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Abstract

We study perturbative aspects of noncommutative field theories. This work is arranged in two

parts. First, we review noncommutative field theories in general and discuss both canonical and

path integral quantization methods. In the second part, we consider the particular example of

noncommutative 3>4 theory in four dimensions and work out the corresponding effective action

and discuss renormalizability of the theory, up to two loops.
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1 Generalities

1.1 Introduction

Since the past two years a lot of work has been devoted to the study of noncommutative field

theories, i.e. field theories on the Moyal plane. The main motivation for these theories arises

from string theory: the end points of the open strings trapped on a D-brane with a nonzero NSNS

two form B-field background turns out to be noncommuting [1]. Then the noncommutative field

theories, in particular noncommutative supersymmetric (Yang-Mills) gauge theories appears as

the low energy effective theory of such D-branes [2,3]. Apart from string theory, noncommutative

field theories are very interesting like any given field theory. In general when we stud}' a field

theory we should emphasize that it is "well behaved". From this point of view, noncommutative

field theories are really challenging because they are nonlocal (they contain an infinite order

derivatives), and there is a dimensionful parameter, other than masses - the noncommutativity

parameter, 9. The nonlocality may have consequences on the "CPT theorem" as well as the

causality. On the other hand the dimensionful parameter 9 may ruin the renormalizability of

the theory. It was shown in [4, 5] that indeed space-time noncommutativity (#oi ̂  0) leads to a

non-unitary theory, while only space noncommutative theories are well behaved in this respect.

Similar to the usual field theories, one can build noncommutative version of scalar, Dirac and

vector (gauge) theories. The noncommutative scalar theory with $4 interaction is considered in

[6], [7], [8], [9] and it have been shown that this theory is renormalizable up to two loops, and the

noncommutativity parameter 9 does not receive quantum corrections up to this order. Similarly,

one can consider the pure noncommutative gauge theories; in particular noncommutative U(N)

theory has been shown to be renormalizable up to one loop [6], [9], [10]. Adding fermions to

the noncommutative U(l) has also been studied in [11], [12], [13]. However in this work we

will mostly concentrate on the scalar theory. In section 2 we present some classical aspects of

noncommutative theories deriving the equations of motion and Noether theorem. In section 3

we briefly discuss the canonical quantization procedure for noncommutative theories. In the

next section we describe the path integral quantization which we are going to use in section 5

to derive the two loops expression for the effective action of the noncommutative <1>4 theory. In

section 6 we present a detailed calculation which proves the renormalizability of the <fr! theory

at two loops. We also discuss the interesting aspect of UV - IR mixing which is characteristic

to noncommutative theories. The last section is devoted to remarks and conclusions.

1.2 Noncommutat ive spaces

In the usual quantum mechanics we have the well known commutation relations:

[Xi,Pj] = ihSij and



However there is no evidence that at very short distances (or very high energies) these relations

should still be true. Then a natural generalization of above is to take the coordinates which do

not commute any more,

[Xi,Xj] = iBij, (1.2)

where 9ij is a constant of dimension [L]2. An immediate remark is that introducing this kind

of commutation relation between coordinates the Lorentz invariance is spoiled explicitly. We

should remember however that we assumed this feature to appear only at very short distances,

i.e. for 9 —> 0 we should recover the Lorentz symmetry. This is one of the main constraints of

our theory: in the limit 9 —> 0 we should find a previously known commutative theory 2. In

general (1.2) can be extended to space-time coordinates:

[X^,XV] = iO^. (1.3)

Here after we call a space with the above commutation relations as a noncommutative space.

To construct the perturbative field theory formulation, it is more convenient to use fields which

are some functions and not operator valued objects. To pass to such fields while keeping (1.3)

property one should redefine the multiplication law of functional (field) space. This new multi-

plication is induced from (1.3) through the so called Weyl-Moyal correspondence [15]:

a

ak 4>{a) da

4>{a) = I e~iax $(x) dx, (1.4)

where a and x are real variables. Then,

eia* 4>(a) ei&k <f>(p) da d/3
a/3

a
and hence,

(1-6)

. (1.7)
=T7=0

This suggests that we can work on a usual commutative space for which the multiplication

operation is modified to the so called star product (1.6). It is easy to check that the Moyal bracket

"However this in general does not imply the reverse: the noncommutative extension of a given theory is not
unique. As an example SO(2) and U(l) gauge theories are the same, but in noncommutative version they are
different [14].



(the commutator in which the product is modified with a star product) of two coordinates xM

and xu gives exactly the desired commutation relations, (1.3)

= tQiiv (1.8)

1.3 Properties of the star product

Here we summarise some useful identities of the star product algebra.

1. The star product between exponentials:

eikx ^ eiqx = i

2. Momentum space representation:

Let f(k) and g(k) be the Fourier components of / and g. Then using (1.9)

(/*$)(*) = J' dAkdAqf{k)~9(q)e-^keq) e^k+^ . (1.10)

3. Associativity:

[{f*g)*h]{x) = [f*{g*h)](x), (1.11)

which can be proved immediately if we go to momentum space.

rhs = IdAk d4q d4p f{k) g{q) h{p) e " ^ * ^ e-*((*+«)<W e^+q+P)x ^ a n d

lhs = I d4k d4q d4p f(k) g(q) h(p) e " ^ 9 ^ e-^
ke^+p))

 e
i{k+Q+p)x . (1.12)

4. Star products under integral sign

J(f*g)(x)d4x = j {g*f)(x)d4x = J (f • g)(x) d*x. (1.13)

Using (1.10) we can immediately perform the integration over x which will give a 54(k-\-q).

Due to the antisymmetry of 8 the exponent vanishes and so:

{f*g)(x)dAx = Jd4kf(k)g{-k)

{f-g){x)dlx (1.14)

From (1.13) we can deduce the cyclic property:

| ( / l * / 2 * . - . / n ) ( * M 4 . * = J {fn*h*.-.fn-l)(x)d4X. (1.15)

5. Complex conjugation.

(/*<?)* = g**f*- (1-16)

It is obvious that if / is a real function then / * / is also real.



2 Noncommuta t ive field theory at classical level

As we have seen in the previous section the way to treat the noncommutative theories is to

modify the usual product of fields with the star product. So, for example, the action for the

noncommutative analog of the real <&"' theory will be:

5[$] = f d4x -d^tc^G- — $ * $ - ^ $ * $ * $ * $ (2.1)
J [2 2 4! J

Thanks to (1.13), the quadratic part of the action is the same as in the commutative case.

Therefore the only thing which is modified is the interaction. This is a very important point to

keep in mind that the free theory is the same as in the commutative case.

2.1 Conjugate momentum and equations of motion

The classical equations of motion, similar to the commutative case, are obtained by minimizing

the action, i.e.

For this to make sense we should define first the functional differentiation of the terms which

contain star products. We shall take as definition for the functional derivative the usual defini-

tion:

f d4x ̂ j~\ 6${x). (2.3)

Let us apply this definition to the 3>4 theory:

—A jdAx [(($

+ ($*$*($ + 5$) * $) + ( $ • $ * $ * ( $ + (5$)) (x)]

- f d4x ( $ * $ |

d4x ((5$ * $ * <I> * <T>) (x) + f dAx ($ * <5$ * $ * <I>) (a:)

dAx ($*$*6$* $) (x) + / dAx ($ * * * $ * <J$) (x) .

(2.4)

Making use of the cyclic property (1.13) and of the associativity of star product (1.11) we can

write:

A
' ~ 3!

= ~ / cfx ($*$*<!>)(x)-5<f>{x) (2.5)



so that we can identify

In order to write the conjugate momentum we should first distinguish two major cases:

• BQi = 0

• 00l ^ 0

In this case the only place where we encounter time derivatives is the kinetic term so the

conjugate momentum is the same as in the commutative case.

This case is more delicate since we have infinite number of time derivatives in the interaction

term. It is obvious right from the beginning that something is wrong since the conjugate

momentum depends on the interaction. The infinite number of time derivatives suggests us

that the theory is nonlocal in time so causality may be violated [5]. It was also shown that

at quantum level unitarity is not preserved any more [4] 3. For these reasons we will restrict

ourselves only to the case with 9oi = 0 from now on.

2.2 Noether Theorem

Now that we have developed the functional differentiation we can extend the Noether theorem

to the noncommutative field theories. Suppose our action has a global continuous symmetry.

For an infinitesimal transformation we can write:

= S[$ + £ F($)], with e = constant. (2.7)

Taking now an rr-dependent e we define the current J through the relation:

))d^e{x) (2.8)

By definition the action is stationary for any field variation around the classical path i.e. f§ = 0.

In particular for 63> = e(x) J- eq. (2.8) becomes:

)) d e(x) = 0 C2 9)
classical

path

Integrating by parts we find:

f dtlJ»($(x))e(x)d4x = 0, (2.10)

3The case of 6Q, •£ 0 for a cylinder has recently been discussed in [16].



for any e{x). So the current J is conserved. This result is very general and it can be applied for

any kind of noncommutative theory. The notion of conserved current is a little different from

the commutative case. Due to the property (1.13)

[f,g}MBd4x = 0 (2.11)

so the most we can say from eq. (2.10) is:

d»J" = [f,9]MB , (2-12)

for some proper functions / , g. This result is somehow normal since in the limit 6 —> 0 the

Moyal bracket vanishes and we recover the classical result d^ J^ = 0.

Let us see now what happens to the charge which in the commutative case was conserved

Q = I J° d:ix . (2.13)

Since we are considering only the case 9oi = 0, we can repeat the argument we have used to

prove (1.13) for the case of integration only over the space coordinates and we conclude

[{f,9]MBd:ix = 0 (2.14)
J 00,=0

This means that if we integrate (2.12) we get:

d0 f J° dzx + IV • Jd3x = 0 (2.15)

and from here we can say as in the commutative case that the charge Q is conserved. Note that

this is true only for 8Q1 = 0 and for $oz ̂  0 even the notion of the conserved charge is ill-defined.

For external (space-time) symmetries, e.g. translations, one can also work out the corresponding

conserved current. For clarity, let us consider this particular case:

xt,. —•» xfl + e^ (2.16)

For the action of the form:

S = / dxx £(«!>, t)$) (2,17)

where

C = I (d^ * d'1® - m'2$ * $) + V;($) (2.18)

we find:

d'.r
1 ' • li • v v • n



If we take <£ to be the classical path, i.e. SS = 0 we can write:

r
8 (T \ FU dAr — fl (9 90*1

J

where

However we should remind that the divergence of T^ is not zero, e.g. for the particular case of

= yr<£*4 w e can write:

A
4!

(2.22)

Using the equations of motion for the $ 4 case:

^ $ * 3 = 0 (2.23)

we can rewrite the divergence of the energy-momentum tensor

= 4 f - 9"
4! L

(2-24)

which, of course, along to the earlier discussion about the conserved charges is not going to

destroy the energy-momentum conservation, for 9QI = 0 cases.

If it happens that the Lagrangian density is invariant under some internal symmetry we can

compute explicitly the Noether current. For this we assume that the Lagrangian, as in the

commutative theory, depends only on $ and d <3> and we will make abstraction of the internal

structure of the star product. It is well known that when we vary the Lagrangian we find some

terms which yield the equation of motion in the Lagrangian representation, and also a surface

term which will give the Noether current. This surface terms can only come from the kinetic

part of the Lagrangian. For a term of the form

,d${x))*d^, (2.25)



the corresponding surface term will appear when we vary the diL<& and the part which enters the

conserved current corresponding to this variation is:

ih = J>**& (2.26)

Let us consider as a first example a theory with fermions, i.e. QED,

Ckin{^, *) = ^ * {hn^ii) * w ' t n the symmetry:

* -> eia * and

* -> e~ l Q *. (2.27)

Taking \I/ to *!/ + 5^ we can write:

) (2.28)

For an infinitesimal symmetry transformation <5\& will be:

J* = £*, (2.29)

so that for a global symmetry the current takes the form:

For the case of local symmetry, we can encounter two types of fermions (say type a and b)

and consequently two different symmetry transformations [11], [12]. The arguments we have

presented up to now are still valid for a local symmetry so that the conserved currents will be:

j ; = ^ 7 , , * * * e (2.31a)

Jji = $7,<*e*tf (2.31b)

3 Canonical quantization of noncommutative theories

3.1 Scalar theory

Here we consider scalar theories with arbitrary interaction V*(<I>). The star means that the

interaction contains terms with star products, however the precise form of this terms is not

important for the general discussion. Let S bo, the action of our theory:

s = [ dxx \-d^w^ - ~^2 - v;(<i>)l . (3.1)

Since the free part of the action is identical to the one in the commutative, case, it is convenient

to choose the Fock space and in particular the vacuum state to be exactly the .same as in the

8



corresponding commutative theory so, the fields can be expanded in terms of the same (compared

to the commutative case) creation and annihilation operators

k)e-ikx+aHk)eikx]. (3.2)

For applying the canonical quantization method we should first compute the conjugate momenta

H(x) and then impose the quantization conditions

[$(z,t),U(y,t)] = iS^(x-y). (3.3)

However a naive application of this method may lead to severe problems. First as we noticed

for the classical theory, in the case #oi ̂  0 the theory seems to be problematic [4], [17]. That

is why we study only the case 6>oi = 0. For this case the conjugate momentum is just the usual

one which appears in the commutative theory:

n = <90$. (3.4)

In the commutative case position and momentum space are completely equivalent and we can

perform our quantization where we like. However, in the noncommutative theory there is an

ambiguity in applying the quantization conditions in the position space. In general we know

that in order to deal with a noncommutative space we should work in a usual space and we

should replace the products between functions with the star product. But the quantization

conditions (3.3) are defined for $ and n computed in different points, while the star product

makes sense only between functions computed in the same point (see eq. (1.6)). We can escape

these problems, if we work from the very beginning in the momentum space and apply directly

the quantization conditions in the momentum space:

-q). (3.5)

This is possible because in momentum space the difference between the usual commutator and

the Moyal bracket is just a phase factor etk9q which has no relevance due to the <5-function which

appears in the rhs of eq. (3.5)

From this point the quantization can go on in the same way as in the commutative case. At

the level of the free theory everything is the same and only the interaction keeps track of the

noncommutative structure of the space through the star product.

3.2 Fermionic theories

For fermions we can apply the same arguments as in the previous section. The free action for

fermions reads:

Sfree = / cFx * 17"^ - m * , (3.6)



where ^(x) and ^(x) can be expanded in Fourier modes:

\b{k) u{k) e~tkx + cfl{k) v{k) e H and

ik^ (3.7)
k

As for the scalar field theory, quantization in position space is ambiguous so we are going to use

directly the quantization conditions in momentum space:

-q). (3.8)

For the gauge fields, because of the gauge fixing problem, the canonical quantization is problem-

atic right from the beginning and however they are out of the scope of the present work. The only

comment we are going to make is that for the gauge theories where the canonical quantization

works in the commutative case, the procedure similarly goes through for the noncommutative

case.

3.3 Interactions

The next step is to introduce an interaction and derive the Feynman rules. For simplicity we

shall restrict ourselves to the scalar theory with $ 4 interaction, but the arguments can be applied

in the same way for other theories.

Let <f>(k) be the Fourier components of 3>:

$(z) = I dAk elkx(j>{k) (3.9)

Then:

S = A / dK
4!

= ~ / d'lx ( $ * $ ) • ( $ * (3.10)

~ j dAkx...d
[kA e-

Except the exponential, all the factors are symmetric in k\ . . . k.\, hence we get:

Sint = ™ / d% ... d4k4 cp{ki) 4>{k2) <j>{k3) Hh) {2n)UW (/„•] + k2 + k3 + kA) x

kx6k2 bAdkA kxObi k29k4 kx6kA k29k-{\
cos - y - cos ~Y~ + cos ~Y~ cos — y - + cos —^— cos — ~ . (3.11)

Therefore the only difference which appears in the noncommutative theory, compared to the

commutative one, is that for every vertex in noncormnutative $'' theory we should multiply by

10



an additional factor:

kl6k2
S

(3.12)

4 Path integral quantization of noncommutative theories

In this section we develop the path integral formulation for noncommutative field theories.

Although we specialize to the scalar <fr4 theory, our method and all the arguments are valid for

any noncommutative field theory. Then we give the diagrammatic expression of the effective

action up to two loops which we are going to use in the study of the renormalizability of this

theory in section 6.

4.1 Measures

For the path integral formalism we should modify the measure of the functional integral accord-

ing to the convention we are using, i.e. to replace the usual products between functions with

the star product

(£>$*) = lim d$(xi)*d$(x2)*...*d$(xn). (4.1)
N>oo

However in momentum space the star product just introduces a phase factor which in general is

going to disappear when we impose the normalization condition for the partition function. So,

as far as the measure is concerned, we can forget about the noncommutative structure of the

space and work with the usual measure. The fact that the measures in the noncommutative case

should be the same as the commutative ones, in the canonical quantization method translates

into the point that the perturbative Hilbert space for these theories are the same. The same kind

of arguments hold for other theories as fermions and gauge fields 4. In what we are interested,

the perturbation theory, we can consider that the measure remains unchanged.

4.2 N-point functions and effective action for noncommuta t ive theories

As we emphasized in the previous section, the noncommutative free theory is the same as the

commutative one. The only thing that is changed is the interaction. So, we can say that we

are dealing with a usual field theory defined on a usual space with the usual Hilbert space, but

with strange interactions. For this reason, the noncommutative correlation functions should be

defined in the same way as in the commutative theory.

) \ ) (4.2)

4However for the gauge fields one should note that the "physical" measure in which ghosts (or gauge degrees of
freedom) have been thrown away, is the same for noncommutative and commutative cases. This in turn provides
a strong support for the so called Seiberg-Witten map [3] between commutative and noncommutative theories.

11



From which we can conclude that the partition function has the same form as in the usual case,

and from here the generating functional for connected graphs

Z[J] = eiWW, (4.4)

and the effective action

r[$c] = W[J]- I J{x)$c{x)dAx where

At this point we can repeat the calculation from the commutative case in order to find an

analytic expression for the effective action:

0 =

= fiD$)(JlL + jix)) ei[vm+/^)%)H. ( 4. 6 )
J \6$(x) )

To perform the functional integral we should replace, as in the commutative case, $(x) with

7 x /L\ • However because of the star products which appear in Af •, , in the noncommutative

case this replacement requires more attention. In the following we are going to explain this step

in detail for the case of the scalar $4 theory. The only term in jy which still contains star

products is

The star product can be expanded in terms with infinite number of partial derivatives, and

taking into account that the partial and the functional derivatives commute, we have:

= e2

i ) SJ{x + 0 S.I{x + ?/ + tv) 6J(x + // + 0)

3

i
^̂"

(4.8)

where the notation {£} = 0 means £ = r] = a=i3 = 0. This is a formal way of writing this

result in order to make the resemblance with the commutative case more clear, but it is not

12



completely wrong since the functional derivative Sj\x\ of a functional F is a function of x. With

this remark we can write the effective action (for any theory) as in the commutative case:

(4 9)

5 The effective action for the noncommutative $4 theory

As in the usual field theories, we study the effective action and the Green's (two point) function

through the power expansion in h:

(5.1)

where I\ and Cri are

r[<

c

the

E>c]

?»j

i-th

= F(

= G\

order

ij h_Gij

i \i J

loop corrections.

2

c

(7) r 2 ( $

TQ ~r . . - J

5.1 One loop effective action

Using (4.9) in this subsection we work out the one-loop effective action. As we stressed before,

the only thing which is different from the commutative case is the interaction term, so we only

consider this term.

= _A W[J] / k /• 4 y)—L

^ e $ c ( x )* f A G f ^ l ^ ^ c W (5.2a)
6 « y 6®c{y)

(5.2b)

The star products in the previous expressions are to be understood as follows:

(5.2a) oc |e£°^\-d'>" e^Bapd^ $c(x + Q f d4y G(x + ri + a, y) ̂ L^ $c(x + v +1 J o$(y)

I d\j G(x + r/ + a.y) S(y - x - n

a.x

13



d4k G{k) e'k^
_

(5.3)

In the last expression there is no term which is rj dependent so from the expansion of the first

exponential we remain only with the first term i.e. 1, while the second exponential will give

e^k0k w n j c n j s a i s o i (ju e to the antisymmetry of 9. So,

(5.2a) oc $c(x) / d 4 k G(k)

= *c(x)G0(0). (5-4)

For the second term we can do the same calculations 5,

(5.26) oc d4y G(x

a f d4y

\S(y - x - r] - a) <£c(z + r\ + /?) + S(y — x — rj - ft) $ c (x + rj + a]

TJ + a) (3)

+G{x + ^ x a

[ dA kdAqG{k)

eiq(x+r)+0)
£

tq(x+r)+a)

d4k d4q ei(

= G(0)

Altogether we can write the one loop contribution to the effective action:

(^i A A f 4 ,

(5.5)

3 6
(5.6)

that d,-(k) are the Fourier modes of <I>,..

14



5.2 Diagrammatics

To give the diagrammatic expansion of the effective action, first one should derive the Feynman

rules for the noncommutative $4 theory. It will not be surprising to say that the usual rules

can be applied. This is because the free theory is the same as in the commutative case. So any

line will represent a G$ and for a vertex with n lines coming out one should write the n-th order

functional derivative of the classical action. The argument can go further

xc r 3̂
Go(xux2) = d4y d4zG0(xuy) -—-———-——-G0{z,x2), (5.7)

or in diagrammatic and condensed notation:

= LA '- (5.8)

Using these rules, it is easy to verify that we will recover the Feynman rules we found in the

canonical quantization method for noncommutative $4 theory. For this, we have to compute

the fourth order functional derivative of the interaction term. The first order derivative is given

by (2.6). Thanks to the conjugation property of the star product (1.15) one can see immediately

that for real fields this is real. However, the next functional derivatives do not enjoy this property

anymore, and one should make the result to be real explicitly.

(5.9)

15



T/ + a - x3) ̂ (xi + r; + /? - x,j) +

+ £ - x2) <5(xi + 77 + a - x4) 8{xi +r/ + 0 - x3)

+ £ — x3) <5(xi + 77 + a - X2) 8(xi + r\ + 0 - x.|)

+ ^ - x4) 8(x[ + 7] + a - x2) 5{x\ +-q + [i - x3)

4- ^ - x3) 5(xi + r] + a - X4) 6(xi + 7] + 3 - x2)

+8(xi + £ — X4) 8(xi + rj + a - x3)5(xi + r; + /? - x2)

(5.11)

In momentum space eq. (5.11) reads as:

o Sint *

J /'

d4k:= - - /^4/t!

r kl9k2 k39k4 ki0k3 k26kA kx6kA k,20h^ .
x cos —-— cos — h cos cos V cos —-— cos —-— . (5.12)

\~ £, Z. iL c . i - £ -i

So, we can see explicitly, this is the usual factor we have written for the noncommutative vertex,

(3.12).

5.3 Diagrammatic expansion of the effective action

We are now ready to write down the diagrammatic expansion of the effective action for the

noncommutative <I>4 theory. First we show explicitly that up to one loop the diagrammatic

expressions for the commutative and noricommutative case coincide. To prove this we show that

if we start from
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exactly we are going to recover eq. (5.6). Using the diagrammatic rules described in the previous

section and the result for the third order functional derivative of S, (5.10) we have:

= l-jdAydAzG0{y,z)

1 A f i
~ 2 6 \ 6 2 "
+ G(X + £, X + 7] + P)

+G(x + 7] + P, x + £)

A-CMT A- r\ A- ft T A- n A

<53 S

Written in terms of the Fourier modes becomes:

1

2

1 A

2 6

a) + G(x

a) + G{x

{?}=o

dAk d4qG(k)

0)

(5.14)

= _I ̂  /"

(5-15)

So, up to one loop the diagrammatic expression of the effective action can be written as:

(5.16)

5.4 The effective action at higher orders

In the previous subsection we explicitly proved that the diagrammatic expansion up to one loop

of the effective action of the noncommutative C3>4 theory is the same as in the commutative case.

Now we are going to argue that even at higher orders the effective action should have the same

diagrammatic expansion. This is because in the calculations we were doing for the commutative

theory, the order in which we were performing the functional integrals was not important, which

is still true for the noncommutative case. Hence we can apply the same argument to compute

the effective action for higher loops. Therefore, at two loops we have:

l

(5.17)
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5.5 Planar and nonplanar diagrams

Here we introduce another way of treating the loop diagrams [7] which turns out to be useful in

the discussion of the renormalizability. Up to now we assumed that the noncommutative vertex

is unique and is given by eq. (3.12).

The alternative point of view is to say that the order in which the legs appear in the vertices

is important and for every distinct ordering we can associate a phase factor such that when we

sum up over all the possible orderings we recover the usual factor (3.12). Let us introduce a

notation for a generic vertex with N legs numbered in an arbitrary order (say clockwise):

kt9kA . (5.18)

J
Due to the momentum conservation in vertices, this factor in invariant under cyclic permutations

of the legs. As far as only this phase factor is concerned one can deduce some rules so that any

graph can be reduced to a generic vertex for which one can write the phase factor using (5.18).

Rule I: An internal line connecting two different vertices can be contracted without changing

the overall phase factor associated to the diagram. The important point to keep in mind is to

preserve the order of the lines.

Rule II: A line starting and ending in the same vertex which is carrying the momentum k can

be removed, but we should also introduce a phase factor

6<p = e±lkep, (5.19)

where p is the algebraic sum of the momenta which are inside the loop.

Applying these two rules any graph can be reduced to a generic vertex in which only the external

lines of the original graph enter, multiplied by some phase factors (these phases appear when

we apply Rule II) which depend on the external, as well as the internal, momenta of the initial

graph. It is obvious that for tree level graphs in order to find this phase factor we should apply

only Rule /, so at the end the phase factor will depend only on the external momenta. At loop

level however we may find some graphs for which the final phase factor also depends on the

internal momenta,. These are called nonplanar graphs, while those for which the phase factor

depends only on the external momenta are called planar graphs.

6 Renormalization of Noncommutative $4 Theory

In this chapter we study the renormalizability of the nonconmiutative (]>4 theory up to two loops.

We recall from the previous chapter that in noncommutative theories we encounter two kinds

of diagrams which are giving the loop corrections: planar and nonplanar graphs. The planar

graphs are the same as the diagrams in the usual commutative theory, the difference consisting

in some numerical and external momentum dependent phase factors. For the nonplanar graphs

18



we find some nontrivial phase factors which depend on the loop momenta and which can modify

dramatically the result of integration. In this section we are going to show that applying the

usual renormalization procedure for the planar graphs, all the other infinities coming from the

nonplanar diagrams are going to be canceled out. yielding a finite result, and in this way we

prove the renormalizability of the theory up to two loops.

Notation We are going to extend the attributes planar and nonplanar even on mathematical

formulae. A term will be called planar if it does not contain phase factors which depend on the

internal momentum, and nonplanar in the other case.

6.1 1-loop renormalization of F*2^

The Euclidean action for the noncommutative 3>4 theory including the counter-terms can be

written as:

S f 2 A
4! *

Sm2 ^2
2

<5A
+ 4!

This leads to the following diagrammatic expansion of I^2) at one loop:

(6.1)

1
- P + 2 ~ p

The one loop mass correction in the noncommutative theory has the form:

(6.2)

Using Schwinger parameterization

1

A f cos P6k +2 ,

2 f d4k A f cospOk ,

" " 3 / A:2 + m2 " 3 / F T ^ 2 "

da e

(6.3)

(6.4)
k2+rn2 j0

the integral over k becomes just an ordinary Gaussian integral which can be performed explicitly.

da / d4k
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A

in which we introduced the notation p o k = p99k = pil9^p9fJ
ukv . The integral over a can be

regularized by introducing a factor e " ^ ? , where A plays the role of a cut-off.

3 • 24 TT2 h a2

d a - Q m 4«A2

NP

where A ?, = p o p + -J ,̂ and i^i is the modified Bessel function [18]. It can be seen that in the

limit A —> oo, Ae// becomes p o p so the integral remains finite regulated by the cosine factor

which appears in (6.3).

For the planar part of the diagram we can repeat the calculations with the change Aejf —>• A,

and then we absorb the regulated integral in dm2 to make F^2) finite

(6.7)
A ft- -1- m*

at one loop:

A „ ( M2

Aeff

We can write now the quadratic part of

ri2) = jd\\\p2 + M2-

Here M2 is the renormalized mass M2 = m2 + 8m\.

For small arguments K\ can be expanded in Laurent series

so that for Aeyy 3> 1 the quadratic part of the renormalized effective action is:

r<2> (A) =
1 ren\iv)

(6.9)

p2

2

M2 AM2

96(27r ) 2 (pop+ i ? )
In 0(A2

(6.10)

As we see after sending A to infinity the F^2' presents an infrared divergence. Moreover, if we

first consider the zero momentum limit the cut-off effect of the noncommutativity cannot be

seen any more and the two-point effective action diverges. This is the interesting UV-IR mixing

which appears in the noncommutative theories. This divergence can be explained assuming that

(6.10) is the Wilsonian effective action obtained by integrating out some other field x (seo [6])-

Then the action which correctly reproduces the factor - 1 - in eq. (6.10) is:

F'(A) = F(A) + I d'x l\dXo dX + \

(6.11)
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However the logarithmic term in (6.10) is yet to be explained in some other way [19].

6.2 1-loop renormalization of

The one loop diagrammatic expansion of F ^ is:

y* + 2 permutations

(6.12)

The cosine factors associated with the loop diagram can be written in the following way:

1
2

oc V(pi .. .p4, k,9), where (6.13)

V(pi...p4,k,6) = — cos ^ — ^ cos cosk0{pi + p2)

A2
 Pl9p2

COS

cos I — 1- kOpx I + cos I k9p2

cos COS

36 cos

2 " " 7 • """ V 2

+ cos k9(Pl+Pi)

The nonplanar parts give rise to an integral of the type:

Jpdk

d4k-
(k2 + m2) ((p! + p2 - k)'2 + m2) '

(6.14)

(6.15)

where p is the total momentum which is crossing the loop. As we showed for n >, the exponential

factor acts as a regulator and the integral remains finite. There is still the peculiar IR divergence,

but in the following we are going to study only the UV behavior of the theory. So the infinity

comes only from the planar part and it is of the form:

A2 f d4k[
9 J (k2 + m2) ((p! + p2 - k)2 + m2)

cospi9p2 2 permutations. (6.16)

Renormalization of F ^ requires to absorb the infinity in the corresponding counter-term in eq.

(6.12), i.e.

- Planar

p=0

X = o
p=0
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3 2A2 f d4k

2 ' ~9~

A2

At this point using the low external momenta limit we can write explicitly the renormalized

effective action at one loop. For this we should compute the integral (6.15) coming from the

nonplanar graphs. We shall first use the Feynman parameterization in order to write the de-

nominator as a square

j - = r <* -2, (6.18)
A B JQ \X A + (1 — X) B]

so that we can write:

Inp — I dx I dAk ; j =

Jo J [%(pi + Pi — k)2 + xrn2 + (1 — x)(k2 + rn2)]

dx I dqk ^
0 J [k2 - 2(pi + p2)kx + (pi + p2)2

where

M2 = (pi +p2)
2x (1 - x ) + m 2 .

W:e can now perform the integral over k using Schwinger parameterization:

(A.-2 + o
oo

a da
0

a da ( \l —) e~aM ' ^
a

1
8TT2

A/2pop . (6.20)

Finally the integral in eq.(6.15) becomes:

^) x K0 (^^\^+p.2)^ x {I - x) + rrfi] p o p \ . (6 .21)

In the limit of low external momenta we can neglect factors which contain p2 and recalling the

behavior of A'o around zero,

A'o(x) X^° > - hi ~ + finite, (6.22)
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we can write:

'np
1 , 4

In — T —16 71^ 771/
(6.23)

The integral Inp does not depend on the sign in the exponent so in eq. (6.14) the cosine factors

will be split in another cosine which depends only on the external momenta and an exponential

which contains an internal momentum as well. In the limit which we are considering we can

neglect the cosine factors which depend only on the external momenta and taking into account

the "2 permutations" from eq. (6.12) we can write:

NP
(k2 + m2) ((pi +p2- k)2 + m2)

Li=2

eik0(Pl+Pl)

i=2

(6.24)

and so using (6.23) we can write the renormalized four point function at one loop:

1 . 1 . 1
In

m2 pi

ln

+ ln

1

In —2 + In -
m z p2 o p2 mz p3 o p3

1
ln

m2 pi o p 4 m 2 (pi + p2) o (px + p2)

1 . 1
In

m2 (p! +p 3 ) o (p! +p 3 ) m2 (pi +p 4 ) o (px +p 4 ) J '
(6.25)

6.3 T(2) at two loops

After the one loop calculation, we can proceed to that of two loops. First we start with two

point function:

• • x • •

(b) (c)

(d)

(9) (/i) (6.26)
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In the usual commutative "I>4 theory at two loops terms (e) and (f) cancel out. However, in the

noncommutative theory we are left with a term because, the 1-loop mass correction takes into

account only the planar part, (see eq. (6.7))

1 / V __ A2 / \ 4 , , ,4_ cos kOp +2

p
q

I dAkdAq -j-2
2 .. _> v^V_.. 18 J ' {q2 + m2){k2 + w2)2

1_ k {y _ _ A2 f 4 ; ^ _ (cos kOp + 2)(cos kOq + 2)
4 —

p
q

1 k / ^ \ _ A2 f 4 4 coskOq{coskOp-
4 A A— " ~36 '

(6.27)

Using Schwinger parameterization, the integral over q can be done explicitly and we remain

with:

1 C> +1
a

(6.28)

where Aejy is given by A",, = k o k + -^j. The integral over a can be also computed exactly

yielding a modified Bessel function K\ and the final result is:

X2m2 1 /" i . 4 / / rn2 \ cosp6k

(6.29)

Simple power counting tells us that the integration over the large values of k is finite provided

K\ does not diverge at infinity. In fact K\ decays exponentially at infinity, so the convergence

is guaranteed. On the other hand the integration over small values of k can be controlled if we

do not let A to go to infinity. Under these assumptions we can write:

\ XJ+- + \ - A X _ =finitc (6-30)
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In the usual $ 4 theory, for the remaining loop diagrams in eq. (6.26), the momentum indepen-

dent infinities are absorbed in Sm2, while the momentum dependent ones are absorbed in the

wave function renormalization.

In noncommutative <S>4 theory, the momentum dependent factors which appear in the vertices

for (h) in eq. (6.26) are:

(6.31)
f p qO{p - k) p9q k9{p - q) k9q p9{k + q)

- cos ̂ - cos ̂  '- + cos ̂  cos Ky
2 + cos -± cos 2

Expanding both the square and the cosine factors we get:

d4k d4qA2

36 7 (k2+m'2){q2+m2)((p-k-q)2+m2)

9

1 +

] 2 r
+ - cos kO(p — q) + cos q9(p — k) + cos k9q

+ - [ cos (p9k + q9(p - k)) + cos (p9k - q9{p - k)) + cos (p9k - q9(p + k))] i =

^ V- ^-4

36 J {k2 +m2){q2 + m2)((p - k - q)2 + m2)
+ 2 cos p9k + 2 cos k9q +

+ c o s (p9k + q9(p - k ) ) ] .

(6.32)

The contribution of the counter-term (g) in eq.(6.26) is:

1 O
2 - ^ ^

A2 / 1 \ f dAk 2 + cosp9k f dAq

2 I 3 7 / k2 + m2 I {q2 + m2)2

A2 d4k dAq A2

9 J {k2 + m2){q2 + m2)2 18
cosp9k

(k2+m2){q2+m2)2 '
(6.33)

For the planar diagrams we should follow the same renormalization procedure as in the commu-

tative case. We are then left with the nonplanar part which can be written as:

NP

cosp9k 1 1\2 r

= — dAk dAo—
1 8 / ' ! (k2 + m2)(q2 + m2) [q2 + m2 {p - k - q)2 + m2

A2 dAkdAq
36 J (k2 + w2){q2 + m,2)({p - k - q)2 + m2)
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For the first term, the integral over q yields a finite result (this can be seen by simple power

counting), while the term cosp6k acts as a regulator for the integral over k. In the second term

when we take cos k9q from the square bracket and integrate over q, we get a modified Bessel

function (K(Vk o k)) which exponentially decay at infinity and takes care of the integration over

large values of q. When we take cos (p6k + q9(p — k)) by a change of variables (k' = p — k and

q' = p — q) we can put the integral in the form:

f d4k dAq
J ((p - k)2 + m2)((p - q)2 + m2)((p - k - q)2 + m2) C°S Q

for which, in the UV-limit we can apply the same argument as before.

At this point we have proved that renormalizing the planar part of the diagrams appearing in the

noncommutative version of the $ 4 theory, as in the usual case we can make F ^ finite without

renormalizing any other parameter, in particular, 6.

6.4 at two loops

(F)

5 perm + -

+ 11 perm

\

+ 2 perm

(6.35)

This formula requires some comments. The last term (or the fish diagram) appears twelve

times according to the number of permutations of the external momenta which give different

contributions. In the commutative case however we can see only six independent permutations.

This difference comes from the fact that in the noncommutative theory there are momentum

dependent phase factors which appear in vertices, and these factors allow us to distinguish

between the last two legs of the fish diagram. Since all we are doing is to take the fourth order

functional derivative of the effective action, and the order in which we perform the derivatives
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has no importance, in the end when we sum up the diagrams coming from all the permutations

we should find that the result is invariant under arbitrary relabeling of external momenta. This

is the reason why we need 11 permutations in the last term of eq. (6.35). However, since not

all the terms in the fish diagram break explicitly the symmetry between the last legs, we shall

consider for simplicity only 5 permutations, but in the end we should remember to symmetrize

over the last two momenta.

In the commutative case terms (D) and (E) from eq (6.35) cancel each other. In the noncom-

mutative case this cancellation is not complete. Using the notation we introduced in eq. (6.14)

for the cosine factors appearing in the 1-loop vertex correction, and also the definition of Sm2

from eq. (6.7), we can write:

\

+ 2 perm

V )

\

+ 2 perm

\

2 * ! [dAkdAa nk,P,O) A
9 J q(q2 + m2)(k2 + m2)2((p-k)2 + m2) 3

V{k,p,9) A (coskOq + 2)
' (q2 + m2){k2 + m2)2((p - k)2 + m2)

V(k,p,0)
27 J ~ - " iq2 + m2 (fc2 + m 2)2 ( ( p _ k)2 + m 2 ) ' ^6'3 6)

The q integral is regulated by cos k8q, while the integral over k is convergent right from the

beginning. This means that even though the sum of these diagrams is nonzero at least it is

finite, and this is what we are interested in.

The planar part of the diagrams in (6.35) does not come with anything new except for some

numeric and phase factors which depend only on the external momenta. Nevertheless in order

to apply the usual renormalization procedure we should check explicitly that the external mo-

mentum dependent factor is the same for all the diagrams which appear in the expansion of '.

and this should be exactly the additional phase factor for a noncommutative vertex, i.e.

c o s c o s c o s c o s c o s c o s+ cos cos + cos cos .

We shall now compute the phase factors associated to each diagram in the expansion of

(6.35) leaving apart for the moment the overall factor ^ .

(6.37)

in

(G) oc

cos

P2)
+ cos

cos
+p2)

q)6{pl + P2)

p\6p2 -k6(pi

\
k6q + cos

J

q)O{pi + p-2)

~p2)
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COS OL , c o s

(6.38)

Due to the internal momentum phase factors, the nonplanar diagrams are less divergent than the

corresponding planar ones. However divergences may still appear whenever the cosine factors do

not contain any of the loop momenta. At two-loops we have two independent internal momenta

to integrate over so, as explained before, all the terms which contain cosine factors and involve

both of these momenta will remain finite after integrations. The second term in the first factor

from eq. (6.38) contains a kOq in the argument of the cosine which cannot be found anywhere

else. So after expanding and transforming the cosine products into sums of cosines this term

cannot disappear. In what follows we consider only terms from which either k or q (or both)

disappear. These terms come from:

cos
pA)

1- cos
- q8{p3

h cos
p39p4 + qO{p3 - p4)

cos

+ cos

COS

COS

+P2)) +cosJ

qO{pi +P2)
kO{pi + p2) + cos

/
+P2)

\ +

c o s 2

+ cos
(

2

-qO{pi +P2)

f Pi9p2 + qOjpi +P2) , ua \ , fPI&P2+ cos I 1- k9pi ) + cos I

. , a \ , (p1- kOpi 1 + cos I

f
I

2
+P2)

+P2)

- k9p2 +

k0p2

(6.39)

The planar part Using overall momentum conservation we can extract the planar part:

Planar[(G)] = cos

c o s

= cos —

= 2 • cos

s +PA)

2

+ cos

cos 9

+ cos
4 - q9{p:i + p 4 )

+P2)

Planar

(6.40)
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The "2 permutations" take care of the other combinations of external momenta, and so

1
+ 2 permutations

J planar
2 - 2 7 , o s

+ cos
P2Pi .

cos 1- cos cos 2

(6.41)

Nonplanar q-independent terms

1.
4

NP I

1

16

+ 2 cos

+ 2 cos

+ 2 cos

+ 2 cos

P10P2 ~

kO{pi + p2)

k9{pi + p2)

h kQp\ 1 + 2 cos I 1- k8p

+ COS cos - teP

(6.42)

Nonplanar k-independent terms The diagram is perfectly symmetric in k and —q so we

can just replace k by —q to get:

4 A
P\0p2 Pi0P4

cos ̂ i ^ cos i-^-i cos qO{Pl + p2)
NP II

cos [cos + cos (Zf* + q9p^ ] (6.43)

Let us now consider the next term in eq. (6.35). The phase factors associated with the vertices

are:

(H) oc COS
Pi9p2 + k

2
h COS

P1OP2 - p2) , P1OP2
h COS

- p2)

p38k - q8p3 - qdk
cos — - h cos

q9p3 + q9k p38k — q8p3 + qdk
— h COS —
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cos
k9p4 + q9p3 + q9k p39p4 + k9p4 - q9p3 - q6k1- cos h

cos
(

V
q9p3 + qOk

+ .(6.44)

As before the terms containing simultaneously k and q in the argument of cosine factor give no

contribution to the divergent part. This means that in the product of the last two terms we

only have to consider those combinations of cosines which do not lead to factors of kOq in the

argument. It is easy to see that these terms come from:

i
2 c o s

- P4) P39P4 + ke(P3 +P4)+ c o g /P30P4 - ke(P3 - P,)

+ cos

+ cos

h6{p3 +p4)
I + qOp4 ) + cos

-p3)

x COS

V 2

p\9p2 + k9(pi

\
q9p3 I + cos

(
cos I

k9{p3

+

+

+ cos
•P2) , P\6P2h cos

+ P4)

1 -P2) . (6.45)

The planar part Proceeding in the same way as before we can write the planar part:

cos
k9(p3 +p4)

COS :

Pi6p2 +p-s9p4

+ p2) P\9p2 -k9{pi +p2)
+ cos

planar

COS ' COS
Pi9p2 -p39p4

(6.46)

and this is precisely the factor cos Pl
2

P2 cos P3
2

P4 we needed in order to be able to apply the usual

renormalization procedure for the planar diagrams. Taking into account all the coefficients (also

the igj) we obtain:

Nonplanar q-independent terms:

1 p\9p2 p39
(X COS COS

2 - 2 7 2 2
(6.47)

Planar

OC

NP I

(X COS
P\Qp2 + k9(pi + p2) p\9p2 - k9{pi + p2)

+ cos' + cos
p\Qp2 - p2)

COS
p39p4 + k:9{p4 - p3) p39pA + k9{p3 + p4)

cos •

nonplanai"
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+ kO{px +pi)j + cos

(6.48)

Nonplanar k-independent terms:

oc

NP II

+ ^ 4 ] + c o s ( ^

cos

-q9p4

- - q9pi

p4) + cos

(6.49)

The propagators in diagram (H) come with a k6, so the integration over k is already UV finite.

This means that the nonplanar k-independent terms will give a finite result because they are

regulators for the q-integral. However, the terms which do not contain q in the cosines (the so

called "q-independent" terms) are divergent. In the following we will show that all the infinities

coming from nonplanar diagrams are going to be canceled out when we take into account all

the diagrams in (6.35). The counterterm which is responsible for these cancellation is the term

which was denoted by (F).

X
27 7 ( ( P 1 + P 2 -

nonplanar

k d4q

m2){k2
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X < COS COS COS kU(p\ + P2) + - COS —^— I COS
I z z z

+

+ COS

p\9p2

+ k$Pi

+ P3 -cos- cos

• cos

(6.50)

1

4 P2.

div. NP

dAk
27 y (A;2 + m2)((P l + p2 - A;)2 + m2)(g2 + m2)((P l + p2 - q)2 + m2)

+ p2) + cosg6>(p1 +p

+ - cos
4 2

COS

cos qOpz I + cos
y + qOP4 +

cos

Since the propagators corresponding to this diagram are q

variables q can be replaced by k inside the cosine factors.

A; symmetric, by a change of

div. NP

k d4q

X < COS cos cos

27 ,/ (A:2 + m2)({pi + p2 - A:)2 + m2)(q2 + ru2){(p{ + p2 - q)2 + m2)
r

at , ^ , 1 P\vP2 PWPA , a•V{Pi + P2l + 4 cos —^— cos I —^ A;0p3

1
cos COS

(6.52)

The divergence of the fish diagram coming from nonplanar diagrams is:

1 q-^pi

div NP

- A;)2 + n,2)(q2 + m2)((k
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X - <
'Pl9p2

-fc0(pl+p2) +

cos

COS

c o s

+ 2 cos

(6.53)

The factor in front of the fish diagram is ^ because as explained at the beginning of this section

we are considering only five permutations instead of eleven and we are going to symmetrize the

result with respect to p$ and p\ in the end. So the contribution (6.53) of the fish diagram should

be:

div NP
d4k

[k2 + m2){(Pl +p2- kf -f m2)(q2 + m2){{k + q+ p3)2

x \ \ \

COS

I Los
2

+ cos

2 cos

+ + + cos + k9(pi + pA) ] +

pl9p2
cos

A3

27 J (A;2
c?4A: d4q

+ p 2 - m2)(g2 + m2)((A;

x - | 2cos —-— cos cosk9(pi + p2) + cos

p3)

(P\9p2

-+- cos

+ COS

V 2
+ 2 cos COS

»4 ,a \ , fP30pA
i 2 " -kOpij +cos [ ^ —

cos (6.54)

And now we have truly only 5 more permutations. However, the first term in the last equation

does not give different results for all five permutations, and finally it can be written:
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lfi
4 | 2

- I cos
fp\0p2

k0(Pi+P2)J + cos

+ + cos
(P\QP2 ~P:
I

+ 5 permutations > =

i f f Pl0p2~Ps0p4 , Ql , v , P\OP2+P30P4
-< cos cos ko{p\ + P2) + cos cos

+ 5 permutations > =

cos cos cos k8(pi + P2) + 5 permutations

= cos cos
, a, , v Pldps P2&P4 , a, .

coskd(pi+p2j + cos cos cos ko(pi +

+ COS COS + P4)

(6.55)

Now it can be seen that all the divergent nonplanar terms in (G) and (H) from eq. (6.35) have

a correspondent in the counterterm (F).

\

+ 2 perm
1

2
5 perm

V + 5 perm

div. NP

NP

(6.56)

27 ./ (kz
i P]p2 v,pA i

M 2 ^ 2\( 2 1 2T c o s ~^T~ ( X ) S ~^T~ c o s k

- k)z + niz)(qz + m2) 2 2
1

(q + k + p:i)
2 + m2 (pi + p2 — q)2 + rn2 q2 + in'

+ 2 perm > +

dAk dAq 1 PlOp-2
- cos27 I ./ (A:2 + m2){(px + p 2 - k)2 + m2){q2 + rn2) 2 2

X COS I C:os

+ 5 perm
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A3 dAk d4q

27 ) J (k2 + m2)((P l + p2 - k)2 + m2){q2 + m2)

:ih( +k6(pi +PA)\ + c o s I

1

k + p3)
2 + m2 q2+m2

+ Pl)

5 perm >

A3

27] y (A;2+m2)((Pl

d4k d4q

1
x - cos

cos

cos

cos

Ml,,) + cos

cos

1 1

1 A3

{q + k + pz)2 + m2 q2+m2

d4k dAq

+ 2 perm

4 27 | y ( /c 2+m 2 ) ( (pi+p 2 - /c) 2+m 2 ) (s 2+m 2 ) 2

+ /c^pi ] + cosx cos

1 A3

+ 4 ' 27 '

cos 5 permj +}
dAq

m2)((pi - q)2 + m2)

cos cos

+ cos ^ (cos - fc*P3) + cos + i f e ^ + 2 perm

(6.57)

In the last term we can change the integration variables from q to —q and from k to —k and so

we can put the last two terms in the form:

dAk dAq 1 11 A3 I

4 ' 27 I y (A;2 + m2)((pi + p 2 - A:)2 + m2)(g2 + m 2 ) L(Pi + P2 - q)2 + m 2 r/2 + m 2 .

(6.58)X COS : cos (^-^2)]+5Penn|

In the way we have written (6.56) it is clear that the divergences coming from the nonplanar

part of diagrams (G) and (H) in eq. (6.35) are canceled against the nonplanar part of the

counterterm (F). With this the proof of renormalizability of the noncommutative <J>4 theory up

to two loops is complete.
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7 Conclusions and remarks

In this work we have studied the field theories written on the noncommutative Moyal plane

(noncommutative field theories). These field theories are obtained by replacing the usual product

of fields by the star product. First we discussed some issues of these theories at classical level,

then using the usual methods we quantized the theory. We discussed both canonical and path

integral methods. Because of the star product properties, the quadratic part of the action is not

changed and hence only in the interaction part one can trace the noncommutativity. Extending

this fact to the quantum level, we assumed that the Fock space for a commutative field theory

and for its noncommutative version are the same. In the path integral formulation this means

that the measure for the commutative and noncommutative theories should be the same, and we

support this by formulating our theory in the momentum space. We should also remind that in

this work we mainly restrict ourselves to the noncommutative space; the issue of noncommutative

space-time seems to be more involved and subtle, and we postpone it to future works. Having

developed the necessary ingredients, we worked out the one and two loops two and four point

functions for a noncommutative $ 4 theory in 4 dimensions, and presented all the detailed (and

maybe tedious) calculations. We showed that the theory is renormalizable up to two loops. We

also discussed the interesting UV-IR mixing. The other interesting question which we did not

address here is the problem of gauge fields and gauge fixing, and extending the present work to

gauge theories + fermions, which we hope to come back to in later works.
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