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Abstract

We study perturbative aspects of noncommutative field theories. This work is arranged in two
parts. First, we review noncommutative field theories in general and discuss both canonical and
path integral quantization methods. In the second part, we consider the particular example of
noncommutative ®* theory in four dimensions and work out the corresponding effective action

and discuss renormalizability of the theory, up to two loops.
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1 Generalities
1.1 Introduction

Since the past two years a lot of work has been devoted to the study of noncommutative field
theories, i.e. field theories on the Moyal plane. The main motivation for these theories arises
from string theory: the end points of the open strings trapped on a D-brane with a nonzero NSNS
two form B-field background turns out to be noncommuting [1]. Then the noncommutative field
theories, in particular noncommutative supersymmetric (Yang-Mills) gauge theories appears as
the low energy effective theory of such D-branes [2, 3]. Apart from string theory, noncommutative
field theories are very interesting like any given field theory. In general when we study a field
theory we should emphasize that it is “well behaved”. From this point of view, noncommutative
field theories are really challenging because they are nonlocal (they contain an infinite order
derivatives), and there is a dimensionful parameter, other than masses - the noncommutativity
parameter, 8. The nonlocality may have consequences on the “CPT theorem” as well as the
causality. On the other hand the dimensionful parameter # may ruin the renormalizability of
the theory. It was shown in {4, 5] that indeed space-time noncommutativity (6o; # 0) leads to a
non-unitary theory, while only space noncommutative theories are well behaved in this respect.
Similar to the usual field theories, one can build noncommutative version of scalar, Dirac and
vector (gauge) theories. The noncommutative scalar theory with ®* interaction is considered in
[6], [7], [8], [9] and it have been shown that this theory is renormalizable up to two loops, and the
noncommutativity parameter # does not receive quantum corrections up to this order. Similarly,
one can consider the pure noncommutative gauge theories; in particular noncommutative U(N)
theory has been shown to be renormalizable up to one loop {6], [9], [10]. Adding fermions to
the noncommutative U(1) has also been studied in [11], [12], {13]. However in this work we
will mostly concentrate on the scalar theory. In section 2 we present some classical aspects of
noncommutative theories deriving the equations of motion and Noether theorem. In section 3
we briefly discuss the canonical quantization procedure for noncommutative theories. In the
next section we describe the path integral quantization which we are going to use in section 5
to derive the two loops expression for the effective action of the noncommutative ®* theory. In
section 6 we present a detailed calculation which proves the renormalizability of the ®* theory
at two loops. We also discuss the interesting aspect of UV - IR mixing which is characteristic

to noncommutative theories. The last section is devoted to remarks and conclusions.
1.2 Noncommutative spaces
In the usual quantum mechanics we have the well known commutation relations:

(X}',P'j} = Zﬁ(gl] and
[, X%5] = [BB] =0 (1.1)



However there is no evidence that at very short distances (or very high energies) these relations
should still be true. Then a natural generalization of above is to take the coordinates which do

not commute any more,
(X1, X;] = 6. (1.2)

where 6;; is a constant of dimension [L]?. An immediate remark is that introducing this kind
of commutation relation between coordinates the Lorentz invariance is spoiled explicitly. We
should remember however that we assumed this feature to appear only at very short distances,
i.e. for @ = 0 we should recover the Lorentz symmetry. This is one of the main constraints of
our theory: in the limit & — 0 we should find a previously known commutative theory 2. In

general (1.2) can be extended to space-time coordinates:

(X, X,] = i0,. (1.3)

Here after we call a space with the above commutation relations as a noncommutative space.

To construct the perturbative field theory formulation, it is more convenient to use fields which
are some functions and not operator valued objects. To pass to such fields while keeping (1.3)
property one should redefine the multiplication law of functional (field) space. This new multi-

plication is induced from (1.3) through the so called Weyl-Moyal correspondence [15]:

B(X) +— ®(z) ;

$(X) = / eeX g(a) da

dla) = /w’az ®(z) dz, (1.4)

where « and z are real variables. Then,

By (X) y(X) = // % 9(a) 75 4(8) dodp

= [ eteientik o) () dads . 0
af
and hence,
b1 (X) Bo(X) ¢ (@1 *q)Q) (z) (1.6)
(@1 * <I>2> (z) = [e%o*“’()ﬁu Do (x + &) Bl + r})] . (1.7)
§=n=0

This suggests that we can work on a usual commutative space for which the multiplication

operation is modified to the so called star product (1.6). It is easy to check that the Moyal bracket

2 . . . . . - . .
“However this in general does not imply the reverse: the noncommutative extension of a given theory is not

unique. As an example SO(2) and U(1) gauge theories are the same, but in noncommutative version they are
different [14].



(the commutator in which the product is modified with a star product) of two coordinates z,,

and z, gives exactly the desired commutation relations, (1.3)
[Tl = 16 (1.8)
1.3 Properties of the star product
Here we summarise some useful identities of the star product algebra.
1. The star product between exponentials:
okt 4 piar . ilktg)z e~§(koq) . where
kbp = k'p"0,, (1.9)
2. Momentum space representation:
Let f(k) and (k) be the Fourier components of f and g. Then using (1.9)
(Fro)a) = [dthd'a jik) glg) e 40 cikrare, (1.10)
3. Associativity:
[(£x9)xh]@) = [Fx(gxh)](@), (1.11)
which can be proved immediately if we go to momentum space.
ths = / dik d%q d%p f(k) G(q) h(p) e~ k0D o= 5((k+a)0p) cilk+atp)z  4p4

lhs = / a1k d%q &% (k) G(q) h(p) e~ 2(9%) ¢~ 5(kbla+p) cilk+atp) (1.12)

4. Star products under integral sign

/(f*g)(m) diz = /(g*f)(x) dlz = /(fg)(x) diz. (1.13)

Using (1.10) we can immediately perform the integration over x which will give a 64 (k +¢q).

Due to the antisymmetry of 8 the exponent vanishes and so:

/ (fxg)(x) d'z = / 'k F(k)G(~k)

= / (f-9)(=) dlz (1.14)
From (1.13) we can deduce the cyclic property:
/ (fix fox... fo)(x) dte = / (fa*xfix... fae1)(z) diz . (1.15)
5. Complex conjugation.
(fx9)" = g"xf". (1.16)

It is obvious that if f is a real function then f x f is also real.



2 Noncommutative field theory at classical level

As we have seen in the previous section the way to treat the noncommutative theories is to
modify the usual product of fields with the star product. So, for example, the action for the

noncommutative analog of the real ® theory will be:
m? A
S[e] = / { 3<I>*c)"<I>~—<I> <I>——<I>*<I>*<I>*<I> (2.1)

Thanks to (1.13), the quadratic part of the action is the same as in the commutative case.
Therefore the only thing which is modified is the interaction. This is a very important point to

keep in mind that the free theory is the same as in the commutative case.

2.1 Conjugate momentum and equations of motion

The classical equations of motion, similar to the commutative case, are obtained by minimizing
the action, i.e.

0S
— = 0. 2.2

30 (2.2)
For this to make sense we should define first the functional differentiation of the terms which
contain star products. We shall take as definition for the functional derivative the usual defini-
tion:

S[® + 50] — S[6] = /d4. gii‘l’% 50(z). (2.3)

Let us apply this definition to the ®* theory:

A

Sint[® + 6P] — Sine[P] 0

{/d4:r [((<I>+<5<I))*<I>*<I>*<I>)(:E)+(@*(@+6<I>)*(I)*<I>)(z)

+ (P P*(P+ D) xD) + (P+Px D (P +6D))(z )]

——/d’lx (<I>*<I>*<I>*<I> }

/ z (6P P x P xP)(a +/ r (@ * 0D+ O+ @) (x)

+/d4z (<I>*<I>*6<I>*<I>)(z)+/d z (PxQxPx5P)(2).
(2.4)

Making use of the cvclic property (1.13) and of the associativity of star product (1.11) we can

write:

/([IJ'I,' é?int[(p] 6@(1) —

50 () / d'a [((D * P x D) * 6@] ()

©Wl> S

/' d'a (@ *® % ®)(2) - 5D(x) (2.5)



so that we can identify

SSml® A

In order to write the conjugate momentum we should first distinguish two major cases:

® ;=0
e bp; #0
Op; =0

In this case the only place where we encounter time derivatives is the kinetic term so the
conjugate momentum is the same as in the commutative case.

8oi # 0

This case is more delicate since we have infinite number of time derivatives in the interaction
term. It is obvious right from the beginning that something is wrong since the conjugate
momentum depends on the interaction. The infinite number of time derivatives suggests us
that the theory is nonlocal in time so causality may be violated [5]. It was also shown that
at quantum level unitarity is not preserved any more [4] . For these reasons we will restrict

ourselves only to the case with 8y; = 0 from now on.

2.2 Noether Theorem

Now that we have developed the functional differentiation we can extend the Noether theorem
to the noncommutative field theories. Suppose our action has a global continuous symmetry.

For an infinitesimal transformation we can write:

S[®] = S[®+¢eF(P)], with e = constant. (2.7)
Taking now an z-dependent ¢ we define the current J through the relation:

S[®+¢e(z) F]— S[@] = - / J(®(z)) Ope(x) (2.8)

By definition the action is stationary for any field variation around the classical path i.e. % = 0.

In particular for §® = ¢(z) F eq. (2.8) becomes:

/J“((P(:E)) Oue(z) esical 0. (2.9)
c Z.?lstl}clal
Integrating by parts we find:
/3,“]“((1)(."5)) e(x) d'z = 0, (2.10)

3The case of 8y, # 0 for a cylinder has recently been discussed in [16].



for any €(z). So the current J is conserved. This result is very general and it can be applied for
any kind of noncommutative theory. Tlie notion of conserved current is a little different from

the commutative case. Due to the property (1.13)

/‘[faQ]MB d'z = 0 (2.11)

so the most we can say from eq. (2.10) is:

0. J* = [f,9lmB , (2.12)

for some proper functions f, g. This result is somehow normal since in the limit § — 0 the
Moyal bracket vanishes and we recover the classical result 8, J# = 0.

Let us see now what happens to the charge which in the commutative case was conserved
Q = / JO B . (2.13)

Since we are considering only the case y; = 0, we can repeat the argument we have used to
prove (1.13) for the case of integration only over the space coordinates and we conclude
/[f,Q] mpdz = 0 (2.14)
00i=0

This means that if we integrate (2.12) we get:
60/J0 d3:n+/V7-fd3x = 0 (2.15)

and from here we can say as in the commutative case that the charge () is conserved. Note that
this is true only for 8y; = 0 and for Gy; # 0 even the notion of the conserved charge is ill-defined.
For ezternal (space-time) symmetries, e.g. translations, one can also work out the corresponding

conserved current. For clarity, let us consider this particular case:

d — D460,

b = 9,9,
x, — T,+e, (2.16)
For the action of the form:
S = / Az L(D,0D) (2.17)
where
L = % (0, % 0" — m*®* ®) + 1, (D) (2.18)
we find:

T 1
5 seni 0 = / d'z [gaﬂ (01D % 0, B ¥ + " O,D D) — ,, (" L) (2.19)

6



If we take ® to be the classical path, i.e. 65 = 0 we can write:

/a,l (T,) v d'a = 0, (2.20)
where
T = %(aﬂ¢*au@+auq>*a,l<b) gL (2.21)

However we should remind that the divergence of T}, is not zero, e.g. for the particular case of

Vi(®) = £,* we can write:
1
oI = 3 [00%6"®+ 058,00 + 8,00+ 9“0 + "0+ 0 0]
2
—% (070,05 0"® + 0,0+ 09" ®| + = [0°0 % & — 0 % 2]

+%{auq>*q>*3 +PxFDr D2+ DA GFDAD + @*3*8”@}

(2.22)
Using the equations of motion for the ®* case:
0,0 ® + m*® + %@*3 = 0 (2.23)
we can rewrite the divergence of the energy-momentum tensor
8T = ‘Q‘/\? [@*3 * 0"+ 0D« 0]
+4—[a"q>*q>*3 FOADDR O+ T4 Bk B+ 80207 D]
_ %[ FBxB+ D50 Dx 0+ 340D 4 B — 5 VD]
= %[@ & ®larp * O — dx2x [0, 07D ]MB}
= % [‘1’ 0¥ (I)]MB’(I)Q]MB (2.24)

which, of course, along to the earlier discussion about the conserved charges is not going to
destroy the energy-momentum conservation, for 8g; = 0 cases.

If it happens that the Lagrangian density is invariant under some internal symmetry we can
compute explicitly the Noether current. For this we assume that the Lagrangian, as in the
commutative theory, depends only on ® and 0 ® and we will make abstraction of the internal
structure of the star product. It is well known that when we vary the Lagrangian we find some
terms which yield the equation of motion in the Lagrangian representation, and also a surface
term which will give the Noether current. This surface terms can only come from the kinetic

part of the Lagrangian. For a term of the form

Liin(®(2),0 ®(z)) = F*(B(2),0 B(z)) 8,P, (2.25)



the corresponding surface term will appear when we vary the d,® and the part which enters the

conserved current corresponding to this variation is:
Ty = Fuxéd (2.26)

Let us cousider as a first examnple a theory with fermions, i.e. QED,

L'km(\ll, U) = U«(iv,0,) ¥ with the symmetry:
¥ o T and
P (2.27)

Taking ¥ to ¥ + §¥ we can write:
(5[:/”‘” = Ux (m#c?#) (\I’ + (S\I/) — U (?:’)/#8#)\1/
= Ux (i7,0,)67
= (T * (i140,)09) — (9,7) » (iv0%) . (2.28)
For an infinitesimal symmetry transformation 6@ will be:

U = eV, (2.29)

so that for a global symmetry the current takes the form:

To = iUx (1u9) . (2.30)

For the case of local symmetry, we can encounter two types of fermions (say type a and b)
and consequently two different symmetry transformations [11}, [12]. The arguments we have

presented up to now are still valid for a local symmetry so that the conserved currents will be:

Ji = Ty, x Uxe (2.31a)
Jro= Uyuxex¥ (2.31b)

3 Canonical quantization of noncommutative theories

3.1 Scalar theory

Here we consider scalar theories with arbitrary interaction Vi(®). The star means that the
interaction contains terms with star products, however the precise form of this terms 1s not
important for the general discussion. Let S be the action of our theory:

2

4 114 m? 9 B ‘
S = d'z | -0,00"D — T(D — V(@) . (3.1)

Since the free part of the action is identical to the one in the commutative case, it is convenient

to choose the Fock space and in particular the vacuum state to be ezactly the same as in the



corresponding commutative theory so, the fields can be expanded in terms of the same (compared

to the commutative case) creation and annihilation operators

oa) = 3 [alk)e ™ +al (k)] (3:2)
k

For applying the canonical quantization method we should first compute the conjugate momenta

II(z) and then impose the quantization conditions
[@(z,0), TG, 1) = 6~ ). (3.3)

However a naive application of this method may lead to severe problems. First as we noticed
for the classical theory, in the case 6p; # 0 the theory seems to be problematic [4], [17]. That
is why we study only the case 8p; = 0. For this case the conjugate momentum is just the usual

one which appears in the commutative theory:
II=0;9. (3.4)

In the commutative case position and momentum space are completely equivalent and we can
perform our quantization where we like. However, in the noncommutative theory there is an
ambiguity in applying the quantization conditions in the position space. In general we know
that in order to deal with a noncommutative space we should work in a usual space and we
should replace the products between functions with the star product. But the quantization
conditions (3.3) are defined for ® and II computed in different points, while the star product
makes sense only between functions computed in the same point (see eq. (1.6)). We can escape
these problems, if we work from the very beginning in the momentum space and apply directly

the quantization conditions in the momentum space:
|8(6),11(0)] = 6Dk - q). (3.5)

This is possible because in momentum space the difference between the usual commutator and
the Moyal bracket is just a phase factor €*%¢ which has no relevance due to the §-function which
appears in the rhs of eq. (3.5)

From this point the quantization can go on in the same way as in the commutative case. At
the level of the free theory everything is the same and only the interaction keeps track of the

noncommutative structure of the space through the star product.

3.2 Fermionic theories

For fermions we can apply the same arguments as in the previous section. The frec action for

fermions reads:
Stree = /d41- @(Mau - m)lI/, (3.6)

9



where ¥(z) and ¥(z) can be expanded in Fourier modes:
U(r) = Z [b(k’) u(k) e ** 4 df (k) v(k) eikr] and
K

b(z) = E:Lﬂmuume*“+humvume*ﬂ. (3.7)

k

As for the scalar field theory, quantization in position space is ainbiguous so we are going to use

directly the quantization conditions in momentum space:

{v(k), ¥t ()} = sW(k—yq). (3.8)

For the gauge fields, because of the gauge fixing problem, the canonical quantization is problem-
atic right from the beginning and however they are out of the scope of the present work. The only
comment we are going to make is that for the gauge theories where the canonical quantization
works in the commutative case, the procedure similarly goes through for the noncommutative

case.

3.3 Interactions

The next step is to introduce an interaction and derive the Feynman rules. For simplicity we
shall restrict ourselves to the scalar theory with ®? interaction, but the arguments can be applied
in the same way for other theories.

Let ¢(k) be the Fourier components of ®:

d(z) = /d%eW%%) (3.9)
Then:
Sint = @'z DD x Dk D
&T(@*@)(@*Q) (3.10)

kg @ 50ke) g Rolka) i bha bbb (k) (k) k) (ki)

2
N
5
Q
N
o

Wy e BRI R0 k) (1) (k) b(ks) X

‘\\\\

e O B e S

X (27T)4(5(4)(1€1 —+ lilg -+ k‘3 -+ k4) .
Except the exponential, all the factors are symmetric in &y ... k4, hence we get:

Sint.

&M/ﬁm kg o(ky) @lka) plks) d(ky) (27) W (ky + kg + ky + kq) x

klgk'g 1&'39}64 k19k3 k20/€4 k‘lgk.; /L'Q@k?g
X CcOs :08S + cos 2 COS 5 + cos 5 CcOS 2

(3.11)

Therefore the only differcuce which appears in the noncommutative theory, compared to the

commutative one, is that for every vertex in noncommutative ®' theory we should multiply by

10



an additional factor:

1 k10ko k30ky ki6ks koOk, k18ky4 koOks
*0S CcOS + cos + co CcOs

3 COSs 5 b 5 COS 3 (¢) 5 S B O 9

(3.12)

4 Path integral quantization of noncommutative theories

In this section we develop the path integral formulation for noncommutative ficld theories.
Although we specialize to the scalar ®* theory, our method and all the arguments are valid for
any noncommutative field theory. Then we give the diagrammatic expression of the effective
action up to two loops which we are going to use in the study of the renormalizability of this

theory in section 6.

4.1 Measures

For the path integral formalism we should modify the measure of the functional integral accord-
ing to the convention we are using, i.e. to replace the usual products between functions with

the star product
(DPx) = Nlim d®(z;) x dP(z2) * ... x dP(z,) . (4.1)
—00

However in momentum space the star product just introduces a phase factor which in general is
going to disappear when we impose the normalization condition for the partition function. So,
as far as the measure is concerned, we can forget about the noncommutative structure of the
space and work with the usual measure. The fact that the measures in the noncommutative case
should be the same as the commutative ones, in the canonical quantization method translates
into the point that the perturbative Hilbert space for these theories are the same. The same kind
of arguments hold for other theories as fermions and gauge fields ?. In what we are interested,

the perturbation theory, we can consider that the measure remains unchanged.

4.2 N-point functions and effective action for noncommutative theories

As we emphasized in the previous section, the noncommutative free theory is the same as the
commutative one. The only thing that is changed is the interaction. So, we can say that we
are dealing with a usual field theory defined on a usual space with the usual Hilbert space, but
with strange interactions. For this reason, the noncommutative correlation functions should be

defined in the same way as in the commutative theory.

GM(zy.. .z,) = <o|T<<i>(w1)...<i>(xn))|o>. (4.2)

*However for the gauge fields one should note that the “physical” measure in which ghosts (or gauge degrees of
freedom) have been thrown away, is the same for noncomniutative and commutative cases. This in turn provides
a strong support for the so called Seiberg-Witten map {3] between commutative and noncommutative theories.

11



From which we can conclude that the partition function has the same form as in the usual case,
Z1]] = /(D(I)) giSneti f A (z)0(z) (4.3)
and from here the generating functional for connected graphs
zlJ) = eV, (4.4)
and the effective action

re.) = WiJ - /J(z) () dlx where

W)
D (z) = 57 (4.5)

At this point we can repeat the calculation from the commutative case in order to find an
analytic expression for the effective action:

0 ::‘/(DQ)(E)-&ﬁx)6H3M¢Hfﬂwﬂwdﬂ

1

= [ (aifm +J<a:>> i (el R0 6] (4.6)

To perform the functional integral we should replace, as in the commutative case, ®(z) with
% ﬁa However because of the star products which appear in %, in the noncommutative
case this replacement requires more attention. In the following we are going to explain this step
in detail for the case of the scalar ! theory. The only term in % which still contains star

products is

(551'11&(‘1)) _ A {
S - -——é((b*‘b*‘b)(:ﬂ). (4.7)

The star product can be expanded in terms with infinite number of partial derivatives, and

taking into account that the partial and the functional derivatives commute, we have:
[ ) (0 0)(0) it 0 0]
= [eéol“"r’iu D 05007 Bap O, / (D®)P(x+ &) Plx+n+a«) Ple+n+3) X

C%bm¢m+fﬂw¢wwwq _

{£}=0
3
_ [ego,wafﬂ Dy 50000y 83, <ﬁ ) 0 0 0 e Wi =
7 0J(x+ & oJ(x+n+«)dJ(x+n+0) [€}=0
Al ) ) ) d LWl
= <"—> (ﬁ * E * ﬁ) (L) ch y (‘18)

where the notation {£} = 0 means £ = n =« = 3 = 0. This is a formal way of writing this

result in order to make the resemblance with the commutative case more clear, but it is not

12



completely wrong since the functional derivative g—f(% of a functional F' is a function of x. With

this remark we can write the effective action (for any theory) as in the commutative case:

oT[®] _ (65 (4.9)

0P (z) 5®(T))¢(I)4¢C(r)+'§ [ Glaw) gl da

5 The effective action for the noncommutative ®* theory

As in the usual field theories, we study the effective action and the Green’s (two point) function

through the power expansion in &:

2
re) = Fo(¢c)+§r1(®c)+(fﬁ) Lo(@) 4 ...

2

ij g e (B
GY = G0+?G1+ n Gy +...,
where I'; and G; are the i-th order loop corrections.

5.1 One loop effective action

Using (4.9) in this subsection we work out the one-loop effective action. As we stressed before,
the only thing which is different from the commutative case is the interaction term, so we only

consider this term.

= —=¢ O.(z) + ~ [ d'y G(x, *
(5®($) I Sy e 6 () i y Gl y)(@c(y)

() + % [ty Glon) s ) w0el) =
N ar
- ~-6—ew[‘]](®c*®c*®c>(.r)

A wi / 4 g .
67 ¢ O.(z)x [ d'y G(z,y) 5.07) *D.(x) (5.2a)
AR

—Ere wiJ / d'y G(z,y) 55.00) * (@c*x D) () + @ (h?)

The star products in the previous expressions are to be understood as follows:

(5.2a) x ¢ 300005, Oy 05000000, b (x+¢&) /d4y Gz +n+a,y) S (z+n+ ﬁ)]

)
6% (y) {€}=0
= (2000 800000 B (3 4 ) / d'y Glo +1+a.y) by -2 —n - B (=0

[ ks ; .
— 620;1u9€;4 87]!/ (320paaapada (D(-(l + f) G(T + n -+ ., + n + fg):'{ } 0
L €)=
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= |edtudautn ¢ilerdendin g c(m+§)/d4k Gk) e (5.3)

In the last expression there is no term which is n dependent so from the expansion of the first

exponential we remain only with the first term i.e. 1, while the second exponential will give

eik% \which is also 1 due to the antisymmetry of 6. So,

(5.2a) (I)C(;It)/d4k G(k) = ®.(z) G(0)
= @.(x) Gol0). (5.4)

For the second term we can do the same calculations °,
(5.20) o {c%"waeuf’w e00e 00p 0o / dy G(z + ¢, y)

5
5P (y)

[@C(x +n+a) ®(z+n+ ﬁ)] }{5}:0

= 200 (3000a,05, /d4y G(z + &, y) x

x[é(y—x—n»«a)@c(:c%-n%—ﬁ)+(5(y—x—n~ﬁ)<1>c(a:+n+a)]

= e2%u 9o e?"”"aa”aﬁa{[G(:chﬁ,ern+a) De(z+n+B)+

+G(m+§,x+n+ﬁ)<1>c(x+n+a)}}

{€}=0
_ {e%f)uﬁem stmtestss [ dikdly GO ocla)
X[Cik(f—n—a) glaletn+8) o ik(§-n-0) iQ($+7I+a):]} —
{e}=0
_ / d;k dzlq e%((zk 0(iq)) 1E(( ik)0(iq)) Eiquu é(/ﬂ) ¢(:(Q) +
+/ akdly ¢3LR)0G) o5 ((1)0(=ik)) iz G(k) o(q)
= G(0) ®(z) + /(Zflk'd”lq e~ 1RO ¢ G (k) o (q) .
Altogether we can write the one loop contribution to the effective action:
ol _ A ' o A 47, 34 —L(k(20)) igqr £ (1. =
I = 73 Go(0) @.(x) — S /(Z kEdige = A Gy (k) oclq) (5.6)

"Note that o. (k) are the Fourier modes of ®.(z).
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5.2 Diagrammatics

To give the diagrammatic expansion of the effective action, first one should derive the Feynman
rules for the noncommutative ®* theory. It will not be surprising to say that the usual rules
can be applied. This is because the free theory is the same as in the commutative case. So any
line will represent a Gy and for a vertex with n lines coming out one should write the n-th order

functional derivative of the classical action. The argument can go further

(53
0D (y)6D(2)0P(z3)

0S

_ 4 4
5%.(23) Go(z1,22) /d yd*z Go(zy,y)

Go(z,z2), (5.7)

or in diagrammatic and condensed notation:

6<I(>5g1<> | ) = - T—J km ' (5.8)

Using these rules, it is easy to verify that we will recover the Feynman rules we found in the
canonical quantization method for noncommutative ®4 theory. For this, we have to compute
the fourth order functional derivative of the interaction term. The first order derivative is given
by (2.6). Thanks to the conjugation property of the star product (1.15) one can see immediately
that for real fields this is real. However, the next functional derivatives do not enjoy this property

anymore, and one should make the result to be real explicitly.

62 Sint A 10,8 By i0,000.0
- = —— R pr 08, Unu poVpoCaplp,
55(21)3%(22) “1° .
x[é(ml +&—1x9) ®(z) + 1+ ) Pz, +n+ 06) +
+&(z, + 88z +n+a—xz) Play +n+ 8) +
+&(z); + &) D(xz1 + 7+ @) §(x) +n+ﬁ~:v2)]}, (5.9)
5% Sint A 10,,8¢ Bny  10,000.0
= ——— nr Y Y paVpotay s,
50 (2, )00 (22)0% (23) 6 {62 er %

X [5(151 +&—x2)d(z1 +n+a—mx3) ®(x) + 7+ 5) +
+0(z1 + & —x2) D(z1 +n+ ) 6z + 1+ 3 — 23)
+o(zy + € —x3) 6(z1 + 0+ — 22) B2y + 17+ 5)
+®(z1 + &) 8(z1 + 7+~ x2) 6(71 + 1+ 8 — 23)
+6(z1 + & —23) D(z1 + 0+ @) d(x1 + 1+ 58— a2)

+@(x1 + &) 6(xy +n+a—x3)d0(x1 +n+ 5 — x9) ] } ,

(5.10)
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(54 Sint

(5‘I>(L1)(5¢>(12)(5¢>(13)<I>(r4)

X

| >

Re {e%g!”’af;‘ . eéopaa(.pf),;o «

"

+o(xy + € —22) 6(z1 + 1+ —xq) é(xy + 0+ 8 — 23

)
+o(xy+E€—a3)d(zy +n+a—ay
)
)

D S S s

(
(LC1+7]+/3—TITA1
(
(

( ) o( ) )
( ) & ) )
+6(xry + € —xz4) bz +n+a—1x2)§(zy + 1+ 0 —23)
+o(z1 + & — x3) 6( ) )

T+ n+a—zy) dzy+n+ 58— a0

Oz +€—x)d(zy+n+a—x3)d(z +n+0—24) +

+o(z1 +€—zg) S+ +a—x3)d(z1+n+ 0 — 7:2)} } .

In momentum space eq. (5.11) reads as:

515, A
5o~ gl

11)

{ / A ey d ey 0 oy R (81~ 72) ik (21 —3) k(21 =240) 30 O 500 Dy Oty

[eisz ei(k3+k4)n eikgaeikqﬁ +eik2£ ei(k3+k4)’r) eikmaeik;;ﬁ +eik3£ ei(k2+k4)’q Cikg&eikug/f

+eik4£ ei(k2+k3)7) eikzaeiksﬁ +eik3£ ei(k2+k4)n eikqaeikz[f +eik4£ ei(k2+k3)7) eiksaeikzﬁ}}

— —%Re {/d4k2d4k3d4k4eik2($1—xg)eik3(1‘1—$3)eik4(1‘1—1:4) [e—%(kze(k;g—%-k/;)) e—%(k30k4)

1 e 5 (ka0(katha)) o= 5(kalks) | o5 (kaO(katka)) o5 (k2Oka) | o= 5(kaO(katka)) o3 (kabka)

Lo 5 (kablkaths)) -5 (ka0ks) 1 o 5 (kaO(ka+k3)) e—é(kgokg)}}

A

= —§ /d4k1 d4k2 ddkg (i4k40—ik1z1~ik212~ik313/ik4x4 (27T)4 (S(kl + k‘g + k‘f; + /ﬂ;)

k1 Oky

X
[ COS 5

k‘g 6/&'4
CcOSs

k‘19/€3 kQGkK; . k19k4 oS kgek‘g:|
0s 5 cos 5 cOos 5 5 .

5.12)

So, we can see explicitly, this is the usual factor we have written for the noncommutative vertex,

(3.12).

5.3 Diagrammatic expansion of the effective action

We are now ready to write down the diagrammatic expaunsion of the effective action for the

noncommutative ®! theory. First we show explicitly that up to one loop the diagrammatic

expressions for the commutative and nonconnmutative case coincide. To prove this we show that

if we start from




exactly we are going to recover eq. (5.6). Using the diagrammatic rules described in the previous

section and the result for the third order functional derivative of S, (5.10) we have:

1 2 1 539
2o ;o Lo '
5 e 7 /d ydz GO(y’Z)a@(y)a@(z)w(z)
1A
= 33 {e? 0uvOu 0, 50000, 05, [ z+&r+n+a)®lz+n+0)

G(
+Gz+&z+n+ ) P(z+n+a)+Gla+n+a,z+ &) Pz +n+ 1)
+Glz+n+ 8,2+ P(z+n+a)+Glz+n+a,z+n+8) Pz + &) +
)

+G(z+n+Bz+n+a) (z+§]} , (5.14)
{¢}=0
Written in terms of the Fourier modes becomes:

<\ 1 A i .
= ___{ez redistn citrdestie [tk dtq Gik) o) x

2 6
« [eim—n—a) GAEHnH0) | k(E—n=B) ga(stita) | ik(na=€) gig(z+n+p)

+ HUTHI=) gitlenra) | Gik(a=) gilrte) 4 k(5-a) cila+o)] }
(€)=0

= -2 /d4k diq G(k) ¢(q) eiqz[ ~5(k0q) o5 (kbg) | o—5(k0q) o5(qbk)

1 o5 (k0q) o= 5(k0q) | o4 (Kq) o 2(q0k>+1+1]

A
— 3600 Bufe) - 5 [ at d'q THCND G Go(h) glg) (5.15)

So, up to one loop the diagrammatic expression of the effective action can be written as:

r[@,] = e + (?> > C\/ (5.16)

5.4 The effective action at higher orders

In the previous subsection we explicitly proved that the diagrammatic expansion up to one loop
of the effective action of the noncommutative ®* theory is the same as in the commutative case.
Now we are going to argue that even at higher orders the effective action should have the same
diagrammatic expansion. This is because in the calculations we were doing for the commutative
theory, the order in which we were performing the functional integrals was not important, which
is still true for the noncommutative case. Hence we can apply the same argument to compute

the effective action for higher loops. Therefore, at two loops we have:

R\ 1 I 2 1 - ,
ted =+ (%) 3 Y B 500 +5 < + oMY,
7 2 v 7 8 /\ / 12 ~_ -
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5.5 Planar and nonplanar diagrams

Here we introduce another way of treating the loop diagrams [7] which turns out to be useful in
the discussion of the renormalizability. Up to now we assumed that the noncommutative vertex
is unique and is given by eq. (3.12).

The alternative point of view is to say that the order in which the legs appear in the vertices
is important and for every distinct ordering we can associate a phase factor such that when we
summ up over all the possible orderings we recover the usual factor (3.12). Let us introduce a

notation for a generic vertex with N legs numbered in an arbitrary order (say clockwise):

Viki ... ky) = exp % S kibks | (5.18)
I<G<G<N

Due to the momentum conservation in vertices, this factor in invariant under cyclic permutations
of the legs. As far as only this phase factor is concerned one can deduce some rules so that any
graph can be reduced to a generic vertex for which one can write the phase factor using (5.18).
Rule I: An internal line connecting two different vertices can be contracted without changing
the overall phase factor associated to the diagram. The important point to keep in mind is to
preserve the order of the lines.
Rule II: A line starting and ending in the same vertex which is carrying the momentum £ can

be removed, but we should also introduce a phase factor
bp = etk (5.19)

where p is the algebraic sum of the momenta which are inside the loop.

Applying these two rules any graph can be reduced to a generic vertex in which only the external
lines of the original graph enter, multiplied by some phase factors (these phases appear when
we apply Rule IT) which depend on the external, as well as the internal, momenta of the initial
graph. It is obvious that for tree level graphs in order to find this phase factor we should apply
only Rule I, so at the end the phase factor will depeud only on the external momenta. At loop
level however we may find some graphs for which the final phase factor also depends on the
internal momenta. These are called nonplanar graphs, while those for which the phase factor

depends only on the external imomenta are called planar graphs.

6 Renormalization of Noncommutative ®! Theory

In this chapter we study the renormalizability of the noncommutative ®* theory up to two loops.
We recall from the previous chapter that in noncommutative theories we encounter two kinds
of diagrams which are giving the loop corrections: planar and nonplanar graphs. The planar
graphs are the same as the diagrams in the usual commutative theory, the difference consisting

in some muncerical and external momentum dependent phase factors. For the nonplanar graphs

18



we find some nontrivial phase factors which depend on the loop momenta and which can modify
dramatically the result of integration. In this section we are going to show that applying the
usual renormalization procedure for the planar graphs, all the other infinities coming from the
nonplanar diagrams are going to be canceled out, yielding a finite result, and in this way we

prove the renormalizability of the theory up to two loops.

Notation We are going to extend the attributes planar and nonplanar even on mathematical
formulae. A term will be called planar if it does not contain phase factors which depend on the

internal momentum, and nonplanar in the other case.

6.1 1-loop renormalization of ['?

The Euclidean action for the noncommutative ®* theory including the counter-terms can be

written as:

S = /d4m[8®8"®+ q>2+ﬁq>*q>*q>*q>]

2

P

ik <1>2+—<1>*<1>*<1>*q>} (6.1)

+ /d%[ﬁ(zg—naﬂ@aﬂqw 5

This leads to the following diagrammatic expansion of T(®) at one loop:

. I
re - . 4 % wV.CZH + . . (62)

p

The one loop mass correction in the noncommutative theory has the form:

K

A pok\ 2 d'k
A__}Q»_.,_ B ——?j/ {2 (COS 7) * 1] k% + m?

P

A cospbfk +2 4
) / Tz 0K
d*k A cospfk 4
= - — | ——=d"k. 6.3
/k2+m2 3_/k2+m2 (6.3)
Using Schwinger parameterization
1 o0 (]L)‘i’ '))
— ,—a(k”+mn” 6.4
k2 + m? /0 dace ' (6.4)

the integral over & becomes just an ordinary Gaussian integral which can be performed explicitly.

N
L — __/ da/d k a(k? —I—m)_+_()7k0p alk?+mn?)

/
ey
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— -Wé\w—ﬁ /Uoo dov <\/§>4 [2@“”"”2 +e"°‘m2"k—?} , (6.5)

in which we introduced the notation p o k = pffk = p,0##6"k,. The integral over « can be

1
regularized by introducing a factor e” saa? | where A plays the role of a cut-off.

& N[ da e
= —-—— —e eff =
__,L_l,m P 3 .94 72 0 a?

A 9 Aﬁ,, m
= — : LN e , 6.6
1272 " m2 1 Acsy (6:6)

where Ae_fo =pop+ A%, and K is the modified Bessel function [18]. It can be scen that in the

limit A — co, Aes; becomes pop so the integral remains finite regulated by the cosine factor
which appears in (6.3).
For the planar part of the diagram we can repeat the calculations with the change A.;; — A,

and then we absorb the regulated integral in dm? to make I'® finite

A d*k
m? = 2 [ . 6.7
mt = 3 ) e 67
We can write now the quadratic part of I'® at one loop:
(2) a L oo 2 A M? 2
r = — M K A -p). 6.8
O = [y | gt (30 ) 1000 et 68

. . 9
Here M?2 is the renormalized mass M2 = m? + dmy.

For small arguments K; can be expanded in Laurent series

1
Ki(z) 2% 2 2t (6.9)
z 2 2
so that for A.rr > 1 the quadratic part of the renormalized effective action is:
1
M) = [ dip o) ol-p) %
A AM? 1 ;
2 2 2
x Ap"+ M+ — - - In ( + O(X)
[ 96 (2m)2 (pop+ ) 9672 M2 (pop+ )
(6.10)

As we see after sending A to infinity the I'® presents an infrared divergence. Morcover, if we
first consider the zero momentum limit the cut-off effect of the noncommutativity cannot be
seen any more and the two-point effective action diverges. This is the interesting UV-IR mixing
which appears in the noncommutative theories. This divergence can be explained assuming that
(6.10) is the Wilsonian effective action obtained by integrating out some other ficld x (sce [6]).

Then the action which correctly reproduces the factor 5(1)—5 ineq. (6.10) is:
4 4 1, ; 1 Qe .12 . A ;
')y = ')+ [ d'zx 5 dx o dx + 5;’\ (00 0x)" +i\| == Ax¢ | -
. T
(6.11)
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However the logarithmic term in (6.10) is yet to be explained in some other way [19)].

6.2 1-loop renormalization of ['")

The one loop diagrammatic expansion of T4} is:

N . 1 -
r = )< + X + >< >/ + 2 permutations
N —

2
(6.12)
The cosine factors associated with the loop diagram can be written in the following way:
1 .
- x P(py...ps, k,8), where (6.13)
A2 0 )
P(py.-.ps,k,0) = g cos p12p2 oS p32p4 [l + cos kB(p, +p2)} +
X p3fpa p16p2 p19p2
+ 18 5 5 cOos 2 + kBp; | + cos 5 k9pg) +
N pifpy p3bps p3fps
+ Ecos 7 cos( 5 —k0p3)+cos( 3 +k0p4) +
A2 Opo — p3b Opa + p30
+36 {cos (p———————l b2 3 PP 4 k6 (p +p3)) + cos (p_______1 b2 5 PsiPa k6 (p1 +p4)> } :
(6.14)
The nonplanar parts give rise to an integral of the type:
. eika
Iy, = 4k - ‘ , 6.15
w = | G ) 61

where p is the total momentum which is crossing the loop. As we showed for I'® the exponential
factor acts as a regulator and the integral remains finite. There is still the peculiar IR divergence,
but in the following we are going to study only the UV behavior of the theory. So the infinity
comes only from the planar part and it is of the form:

A? d'k
9 / (k2 + m?)((p1 + p2 — k)% + m?)

cos p1Ops cos psBpy + 2 permutations. (6.16)

Renormalization of T(4) requires to absorb the infinity in the corresponding counter-term in eq.
(6.12), i.e.

+ — Planar ( )
2 /\\, e \\

p=0 p=0
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3 2)\2 dk
I SV i..—_/—:o
2 A

9 (k% + m?)?
ooy o= Y / d'k (6.17)
T 3 S (K2 +m?)2” '

At this point using the low external momenta limit we can write explicitly the renormalized
effective action at one loop. For this we should compute the integral (6.15) coming from the

nonplanar graphs. We shall first use the Feynman parameterization in order to write the de-

nominator as a square

1 /l dz
_— = =, (6.18)
AB 0 [a:.4+(1—a:)B]2
so that we can write:
POk

1
Lyp = / da:/d“k =
? 0 [z(p1 + p2 — k)% 4+ 2m? + (1 — z)(k? + m?)]2

1 oip0k
/ da;/d% -
0 [k2 — 2(p1 + p2)ka + (p1 + p2)? z + m?]
1 _ oip0k
_ / dz el(PG(Pl-i-Pz))l‘/dtlk (6.19)
0

k2 4+ M2’

where
M? = (;1 +p2)2x (1—2z)+m?.

We can now perform the integral over k using Schwinger parameterization:

4 Cipt?k . . ok oC (k2+/u?)
d ————— — k /zp /_ﬂ
/ k(k2+M?)2 /d ¢ /O e dox
> 2 5
= / « do /d4k~e—0k +iplk ,—all
0 }

4
1 "0 s Af2_ pop
= o7 o dov ) e MR
(2m)4 J, v

1 ;
= 32 Ky < M? p0p> . (6.20)

Finally the integral in eq.{6.15) becomes:

Lot { .
L, = 57}7/0 dx el(po(p1+p2)) T Ky <\/[(p1 +p9)2a (1 —ux)+ mz} ])Op> . (6.21)

In the limit of low external momenta we can neglect factors which contain p? and recalling the

behavior of Ky around zero,
x—0

Kolz) —— — lng + fiuite, (6.22)
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we can write:

1 4

Ly 6 72 lnmzpop'

(6.23)

The integral I,,, does not depend on the sign in the exponent so in eq. (6.14) the cosine factors
will be split in another cosine which depends only on the external momenta and an exponential
which contains an internal momentum as well. In the limit which we are considering we can
neglect the cosine factors which depend only on the external momenta and taking into account

the “2 permutations” from eq. (6.12) we can write:

1N _ A?/M 1
2 9 (k2 + m2)((p1 + p2 — k)? + m?)
pl"\l—}ZO
4 3 A 5 A
(k8(p1+p:) 2 ikOp; z kO(p1+pi)
X [Ze’ p1 +2Ze +4‘ evipPTe
=2 1=1 =2
(6.24)
and so using (6.23) we can write the renormalized four point function at one loop:
r ( ) = A- S In— +ln— +ln—?
rentPL Pl 9672 m2Zpropi  m2prop,  m2pzops
o ] !
n n
m? pa o py m? (p1 + p2) © (p1 + p2)
1 1
+1n—; +In —; .
m? (p1 +p3) © (p1 + p3) m? (p1 +p4) o (p1 + pa)
(6.25)

6.3 I'® at two loops

After the one loop calculation, we can proceed to that of two loops. First we start with two

point function:

r® = R + oo + e +

_.[..
N —
b
|
|
_.[..
N —
_.[..
| b
4\\ \
o0

—_— e -

@ @ )

_+_
N =
UY B
{
|
1

_+_

(6.26)
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In the usual commutative ®* theory at two loops terms (e) and (f) cancel out. However, in the
noncommutative theory we are left with a term because, the 1-loop mass correction takes into

account only the planar part. (see eq. (6.7))

X
" )

1 s _ A 2k diq cos kfp + 2
2 > \-—/—> - 18 (g% + m?)(k? + m?)?
q
1 . RS 2k 4l (cos kfp + 2)(cos kfq + 2)
4 — - T3 (g* + m?)(k? + m?)?

i < ; _ A2 2k dtq cos kfq(cos kfp + 2)
’ 36 (2 + m2)(k%2 +m?2)?~

(6.27)

N | —
+/ ™
¢\</
|
!
»hl'—‘

Using Schwinger parameterization, the integral over ¢ can be done explicitly and we remain

with:
. E ; . q
1 Q) 1 /\2 4 o0 da Vs —am?— L —
- - — _ d k s 4"/\&][
5 A TT 36/ /0 i \Va) ©
cos pfk + 2
A 6.28
x (k2 +m2)2”° (6.28)
where Aggr is given by A~ f = k ok + 57. The integral over o can be also computed exactly
yielding a modified Bessel function K, a,n(l the final result is:
\
X J
1 { ) 1 <
5 . ty N, =
2 0splk + 2
) T} kok, _+_ ‘\ffff (}m +m )"
(6.29)

Simple power counting tells us that the integration over the large values of k is finite provided
Ky does not diverge at infinity. In fact K, decays exponentially at infinity, so the convergeuce
is guaranteed. On the other hand the integration over small values of & can be controlled if we

do not let A to go to infinity. Under these assumptions we can write:

( N
A N /

! { ) 1 a = finit 6.30)

2 o t+ 5 N/, = fite (6.:



In the usual ®* theory, for the remaining loop diagrams in eq. (6.26), the momentum indepen-
dent infinities are absorbed in dm?, while the momentum dependent ones are absorbed in the
wave function renormalization.

In noncommutative ®* theory, the momentum dependent factors which appear in the vertices

for (h) in eq. (6.26) are:

1 p9k q9(p — k) p9q k9(p — q) kBq pﬁ(k + (1) g
— —_ _ 4 — ——" 4 c0§ — —_ 31
9 [cos 5 cos 5 cos 5 cos 5 cos 5 cos 5 (6 3 )

Expanding both the square and the cosine factors we get:

1 ] B éf/ d*k d'q -
6 N 7 38 rmd@+md)((p—k—g)? +m?)

+§ [cosp@k + cos pBq + cos pf(k + q)] + § [cos k6(p — q) + cos ¢f(p — k) + cos kﬁq]
1

+§ [cos (ka +q0(p — k)) + cos (p&k — g8(p — k)) + cos (pfk — q0(p + k))] } =

A2 d*kdiq

36 1 + 2cos pfk + 2 cos kfq +
36/(k2+m2)(q2+m2)((p—k~q)2+m2) [ + 2 cos pfk + 2 cos kfq

+ cos (pbk + q0(p — k)) ] )

(6.32)
The contribution of the counter-term (g) in eq.(6.26) is:
1 < ) _ M / d*k 2+cosp9k/ d'q
2 » 2 3 k% +m? 3 (2 + m2)2
A2 'k d* A2 0k
N —/ 2 ! + o [ dik dl C(;SPQ 22
9 J (k2 +m?)(g?+m?)? 18 (k* + m?)(¢* + m?)
(6.33)

For the planar diagrams we should follow the same renormalization procedure as in the cominu-

tative case. We arc then left with the nonplanar part which can be written as:

1 /S 1
5 Nelr— T 5 A» -
2 e 6 /
sk—c NP
2 »
= ./\_ d‘lk_ dl4q ('OQSpek . [ 1 . 1 ‘ :I _
18 (K2 +m?)(¢* +m?) [ +m?> (p—k—q)*+m’
A2 d*kdiq
— o 2 cos kg + cos (pk + qf(p — k))|(6.34
36 / (k2 +m?) (g2 + m2)((p — k — q)%2 + m?) { cos kfq + cos (pfk + ¢0(p ))]( )
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For the first term, the integral over ¢ yields a finite result (this can be seen by simple power
counting), while the term cos pfk acts as a regulator for the integral over k. In the second term
when we take cos kfg from the square bracket and integrate over g, we get a modified Bessel
function (K (v'k o k)) which exponentially decay at infinity and takes care of the integration over
large values of ¢. When we take cos (pfk + gf(p — k)) by a change of variables (k' = p - k and
¢ = p — q) we can put the integral in the form:
d'k d'q
= cos kfq
/(@—kﬂ+ﬂﬁﬂp~w2+mﬁup—k—®2+mﬂ

for which, in the UV-limit we can apply the same argument as before.

At this point we have proved that renormalizing the planar part of the diagrams appearing in the
noncommutative version of the ®* theory, as in the usual case we can make ['?) finite without

renormalizing any other parameter, in particular, .

6.4 TI'“ at two loops

r4 -

er—-

><>/ covn s

(4) ()

Ko
+ ></>< + 2 perm % >é>>< + 2 perm | +
(D)
T M\X/ +5 pe +— +2 +
5 PN perm L perm
(F) G)
I N
+ 1 \\/( [ \ + 11 perm
Yy
(H)

(6.35)

This formula requires some comments. The last term (or the fish diagram) appears twelve
times according to the mumber of permutations of the external momenta which give different
contributions. In the commutative case however we can sce only six independent permutations.
This difference comes from the fact that in the noncommutative theory there arc momentum
dependent phase factors which appear in vertices, and these factors allow us to distinguish
between the last two legs of the fish diagram. Since all we are doing is to take the fourth order

functional derivative of the effective action, and the order in which we perform the derivatives
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has no importance, in the end when we sum up the diagrams coming from all the permutations
we should find that the result is invariant under arbitrary relabeling of external momenta. This
is the reason why we need 11 permutations in the last term of eq. (6.35). However, since not
all the terms in the fish diagram break explicitly the symmetry between the last legs, we shall
consider for simplicity only 5 permutations, but in the end we should remember to symimetrize
over the last two momenta.

In the commutative case terms (D) and (E) from eq. (6.35) cancel each other. In the noncom-
mutative case this cancellation is not complete. Using the notation we introduced in eq. (6.14)
for the cosine factors appearing in the 1-loop vertex correction, and also the definition of dm?

from eq. (6.7), we can write:

1
+ 2 perm + 3 + 2 perm | =
A? Pk, p, ) A
= 2 [ d%adt i -
9 NP+ m) B+ m)(p— k)7 +m?) 3
—A—Q/d“lk 24 P(k,p,0) A (coskBq + 2)
9 @+ mD)(EZ+m2)2((p — k)2 + m2) 3
A3 cos kfig P(k,p,8)
= 2 [ d%q* - L . 3
277 ] E o R ((p - K+ ) (6.38)

The ¢ integral is regulated by cos kfq, while the integral over k is convergent right from the
beginning. This means that even though the sum of these diagrams is nonzero at least it is
finite, and this is what we are interested in.

The planar part of the diagrams in (6.35) does not come with anything new except for some
numeric and phase factors which depend only on the external momenta. Nevertheless in order
to apply the usual renormalization procedure we should check explicitly that the external mo-
mentum dependent factor is the same for all the diagrams which appear in the expansion of 'V
and this should be exactly the additional phase factor for a noncominutative vertex, i.e.

7] 26p, ) 6p. O, 0
COSpl P2 COSP& Pa +COSP1 P3 cosm P4 +COSP1 P4 COSP2 ps_

2 2 2 2 ‘ 2 2

We shall now compute the phase factors associated to each diagram in the expansion of I'") in

(6.37)

(6.35) leaving apart for the moment the overall factor %

X

(@) {COS (k — q)Oém + p2) + cos <(k + q)Oépl +p2) keq) L cos (k + q)92(pl Hm}

2 + 2 ’ 2

k _ 3 —
y [COSP19P2+ 6(p1 + p2) COSP19P2 kO(p1 + p2) n COSP19P2+A9(P1 Pz)] y
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0 6(p3 +
X cos psfpa +q9(ps + 1) + cos + cos

p30ps — q0(p3 + pa) p30ps — q0(p3 — pa)

2 2 i 2

(6.38)

Due to the internal momentum phase factors, the nonplanar diagrams are less divergent than the

corresponding planar ones. However divergences may still appear whenever the cosine factors do

not contain any of the loop momenta. At twe-loops we have two independent internal momenta

to integrate over so, as explained before, all the terms which contain cosine factors and involve

both of these momenta will remain finite after integrations. The second term in the first factor

from eq. (6.38) contains a kflq in the argument of the cosine which cannot be found anywhere

else. So after expanding and transforming the cosine products into sums of cosines this term

cannot disappear. In what follows we consider only terms from which either k& or ¢ (or both)

disappear. These terms come from:

+ cos + cos

1 {COS p30ps + q6(p3 + p4) p30pg — q0(p3 + p4) p36ps + q9 (p3 — P4
2 2

P10p2 + q9 (p1 +p2

% {cos (P19P2 — qf(p1 + p2) "

5 + k6(p1 + p2) > + cos

ik

( )
(P19P2 + g0(p1 + p2) — k0(py + py ) 1 cos (Pl P2 —(19 p1 + p2) ) n
<P19P2 + q9 (p1 + p2) + KO(p1 + po ) 4+ cos <P19p2 - q9 p1+p2 ) N
4+ cos <P19 2 —Q9 p1+p2) 0(p1 + pa > + cos <P19P2+(19 p1 + p2) > N
+ cos (P19;D2 - (129(1?1 +p2) k9m> + cos <p19p2 + (129(131 +p2) 2) N
1+ cos (P19p2 + q29(p1 + p2) i k9p1> + cos <p19p2 - (129(])1 +p2) )}

(6.39)

The planar part Using overall momentum counservation we can extract the planar part:

Planar[(G)] = 2-

1 30D + q8(p3 + p. 30pa — q0(p: :
§[C0523 s+ g0(p3 P1)+(mp; P4 f1(Ps+p4)}x

5 [0S 5
Op2 + g0 ‘ Ops — qB(py + p.
X [cosp1 P2+ a9(p1 + p2) 4 cos P12~ 4 (m -H)z)]
2 2 Planar
6 O, o — a0,
= cos P1OP2 + p3bp + cos p10p2 — p36pa
2 2
- 9. “p19p2 . p30py
= 2.cos8 FC0s T .

&
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The “2 permutations” take care of the other combinations of external momenta, and so

1 . 1 p10 o
- \C \/ + 2 permutations = — | cos 21IP2 (g PBUPA +
4| A LS 297 2 2
e : o ) planar
0 o ) o
1 cos p12p3 oS p22p4 1 cos p12p4 . cos p22p3

(6.41)

Nonplanar g-independent terms

1 Ops — p3b
><X/ E[Qcos (pl P2 2p3 P4 + kO(p, +p2))

NP I

P10p2 + P30p4

+ 2cos + k6(p; +p2))

+ 2 cos — kO(p1 +p2))

p19p2 p30p4

+ 2cos — k6(p +p2)>

0 0 0
+ 2 cos p19ps — p3 P4 + k6p1> + 2cos (p—————l P2 + P3op4 + k@pl)

(pemege
(pl P2 + p39p4
(g
(porgme

2

0 0 Opo — p30
+ 2cos (Pl P2 ;-Ps P4 k6p2> +2cos (pl P2 2?3 P4 —k@pg)}

0 0
%cos p12p2 cos P27P4 cog k8(p; + p2)
+

0
p3§p4 [cos <p12p2 + k6p1> + cos (plg — kbp )]

Nonplanar k-independent terms The diagram is perfectly symmetric in k& and —¢ so we

(6.42)

can just replace k by —¢q to get:

LNy 1 pifps  psbps \
1 A )\ = = 508 T c0s = cos q0(p1 + p2)
NP 11
9 0 0
+ cos p12p2 [cos <p32p4 - q()pg) + cos <p32p4 + q9p4>] (6.43)

Let us now consider the next term in eq. (6.35). The phase factors associated with the vertices

are:

(H) [cosp16p2+k6(pl+p2)+cos + cos

p16p2 — kO(p1 + p2) p10p2 + kO(p; —])2)] y
2 2 ) 2

30k — — : k - : :
{COS P30k qus q0k + cos p3fk + qus + qf + cos P30k qus + QGk} o
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p30ps + kOps + qbp3 + Ok p30ps + kOpy — qOp3 — qOk
oS 5 + cos 5 +

30ps + kOpy + qBps + gk
+cos (m pa + kOpy + q0ps + g +q9m)} (6.44)

2

As before the terms containing simultaneously & and ¢ in the argument of cosine factor give no
contribution to the divergent part. This means that in the product of the last two terms we
only have to consider those combinations of cosines which do not lead to factors of kflq in the

argument. It is easy to see that these terms come from:

1 {2 cos P39P1 — k‘29(p3 —pa) +2cos p3fpa + kg(Ps + p4) + cos (P39P4 — k‘g(Ps — p4) + q9p4>
+ cos <p39194 + kg(PB + pa) + q9p4> + cos <p39p4 + kg(Pa + p1) + (19173)
b cos <P39p4 + k‘g(m —p3) q9p3> + cos (P39P4 + kg(Ps +pa) 40(ps + p4))} y
“ [cos pi1p2 + kg(pl + p2) + cos p16ps —- kg(Pl + p2) + cos p16p2 + k‘;(pl - PQ)} C(6.45)

The planar part Proceeding in the same way as before we can write the planar part:

9 _
cos P3OPa T KOs +pa) | - p1Opa + KO(py tpa) o p1Opa — kO(p1 + o) _
2 2 2
planar
1 ) , _
_ 1 s p10p2 + p30py + cos P16p2 — p30p4 ’
2 2 2
(6.46)

and this is precisely the factor cos ’”Eﬂ cos % we needed in order to be able to apply the usual
renormalization procedure for the planar diagrams. Taking into account all the coefficients (also

the %) we obtain:

N A 1 pip:  p3bp. .
5 \/\ ( X 5o oS T cos (6.47)
s T Planar

Nonplanar g-independent terms:

\\ T
\, // ! i
N .

/// \\\‘\ . /“
/ T NP 1

o [COS Pifps + lc;)(m + p2) + cos p10po — k‘29(P1 + p2) + cos p1p2 + kg(l)l — p2)

p30ps + kO(ps — p: 230p4 + kO ,
x[msps s+ ?(1)4 P3) oo P3Pt 2(P3 + p4)

nonplanar
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1 9 9 Opy — p3f
o {COS (pl P2 ;ps ps kem) + cos <p1 P2 . p3fps k9p4)

7 ) — p3f
+cos (m P2 ;ps ps k9p4> + cos (mé’pz . psfpa k9p3>

0 6p> — p36
nOPE O kot ) o con (PR kgt )

0py — 136 Op2 + p3b
+ cos <;D1 P2 P3P | k6(p; +p2)) + cos (&%M — kf(p; +P2)>

0 _
p16p2 + p3bps +P39;D4 kepg) + cos <P19P2 . p30p4 + k0p1>J .

(6.48)

Nonplanar k-independent terms:

NP IT

1 6 0 Opy — p30
~ Z[cos (pl P2 ';‘P3 P4 +q0p4> 1+ cos (Pl D2 > P3bp4 ~—q0p4)

Opo + p3f fpa — p3b
+cos <p1 P2 : psOps qem) + cos (pl p2 . p3fps q0p3>

0 0
+ cos (pl D2 42-103 P4

<P19P2 — p30p,

+ ¢0(p3 + p4)) + cos 5 —gf(ps + p4)>

(6.49)

The propagators in diagram (H) come with a &%, so the integration over k is already UV finite.
This means that the nonplanar k-independent terms will give a finite result because they are
regulators for the g-integral. However, the terms which do not contain ¢ in the cosines (the so
called “g-independent” terms) are divergent. In the following we will show that all the infinities
coming from nonplanar diagrams are going to be canceled out when we take into account all
the diagrams in (6.35). The counterterm which is responsible for these cancellation is the term

which was denoted by (F).

1 N \.( 3 d'k d'q v
2 A e 27 ) ((p1+pa — k)2 +m?) (k2 + m?) (g2 + m?2)?

nonplanar
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Op- 8 1 8 f
X { cos P17P2 g Z% cosk@(py +p2) + =cos bi7p [cos (M - k9p3) +

2 2 2 2
0 1 Opr + p3b
+ cos (7)32[)4 + k9p4>] + 7 08 (p“] P2 5 PsvPa | kO (p1 +p4)> +
Bp: 10p. 1 Op. Op-
+£1—1 cos <&]%M — kb(p1 + p3)> + 5 cos P:&% {cos (812—]33 + k9p1) +

0
+ cos (p12pg - k@pz)] } .

(6.50)
1 pl : g p3
Z p2 p4 -
21-p2~k ol+pl2-q div. NP
S / d'k d'q
27 ) (K2 +mA)((p +p2 — k)2 +m?) (@ + m2)((p1 + p2 — ¢)% + m?)
1 Op- 6
X {-2— cos p12p2 cos p32p4 [cos k6(py + p2) + cosq8(p, + pg)} +
1 6 0 0
+=cos PP 1 oo ( 22724 qfps ) + cos Pa7Pa | gbps } | +
4 2 2 2
1 0 0 0
+Z cosl_)§2_p4 [cos (p12p2 + k0p1> + cos <p12p2 — k@pg)} } (6.51)

Since the propagators corresponding to this diagram are ¢ +— k symmetric, by a change of

variables ¢ can be replaced by k& inside the cosine factors.

ol-p2-k ol+pZ2-q

div. NP
53_/ a4k dtq .
27 ) (K2 +m2)((p1 +p2 — k)2 + m2) (2 + m2)((p1 + p2 — )% + m?)

o, Op. 1 p10p: 6
X { cos p12p2 cos p32p1 cos kO(py + p2) + 7 €08 81—2]2 [cos (p_%& - k@pg)

36D, 1 8 &p. 0
+ cos (7)327)1 + k9p4>} + ZCOS p32p4 [cos (])12]32 + chm) + cos <p12p2 — k9p2>} }

The divergence of the fish diagram coming from nonplanar diagrams is:

g e T ™ div NP

B A3 / d'k dty
21 ) (K2 m)((pr +po — k)2 D) (g? +m2)(k + g+ p3)? +m?)
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2

Oy — 30 ) 1)
+ cos <@L2£iﬁ N kgpl) + cos (1%@_?4_ _ k.gp?) 4

fps — p3b Opo + p3b
+ cos (p—-——1 P2 5 P37P4 + k6(p, +p3)> + coSs (p————-——l P2 T P37p4 + k6(p1 +p4)>

1 O0py — p30 0 0
X 21-{ cos (M2_2_E3_P4 + k6(p +p2)> + cos (Pl—@—ip—B—ﬁ — kO(p, +P2)> +

2

0 0 0
+ 2cos p12p2 [cos (PS P4 _ k9p3> + cos <p32p4 + k9p4>] } .

2
(6.53)

The factor in front of the fish diagram is % because as explained at the beginning of this section
we are considering only five permutations instead of eleven and we are going to symmetrize the

result with respect to p3 and p4 in the end. So the contribution (6.53) of the fish diagram should

1 —
2 \ B

———— Idiv NP

be:

)\3/ d*k d'q
27 ) (k* +m*)((p1 + p2 — k)* + m?*)(q*> + m*)((k + ¢ + p3)* + m?)

11 Opy —
X ~{— [cos (p_____1 P2 — Psbps + k6(p, +p2)) +

412 2

Ops + p3b
+ cos (w — kOB(py +p2)> + p3 p4] +

2
1 Opo — p3l ) 6
. [COS (21_9_271?3_% N k9p1> 4+ cos (111_122#% _ kgm) s o m] N
Opo — pab 6p2 + p3f
+ cos (2P0 4 oty 4 o)) +cos (IR kg 1)) 4
+ 2003# [cos (# — k&pg) + cos (pig—pi + k&m)] } =

_ g/ d'k d'q y
27 ) (K2 +m2)((p1 + p2 — k)2 +m2) (2 + m?)((k + g+ p3)? + m?)

4 2 2

4

Op. 0
0s <p32p4 — k9p3> + cos <p32p4 + /«191)4)}

1 0 6 fp. 6
X o~ {2cos P1IP2 s P37PA (g k6(p; + p2) + cos p32p; [cos <p_19_]_73 + k:9p1> +

8 8
+ cos (p12p2 — k9p2>:| + 2 cos p12p2

Ops — p30 Opy + p3bp.
+ cos (2RI iy 4 o)) 4+ cos (PRLEI ko 4+ ) } (6:54)

And now we have truly only 5 more permutations. However, the first term in the last equation

does not give different results for all five permutations, and finally it can be written:
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11 Opy — p3Op, Oy 10,
_{5 [cos (p——-———l P2 — PsVps + kb(py +p2)> + cos (1—)1 P2+ P3Ups kB(p, + 1)2))} +

4 2 2
1 0 36p. Op2 — p30
3 cos (P22 4 oty 4 pa)) 4 con (PP oy, 1)) 4

+ 5 permutations} =

1 Ops — p3b 0 p36
= Z{ [cosel—l}-?»z—M coskO(p1 + p2) + COSZL)Q;——MCOS k6(p1 +p2)] +

+ 5 permutations} =

_! cos P10p2 cos p3bpa
21 2 2

coskO(pr +p2) + 5 permutations} =

7 7 6 6

= cos [)12}72 cos B32P4 (os k6(p1 +p2) + cos plzm cos [)221)4 cos kO(p1 + p3)
0 ;

+ cos p12p4 oS p22p3 cos kB (p1 + pa)

(6.55)

Now it can be seen that all the divergent nonplanar terms in (G) and (H) from eq. (6.35) have

a correspondent in the counterterm (F).

1 L g
i >@Q< revemmo g Lo e '
9 . \'v"
. e div. NP
+ 5 )/\ /\.\ + 5 perm =
A NP
(6.56)
/\3 / (i/llfl (i4(1 cos m 0[)2 08 ])36])4 Cco ]19( D1+ )
_ A | | ‘ oS Cos 208 A 1
27 J (K2 +m2)((p1 + p2 — k)2 + m?)(¢* + m?) 2 2 n

1 1
) + : 5 T + 2 perm p +
{((1 +h+p3)2+m?2 (pr+pr—q?+m? @2+ mQ} D rm}

A3 / 4k dlq 1 P19y
B - ; — + — C0S ———
271 ) (K2 +m?)((p1 +p2 — k)2 +m?)(¢? +m?2) 2 2

P30p4 p3Bpa ! !
os [ P39 1an. ) 4 cos kOpa )| - T T
* [u», < 2 m) oo ( > piﬂ [((1 +h+py)t+m? ¢t mz]

+5 p(zrm}
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Ry / d'k dq
27 (k2 +m2)((p1 + p2 — k)% + m2)(¢? + m?)

1 Op2 + p3b fp2 — p3b
ok [eos (PR L kgt ) )+ cos (BT ) )]

1 1
: [(q+k~+p3)2+m2 q2+m‘2] ! pelm}

+5§ / d*k dlq
27 (k2 +m2)((p1 + p2 — k)2 + m?)(q* + m?)

1 0 ) 0
XZ {cos p32p4 (cos (1)—12—1-)2 + k9p1> + cos <p12p2 — k@pg)) +

6
+ cos p12p2 (cos <p3§p4 - k9p3> + cos (I# + k9p4>> ]

1 1
X — + 2 perm
[(q+k+p3)2+m2 q2+m2J P }

I X8 / dk d'q y
4 27 (k2 + m?)((p1 + p2 — k)? + m?)(q* + m?)?

é e 0
X oS p32p4 [cos <P1 P2 + k9p1> + cos (p12p2 — k'9p2>] +5 perm} +

2

N

A3 / dk diq
27 J (B2 +m?)((p1 + p2 —k)* +m?) (> + m?)((p1 + p2 — 9)* + m?)

0
X [cos p3_2p_4 (cos <@ + kOpl) + cos (plzm — k9p2)>

+
) 0 ]
+ cos p12p2 (cos (panzi — k9p3> + cos (Psgm + k9p4)> :| +2 perm}

(6.57)

In the last term we can change the integration variables from ¢ to —¢g and from & to —k and so

we can put the last two terms in the form:

1 A3 / d*k d'q 1 1
4 270 ) (2+m?)((p1 +p2 — k)2 +m?)(g* +m?) [(pr+p2—q)2+m? ¢*+m?
0, 0 0
X COS p32p4 [cos (p12p2 + k:9p1) + cos (p12p2 — k&pg)] +5 perm} (6.58)

In the way we have written (6.56) it is clear that the divergences coming from the nonplanar

part of diagrams (G) and (H) in eq. (6.35) are canceled against the nonplanar part of the
counterterm (F). With this the proof of renormalizability of the noncommutative ®* theory up

to two loops is complete.



7 Conclusions and remarks

In this work we have studied the field theories written on the noncommutative Moyal plane
(noncommutative field theories). These field theories are obtained by replacing the usual product
of fields by the star product. First we discussed some issues of these theories at classical level,
then using the usual methods we quantized the theory. We discussed both canonical and path
integral methods. Because of the star product properties, the quadratic part of the action is not
changed and hence only in the interaction part one can trace the noncommutativity. Extending
this fact to the quantuin level, we assumed that the Fock space for a commutative field theory
and for its noncommutative version are the same. In the path integral formulation this means
that the measure for the commutative and noncommutative theories should be the same, and we
support this by formulating our theory in the momentum space. We should also remind that in
this work we mainly restrict ourselves to the noncommutative space; the issue of noncommutative
space-time seems to be more involved and subtle, and we postpone it to future works. Having
developed the necessary ingredients, we worked out the one and two loops two and four point
functions for a noncommutative ®* theory in 4 dimensions, and presented all the detailed (and
maybe tedious) calculations. We showed that the theory is renormalizable up to two loops. We
also discussed the interesting UV-IR mixing. The other interesting question which we did not
address here is the problem of gauge fields and gauge fixing, and extending the present work to

gauge theories 4+ fermions, which we hope to come back to in later works.
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