.
Lorsque d'un pixel spectral au voisin, la différence de déphasage devient de l'ordre de
l'unité, des problèmes risquent de se produire. La plus grande fréquence spatiale traitée
étant exactement n/ôx, on trouve la condition (11.52) en écrivant que le déphasage entre
deux pixels du bord du spectre vaut ir.

La méthode spatiale de visualisation se réfère à ce que nous avons dit en introduction :
les oscillations apparaissent lorsque la lumière issue d'un petit défaut (la source gaussienne
dans notre exemple) atteint les bords de la boîte. On peut exprimer les choses de manière
encore plus précise : on sait que le traitement spectral de Mirô revient à stipuler que les
conditions aux bords sont périodiques. Lorsque par diffraction la lumière issue du petit
défaut atteint un bord, elle est de fait instantanément « transportée » sur le bord opposé.
Mais sur l'autre bord (fig. II.41), il y a aussi de la lumière qui se propage selon un angle
différent. Les deux champs vont interférer, d'où des oscillations que l'on voit apparaître à
la simulation.

bord

bord

FlG. 11.41 - Interprétation géométrique des oscillations numériques observées.
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Revenons maintenant à notre exemple : la distance critique vaut 60 cm environ. Or
il est possible de propager le faisceau sur plus de 5 m sans voir les effets du mauvais
échantillonnage spectral. Cela est dû au fait que la source est plus grande que la taille
d'un pixel ; autrement dit, il n'y a pas d'énergie sur les fréquences spatiales les plus
élevées, i.e. celles qui devraient poser des problèmes avant 5 m (on peut le vérifier en
regardant le spectre). Dans le cas de la source de diamètre 0,232 3 m (en bas à droite
de la figure 11.40), le spectre est très étroit, de telle sorte qu'il n'y a absolument pas
d'énergie sur les fréquences spatiales dont la phase est mal échantillonnée. C'est pourquoi
la propagation est correcte, malgré le fait que le faisceau « touche » les bords de la boîte
(selon l'interprétation spatiale, la lumière qui se situe sur les bords ne se propage pas selon
un angle ; comme les champs sont égaux aux deux bords la périodicité des conditions aux
limites ne donne donc pas lieu à des interférences. De telles interférences apparaîtraient
si nous décentrions la source par rapport à la boîte de discrétisation).

f) Conséquences concrètes du problème

Le lecteur pourra trouver que l'exemple exposé ci-dessus est un cas d'école sans rap-
port avec les conditions d'utilisation de Miré les plus usuelles. Il est exact que pour une
simulation « classique » du laser Mégajoules (512 x 512 points, pour une pupille de 40 cm),
de tels problèmes d'effets de bord ne se produisent jamais : la distance critique est alors
de l'ordre de 50 m, ce qui est supérieur à la distance séparant deux lentilles consécutives.
Par contre, si l'on veut simuler le laser Mégajoules avec 1 x 65 536 pas d'espace, ou encore
si l'on conserve 512 x 512 points, mais que l'on étudie une sous-pupille2, des problèmes
vont survenir. De façon générale, on ne peut pas simuler le laser Mégajoules de cette façon
avec une précision meilleure que 1 mm.

g) Une solution au problème : la couche limite absorbante

Remarquons tout d'abord que dans l'exemple que nous avons présenté, il est possible
d'éliminer les problèmes de façon très simple : il suffit de choisir le mode de calcul « dif-
fraction de Fresnel adaptative » (fig II.42). Dans ce cas la taille de la boîte se met à
croître au-delà d'une certaine distance de propagation, de telle sorte que la lumière n'at-
teint jamais les bords. La simulation est donc exacte mais ne correspond pas toujours au
comportement souhaité par l'utilisateur. En effet l'augmentation de la taille de la boîte
s'accompagne d'une perte de précision de l'échantillonnage qui peut être fâcheuse si l'on
souhaite calculer des effets non linéaires par exemple, ou encore si l'on se propage dans une
chaîne laser dont les optiques sont de taille identique. Dans certain cas, il est préférable
que la taille de la boîte et la précision du calcul restent constants, quitte à perdre un peu
d'énergie quand les hautes fréquences spatiales diffractent vers les bords et sortent de la
boîte. Il faut donc trouver le moyen de s'affranchir des effets de bords et de l'apparition
du bruit, numérique.

Pour résoudre ce problème, une possibilité serait de changer de méthode numérique

2. Pour une telle simulation, on voit apparaître après une certaine distance de propagation un grand
nombre de modulations à haute fréquence. Certains utilisateurs seraient alors tentés de les interpréter
comme de la filamentation dans les optiques — alors qu'il s'agit en réalité d'un effet du mauvais échan-
tillonnage de la phase spectrale !
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FlG. 11.42 - Même simulation que sur la figure II.40 en haut à droite, mais en choisissant
le mode de calcul « diffraction de Fresnel adaptative ».

et d'introduire des conditions aux limites absorbantes (c'est-à-dire une relation spécifique
faisant intervenir le champ sur les bords et ses dérivées). Ce type de solution n'a pas été
implanté dans Mirô pour des raisons de complexité de mise en œuvre et de temps de
calcul. La méthode proposée consiste simplement à introduire un coefficient d'absorption
sur une zone étroite autour de la zone discrétisée. De cette façon, le champ sur les bords
s'annule peu à peu de telle sorte que les discontinuités liées à la périodicité des conditions
aux limites disparaissent.

Afin de tester l'efficacité de la couche limite absorbante (CLA) nous reprenons
l'exemple ci-dessus.

0- Source circulaire
2- Propagateur

1- Miroir
Paramètres

Diamètre
Longueur
Indice non linéaire
Normale thêta
Diffraction de Fresnel
Temps
X
Y
Couche limite absorbante
Coefficient d'absorption de la CLA

2.10"5 m
10 m

0m2 /W
135°

0 s; 4.10"9 s; 1
-0,25 m; 0,25 m; 65 536

0 m; 0,25 m; 1
0,025 m

9,53 m"1

Le résultat de la simulation est présenté sur la figure 11.43 : on peut constater la quasi-
disparition des oscillations, tandis que la taille globale du faisceau reste la même. Le
concept a donc bien fonctionné.

Toutefois, en regardant le résultat de près (essayer d'agrandir la fenêtre de résultats
et bien regarder sur les bords du faisceau) on constate qu'il reste un peu d'oscillations :
la méthode n'est donc pas parfaite. Ces oscillations sont d'une part dues au fait que la
couche limite n'absorbe pas totalement la lumière, et d'autre part causées par la réflexion
d'une partie de la lumière.

Afin de mieux visualiser les dysfonctionnements de la CLA nous proposons la simula-
tion suivante, où la totalité du faisceau est envoyée dans la couche absorbante :
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• | i- 4.047e+09

Oe+00
-3e-01 -2e-01 -le-01 -3e-17 le-01 2e-01 3e-01

8,210e+00

FlG. 11.43 - Résultat de la simulation mettant en œuvre une couche limite absorbante (à
comparer avec celui de la figure II.40).

cire .

O
Source

D
Lame

-D-
Miroir

0- Source circulaire
1- Lame

4- Propagateur

2- Miroir
Paramètres

Diamètre
Epaisseur
Indice non linéaire
Fichier masque de phase statique
Longueur
Indice non linéaire
Normale thêta
Diffraction de Fresnel
Temps
X
Y
Pas maximal de diffraction
Couche limite absorbante
Coefficient d'absorption de la CLA

2.10-2 m
10~9 m
0 m'2/W
y*2e4
100 m

0 m2/W
135°

Os; 4.10-9 s; 1
0 m ; 0,25 m ; 1

-0,25 m; 0,25 m; 4 096
10 m

0,025 m
9,53 m"1

La figure 11.44 présente le profil d'intensité obtenu pour différentes distances de propa-
gation dans le propagateur. On s'attendrait à ce que la lumière soit absorbée à l'intérieur
de la CLA et que l'énergie s'annule. On observe en fait qu'une partie de l'énergie (environ
4 %o) est réfléchie. Cette réflexion parasite (bruit numérique), même si elle est d'énergie
faible, peut constituer un obstacle à certaines simulations car le bruit de haute fréquence
réfléchi peut ensuite être amplifié par effet non linéaire.

Test de conservation du code: 3,886140 mJ après 100 m de propagation.
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FlG. 11.44 - De gauche à droite et de bas en haut, propagation du faisceau dans le propa-
gateur sur des longueurs de 60, 70, 80 et 90 mètres (on effectue un « recalcul » à chaque
fois). On constate que la CL A n'absorbe pas toute l'énergie mais en réfléchit une partie.



Annexe A

Conversion CGS -» SI

Le problème des conversions d'unité est très fréquemment rencontré en optique non
linéaire. En effet, même si le système international (SI, ou MKS) a tendance à s'imposer
ces dernières années (y compris dans la littérature provenant d'outre-atlantique), les pu-
blications antérieures aux années quatre-vingts utilisent presque exclusivement le système
CGS. Le but de cette annexe est d'aider l'utilisateur à effectuer les conversions. Plutôt
de se contenter de formules de conversion sans explication, nous avons choisi d'expliquer
la « philosophie » des deux systèmes d'unités. De cette façon le lecteur sera en mesure
d'effectuer des conversions même pour des grandeurs que nous n'avons pas prévues.

1. Expression des grandeurs physiques dans les deux
systèmes d'unités

a) Système SI (ou MKS)

Dans ce système, quatre unités fondamentales ont été définies :
l'unité de longueur (mètre) ;

- l'unité de masse (kilogramme) ;
- l'unité de temps (seconde) ;
- et enfin l'unité d'intensité électrique (ampère).

Nous rappelons que MKS signifie « mètre-kilogramme-seconde », l'ampère étant sous-
entendu. Toutefois il y a bien quatre unités fondamentales, les grandeurs électriques
n'étant pas définies à partir des autres unités.

D'autres unités sont définies à partir de ces unités fondamentales via des formules
simples. En voici une liste non exaustive :

- grandeurs non électriques :

- énergie (joule) :

/ s))2 , (A.l)
Ai

- puissance (watt) :

p(W)=E(J) /r(s)j ( A 2 )
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- force (newton) :

F ( N ) =

- grandeurs électriques :

- charge (coulomb) :

C(C) = j(A)T(s)

soit 1 C=l A.s;
- tension (volt) :

p(W) =

soit 1 V = 1 m2, kg. s"3. A"1,
- champ électrique (Volt par mètre) : pour mémoire,

- on définit également la capacité en farads (Q^ — C^U^V\ soit
1 F = 1 m"2, kg""1, s4. A2), l'inductivité en henrys {U^ = L^I^/T®, soit
1H = 1 m2.kg.s-2.A~2) et la résistance en ohms (f/v = R^I^A\ soit 1 fi =
1 m2, kg. s"3. A"2), etc.

Le système SI fait intervenir des constantes électromagnétiques dimensionnées : e0

(permittivité électrique du vide) et yuo (perméabilité magnétique du vide). Par définition
nous avons

- c = 299 792 458 m/s ;
- /;,0 = 47rlCT7 F.s2.m"3;
- Solide2 = 1.

La dernière condition permet de calculer: EQ = 8,854187 817. . . 10^12 F.m"1. Ces
constantes permettent d'équilibrer dans certaines relation la « contribution en am-
pères » (exposant du terme en ampères dans la décomposition en unités élémentaires).
Par exemple nous avons les relations suivantes :

force de Coulomb: F^ = (47re0)-
1 (Q (c))2 / (D^)2 ;

- densité volumique d'énergie électrostatique : E 'v — y (E^v^mS)) .

Les relations faisant intervenir le champ magnétique s'expriment plus facilement avec JJ,0.
Les deux constantes SQ et n0 apparaissent naturellement dans les équations de Maxwell :

(A. 6. a)

(A.6.b)

(A.6.c)

(A.6.d)

(A.6.e)

(A.6.f)

div
div

ro

~n+
. CL

D
B

F

B
D

= p
= 0

dB
dt

dD .
dt +J

= flo Hr H

= E0E + P
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b) Système CGS

Le sigle CGS signifie : centimètre-gramme-seconde. Ceci signifie que toutes les quan-
tités non électriques sont définies à partir de ces trois unités de base. La conséquence
est l'introduction de facteurs puissances de 10 pour passer d'un système à l'autre. Par
exemple, pour relier une énergie exprimée en unité CGS avec une énergie en joules, nous
aurons d'après l'équation (A.l) :

E(CGS) _ \M{%) L(cm/s)j

= i x 1000M(kg)

d'où
E ( C G S ) = 107E (SI ).

Quelques unités autres que les unités fondamentales portent explicitement un nom : ainsi
l'unité d'énergie est appelée « erg » (donc 1 erg = 10~7 J) , l'unité de force « dyne », avec
I dyn = 10"5 N.

En système CGS il n'y a pas d'unité électrique de référence : la constante eQ est prise
sans dimension (égale à 1/(4TT)) ce qui permet d'exprimer toutes les quantités électriques
en fonction des trois unités de référence. Les équations de Maxwell dans le système CGS
s'écrivent :

divD = Airp (A.7.a)

divB = 0 (A.7.b)
-i an

e^r (A7-C)

^ (A.7.d)
c at c

B = firH (A.7.e)
D = E + 4nP (A.7.f)

II est à noter que dans le vide nous avons D = E ce qui n'est pas le cas en SI.

2. Conversions entre les deux systèmes
a) Conversion des champs

Pour obtenir les formules de conversion entre les deux systèmes pour des quantités élec-
tromagnétiques, nous commençons par poser qu'en CGS le champ magnétique s'exprime
en Gauss. Numériquement nous avons :

B(CGS) = 104B(SI) _ ( A g )

II est à noter que rigoureusement on ne peut pas dire que 1 T = 104 G puisqu'en SI un
champ magnétique ne s'exprime pas en fonction des unités de masse, distance et temps
alors qu'en CGS si.
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Partant de là on peut rapprocher les équations (A.7.c) et (A.6.c) afin d'établir une
équation de conversion sur le champ électrique (ne pas oublier que le rotationnel en CGS
est en cm"1 alors qu'en SI il est en m^1). On arrive à l'équation de conversion:

HU (A.9)
Cette équation de conversion sur le champ est par exemple compatible avec la formule
numérique proposée dans [34, 6]1.

De la comparaison des équations (A.7.f) et (A.6.f) on peut déduire les équations de
transformation pour D et P :

J2! iD^ (A.lO.a)

p(CGS) =
 1Q4 p(SI) = 10-3c(SI) p(SI) _ (A.lO.b)

4dsl>e

Les secondes expressions ont été obtenues grâce à l'identité £o/ioc2 = 1 et n0 = 4TT10~7 SI.
L'expression sur D peut être vérifiée dans [6].

b) Conversion des charges

En comparant les équations (A.7.a) et (A.6.a) (sachant que p est une densité vôlurnique
de charge, le volume s'exprimant en cm3 dans le système CGS et en m3 en SI), on déduit
une équation de conversion des charges électriques :

= 1Oc(si) g(si) _ (

L'unité de charge CGS est souvent notée ues (unité électrostatique), ou esu dans les
ouvrages anglo-saxons. Nous pouvons calculer la charge de l'électron :

e = 1,602 189 2.1(T19 C = 4,803 242.10"10 ues.

c) Conversion des potentiels électromagnétiques

Dans le système SI les potentiels électromagnétiques sont définis comme suit :

(A.12.a)

B = rotA. (A.12.b)

Dans le système CGS ces équations deviennent :

(A.13.a)

B = rot A, (A.13.b)

On peut en déduire les équations de conversion :
1 n6

y(CGS) = }}LV(Sl) (A.14.a)
C(SI)

A (CGS) = 106A(si) _ (A.14.b)

=3.104El-CGSl
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d) Équations complémentaires de l'électromagnétisme

Voici quelques équations de l'électromagnétisme exprimées dans les deux systèmes
d'unités1.

- force de Lorentz :

SI: F = q(E + vAB) (A.15.a)

CGS: F = q(E + -AB) ; (A.15.b)

- Potentiels en jauge de Coulomb :

SI: V = — Y Q- (A.16.a)
ATTEO ^ — ' r

AIT
courants

charges

(A.16.b)

CGS: V= y - (A.16.c)
charges

A = - y - (A.ie.d)
c ^-^ r

courants

(NB

- densité

: E [CGS) =

vecteur

d'énergie :

= 10Ef>);
de Poynting :

SI:

CGS:

- jauge de Lorentz :

(A.17.a)

(A.17.b)

S I : n = = ^ ^ - (A.lS.a)
Mo

CGS: II = cE A B (A.18.b)

SI: divA + —- = 0 (A. 19.a)
at

CGS: divA+-^=0. (A.19.b)

1. Lorsque la vitesse de la lumière c apparaît dans une équation CGS elle est exprimée en cm/s.
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e) Conversion des susceptibilités et des polarisabilités

Dans ce paragraphe nous revenons au domaine de l'optique non linéaire pour convertir
les susceptibilités. Nous commençons par les grandeurs microscopiques. On convertir un
dip ôle microscopique par

Sachant que p = eoaE, a étant la susceptibilité linéaire (en CGS p = aE) , on déduit la
relation sur a :

aicas> = à
Nous définissons ensuite les polarisabilités macroscopiques :

] (A.22.a)

P<CGS> =

Nous pouvons calculer grâce à (A.9) et (A.lO.b) :

Le terme en x̂ 3^ est le terme d'effet Kerr (variation d'indice proportionnelle à l'inten-
sité). On écrit cette variation d'indice sous la forme2 [35, p. 36] :

n = no+n2(E
2) = n0 + jl, (A.24)

(E2) étant le champ moyenne sur plusieurs cycles, et / l'intensité. En système SI, on a
les relations :

n2 = -^-x ( 3 ) (A.25.a)
4n0

/ = n0ce0(E
2) (A.25.b)

n 2 3 x ^ / A o r ,
1= = 7-2—• A.25.C

n0œ0 AnzcE
En système CGS on écrit :

n2 = — x(3) (A.26.a)
n0

I = noc(CGS) (E2) (A.26.b)

7 = — T F U T - (A.26.c)
n Q C (CGb)

Dans la pratique on utilise rarement 7 dans le système CGS.

2. Attention la définition de n-2 varie selon l'auteur (à un facteur 2 près).
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De ces relations on peut tirer les équations de conversion :

n
(CGS)

n
(SI)

= 4/T

(3)
A(CGS)

(3)
X(SI)

_
108

4 C G S )

7(si)
cn0

ÏOTT

(A.27.a)

(A.27.b)

On peut vérifier la relation (A.27.b) sur certaines tables rédigées dans les deux systèmes
d'unités [36]1.

3. Récapitulatif: tableau de conversion
Nous récapitulons dans ce tableau la plupart des formules de conversions obtenues

précédemment. Pour chaque grandeur physique nous exprimons le coefficient de conversion
littéralement puis numériquement. Dans les formules littérales la vitesse de la lumière c
est prise en SI (c = 2,997924.108 m/s).

Grandeur
Longueur

Masse
Energie
Force

Champ magn.
Champ élec.
Polarisation

Induction élec.
Ind11 magné.

Densité de ch.
Courant de ch.

Charge élec.
Potentiel élec.
Potentiel vect.

Dipôle élec.
Susceptibilité

Polaris, linéaire
Polaris, quadrat.
Polaris, cubique
Polaris, ordre n

P
L
M
E
F
B
E
P
D
H
P
3
(1
V
A

P
a

uéSI
m
kg
J
N
T

V/m

C
V

m3

uéCGS
cm
g

erg
dyn
G

ues/cm2

esu
erg/esu

cm3

p(CGS)/p(SI) U t t -

100
1000
107

105

104

104/c
10-3c

4TTC 10"3

4vrlO-3

10"5c
10~3c
10c

106/c
106

103c
1/(4TT10-6)

1/(4TT)

C/(4TT104)

c2/(4vrl08)

p(CGS)/p(si) n u m _

100
1000
107

105

104

3,335 640.10"5

2,997 924.105

3,767303.106

1,256 637.10~2

2,997 924.103

2,997 924.105

2,997924.1010

3,335 640.10-3

106

2,997 924.1011

7957 747.104

7,957 747.10^2

2,385 672.103

7,152 066.107

1. Pour les indices non linéaires croisés, il convient de multiplier par 2 les expressions (A.25.a)-(A.25.c)
et (A.26.a)-(A.26.c) dès que les harmoniques i et j considérées sont différentes. L'expression (A.25.c) est
remplacée par :

la = (2 - Sa) = (2-M (A.28)

où l'on a considéré les indices ni et rij vus par les deux harmoniques.
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Intensité
Puissance
Fluence

Indice non linéaire
Indice non linéaire1

I
P
F
n2

7

W/rn2

W
J/m2

m2/V2

m2/W

erg/s
erg/cm2

103

107

103

c2/108

cno/(4O7r)

103

107

103

8,987 551.108

2,385 672.1O6 n0

1. Nous donnons le rapport n.2
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