MASTER BR00B0207 ETDE-BR--0147 UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA ELÉTRICA DEPARTAMENTO DE SISTEMAS E CONTROLE DE ENERGIA RECEIVED NOV 1 7 2000 OSTI CONTRIBUIÇÕES NA ÁREA DE HARMÔNICOS EM SISTEMAS ELÉTRICOS DE POTÊNCIA ALOISIO DE OLIVEIRA Prof. Dr. José Carlos de Oliveira Prof. Dr. Mauro Sérgio Miskulin Tese apresentada à Faculdade de Engenharia Elétrica da Universi dade Estadual de Campinas -

M

A

0

0

٩

UNICAMP, como parte dos requisi tos exigidos para obtenção do título de Doutor em Engenharia

Campinas, Agosto de 1989

UNICAMP BIBLIOTECA CENTRAL

Elétrica.

RIBUTION OF THIS DOCUMENT IS UNLIM. FOREIGN SALES PROFEED

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NOV 17 2000 OSTI

RESUMO

0

0

0

0

0

6

0

Esta tese apresenta uma abordagem geral sobre o esta do da arte da geração de harmônicos, suas fontes, seus limites, métodos de medições e efeitos causados nos componentes de siste mas elétricos. Além de proporcionar uma visão bastante ampla dos diversos temas que constituem esta área de conhecimento , procura destacar os mais diversos e possíveis temas de investigação. Neste contexto, esta tese, tem por objetivo investigar os efeitos provocados por harmônicos nos medidores de energia do tipo "KWh" convencional e nos transformadores de potencial e de corrente. Apresenta os fundamentos para o desenvolvimento e construção de protótipos a serem utilizados na geração e medições de harmônicos, e finalmente, como última contribuição, pro põe métodos práticos para a determinação da impedância harmônica de uma rede elétrica de alimentação.

ABSTRACT

ø

0

6

6

The aim of this research is to present) a general approach of the state of art of the harmonic generation, its its limits, its measurement methods and its effects sources, on the electric system components. This thesis shows that this is an open field to research, modelling and solutions. It also helps towards the investigation of the effects caused by harmonics on the conventional KWh energy meters and on potencial and current transformers. It presents the basis ror the development and construction of prototypes to be autilized in the generation and measurement of harmonics.

Finally a practical approach has been given to calculate the equivalent harmonic impedance as seen by a giving consumer.

AGRADECIMENTOS

())

Ø

(

셻

•

0

9

働

8

0

0

9

鏾

1

ø

0

Ao Professor Dr. José Carlos de Oliveira, p<u>e</u> la paciência, orientação e constante incentivo durante este trabalho.

Ao Professor Dr. Mauro Sérgio Miskulin , p<u>e</u> las sugestões e participações nas diversas fases deste trab<u>a</u> lho.

Ao José Maria Filho, pela datilografia e Va<u>n</u> derley Aniceto da Silva pelos desenhos.

A Deus, pela proteção nas inúmeras Viagens realizadas para este estudo.

A minha família, e a todos que, de certo modo, contr<u>i</u> buiram para a realização deste trabalho.

Ø

-

.

-

IJ)		
)		
•	• .	
•	ÍNDICE	
•		
-	CAPÍTULO I - INTRODUÇÃO	
•	I.1 - O Estado da Arte	01
1	I.1.1 - Conceituação de Harmônicos	01
	T.1.2 - Limites para Harmônicos	06
Ì	\tilde{I} I 1 3 - As Fontos Harmônicas	00
	T 1 A Modierer des Componentes Hermôniese	40
	T. 1.4 - Medições das componences narmonicas	19
	1.1.4.1 - Metodo simples para a constatação	
	de correntes e tensoes harmonicas .	19
	I.1.4.2 - Medição atraves de analisadores	
)	de harmônicos e de espectros	20
	I.1.4.3 - Registros do sinal em medição	22
	I.1.4.4 - Instrumentos auxiliares na dete	
•	ção de harmônicos	23
•	I.1.5 - Simulações Computacionais	25
)	I.1.5.1 - Simulação computacional das fon	
	tes harmônicas	25
	I.1.5.2 - Simulação computacional da pene	
)	tração harmônica	26
	I.1.6 - Medição da Impedância Harmônica	28
	I.1.7 - Problemas Causados por Harmônicos	29
	I.2 - A Proposta de Desenvolvimento neste Trabalho	30
2 2	CAPÍTULO II - GERADOR ESTÁTICO DE TENSÕES HARMÔNICAS	
	II.1 - Introdução	37
0	II.2 - Considerações Físicas sobre Circuitos Magnéticos	38
0		
0		
0		

*

¥

•

II.3 - Obtenção de Tensões Induzidas com Defasamento	
Variável	43
II.4 - Considerações Físicas sobre o Gerador de Fre	
quências	50
II.5 - Projeto do Gerador de Tensões Harmônicas	52
II.6 - Determinação do Número de Espiras N _A	54
II.7 - A Associação em Cascata de Fontes Harmônicas	•
de Tensão	63
II.8 - Resultados Experimentais	65
II.9 - Conclusões	68
CAPÍTULO III - CONTRIBUIÇÕES AOS ESTUDOS DOS EFEITOS	
CAUSADOS POR HARMÔNICOS EM COMPONENTES	
DE SISTEMAS ELÉTRICOS	
III.1 - Introdução	71
III.2 - O Medidor de KWh	72
III.2.1 - Princípio de Operação do Medidor de	
KWh Tipo Indução	73
III.2.2 - Modelo Analítico do Medidor Consid <u>e</u>	
rando-se as Distorções Harmônicas	82
III.2.3 - Resultados Obtidos Através da Simu	
lação Digital	103
III.2.3.1 - Caso base e análise sob vá	·
rias considerações de di <u>s</u>	
torções	104
III.2.3.2 - Análise da influência dos	
$\hat{a}ngulos de fase \theta_{vn} e \theta_{in} $	106

*

U		
Ø		
•	III.2.3.3 - Análise da influência do	
0	ângulo de fase entre a	
	tensão e a corrente fun	
♥ _.	damental	108
.	III.2.3.4 - A influência das ordens	
0	harmônicas	110
0	III.2.3.5 - A influência da conexão	
0	do transformador de ali	r
0	mentação $(YY/\Delta\Delta)$ e $(Y\Delta/\Delta Y)$.	111
	III.3 - O Transformador de Potencial	114
	III.3.1 - Técnicas para Medição em Alta Tensão	115
9	III.3.2 - Relações Nominal, Real e Erros nas	
	Medições	118
0	III.3.3 - Circuito Equivalente dos T.P.'s Capa	
0	citivo e Indutivo Operando a 60 Hz	
۲	e em Frequências Superiores	121
0	III.3.4 - Equação Geral da Relação de Transfor	
•	mação do T.P.I	125
•	III.3.5 - Metodologia para a Simulação Digital	127
Ø	III.3.6 - Resultados Experimentais	131
6	III.4 - Transformador de Corrente (T.C.)	141
	III.5 - Conclusões	149
•		*
•	CAPÍTULO IV - CONTRIBUIÇÕES AO DESENVOLVIMENTO DE INS	
0	TRUMENTOS PARA A ANÁLISE HARMÔNICA NAS	
0	REDES ELÉTRICAS	
0	IV.1 - Introdução	153
0	IV.2 - Detetor de Distorções Harmônicas	7154
Ø		•
j o		
6		1

.

W

•

۲

ŧ

×.

•

an and the Paris Adda and

STATES AND AND A

	IV.2.1 - Distorções Harmônicas de Tensão e Cor
	rente
	IV.2.2 - Estrutura Básica do Indicador de Dis
	torção
	IV.2.3 - Descrição das Principais Unidades do
	Detetor de Distorções Harmônicas
	IV.2.4 - Obtenção do Sinal a ser Analisado
	IV.2.5 - Características do Equipamento
	IV.2.6 - Resultados Experimentais
	IV.2.6.1 - Testes dos estágios
	IV.2.7 - Testes do Instrumento
IV.3 -	- Detetor Direcional de Fluxo Harmônico
	IV.3.1 - Um Exemplo Ilustrativo da Necessidade
	de um Detetor Direcional do Fluxo
	Harmônico
	IV.3.2 - Fundamentos Teóricos sobre a Geração e
	Absorção Harmônica
	IV.3.3 - Estrutura Básica do Detetor Direcional
	de Componentes Harmônicas
	IV.3.4 - Obtenção do Sinal a ser Analisado
	IV.3.5 - Características do Equipamento
	IV.3.6 - Resultados Experimentais
· .	IV.3.7 - Testes do Instrumento
IV.4	- Conclusões
	۴
CAPIT	ulo v – uma proposta para a determinação da
	IMPEDÂNCIA HARMÔNICA DO SISTEMA CA

*

•		
•		
0	V.2 - Considerações Físicas sobre o Sistema Supridor	
9	e o Consumidor Não-linear	205
•	V.3 - Metodos	208
•	V.3.1 - Método I	208
()	V.3.2 - Método II	21.3
•	V.3.3 - Método III	214
9	V.4 - Verificação Experimental	218
1	V.4.1 - Medições com Carga Não-linear e Impe-	. *
<u>)</u>	dância Auxiliar Desconectados	218
() ()	V.4.2 - Medições com a Impedância Auxiliar Co	
â	nectada e Carga Não-linear Desconectada	219
	V.4.3 - Medições com Carga Não-linear Conectada	
۲	e Impedância Auxiliar Desconectada	221
9	V.5 - Conclusões	224
•		
0	CAPÍTULO VI - CONCLUSÕES GERAIS	
(f) (f)	Conclusões Gerais	226
A		
	APÊNDICE	233
0		
0	BIBLIOGRAFIA	251
0		
8		•
۲		
•	•	
() A		
•		
3		

•

*

•

•

ē

ä

ù

CAPÍTULO, I

INTRODUÇÃO

I.1. O ESTADO DA ARTE

O objetivo principal deste capítulo é o de apresentar uma abordagem geral sobre o estado da arte da geração de harmônicos, suas fontes, seus limites, métodos de medições e efeitos causados nos componentes de sistemas elétricos, procurando proporcionar meios para a reflexão sobre a evolução e efeitos dos harmônicos nos sistemas elétricos. Estas considerações certamen te levarão a concluir que esta área de conhecimento encontrase relativamente aberta a investigações, modelagens, soluções, etc., se a mesma for comparada a outras da engenharia elétrica.

I.1,1. CONCEITUAÇÃO DE HARMÔNICOS

A palavra harmônico foi originalmente definida em acústica, significando a vibração de um fio ou uma coluna de ar, com frequência múltipla à da fundamental, provocando uma distorção na qualidade do som resultante.

Um fenômeno, semelhante a este em acústica, tem ocorrido na engenharia elétrica, onde deformações também têm sido registradas. De fato, dentro dos objetivos de uma concessioná ria de energia, destaca-se a qualidade do fornecimento de energia aos consumidores industriais e residenciais que idealmente

com uma tensão puramente senoidal deve ser fornecida de frequência e amplitude constantes. Entretanto, é constatado na prática que a operação do fornecimento de energia aos usuá rios causa deformações ao próprio sistema de suprimento. Uma forma de deformação é a distorção na própria onda de tensão, а qual, ao longo dos anos do uso de corrente alternada, procurouse fornecer de forma mais senoidal possível, dentro dos aspec tos práticos. Conter estas distorções a níveis irrelevantes foi, e tem sido, a preocupação dos engenheiros de potência. Com este propósito, a distorção de uma tensão ou corrente, é analisada ma tematicamente, com base no estudo das ondas não-senoidais perió dicas, onde qualquer onda constituída de distorções, pode ser decomposta através da série de Fourier, em uma componente de mesma frequên cia que a da onda distorcida, comumente denominada por "ONDA FUNDA MENTAL", e em outras ondas também senoidais de frequências múltiplas à da fundamental, que, como em acústica, receberam a denominação de "HARMÔNICOS". Um exemplo típico é a clássica forma de onda da corrente, na linha de um sistema que alimenta uma ponte conversora trifásica, ilustrada na Fig. I.1.

1

6

a

63

H

0

Fig. I.1 - Forma de onda da corrente de linha para um sistema conversor, com ângulo de comutação ígual a zero.

A corrente i(ωt) da ilustração pode ser decomposta em série de Fourier, cujo desenvolvimento leva à seguinte expressão:

0

æ

0

0

@

a

6

0

0

0

0

0

0

$$i(\omega t) = \frac{2\sqrt{3}}{1} I_{d} [\cos \omega t - \frac{1}{5}\cos 5\omega t + \frac{1}{7}\cos 7\omega t - \frac{1}{11}\cos 11\omega t + \dots]$$
(I.1)

A figura I.2 ilustra a composição harmônica que pode ser obtida pela superposição dos sinais que compoém a equação (I.1).

 (a) Forma de onda
 (b) Espectro de barras
 Figura I.2 - Harmônicos característicos produzidos por uma ponte conversora trifásica de 6 pulsos.

A grande vantagem da utilização desta técnica matemática é que, em sistemas lineares, cada componente harmônica pode ser considerada separadamente e a distorção final determinada pela superposição das várias componentes constituintes do sinal distorcido. Destaca-se ainda, que a determinação dos ângu los de fases, entre as componentes harmônicas e a fundamental, é de máxima importância, permitindo concluir, no caso de um PAC (ponto de acoplamento comum à vários consumidores), onde fontes harmônicas estão conectadas, se a distorção pode ser aumentada ou reduzida.

O interesse sobre esta questão tem chamado a atenção dos especialistas nesta área da engenharia elétrica, uma vez que um número exagerado de cargas elétricas produzindo sinais distorcidos está sendo conectado junto ao sistema alimentador.

De fato, vários tipos de cargas elétricas especiais têm sido implantados, em grande quantidade, no sistema elétrico brasileiro, nos últimos anos. Estas cargas elétricas, na sua maioria, estão sendo aplicadas em substituição a tradicionais e quipamentos que se tornaram anti-econômicos, face às novas solu ções. Assim, os tradicionais fornos siderúrgicos, cujo combustível primário era o óleo, estão sendo rapidamente substituídos por fornos elétricos a arco voltaico. Dentre outros exemplos que podem ser citados destacam-se: a substituição dos compensadores sincronos de reativos pelos modernos compensadores estáti cos, a transmissão CC que vem se firmando como solução para а transmissão de grandes blocos de energia.

Esses equipamentos modernos denominados de "Cargas Es peciais", apesar de terem funções diversas em um sistema elétr<u>i</u> co, têm em comum, além das vantagens técnicas e econômicas em relação aos seus antecessores, uma desvantagem: a produção de tensões e correntes não-senoidais. A presença destas componen tes, que se apresentam com frequências múltiplas à da fundamen-

tal, já vem sendo bastante significativa, com tendência a um au mento progressivo. Nos sistemas de distribuição e subtransmis são já é observado o aumento considerável destas componentes e os diversos problemas decorrentes.

8

ð

Os primeiros relatos sobre os efeitos criados por har mônicos ocorreram com a operação das primeiras instalações conversoras estáticas, as quais, produzindo correntes harmônicas, induzem ruídos em sistemas de comunicações.

Um dos primeiros problemas ocorreu na refinaria de cobre a oeste de Salt Lake City - USA, na década de vinte, qua<u>n</u> do esta instalação foi energizada, interrompendo as convers<u>a</u> ções transcontinentais que existiam no momento. Isto ocorreu porque o sistema C.A. de alimentação dos retificadores da ref<u>i</u> naria corria paralelamente às linhas telefônicas transcontinentais, e as harmônicas causadas pelos retificadores induziam nas linhas tensões suficientes para criarem ruído nos circuitos t<u>e</u> lefônicos.

Um outro evento ocorreu numa mina do Canadá, durante a energização de uma instalação retificadora. As linhas de comu nicações, partilhando o mesmo caminho que a alimentação C.A. da mina, tiveram induzido um nível de ruído tão forte que um chama do de socorro não podia ser entendido.

Dentre os vários fenômenos provocados por harmônicos e relatados pela literatura clássica encontrada sobre o assunto destaca-se um dos mais discutidos nos dias atuais, que é a distorção harmônica [1], [2], constatada em diversos barramentos do sistema elétrico.

Além deste aspecto relacionado à qualidade do fornec<u>i</u> mento de energia, destacam-se outros que afetam tanto a operação de concessionárias como o próprio consumidor.

A Eletrobrás, tendo conhecimento de que o problema é grave e que já está presente no Brasil. Tem procurado apoiar es tudos na área de geração, efeitos, modelagem e soluções referen tes aos fenômenos harmônicos em sistemas de potência. São notáveis os apoios financeiros junto às Universidades, dentre os quais destaca-se, aqui, a participação conjunta da Universidade Federal de Uberlândia e da Universidade Estadual de Campinas -SP.

I.1.2. LIMITES PARA HARMÔNICOS

6

(13)

0

6

Ø

A preocupação com os efeitos causados por harmônicos levaram vários países a estabelecerem, ao longo dos anos, recomendações ou guias [3], [4], relativas ao controle de harmôni cos, apresentando sempre em comum, efetivamente, os seguintes objetivos:

- preservar o padrão de suprimento de energia elétrica;
 - manter as distorções das ondas de tensão e corrente dentro de níveis toleráveis pelo sistema de potência e seus componentes;
 - . garantir a operação adequada de equipamentos; evitar interferência, etc.

Para atender a esses objetivos, os critérios de limitação harmônica, adotados por diferentes países, são fundamenta

dos em experiências próprias e raramente baseadas em estudo e compreensão detalhados do comportamento do sistema. Estes crit<u>é</u> rios são divididos basicamente em três grupos:

0

61

3

0

E

()

偸

0

limites para a distorção de tensão harmônica total
 e/ou para os harmônicos de tensões individuais;

. limites para as correntes harmônicas injetadas no sistema;

. limites para as tensões e correntes harmônicas.

A experiência do Brasil com respeito às recomendações e limites é baseada no relatório elaborado pelo Grupo Coordenador de Operação Interligada (GCOI) da Eletrobrás e é fundamen tada em experiências de outros países (basicamente, Inglaterra e Nova Zelândia) e em medições exaustivas no campo, ao longo de vários anos.

A recomendação brasileira atual sugere limites harmônicos diferentes para sistemas de tensão inferior e superior a 69 [KV]. No caso de sistemas operando com níveis de tensão de até 69 [KV], a tensão harmônica fase-terra, junto ao denominado "Pontó de Acoplamento Comum - PAC", entre o consumidor e a co<u>n</u> cessionária, não pode exceder os seguintes limites:

- . tensões harmônicas pares : 28
- . tensões harmônicas impares : 4%
- . distorção de tensão harmônica total: 5%.

Para os sistemas com tensão nominal maior ou igual a 69 [KV] são também estabelecidos limites para as tensões e correntes harmônicas individuais junto dos PAC, conforme as tabelas I.1 e I.2.

							08
							00
ORDEM	TENSÃO HARMONICA FABE-TERRA	DRDEM	LIMI	TE DE COI	RENTE	ARMONIC	A (A)
RHÔNICA	(# DA TENSÃO NOMINAL)	HARMONICA	345KY	23084	138KV	88 KY	69
	9 X	3	8,6	5,9	3,5	2,2	1
							- · ·
5	14	5	5,3	3,5	2,1	1,4	
57	1,4	5 7 9	5,3 3,8 2,9	3,5 2,5 2 D	2,1 1,5	1,4	
5 7 9	1,4 1,0 0.6	5 7 9 11	5,3 3,8 2,9 2,4	3,5 2,5 2,0 1,6	2,1 1,5 1,2 1,0	1,4 1,0 0,8 0.6	0
5 7 9 11	1,4 1,0 0,8 0,7	5 7 9 11 13	5,3 3,8 2,9 2,4 2,0	3,5 2,5 2,0 1,6 1,4	2,1 1,5 1,2 1,0 0,8	1,4 1,0 0,8 0,6 0,5	1 0 0 0 0
5 7 9 11 13	1,4 1,0 0,8 0,7 0,5	5 7 9 11 13 15	5,3 3,8 2,9 2,4 2,0 1,8	3,5 2,5 2,0 1,6 1,4 1,2	2,1 1,5 1,2 1,0 0,8 0,7	1,4 1,0 0,8 0,6 0,5 0,5	0
5 7 9 11 13 15	1,4 1,0 0,8 0,7 0,6 0,5	5 7 9 11 13 15 17 19-21	5,3 3,8 2,9 2,4 2,0 1,8 1,6 1,3	3,5 2,5 2,0 1,6 1,4 1,2 1,0	2,1 1,5 1,2 1,0 0,8 0,7 0,6	1,4 1,0 0,8 0,5 0,5 0,4	
5 7 9 11 13 15 17-21	1,4 1,0 0,8 0,7 0,6 0,5 0,4	5 7 9 11 13 15 17 19-21 23	5,3 3,8 2,9 2,4 2,0 1,8 1,6 1,3 1,2	3,5 2,5 2,0 1,6 1,4 1,2 1,0 0,9 0,8	2,1 1,5 1,2 0,8 0,7 0,6 0,5 0,5	1,4 1,0 0,8 0,6 0,5 0,5 0,4 0,3 0,3	
5 7 9 11 13 15 17-21 23-49	1,4 1,0 0,8 0,7 0,6 0,5 0,4 0,3	5 7 9 11 13 15 17 19-21 23 25-49	5,3 3,8 2,9 2,4 2,0 1,8 1,6 1,3 1,2 1,1	3,5 2,5 2,0 1,6 1,4 1,2 1,0 0,9 0,8 0,7	2,1 1,5 1,2 0,8 0,7 0,6 0,5 0,5 0,4	1,4 1,0 0,8 0,5 0,5 0,5 0,4 0,3 0,3 0,3	
5 7 9 11 13 15 17-21 23-49	1,4 1,4 1,0 0,8 0,7 0,6 0,5 0,5 0,4 0,3	5 7 9 11 13 15 17 19-21 23 25-49 2	5,3 3,8 2,9 2,4 2,0 1,8 1,6 1,5 1,2 1,1 4,4	3,5 2,5 2,0 1,6 1,4 1,2 1,0 0,9 0,8 0,7 2,9	2,1 1,5 1,2 1,0 0,8 0,7 0,6 0,5 0,5 0,4 1,8	1,4 1,0 0,8 0,5 0,5 0,5 0,4 0,3 0,3 0,3 1,1	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
5 7 9 11 13 15 17-21 23-49 2	1,4 1,4 1,0 0,8 0,7 0,6 0,5 0,5 0,4 0,3	5 7 9 11 13 15 17 19-21 23 25-49 2 4	5,3 3,8 2,9 2,4 2,0 1,8 1,6 1,6 1,5 1,2 1,1 4,4 2,2	3,5 2,5 2,0 1,6 1,4 1,2 1,0 0,9 0,8 0,7 2,9 1,5	2,1 1,5 1,2 0,8 0,7 0,5 0,5 0,5 0,4	1,4 1,0 0,8 0,5 0,5 0,4 0,3 0,3 0,3 1,1 0,6	
5 7 9 11 13 15 17-21 23-49 2 4	1,4 1,4 1,0 0,8 0,7 0,6 0,5 0,4 0,3 1,2 0,6	5 7 9 11 13 15 17 19-21 23 25-49 2 4 6 6	5,3 3,8 2,9 2,4 2,0 1,8 1,6 1,6 1,5 1,2 1,1 4,4 2,2 1,5	3,5 2,5 2,0 1,6 1,4 1,2 1,0 0,9 0,7 2,9 1,5 1,5 1,0 2,9	2,1 1,5 1,2 0,8 0,6 0,5 0,5 0,4 1,8 0,9 0,6	1,4 1,0 0,8 0,5 0,5 0,4 0,3 0,3 0,3 1,1 0,6 0,4	
5 7 9 11 13 15 17-21 23-49 2 4 6	1,4 1,4 1,0 0,8 0,7 0,6 0,5 0,4 0,3 1,2 0,6 0,4	5 7 9 11 13 15 17 19-21 23 25-49 2 4 6 8 10	5,3 3,8 2,9 2,4 2,0 1,8 1,6 1,6 1,5 1,2 1,1 4,4 2,2 1,5 1,1 0,9	3,5 2,5 2,0 1,6 1,4 1,2 1,0 0,9 0,7 0,8 0,7 1,5 1,0 0,7 0,6	2,1 1,5 1,2 1,0 0,8 0,5 0,5 0,5 0,4 1,8 0,9 0,6 0,4 0,4	1,4 1,0 0,8 0,5 0,5 0,4 0,3 0,3 0,3 1,1 0,6 0,4 0,3 0,2	
5 7 9 11 13 15 17-21 23-49 	1,4 1,4 1,0 0,8 0,7 0,6 0,5 0,4 0,3 1,2 0,6 0,4 0,3	5 7 9 11 13 15 17 19-21 23 25-49 2 4 6 8 10 12-14	5,3 3,8 2,9 2,4 2,0 1,8 1,6 1,6 1,5 1,2 1,1 4,4 2,2 1,5 1,1 0,9 0,7	3,6 2,5 2,0 1,4 1,2 1,0 0,9 0,7 0,7 0,7 0,7 0,6 0,5	2,1 1,5 1,2 0,8 0,7 0,6 0,5 0,4 0,5 0,4 0,4 0,4 0,4 0,4 0,3	1,4 1,0 0,8 0,5 0,5 0,4 0,3 0,3 0,3 1,1 0,6 0,4 0,3 0,2 0,2	
5 7 9 11 13 15 17-21 23-49 2 4 6 8-10 12-50	1,4 1,4 1,0 0,8 0,7 0,6 0,5 0,4 0,3 1,2 0,6 0,4 0,3 0,2	5 7 9 11 13 15 17 19-21 23 25-49 2 4 6 8 10 12-14 16-18	5,3 3,8 2,9 2,4 2,0 1,8 1,6 1,6 1,3 1,2 1,1 4,4 2,2 1,5 1,1 0,9 0,7 0,6	3,6 2,5 2,0 1,4 1,2 1,0 0,9 0,7 2,9 1,5 1,0 0,7 0,6 0,5 0,4	2,1 1,5 1,2 0,8 0,7 0,6 0,5 0,4 0,5 0,4 0,4 0,4 0,4 0,3 0,2	1,4 1,0 0,8 0,5 0,5 0,4 0,3 0,3 0,3 1,1 0,6 0,4 0,3 0,2 0,2 0,2	

Tabela I.1 - Limites de tensão harmônica para sistemas de tensão ≥ 69 [KV].

(A)

0

6

6

Tabela I.2 - Limites de corrente harmôni ca parasistemas de tensão ≥ 69 [KV].

No caso de vários consumidores ligados a um mesmo barramento, os limites de harmônicos devem ser divididos entre os diversos consumidores conectados àquele "PAC", em proporção à demanda máxima de cada um.

Procurando controlar o grau dos distúrbios que podem ser originados, os órgãos competentes que legislam sobre o fo<u>r</u> necimento energético, têm procurado investigar, estudar e dete<u>r</u> minar as fontes harmônicas para que as denominadas "poluições" harmônicas, jã existentes ou ainda a serem injetadas no sistema, sejam minimizadas. Uma compilação de vários resultados apr<u>e</u> sentados na literatura clássica, é rapidamente apresentada e discutida a seguir.

I.1.3. AS FONTES HARMÓNICAS [5], [6], [7], [8]

٩Ð

@

a

()

æ

۲

1

6.8

1

0

Os geradores utilizados nos sistemas de energia são projetados para produzir uma tensão senoidal, de tal modo que, para objetivos práticos, pode-se considerar a forma da onda, de tensão gerada como puramente senoidal. Desta forma, todás as distorções consideradas significativas ocorrem na transmissão e na distribuição, entre os geradores e as cargas.

De um modo geral, costuma-se dividir as cargas gerado ras de harmônicas em três grupos básicos:

- (i) CARGAS DE CONEXÃO DIRETA AO SISTEMA
 - . motores de corrente alternada
 - . transformadores alimentadores
 - . circuitos de iluminação com lâmpadas de descarga
 - . fornos a arco
 - . etc.
- (ii) CARGAS CONECTADAS ATRAVÉS DE CONVERSORES
 - . motores de corrente continua controláveis
 - retificadores controlados
 - . motores de indução controláveis
 - inversores auto-controlados
 - retificadores não controlados de grande potência

- ciclo conversor

etc.

(iii) - REGULADORES

B

6

0

- todos os sistemas de controle que não envolvem variação de frequência
 - fornos de indução controlados por reatores saturados
 - cargas de aquecimento controladas por tiristores
 - velocidade dos motores CA controlado por tensão de estator.

As cargas denominadas "de uso residencial", podem to<u>r</u> nar-se bastante significativas em virtude do grande número em que são usadas simultaneamente e por períodos relativamente grandes. Neste grupo podem também ser incluídos os pequenos motores de corrente alternada, controlados ou não, por exemplo, usados em:

- . compressores de refrigeradores
- . ventiladores
- . bombas elétricas
- . ferramentas elétricas.

As diversas cargas do sistema que são capazes de gerar harmônicos são rapidamente discutidas a seguir:

A. GERADORES

Embora as formas de onda das tensões produzidas p<u>e</u> los geradores sejam usualmente bastante próximas do aspecto senoidal, um gerador de corrente alternada pode ser considerado como uma fonte de tensões harmônicas equilibradas de sequência zero. A origem destes harmônicos pode ser explicada em te<u>r</u> mos da distribuição de fluxo na máquina.

11

1

۲

26

8

8

圈

68

۲

•

٩

6

0

0

4

0

0

(F

0

Em substituição ao desejado fluxo perfeitamente se noidal, sabe-se que a distribuição do fluxo no entreferro para um alternador é do tipo ilustrado na figura I.3.

Figura I.3 - Distribuição do fluxo.

Analisando a forma de onda do fluxo pela série de Fourier, verifica-se que a mesma pode ser considerada como a composição de uma componente fundamental, à qual são superpostas diversas componentes harmônicas de ordem impar. Então, a cada componente de fluxo estará associada uma correspondente tensão.

Deve-se ainda observar que os harmônicos de ordem

diferente de três, ou de seus múltiplos, constitu<u>i</u> rão um sistema equilibrado de tensões harmônicas , entretanto, o 3º harmônico, e múltiplos deste, for marão um sistema de tensões de sequência nula. Como valores típicos [5] destes harmônicos tem-se:

$$\frac{E_3}{E_1} = 0,075$$

= 0,015

 $\frac{E_7}{E_1} = 0,0007$

B. TRANSFORMADORES

۲

1.0

6

0

Ø

0

@

6

êŝ

Os transformadores podem ser considerados como geradores de tensões e/ou de correntes harmônicas, que aparecem devido à distorção magnética e à componente harmônica dos fluxos induzindo f.e.m.s em seus enrolamentos. Deve ser ressaltado que o proje to econômico dos transformadores exige que seu núcleo (normalmente aço-silício com grãos orientados) trabalhe na parte não linear da curva de satu ração, resultando em apreciável saturação. Nestas condições, a corrente de magnetização não é uma onda senoidal e sua forma depende da característica (curva B-H, figura I.4) do circuito magnético do transformador. A forma de onda da corrente é aquela mostrada na figura I.4.b.

Observa-se que, apesar do fluxo ser senoidal, a corrente é uma onda distorcida. A análise desta onda de corrente mostra que ela contém componen tes harmônicas impares de valores consideráveis , estando a componente de 3º harmônico representada na figura I.4.b. Valores típicos [5] dos harmônicos são:

> 45% para o 3º harmônico 15% para o 5º harmônico 3% para o 7º harmônico

6

0

۲

6

0

卿

0

Estes valores são expressos em porcentagem do valor da onda fundamental da corrente total de excitação, a qual é praticamente constante e independen te da carga.

a) Curva B-H do transformador b) fluxo de correate

Figura I.4 - Formas de onda da corrente de magnetiza ção, da tensão aplicada, do fluxo (atra sado 90⁰ em relação à tensão) e do 39 harmônico componente da corrente.

C. COMPENSADORES ESTÁTICOS DE ENERGIA REATIVA

()

0

0

É fato conhecido que os estudos do fluxo de potência dos sistemas elétricos devem ser feitos com balanço de potência ativa e reativa ao longo do sistema. Desse modo, a componente indutiva da corrente circulando através das impedâncias do sistema é, em grande parte, responsável pela regulação de tensão nos terminais de carga. Quando o valor desta componente se torna razoavelmente alto, a queda de tensão pode se mostrar inconveniente, ou mesmo proibitiva, para a operação satisfatória da instalação.

Dentre os vários sistemas de compensação estática utilizados para suprir esta energia reativa, podese citar as seguintes formas dinâmicas [5]:

. reator a núcleo saturado

. reator controlado por tiristores

. capacitores chaveados a tiristores

Sob o ponto de vista de geração de harmônicos, pode-se dizer que somente os dois primeiros introduzem harmônicos no sistema elétrico de alimentação. Sendo K = 1, 2, 3, ... e P o nº de pulsos da inst<u>a</u> lação, tem-se que o primeiro tipo gera harmônicos de ordem:

n = (2KP ± 1) para uma (P=1) unidade magnética n = (6K ± 1) para três unidades magnéticas n = (12K ± 1) para seis unidades magnéticas O segundo tipo é composto de um reator chaveado por meio de tiristores e inclui um banco de capaci

tores. Para este tipo, pode-se afirmar que aparecem, por fase, principalmente os harmônicos de 39, 59, 79 ordens, não excedendo os percentuais típi cos de [13,58], [5,88] e [2,58] da fundamental, res pectivamente. De uma forma geral, as harmônicas que podem aparecer, por fase, de ordem são: n = $(2K \pm 1)$.

15

D. FORNOS À ARCO

(B)

38

6

69

A

88

(

0

6

Os fornos à arco, muito utilizados para fundição de sucatas, tiveram nos últimos anos uma tendência, principalmente nas indústrias de maior porte, de um crescimento substancial. Isto deve-se, dentre outros fatores, o fato de que o processo metalúrgi co empregado é mais simples e, também, à utiliza ção de energia elétrica como alternativa energética, por ser mais atrativa e de menor custo. Os princípios operativos destes fornos determinam que sendo o mesmo caracterizado por conduções elétricas em arcos (plasma), a não linearidade do pro cesso conduz ao aparecimento de distúrbios, tais como flutuações de tensão e geração de correntes harmônicas. Devido ao fato que este tipo de equipa mento permite uma variação aleatória da corrente, torna-se muito difícil a previsão deterministica da sua composição harmônica. Assim, a referência [7] fornece resultados estatísticos obtidos dos ní veis harmônicos. A tabela I.3 fornece de forma resumida as ordens e os níveis de harmônicas de corrente produzidos por uma unidade constituída por um forno à arco.

۲

6

癜

tion.

۲

8

S.

8

Harmônico	Amplitude Média	Nível Máximo
de ordem "N"	ક	8
2	3 a 4	30
3	6 a 10	20
4	2 a 6	15
5 👘	- 2a10	12
6	2 a 3	10
7	3 a 6	8
9	2 a 5	7

Tabela I.3 - Ordens e niveis médios de harmônicos, produzidos por fornosàarco (% da fun damental).

E. PONTE TRIFÁSICA TOTALMENTE CONTROLADA [2],[8] , [9],[10],[11],[12].

Trata-se de um equipamento estático, que tempor objetivo transformar uma tensão alternada em contínua, sendo formada basicamente por seis t<u>i</u> ristores. Devido à característica de operação , este equipamento pode gerar correntes harmôni cas nas ordens n = $6K \pm 1$, onde K = 1, 2, 3, ...As correntes assim definidas por componentes harmônicas características ocorrem somente em condições ideais de operação. Entretanto, como estas condições são difíceis de acontecer na prática, as anomalias que ocorrem na operação do sistema conversor podem levar à geração de outras ordens harmônicas; quais sejam, as compo nentes pares e as 3^{as} e múltiplas.

Dentre as causas e efeitos sobre a geração de harmônicos não-característicos pode-se citar:

- erros no sistema de disparo [9]

۲

5

1

- desequilíbrios da tensão c.a. de alimentação [10]
- distorções na tensão de alimentação [11]
- desequilíbrios entre as impedâncias do sistema c.a. [12].

F. PONTE TRIFÁSICA SEMI-CONTROLADA [13]

A sua característica de operação é muito seme lhante à da ponte totalmente controlada, diferenciando apenas no número de tiristores utilizados. A ponte semi-controlada é formada por apenas três tiristores, sendo os outros três sub<u>s</u> tituídos por diodos, característica esta que não permite o controle total. Apesar desta economia no número de tiristores e no sistema de controle, este equipamento possui uma grande de<u>s</u> vantagem, que é a de produzir níveis das corre<u>n</u> tes harmônicas maiores, que aquelas dos conversores convencionais (controlados e não controla dos), além de gerar outras ordens harmônicas. As ordens dos harmônicos gerados por tal equipa mento são previamente expressos por n = $3K \pm 1$, o que implica no aparecimento das componentes de ordem par.

5

G. REGULADOR CA, CICLO-CONVERSOR E INVERSOR COM CO MUTAÇÃO FORÇADA [13]

Estes são equipamentos estáticos, de uso mais restrito e menores potências, porém que também geram harmônicos devido a característica não-linear. Normalmente, para o sistema CA estas cargas são vistas como um retificador (ciclo e inversor) e não alteram o exposto anteriormente. O caso do regulador foge a esta condição.

H. APARELHOS DE SOM E TV, LÂMPADAS FLUORESCENTES E DIMMERS.

Estas são as cargas normalmente instaladas nos consumidores residenciais, e que tomam uma importância relevante na geração de harmônicos, pois produzem um efeito combinado de várias in<u>s</u> talações de pequeno porte, operando com caract<u>e</u> rísticas não-lineares.

I.1.4. MEDIÇÕES DAS COMPONENTES HARMÔNICAS [3], [4], [14]

Considerando que um dado sistema apresente cargas não-lineares já instaladas, a avaliação efetiva das componentes harmônicas é obtida pela medição direta. Os critérios de medição utilizados nos dias de hoje pelas concessionárias brasileiras são fundamentados nas recomendações práticas e experiências de outros países, conforme descrevem as referências:

Limits for harmonics in the United Kingdon
 Electricity Supply System - G.5/3.

Limitation of Harmonic Levels - New Zeland
 Gazette of 3rd December 1981.

6

68

6

0

0

8

 Measuring Voltage and Current Harmonics on Distribution Systems - USA, IEEE Transactions on Power Apparatus and Systems, July 1981.

Os equipamentos de instrumentação utilizados para o propósito da medição são discutidos nestas recomendações, sendo rapidamente descritos a seguir. As discusões consideram os diversos equipamentos existentes no passado e os empregados nos dias atuais.

I.1.4.1. <u>MÉTODO SIMPLES PARA A CONSTATAÇÃO DE CORRENTES E TEN-</u> SÕES HARMÔNICAS

A primeira informação sobre a existência de tensões e correntes harmônicas pode ser obtida por meio da visualização das formas de ondas, através de osciloscópios. Este processo mostra a distorção na forma de onda fundamental, no entanto, não permite análise detalhada dos níveis harmônicos. Assim consiste em um método para simples informação do estado geral da forma de onda.

0

8

0

6

0

æ

0

0

I.1.4.2. <u>MEDIÇÃO ATRAVÉS DE ANALISADORES DE HARMÔNICOS E DE ES-</u> PECTROS

Face às necessidades da análise individual das componentes harmônicas, utilizou-se por muitos anos a técnica de selecionar cada frequência, correspondente à onda distorcida, através de circuitos sintonizados. Estas análises eram então rea lizadas, para todas as frequências, com um voltímetro seletivo constituído de um filtro passa-faixa, com o ajuste das faixas de frequência nas frequências harmônicas, e um medidor de ten são RMS. Dentro do exposto, estes analisadores de onda apresentam como desvantagens uma baixa precisão para as componentes har mônicas de pequena amplitude e a incapacidade de medir várias componentes ao mesmo tempo.

Este processo de medição foi então substituído pelos equipamentos denominados por "Analisadores Harmônicos", constituídos de vários circuitos já sintonizados (filtros passa-fai xa). Entretanto, permanecia ainda o problema da sensibilidade destes circuitos quanto a pequenas variações da frequência fundamental, durante o período de amostragem do sinal. Um outro fa tor agravante ocorria quando da variação rápida do espectro de frequência, incidindo em informações irreais, ao considerá las em regime permanente. Além destes problemas, destacam-se ou tros associados aos filtros analógicos, como: . faixa de passagem

seletividade

0

6

 \mathbf{A}

tempo de resposta

. envelhecimento

. temperatura

. verificação e recalibração regulares.

Devido a estes inconvenientes, os desenvolvimentos prosseguiram e atualmente os instrumentos disponíveis para a me dição de harmônicos, dentro das mais modernas técnicas da engenharia, podem ser agrupados em duas categorias: os analisadores de harmônicos e os analisadores de espectro (que englobam também os analisadores de onda). Tais equipamentos podem empregar, em sua concepção, tanto técnicas analógicas quanto digitais.

Os analisadores de espectro cobrem toda uma faixa de frequências e fornecem a amplitude das componentes de um sinal, em todas as frequências dentro da faixa especificada.

Os analisadores harmônicos medem as amplitudes do sinal apenas nas frequências harmônicas, fornecendo um espectro de saída que é um subconjunto do espectro que seria produzido por um analisador de espectro, cobrindo apenas a faixa de frequências contendo os harmônicos desejados.

Seu princípio de operação é basicamente o mesmo dos analisadores de espectro, mas com a adição de algum meio de is<u>o</u> lar a identificar as frequências harmônicas.

Fundamentalmente, existem duas formas, bastante distintas, para a construção de um equipamento com estas características: a analógica e a digital (utilizando-se ou não de microprocessadores).

Nos dias de hoje, analisadores modernos para medidas em tempo real são construídos através de microprocessadores, pr<u>o</u> porcionando informações dos níveis de tensões e correntes harm<u>ô</u> nicas e outros do tipo:

. hora de medição

.

0

69

۲

0

6

0

ો

(A)

1

62

6

9 A

翻

Ð

62

働

3

(B)

ß

6

. distorção harmônica total

. programação automática de intervalos de medição

. ângulo de fase

. variação da frequência

. composição da forma de onda distorcida

. potência harmônica

 alarme quando a distorção ultrapassa os níveis reco mendados.

Dentre os instrumentos mais modernos utilizados nos dias de hoje citam-se:

• NOWA - 1 AC Power Line Harmonic Analyser (Alemanha).

: HP 3582A Spectrum Analyser (Estados Unidos).

: Etc.

I.1.4.3. <u>REGISTROS DO SINAL EM MEDIÇÃO</u>

Dependendo do propósito da medição, além dos analisadores, outros equipamentos de registros de sinais são usados, dentre os quais podem-se citar:

. registradores XY

. oscilógrafos.

O primeiro dispositivo é aplicado a monitoração e medição de longa duração de sinais com varia ção lenta, por exemplo, o valor de uma harmônica individual da distorção harmônica total. Onde as variações são muito rápidas, deve-se utilizar o oscilógrafo.

فاعتلأ

A

0

8

0

6

0

No caso de haver necessidade de análise harmônica de diferentes sinais simultaneamente, é necessário que o disposit<u>i</u> vo registrador tenha vários canais de entrada e que possa gravar em fitas magnéticas estes sinais, a serem processados no computador para subsequentes análises.

I.1.4.4. INSTRUMENTOS AUXILIARES NA DETEÇÃO DE HARMÔNICOS

Além dos equipamentos mencionados, a recomendação inglesa sobre limites harmônicos [4] sugere a utilização de outros dispositivos nas medições práticas, considerando, de uma forma evidente, a diminuição do custo total envolvido nas medições.

A primeira sugestão procura mostrar a necessidade de um equipamento com a finalidade de identificar os barramentos distorcidos, atuando como um identificador mais grosseiro, o qual, detetando a presença de harmônicos acima dos níveis reco mendados, faria uma indicação visual ou sonora, alertando sobre o conteúdo da distorção. Apenas após esta fase seriam então requisitadas as equipes e a instrumentação mais específica, a fim de que seja feita uma análise mais refinada pelos lados qualit<u>a</u> tivo e quantitativo das distorções harmônicas. Assim, um dispositivo com este objetivo, de operação simples e custo mínimo, evitaria o deslocamento de uma equipe especializada em medições, quando a distorção se encontra abaixo

0

0

•

8

•

۲

1

0

68

۲

O outro equipamento citado é um dispositivo capaz de identificar o responsável pela geração de uma componente harmônica presente no ponto de medição. Seu objetivo, sem dúvida, é o de evitar enganos quanto ao gerador principal de harmônicos num PAC, onde existem vários consumidores contendo cargas nãolineares.

A recomendação inglesa menciona que estes dois dispositivos estavam sendo desenvolvidos pela ELECTRICITY COUNCIL RESEARCH CENTRE ENGLAND. Isto foi mais tarde confirmado, pois a ROBINSON ELECTRONIC INSTRUMENTS lançou no mercado inglês um instrumento denominado por "HARMONIC ALARM UNIT - TYPE 445", com funções de operação idênticas ao primeiro instrumento discutido. Entretanto, na literatura especializada nada foi encontrado como divulgação técnica de desenvolvimento e princípio de operação. Quanto ao segundo instrumento, nenhuma informação foi conseguida, nem mesmo pode-se afirmar se o projeto foi concluído.

No tocante aos desenvolvimentos de instrumentos para medições de componentes harmônicas, destaca-se, no Brasil, o projeto de um analisador espectral digital, na Universidade Federal de Uberlândia-MG, para a utilização de medição em campo. O equipamento, com medição em tempo real, permite as medidas de tensões e correntes harmônicas como uma porcentagem das componentes fundamentais. O instrumento de análise permite ainda a informação do ângulo de fase da componente harmônica relativa â fundamental, bem como, compor o sinal distorcido da onda em aná lise. Além destas funções básicas, o instrumento possui também o recurso de medições programadas em intervalos de tempo pré-

24

limites .

dos

ajustados e são analisados harmônicos

@ @

0

0

63

Q

(B)

0

0

6

「日本語」は「「日本」」」

O referido equipamento, foi testado em campo onde se já realizou várias medições, as quais foram aferidas com outros equipamentos importados de características semelhantes, comprovando-se a eficácia do instrumento com tecnologia totalmente n<u>a</u> cional.

I.1.5. SIMULAÇÕES COMPUTACIONAIS

Uma outra forma de avaliar as componentes harmônicas é através dos cálculos digitais. Este processo pode ser utiliz<u>a</u> do tanto para configurações já existentes como para as futuras. Desta forma, o método computacional, torna-se bastante adequado e atrativo para sistemas possuidores de cargas especiais e que se encontram ainda sob planejamento, pois, só assim, pode-se pr<u>e</u> ver os níveis das distorções harmônicas mesmo antes da instalação das cargas não-lineares.

I.1.5.1. SIMULAÇÃO COMPUTACIONAL DAS FONTES HARMÔNICAS

As fontes harmônicas podem ser representadas por mode los matemáticos apropriados, que as reduzem a fontes ideais de correntes harmônicas, a partir de suas condições operacionais . Assim, programas computacionais têm sido desenvolvidos, os quais determinam através de simulações monofásicas ou trifásicas, as componentes harmônicas produzidas por quaisquer cargas operando sob quaisquer condições de alimentação e, da operação de carga não-linear propriamente dita. O cálculo é normalmente feito

50ª ordem.

até a
através de um processo iterativo, considerando condições no<u>r</u> mais de operação, e mesmo qualquer característica de desequilíbrio que possa ocorrer, gerando as denominadas componentes ha<u>r</u> mônicas não-características.

I.1.5.2. SIMULAÇÃO COMPUTACIONAL DA PENETRAÇÃO HARMÔNICA

۲

8

62

8

6

(

O

6

Os cálculos digitais para os estudos do fluxo harmôni são inicialmente realizados pela simulação das fontes harmô CO nicas sob quaisquer condições de operação determinando suas cor rentes harmônicas. Injetando-se tais correntes na rede CA, apro priadamente modelada, procede-se a determinação das distorções harmônicas em cada barramento. Através de cálculos repetitivos das correntes harmônicas geradas, atualizam-se os níveis de dis torção até que um ponto estável de funcionamento seja obtido. Considerando que é o fluxo destas correntes através das impedân cias que determinam as distorções de tensões, é de suma impor tância o conhecimento da impedância que cada barramento apresen ta para o espectro de frequências harmônicas. No caso particu lar da impedância do sistema alimentador C.A., a experiência tem mostrado que a reatância muda de indutiva para capacitiva e vice-versa, dando pontos de ressonâncias para os quais o sistema se torna puramente resistivo. Uma representação exata desta impedância tem sido o objetivo de inúmeras pesquisas. As referências [15] e [16] estabelecem representações para a simulação des ta impedância de uma forma mais realística, embora existam outras representações bem mais simples, apresentando entretanto desvantagens na definição do módulo e da fase.

Atualmente, dos programas digitais em desenvolvimento para estudos de penetração harmônica, podem ser destacados os seguintes aspectos:

æ

673

9

- todos os componentes do sistema são modelados <u>a</u> través de um tratamento trifásico.
- (ii) As cargas geradoras de harmônicos são modeladas trifasicamente admitindo qualquer condição não ideal de operação.
- (iii) Existe a opção de que os harmônicos injetados nas barras sejam provenientes não de cálculos analíticos, mas de medições diretas.

(iv) Os componentes de sistemas podem ser representa dos por diversos modelos, a saber:

- . linhas e cabos
- . transformadores

. cargas lineares

. reatores limitadores

. filtros

. equivalentes do sistema

. máquinas síncronas

 (v) Representa-se as ações de controle dos dispositivos permitindo que seja considerada de forma iterativa a dependência carga-controle-sistema.

No Brasil, nos últimos anos têm-se verificado uma co<u>n</u> siderável contribuição nas simulações para cálculo de harmôni cos. São destacados vários trabalhos de dissertações, citados nas referências [08], [17], [18], [19] e [20], que têm sido ut<u>i</u> lizados e apresentam resultados satisfatórios. Entretanto, a re presentação exata da impedância C.A. do alimentador, dos compo nentes como transformadores, etc., continuam sendo assuntos polêmicos e merecerão muitas investigações futuras.

I.1.6. MEDIÇÃO DA IMPEDÂNCIA HARMÓNICA

۲

8æ

)

ß

0

6

Devido às dificuldades da obtenção da impedância harmônica exata de uma área através de métodos teóricos, torna-se necessário métodos diretos para o conhecimento de " Z_n " . Dentre estes processos diretos de medições, destacam-se aqueles encontrados ou citados nas referências [32], [33], [34], [35]. Muitos trabalhos citam que na Inglaterra, as concessionárias utilizam um equipamento gerador de tensões harmônicas, com o propósito de injetar uma corrente harmônica, no ponto de interesse do si<u>s</u> tema, ou no barramento de entrada de uma indústria. Uma vez injetada a corrente, procede-se às medições simultâneas das tensões e correntes harmônicas utilizando analizadores espectrais e com tal sistemática determina-se a impedância vista por aquele barramento.

As referências [34] e [35] relatam que, nos Estados Unidos, a prática de campo para a determinação da impedância não utiliza uma fonte harmônica de potência externa e adaptável ao ponto de medição, mas sim, de dois métodos simples, considerando as próprias componentes harmônicas presentes no sistema elétrico.

Neste sentido, as empresas brasileiras de energia el<u>é</u> trica não têm destacado uma metodologia própria para a determinação da impedância harmônica.

1.1.7. PROBLEMAS CAUSADOS POR HARMÔNICOS

۲

0

1

No tocante aos problemas causados por harmônicos, além dos já citados em sistemas de comunicações telefônicas, dest<u>a</u> cam-se outros sobre a rede e os equipamentos de potência e eletrônica, abordados nas referências [22], [23], [24], [25], [26], [27], [28], [29], [30], [31].

De forma geral, os efeitos das distorções podem originar problemas que podem ser divididos em três grupos.

- solicitação de isolamento associada a distorções de tensões;
- solicitação térmica, devido à circulação de correntes harmônicas;
- . operação indevida de diversas naturezas.

Nos dois primeiros grupos encontram-se além de outros, perdas de vida de transformadores, máquinas rotativas e barras de capacitores.

No último grupo estariam enquadrados os problemas mais diversos, os quais poderiam refletir numa operação normal ou mesmo errônea de um dado equipamento ou sistema, ou na sua falha por completo. Nesta categoria estariam agrupados efeitos como: torques oscilatórios nos motores C.A., falhas de diversos equipamentos a estado sólido, etc.

Embora tais tópicos devam fazer parte integrante de uma investigação conjunta entre efeitos e limites permissíveis, é conveniente mencionar que este aspecto foi esquecido pelos pesquisadores brasileiros, nos anos passados. Neste sentido re<u>s</u> salta-se a necessidade de que isto seja considerado no presente

de forma prioritária e que a iteração entre empresas de energia industriais e instituições de ensino venha a explorar , ob ter métodos para simulação e experimentos, obter limites de to lerância, avaliar efeitos sobre a vida útil de equipamentos etc.

1.2. A PROPOSTA DE DESENVOLVIMENTO NESTE TRABALHO

*

62

12

Após as considerações feitas, conclui-se que apesar de grandes desenvolvimentos já ocorridos na área, no sentido de identificar as principais fontes geradoras de harmônicos, os limites permissíveis, os efeitos provocados, os métodos de medições computacionais e práticos, e os instrumentos existentes nesta área da engenharia elétrica, pode-se facilmente identif<u>i</u> car lacunas a serem ainda investigadas. Isto norteou a idéia desta tese de doutorado que teve por meta contribuir efetiva mente no campo de harmônicos, conforme descrito a seguir, onde apresenta-se a estrutura e um resumo dos capítulos e trabalhos desenvolvidos.

CAPÍTULO II - GERADOR ESTÁTICO DE TENSÕES HARMÔNICAS

Conforme destacado nas discussões precedentes, há a necessidade de um estudo meticuloso a respeito da influência harmônica sobre a operação de determinados equipamentos, quando submetidos a tensões e correntes distorcidas. Para este pro pósito é necessário dispor de fontes de harmônicos com potên cia considerável, que permitirá a comprovação dos desenvolvi - mentos teóricos. Dentre os estudos possíveis com tais fontes harmônicas destacam-se:

Ð

67)

1

6

Ø

۵

6

0

(

「「「「「「「」」」」」

- . Estudos experimentais de desempenho de equipamentos submetidos a fontes distorcidas;
- . Levantamento de circuitos e parâmetros equivalentes às frequências harmônicas;
- . Comprovação de modelos analíticos;
- . Estabelecimento de estratégias de projeto;
- . Sintonização de filtros para harmônicas.

Dentro desta linha, este capítulo procurará apresen tar as bases de operação, projeto e resultados de uma fonte geradora de sinais de frequências superiores a 60 Hz.

Para este desenvolvimento, dois caminhos poderiam ser seguidos, um primeiro utilizaria da técnica eletrônica, e uma segunda solução empregando clássicos equipamentos de conversão de energia. A primeira técnica, leva à aplicação de um amplificador eletrônico de potência a válvulas ou a transistores, os quais, conectados a um circuito gerador de sinais de alta frequência, produzem altas tensões e correntes. A segunda permite a obtenção das frequências com níveis elevados de tensões e cor rentes, pelo uso de arranjos dos tradicionais circuitos magnét<u>i</u> cos.

Neste trabalho, optou-se pela escolha da segunda técnica, acreditando ser a mesma uma fonte que apresenta características de maior robustez e menor custo. Os fundamentos para tais desenvolvimentos encontram-se em [40]. Este artigo discute os princípios de operação de um equipamento desenvolvido para a obtenção de altas frequências, constituindo no arranjo de "n" transformadores convencionais, produzindo um sinal de saída com frequência "n" vezes a frequência da rede.

8

働

æ

儒

鯼

Ø

673

CAPÍTULO III - CONTRIBUIÇÕES AOS ESTUDOS DOS EFEITOS CAUSADOS POR HARMÔNICOS EM COMPONENTES DE SISTEMAS ELÉTR<u>I</u> COS

Dentre os vários efeitos causados por distorções har mônicas, este capítulo investiga os erros encontrados nos trans formadores de potencial para medição e nos medidores de energia. Esta escolha baseia-se na importância destes equipamentos na tarifação da energia. Deste modo, qualquer conclusão significativa acerca dos efeitos produzidos por harmônicos sobre estes equipamentos proporcionará uma contribuição relevante, tanto pa ra comprovar a atuação degradante das componentes harmônicas , quanto para o propósito do entendimento e a aceitação das recomendações vigentes dos limites para harmônicos.

Quanto ao erro inerente a operação de um transformador de potencial, destaca-se que o seu emprego nas medições elé tricas e nos sistemas de proteções constitui um procedimento pre ciso para a maioria das aplicações. Isto deve-se a que grande parte das medições referem-se a sinais de 50/60 [Hz], para as quais os citados equipamentos foram projetados. Dentro desta faixa de frequência, a experiência tem demonstrado que as precisões das medições são bastante satisfatórias, apesar dos clás sicos e conhecidos erros de fase e relação, que por serem antecipadamente conhecidos, podem ser, se for conveniente, devidamente compensados. Apesar dos fabricantes garantirem a precisão

de placa à frequência fundamental, o uso do resultado de medições que envolvam frequências mais elevadas tem sido amplamente empregado. Tem-se registrado, de modo experimental, que erros significativos têm sido constatados nas medições cuja importância depende do tipo de transformador e da frequência de medição. Registros típicos desta natureza são apresentados nas referências [41], [42], através das quais verifica-se que, a partir de determinadas frequências, o erro na relação de transformação re lativa do T.P. é bastante acentuado. Erros na relação de transformação foram obtidos, de forma experimental, obtendo-se valores de até tres vezes a relação nominal.

67

0

0

No tocante ao transformador de corrente um dos equipa mentos integrantes da medida da tarifação, a referência [42] ci ta a inexistência de erros apreciáveis na sua operação, quando da presença de harmônicos. Neste capítulo analizar-se-á esta afirmação, através de ensaios em laboratório, considerando a operação em regime permanente para frequências até 5 [KHz].

Referindo-se ao problema particular do medidor de energia elétrica, inúmeras publicações [47], [48], [49], [50] e [51], são encontradas. Estas relatam sobre os resultados das análises dos erros obtidos na operação sob a presença de distor ções de tensão e corrente. Nesta publicações, a modelagem matemática é sempre colocada de uma forma bastante simplificada, não permitindo uma simulação digital compatível com as necessidades para a análise da inter-dependência entre a harmônica e o erro introduzidos nos medidores. Trabalhos mais recentes [52], [53], [54], [55] e [56] procuraram de uma forma mais efetiva, este tratamento matemático. Na referência [52], o erro é descrito

considerando-se vários tipos de cargas com características nãolineares, concluindo-se sobre erros de medição de 0,1% quando da alimentação de televisores.

60)

(1)

0

Sta.

62

Ø

٢

۲

۲

0

(H

No caso da referência [52], outros resultados são indicados para cargas não-lineares, tais como: retificadores do tipo ponte, inversores monofásicos e carregadores de bateria. Nestes casos, sob condição de tensão de alimentação senoidal ob teve-se erros de até 2%.

A referência [54] mostra erros consideráveis, dos quais se podem citar registros das ordens: 0,5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8% e 9% para o medidor de energia convencional registrando potência de retificadores monofásicos, retificadores e inversores trifásicos de seis pulsos, em função do ângulo de disparo dos tiristores e do ângulo de comutação. A referên cia [55], cita de forma expressiva a função do ângulo de fase no erro resultante, evidenciando a importância deste fator no comportamento do dispositivo de medição.

Uma vez colocados estes aspectos, este capítulo terá por objetivo esclarecer os reais erros que possam ocorrer com o instrumento de registro de potência. Para tanto, procurar - se-á estabelecer uma modelagem matemática completa para o dispositivo, através da qual simular-se-á diversas formas de distorções encontradas na prática. Com base nestas formulações desenvolver-se-á um programa computacional para a verificação destes er ros, considerando os medidores de KWh convencional e operando sob condições de tensões e correntes monofásicas distorcidas.

CAPÍTULO IV - CONTRIBUIÇÕES AO DESENVOLVIMENTO DE INSTRUMENTOS PARA A ANÁLISE HARMÔNICA

働

0

6

0

(

0

0

6

٨

Nas análises precedentes, evidenciou-se a necessidade de dois instrumentos auxiliares para a medição de harmônicos, conforme recomenda a legislação inglesa que estabelece sobre l<u>i</u> mites de harmônicos.

Devido à importância e interesses nacionais quanto a disponibilidade destes instrumentos, este capítulo apresentará os fundamentos para o desenvolvimento e construção de dois protótipos de equipamentos a saber: de um alarme contra distorções totais e um detetor direcional de fluxo harmônico. O primeiro <u>e</u> quipamento, terá por finalidade a identificação de barramentos distorcidos, determinando inclusive, o valor porcentual desta distorção. Para este propósito, serão apresentados neste capít<u>u</u> lo, os princípios básicos de operação, documentado um protótipo eletrônico desenvolvido e construído, e, finalmente, um relato sobre os testes efetuados, verificando-se a validade do instrumento.

O segundo desenvolvimento refere-se a um dispositivo que objetiva detetar a ordem e o percurso definido pelas várias componentes harmônicas. Assim, serão descritos os fundamentos matemáticos sobre a geração e absorção de potência harmônica e os princípios de operação do dispositivo a ser desenvolvido. F<u>i</u> nalmente, concluiu-se pela apresentação de um protótipo, que testado, apresentará as conclusões sobre a sua validade de operação.

CAPÍTULO V - APRESENTAÇÃO DE UM MÉTODO DE MEDIÇÃO PARA A DETER-MINAÇÃO DA IMPEDÂNCIA HARMÓNICA EQUIVALENTE DO SISTEMA DE ALIMENTAÇÃO C.A.

Como última contribuição desta tese, neste capítulo será desenvolvido os princípios de um método prático pará deter minação da impedância harmônica " Z_n " de um sistema alimentador. Os fundamentos para o estabelecimento desta metodologia estão baseados nas referências [34] e [35], envolvidas com questões de medição da impedância harmônica.

Objetiva-se um método simples, consistindo basicamente no rso de impedâncias shunt, e de sinais de tensão e corrente, gerados por fontes harmônicas conhecidas, que deverão ser convenientemente e coerentemente conectadas e desconectadas ao barramento, para o qual se deseja determinar a equivalente impedância harmônica "Z_p".

CAPÍTULO VI - CONCLUSÕES GERAIS

1

(

Finalmente, este último capítulo terá por propósito discussões e conclusões finais sobre vários temas que formaram o corpo desta tese. Além disto, serão ressaltadas questões asso ciadas às contribuições efetivas do trabalho, limitações dos de senvolvimentos e propostas para novas investigações.

CAPITULO II

GERADOR ESTATICO DE TENSÕES HARMÔNICAS

II.1 - INTRODUÇÃO

0

A

a

æ

A necessidade de estudos minuciosos da influência das distorções harmônicas sobre a operação de determinados equipamentos do sistema elétrico exige um laboratório convenie<u>n</u> temente estruturado. Neste aspecto, a literatura especializada tem destacado os fundamentos e reportado sobre a inexistência de fontes harmônicas de potência considerável, compatíveis aos requisitos com tensões e correntes impostas para a comprovação de desenvolvimentos teóricos, tais como: levantamento de circuitos e parâmetros equivalentes, comprovação de modelos analíticos, etc.

Para este propósito, dois caminhos podem ser seguidos. Um através da técnica da amplificação eletrônica, e outro, pelo uso dos clássicos conversores eletromagnéticos. Optou-se nesta tese, pela segunda solução, acreditando ser a mesma uma fonte que irá apresentar maior robustez e menor custo. Os fundamentos para o projeto seguirão o estabelecido em [40] que utiliza unidades magnéticas saturadas, para a geração de frequências múltiplas superiores a 60 Hz.

A primeira fase dos desenvolvimentos estabelecerá os fundamentos teóricos sobre unidades magnéticas saturadas. Após, serão feitas análises matemáticas que definirão as bases de projeto da fonte de tensão harmônica. Finalmente serão realiza dos testes com uma unidade magnética, cujos resultados permiti rão concluir sobre a validade da metodologia apresentada.

II.2 - CONSIDERAÇÕES FÍSICAS SOBRE CIRCUITOS MAGNÉTICOS

6

6

1

10

畲

•

Ø

0

Ø

A figura II.1 ilustra uma fonte CA alimentando uma bobina, envolvendo um núcleo magnético, o qual é tratado de forma ideal, isto é:

- Até atingir o nível de saturação, o circuito visto pela fonte CA comporta-se como um circuito de indutância infinita.
- Após atingir o fluxo de saturação (\$\$) o circuito
 magnético oferece uma indutância constante (L) à
 fonte.

Para o arranjo elementar da figura II.1 destacam-se as variáveis:

0

١

 $v_{f}(t) = tensão da fonte$ $i_{f}(t) = corrente de magnetização$ $v_{L1}(t) = tensão nos terminais da bobina - 1$ $v_{L2}(t) = tensão induzida na bobina - 2$ $\phi(t) = fluxo magnético.$

Através dos princípios básicos aplicáveis aos circuitos magnéticos pode-se concluir sobre as formas de ondas ilustradas na figura II.2. Novamente destaca-se que as análi ses e traçados utilizaram um circuito magnético ideal.

Para as formas de ondas traçadas tem-se as seguintes justificativas:

> - figura II.2.(a) - tensão da fonte definida por $v_f(t) = \hat{V}.sen\omega t$

> - figura II.2.(b) - tendo em vista que v = $\frac{Nd\phi}{dt}$, a forma de onda de $\phi(t)$ será defasada de 90[°] de v_f(t) e na forma será a mesma a menos dos níveis superiores à Φ_s . Acima deste valor o fluxo se man terá constante.

> - figura II.2.(c) - a tensão sobre a bobina conectada à fonte será a mesma da fonte enquanto $i_f(t) = 0$. Uma vez saturado o circuito magnético esta tensão será nula, pois $v_L = \frac{Nd\phi}{dt} = 0$

- figura II.2.(d) a corrente será nula enquanto o circuito magnético estiver operando com $|\phi(t)| < \phi_{s'}$ e, para a região saturada a corrente será limitada pelas impedâncias da fonte e de dispersão da bobina
- figura II.2.(e) a tensão sobre a bobina 2 ocor rerá enquanto houver indução, ou seja, somente no intervalo de criação do fluxo.

Seja agora uma análise do circuito magnético, sob uma situação tal que, a fonte de tensão é substituída por uma fonte de corrente. Um arranjo que possibilita tal hipótese é ilustrado pela figura II.3.

6

0

a

(

0

0

0

a

đ

Figura II.3 - Circuito magnético elementar operando com fonte de corrente.

Para este caso, as formas de ondas assumirão os aspectos ilus trados a seguir:

Dentro do exposto conclui-se que os circuitos, com fonte de tensão e com fonte de corrente conduzem à resultados semelhantes para $v_{L2}(t)$. Todavia algumas diferenças construti vas e operativas podem ser observadas:

8

a

1

G

۲

- (i) Para o caso do circuito baseado na fonte de corrente, a posição angular da fmm, que é dependente da corrente, pode ser convenientemente alterada bastando para isto alterar o ângulo de fase de i_f(t). Uma forma prática para tal, poderá ser obtida pela definição da fmm através de duas correntes circulando, através de duas bobinas.
- (ii) Para ambos arranjos a largura do pulso, da ten são induzida depende do nível de Φ_s .
- (iii) Para o caso do circuito magnético operando com fonte de corrente a indutância oferecida pela bobina - 1 é finita na região não-saturada e nula na região saturada.

II.3 - OBTENCÃO DE TENSÕES INDUZIDAS COM DEFASAMENTO VARIÁVEL.

A figura II.5 retrata a situação em que um núcleo é envolvido por dois segmentos de bobinas, as quais são, distint<u>a</u> mente percorridas pelas correntes $i_A e i_B$. A princípio, estas correntes podem genericamente, possuir qualquer defasagem, porém, por conveniência matemática, adotar-se-á uma diferença angular de 90[°]. As bobinas pelas quais estas mesmas correntes se estabelecem possuem número de espiras $N_A \in N_B$, respectivamente.

•

•

•

Figura II.5 - Controle da defasagem da fmm.

As correntes são definidas pelas equações:

$$i_{A}(t) = \hat{I}_{A} \operatorname{sen}(\omega t + \theta_{A})$$
 (II.1)

 $i_{B}(t) = \tilde{I}_{B} \operatorname{sen}(\omega t + \theta_{B})$ (II.2)

Adotando-se $\theta_{A} = 0 e \theta_{B} = - \pi/2$ obtém-se:

$$i_{A}(t) = \hat{I}_{A} \operatorname{sen}(\omega t)$$
 (II.3)

$$i_{B}(t) = \hat{I}_{B} \operatorname{sen}(\omega t - 1/2)$$
 (II.4)

que circulando nos enrolamentos $N_A e N_B$, geram as correspondentes fmms, $f_A(t) e f_B(t)$ escritas pelas equações (II.5) e (II.6).

$$f_{A}(t) = N_{A}i_{A}(t) = N_{A}\hat{I}_{A} \operatorname{sen}(\omega t)$$
 (II.5)

$$f_B(t) = N_B i_B(t) = N_B \hat{I}_B \sin(\omega t - 1/2)$$
 (11.6)

A fmm resultante no núcleo será obtida em função de $f_A(t), f_B(t)$ segundo a equação (II.7).

$$f_{R}(t) = f_{A}(t) + f_{B}(t) = N_{A}\hat{I}_{A} \operatorname{sen}(\omega t) + N_{B}\hat{I}_{B} \operatorname{sen}(\omega t - 1/2) =$$
$$= \hat{F}_{R} \operatorname{sen}(\omega t - \psi_{R})$$
(II.7)

onde:

*

)

$$\hat{F}_{R} = \sqrt{N_{A}^{2} I_{A}^{2} + N_{B}^{2} I_{B}^{2}}$$
(II.8)

e o seu ângulo de fase é igual a:

$$\psi_{\rm R} = tg^{-1} - \frac{N_{\rm B} \hat{\mathbf{I}}_{\rm B}}{N_{\rm A} \hat{\mathbf{I}}_{\rm A}}$$
(II.9)

Graficamente, as fmms $f_A(t)$, $f_B(t) e f_R(t) são$ representadas na figura II.6.

As análises anteriores e o diagrama fasorial, permi tem concluir que, ao se variar o número de espiras $N_A e N_B$, é possível obter qualquer defasagem requerida para as fmms. A par tir da fmm resultante, pode-se obter expressão do fluxo magnéti co resultante, que será, na região não saturada, do tipo:

$$\phi_{\mathbf{p}}(\mathbf{t}) = \Phi \quad \operatorname{sen}(\omega \mathbf{t} + \psi_{\mathbf{p}}) \tag{II.10}$$

Uma vez conhecido o fluxo, determina-se a fem induzida no enrolamento 2, com o número de espiras N_2 . Esta fem terá por expressão:

$$v_{L2}(t) = \hat{V}_{L2} \cos(\omega t + \Psi_R)$$
 (II.11)

A amplitude ${}^{\diamond}_{L2}$ será função de $\widehat{\Phi}$ que por sua vez, depende de \overline{F}_{R} e da relutância magnética. O ângulo de fase Ψ_{R} é determinado pelas variáveis N_{A} e N_{B} .

As figuras II.8 e II.9, considerando as condições não-saturadas e saturadas, respectivamente, na operação da unidade magnética, ilustram as formas de ondas das correntes, as fmms individual e resultante, e a tensão $v_{L2}(t)$, que constituem as bases para uma formulação matemática do projeto em análise.

11.4 - CONSIDERAÇÕES FÍSICAS SOBRE O GERADOR DE FREQUÊNCIAS

0

Ð

0

(F)

0

A

63

G

0

0

10

Ø

0

6

Se ao invés de uma unidade magnética, fossem associ<u>a</u> das "n" unidades cada uma constituída de duas bobinas de corre<u>n</u> te sobre as quais circulariam correntes convenientemente defas<u>a</u> das entre si, seria possível, através da composição dos vários enrolamentos, originar várias fmms resultantes. Estas por sua vez, geram "n" intervalos de tensões apropriadamente defasadas que compondo-se originam uma tensão v_{L2} ^(t) de frequência igual a ^{n.f}rede.

A figura II.10 indica a citada composição.

Figura II.10 - Arranjo de "n" circuitos magnéticos para a geração de uma tensão de saída com frequência "f_n". Para o arranjo da figura II.10, deve ser observado que cada unidade magnética operando nas regiões saturada e nãosaturada, deve produzir em sua saída, níveis idênticos de tensões com defasagens apropriadas. Adicionando-se a isto, polaridades convenientemente arranjadas, obtém-se a situação indicada na figura II.11, a qual ilustra uma tensão com frequência harmô nica $f_n = n.f_{rede}$, sendo "n" a correspondente ordem harmônica.

a

Figura II.11 - Arranjo de "n" unidades magnéticas sa turadas produzindo uma tensão de frequência múltipla a da fundamental.

11.5 - PROJETO DO GERADOR DE TENSÕES HARMÔNICAS

*:****6*******

8

۲

0

6

0

1

Uma vez discutida a operação básica das unidades mag néticas não-saturadas e saturadas e sua aplicação na obtenção de frequências múltiplas à da fundamental, procurar-se-á, a seguir, estabelecer o tratamento matemático para o projeto de uma fonte de tensões harmônicas.

Dentre as equações anteriormente obtidas destacam-se a que fornece a frequência desejada f_n a fmm resultante " $f_R(t)$ " e a defasagem (θ_d) entre todas fmms resultantes.

$$f_n = n.f_{rede}$$
(II.12)

 $f_R(t) = \hat{I}_A N_A \operatorname{sen} \omega t + \hat{I}_B N_B \operatorname{sen} (\omega t + \theta_B)$ (II.13)

$$\theta_{d} = \frac{\P}{n}$$
 (II.14)

As correntes $\mathbf{1}_{A}$ e $\mathbf{1}_{B}$ são consideradas como as amplitudes máximas das correntes instantâneas $\mathbf{i}_{A}(t)$ e $\mathbf{i}_{B}(t)$.

Para se obter uma determinada frequência é necessário estabelecer um número de equações igual a ordem da frequê<u>n</u> cia harmônica desejada. Estas equações permitem obter os núme-'ros de espiras de cada enrolamento das diferentes unidades magnéticas os quais são calculados para garantir a defasagem exig<u>i</u> da. Dentro dos princípios discutidos, isto equivale a ter fmms resultantes iguais a zero, nos pontos de dafasagem iguais a ¶/n.

 $\mathbf{1}_{A} \mathbf{N}_{A} \operatorname{sen} (\omega t + \theta) + \mathbf{1}_{B} \mathbf{N}_{B} \operatorname{sen} (\omega t + \theta_{B}) = 0 \text{ para } \omega t = 0 \quad (II.15)$

$$I_{AC}$$
 sen ($\omega t + \theta_A$) + I_{BC} sen ($\omega t + \theta_B$) = 0 para $\omega t = \frac{\P}{n}$ (II.16)

4

(a)

0

(

(

8

(

0

0

0

.

0

$\mathbf{I}_{\mathbf{A}} \mathbf{N}_{\mathbf{E}} \mathbf{sen} (\omega \mathbf{t} + \theta_{\mathbf{A}}) + \mathbf{I}_{\mathbf{B}} \mathbf{N}_{\mathbf{F}} \mathbf{sen} (\omega \mathbf{t} + \theta_{\mathbf{B}}) = 0$ para	$\omega t = \frac{2\P}{n}$	(11.17)
•	٠	
	•	
•	•	
•	•	*
•	•	
•	•	
•	6	
•	•	1
	•	

Estas equações são insuficientes para a determinação dos números de espiras N_A , N_B , N_C Para contornar esta dif<u>i</u> culdade utiliza-se um outro conjunto de equações, que impõe igualdade para os módulos da fmms resultantes. Para tanto as expressões que definem, o módulo da fmm resultante empregam uma variável K, a ser determinada posteriormente.

$$(1_A N_A)^2 + (1_B N_D)^2 = K^2$$
 (II.18)

$$(\mathbf{1}_{A} N_{C})^{2} + (\mathbf{1}_{B} N_{D})^{2} = K^{2}$$
 (II.19)

$$(\mathbf{\hat{I}}_{A} N_{E})^{2} + (\mathbf{\hat{I}}_{B} N_{F})^{2} = K^{2}$$
 (II.20)

Estas equações permitem, a determinação de todos os enrolamentos em função de N_A, conforme as expressões relacionadas a seguir, nas quais se considera: $\theta_A = 0$, $\theta_B = -\frac{1}{2}$ e $\mathbf{1}_A = \mathbf{1}_B$.

$$N_{A} = \frac{K}{I_{A}}$$
(II.21)

$$N_{\rm B} = 0 \tag{II.22}$$

$$N_{C} = \frac{K}{1_{A}} \cdot \frac{\operatorname{sen}(\sqrt{\pi}/n - \frac{\pi}{2})}{\operatorname{sen}^{2} \sqrt{\pi}/n + \operatorname{sen}^{2}(\sqrt{\pi}/n - \frac{\pi}{2})}$$
(II.23)

$$N_{\rm D} = \left(\frac{K}{1_{\rm A}}\right)^2 - N_{\rm C}^2$$
 (II.24)

$$N_{E} = \frac{K}{\hat{I}_{A}} \cdot \frac{\operatorname{sen}(2 \sqrt{n} - \frac{\sqrt{n}}{2})}{\operatorname{sen}^{2}(2 \sqrt{n}) + \operatorname{sen}^{2}(2 \sqrt{n} - \frac{\sqrt{n}}{2})}$$
(II.25)

$$N_{\rm F} = (\frac{K}{1_{\rm A}})^2 - N_{\rm E}^2$$
 (II.26)

A seguir discute-se os critérios do cálculo do núme-ro de espiras N_A .

II.6 - DETERMINAÇÃO DO NÚMERO DE ESPIRAS NA

-

Ø

Ð

Para a determinação do enrolamento N_A , considere a figura II.12, onde são representadas as variações do fluxo e a respectiva tensão $v_{L2}(t)$ induzida.

9

æ

Ø

۲

6

4

0

0

•

0

.

æ

۲

0

0

Figura II.12 - Formas de ondas do fluxo em intervalos saturados e não-saturados com a respectiva fem induzida no enrolamen to secundário da unidade magnética.

Na figura procurou-se mostrar que, embora a forma de onda da tensão $v_{L2}(t)$ seja do tipo não-senoidal, a mesma corresponde a um trecho de uma tensão cossenoidal somada a uma tensão CC, conforme ilustra a composição gráfica da figura II.13.

Figura II.13 - Composição das formas de ondas das tensões CA e CC para a obtenção da equação de $v_{L2}(t)$.

Desta composição, a tensão $v_{L2}(t)$ induzida devido a uma unidade magnética, é expressa segundo a equação (II.27):

 $v_{L2}(t) = -\hat{V} \cos \omega t - V_{cc} \qquad (II.27)$

Fazendo $v_{L2}(t) = 0$ na expressão (II.27) verifica-se

que:

•

Ò

$$V_{cc} = - \hat{V} \cos \theta_{SAT}$$

onde:

 $\theta_{\text{SAT}} = \frac{\theta_{\text{d}}}{2}$

(II.28)

Substituindo a equação (II.28) em (II.27), obtém-se:

$$v_{1,2}(t) = \hat{\nabla} (-\cos\omega t + \cos\theta_{SAT})$$
 (II.29)

Na expressão (II.29), impondo-se $\omega t = 0$, determina se o valor de pico da tensão \hat{v}_{L2} .

$$\hat{v}_{L2} = \hat{V} (\cos \theta_{SAT} - 1)$$
 (II.30)

De onde:

0

B

Ø

8

Ø

1

6

0

6

6

6

$$\hat{\nabla} = \frac{\hat{\nabla}_{L2}}{\cos\theta_{\text{SAT}} - 1}$$
(II.31)

A equação acima permite relacionar o pico da tensão induzida na saturação (\hat{v}) do conversor de frequências com o pi co da tensão saturada de saída (\hat{v}_{L2}) .

Considerando-se que a tensão $\hat{\mathbf{V}}$ é dada por:

$$\hat{\nabla} = N_2 \cdot \hat{\Phi} \cdot \omega_{\text{rede}}$$
(II.32)

Obtém-se, através das devidas substituições, o valor do fluxo de pico, necessário no circuito magnético. Substituindo-se para tanto (II.31) em (II.32) conclui-se que:

$$\tilde{\Phi} = \frac{\frac{\hat{\nabla}_{L2}}{\cos\theta_{SAT} - 1}}{\frac{N_2 \cdot \omega_{rede}}{\omega_{rede}}}$$

(---**"0**

ß

0

13

۲

0

1

8

•

•

6

۲

•

•

A expressão (II.33) além de permitir a obtenção do fluxo máximo do circuito magnético, possibilita ainda a especificação do número de espiras N_2 e o valor da tensão \hat{V}_{L2} como elementos assumidos para o projeto. Uma vez obtida a expressão para o fluxo máximo, pode-se determinar o fluxo saturado (\hat{V}_{SAT}) em ($\hat{\theta}_{SAT}$), de acordo com a equação a seguir:

$$\Phi_{\text{SAT}} = \Phi_{\text{SAT}} \tag{II.34}$$

A partir da equação (II.34) e da indução de saturação B_{SAT} pode se ainda obter a área "S" da seção do núcleo magnético.

$$S = \frac{\Phi}{B_{SAT}}$$
(II.35)

A figura II.14 ilustra a característica $B \ge H$ de um material tipicamente empregado na construção dos núcleos magn<u>é</u> ticos, a partir da qual, conhece-se o valor de B_{SAT} , e do campo H_{SAT} .

(II.33)

59'

0

1

6

6

a

(A)

æ

0

1

0

3

۲

0

€

۲

0

0

۲

0

Figura II.14 - Curva do material magnético.

Calculando a área "S" de acordo com a equação (II.34) e especificando-se a altura da seção do núcleo "A_{SEC}", a altura "(A)" e a largura "(L)" da janela do núcleo, pode-se determinar o comprimento médio "L" do circuito magnético. Estas dimensões são indicadas na figura II.15.

Para o núcleo da figura II.15 o valor de "l" é deter minado pela equação (II.36):

١

ø

۲

1

•

۲

٩

Ø

0

E3

0

$$l = 4 A_{SEC} + 2A + 2L$$
 (II.36)

Utilizando-se da equação (II.36) e da força magnetomotriz " f_R ", representada na equação (II.7), obtém-se a expressão (II.37), que relaciona N_A , N_B , I_A , I_B e o campo magnético ^HSAT

$$\sqrt{N_A^2 I_A^2 + N_B^2 + I_B^2} = H_{SAT} \cdot \ell$$
 (II.37)

Da expressão (II.37) obtém-se uma equação para N_{A} , segundo a equação a seguir:

$$N_{A} = \frac{\sqrt{H_{SAT} \cdot \ell}^{2} - (N_{B} \tilde{I}_{B})^{2}}{\tilde{I}_{A}}$$
(II.38)

É importante observar que, embora a modelagem matemá tica tenha sido estabelecida para uma alimentação particular ca racterizada por um defasamento de 90° entre as correntes $i_A(t)$ e $i_B(t)$, qualquer outra defasagem pode ser empregada. Assim, para o caso da alimentação direta de uma rede elétrica trifásica, com defasamentos de $\frac{21}{3}$, os cálculos dos enrolamentos N_A , N_B , N_C , ..., etc, podem ser feitos pelas equações a seguir, nas quais se considera $\theta_A = 0$, $\theta_B = \frac{21}{3}$ e $\hat{I}_A = \hat{I}_B$.

A
Estas equações devidamente trabalhadas fornecem, finalmente, o cálculo dos números de espiras, em função de "K" ou " N_A ", de <u>a</u> cordo com as equações:

$$N_{A} = \frac{K}{I_{A}}$$
(II:45)

 $N_{\rm B} = 0 \tag{II.46}$

$$N_{C} = -\frac{\frac{K}{I_{A}}}{\left|\frac{\sec^{2}\left(\frac{\pi}{n}-\frac{2\pi}{3}\right)}{\sec^{2}\frac{\pi}{n}} + \frac{\sec\left(\frac{\pi}{n}-\frac{2\pi}{3}\right)}{\sec\frac{\pi}{n}} + \frac{\sec\left(\frac{\pi}{n}-\frac{2\pi}{3}\right)}{\frac{1}{1}} \cdot \frac{\frac{1}{1}}{\frac{1}{1}} \cdot \frac{\frac{1}{1}}{\frac{1}{1}} \cdot \frac{1}{\frac{1}{1}} \cdot$$

$$N_{\rm D} = \frac{\frac{K}{I_{\rm A}}}{\left|\frac{{\rm sen}^2 \left(\frac{\P}{n} - \frac{2\P}{3}\right)}{{\rm sen}^2 \frac{\P}{n}} + \frac{{\rm sen} \left(\frac{\P}{n} - \frac{2\P}{3}\right)}{{\rm sen} \frac{\P}{n} + 1}}$$
(II.48)

(II.50)

11.7 - A ASSOCIAÇÃO EM CASCATA DE FONTES HARMÓNICAS DE TENSÃO

0

6

Ø

۲

٢

0

9

6

6

6

A

6)

6

0

0

0

Das análises anteriores pode-se concluir que, altas frequências para serem geradas, exigem um número elevado de unidades magnéticas, enviabilizando economicamente a metodolo gia apresentada. Entretanto o fator econômico pode ser contornado, utilizando-se de arranjos em cascata de fontes harmôni cas.

A figura II.16 ilustra, de um modo genérico, um arranjo em cascata.

Figura II.16 - Arranjo em cascata de fontes harmôni cas de tensão.

No arranjo, em que o primeiro estágio é alimentado em 60 Hz, a frequência de saída do [°]primeiro est<u>á</u> gio é definida por:

$$f_{L2(1)} = n.60$$

(II.51)

Para o segundo estágio, caso se tenha uma unidade com um número de unidades magnéticas idêntico ao primeiro, obtém-se uma frequência de saída dada por:

$$f_{v_{L2}(2)} = n.n.60 = n^2.60$$
 (II.52)

Da mesma forma, os estágios sucessivos geram as seguintes frequências:

$$f_{V_{L2}(3)} = n^3.60$$
 (II.53)

 $f_{V_{L2}(4)} = n^4.60$

Exemplificando, havendo necessidade de uma defonte harmônica de tensão, cuja frequência de saída deverá ser de 4.860 Hz, dentro da primeira metodologia proposta, necessitarse-á 81 núcleos magnéticos. Alternativamente, o arranjo em cas cata, utilizaria somente quatro estágios idênticos, empregando se um total de doze unidades magnéticas. Neste caso as fontes harmônicas são constituídas por três unidades magnéticas, gerando-

(II.54)

se as respectivas frequências de saída:

6

6

О

٨

0

0

6

0

 $f_{v_{L2-(1)}} = 3 \times 60 = 180 \text{ (Hz)}$ $f_{v_{L2-(2)}} = 3 \times 180 = 540 \text{ (Hz)}$ $f_{v_{L2-(2)}} = 3 \times 540 = 1620 \text{ (Hz)}$ $f_{v_{L2-(3)}} = 3 \times 1620 = 4860 \text{ (Hz)}$

Neste exemplo, embora a economia de sessenta e nove unidades possa se mostrar vantajosa, é importante ressaltar so bre a necessidade de circuitos defasadores entre os vários estágios da cascata. Este fato está associado à exigência do pro jeto, onde é necessário à alimentação da unidade magnética , duas correntes senoidais e convenientemente defasadas.

II.8 - RESULTADOS EXPERIMENTAIS

Com o propósito de verificar o desempenho das unida des magnéticas, utilizou-se do circuito mostrado na figura II.17, para a obtenção de uma fonte de corrente senoidal, segundo os requisitos do projeto. Neste caso, a tensão aplicada à resistên cia "R" é quase que totalmente a tensão de alimentação, que é al terrada. Desta forma o enrolamento N_2 da unidade magnética não influe na forma de onda da corrente do enrolamento N_1 .

•

Figura II.17 - Esquema experimental para o ensaio da unidade magnética.

O arranjo montado e os testes realizados consistiram basicamente em analisar os aspectos das formas de onda da fonte de corrente $i_{f}(t)$ e da tensão induzida $v_{L2}(t)$ nos terminais do enrolamento N₂. O arranjo físico do experimento, e as respe<u>c</u> tivas formas de ondas da corrente e da tensão, são ilustradas nas figuras II.18, II.19 e II.20 a seguir.

•

•

.

-

Ø

Figura II.18 - Arranjo físico utilizado para os tes tes com uma unidade magnética.

Figura II.19 - Forma de onda da corrente circulando pelo enrolamento conectado a fonte.

Figura II.20 - Forma de onda da tensão $v_{\tau,2}(t)$ na sai da da unidade magnética.

II.9 - CONCLUSÕES

Foi apresentado neste capítulo, as bases de uma modelagem matemática para o projeto de fontes harmônicas de ten são, fundamentando-se em unidades magnéticas saturadas e alimentadas a partir de fontes de correntes senoidais.

A tensão gerada pela fonte harmônica é obtida pela superposição dos intervalos de tensões senoidais, produzidas e defasadas pelas diversas unidades magnéticas. Este defasamento foi definido por uma força magnetomotriz resultante, através de duas correntes senoidais convenientemente defasadas que, alimentam duas bobinas, cujos números de espiras são variáveis.

0

8

6

0

6

0

0

0

0

0

۲

0

0

0

68

A partir desta força magnetomotriz, o fluxo magnético resultante no núcleo saturado faz com que, seja gerada uma força eletro motriz induzida no enrolamento - 2, constituindo os intervalos das tensões senoidais. A amplitude desta tensão, a frequência e o número de espiras do induzido, são considerados na metodologia, como os dados iniciais do projeto, sendo pré-estabelecidos de acordo com as características nominais da fonte harmônica.

Com o propósito de verificar o desempenho das unidades magnéticas, foram efetuados vários testes em laboratório. Es tes, em essência, consistiram em comprovar as formas de ondas das correntes da fonte de alimentação, e, da tensão de saída de cada unidade magnética. De fato, os resultados aproximaram-se bastante das análise teóricas, possibilitando concluir sobre a adequação da metodologia proposta.

Verificou-se nas análises que, qualquer ordem harmônica requerida no projeto, é sempre igual ao número de unidades magnéticas que os compõem, concluindo-se daí que, a obtenção de frequências mais altas, exigem um número considerável de unidades. Esta questão foi solucionada pela associação em cascata, de fontes harmônicas idênticas, o que reduziu de uma forma efetiva o número de unidades. Embora, a princípio, esta economia pareça significativa é importante ressaltar que a saída de cada fonte harmônica é monofásica, impossibilitando a alimentação do próx<u>i</u> mo estágio da cascata, e que existe a necessidade de circuitos defasadores entre as diversas fontes, para produzir as duas co<u>r</u> rentes convenientemente defasadas.

As considerações relativas ao projeto e os resultados obtidos no ensaio de uma unidade magnética mostraram uma

63

técnica simples e robusta, para a geração de potências harmôn<u>i</u> cas monofásicas, com altos níveis de tensão e corrente, com a vantagem de se utilizar somente materiais com grande índice de nacionalização.

0

0

6

6

0

a

6

(2

Ø

(B)

Ø

Embora a pretenção final deste capítulo fosse a cons trução de um protótipo, no qual, seria verificado o funcionamen to global da fonte harmônica e a geração de várias tensões, isto não foi possível, face aos recursos financeiros disponíveis e principalmente pela falta de interesse dos fabricantes em exe cutar projetos que não se enquadram na linha normal de produ ção.

CAPITULO III

CONTRIBUIÇÕES AOS ESTUDOS DOS EFEITOS CAUSADOS POR HARMONICOS EM COMPONENTES DE SISTEMAS ELETRICOS

III.1 - INTRODUÇÃO

۲

6

8

0

0

6

0

A presença de harmônicos e seus efeitos negativos , tem sido amplamente divulgados ao longo dos últimos anos, de<u>s</u> tacando-se as sobretensões harmônicas, os sobreaquecimentos de equipamentos, a operação indevida de dispositivos elétricos, etc. No tocante a este último, um dos aspectos enfocados nos dias atuais consiste na análise dos instrumentos e acessórios utilizados nas medições de energia submetidas a sinais distorcidos. Nesta categoria enquadram-se os medidores tarifários de energia do tipo indução, os transformadores de potencial (TP) e os de corrente (TC), que são sensivelmente afetados pelas distorções harmônicas.

Dentro do exposto, este capítulo procurará analisar o medidor de energia - KWh quanto aos erros introduzidos pelas distorções, e os TP's e TC's, quanto às suas respostas a dif<u>e</u> rentes frequências harmônicas.

Utilizando-se dos modelos apresentados nas referências [53], [54], [55], [56] relativamente aos estudos dos medi dores sob a ação de harmônicos, serão estabelecidas as bases analíticas para os estudos dos efeitos das distorções na tensão e corrente, constituídas por várias frequências harmônicas superpostas. Proceder-se-á então os esenvolvimentos de programas computacionais, através dos quai, diversas situações práticas serão simuladas e seus resultados detalhadamente discutidos e analisados. Desta forma estabelece-se uma metodologia que permite concluir sobre as principais interdependências entre erros, parâmetros e harmônicas associados a estes equipámentos.

Adicionalmente, procurando contribuir no campo da investigação da resposta em frequência de TP's e TC's, através de montagens experimentais verifica-se o comportamento destes sensores sob condições de sinais distorcidos, e apresentam-se fundamentos para futuros desenvolvimentos.

III.2 - O MEDIDOR DE KWH

Ð

٩

6

8

6

æ

8

顩

0

0

0

Referindo-se ao medidor de energia elétrica do tipo indução, inúmeras publicações evidenciam erros de operação, as sociados às distorções de tensão e corrente. Entretanto, a maio ria destas preocupam-se somente com o aspecto físico desta con dição de operação, enquanto que, poucos trabalhos apresentam um tratamento matemático completo do fenômeno. Além deste aspecto, muitos destes artigos analisam influências individuais de parâmetros sobre o erro resultante. Dentre as diversas publicações, a referência [54] apresenta um dos modelos mais com pletos para o desempenho de um medidor de KWh submetido a ondas de tensões e correntes senoidais e não-senoidais. Fundamen tando-se nesta referência, será estabelecido aseguir um modelo matemático do medidor que iniciando pela apresentação do princípio de operação do medidor, objetivará obter expressões gen<u>é</u> ricas que permitirão investigar o seu desempenho sob as condi

ções em que as tensões e correntes se encontram distorcidas. A estratégia de estabelecimento do erro resultante nas indicações do consumo de energia será baseado na equação da velocidade angular (S) do disco do medidor.

0

6

9

۲

掘

æ

Ø

0

6)

0

III.2.1 - PRINCÍPIO DE OPERAÇÃO DO MEDIDOR DE KWH TIPO INDUÇÃO

O medidor de energia do tipo indução, tem o seu pri<u>n</u> cípio de operação fundamentado no fenômeno da interação entre o campo magnético produzido por uma corrente "i(t)" e uma tensão "v(t)". A figura III.1 ilustra os elementos básicos de um medidor monofásico, onde estão mostrados esquematicamente as bobinas de tensão e corrente para a produção do conjugado motor, o imã permanente para a produção do conjugado de oposição, o disco e a bobina de atraso utilizado para defasar o fluxo <u>e</u> fetivo da bobina de tensão de 90[°] elétricos em relação à tensão aplicada.

O elemento denominado por anel de ajuste para carga leve serve ao propósito de compensar os atritos nos mancais e no mecanismo de registro, quando pequenas potências são medidas. O outro elemento, denominado por anel de compensação para sobrecarga, tem por função compensar o aumento da ação de fr<u>e</u> nagem, quando ocorre uma sobrecorrente. A compensação da sobr<u>e</u> tensão é obtida, normalmente, por meio de uma ponte magnética saturável na coluna central do núcleo de tensão.

Na figura III.3 tem-se as formas de onda da tensão "v(t<u>)</u>", da corrente de carga "i(t)", defasadas de um ângulo θ . Os fluxos magnéticos correspondentes originados pelas bobinas de tensão " $\phi_v(t)$ " e de corrente " $\phi_i(t)$ " são também ilustrados na mesma figura.

.

•

•

Figura III.3 - Formas de onda da tensão, correntee fluxos correspondentes.

A existência dos fluxos variáveis $\phi_v(t) e \phi_i(t)$ resultam, por sua vez, na indução das fems, $e_{dv}(t) e e_{di}(t)$ no disco. Como este forma um circuito fechado, haverá correspondentemente a circulação de correntes, designadas por $i_{dv}(t) e i_{di}(t)$, conforme ilustrado na figura III.4.

۲

•

۲

6

0

4

0

0

0

傪

0

6

0

۲

۲

飍

(b) Bobina de corrente

Figura III.4 - Fems e correntes induzidas no dis co devido as bobinas de tensão e cor rente.

Da teoria eletromagnética sabe-se que as ações mecã nicas entre fluxos e correspondentes correntes geradas resultam em conjugados resistentes, agindo em sentidos opostos àqueles responsáveis pelo acionamento da peça girante. Paralelamente, a interação entre os fluxos e correntes produzidas por bobinas distintas, por exemplo, o fluxo da bobina de tensão e a corren te de disco associada à bobina de corrente, produzem os denomi nados torques motores. Dentro destes princípios as correntes $i_{dv}(t) e i_{di}(t)$, em conjunto com os fluxos $\phi_i(t) e \phi_v(t)$, respectivamente, produ zem dois conjugados atuando simultaneamente de forma a causar a rotação do disco em torno de seu eixo central. O primeiro con jugado motor é obtido através da interação do fluxo $\phi_v(t)$ e a corrente $i_{di}(t)$ no sentido de acelerar o disco, enquanto o segundo, obtido através de $\phi_i(t)$ com $i_{dv}(t)$ age no sentido contrário.

Ø

6

A

0

4

2

は、大利なななななななない。

A composição destes conjugados define o denominado "torque motor", cuja função é de produzir a rotação do disco A equação representativa deste conjugado resultante, em .termos médio, é conhecida pela expressão (III.1).

$$C_{\text{médio}} = \frac{1}{T} \int_{0}^{T} [\phi_{v}(t) \cdot i_{di}(t) - \phi_{i}(t) \cdot i_{dv}(t)] dt \quad (\text{III.1})$$

Através da figura III.2 constata-se que na composição da ação motora os efeitos interativos entre o fluxo ϕ_m (produzido pelo imã permanente) e as correntes $i_{di}(t) e i_{dv}(t)$ foram desprezadas. Isto está baseado no fato de que a localização física do imã e os pontos de indução de correntes não interagem

Além da equação do torque ou conjugado motor, é necessário incorporar à operação do medidor a existência de um conjugado de oposição ou resistente, que nos estudos dos medidores de energia é denominado por "conjugado de amortecimento, e, que tem por finalidade estabelecer o equilíbrio entre as forças que atuam no disco. Este conjugado é obtido pelas interações entre os fluxos produzidos no medidor e as respectivas correntes, que estes induzem no disco, girando a uma velocidade angular "S". A equação representativa deste conjugado é dada de uma forma geral, pela expressão (III.2).

$$C_{AM} = \frac{1}{T} \int_{0}^{T} [\phi_{m}, i_{dm}(t) + \phi_{v}(t), i_{dv}(t) + \phi_{i}(t), i_{di}(t)]dt \quad (III, 2)$$

78

onde:

- fluxo constante produzido por um imã perma nente
- ${}^{i}m(t) = corrente induzida no disco, pelo fluxo \phi_{m},$ para o disco girando a velocidade "S" ${}^{i}_{dv}(t) = corrente induzida no disco, pelo fluxo \phi_{v}(t)$ para o disco girando a velocidade "S" ${}^{i}_{di}(t) = corrente induzida no disco, pelo fluxo \phi_{i}(t),$ para o disco girando a velocidade "S".

Na prática, considerando-se a frequência de 60Hz; o conjugado "C_{AM}" é obtido em grande parte pelo imã permanente indicado na figura III.1. Este imã atua no sentido de produzir um fluxo constante ϕ_m que intercepta o disco girando à uma velocidade angular "S". Isto resulta em correntes adicionais in duzidas no disco, que interagindo com o fluxo que as criou, de terminam o conjugado médio de amortecimento. A equação que representa este efeito é dada pela expressão (III.3).

$$C_{AM} = \frac{1}{T} \begin{pmatrix} T \\ \phi_{m}, i_{m}(t) dt \\ 0 \end{pmatrix}$$
(III.3)

A amplitude de corrente $i_m(t)$, classicamente conhecida nos estudos de medidores, é obtida pela equação (III.4):

$$\hat{I}_{m}(t) = \tau_{m} \cdot \frac{\phi_{m} \cdot S}{R_{m}}$$
(III.4)

onde:

•

-

ø

Ø

Sec.

S = velocidade angular do disco
\$\tau_m\$ = constante relacionada ao eixo do disco e do
imã permanente
\$\text{R}_m\$ = resistência do disco,

A equação (III.4) substituída em (III.3), permite escrever uma outra expressão para o conjugado de amortecimento.

$$C_{AM} = \frac{1}{T} \begin{pmatrix} T \\ \frac{\tau_m \cdot S \cdot \phi_m^2}{R_m} \cdot dt \\ 0 \end{pmatrix}$$
(III.5)

Uma vez obtidos o conjugado motor ($C_{médio}$) e o resistente (C_{AM}), na condição de equilíbrio pode-se escrever:

 $C_{médio} = C_{AM}$

ou:

$$\frac{1}{T} \int_{0}^{T} \left[\phi_{v}(t) \cdot i_{di}(t) - \phi_{i}(t) \cdot i_{dv}(t) \right] dt = \frac{1}{T} \int_{0}^{T} \frac{\tau_{m} \cdot S \cdot \phi_{m}^{2}}{R_{m}} \cdot dt \quad \text{(III.7)}$$

de onde se obtém a expressão (III.8) para a determinação da velocidade "S" do disco:

$$S = \frac{\frac{1}{T}}{\frac{1}{T}} \int_{0}^{T} \frac{\left[\phi_{v}(t) \cdot i_{di}(t) - \phi_{i}(t) \cdot j_{dv}(t)\right] dt}{\int_{0}^{T} \frac{\tau_{m} \cdot \phi_{m}^{2}}{\frac{1}{R_{m}} dt} dt}$$
(III.8)

Nos desenvolvimentos apresentados procurou-se obter uma equação para avaliar a velocidade do disco, de um medidor de energia do tipo indução alimentado por tensões e correntes isentas de distorções harmônicas. Objetivando constatar os erros introduzidos pelas distorções procurar-se-á, a seguir, uma formulação genérica para a velocidade do disco sob tais condições não-ideais. Essencialmente, a formulação analítica procurará relacionar a velocidade "S₁" referente as componen -

80

(III.6)

tes fundamentais com uma velocidade "S2", onde se considera in cluídas as distorções harmônicas. A partir destas duas velocidades e da expressão matemática que determina o erro porcentual, estabelecem-se critérios que permitirão avaliar os erros na indicação do consumo de energia.

6

0

0

6

0

26

Tendo em vista este objetivo, as formulações utilizarão as seguintes condições:

- (i) O fluxo magnético, produzido no espaço entre o disco e a bobina para compensação em carga leve, é relativamente pequeno, e não altera os fluxos de corrente e tensão.
- (ii) O pequeno atraso sempre verificado entre os fluxos de tensão e corrente e suas respectivas correntes de excitação, devido às perdas no núcleo, é desprezível.
- (iii) As impedâncias equivalentes do dísco para as correntes induzidas pelos fluxos de tensão e corrente são iguais.
- (iv) As irregularidades no disco são ignoradas.
- (v) Qualquer componente continua presente na ten são ou corrente é ignorada.
- (vi) A pequena fricção mecânica nos pontos de apoio e mecanismo de registro é considerada independente da velocidade do disco, e total mente compensada pela ação do ajuste em carga leve.
- (vii) Os elementos para o ajuste de carga leve e sobrecorrentes não são levados em consideração.

- (viii) A bobina de compensação associada à bobina de tensão, determina um defasamento de 90[°] de $\phi_v(t)$ em relação a tensão fundamental que o originou.
- (ix) As resistências não são corrigidas para as frequências harmônicas.

Uma vez observadas estas condições procede-se a seguir o desenvolvimento das equações para a análise do erro apresentado pelo medidor de KWh.

III.2.2 - MODELO ANALÍTICO DO MEDIDOR CONSIDERANDO-SE AS DIS-TORÇÕES HARMÓNICAS

Objetivando um modelo matemático, que considere tensões e correntes distorcidas na alimentação das bobinas de tensão e corrente, as equações (III.9) e (III.10) expressam, respectiva mente, tensões e correntes que admitem quaisquer distorções superpostas às correspondentes fundamentais.

 $\mathbf{v}(t) = \sum_{n=1}^{\infty} \widehat{\mathbf{v}}_n \cos(n\omega_1 t - \theta_{vn})$ (III.9)

e:

(E)

٩

63

6

 $i(t) = \sum_{n=1}^{\infty} \hat{I}_n \cos(n\omega_1 t - \theta_{in})$

onde:

82

(III.11)

 \hat{V}_n = tensão de pico de ordem "n" \hat{I}_n = corrente de pico de ordem "n" θ_{vn} = ângulo de fase para a tensão de ordem "n" θ_{in} = ângulo de fase para a corrente de ordem "n".

O defasamento angular entre cada componente de ...or dem "n" de tensão e corrente é dado por:

$$\theta_{n} = \theta_{in} - \theta_{vn} \qquad (III.11)$$

A tensão e corrente dadas pelas equações (III.9) e (III.10) aplicadas às respectivas bobinas de tensão e corrente do medidor, produzem correspondentes fluxos conforme a seguir:

$$\phi_{\mathbf{v}}(t) = \sum_{n=1}^{\infty} \widehat{\phi}_{\mathbf{v}(n)} \cos \left[n_{\omega_1} t - (\theta_{\mathbf{v}n} + \alpha_{\mathbf{v}n})\right] \qquad (III.12)$$

$$\phi_{i}(t) = \sum_{n=1}^{\infty} \widehat{\phi}_{i(n)} \cos[n\omega_{1}t - (\theta_{in})] \qquad (III.13)$$

onde:

2

٩

۲

a

6

a

0

0

0

0

0

0

0

0

0

O

0

4

0

6

- $\hat{\Phi}_{vn}$ = pico do fluxo de orden n, produzido pela bob<u>i</u> na de tensão
- α_{vn} = defasagem angular para o fluxo $\phi_v(t)$, devido às características construtivas do medidor es te ángulo é de aproximadamente 90°.

A determinação do pico do fluxo $\phi_v(t)$ e do a seu ângulo α_{vn} pode ser feita admitindo-se a bobina de tensão como um arranjo R_V-L_V , o qual, no domínio da frequência resulta na impedância a seguir.

$$Z_{v}(n) = R_{v} + j n \omega_{1} L_{v} \qquad (III.14)$$

onde:

٩

0

3

0

()

0

æ

6

饠

6

 R_V = resistência da bobina de tensão L_V = indutância da bobina de tensão

E o ângulo α_{vn} :

 $\alpha_{vn} = tg^{-1} (n \omega_1 L_V/R_V)$ (III.15)

Tendo em vista a tensão aplicada e a impedância of<u>e</u> recida pela bobina de tensão, as correspondentes correntes que circularão podem ser determinadas através de:

 $\hat{I}_{v(n)} = \frac{\hat{V}_{n}}{\sqrt{R_{v}^{2} + (h \omega_{1})^{2} L_{v}^{2}}}$ (III.16)

Considerando - a proporcionalidade entre a corrente e o fluxo produzido segue então que:

$$\hat{\Phi}_{v(n)} = K', \frac{V_n}{R_v \sqrt{1 + (\frac{n\omega_1 L_v}{R_v})^2}}$$
 (III.17)

A expressão acima particularizada para a frequência fundamen tal, resulta na equação (III.18).

۲

6

0

0

0

۲

1

1

1

$$v_{(1)} = K' \cdot \frac{v_1}{R_V \sqrt{1 + (\frac{\omega_1 L_V}{R_V})}}$$
 (III.18)

Devido à facilidade que o sistema por unidade ofer<u>e</u> ce e procurando eliminar constantes desconhecidas (ex. K'), p<u>a</u> ra os desenvolvimentos que se seguirão, as expressões serão transformadas em por unidade , tornando-se as tensões, correntes e fluxos fundamentais, como as grandezas base. Introduzindo o símbolo "barra" sobre a variável para que a mesma seja i<u>n</u> terpretada como em pu, tem-se a seguir uma expressão que forn<u>e</u> ce, em pu, o pico do fluxo de ordem n, gerado pela bobina voltimétrica.

$$\overline{\Phi}_{V(n)} = \overline{V}_{n} \sqrt{\frac{(1 + (\overline{L}_{V} / \overline{R}_{V})^{2})}{[\frac{1 + (n \overline{L}_{V} / \overline{R}_{V})^{2}}]}}$$
(III.19)

Seguindo um procedimento semelhante para a bobina de corrente, o fluxo máximo $\hat{\Phi}_{i(n)}$ será, em [pu]. denotado pela equação (III.20).

 $\bar{\phi}_{i(n)} = \bar{I}_{n} \qquad (III.20)$

O seu ângulo de fase, representado por " θ_{in} ", é o próprio ângulo entre a tensão e a correspondente corrente de carga que originou o fluxo.

É necessário destacar que, para a obtenção das equa ções dos fluxos, utilizou-se de um tratamento linear para o circuito magnético, o que, como se sabe, não corresponde a rea lidade física dos circuitos magnéticos. Para considerar tal não-linearidade, um dos processos consiste em substituír $\phi_v(t)$ por $\phi_v^+(t)$, e, $\phi_i(t)$ por $\phi_i^+(t)$ conforme realizado pelas expressões polinomiais a seguir:

$$\phi'_{v}(t) = a_{v1} \phi_{v}(t) + a_{v3} \phi_{v}^{3}(t) + a_{v5} \phi_{v}^{5}(t)$$
 (III.21)

. . . .

$$\phi_{i}^{\prime}(t) = a_{i1} \phi_{i}(t) + a_{i3} \phi_{i}^{3}(t) + a_{i5} \phi_{i}^{5}(t)$$
 (III.22)

onde:

0

6

()

-

0

۲

0

1

1

0

0

0

0

0

•

0

0

6

- a_{v1}, a_{v3}, a_{v5} = coeficientes do polinômio de correção da não-linearidade associado ao fluxo de tensão
- a_{i1}, a_{i3}, a_{i5} = coeficientes do polinômio de correção da não-linearidade associado ao fluxo de corrente.

Substituindo-se as equações de $\phi_v(t) \in \phi_i(t)$, dadas por (III.12) e (III.13) nas equações (III.21) e (III.22), ob-tém-se;

$$\phi_{\mathbf{v}}'(t) = a_{\mathbf{v}1} \left[\prod_{n=1}^{\infty} \widehat{\phi}_{\mathbf{v}n} \cos(n\omega_{1}t - \theta_{\mathbf{v}n} - \alpha_{\mathbf{v}n}) \right] + a_{\mathbf{v}3} \left[\prod_{n=1}^{\infty} \widehat{\phi}_{\mathbf{v}n} \cdot \mathbf{v}_{\mathbf{v}n} \right]$$
$$.cos(n\omega_{1}t - \theta_{\mathbf{v}n} - \alpha_{\mathbf{v}n}) \right]^{3} + a_{\mathbf{v}5} \left[\prod_{n=1}^{\infty} \widehat{\phi}_{\mathbf{v}(n)} \cos(n\omega_{1}t - \theta_{\mathbf{v}n} - \alpha_{\mathbf{v}n}) \right]^{5}$$

(III,23)

$$\phi_{i}(t) = a_{i1} \left[\sum_{n=1}^{\infty} \hat{\phi}_{in} \cos(n\omega_{1}t - \theta_{in}) \right] + a_{i3} \left[\sum_{n=1}^{\infty} \hat{\phi}_{in} \right]$$

е

6

۲

()

6

۲

1

۲

۲

8

-

 $\cdot\cos(n\omega_{1}t-\theta_{in})]^{3} + a_{i5}\left[\sum_{n=1}^{\infty} \widehat{\Phi}_{in}\cos(n\omega_{1}t-\theta_{in})\right]^{5} \quad (III,24)$

A título de ilustração, estas equações, no caso específico de uma distorção constituída por três componentes har mônicas (n = 3, 5 e 7) superpostas à fundamental, foram desenvolvidas no Apêndice I. Devido ao grande número de termos que as compõem estas são aqui representadas pelas equações (III.25) e (III.26)

 $\bar{\phi}_{v}'(t) = k=1,3,5...35 h=1,3,5...21 vkh^{\cos(K\bar{t}-\beta_{vkh})}$

(III.25)

 $\bar{\phi}_{i}(t) = k=1,3,5...35 h=1,3,5...21 \bar{\phi}_{ikh}^{cos(K\bar{t}-\beta)}$

(III,26)

88

onde:

\$\overline{\phi_vkh}\$ = valor de pico em [pu] do fluxo de tensão, referente a cada termo obtido no desenvolvimento do polinômio

- \$\vec{\Phi}_{ikh}\$ = valor de pico em [pu] do fluxo de corrente devido a cada termo obtido no desenvolvimento do polinômio
- k = ordem dos termos resultantes no desenvolvi mento do polinômio
- h = ordem dos diferentes ângulos de fase que cons tituem uma mesma componente harmônica originada no desenvolvimento do polinômio
- β_{vkh} = ângulo de fase correspondente a cada termodo desenvolvimento do polinômio referente ao fluxo de tensão
- β_{ikh} = ângulo de fase correspondente a cada termore sultante do desenvolvimento do polinômio re ferente ao fluxo de corrente.

Os valores máximos e ângulos de fase, correspondentes a estas equações, são mostrados na tabela III.1, onde se considera:

> $\gamma_n = \theta_{vn} + \alpha_{vn}$ $\theta_n = \theta_{in}$

•

6

۲

0

0

6

0

0

0

12

6

0

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Th		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	± 3, 2 ± 5, ± ± 5	n	^B vkh ^[rad]	^B ikh [rad
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5^{\circ}j1^{+2^{\circ}}j7^{\circ}j1^{+8^{a}}5^{\circ}j1^{+1}$ $1^{\circ}i3^{+4^{a}}i5^{\circ}j1^{\circ}i5^{+4^{a}}i5^{\circ}j1^{\circ}i1^{\circ}i5^{\circ}i1^{\circ}i1^{\circ}i5^{\circ}i1^{\circ}i$	1	4	Ð
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sum_{j=1}^{5} \varphi_{j7}^{2} \varphi_{j3}^{2} \varphi_{j1}^{2} + \frac{15}{2^{a}} \varphi_{j7}^{2} \varphi_{j5}^{2} \varphi_{j1}^{2}$		2	• •
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	j5 ^{\$} j5 ^{\$} j1 ^{\$} j7 ⁺⁴ ^a j5 ^{\$} j7 ^{\$} j1 ^{\$} j5 ⁺	2	Y7-Y5- 12	θ θ θ 7 5 1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	j5 ^{\$\phi_3\$\phi_j1\$\phi_j5^{\$\phi_4\$}j5^{\$\phi_3\$\phi_j1\$\phi_j3^{\$\phi_3\$\phi_j3\$\phi_j3\$}}}	3	Y5-Y3- 1/2	^θ 5 ^{-θ} 3 ^{-θ} 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	4	- Y3	⁴ θ1 ^{-θ} 3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	Y5	^θ 5 ^{-4θ} 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1^{\frac{15}{4}a}_{15}5^{\phi}_{15}^{2}5^{\phi}_{11}^{2}1^{\phi}_{13}^{+\frac{15}{4}a}_{15}5^{\phi}_{17}^{2}7^{\phi}_{11}^{2}1^{\phi}_{13}^{+\frac{15}{4}a}_{15}^{+1$	6	3 Y3- 1	^θ 3 ^{-2θ} 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3^{+15}_{-4}a_{j5}a_{j7}b_{j7}a_{j3}b_{j7}$	7	² Y ₃ -Y ₅	²⁰ 3 ⁻⁰ 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{15}{3^{+}4^{a}j5^{\phi}j1^{\phi}j3^{\phi}j7^{+}4^{a}j5^{\phi}j5^{\phi}j3^{\phi}j7^{+}4^{a}j5^{\phi}j5^{\phi}j3^{\phi}j7^{+}j7^{+}4^{a}j5^{\phi}j5^{\phi}j3^{\phi}j7^{+}j7^$	8	7 Y7 ⁻² Y3	⁰ 7 ⁻²⁰ 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	${}^{1}j5^{\phi}j5^{\phi}j3^{\phi}j7^{+}\frac{15}{4}{}^{a}j5^{\phi}j7^{\phi}j3^{\phi}j5$	9	^Y 3 ^{+Y} 5 ^{-Y} 7	⁰ 3 ⁺⁰ 5 ⁻⁰ 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	² Y 5 ⁻³ Y 3	²⁰ 5-303
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	11	3 _{Y5} -2 _{Y7}	30 ₅ -20 ₇
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	Y 3-Y 5+2	θ ₃ -θ ₅ -3θ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	13	Y7-Y3+2	θ ₇ -θ ₃ -3θ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14	Y 5 - Y 7 - 1 2	θ ₅ -θ ₇ +38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		15	$3\gamma_3 - \gamma_7 - \frac{\pi}{2}$	303-07-6
$137 15 = 32 a^2 a$		16	2Y3-Y7- 1	203-07+20
$\frac{17}{8} \frac{1}{j5} \frac{1}{j5} \frac{1}{j7} \frac{1}{5} $	·	17	² Y5 ^{-Y7-} ¶	205-07-20
$18 \frac{1}{16} a_{j5} \phi_{j7}^2 \phi_{j5}^2 \phi_{j3}^2 2\theta_{7}^2 2\theta_{7}^2 2\theta_{7}^2 \theta_{7}^2 \theta_{$		18	2Y7-2Y5-Y3	207-205-6

In the second measure and address address of the second measure of the seco

and the second se

*

ų

•

and the state of the second second

	1	$ \frac{a_{j1}^{0}}{j3^{+}4^{a}} \frac{3}{j3^{+}2^{-}} $	Y3	•3
	2	$\frac{3}{4} \frac{3}{13} \frac{3}{11} \frac{5}{15} \frac{4}{4} \frac{15}{11} \frac{3}{15} \frac{2}{15} \frac{15}{11} \frac{3}{15} \frac{2}{15} \frac{2}{15} \frac{2}{15} \frac{2}{11} \frac{2}{11} \frac{2}{15} \frac{2}{15} \frac{2}{15} \frac{2}{11} \frac$	γ ₅ - 1	8 ₅ - 39,
- ·	3	$\frac{3}{2^{4}} + 3^{4} + 5^{4} $	Yc-Yx+ 7	88-+8,
	4	$\frac{3}{2^{4}_{13}} + \frac{15}{16^{4}_{15}} + \frac{15}{4^{4}_{15}} + \frac{3}{16^{4}_{15}} + \frac{15}{16^{4}_{17}} + \frac{3}{4^{4}_{15}} + \frac{15}{16^{4}_{17}} + \frac{3}{4^{4}_{15}} + \frac{15}{6^{4}_{17}} + \frac{3}{4^{4}_{15}} + \frac{15}{6^{4}_{17}} + \frac{3}{4^{4}_{15}} + \frac{15}{6^{4}_{17}} + \frac{3}{4^{4}_{15}} + \frac{3}{6^{4}_{17}} + \frac{3}{4^{4}_{15}} + \frac{3}{6^{4}_{17}} + \frac{3}{4^{4}_{15}} + \frac{3}{6^{4}_{17}} + \frac{3}{4^{4}_{15}} + \frac{3}{6^{4}_{17}} + \frac{3}{4^{4}_{17}} + \frac{3}{6^{4}_{17}} + \frac{3}{4^{4}_{17}} + \frac{3}{6^{4}_{17}} + $	Y7-Ye+ 7	
	5	$\frac{3}{2^{a}_{j3}} \frac{3}{1^{b}_{j3}} \frac{15}{1^{7}_{4}} \frac{15}{4^{a}_{j5}} \frac{3}{1^{b}_{j1}} \frac{15}{4^{a}_{j5}} \frac{3}{5^{a}_{j3}} \frac{15}{1^{b}_{j7}} \frac{15}{4^{a}_{j5}} \frac{3}{5^{a}_{j3}} \frac{15}{1^{b}_{j7}} \frac{15}{4^{a}_{j5}} \frac{3}{5^{a}_{j7}} \frac{15}{7^{b}_{j1}} \frac{3}{9^{3}_{j7}} \frac{15}{7^{b}_{j1}} \frac{15}{9^{3}_{j7}} \frac{15}{7^{b}_{j7}} \frac{15}{9^{3}_{j7}} \frac{15}{7^{b}_{j7}} $	YY 1	
		• ¹ / ₂ ^a ₁₅ ⁶ ₁₅ ⁶ ₁₇ ⁶ ₁₃ ⁶ ₁₁	•7 •3 2	-731
	6.	$\frac{1}{4^{a}_{15}} \frac{5^{a}_{11}}{15^{a}_{15}} \frac{5^{a}_{11}}{5^{a}_{11}} \frac{3^{a}_{4}}{4^{a}_{15}} \frac{5^{a}_{15}}{5^{a}_{11}} \frac{5^{a}_{15}}{5^{a}_{11}}$	- 7	³⁰ 1
	7:	$\frac{3}{4^{a}}_{15}_{15}_{15}_{17}_{17}_{4}_{15}_{15}_{15}_{15}_{15}_{17}_{15}_{15}_{15}_{15}_{15}_{17}_{15}_{15}_{15}_{15}_{15}_{17}_{15}_{15}_{15}_{15}_{15}_{15}_{15}_{15$	245-47	285-87
3	8	16 α ₁₅ φ ₁₁ φ ₁₇	¥7.	0 ₇ - 48 ₁
	.9.		243+ 2	²⁰ 3 - ³⁸ 1
	: 10	$\frac{3}{4} \frac{2}{15} \frac{9}{13} \frac{9}{11} \frac{9}{17}$	3Y 5-Y7+ 2	³⁰ 3 ⁻⁰ 7 ⁺⁰ 1
	11:.	5 ¢ j3 ¢ j5 ¢ j7	373-77-75	³⁰ 5-07-05
	-12	$\frac{15}{8} \frac{a}{15} \phi_{15}^{4} \phi_{17}^{4} \phi_{11}^{1} + \frac{15}{8} \phi_{17}^{2} \phi_{15}^{2} \phi_{11}^{1}$	$2Y_7 - 2Y_5 - \frac{1}{2}$	287-285-61
	.13.	$\frac{13}{8} a_{j5} \phi_{j1}^{4} \phi_{j3}^{4} \phi_{j7}^{4}$	2Y3-Y7+ 1	203-07+201
	: 14	$\frac{15}{8} \frac{a}{15} \frac{6}{13} \frac{6}{15} \frac{6}{11}$	247-243-2	207-203-61
	15	$\frac{15}{8} + \frac{15}{15} + \frac{5}{15} + \frac{5}{13} + \frac{17}{17}$	2Y3-2Y5+Y7	203-205+07
	: 16'		·247-243-45	207-203-05
· · · · ·	. 17	7 . ° 35 ° 33 ° 31 ° 35 ··· ··· ··· ··· ··· ··· ··· ··· ··· ·	3Y3-Y5- Z	³⁰ 3 ⁻⁰ 5 ⁻⁰ 1
		$= \frac{3}{19} \frac{3}{19} \frac{3}{5} \frac{3}{40} \frac{3}{5} \frac{2}{15} \frac{2}{19} \frac{3}{19} \frac{2}{5} \frac{3}{29} \frac{2}{39} \frac{3}{59} \frac{2}{5} \frac{3}{19} \frac{2}{5} \frac{3}{29} \frac{2}{5} \frac{2}{5} \frac{2}{5} \frac{2}{5} \frac{3}{5} \frac{2}{5} \frac{2}{5} \frac{3}{5} \frac{2}{5} \frac{2}{5} \frac{3}{5} \frac{2}{5} \frac{2}{5} \frac{3}{5} \frac{2}{5} \frac{3}{5} \frac{2}{5} \frac{3}{5} \frac{3}{5} \frac{2}{5} \frac{3}{5} \frac{3}{5}$	Ϋ́ς	- *5
••-	2	$\frac{5}{4^{a}j_{3}} \frac{9}{1^{j}} \frac{9}{1^{3}} \frac{5}{4^{a}j_{5}} \frac{9}{1^{j}} \frac{9}{1^{3}} \frac{15}{8^{a}j_{5}} \frac{9}{1^{3}} \frac{9}{3^{3}} \frac{9}{1^{1}} \frac{15}{4^{a}j_{5}} \frac{9}{1^{5}} \frac{9}{1^{5}} \frac{9}{1^{3}} \frac{9}{1$	Y3 + 1	8 ₃ + 28 ₁
	3	$\frac{3}{4^{a}j_{3}} \circ^{2}_{j_{1}} \circ^{5}_{j_{1}} \circ^{5}_{4^{a}j_{5}} \circ^{4}_{j_{1}} \circ^{1}_{j_{7}} \circ^{15}_{8^{a}j_{5}} \circ^{3}_{j_{7}} \circ^{2}_{j_{1}} \circ^{15}_{4^{a}j_{5}} \circ^{9}_{j_{1}} \circ^{2}_{j_{3}} \circ^{9}_{j_{7}} \circ^{2}_{j_{7}} \circ^{2}_{j_{3}} \circ^{9}_{j_{7}} \circ^{2}_{j_{7}} \circ^{2}_{j$	¥7 - 1	0 ₇ - 20 ₁
	4	$\frac{\frac{3}{4}a_{j3}\phi_{j3}^{2}\phi_{j1}^{5}\phi_{j3}^{4}\phi_{j1}^{5}\phi_{j3}^{4}\phi_{j1}^{15}a_{j5}\phi_{j1}^{3}\phi_{j3}^{2}}{+\frac{15}{4}a_{j5}\phi_{j5}^{2}\phi_{j5}^{2}\phi_{j3}^{2}\phi_{j1}^{4}} + \frac{15}{4}a_{j5}\phi_{j3}^{2}\phi_{j1}^{4}\phi_{j1}^$	$2\gamma_3 - \frac{1}{2}$	203 - 01
	5	$\left \frac{15}{4^{a}j5^{\phi}j1^{\phi}j3^{\phi}j7^{+\frac{15}{4}a}j5^{\phi}j7^{\phi}j1^{\phi}j3^{+\frac{3}{2}a}j5^{\phi}j1^{\phi}j3^{\phi}j7^{-\frac{3}{2}a}j5^{\phi}j1^{\phi}j3^{\phi}j7^{-\frac{3}{2}a}j5^{\phi}j1^{\phi}j3^{\phi}j7^{-\frac{3}{2}a}j5^{+$	¥7-Y5+ Z	07-05+01
	6	$\frac{3}{2^{a}_{j}}_{3}^{0}_{j}_{3}^{0}_{j}_{5}^{0}_{j}_{7}^{0}_{4}^{15}_{4}_{3}^{0}_{3}^{0}_{j}_{3}^{0}_{j}_{5}^{0}_{j}_{7}^{0}_{4}^{15}_{4}^{3}_{3}^{0}_{5}^{0}_{j}_{5}^{0}_{j}_{3}^{0}_{j}_{5}^{0}_{j}_{7}^{0}_{4}^{15}_{4}^{0}_{3}^{0}_{5}^{0}_{j}_{7}^{0}_{1}^{15}_{4}^{0}_{3}^{0}_{5}^{0}_{j}_{7}^{0}_{j}_{3}^{0}_{j}_{5}^{0}_{j}_{5}^{0}_{j}_{5}^{0}_{j}_{1}^{0}_$	Y7+Y3-Y5	⁰ 7 ⁺⁰ 3 ⁻⁹ 5
		$\frac{15}{4}a_{j5}\phi_{j7}^{2}\phi_{j5}\phi_{j3}\phi_{j1}$	2Y7-Y5-Y3- 7	287-85-83-81
 _	. 8	$\frac{1}{16} a_{j5} \phi_{j1}^{5}$	17	501
· .	9	$\frac{5}{16} a_{15} \phi_{13}^4 \phi_{17}$	443 - 47	49 ₃ - 9 ₇
	10	$\begin{array}{c} 5\\ 8\\ \hline 8\\ 15\\ \hline 9\\ 13\\ 13\\ 17\\ \hline \end{array}$	247 - 343	2°7 - 3°3
	11	$\frac{5}{4}a_{i5}\phi_{i1}^{3}\phi_{i5}\phi_{i5}$	$Y_5 - Y_3 - \frac{1}{7}$	⁰ 5 ⁻⁰ 3 ⁺³⁰ 1

0

i

447 32 52

ş

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<u> </u>			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12	$\frac{5}{4} a_{j5} \phi_{j1}^{3} \phi_{j3} \phi_{j5}$	$Y_{5}+Y_{5}+\frac{4}{2}$	05+03-301
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		13	$\frac{5}{4} a_{j5} \phi_{j1}^3 \phi_{j5} \phi_{j7}$	Y7-Y5- 2	⁰ 7 ⁻⁰ 5 ⁺³⁰ 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		14	$\frac{5}{4} a_{j5} \phi_{j3}^3 \phi_{j1} \phi_{j5}$	3Y5-Y5+-2	303-05-01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	·	- 15	$\frac{5}{4} \mathbf{x}_{j5} \mathbf{\varphi}_{j5}^{3} \mathbf{\varphi}_{j5} \mathbf{\varphi}_{j7}$	3 ₇₅ -77-73	305-07-05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · · ·	16	$\frac{15}{4} s^{\phi} s^{\phi} s^{\phi} s^{\gamma} s^{i} s^{j} t^{*} \frac{15}{8} s^{\phi} s^{\phi} s^{\phi} s^{\phi} s^{j} s^{\phi} s^{j} s^{i} s^{i} s^{j} s^{i} s^{i} s^{j} s^{i} s^{i$	247-245+ T	287-285+81
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		17 ·	$\frac{15}{4} a_{j5} \phi_{j5}^2 \phi_{j1}^2 \phi_{j3}$	245-42- 1	205-03-201
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		18	$\frac{15}{8} a_{j5} \phi_{j5}^{2} \phi_{j1}^{4} \phi_{j7}$	2Y5-Y7- 1	285-87-281
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. 19	$\frac{15}{8} {}^{a}_{j5} {}^{\phi}_{j5} {}^{\phi}_{j3} {}^{\phi}_{j1}$	2 _{Y5} =2 _{Y3} + ⁴ / ₂	285-283+81
7 11 12 13 14 15 14 15 15 15 15 15 15 15 15 15 15	:	.:20 :.	$\frac{15}{4} a_{j5} \phi_{j3}^{2} \phi_{j1} \phi_{j5} \phi_{j7}$	2Y5-Y7+Y5+ 7	203-07+05+01
7 1 1 1 1 1 1 1 1 1 1 1 1 1		. 21	$\frac{15}{4} a_{15} a_{17} a_{17} b_{11} b_{13} b_{15}$	217-15-13- 2	287-85-83-81
7 1 $\frac{5}{8} \frac{5}{8} \frac{5}{9} \frac{5}{7} \frac{15}{8} \frac{5}{9} \frac{5}{9} \frac{1}{9} \frac{15}{9} \frac{15}{7} \frac{15}{8} \frac{5}{9} \frac{5}{9} \frac{5}{9} \frac{5}{9} \frac{5}{7} \frac{5}{8} \frac{5}{9} 5$			$a_{j1}^{\phi}_{j7}^{+\frac{3}{4}a_{j3}}a_{j7}^{\phi}_{j7}^{+\frac{3}{2}a_{j3}}a_{j1}^{\phi}_{j7}^{+\frac{3}{2}a_{j3}}a_{j3}^{\phi}_{j3}^{\phi}_{j7}^{+\frac{3}{2}a_{j5}}a_{j5}^{\phi}_{j5}^{\phi}_{j7}^{+}$	•	
7 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		-	$\frac{5}{8^{a}}$ $\frac{5}{5^{a}}$ $\frac{15}{8^{a}}$ $\frac{5}{5^{a}}$ $\frac{15}{1^{b}}$ $\frac{5}{1^{b}}$ $\frac{15}{1^{b}}$ $\frac{15}{1^$	٢	9
7 $ \frac{12}{2}a_{15}e_{15}^{2}e_{17}^{2}e_{17}^{2}e_{15}^{2}e_{15}^{2}e_{13}^{2}e_{17}^{2}} $ $ \frac{2}{3}\frac{3}{4}a_{13}e_{17}^{2}a_{15}e_{15}^{5}e_{17}e_{15}^{15}e_{15}e_{15}^{5}e_{15}^{5}e_{17}^{2}e_{15}^{2}e_{1}^{2}e_{1}e_{15}^{2}e_{1}e_{15}^{2}e_{1}e_{15}^{2}e_{1}e_{15}^{2}e_{1}e_{15}^{2}e_{1}e_{15}^{2}e_{1}e_{15}^{2}e_{1}e_{15}^{2}e_{1}e_{1}e_{15}^{2}e_{1}e_{1}e_{1}e_{1}e_{1}e_{1}e_{1}e_{1$		-	$\overset{15}{\overset{15}{\overset{4}{\overset{3}{\overset{5}{\overset{6}{\overset{3}{\overset{7}{\overset{6}{\overset{7}}{\overset{7}{\overset{7}{\overset{7}}{\overset{7}{\overset{7}{\overset{7}{\overset{7}{\overset{7}}{\overset{7}{\overset{7}{\overset{7}{\overset{7}{\overset{7}{\overset{7}{\overset{7}}{\overset{7}{\overset{7}{\overset{7}}}}}}}}}$		
7 7 7 7 7 7 7 7 7 7 7 7 7 7			$\frac{15}{2a_{j5}}\phi_{j5}^{2}\phi_{j1}^{2}\phi_{j7}^{15}\frac{15}{2a_{j5}}\phi_{j5}^{2}\phi_{j5}^{2}\phi_{j7}^{2}$	•••••••••••	
$ \frac{3}{2} \frac{3}{2^{a}} \frac{1}{3} \frac{9}{1} \frac{9}{1} \frac{3}{2^{b}} \frac{1}{3} \frac{9}{3^{a}} \frac{9}{3^{b}} \frac{1}{3^{b}} \frac{1}{3^{b}}$		2	$\frac{3}{4^{a}_{j}}_{3}^{2} \frac{\varphi_{j}^{2}}{\varphi_{j}} + \frac{5}{4^{a}_{j}}_{5}^{4} \frac{\varphi_{j}^{4}}{\varphi_{j}} + \frac{15}{8^{a}_{j}}_{5} \frac{\varphi_{j}^{3}}{\varphi_{j}} + \frac{15}{4^{a}_{j}}_{5} \frac{\varphi_{j}^{2}}{\varphi_{j}} + \frac{15}{9^{a}_{j}}_{5} \frac{\varphi_{j}^{2}}{\varphi_{j}} + \frac{15}{9^{a}_{j}} \frac{\varphi_{j}^{2}}{\varphi_{j}} + \frac{15}{$	Y5+ 1	8 ₅ +28 ₁
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•.	- 3	$\frac{3}{2^{a}j3^{\phi}j1^{\phi}j3^{\phi}j5^{+\frac{15}{4}a}j5^{\phi}j1^{\phi}j3^{\phi}j5^{+\frac{15}{4}a}j5^{\phi}j5^{\phi}j1^{\phi}j3}$	• Y5*Y3- Z	⁰ 5 ⁺⁰ 5 ⁻⁰ 1
7 $ \frac{1}{5} \frac{3}{4} a_{j3} a_{j3}^{2} a_{j1} a_{j1} \frac{5}{4} a_{j2} a_{j1}^{4} \frac{15}{8} a_{j3} a_{j1}^{3} a_{j1}^{2} \frac{15}{4} a_{j5} a_{j5}^{2} a_{j5}^{2} a_{j1}^{2} + \frac{1}{2} \\ + \frac{15}{4} a_{j5} a_{j1}^{2} a_{j1}^{2} a_{j1}^{2} a_{j1}^{4} \\ \frac{6}{4} \frac{3}{4} a_{j5} a_{j1}^{2} a_{j2}^{2} a_{j1}^{2} a_{j3}^{2} a_{j1}^{2} \frac{15}{8} a_{j5} a_{j5}^{3} a_{j5}^{2} a_{j5}^{2} \frac{15}{4} a_{j5} a_{j5}^{2} a_{j5}^{2} a_{j1}^{2} a_{j5}^{2} \\ \frac{7}{5} \frac{5}{15} a_{j5} a_{j5}^{4} a_{j5}^{3} a_{j5}^{5} a_{j1}^{3} a_{j5}^{2} \\ \frac{7}{5} \frac{5}{15} a_{j5} a_{j5}^{4} a_{j5}^{2} a_{j1}^{2} a_{j5}^{2} \\ \frac{8}{5} \frac{8}{2} a_{j5} a_{j5}^{2} a_{j1}^{2} a_{j5}^{2} \\ \frac{9}{15} \frac{15}{4} a_{j5} a_{j5}^{2} a_{j1}^{2} a_{j7} \\ \frac{9}{15} \frac{15}{4} a_{j5} a_{j5}^{2} a_{j1}^{2} a_{j7} \\ \frac{9}{10} \frac{5}{5} \frac{8}{4} a_{j5} a_{j5}^{3} a_{j7}^{2} \\ \frac{9}{11} \frac{5}{4} a_{j5} a_{j5}^{3} a_{j1}^{2} a_{j7} \\ \frac{9}{11} \frac{5}{4} a_{j5} a_{j5}^{3} a_{j1}^{2} a_{j7} \\ \frac{9}{11} \frac{5}{4} a_{j5} a_{j5}^{3} a_{j1}^{2} a_{j7} \\ \frac{10}{11} \frac{5}{5} \frac{8}{4} a_{j5} a_{j1}^{3} a_{j7} \\ \frac{11}{12} \frac{5}{4} a_{j5} a_{j5}^{3} a_{j1}^{2} a_{j5} \\ \frac{11}{12} \frac{15}{4} a_{j5} a_{j5}^{3} a_{j1}^{2} a_{j5} \\ \frac{12}{15} a_{j5} a_{j5}^{3} a_{j1}^{2} a_{j5} \\ \frac{13}{5} \frac{5}{4} a_{j5} a_{j5}^{3} a_{j1}^{2} a_{j5} \\ \frac{14}{5} \frac{5}{4} a_{j5} a_{j7}^{2} a_{j1}^{2} a_{j5} \\ \frac{15}{16} \frac{15}{8} a_{j5} a_{j7}^{2} a_{j1}^{2} a_{j5} \\ \frac{16}{15} \frac{15}{8} a_{j5} a_{j7}^{2} a_{j2}^{2} a_{j1} \\ \frac{17}{15} \frac{15}{8} a_{j5} a_{j7}^{2} a_{j2}^{2} a_{j1} \\ \frac{18}{15} \frac{15}{8} a_{j5} a_{j7}^{2} a_{j5}^{2} a_{j3} \\ \frac{18}{15} \frac{15}{8} a_{j5} a_{j7}^{2} a_{j2}^{2} a_{j1} \\ \frac{18}{15} \frac{15}{8} a_{j5} a_{j7}^{2} a_{j5}^{2} a_{j3} \\ \frac{18}{15} \frac{15}{8} a_{j5} a_{j7}^{2} a_{j5}^{2} a_{j3} \\ \frac{18}{15} \frac{15}{8} a_{j5} a_{j7}^{2} a_{j5}^{2} a_{j5} \\ \frac{18}{15} \frac{15}{8} a_{j5} a_{j7}^{2} a_{j5}^{2} a_{j5} \\ \frac{18}{15} \frac{15}{8} a_{j5} a_{j7}^{2} a_{j5}^{2} a_{j5} \\ \frac{18}{15} \frac{15}{8} a_{j5} a_{j7}^{2} a_{j5} \\ \frac{18}{15} \frac{15}{8} a_{j5} a_{j7}^{2} a_{j5} \\ \frac{18}{15} \frac{15}{8} a_{j5$	•	4	5 °j5 ° ⁴ j1 °j3	۲ ₃	0 ₃ + 40 ₁
$7 \frac{4}{12} \frac{a_{15}}{a_{15}} \frac{e_{17}}{a_{15}} \frac{e_{13}}{a_{15}} \frac{e_{13}}{a_{15}}$	•	5	$\frac{3}{4^{a}j3^{b}j3^{b}j1^{+}4^{a}j5^{b}j3^{+}j1^{+}8^{a}j5^{b}j1^{+}j3^{+}j1^{+}8^{a}j5^{b}j1^{+}j3^{+}4^{a}j5^{b}j5^{b}j3^{+}j1^{+}}{15}$	243+ 1	283+81
$7 \frac{6}{4} \frac{3}{4} \frac{3}{3} \frac{9}{5} \frac{5}{5} \frac{9}{5} \frac{1}{5} \frac{4}{6} \frac{3}{3} \frac{9}{5} \frac{5}{5} \frac{5}{5} \frac{1}{5} \frac{4}{6} \frac{3}{3} \frac{9}{5} \frac{5}{5} \frac{5}{5} \frac{1}{5} \frac{9}{5} \frac{9}{5} \frac{1}{5} \frac{9}{5} \frac{5}{5} \frac{1}{5} \frac{9}{5} \frac{1}{5} \frac{9}{5} \frac{1}{5} \frac{5}{5} \frac{9}{5} \frac{1}{5} \frac{9}{5} \frac{9}{5} \frac{9}{5} \frac{1}{5} \frac{9}{5} \frac{9}{5} \frac{9}{5} \frac{1}{5} \frac{9}{5} \frac{9}{5} \frac{9}{5} \frac{1}{5} \frac{9}{5} $	•		$\begin{array}{c} + \frac{13}{4} a_{j5} \phi_{j7} \phi_{j3} \phi_{j1} \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	•••••	
$7 \frac{1}{16} + \frac{12}{4} a_{15} b_{17}^{3} b_{15}^{4} b_{17}^{4} b_{15}^{4} b_{17}^{4} b_$		6	ᠯ ^a j3 ⁹ j̃5 ⁴ j5 ⁴ j5 ⁹ j5 ⁹ j3 ⁺ ¹ ³ ^a j5 ⁹ j ³ ⁴ j ⁵ ⁴ ¹ ⁴ j5 ⁹ j ⁵ ⁴ j ⁵ ⁴	215-13	205-03
$7 \frac{3}{15} \frac{1}{3} \frac{1}{5} \frac{1}{3} \frac{1}{5} \frac$			$\frac{13}{4^{a}} \frac{15}{5^{b}} \frac{15}{15^{b}} $		
$7 \qquad \frac{8}{9} \frac{5}{8} \frac{a_{j5}}{a_{j5}} \frac{\phi_{j3}^{2}}{\phi_{j1}} \frac{\phi_{j3}}{\phi_{j7}} \frac{q_{j7}}{2\gamma_{5} \gamma_{7} \gamma_{7} \gamma_{3} + \frac{\pi}{2}} \frac{3\theta_{3} - 2\theta_{1}}{2\theta_{5} - \theta_{7} + \theta_{3} + \theta_{1}}}$ $\frac{9}{10} \frac{\frac{15}{4} a_{j5}}{4} \frac{\phi_{j5}^{3}}{\phi_{j1}} \frac{\phi_{j3}}{\phi_{j7}} \frac{\phi_{j7}}{\gamma_{7} \gamma_{3} - \frac{\pi}{2}} \frac{2\theta_{5} - \theta_{7} + \theta_{3} + \theta_{1}}{2\theta_{7} - \theta_{3} + 3\theta_{1}}$ $\frac{11}{5} \frac{5}{4} \frac{a_{j5}}{a_{j5}} \frac{\phi_{j3}^{3}}{\phi_{j1}} \frac{\phi_{j5}}{\phi_{j5}} \frac{\gamma_{7} \gamma_{7} \gamma_{7} - \frac{\pi}{2}}{3\theta_{3} + \theta_{5} - \theta_{1}}$ $\frac{12}{12} \frac{15}{4} \frac{a_{j5}}{a_{j5}} \frac{\phi_{j3}^{3}}{\phi_{j1}} \frac{\phi_{j5}}{\phi_{j5}} \frac{3\gamma_{3} - \gamma_{7} + \gamma_{5}}{3\eta_{3} - \theta_{7} + \theta_{5}} \frac{3\theta_{3} - \theta_{7} + \theta_{5}}{3\eta_{3} - \theta_{7} + \theta_{5}}$ $\frac{13}{4} \frac{5}{4} \frac{a_{j5}}{a_{j5}} \frac{\phi_{j5}^{3}}{\phi_{j7}} \frac{\phi_{j7}}{\phi_{j5}} \frac{3\gamma_{5} - \gamma_{7} - \frac{\pi}{2}}{3\theta_{5} - \theta_{7} - \theta_{1}}$ $\frac{15}{15} \frac{15}{8} \frac{a_{j5}}{a_{j5}} \frac{\phi_{j7}^{2}}{\phi_{j1}} \frac{\phi_{j5}}{\phi_{j1}} \frac{\varphi_{7}}{\phi_{15}} \frac{2\gamma_{7} - \gamma_{7} - \frac{\pi}{2}}{3\theta_{5} - \theta_{7} - \theta_{1}}$ $\frac{16}{15} \frac{15}{8} \frac{a_{j5}}{a_{j5}} \frac{\phi_{j7}^{2}}{\phi_{j1}^{2}} \frac{\phi_{17}}{\phi_{15}} \frac{\varphi_{17}}{\phi_{15}} \frac{\varphi_{17}}{\phi_{17}} \frac{\varphi_{17}}{\phi_{17}} \frac{\varphi_{17}}{\phi_{17}} \frac{2\eta_{7} - 2\gamma_{5} - \pi}{2} \frac{2\theta_{7} - 2\theta_{5} + \theta_{3}}{2\theta_{7} - 2\theta_{5} + \theta_{3}}$ $\frac{18}{15} \frac{15}{8} a_{15} \frac{\phi_{17}^{2}}{\phi_{17}^{2}} \frac{\phi_{17}}{\phi_{15}} \frac{\phi_{17}}{\phi_{17}} $		7	5 a j5 b j5 b j5	4Y3-Y3	403-85
7 $\begin{array}{ c c c c c c c c c c c c c c c c c c c$		8	$\begin{bmatrix} \frac{3}{8} \alpha_{j5} \phi_{j3}^{2} \phi_{j1}^{4} \\ \frac{1}{8} \phi_{j1}^{2} \end{bmatrix}$	3γ ₃ - 1	303-201
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	9	<u> </u>	PY5-Y7+Y3+ 7	205-07+03+01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Y7-Y3- 2	07-03+301
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11	³ / ₄ [*] ₁₅ [•] _{j1} [•] _{j3} [•] _{j7}	Y7+Y3+ Z	. ⁰ 7 ⁺⁰ 3 ⁻³⁰ 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	$\begin{bmatrix} \frac{15}{4} a_{j5} \phi_{j3}^{3} \phi_{j1} \phi_{j5} \\ 0 \end{bmatrix}$	3Y3+Y5- 2	303+05-01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13	$\frac{5}{4} \mathbf{a}_{j5} \mathbf{\phi}_{j5}^{3} \mathbf{\phi}_{j5} \mathbf{\phi}_{j7}$	³ Y ₃ -Y ₇ +Y ₅	303-07+05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14	$\frac{5}{4} \epsilon_{j5} \phi_{j5}^3 \phi_{j1} \phi_{j7}$	3Y5-Y7- 2	305-07-01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		15	$\frac{15}{8} a_{j5} \phi_{j7}^2 \phi_{j1}^2 \phi_{j5}$	2y7+y2- 1	207+05-201
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16	$\frac{15}{8}a_{j5}\phi_{j7}^{2}\phi_{j3}^{2}\phi_{j1}$	247-243-	207-203-01
18 15 a. 0 ² 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	•	17	$\frac{15}{8} a_{j5} \phi_{j7}^2 \phi_{j5}^2 \phi_{j3}$	2Y7-2Y5+Y	207-285+83
4 1j3 j1 j3 j5 j7 5.7 3		. 18	$\frac{15}{4} a_{j5} \phi_{j1}^{2} \phi_{j3} \phi_{j5} \phi_{j7}$	Y5+Y7-Y3-	-1 05+07-03-201
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•	19 -	$\frac{15}{4} a_{j5} \phi_{j3}^2 \phi_{j1} \phi_{j5} \phi_{j7}$	Y7+Y5-2Y3+	$\frac{1}{2}$ $\theta_7 + \theta_5 - 2\theta_3 + \theta_1$

16.1

E.	and the second second
-	9
4	•
STREET,	۲
NUMBER OF A DESC	
n (o)secutive statue	
NIN COL	
法主法责任	
No.	
	•
A STATES	
	•
2400 A	0
	0
	0
	•
	Ø
	0
	0
	Ø
	0
	0
	i B
	Ä
	•
	0
	0
	Ø

				92
	1	$\frac{3}{4^{a}}_{j3} * * * * * * * * * * * * * * * * * * *$	¥7.+ ¶	⁶ 7+281
	.2	$\frac{3}{2^{a}j3^{b}j1^{b}j3^{b}j7^{b}4^{a}j5^{b}j1^{b}j3^{b}j5^{b}4^{a}j5^{b}j3^{b}j1^{b}j5^{b}4^{a}j5^{b}j3^{b}j1^{b}j5^{b}4^{a}j5^{b}j5^{b}j1^{b}j3^{b}}$ $+\frac{15}{2^{a}j5^{b}j5^{b}j7^{b}j3^{b}j1}$	Y5+Y5+ Z	⁹ 3 ⁺⁰ 5 ⁺⁰ 1
Ĩ	·· S· · ·	$\frac{3}{2}$ $\frac{15}{2}$ $\frac{15}{1}$ $\frac{6}{4}$ $\frac{5}{1}$ $$	$Y_{7} + Y_{5} - \frac{q}{2}$	07+05-01
. [4	S. 4. 4. 5. 1 9. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.		e ₅₊₄ e ₁
•	::5:::	$\frac{1}{4^{6}j_{3}}$ $\frac{5}{j_{3}}$ $\frac{5}{16^{a}j_{5}}$ $\frac{5}{j_{3}}$ 5	3Y ₃	30 ₃
	6	$\frac{3}{4^{6}j_{3}}g_{j5}^{2}g_{j1}^{4}f_{4}^{4}j_{5}g_{j5}^{4}g_{j1}^{15}g_{j1}^{3}g_{j5}^{2}f_{4}^{15}g_{j5}^{2}g_{j7}^{2}g_{j1}^{2}f_{5}^{4}g_{5}g_{j5}^{2}g_{j7}^{2}g_{j1}^{2}f_{5}^{4}g_{5}g_{j5}g_{j7}^{2}g_{j1}^{2}f_{5}^{4}g_{5}g_{5}g_{5}g_{7}g_{5}g_{1}^{2}f_{5}g_{5}g_{1}g_{1}g_{5}g_{1}g_{1}g_{1}g_{1}g_{1}g_{1}g_{1}g_{1$	² γ ₅ - ⁸ /2.	2°5-°1
-	7	$\frac{3}{4^{4}}_{j3}_{j7}_{j7}_{j5}_{j5}_{4^{3}}_{4^{3}}_{j5}_{j7}_{j5}_{j7}_{j5}_{4^{3}}_{4^{3}}_{j5}_{j5}_{j7}_{j5}_{j7}_{4^{3}}_{4^{3}}_{j5}_{j5}_{j7}_{j7}_{4^{3}}_{4^{3}}_{j5}_{j7}_{j7}_{j7}_{j7}_{j5}^{*}$	2Y7-Y5	2 ⁰ 7- ⁰ 5
9	8.	$\frac{3}{4^{4}}$ 13 ⁶ 13 ⁶ 15 ⁶ 17 ⁴ 4 ⁴ 15 ⁶ 13 ⁶ 15 ⁶ 17 ⁴ 4 ² +5 ⁶ 17 ⁶ 13 ⁶ 15 ⁶ 7 ⁵ 15 ⁶ 17 ⁶ 13 ⁶ 15 ⁶ 17 ⁶ 15 ⁶ 15 ⁶ 17 ⁶ 15	Y7+¥5-Y5	0,+0,-0 7+0,5-03
•	. 9 .	$\frac{S}{8} = \frac{3}{15} = \frac{3}{11} = \frac{3}{13} = \frac{3}{15} =$	2Y3- 2	203+301
	10	$\frac{5}{8} + \frac{6^3}{35} + \frac{6^2}{35}$	3Y5-2Y3	305-203
	11	\$ 4 ^a j5 ^b j1 ^c j5 ^b j7	Y7+Y5+ 7	07+85-301
÷.	12	$\frac{5}{4} a_{j5} \phi_{j5}^3 \phi_{j1} \phi_{j7} $		305-07+61
	13	$\frac{15}{8} a_{j5} e_{j5}^2 e_{j1}^2 \bullet_{j3}$	275-73+1	205-03+201
•	. 14	$\frac{15}{8} a_{j5} b_{j7}^2 b_{j3}^2$	217-13-1	20,-0,-20,
•	15	$\frac{15}{8} \bullet_{j5}^{2} \bullet_{j5}^{2} \bullet_{j7}^{2}$	275-275-75	205-203-05
	16 .	$\frac{15}{8} \stackrel{a}{}_{j5} \stackrel{\phi^2}{}_{j7} \stackrel{\phi^2}{}_{j3} \stackrel{\phi}{}_{j1}$	217-215+ 2	207-203+01
•••	-1	$\frac{3}{2^{a}j^{b}} \frac{2^{2}}{j^{5}} \frac{5}{j^{5}} \frac{5}{j^{5}} \frac{15}{j^{5}} \frac{15}{j^{6}} \frac{3}{j^{6}} \frac{2^{2}}{j^{5}} \frac{15}{j^{5}} \frac{2^{2}}{j^{5}} \frac{2^{2}}{j^{7}} \frac{4^{2}}{j^{5}} \frac{15}{j^{5}} \frac{2^{2}}{j^{7}} \frac{4^{2}}{j^{5}} \frac{15}{j^{5}} \frac{2^{2}}{j^{7}} \frac{4^{2}}{j^{5}} \frac{15}{j^{5}} \frac{2^{2}}{j^{7}} \frac{4^{2}}{j^{5}} \frac{15}{j^{5}} \frac{2^{2}}{j^{5}} \frac{4^{2}}{j^{5}} \frac{2^{2}}{j^{5}} \frac{2^{2}}{j^{$	275+ 1	²⁰ 5+ ⁰ 1
•	2	$\frac{15}{4^{\circ}j5^{\circ}j1^{\circ}j5^{\circ}j7^{\circ}4^{\circ}j5^{\circ}j7^{\circ}j1^{\circ}j5^{\circ}2^{\circ}j3^{\circ}j1^{\circ}j5^{\circ}j7^{\circ}}}{\frac{15}{4^{\circ}j5^{\circ}j5^{\circ}j1^{\circ}j7^{\circ}}}$	¥5+¥7- ¥	⁰ 5+ ⁰ 7 ⁻⁰ 1
	3	$\frac{\frac{3}{4}}{\frac{4}{5}} \frac{9}{5} \frac{9}{1} \frac{9}{5} \frac{3}{5} \frac{9}{7} \frac{15}{4} \frac{9}{5} \frac{9}{5} \frac{9}{1} \frac{9}{5} \frac{9}{5} \frac{9}{7} \frac{9}{5} \frac{9}{5} \frac{9}{5} \frac{9}{5} \frac{9}{7} \frac{9}{5} \frac{9}{5} \frac{9}{5} \frac{9}{7} \frac{9}{5} \frac{9}{5}$	Y3+Y7+ 7	⁰ 3+ ⁰ 7+ ⁰ 1
	4	$\frac{3}{4^{a}j_{3}^{\phi}j_{3}^{\phi}j_{5}^{+\frac{5}{4^{a}}j_{5}^{\phi}j_{3}^{\phi}j_{5}^{+\frac{15}{8^{a}}j_{5}^{\phi}j_{5}^{+\frac{15}{8^{a}}j_{5}^{\phi}j_{1}^{\frac{15}{4^{a}}j_{5}^{\phi}j_{7}^{\phi}j_{7}^{\phi}j_{3}^{\phi}j_{5}}$	2 _{Y3} +y5	283+85
	5	$\frac{3}{4^{a}j3^{b}j7^{b}j3^{+}4^{a}j5^{b}j7^{b}j3^{+}8^{a}j5^{b}j3^{b}j7^{+}4^{a}j5^{b}j7^{b}j1^{b}j3^{+}}{\frac{15}{4^{a}j5^{b}j7^{b}j7^{b}j1^{b}j3^{+}}{\frac{15}{4^{a}j5^{b}j7^{b}j7^{b}j1^{b}j3^{+}}}$	277-73	2 ⁰ 7 ⁻⁰ 3
•	. 6	$\frac{5}{16} \stackrel{\phi^4}{=} \stackrel{j5}{:} \stackrel{j1}{:} \stackrel{j7}{:} \stackrel{j7}{:}$	Υ ₇	θ ₇ +4θ ₁
	7	$\frac{5}{16} a_{j5} a_{j1}^{4} a_{j1}^{4}$	4Y3- 7	403-01
•	8	$\frac{5}{8} = \frac{43}{15} + \frac{43}{11} + \frac{42}{17}$	· 3Y7+ 2	.207-301
	9	$\frac{5}{8} a_{j5} \frac{a_{j}^{3}}{j3} \frac{a_{j}^{2}}{j1}$	3Y3+ 1	303+201
11	10	5 a ₁₅ b ³ b ²⁻ 8 a ₁₅ b ³ b ²⁻ 15	3Y7-2Y5	307-20s
	11	$\frac{5}{4} a_{j5} \phi_{j1}^3 \phi_{j5}^{3}$	Y3+Y5-	$\frac{\theta_{3}}{\theta_{3}}$
- Section Sector	12	$\frac{5}{4} a_{j5} \phi_{j3}^3 \phi_{j5} \phi_{j7}$	3Y3+Y7-	$Y_5 = \frac{3\theta_3 + \theta_7 - \theta_5}{2\theta_3 + \theta_7 - \theta_5}$

ورود المرجوب المرجوب				
	13	$\frac{s}{4} a_{j5} \phi_{j5}^3 \phi_{i1} \phi_{i3}$	3r5-r3- 2	³⁰ 5-03-01
	14	$\frac{5}{4}$ $\frac{3}{15}$ $\frac{3}{15}$ $\frac{9}{15}$ $\frac{9}{17}$	31577915	30 5-0 7+0 3
·	. 15	$\frac{15}{4} a_{j5} \phi_{j5}^{5} \phi_{j3} \phi_{j7}$	¥5+¥7=¥3	05+07-03
••••	. 16	$\frac{15}{8} \stackrel{\diamond 2}{=} \diamond 2$	21 3+1 7- 1	2° 3+° 7-2° 1
	. 17	$\frac{15}{8}$ $\frac{15}{15}$ $\frac{9}{15}$ $\frac{9}{15}$ $\frac{9}{13}$	2Y 5+Y 3- 1	2°5°° 3-2°1
	18	$\frac{15}{8} \mathbf{a}_{j5} \mathbf{\phi}_{j7}^2 \mathbf{\phi}_{j1}^2 \mathbf{\phi}_{j5}$	2Y7-Y5+ 1	20,-05+20,
	19	$\frac{15}{8} a_{j5} \phi_{j5}^2 \phi_{j3}^2 \phi_{j7}$	215-213+17	2°5-2°3+°7
	20	15 8 ° j5 ° j3 ° j5 ° j7	¥5+¥7-¥3+	⁰ 5+07-03+201
	1	$\frac{3}{4^{6}} 3^{6} \frac{2}{3^{5}} \frac{5}{3^{5}} \frac{5}{16^{4}} 5^{6} \frac{15}{3^{5}} \frac{3}{3^{6}} \frac{2}{3^{5}} \frac{15}{3^{5}} \frac{2}{3^{5}} \frac{2}{5^{5}} \frac{2}{3^{6}} \frac{2}{3^{5}} \frac{2}{5^{5}} \frac{2}{3^{6}} \frac{2}{3^{5}} \frac$	215+13	²⁰ 5+ ⁰ 3
	Z [*]	$\frac{3}{4^{a}}_{j}_{3}_{j}_{3}_{j}_{j}_{3}_{j}_{j}_{7}_{1}_{8}_{8}_{3}_{5}_{5}_{j}_{7}_{j}_{3}_{3}_{3}_{4}_{4}_{5}_{5}_{5}_{j}_{1}_{1}_{9}_{j}_{3}_{5}_{9}_{j}_{7}_{7}_{4}_{4}_{1}_{5}_{5}_{9}_{j}_{5}_{5}_{9}_{j}_{3}_{3}_{9}_{j}_{7}^{*}$	2r3*r7	²⁸ 3+87
	3	$\frac{3}{4^{a}j}\frac{3^{b}}{3^{b}j7^{b}j1^{+}\frac{5}{4^{a}j5^{b}j7^{b}j1^{+}\frac{15}{8}}}{1^{5}j5^{b}j7^{b}j1^{+}\frac{15}{8}}\frac{3}{15^{b}j7^{+}\frac{15}{4^{a}j5^{b}j5^{b}j7^{b}j1^{+}}}{1^{5}4^{a}j5^{b}j7^{b}j1^{+}\frac{15}{4^{a}j5^{b}j7^{b}j1^{+}}}$	247- 1	²⁰ 7 ⁻⁰ 1
	4	3 2 a13 ¢11 ¢15 ¢17-	$Y_7 + Y_5 + \frac{1}{7}$	B7+05+01
••	5	$\frac{5}{16} *_{15} *_{13} *_{11}$	$4Y_{3} + \frac{1}{2}$	483 +81
	6	$\frac{5}{16} a_{15} e_{15}^4 e_{17}$	4Y5-Y7	485-07
•	7.	$\frac{5}{8}a_{j5}\phi_{j1}^{3}\phi_{j5}^{2}$	2Y5- 7	205+30
•	8.	$\frac{5}{8} = \frac{3}{15} = \frac{3}{15} = \frac{2}{11}$	375- 1	305-201
13	9	$\frac{5}{4} = \frac{3}{15} = \frac{3}{11} = \frac{3}{15} = \frac{3}{17}$	¥7+Y3- ¥	07+03+301
•	10	$\frac{15}{4^{\circ}j5^{\circ}j1^{\circ}j5^{\circ}j7^{\circ}\frac{15}{4^{\circ}j5^{\circ}j5^{\circ}j5^{\circ}j1^{\circ}j7^{\circ}\frac{15}{4^{\circ}j5^{\circ}j7^{\circ}j1^{\circ}j5^{\circ}\frac{15}{2^{\circ}j5^{\circ}j3^{\circ}j1^{\circ}j5^{\circ}j7^{\circ}j1^{\circ}j7^{\circ}j7^{\circ}j1^{\circ}j7^{\circ}j7^{\circ}j1^{\circ}j7^{\circ}j7^{\circ}j1^{\circ}j7^{\circ}j7^{\circ}j1^{\circ}j7$	$Y_{5}+Y_{7}+\frac{9}{2}$	θ ₅ +θ ₇ +θ ₁
•	11	5 4 ^a j5 [¢] j5 [¢] j1 [¢] j5	3Y3+Y5- 2	³⁰ 3+ ⁰ 5- ⁰ 1
	12	<u>5</u> ⁴ 15 ⁶ 35 ⁶ 1 ⁶ 13	$3\gamma_5 - \gamma_3 + \frac{\pi}{2}$	305-03+01
	13	⁵ / ₄ ³ / ₅ ⁶ / ₅ ⁷ ⁹ / ₅ ⁸ / ₅	347-42-43	307-05-03
	14	$\frac{15}{8} \mathbf{s}_{j5}^{2} \mathbf{s}_{j7}^{2} \mathbf{s}_{j1}^{1} \mathbf{s}_{j3}.$	2Y7-Y3+ 9	207-03+201
	15	$\frac{15}{8} \frac{1}{3} \frac{9}{15} \frac{9}{13} \frac{9}{13} \frac{9}{15}$	2Y7-2Y3-Y5	207-203-05
	16	$\frac{15}{4} j 5^{\phi} j 1^{\phi} j 3^{\phi} j 5^{\phi} j 7$	¥3+¥5+¥7-4	03+05+07-201
	17	$\frac{15}{4} \frac{2}{3} \frac{9}{5} 9$	2Y5+Y7-Y3- 2	285+87-83-81
	18	$\frac{15}{2^{a}} j 5^{\phi} j 7^{\phi} j 5^{\phi} j 3^{\phi} j 1$	2y7-y2+y3+ 2	207-05+03+01
	1	$\begin{bmatrix} \frac{3}{2^{a}} ; 3^{b} ; 3^{b} ; 5^{c} ; 7^{+\frac{15}{4^{a}}} ; 5^{b} ; 3^{b} ; 5^{b} ; 7^{+\frac{15}{4^{a}}} ; 5^{b} ; 5^{b} ; 3^{b} ; 7^{+\frac{15}{4^{a}}} ; 5^{b} ; 7^{b} ; 3^{b} ; 5^{+\frac{15}{2^{a}}} ; 5^{b} ; 7^{-\frac{15}{4^{a}}} ; 5^{b} ; 7^{b} ; 3^{b} ; 5^{+\frac{15}{2^{a}}} ; 5^{b} ; 7^{-\frac{15}{4^{a}}} ; 5^{-\frac{15}{4^{a}}} ; 5^{-\frac{15}{4^{a}}} ; 5^{-\frac{15}{4^{a}}} ; 7^{-\frac{15}{4^{a}}} ; 5^{-\frac{15}{4^{a}}} ; 7^{-\frac{15}{4^{a}}} ; 5^{-\frac{15}{4^{a}}} ; 7^{-\frac{15}{4^{a}}} ; 5^{-\frac{15}{4^{a}}} ; 7^{-\frac{15}{4^{a}}} ; 7^{-15$	¥3+¥5+¥7	⁰ 3 ⁺⁰ 5 ⁺⁰ 7
	2	$\frac{1}{4^{a}} \frac{1}{3^{b}} \frac{1}{5^{b}} \frac{1}{15^{b}} \frac{1}{5^{b}} \frac{5}{15^{b}} \frac{5}{15^{b}} \frac{5}{15^{b}} \frac{1}{5^{b}} \frac{5}{15^{b}} \frac{1}{5^{b}} \frac{5}{15^{b}} \frac{5}{15^{$	3Y5	3es
	3	$\frac{3}{4^{a}j_{3}} \frac{3}{9^{2}j_{7}} \frac{9}{9^{j}} + \frac{5}{4^{a}j_{5}} \frac{9}{9^{j}} \frac{15}{7^{b}j_{1}} + \frac{15}{8^{a}j_{5}} \frac{9}{9^{j}} \frac{3}{9^{j}} \frac{9}{7^{b}} \frac{15}{4^{a}j_{5}} \frac{9}{9^{j}} \frac{9}{9^{j}} \frac{9}{7^{b}} \frac{9}{9^{j}} \frac{1}{7^{b}} \frac{9}{9^{j}} \frac{1}{7^{b}} \frac{9}{9^{j}} \frac{1}{7^{b}} \frac{9}{9^{j}} \frac{9}{7^{b}} 9$	277+ 1	28,+01
	4.	$1 \frac{1}{15} \stackrel{a}{}_{j5} \stackrel{s}{}_{j3}$	573	503

				9
Ī	5	$\frac{5}{8^{a}}$ $\frac{3}{5} + \frac{3}{17} + \frac{2}{13}$	347-243	³⁸ 7 ⁻²⁸ 3
F	6	5 4°j5°j1 °j5 °j7	¥7*¥3- 4	07+03+301
•	::7.	5 3 4 ^a 15 ⁴ 15 ⁴ 1 ⁴ 15	3Y3+Y5+ 1	30 3+0 5+0 1
15	. 8	$\frac{5}{4^{a}}$ 5^{ϕ} 5^{1} 5^{ϕ} 5^{1} 5^{7} 5^{7} 5^{7}	3Y 3+Y 7- 9	38 5+0 7 ^{1.0} 1
·	9	5 4 ³ 15 ⁶ 17 ⁶ 11 ⁶ 15	3Y7-Y5- 17.	307-05-01
	. 10	$\frac{15}{8} + \frac{2}{10} $	2143+144 1	20 3+0 7+20 1
	. 11.	$\frac{15}{8}, \frac{2}{15}, \frac{2}{9}, \frac{2}{15}, \frac{2}{10}, \frac{2}{$	215+13 + 1	28 5+8 3+28 1
	112	$\frac{15}{8} \frac{2}{15} \frac{2}{15} \frac{2}{11} \frac{1}{17}$	2Y5+Y7- 1	205+07-201
		$\frac{15}{8}a_{j5}e_{j7}^{2}e_{j1}^{2}e_{j3}^{2}$	247+43- 1	287+83-281
	14	15 2 2 8 a j 5 b j 5 b j 3 b j 1	215+215- 1	28 5+28 3-8 1
	15	$\frac{15}{8^{a}}$ $\frac{2}{15^{o}}$ $\frac{2}{17^{o}}$ $\frac{2}{13^{o}}$ $\frac{15}{15^{o}}$	247+242-42	207+205-05
	16	$\frac{15}{4^{a}}_{j}5^{\phi}_{j}7^{\phi}_{j}5^{\phi}_{j}3^{\phi}_{j}1$	2Y7+Y5-Y3- 1 2	²⁰ 7+ ⁰ 5- ⁰ 3- ⁰ 1
	1	$\frac{3}{4^{a}j}\frac{2^{\phi}j}{5^{\phi}j}\frac{5^{a}}{7^{\frac{4}{4}a}j}\frac{5^{\phi}j}{5^{\phi}j}\frac{15^{a}}{7^{\frac{15}{8}a}j}\frac{3^{\phi}j}{5^{\phi}j}\frac{2^{\phi}j}{7^{\frac{15}{4}a}j}\frac{15^{\phi}j}{5^{\phi}j}\frac{2^{\phi}j}{1^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{15^{\phi}j}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{15^{\phi}j}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{15^{\phi}j}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{15^{\phi}j}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\phi}j}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\frac{15}{4}}}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\frac{15}{4}}}\frac{1}{7^{\frac{15}{4}a}j}\frac{1}{5^{\frac{15}{4}}}\frac{1}{7^{1$	2¥5+¥7	2°5+°7
•	2	$ \begin{array}{c} 4 & -j 5^{-} j 5^{-} j 5^{-} j 5^{-} j 5^{-} j 7^{-} \\ & \overline{3}^{a}_{a}_{j} 5^{0}_{j} 7^{0}_{j} 5^{-} \overline{4}^{a}_{j} 5^{0}_{j} 7^{0}_{j} 5^{+} \overline{3}^{a}_{j} 5^{0}_{j} 5^{0}_{j} 5^{0}_{j} 5^{0}_{j} 7^{-} \overline{4}^{a}_{j} 5^{0}_{j} 7^{0}_{j} 1^{0}_{j} 5^{+} \\ & + 5^{a}_{a}_{a}_{a}_{a}_{a}_{a}_{a}_{a}_{a}_$	217+75	2 ⁰ 7+ ⁰ 3
		$\frac{5}{16} = \frac{4}{15} = \frac{4}{15} = \frac{15}{15} = \frac{15}{1$	۹۲ ₃ ۰۲۶	• 48 ₅₊ 85
• ••	::.:4	5 ⁴ / ₁₅ ⁴ / ₉ 5 ⁹ / ₃ 3	4Y5-Y3	485-83
	.5.	$\frac{5}{8} a_{j5} a_{j1}^3 a_{j7}^2$	277- 1	207+301
17		5 a, 03 02	3Y5+ 1	³⁸ 5+2 ⁶ 1 ·
17	7	$\frac{5}{4} a_{j5} \phi_{j5}^{3} \phi_{j1} \phi_{j7}$	5Y3+Y7+ 7	303+07+01
	8	$\frac{5}{4}$ a _{j5} ϕ_{j5}^{5} b _{j1} ϕ_{j3}	3Y5+Y3- 2	305+03-01
· .	• 9	$\frac{5}{4}$ $\frac{6}{3}$ $\frac{3}{1}$ $\frac{9}{1}$ $\frac{9}{1}$ $\frac{9}{13}$	3Y7-Y3- 2	307-03-01
	10	5 a _{j5} b _{j7} b _{j1} b _{j5}	3Y7-Y5+ 7	307-05+01
	11	$\frac{15}{8} \mathbf{z}_{j5} \mathbf{e}_{j7}^{2} \mathbf{q}_{j1}^{2} \mathbf{q}_{j5}^{3}$	247+45- 1	287+85-28
	12	$\frac{15}{8} a_{j5} \phi_{j5}^2 \phi_{j3}^2 \phi_{j1}^2$	2Y5+2Y3+ 2	205+203+0
	13	$\frac{15}{4} a_{j5} \phi_{j1}^2 \phi_{j3} \phi_{j5} \phi_{j7}$	Y3+Y5+Y7+ 1	θ ₃ +θ ₅ +θ ₇ +2θ.
	1	$\frac{3}{4^{a}j3} \frac{9}{j7}^{p} \frac{5}{j5} \frac{5}{4^{a}j5} \frac{9}{j7}^{\phi} \frac{15}{j5} \frac{15}{8^{a}j5} \frac{9}{j5} \frac{9}{j7}^{2} \frac{15}{4^{a}j5} \frac{9}{j7} \frac{9}{j1} \frac{9}{j3} + \frac{15}{4^{a}j5} \frac{9}{4^{a}j5} \frac{9}{4^{a}j5}$	247+42	207+85
	2	$\frac{5}{16} \mathbf{a}_{iz} \mathbf{\phi}_{iz}^{4}$	4Y2+Y7	483+87
·	3	$\frac{5}{35} \mathbf{a}_{10} \mathbf{\phi}_{11}^{4}$	4Ye- 7	40,-0,
	4	$\frac{5}{8} \mathbf{a}_{i\xi} \mathbf{a}_{i\xi}^{2} \mathbf{a}_{i\xi}$	3Y ₅ +2Y ₅	303+205
	s	$ \begin{array}{c} 5 \\ \overline{\mathbf{x}} \mathbf{a}_{i, \zeta} \mathbf{a}_{i, \gamma}^{2} \\ \overline{\mathbf{x}} \mathbf{a}_{i, \zeta} \mathbf{a}_{i, \gamma}^{2} \\ \end{array} $	3Y7- *•	307-201
10	6	$ \frac{5}{7} a_{i5} \phi_{i5} \phi_{i1} \phi_{i3} $	3Y5+Y2+ 2	305+03+01
1.12	7	$\frac{5}{2} a_{i5} \phi_{i5}^{3} \phi_{i7} \phi_{i7}$	3Y5+Y-73	305+07-03
	8	5_{4}^{2} 3_{17}^{4} 4_{13}^{4}	3Y7-Y3+ 2	30 ₇ -0 ₃ +0

- 400	į.	ģ	
0			
0			
0			
-			
۲			
۲			
•			
۲			
•			
۲			
0			
۲			
۲			
۲			
0			
•			
•			
•	ł		
9	ļ		
۲	ļ		
	•		
)		
•)		
Ø)		
)		
)		
œ			

-				
Π	9	5 a _j 5 b _j 7 b _j 3 b _j 5	³ Y ₇ -Y ₅ +Y ₃	3 ⁰ 7 ⁻⁰ 5 ⁺⁰ 3
	10	$\frac{15}{8} = \frac{15}{15} + \frac{15}{15} + \frac{15}{17} + \frac{17}{17}$	2Y5+Y7+ 1	2°5+°7+2°
	11	$\frac{15}{8} a_{j5} \phi_{j7}^2 \phi_{j1}^2 \phi_{j3}$	2Y7+Y3+ 9	20,+0,+20,
Ì	12	$\frac{15}{8} \mathbf{e}_{j5} \mathbf{e}_{j7}^2 \mathbf{e}_{j3}^2 \mathbf{e}_{j1}$	21 10 21 3 2	20,+20,+0,
ľ.	13	$\frac{15}{4} a_{15} \phi_{13}^2 \phi_{11} \phi_{15} \phi_{17} $	2Y3+Y5+Y7+ 7	203+05+07+0
	1	$\frac{1}{4^{a}_{13}} \frac{5}{7^{+16^{a}_{15}}} \frac{5}{5^{7}} \frac{5}{4^{a}_{15}} \frac{3}{7^{7}} \frac{5}{11^{+3^{a}_{15}}} \frac{3}{7^{7}} \frac{2}{13^{+3^{a}_{15}}} \frac{5}{17^{-13^{+3}_{15}}} \frac{3}{15^{+7}} \frac{2}{15^{+7}}$	5177	3\$ ₇
Î	· 2	5 10 ajs \$j5 \$j1	475+ 1	405+01
I	3	$\frac{5}{8} a_{j5} \phi_{j5}^3 \phi_{13}^2$		305+203
21	• 4.	5 4 j5 ⁹ j3 ⁹ j5 ⁹ j7	3Y3+Y7+Y5	3 ⁰ 3+ ⁰ 7+ ⁰ 5
	:::. : \$::	$\frac{5}{4} a_{j5} \phi_{j5}^{3} \phi_{j1} \phi_{j7}$	5Y5+Y7- 7	3°5+°7-°1
	6	$\frac{15}{8}a_{15}\phi_{17}^2\phi_{11}^2\phi_{15}$	2y ₇ +y ₅ +1	20,+0,+20,
• .		$\frac{15}{8} a_{j5} \phi_{j7}^2 \phi_{j3}^2 \phi_{j1}$	277+273+ 17	207+203+01
· ·	8	$\frac{15}{8} a_{j5} \phi_{j7}^2 \phi_{j5}^2 \phi_{j5}$	277+275-73	20,+26,-03
· .	9	$\frac{15}{4} a_{j5} \phi_{j5}^2 \phi_{j7} \phi_{j3} \phi_{j1}$	2Y5+Y3+Y7+ #	205+8+07-01
	11	5 16 ^a j5 [¢] j5 [¢] j3	4Y5+Y3.	405+03
	- 2	$\frac{5}{16} a_{j5} \phi_{j7}^4 \phi_{j5}$	4×7-×5	487-85
	3	$\frac{5}{4} a_{j5} e_{j3}^{3} e_{j7}^{2}$	3Y3+2Y7	303+287
	4	$\frac{5}{4}a_{j5}e_{j7}^{3}e_{j1}^{2}$	3 ₇₇ + 1	307+201
23	5	$\frac{5}{4} \stackrel{\circ}{}_{j5} \stackrel{\circ}{}_{j1} \stackrel{\circ}{}_{j7}$	3Y5+Y7+ 1	305+87+81
	6	$\begin{bmatrix} 5 \\ 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$	3Y7+Y3- 2	307+83-01
	. 7	$\frac{5}{4}a_{j5}\phi_{j7}^{3}\phi_{j3}\phi_{j5}$	3Y7+Y5-Y3	307+85-83
: .	8	$\begin{bmatrix} \frac{15}{8} a_{j5} \phi^{2} \phi^{2} \phi_{j1} & \frac{15}{8} \phi^{2} \phi^{2} \phi_{j7} \\ \frac{15}{9} j^{2} \phi_{j1} & \frac{15}{8} \phi^{2} \phi^{2} \phi_{j1} \end{bmatrix}$	2Y7+2Y5- 12	207+205-01
	. 9	$\frac{15}{8} \frac{a}{.5} \phi_{15}^{2} \phi_{13}^{2} \phi_{17}^{2}$	275+273+77	205+203+07
	10	$\frac{15}{4}a_{j5}\phi_{j7}^2\phi_{j5}\phi_{j3}\phi_{j1}$	247+42+13+ 2	207+05+03+01
	1	1 16 a j 5 o j 5	5YS	50 ₅
	. 2	5. aj5 ° ⁴ j7 °j3	477-73	407-03
25	3	$\frac{3}{4} \mathbf{a}_{j5} \mathbf{e}_{j5}^{3} \mathbf{e}_{j3} \mathbf{e}_{j7}$	3Y5+T7+Y3	305+87+83
	4	$\frac{5}{4} a_{j5} \phi_{j7}^3 \phi_{j1} \phi_{j3}$	3Y7+Y3+ 2	307+03+0i
	5	$\frac{5}{4} *_{j5} *_{j7}^{3} *_{j1} *_{j5}$	347+45- 12	307+05-01
•	6	$\frac{15}{8}a_{j5}\phi_{j5}^{2}\phi_{j7}^{2}\phi_{j1}^{+}\frac{15}{8}a_{j5}\phi_{j7}^{2}\phi_{j1}^{+}\frac{15}{9}a_{j5}\phi_{j7}^{2}\phi_{j5}^{2}\phi_{j1}$	2Y7+2Y5+ 2	207+205+01
. •	7	$\frac{15}{8} a_{j5} \phi_{j7}^{2} \phi_{j3}^{2} \phi_{j5}$	247+243+45	207+203+05
27	. 1.	<u>5</u> <u>15</u> <u>a</u> is 0 <u>i</u> s <u>17</u>	4Y5+Y7	485+87
	2	5 a _{j5} ¢ _{j7} ¢ _{j1}	447- 2	407-01
	3	$\frac{5}{8} a_{j5} \phi_{j7}^{3} \phi_{j3}^{2}$	3Y,+2Y,	3 ⁹ 7+2 ⁹ 3
	4	5 = 3 • 17 • 11 • 15	SY7+Y5+ 7	307+05+01
	-J	in the literation of the liter	+	

29	1.	$\frac{5}{16^{a}j5^{\phi}j7^{\phi}j1}$	4 _{Y7} + ^g / ₂	407+01
	2	$\frac{5}{8}a_{j5}\phi_{j5}\phi_{j7}^{2}$	3 γ ₅ +2γ ₇	305+207
	3	$\frac{5}{4^{a}}$ $j 5^{\phi} j 7^{\phi} j 3^{\phi} j 5$	³ Y7*Y5*Y3	307+05+03.5
31	1	$\frac{5}{16^{6}j5^{\phi}j7^{\phi}j3}$	4Y7+Y3	407+03
	2	$\frac{5}{8^{a}}j5^{\phi}j7^{\phi}j5$	³ γ ₇ +2γ ₅	307+205
33	1	$\frac{5}{16^{a}}$ $\frac{4}{17^{\phi}}$ $\frac{5}{15}$	4y7+y5	487+85
35	1	$\frac{1}{16^a}_{j5} \phi_{j7}^{5}$	7 _{Y7}	70 ₇

Tabela III.1 - Expressões para: $\Phi_{jkh} = \beta_{jkh}$; j = v, i.

Uma vez considerados os aspectos relativos às expressões para os fluxos associados à bobina voltimétrica e amperimétrica, o próximo passo consiste em determinar os conjuga dos médio e de amortecimento. Para tanto seja a equação (III.27) que dá o conjugado médio no medidor, em função dos fluxos produ zidos nas duas bobinas e das respectivas correntes induzidas no disco.

$$\bar{C}_{m\bar{e}dio} = \frac{1}{T} \begin{cases} T \\ [(\bar{\phi}_{v}'(t).\bar{i}_{di}(t) - \bar{\phi}_{i}'(t).\bar{i}_{dv}(t)] dt \\ 0 \end{cases}$$
(III.27)

onde:

140

6

ø

ø

0

1

۲

6

1

٩

0

۲

æ

۲

0

*

9

۲

0

 $\bar{I}_{dv}(t) = corrente em pu, induzida no disco pelo flu$ $xo <math>\bar{\phi}_{v}^{i}(t)$ $\bar{I}_{di}(t) = corrente em pu, induzida no disco pelo flu$ $xo <math>\bar{\phi}_{i}^{i}(t)$.

Para a determinação deste conjugado é necessário a obtenção de $\overline{I}_{dv}(t)$ e $\overline{I}_{di}(t)$. Para tanto, imaginando a representação do disco por um arranjo $R_d - L_d$, pode-se no domínio da frequência, estabelecer uma impedância " \overline{Z}_d " e o respectivo ân<u>gu</u> lo " α_d ", segundo as equações:

(III.31)

$$\bar{z}_d = \bar{R}_d + j n \bar{L}_d$$
 (III.28)

$$\alpha_{\tilde{d}} = tg^{-1} \left(\frac{n \tilde{L}_{\tilde{d}}}{\tilde{R}_{\tilde{d}}}\right)$$
 (III.29)

onde:

.

 \overline{R}_{d} = resistência, em pu, do disco do medidor \overline{L}_{d} = indutância, em pu, do disco do medidor.

Sob a ação dos fluxos $\overline{\phi}_{v}^{\dagger}(t)$ e $\overline{\phi}_{i}^{\dagger}(t)$, surgem duas tensões induzidas no disco $\overline{e}_{dv}(t)$ e $\overline{e}_{di}(t)$, dadas por:

$$\bar{e}_{dv}(t) = -\frac{d[\bar{\phi}_{v}'(t)]}{d\bar{t}} = k=1,3,5...35 \text{ h}=1,3,5...24 \bar{\phi}_{vkh} \cos(k\bar{t}-\beta_{vkh})$$
(III.30)

e:

$$\bar{e}_{di}(t) = -\frac{d[\bar{\phi}_{i}(\bar{t})]}{d\bar{t}} = k=1,3,5...35 \text{ h}=1,3,5...21, \bar{\phi}_{ikh}\cos(k\bar{t}-\beta_{ikh})$$

Estas tensões são responsáveis pelas correntes:

$$I_{dv}(t) = \sum_{k=1,3,5...,35}^{\Sigma} \sum_{h=1,3,5...,21} \frac{k \hat{\phi}_{vkh}}{|\bar{z}_{d}|} \operatorname{sen}(k \in -\beta_{vkh} - \alpha_{d}) \quad (III.32)$$

$$I_{di}(t) = \sum_{k=1,3,5...35}^{\Sigma} \sum_{h=1,3,5...21} \frac{k \bar{\phi}_{ikh}}{|\bar{z}_d|} \operatorname{sen}(k \bar{t} - \beta_{ikh} - g_d)$$
 (III.33)
$$\begin{array}{c} \begin{array}{c} \text{Substituindo-se } \bar{I}_{dv}(t), \ \bar{I}_{d1}(t), \ \bar{\phi}_{v}'(t) \in \bar{\phi}_{1}'(t) & \text{em} \\ (\text{III.27}), \ \text{obtém.se a seguinte equação para o conjugado médio:} \\ \begin{pmatrix} \\ \mathbf{f}_{medio}^{-1} \\ \mathbf{f}_{medio}^{-1} \\ \end{pmatrix}_{\mathbf{0}}^{T} \left\{ \left[\mathbf{k}_{k=1}, 3\frac{r}{2}5 \dots 35 \ h=1, 3\frac{r}{2}5 \dots 21 \ \overline{\phi}_{vkh} \cos\left(k \ \bar{E} - \beta_{vkh}\right) \right] \right\}, \\ & \cdot \left[\mathbf{k}_{k=1}, 3\frac{r}{2}5 \dots 35 \ h=1, 3\frac{r}{2}5 \dots 21 \ \overline{\phi}_{1kh} \cos\left(k \ \bar{E} - \beta_{vkh} - \alpha_{d}\right) \right] - \\ & - \left[\mathbf{k}_{k=1}, 3\frac{r}{2}5 \dots 35 \ h=1, 3\frac{r}{2}5 \dots 21 \ \overline{\phi}_{1kh} \cos\left(k \ \bar{E} - \beta_{1kh}\right) \right], \\ & \cdot \left[\mathbf{k}_{k=1}, 3\frac{r}{2}5 \dots 35 \ h=1, 3\frac{r}{2}5 \dots 21 \ \overline{\phi}_{1kh} \cos\left(k \ \bar{E} - \beta_{1kh}\right) \right], \\ & \cdot \left[\mathbf{k}_{k=1}, 3\frac{r}{2}5 \dots 35 \ h=1, 3\frac{r}{2}5 \dots 21 \ \overline{\phi}_{1kh} \sin\left(k \ \bar{E} - \beta_{1kh} - \alpha_{d}\right) \right] \right] \\ & \text{(III.34)} \\ \end{array}$$

médio = k=1,3
$$\frac{5}{5}$$
...35 h=1,3 $\frac{5}{5}$...21 $\frac{k}{\bar{R}_{d}[1 + (k \bar{L}_{d}/\bar{R}_{d})^{2}]}$

 $\frac{\left[1+\left(k\ \overline{L}_{d}/\overline{R}_{d}\right)^{2}\right]}{\left[1+\left(kn\ \overline{L}_{d}/\overline{R}_{d}\right)^{2}\right]},\ \overline{\Phi}_{vkh},\overline{\Phi}_{ikh}, \operatorname{sen}(\beta_{vkh}-\beta_{ikh})$ (III.35)

Seja agora a expressão do conjugado de amortecimen-

to.

•

•

()

$$C_{AM} = \frac{1}{T} \begin{bmatrix} \overline{\Phi}_{m} \ \overline{I}_{dm}(t) + \overline{\Phi}_{v}'(t) \ \overline{I}_{dv}(t) + \overline{\Phi}_{i}'(t) \ \overline{I}_{di}(t) \end{bmatrix} dt \quad (III.36)$$

0

@

۲

-

(3)

۲

0

-

8

۲

۲

$$\begin{split} \overline{\Phi}_{m} &= \text{fluxo produzido pelo imã permanente} \\ \overline{I}_{dm}(t) &= \text{corrente induzida no disco devido ao fluxo} \\ \Phi_{m}, \text{ para o disco girando à velocidade S} \\ \overline{I}_{dv}(t) &= \text{corrente induzida no disco girando à veloci} \\ & \text{dade "S", devido ao fluxo } \phi_{v}^{*}(t) \\ \overline{I}_{di}(t) &= \text{corrente de Foucault induzida no disco girando a uma velocidade "S", devido ao fluxo \\ & \phi_{i}^{*}(t). \end{split}$$

As correntes $I_{dm}(t)$, $\overline{I}_{dv}(t)$ e $\overline{I}_{di}(t)$, são calcula das pelas equações a seguir:

$$\bar{I}_{dm}(t) = \bar{\tau}_{m} \frac{\bar{\Phi}_{m} \cdot \bar{S}}{\bar{R}_{m}}$$
(III.37)

$$\mathbf{\overline{I}}_{dv}(t) = \frac{\overline{\tau}_{v \ k=1,3} \overline{}_{,5...35 \ h=1,3} \overline{}_{,5...21} \overline{\phi}_{v kh}^{*} \operatorname{sen}(k\overline{t} - \beta_{v kh} - \alpha_{d}) . \overline{S}}{|\overline{z}_{d}|}$$

(III.38)

99

$$\bar{t}_{di}(t) = \frac{\bar{\tau}_{i\cdot k=1,3} \sum_{j=1,3} \sum$$

(III.39)

que substituídas na equação (III.36), resulta em:

•

•

Nesta equação, as devidas substituições e desenvolvimentos matemáticos, determinam a expressão (III.41) para o cálculo do " C_{AM} ", a qual se encontra também desenvolvida na re ferência [54].

$$\bar{c}_{AM} = \bar{S} \cdot \{\bar{\tau}_{A} \frac{\bar{\Phi}_{m}}{\bar{R}_{m}} + k=1,3,5...35 \text{ h}=1,3,5...21 \frac{1}{\bar{R}_{d} [1+(k \frac{\bar{L}_{d}}{\bar{R}_{d}})^{2}]} \cdot \frac{[1 + (k \frac{\bar{L}_{d}}{\bar{R}_{d}})^{2}]}{[1 + (k \frac{\bar{L}_{d}}{\bar{R}_{d}})^{2}]} \cdot (\bar{\tau}_{B} \bar{\Phi}_{vkh}^{*2} + \bar{\tau}_{C} \bar{\Phi}_{ikh}^{*2})\} \quad (III.41)$$

(III.43)

onde:

•

•

•

)

•

•

$$\overline{\tau}_{A} = \overline{\tau}_{m} \cdot \frac{\overline{\Phi}^{2}}{\overline{R}_{m}}$$
(III.42)

$$\overline{\tau}_{B} = \frac{\tau_{v}}{\overline{R}_{d} \left[1 + \left(\frac{\overline{L}_{d}}{\overline{R}_{d}}\right)^{2}\right]}$$

$$\overline{\tau}_{c} = \frac{\overline{\tau}_{i}}{\overline{R}_{d} \left[1 + \left(\frac{\overline{L}_{d}}{\overline{R}_{d}}\right)^{2}\right]}$$
(III.44)

Obtidas as expressões dos dois conjugados, e considerando a condição de equilíbrio entre eles, pode-se escrever:

$$k=1,3,5...35$$
 $h=1,3,5...21$ $k.1/\overline{R}_{d}[1+(k\frac{\overline{L}_{d}}{\overline{R}_{d}})^{2}].[1+(k\frac{\overline{L}_{d}}{\overline{R}_{d}})^{2}]/[1+k\frac{\overline{L}_{d}}{\overline{R}_{d}}]^{2}]/[1+k\frac{\overline{L}_{d}}{\overline{R}_{d}}]^{2}$

$$+(\ln\frac{\bar{L}_{d}}{\bar{R}_{d}})^{2}]\cdot\bar{\phi}_{vkh}^{\dagger}\bar{\phi}_{ikh}^{\dagger}\cdot \operatorname{sen}(\beta_{vkh}-\beta_{ikh})\}=\bar{S}\{\bar{\tau}_{A}\frac{\bar{\Phi}_{m}^{2}}{\bar{R}_{m}}+$$

$$1 + [k=1,3,5...35 h=1,3,5...21^{k.1/\overline{R}} d \cdot [1 + (k \frac{\overline{L}_{d}}{\overline{R}_{d}})^{2}] \cdot [1 + (k \frac{\overline{L}_{d}}{\overline{R}_{d}})^{2}] / [1 + (k \frac{\overline{L}_{d}}{\overline{$$

$$+ \left(\ln \frac{\overline{L}_{d}}{\overline{R}_{d}} \right)^{2} \left[\overline{\tau}_{B} \quad \overline{\Phi}_{vkh}^{2} + \overline{\tau}_{C} \quad \overline{\Phi}_{ikh}^{2} \right] \right\}$$
(III.45)

De onde, finalmente, resulta uma equação representa

tiva da velocidade do disco do medidor em função das frequências fundamentais e harmônicas, de acordo com a expressão (III.46).

$$\overline{S} = \frac{k=1,3,5...35 \text{ h}=1,3,5...21 \{\overset{k}{\cdot} \cdot \frac{1}{\overline{R}_{d},\chi}, \gamma[\overline{\Phi}'_{vkh}, \overline{\Phi}'_{ikh}, sen(\beta_{vkh} - \beta_{ikh})\}}{\overline{\tau}_{A} \frac{\overline{\Phi}'_{m}}{R_{m}} \sum_{k=1,3,5...35 h=1,3,5...21 \{\frac{1}{\overline{R}_{d},\chi}, \gamma(\overline{\tau}_{B}, \overline{\Phi}'_{vkh} + \overline{\tau}_{C}, \overline{\Phi}'_{ikh}]\}}$$
(III.46)

Sendo as variáveis χ e γ dadas respectivamente

por:

1

۲

67

14

1

6

0

$$\chi = \frac{1}{\overline{R}_{d} [1 + (k - \frac{\overline{L}_{d}}{\overline{R}_{d}})^{2}]}$$

 $=\frac{\left[1+\left(k-\frac{\overline{L}_{d}}{\overline{R}_{d}}\right)^{2}\right]}{\left[1+\left(kn-\frac{\overline{L}_{d}}{\overline{R}_{d}}\right)^{2}\right]}$

γ

(III.46.a)

(III.46.b)

Estabelecida a equação genérica da velocidade do disco, pode-se então obter o erro na operação do medidor, em valores porcentuais, segundo a expressão (III.47).

Erro% =
$$\frac{\bar{S}_1 - \bar{S}_2}{\bar{S}_1}$$
. 100 (III.47)

onde:

1

۲

- \overline{S}_1 = velocidade constante do disco considerando somente as componentes fundamentais de tensão e corrente
- S₂ = velocidade constante do disco considerando as componentes fundamentais e harmônicas de 33, 53 e 73 ordem.

A partir deste modelamento, desenvolveu-se um. programa computacional, que permite analisar com um maior nível de detalhamento, a influência de ondas distorcidas de tensão e corrente na operação de medidores de KWh baseados no princi pio da indução eletromagnética.

III.2.3 - RESULTADOS OBTIDOS ATRAVÉS DA SIMULAÇÃO DIGITAL

Através do modelamento proposto e do programa computacional desenvolvido, procura-se, a seguir, investigar as con sequências e efeitos da operação dos medidores de KWh sob a ação de tensões e correntes distorcidas.

Dentre os diferentes estudos realizados destacam-se:

- Análise dos efeitos dos níveis e ordens harmôni cas presentes na tensão e corrente.
- Análise dos efeitos dos ângulos de fase.
- A influência do sentido direcional do fluxo harmonico.
- A influência do tipo de conexão dos transformadores alimentadores.

Os resultados mostrados a seguir, apresentam-se como um resumo de vários casos processados. Para os estudos utiliza-se um medidor cujas principais características são:

> Tensão fase-neutro : 127 [V] Corrente de linha : 5 [A] Frequência fundamental: 60 [Hz]

6

0

0

۲

•

6

0

0

1

Ð

0

0

0

0

0

 $\bar{\tau}_{A} = 0,945 \qquad \bar{a}_{v1} = 0,96 \qquad \bar{a}_{i1} = 0,97$ $\bar{\tau}_{B} = 0,05 \qquad \bar{a}_{v3} = 0,60 \qquad \bar{a}_{i3} = 0,05$ $\bar{\tau}_{C} = 0,005 \qquad \bar{a}_{v5} = -0,02 \qquad \bar{a}_{i5} = -0,02$ $\bar{L}_{v} = 0,0303 \qquad \frac{\bar{L}_{d}}{\bar{R}_{v}} = 0,06$

III.2.3.1 - CASO BASE E ANÁLISE SOB VÁRIAS CONDIÇÕES DE DISTO<u>R</u> ÇÕES

<u>OBJETIVO</u>: Através de dezesseis casos simulados, procurou-se estimar o erro registrado pelo medidor de KWh, quando este opera com diferentes distorções de tensão e corrente. Além disto, os casos estudados investig<u>a</u> ram também a influência da geração e absorção de ha<u>r</u> mônicos, através da variação do ângulo de fase das harmônicas consideradas.

CARACTERISTICAS/RESULTADOS

and the second state of th

#

(

•

.

3.M

[CARACTERÍSTICAS											
CASOS	V ₁ [pu]	I [pu]	θ ₁	n.	V n [pu]	I n . [pu]	α _{vn}	θin	ERRO (%)			
1	1	1	¶ 6	<u>:</u> 0	0	0	0.	0	0			
2	1	1	16	5	0,02	0,06	¶ 36	7¶ 36	- 0,1001			
3	1	1	<u>१</u> ठ	5	0,05	0,12	<u>¶</u> . <u>36</u>	7¶ 36	- 0,4977			
4	1	1	. <u>6</u>	5	0,10	0,24	<u>¶</u> 36	71 36	- 1,9507			
5	1	1	<u> ¶</u> 6	. 5	0,15	0,30	$\frac{1}{36}$	7¶ 36	- 3,5762			
6	1	1	· <u>¶</u>	5	0,005	0,05	<u>1</u> 36	71 36	- 0,0200			
7	1	. 1	<u>¶</u> 6	[:] 5	0,005	0,10	$\frac{1}{36}$	7¶ 36	- 0,0400			
8	1	1	116	:5	0,005	0,15	$\frac{1}{36}$	7¶ 36	- 0,0600			
9	1	1	<u>¶</u> 6	5	0,005	0,20	$\frac{1}{36}$	7¶ 36	- 0,0800			
10	1	1	<u> ॥</u>	.∵5	0,005	0,25	<u>¶</u> <u>36</u>	7¶ 36	- 0,1000			
11 .	1	1	<u>¶</u> 6	75	0,005	0,30	$\frac{1}{36}$	7¶ 36	- 0,1200			
12	1	1	¶ 6	. 5	0,05	0,05	0	71 36	0,2094			
13	- 1	1	16	. 5	0,05	0,10	0	71 36	0,4196			
14	1	1	श ह	5	0,05	0,15	0	7¶ 36	0,6306			
15	1	1	<u> </u>	: 5	0,05	0,20	0	7¶ 36	0,8426			
16	1	1	5	5	0,10	0,20	0	7¶ 36	1,7022			

COMENTARIOS: A existência de uma situação ideal de operação re sultou, como era de se esperar, em um erro de ze ro por cento.

Os resultados na operação do medidor sob diferentes distorções mostraram erros apreciáveis, e em todos os casos onde as distorções foram maiores, o erro se mostrou mais intenso, como é de se esp<u>e</u> rar.

Observou-se também, uma variação no sinal do erro associado à direção do fluxo harmônico. Nas simulações onde o fluxo de potência harmônico é contrário ao da fundamental, este sinal sempre se c<u>a</u> racteriza como positivo. Nos casos dos fluxos direcionais coincidentes ocorrerem somente erros negativos.

III.2.3.2 - ANÁLISE DA INFLUÊNCIA DOS ANGULOS DE FASE $\theta_{VN} \in \theta_{IN}$

<u>OBJETIVO</u>: Determinar a intensidade e variação do erro, sob d<u>e</u> terminada condição de distorção, variando-se exclus<u>i</u> vamente os ángulos de fase das componentes harmôni cas.

<u>CARACTERISTICAS</u>: $V_1 = 1$ [pu] $\theta_1 = \frac{\pi}{6}$ $V_n = 0,02$ [pu] $\theta_{vn} = va-$

riável

NO OF

6

1

Ð

0

()

6

()

6

1

0

Ø

D

63

0

6

0

۲

٩

٩

ß

 $I_1 = 1 \text{ [pu]} n = 5 I_n = 0,06 \text{ [pu]} \theta_{in} = va-$

riável.

<u>COMENTARIOS</u>: Os resultados mostraram variações positivas e negativas associadas aos erros, significando que o medidor pode tanto acelerar ou desacelerar em fun ção dos ângulos de fase das harmônicas.

III.2.3.3 - ANÁLISE DA INFLUÊNCIA DO ANGULO DE FASE ENTRE A TENSÃO E A CORRENTE FUNDAMENTAL

<u>OBJETIVO</u>: Esta análise é destinada à determinação da intensid<u>a</u> de e variação do erro, quando na operação do medidor ocorrer somente a variação do fator de potência das componentes fundamentais.

CARACTERISTICAS/RESULTADOS

1

6

鎆

10

		RESULTADOS								
ļ	CASOS	V ₁ [pu]	I [pu]	θ ⁰ .1	n	V fi [pu]	I n [pu]	θ _{vn}	θ _{in}	ERRO (%)
	1	1	1	00	3	0,025	0,05	0	$\frac{79}{6}$	0,0759
Ĺ	1	1	1	10	3	0,025	0,05	0	7¶ 6	0,0771
	1	1	. 1	20	3	0,025	0,05	0	$\frac{79}{6}$	0,0808
	1	1	1	30	3	0,025	0,05	0	<u>71</u> 6	0,0878
	1	1	1	40	3	0,025	0,05	0	<u>7¶</u> 6	0,0991
	1	1	T	50	3	0,025	0,05	0	$\frac{79}{6}$	0,1181
	1	1	1	60	3	0,025	0,05	0	$\frac{79}{6}$	0,1519
	· 1	1	1	70	3	0,025	0,05	0	$\frac{71}{6}$	0,2224
ſ	. 1	1	1	80	3	0,025	0,05	0	$\frac{71}{6}$	0,4394

	- - -									
		. 11								
						.5				1
0	2	1	1	00	3	0 075	0 05	0 -	7¶	0 2283
	2		1	10	2 2	0,075	0,05	0	<u>6</u> 7¶	0,220
•		1	1	20	2	0,075	0,05	0	<u>6</u> 7¶	0,2310
• •	2	1	1	30	2	0,075	0,05	0	<u>6</u> 7¶	0,2430
	2	1		40	2	0,075	0,05	0	<u>6</u> 7¶	0,2030
•	2	4	1		2	0,075	0,05		<u>6</u> 7¶	0,298
	2	1		50	2	0,075	0,05	0	<u>6</u> 7¶	0,355
•	2			80	3	0,075	0,05	0	<u>6</u> 7¶	0,4579
0				70	3	0,075	0,05	0	<u>6</u> 7¶	0,671
•	2	1		80	3	0,075	0,05	0	7 ¶ 7¶	1,334
•	3	1	1	0-	3	0,15	0,05	0	$\frac{7}{6}$	0,457
	3		1	10	3	0,15	0,05	0	6	0,465
	3	1	1	20	3	0,15	0,05	0	$\frac{71}{6}$	0,487
	3	1	1	30	3	0,15	0,05	0	$\frac{71}{6}$	0,529
0	3	1	1	40	3	0,15	0,05	0	$\frac{7}{6}$	0,598
0	3	1	1	50	3	0,15	0,05	0	$\frac{71}{6}$	0,714
	3	. 1	1	6.0	3	0,15	0,05	0	$\frac{74}{6}$	0,920
•	3	1.	1	70	3	0,15	0,05	0	$\frac{71}{6}$	1,354
•	3	1	1	80	3	0,15	0,05	0	$\frac{79}{6}$	2,719
	4	1	1	00	3	0,25	0,05	0	$\frac{71}{6}$	0,765
	4	1	1	10	3	0,25	0,05	0	$\frac{79}{6}$	0,777
	4	1	1	20	3	0,25	0,05	0	$\frac{7\P}{6}$	0,815
	4	1	1	30	3	0,25	0,05	0	$\frac{71}{6}$	0,885
	4	1	1	40	3	0,25	0,05	0	$\frac{79}{6}$	1,002
	4	1	1	50	3	0,25	0,05	0	7¶ 6	1,197
•	4	1	1	60	3	0,25	0,05	0	7¶ 6	1,546
0	4	1	1	70	3	0,25	0,05	0	$\frac{79}{6}$	2,284
	4	1	1	80	3	0,25	0,05	0	$\frac{71}{6}$	4,650

<u>COMENTARIOS</u>: Os resultados obtidos nos vários casos processados mostraram através das diferentes distorções, a influência do fator de potência e os erros rel<u>e</u> vantes no registro do medidor de energia. Os est<u>u</u> dos indicaram que embora as distorções se mantiv<u>e</u> ram constantes, as variações dos ângulos de fase da frequência fundamental alteram significativa mente os erros.

III.2.3.4 - A INFLUENCIA DAS ORDENS HARMÓNICAS

<u>OBJETIVO</u>: Avaliar a intensidade do erro registrado para dife rentes ordens harmônicas, mantendo-se todas as demais características inalteradas.

<u>CARACTERISTICAS</u>: $V_1 = 1$ [pu] $\theta_1 = \frac{\pi}{6}$ $V_n = 0.05$ $\theta_{vn} = 0^{\circ}$ $I_1 = 1$ [pu] n = variavel $I_n = 0.20$ $\theta_{in} = \pi$

RESULTADOS:

Ð

٩

69

0

68

Ð

6

0

18

0

6

0

(b

ORDEM n	1	2	3	5	7	11	13:	17-	19:	23	25 -
ERRO (%)	0,0000	0,6025	0,8037	0,9646	1,0334	1,0960	1,1128	1,1346	1,1421	1,1531	1,1573

<u>COMENTARIOS</u>: Os resultados evidenciam que a elevação das fr<u>e</u> quências harmônicas que constituem a distorção, <u>a</u> tua diretamente no registro indevidodo medidor. As

análises permitem concluir que as ordens superiores se associam aos erros mais expressivos.

III.2.3.5 - A INFLUÊNCIA DA CONEXÃO DO TRANSFORMADOR DE ALIMENTAÇÃO: $(YY/\Delta\Delta) \in (Y\Delta/\Delta Y)$

۲

0

1

0

۲

0

•

0

6

8

<u>OBJETIVOS</u>: De acordo com relatos da literatura especializada [55] constatou-se que a conexão do transformador de potência empregado para a alimentação de carga nãolinear pode influenciar de forma significativa nos registros de energia consumida. Com o propósito de verificar esta questão, serão simuladas duas situações operacionais, onde o transformador de aliment<u>a</u> ção de uma carga geradora de harmônicos será conectado em (YY ou $\Delta\Delta$) e posteriormente em (Y Δ ou Δ Y),

CASO 1 - CONEXAO DO TRANSFORMADOR EM YY OU 🗛

 $\frac{\text{CARACTERISTICAS}}{\theta_{\text{in}}}; \theta_{\text{vn}} = 30^{\circ} \qquad V_{\text{n}} = 0,05 \qquad \text{n} = 5$ $\theta_{\text{in}} = \text{variável} \qquad I_{\text{n}} = 0,25 \qquad \theta_{1} = \text{variável}$

RESULTADOS:

		and the second secon	
01	evn	θ _{in}	Erro (%)
00	30 ⁰	0 ⁰	-0,8741
50	30 ⁰	5 ⁰	-0,9195
100	30 ⁰	10 ⁰	-0,9655
150	30 ⁰	15 ⁰	-1,0130
200	30 ⁰	20 ⁰	-1,0627
250	30 ⁰	25 ⁰	-1,1156
300	. 30 ⁰	300	-1,1728
350	30 ⁰	350	-1,2361
400	300	40 ⁰	-1,3075
450	300	45 ⁰	-1,3902
50 ⁰ .	300	500	-1,4884
600	300	600	-1,7640
70 ⁰	300	70 ⁰	-2,2765
800	300	800	-3,7167

, CASO 2 - CONEXAO DO TRANSFORMADOR EM ΔY ou ya

<u>CARACTERISTICAS</u>: $\theta_{vn} = 30^{\circ}$ $V_n = 0,05$ n = 5

 $\theta_{in} = variável I_n = 0,25 \theta_1 = variável$

RESULTADOS:

•

•

•

•

() '.

•

		T	
θ 1	θ v n	⁰ in	Erro (%)
.00	30 ⁰	180 ⁰	0,8939
5 ⁰	30 ⁰	185 ⁰	0,8973
10 ⁰	300	190 ⁰	0,9898
15 ⁰	30 ⁰	195 ⁰	1,0396
20 ⁰	30 ⁰	200 ⁰	1,0918
25 ⁰	300	205 ⁰	1,1478
30 ⁰	300	210 ⁰	1,2085
350	300	215 ⁰	1,2758
40 ⁰	300	2200	1,3519
45 ⁰	300	225 ⁰	1,4402
50 ⁰	300	2300	1,5458
60 ⁰	300	240 ⁰	1,8449
70 ⁰	300	250 ⁰	2,4121
80 ⁰	300	260 ⁰	4,0889

COMENTARIOS: Os resultados obtidos através das conexões (YY/AA e $\Delta Y/Y\Delta$), mostraram que o defasamento dos itransformadores atuam no sentido de definir a direção do fluxo harmónico. Para o exemplo ilustrado, com as características explicitadas observam-se que a situação em que o transformador tem um defasamento angular de zero grau, as componentes harmôni cas originam um erro negativo na operação do medi dor. No caso do defasamento angular de 30°, definido pela conexão YA ou AY, todos os harmônicos de corrente, referindo-se ao lado primário do transformador, tiveram um deslocamento angular de 180⁰ (em relação ao caso YY), fazendo com que ο erro se apresentasse com um sinal positivo. Atra vés destes resultados, que não tem por meta ... expressar todas as situações possíveis, ... obtém-se que o transformador associado ao tipo de conexão, YA ou AY, pode mudar o sentido direcional do fluxo harmônico, num determinado ponto de medição, e como consequência afetar diferentemente o erro observado na rotação do disco.

111.3 - O TRANSFORMADOR DE POTENCIAL

Erros significativos tem sido registrados experimen talmente nas respostas de transformadores de potencial empre

gados nas proteções e nas medições elétricas. Registros típicos desta natureza são encontradas nas referências [41], [44], através das quais verifica-se que a partir de determinadas fre quências, o erro na relação de transformação relativa do T.P. é bastante acentuado. Dentro desta linha de trabalho, seste item considerará os tipos mais usuais de transformadores de po tencial, destacando aqueles mais susceptiveis aos erros rela tados. Procede-se então as discussões sobre as características nominais destes equipamentos e os correspondentes erros introduzidos. Além de apresentar os fundamentos físicos e relatos experimentais, discute-se um dos principais circuitos equivalentes com parâmetros concentrados, representando o T.P., submetido a alimentação em frequências superiores a 60 [Hz]. Para este propósito, será desenvolvido um programa computacional, no qual, os resultados obtidos serão confrontados com as análi ses experimentais.

III, 3, 1 - TÉCNICAS PARA MEDIÇÃO EM ALTA TENSÃO

8 I

•

۲

1

Os tipos mais comumente utilizados de transformadores de potencial podem ser classificados em:

- Transformadores de potencial indutivo (T.P.I.);

- Transformadores de potencial capacitivo (T.P.C.);

- Divisores capacitivos;

- divisores resistivos;

- divisores mistos (capacitivo/resistivo)

A título de ilustração são apresentados nas figuras III. 7.a e III. 7.b os dois primeiros tipos.

U

爾

()

Isoladol de Porcelana
 Tanque
 Núcleo
 Enrolamento Secundário
 Enrolamento Primário
 Terminal de Aterramento
 Blindagem
 Reservatório

(a)

Divisor Capacitivo de Tensão
 Capacitor de Alta-tensão
 Capacitor Intermediário
 Transformador Intermediário
 Reator de Compensação
 Terminais Secundários
 Transformador Indutivo
 Filtro Supressor de Ferrorressonância
 Enrolamento de Ajuste

10. Terminais de Baixa Tensão

(b)

Figura III. 7 - Transformador de potencial.

(a) indutivo

(b) capacitivo.

Os divisores capacitivos, resistivos e mistos, normalmente não são utilizados em sistemas de potência, sendo sua aplicação específica em circuitos de ensaio e pesquisa em labo ratório. Para tensões compreendidas entre 600V e 69KV, os trans formadores indutivos são dominantes. Para tensões acima de 69 KV até 138KV, não existe preferência na utilização, sendo que em sistemas onde se utiliza P.L.C. ("power line carrier") a utilização do capacitivo torna-se necessária. Para tensões superiores a 138KV os transformadores capacitivos são dominantes . Um fator preponderante que define a escolha de um transformador de potencial é o custo do equipamento. Uma curva típica extraída da referência [57], ilustra este fator em função da tensão, con forme figura III. 8. Observa-se que a partir de 245KV o preço T.P. do indutivo torna-se bem superior ao capacitivo. Isto se deve prin cipalmente ao número de espiras do enrolamento primário, que para tensões superiores a 245 KV, torna-se bem maior.

U

儘

Figura III. 8 - Custos dos transformadores de poten cial em função da tensão nominal.

111.3.2. RELAÇÕES NOMINAL, REAL E ERROS NAS MEDIÇÕES

Define-se relação nominal (K_p) como sendo a relação dos valores nominais de V_1 e V_2 , ou das tensões primárias e se sundária respectivamente.

 $K_{p} = \frac{V_{1}}{V_{2}} = \frac{N_{1}}{N_{2}}$

sendo:

 $(F.C.R) = \frac{K_{T}}{R}$

Na

1

6

٩

6

0

 V_1 = tensão nominal no primário V_2 = tensão nominal no secundário N_1 = número de espiras do primário N_2 = número de espiras do secundário

Define-se relação real (K_r) a relação entre o valor exato V_{1r} de uma tensão qualquer aplicada ao primário do T.P., e o correspondente valor exato V_{2r} , verificado no secundário.

$$K_{r} = \frac{V_{1r}}{V_{2r}}$$

O fator pelo qual deve ser multiplicada a relação de transformação K_p do T.P. para se obter a sua relação real K_r denomina-se fator de correção da relação, ou seja:

118

(III.48)

(III. 49)

- erro de relação

e ente O

鎆

1A

()

0

藏

Ó

0

嬼

- erro de fase ou do ângulo de fase.

Além desses erros, existe um outro tipo relacionado à frequência, que normalmente é desprezado na operação em 60 Hz, associados as capacitâncias existentes nos enrolamentos do transformador, as quais são denominadas por:

- capacitâncias entre espiras e enrolamentos

- capacitâncias de acoplamento.

Para uma melhor compreensão da localização dessas capacitâncias, é ilustrado na figura III. 9, as suas distribui ções nos enrolamentos.

Figura III. 9 - Distribuição das capacitâncias nos enrolamentos.

Embora a desconsideração destes efeitos capacitivos não conduza a erros aprecíveis quanto às respostas dos T.P.'s operando à 60 Hz, o mesmo não ocorre para os sinais de frequên cias mais elevadas. Para ilustrar, a figura 10, extraída da referência [43], mostra o comportamento da relação de transforma ção de T.P.'s indutivos, em função da frequência. Conforme indicado, as curvas são representativas de diferentes T.P.'s e indicam de forma bastante evidente o problema do erro apresentado na relação de transformação do T.P. sob a influência das harmônicas em sua operação.

٠

1

۲

•

0

٩

۲

۲

8

0

43

Figura III.10 - Resposta em frequência de T.P.'s in dutivos.

Por outro lado, os transformadores capacitivos sintonizados para operação em 60 Hz, apresentam comportamentos distorcidos para suas relações de transformação, como ilustra a figura III.11, obtida da referência [41].

9

(B)

6

Ð

(P)

(

0

0

0

8

0

6

0

0

6

0

6

Figura III.11 - Resposta em frequência de T.P. capa citivo.

III.3.3. CIRCUITO EQUIVALENTE DOS T.P.'S CAPACITIVO E INDUTIVO OPERANDO A 60 HZ E EM FREQUÊNCIAS SUPERIORES

O circuito equivalente da figura III.12 caracteriza, com razoável precisão o comportamento do T.P.C. em regime nomi nal. -jXco jX M JX1 R₂ jXe R1 Ý1 Zc -jXcb iXm Rm≹ Figura III.12 - Circuito equivalente do T.P.C. operando a 60 Hz.

Sendo:

.

0

0

6

0

•

(

3

0

1

(

0

X _{ca} ,	Xcb	=	reatâncias	do	divisor	capacitivo	de	ten-
			são					

- wL = X = reatância do reator de compensaçãoR₁ = resistência do enrolamento primário
- $wL_1 = X_1 = reatância de dispersão do enrólamento primário$
 - R₂ = resistência do enrolamento secundário r<u>e</u> ferida ao primário
- $\omega L_2 = X_2 =$ reatância de dispersão do enrolamento secundário referida ao primário

 Z_{c} = impedância da carga (BURDEN)

- R_m = resistência do ramo magnetizante referida ao primário
- X_m = reatância do ramo magnetizante referida ao primário
- V₁ = tensão aplicada ao primário
- v_2 = tensão aplicada ao secundário

No caso da operação do T.P.C. em frequências superiores a 60 Hz o circuito equivalente mais adequado tem a configuração na figura III. 13, a qual corresponde basicamente ao circuito anterior ao qual foram adicionadas as capacitâncias de fuga.

Figura III. 13 - Circuito equivalente do T.P.C. operando à frequências harmônicas.

Sendo:

X_{c1} = reatância capacitiva do primário
X_{c2} = reatância capacitiva do secundário referida
ao primário

X_{cr} = reatância capacitiva do reator de compensação
X_{c12} = reatância capacitiva de acoplamento referida ao primário.

A própria natureza do circuito mostrado na figura III.14 implica que a operação do mesmo é bastante susceptivel às frequências do sinal de entrada V_1 . De fato, as combinações entre as capacitâncias do divisor de potencial e o circuito pre dominante indutivo do transformador propriamente dito resultam em diversas frequências de ressonâncias responsáveis pelas imprecisões ilustradas na figura III.10. Com base nesses argumentos, este tipo de T.P. é altamente condenado para medições que envolvem grandezas harmônicas e, nas análises procedentes a atenção estará voltada tão exclusivamente para os T.P.'s indut<u>i</u> vos.

É conveniente ressaltar que o correspondente circuito para 60 Hz, foi omitido da discussão por ser o mesmo classi camente conhecido.

•

0

9

6

0

2

1

Devido ao aparecimento de situações de ressonância que levam a variação da relação de transformação através da c<u>a</u> pacitância existente nos enrolamentos e no acoplamento, proc<u>u</u> rar-se-á discutir um dos principais circuitos representando o transformador de potencial indutivo para qualquer frequência de entrada.

Com este propósito, a figura III.14 ilustra o classico circuito equivalente com as capacitâncias para a formulação matemática de uma equação que possibilita a análise da variação da relação de transformação. Isto permitirá sem dúvida, confrontar os resultados obtidos através do circuito proposto, com os experimentais. Destacam-se que os diversos componentes do circuito equivalente já se encontram devidamente referidos ao primário do transformador. Os diferentes componentes, que compõem a figura III.14 são os mesmos já identificados anterior mente.

Figura III. 14 - Circuito equivalente de um T.P.I. referido ao primário para frequências maiores que 60 Hz.

III.3.4. EQUAÇÃO GERAL DA RELAÇÃO DE TRANSFORMAÇÃO DO T.P.I.

Retomando-se a figura III.14, deve-se agora proceder o desenvolvimento da equação da relação de transformação do transformador em função da frequência. Para tanto seja o circuito da figura III.15, obtido através de uma simplificação do circuito anterior.

Figura III.15 - Circuito equivalente representado por impedâncias para o T.P.I. operando com frequências superiores a 60 Hz.

Onde:

.

Ø

 $Z_1 = R_1 + j(X_1)$ (III.51)

 $Z_2 = R_2 + j(X_2)$ (III.52)

 $Z_{p} = -jX_{c1}$ (III.53)

 $z_s = -jx_{c2}$

(111.54)

126

$$Z_{m} = R_{m} + jX_{m}$$
 (III.55)

$$z_{12} = -jx_{c12}$$
 (III.56)

Após as devidas transformações e manipulações algébricas, obtém-se:

$$K_{n} = \frac{V_{1}}{V_{2}} = \frac{K[Z_{c}(Z_{r} + Z_{b} + Z_{s}) + Z_{r}(Z_{b} + Z_{s})]}{Z_{r} \cdot Z_{s}}$$
(III.57)

sendo:

0

Ø

1

傤

K = relação de transformação do transformador operando a 60 Hz $<math display="block">K_n = \frac{V_1}{V_2} = relação de transformação do transforma$ dor às frequências harmônicas.

$$Z_a = Z_1 \cdot Z_2 / Z_{12} + Z_1 + Z_2$$
 (III.58)

$$Z_{b} = Z_{2} \cdot Z_{12} / Z_{12} + Z_{1} + Z_{2}$$
 (III.59)

$$Z_{c} = Z_{1} \cdot Z_{12} / Z_{12} + Z_{1} + Z_{2}$$
 (III.60)

 $Z_r = Z_a + Z_m$ (III.61)

Tendo-se portanto, a relação de transformação de um transformador em função da frequência, dentro do que, o circui to classicamente conhecido pode representar. III.3.5. METODOLOGIA PARA A SIMULAÇÃO DIGITAL

Dentro das formulações desenvolvidas, elaborou-se um programa para a simulação digital a fim de se avaliar a re<u>s</u> posta do circuito proposto.

O modelo matemático proposto apresenta a relação de transformação K_n em função dos parâmetros do T.P. e das frequências harmônicas, conforme descrito pela equação (III.57) a qual constitui a base para o programa. A partir desta expressão, a simulação digital permite o cálculo da relação de transformação K_n em função das frequências harmônicas, bem como, uma visualização gráfica, a partir de determinados parâmetros do T.P.I..

Os dados de entrada necessários para a simulação di gital são aqueles que caracterizam o circuito equivalente da figura III. 14. Estes são obtidos através de procedimentos clás sicos, ou seja, dos ensaios em vazio e em curto-circuito. As maiores dificuldades estão no conhecimento das capacitâncias de fuga. Todavia, estas podem ser obtidas através da literatura especializada, como por exemplo a referência [59].

儲

68

Para execução da simulação procurou-se estudar as respostas às harmônicas de um T.P. indutivo existente no laboratório do Departamento de Engenharia Elétrica da Universidade Federal de Uberlândia, pois os resultados poderiam ser poste riormente comparados, com aqueles obtidos através da medição direta. Tal T.P. possui como características nominais: Potência térmica = 400 VA Relação = 100:1 Classe Isolação = 15 KV Primário = 11.000 volts Precisão = 0,3 WX - 0,6 Y Frequência = 50/60 Hz Nível de Isolamento = 95 KV

. .

🗄

0_

a

Este T.P. possui como parâmetros:

R 1	=	3990 ohms
L ₁	=	6,45 H
^R 2	=	4890 ohms
L2	=	2,76 Н
R m	=	2.596.510 ohms
m	=	6405,456 H
c ₁	=	50 nF
C ₁₂	=	50 nF
c2	=	50 nF

A figura III.16 ilustra o circuito equivalente corres pondente, o qual foi empregado para as simulações computacionais.

••

6

6

٩

0

6

6

@

0

0

Ð

0

a

8

æ

0

Figura III. 16 - Circuito equivalente do T.P. simulado.

A tabela III.2, a seguir, fornece os resultados das respostas harmônicas para o transformador simulado. Desta, ver<u>i</u> fica-se que a relação nominal à 60 Hz, cujo valor é de 98,22, fica completamente afetada para as harmônicas superiores. A existência de pontos onde as discrepâncias são mais acentuadas pode ser associada a regiões de ressonância.

,						
• [MÓDULO	ÂNGULO	HARM.	MÓDULO	ÂNGULO	HARM.
	98.2201	10.875	1	202.2864	0.0652	26
	101.4683	30.1073	2	202.1182	0.0581	27
	157.202	49.2759	3	201.968	0.052	28
	257.5222	35.178	4	201.8332	0.0468	29
	268.3331	16.3642	5	201.7119	0.0422	30
	250.0342	8.0973	6	201.6023	0.0382	31
	236.0376	4.5547	7	201.5029	0.0347	32
	226.895	2.8252	8	201.4124	0.0316	33
)	220.7972	1.8805	9	201.33	0.0289	34
	216.5623	1.3188	10	201.2545	0.0264	35
	213.5079	0.6929	11	201.1853	0.0243	36
	211.2329	0.7257	12	201.1217	0.0223	37
9	209.4924	0.5612	13	201.0631	0.0206	38
)	208.1304	0.4433	14	201.009	0.0191	39
	207.044	0.3566	15	200.9589	0.0177	40
	206.1633	0.2912	16	200.9125	0.0164	41
	205.4391	0.241	17	200.8693	0.0152	42
	204.8363	0.2018	18	200.8292	0.0142	43
	204.329	0.1707	19	200.7917	0.0132	44
	203,898	0.1457	20	200.7568	0.0124	45
	203.5286	0.1254	21	200.7241	0.0116	46
9	203.2095	0.1087	22	200.6935	0.0109	47
	202.9321	0.0948	23	200.6648	0.0102	48
D	202.6893	0.0833	24	200.6378	0.0096	49
	202.4755	0.0735	25	200.6125	0.009	50
			L		L]

AND G

16 20

Tabela III.2 - Tabela de K_n x frequência harmôni-cas obtida pela simulação digital.

Para melhor visualização, apresenta-se os mesmos r<u>e</u> sultados, de forma gráfica, na figura III.17.

Figura III.17 - Representação gráfica de $K_n \times fre-$ quências harmônicas do T.P. simulado.

III.3.6. RESULTADOS EXPERIMENTAIS

@

0

0

Objetivando comprovar os resultados do modelo computacional, foram realizados ensaios em laboratório para obtenção da resposta em frequência do T.P. indutivo. Para tanto ut<u>i</u> lizou-se a montagem da figura III.18. O primeiro bloco da fig<u>u</u> ra corresponde a fonte de sinais harmônicos de tensão, a qual utilizou um dispositivo regulador C.A. controlado a tiristores Estes sinais distorcidos são aplicados diretamente aos terminais de tensão inferior do T.P..

۲

6

6

6

Figura III. 18 - Montagem para medição das frequências harmônicas.

Através do 19 estágio da figura, representado pelo regulador C.A. procurou-se injetar um sinal de tensão distorcido constituído da fundamental e das componentes harmônicas pares e impares da tensão não-senoidal. Utilizando-se de um analisador espectral conectado do lado de baixa e alta do T.P., foi obtidas as formas de ondas de entrada e saída, conforme as figu ras III. 19 e III.20. Seus correspondentes espectros em diagramas de barras são ilustradas nas figuras III.21 e III.22. Os resultados dos valores percentuais das componentes harmônicas, em relação à fundamental do lado de baixa e alta são mostrados nas tabelas III.3 e III.4.

						100
	ORDEM	MÓDULO EM	TANG.	ORDEM	MÓDULO EM	TANG.
	HARM.	& DA FUND.	ANG.	HARM.	& DA FUND.	ÂNG.
	01	+100.0%	+002.688	26	-001.3%	-000.087
	02	-000.7%	-000.588	27	-002.7%	-000.977
	03	⊹021.8 %	+007.270	28	-001.48	-014.933
	04	+001.3%	+000.500	29	+002.5%	+001.488
	05	-018.8%	-000.711	30	+001.3%	+000.298
	06	-001.8%	-009.793	31	-002.2%	-000.428
	07	+014.3%	+001.204	32	-001.3%	-001.978
	08	+001.7%	+000.025	33	+001.9%	+084.500
	09	-010.9%	-000.744	- 34	+001.1%	+000.715
	10	-001.8%	-003.666	35	-001.5%	-000.053
ĺ	11	+010.9%	+002.296	36	-001.0%	-000.982
	12	+002.18	+000.495	37	-001.2%	-008.652
	13	-009.5%	-000.270	38	+000.9%	+001.512
	14	-002.2%	-001.467	39	+001.0%	+000.259
	15	+008.3%	+011.926	40	-000.7%	-000.541
	16	+002.38	+001.077	41	-000.8%	-002.553
	17	+007.5%	+000.163	42	+000.6%	+002.714
	18	-002.3%	-000.512	43	+000.6%	+000.573
	19	-006.6%	-002.118	44	-000.5%	-000.214
	20	+002.2%	+005.507	45	-000.5%	-001.382
	21	+005.2%	+000.923	46	+000.4%	+007.299
	22	+001.6%	+000.140	47	+000.3%	+001.000
	23	003.18	-000.766	48	-000.38	-000.034
	24	-001.1%	-059.666	49	-000.38	-000.837
	25	+002.6%	+000.845			

A

.)

•

•

Tabela III. 3 - Valores percentuais das componentes harmônicas em relação à fundamental (110 V), no lado de baixa do T.P..

Ð						
•	_				_	136
0	ORDEM	MÓDULO EM	TANG.	ORDEM	MÓDULO EM	TANG.
•	HARM.	% DA FUND.	ÂNG.	HARM.	% DA FUND.	ÂNG.
0	01	+100.08	-018.627	26	+002.7%	-000.685
0	02	+000.88	-000.126	27	+004.9%	-001.016
0 .	03	+022.5%	-000.449	28	+002.8%	-001.564
0	04	+001.5%	-001.480	29	+004.4%	-002.552
•	05	-020.4%	+095.653	30	+002.78	-006.320
0	06	-002.28	+002.401	31	-003.9%	+032.199
•	07	-016.2%	+001.073	32	-002.6%	+004.012
۲	08	-002.2%	+000.502	.33	-003.48	+001.968
0	09	-013.0%	+000.262	34	-002.48	+001.208
•	10	-002.4%	+000,069	35	-002.8%	+000.779
0	11	+012.7%	-000.176	36	-002.1%	+000.474
6	12	+003.0%	-000.438	37	-002.3%	+000.234
0	13	+012.4%	-000.771	38	-001.98	+000.000
0	14	+003.8%	-091.223	39	+001.98	-000.247
0	15	+011.3%	-001.947	40	+001.7%.	-000.532
•	16	+003.5%	-003.438	41	+001.5%	-000.879
•	17	+010.98	-009.333	42	+001.5%	-001.398
	18	-003.6%	+019.521	43	+001.4%	-002.389
	19	-009.5%	+004.401	44	+001.2%	-006.695
0	20	-003.5%	+002.579	45	-000.9%	+011.599
	21	-007.1%	+001.687	46	-001.0%	+002.630
0	22	-002.4%	+001.054	47	-000.7%	+001.529
	23	-004.48	+000.421	48	-000.8%	+000.911
	24	+002.18	-000.041	49	-000.38	+000.523
	25	+004.8%	-000.366			
	franzen anzen interendeten errete	m-b-1	TT 4	1.0	conturi - 2	
		Tapera I		HORES DET	centuals day	; componen-

•

bela III. 4 - Valores percentuais das componentes harmônicas, em relação à fundamental (11 KV), no lado de alta do T.P.

Com os valores obtidos em porcentagem da tensão harmônica, do lado de alta e baixa do T.P., calculou-se os valores da relação de transformação real do T.P. para cada comp<u>o</u> nente harmônica, dado pela relação:

 $K_n = \frac{V_{1n}}{V_{2n}}$

😽 en internationalise intelligence de la

0

0

0

0

4

8

-

0

٩

()

6

物

Sendo:

v_{1n} = tensão do terminal de baixa para frequência harmônica "f_n";

V2n = tensão no terminal de alta para frequência harmônica "f_n";

 $K_n = relação de transformação do T.P. para fre$ quência harmônica "f_n";

n = ordem harmônica (n = 1, 2, 3, ..., 49).

Os resultados obtidos através da equação (III.62) são apresentados na tabela III.5.

Estes valores permitem ainda desenhar graficamente a relação K_n em função das frequências harmônicas como ilustra a figura III.23, para o nível de tensão eficaz da fundamental de 11 KV.

De maneira similar na figura III.24, são ilustrados os gráficos para as harmônicas pares e ímpares.

(III.62)

Γ	(n) Ordem	(V.) Tensão no	(V.) Tensão no	(K) Relação
	Harmônica	Primário (volts)	Secundário (volts)	Transforma
-	1	110,00	11000	100,0
	2	0,77	88	114,0
*	3	23,98	2475	103,2
	4	1,43	165	115,3
	5	20,68	2244	108,5
	6	1,68	242	122,2
	7	15,73	1782	113,2
	8	1,87	242	129,4
	9	11,99	1430	119,2
	10	1,98	264	133,3
	11	11,00	1397	127,0
	12	2,31	330	142,8
	13	10,45	1364	130,5
	14	2,42	363	150,0
	15	9,13	1243	136,1
	16	2,53	396	156,5
	17	8,25	1166	141,3
	18	2,53	. 396	156,5
·-	19	7,26	1045	144,0
	20	2,42	396	163,0
	21	5,72	781	136,
	22	1,76	264	150,
	23	3,41	484	141,
	24	1,21	231	190,
	25	2,86	528	183,
	26	1,43	297	207,
	27	2,47	539	181,

•

0***

(de la

٢

۲

0

6

0

6

308 200,00 28 1,54 29 2,75 484 176,00 30 1,43 297 207,70 2,42 31 429 177,27 1,43 200,00 32 286 1,98 188,80 33 374 34 1,21 264 218,80 1,65 35 308 186,66 36 1,10 231 210,00 37 1,32 253 191,66 38 0,99 209 211,11 39 1,10 209 190,00 40 0,77 187 242,86 41 0,88 165 187,50 42 0,66 154 233,33 43 0,66 132 200,00 44 0,55 132 240,00 45 0,55 99 180,00 46 0,44 110 250,00 47 0,33 77 233,33 48 0,33 88 266,66 49 0,33 55 166,66

Tabela III. 5

 Relação de transformação K do T.P. operando com tensão eficaz fundamental de 11 KV/110 V.

III.4. TRANSFORMADOR DE CORRENTE (T.C.)

6

1

(

0

۲

0

1

0

۲

0

۲

0

É um equipamento empregado nos circuitos de medições e proteções, sendo o primário ligado em série ao circuito, e cujo enrolamento secundário se destina a alimentar bobinas de corrente dos instrumentos elétricos. Na prática é considerado um "redutor de corrente", uma vez que a corrente que percorre o circuito secundário é normalmente inferior à do primário.

O enrolamento primário dos T.C.'s é normalmente cons tituído de poucas espiras como mostra a figura III.25, onde é ilustrado um T.C. do tipo enrolado.

Figura III.25 - T.C. tipo enrolado.

Para a medição de corrente, são empregados geralmente os T.C.'s enrolados toroidalmente, usando núcleos ferromagnéticos e com apenas uma única espira primária, constituindo o trans formador do tipo barra, ilustrado através da figura III.25.

۲

(数)

9

۲

췡

(

4

働

6

櫾

0

۲

٩

曫

()

4

٢

Figura III.26 - T.C. tipo barra.

Em virtude de sua construção, tais T.C.'s possuem bai xos valores de indutâncias de dispersão e de resistência primária.

Sob condições normais de carga, a corrente primária é substancialmente menor que o valor necessário para saturar o núcleo, e, a operação ocorre na parte linear da característica' de magnetização.

O correspondente circuito equivalente para a frequência de 60 Hz é omitido nesta discussão por ser o mesmo classica mente conhecido. Por outro lado, o interesse é neste momento di rigido a resposta do T.C. em frequências superiores.

Para este propósito, encontra-se na literatura um cir cuito típico, segundo a figura III.27.

143

Figura III.27 - Modelo básico de um T.C..

O circuito ilustrado mostra que a resposta às frequências harmônicas é efetivamente determinada pelas capacitân cias e indutâncias presentes no transformador. Sendo o primário formado por uma única espira e o acoplamento capacitivo en tre os enrolamentos, muito fraco, o efeito das várias capacitâncias (entre espiras, enrolamentos e de fuga) é representado neste modelo por uma capacitância "C" apropriada, em paralelo com o ramo magnetizante.

Os testes realizados em laboratório, cujos resultados são relatados nas referências [31], [41], [45], mostraram que, tal capacitância causa um efeito desprezível, quando o T.C. é submetido a operar nas frequências harmônicas de int<u>e</u> resse. De um modo geral, o erro na resposta do T.C. é significativo em frequências superiores a 5 [KHz]. A figura III.28 ilustra resultados experimentais para um T.C. com relação de transformação de 4.000 : 5 [A], obtidos na referência [45].

8

(AA)

ø

Figura III. 28 - Relação de transformação de um T.C. submetido às frequências harmônicas.

Neste item, objetivando-se verificar a relação de transformação dos T.C.'s às diversas frequências harmônicas, fo ram realizadas diversas medições em laboratório. Para tanto utilizou-se de uma montagem análoga àquela dos testes do T.P., a qual empregou o dispositivo regulador C.A. controlado a tiristores, e, um analisador espectral com medição em tempo real.

Dentre os vários testes realizados, apresentam-se a seguir os resultados obtidos com um T.C. do tipo enrolado, cujas características nominais de placa são:

- Relação Nominal: 10/5 Amperes

4440	Classe	:	1
-	V.A.	•	10
	Isolação	:	0,6 KV
<u></u>	Frequência	:	50/60 Hz

~ 0

0

0

.)

ig.

0

0

0

6

0

0

0

S

(B)

6

As figuras III.29 e III.31, ilustram respectivamente, as formas de ondas da corrente do lado primário e secundário, enquanto que as figuras III.30 e III.32, mostram as respostas às frequências harmônicas, as quais permitem a observação da relação de transformação.

ANALISADOR ESPECTRAL

Figura III.29 - Forma de onda obtida no lado primário do TC - com o valor de corrente fundamental igual a 1,8 [A].

145

ANALISE

HARMONICAS

HARM. NRO.	MODULO EM % DA FUND.	TANG. ANG.
NR0. 01233456789011123456789012222222222222333333333333444444444444567890	<pre>% DA FUND. *100.0% *003.5% +003.5% +003.5% +003.5% +003.5% +003.5% +018.4% -003.5% +018.4% -003.9% +003.4% -003.3% +0003.3% +0003.3% +0003.3% +0003.3% +0003.3% +0003.3% +0003.3% +0003.1% +0003.0% +0003.0% +0003.0% +0003.0% +0003.0% +0003.0% +0003.0% +0003.0% +0003.0% +0003.0% +0002.2% +0002.2% +0002.5% +0002.0% +0002.0% +0002.0% +0002.0% +0002.0% +0002.0% +0002.0% +0000.0%</pre>	ANG. -000.065 +001.407 -000.075 -003.153 +000.948 -000.308 -004.764 +000.741 -000.690 -047.174 +000.690 -047.174 +000.690 -000.840 +000.3658 +000.3658 +000.064 -001.918 +000.064 -001.0594 -002.425 -000.219 -002.962 -000.883 -000.487 -000.568 -000.568 -000.568 -000.487 -000.568 -000.165 -000.160 -000.160 -001.571 -000.180 -001.269 -000.113 -001.095
DISTOR	CAD TOTAL=	+067.6%

(a) Valores porcentuais das harmônicas em relação a fundamental.

0

儒

6

(b) Espectro em barras das com ponentes harmônicas.

Figura III.30 - Frequências harmônicas do lado primá rio do transformador de corrente.

VALORES EM % DA HARM. 01 O VALOR DA FUNDAMENTAL DEVE SER LIDO NO DISPLAY JUNTO AC PAINEL.

FUND. = . 1,8" . . AMP.

OBS.:

SE MODULO NEGATIVO => SOME 180 G. AO "ANGULO".

ATENCAD:

ATENCAD: O GRAFICO DE BARRAS ABAIXO E VALIDO APENAS PARA HARMONICAS COM BARRAS -AMPLITUDE AMPLITUDE IMPERIOR A 16% DA,FUNDAMENTAL. CASO A AMPLITUDE SEJA SUPERIOR A ESTE VALOR ELA SERA TRUMCHDA EM 16%

ESPECTRO DE FREQUENCIAS

ANALISE

HARMONICAS

囄

() ()

HARM. NRO.	MODULO EM % DA FUND.	TANG. ANG.
01	+100.0%	-000.562
02	-003.5%	+000.075
03	+056.5%	-007.166
04	-003.34	+000.031
00	-007 42	-017.000
00	+018.4%	-005.201
08	-003.4%	+000.151
09	+011.0%	-007.675
10	-003.4%	+000.196
11	+010.7%	-003.831
12	-003.3%	+000.227
13	+007.4/	-005.184
14	-003.3%	+000.281
12	4007.0%	-002.753
16	-003.24	+000,323
11	-003.44	-003.001
19	+005.0%	-002.168
20	-003.1%	+000.419
21	+004.0%	-002.651
22	-003.0%	+000.469
23	+003.6%	-001.731
24	-003.0%	+000.528
· 25	+003.0%	-002.056
26	-002.9%	+000.579
27	+002.7%	-001.415
28	-002.8%	+000.642
- 29	+002.3%	-001.673
30	-002.84	-001 177
31	+002.04	+000 767
32	+002.7%	-001.423
33	-002.5%	+000.855
35	+001.4%	-000.966
36	-002.5%	+000.911
37	+001.2%	-001.220
38	-002.4%	+001.021
- 39	+000.9%	-000.789
40	-002.4%	+001.094
41	+000.8%	-001-034
42	-002.34	-000 633
43	-002.2%	+001.321
45	+000.4%	-000.872
45	-002.1%	+091.469
47	+000.0%	
43	-092.0%	+001.609
49	+000.0%	
50	-000.0%	
DISTO	RCAD TOTAL	= +067.8%

 (a) Valores porcentuais das harmônicas em relação a fundamental. VALORES EM % DA HARM. 01 O VALOR DA FUNDAMENTAL DEVE SER LIDO NO DISPLAY JUNTO AO PAINEL.

FUND.	H		•	•••	•	Į	UCLTS
FUND.	=	•	.1	, ⁸ .	•	•	AMP.

08S.:

SE MODULO NEGATIVO => SOME 180 G. AO "ANGULO".

ATENCAO:

O GRAFICO DE BARRAS ABAIXO E VALIDO AFENAS PARA HARMONICAS COM AMPLITUDE INFERIOR A 16% DA FUNDAMENTAL. CASO A AMPLITUDE SEJA SUPERIOR A ESTE VALOR ELA SERA TRUNCADA EM 16%

ESPECTRO DE FREQUENCIAS

		and the second
	•	
ACCOUNTS AND A COUNTRY AND A COUNTRY OF		
	-	
Careford Constants		
States of the Solid		
	يحفيها الكافات	
		8
A CONTRACTOR A CONTRACTOR	1997 - A.	
	831 9	
7258-52-9059-9	•	
1989 1902 1914 191		
NUL OF SEA OF STREET		
CARLEND ALL PRIME		
STATE OF THE STATE		
1150°***		
		÷
A CAN WE AN A CANADA		
and sourcessed		•
transfer and the second se	:	:
in the second		
10000000000		•
		• *
1		
4723		•
(227a-2004/000)		
langer.		
AND IN THE OWNER OF		
	•	
THE RELEASE		
18		
in the second seco		

(b) Espectro em barras das componentes harmônicas.

Figura III. 32 - Frequências harmônicas do lado secun dário do transformador de corrente.

Os resultados das análises harmônicas, demonstraram novamente uma resposta plana para a relação de transformação dos T.C.'s, comprovando de uma forma direta, os testes mostrados na figura III.28.

III.5. CONCLUSÕES

A utilização de um modelo matemático para o medidor de energia, sob certas condições de contorno, permitiu o dese<u>n</u> volvimento de um programa computacional, requerendo conhecime<u>n</u> tos das constantes do dispositivo, dos parâmetros de saturação do circuito magnético e das amplitudes harmônicas associadas aos respectivos ângulos de fase. Este cálculo digital, por sua vez, possibilitou meios para a análise sobre a questão da med<u>i</u> ção incorreta, favorecendo a concessionária de energia ou ao próprio consumidor. Das várias situações práticas simuladas e analisadas, inúmeras conclusões foram obtidas, as quais são r<u>e</u> latadas a seguir:

> (i) Existe uma diferença apreciável no erro apresentado pelo medidor, para uma potência harmônica individual, quando comparado às de frequências mais altas.

> (ii) Nos casos onde as formas de ondas da tensão e corrente são distorcidas, o erro é relativamen te apreciável. Por outro lado, mesmo a existên cia de um baixo fator de distorção de tensão

leva ao registro do erro justificado pela int<u>e</u> ração da não-linearidade do circuito magnético com as correntes harmônicas envolvidas.

戲

₿

(

9

o

- (iii) Verificou-se que a direção do fluxo harmónico, é de suma importância nos estudos aqui discuti dos. Sob a questão da geração ou absorção har mônica e seu efeito sobre uma determinada medi ção, constatou-se que o erro é função da magni tude e do ângulo de fase das componentes harmo nicas envolvidas no registro do medidor. . Isto foi observado em vários casos simulados, dos quais o "erro negativo" resultante, indicando uma desaceleração do medidor, relacionou-se ao fluxo harmônico na mesma direção do fluxo fundamental. Em outros casos simulados, constatou se que o erro encontrado possuia um valor posi tivo quando este estava relacionado com uma di reção oposta do fluxo harmônico em relação ao da fundamental.
- (iv) O erro é diretamente afetado pela variação dos ângulos de fase das componentes harmônicas.
 - (v) O erro sofre uma variação considerável em fun ção do aumento do ângulo do fator de potência.
 - (vi) Existe uma dependência direta do erro com os tipos de conexões dos transformadores.

Os resultados mostraram que o problema do erro é im portante, quando se trata da medição em si, evidenciando de uma forma simples, as variáveis, interagindo mutua e isoladamente. Sobretudo, concluiu-se que o assunto é complexo, uma vez que existem diversas variáveis influenciando no registro de potência efetuada pelo medidor de energia do tipo indução , o que exige, para cada situação estudos minuciosos. Com isto, evidenciam-se prejuízos tarifários tanto à concessionária quan to ao próprio consumidor.

As análises e testes efetuados com os T.P.'s, comprovaram o problema associado ao erro da relação de transforma ção do T.P., quando da sua resposta às frequências múltiplas à fundamental. A comparação dos resultados experimentais com os da simulação digital possibilitou afirmar que o modelo apresen tado através de parâmetros concentrados (capacitâncias e indutâncias), com certa aproximação, atendeu ao propósito da análi se da resposta às frequências harmônicas, no regime permanente, Observou-se entretanto que este modelo não simulou todas as va riáveis, encontradas na curva de resposta do T.P., em função da frequência obtida no laboratório. Como prováveis justificativas para tais diferenças é interessante salientar a desconsi deração das não-linearidades inerentes ao núcleo do T.P., tais como, saturação, histerese e Foucault, que possivelmente contribuem e propiciam variações do ramo magnetizante às frequências harmônicas.

Quanto à operação do transformador de corrente, através de estudos analíticos e experimentais verificou-se que

este sensor tem uma resposta constante em frequência, numa faixa de 60 à 3.000 [Hz], o que sem dúvida, dentro das frequências harmônicas de interesse, mostra a inexistência de erros na sua relação de transformação.

•

2.3%

•

ß

CAPÍTULO IV

CONTRIBUIÇÕES AO DESENVOLVIMENTO DE INSTRUMENTOS PARA A ANALISE HARMÔNICA NAS REDES ELÉTRICAS

IV.1. INTRODUÇÃO

•

4.1

钄

緲

۲

-

4

O crescente aumento da instalação de cargas elétricas não lineares geradoras de correntes harmônicas, faz com que os problemas relacionados com essas injeções harmônicas sejam bastante preocupantes.

Para o controle e confronto das distorções harmônicas com os limites definidos, são realizadas medições dos níveis harmônicos através de vários equipamentos tais como: analisador espectral, voltímetros seletivos, sistemas de gravação/progra mas digitais, etc. Particular atenção é tomada para se identif<u>i</u> car a ordem e o percurso percorrido pelas correntes harmonicas. Estes processos de medições normalmente envolvem equipamentos caros, são demorados, exigem exaustivas medições e o deslocame<u>n</u> to de uma equipe especializada em análise de harmônicos. Por e<u>s</u> te motivo seria de grande interesse que dispositivos de operação simples e de baixo custo, fizessem parte dos recursos usados para a constatação de geradores de harmônicos e dos níveis de distorções resultantes.

Considerando esses aspectos, este capítulo tem por objetivo descrever o desenvolvimento de dois instrumentos vinculados a área de medição de harmônicos. Um destes, denominado

detetor de distorções harmônicas tem por função a medição da distorção total de tensões e correntes. O outro, denominado <u>de</u> tetor direcional de fluxo harmônico, tem como objetivo dete<u>r</u> minar o sentido dominante de uma dada componente harmônica, i<u>s</u> to é, verificar se a mesma tem a sua origem no sistema aliment<u>a</u> dor ou se é gerada pela carga alimentada.

IV.2. DETETOR DE DISTORÇÕES HARMÔNICAS

Ð

Ð

0

Ð

63

62

ø

۲

6

(A)

Ø

Para o desenvolvimento do citado instrumento, defini se inicialmente as equações que quantificam as distorções harmônicas, a partir das quais, se estabelece os fundamentos mate máticos para os circuitos eletrônicos que constituirão o detetor de distorções. Esta estrutura circuital permitirá mensurar os níveis porcentuais das distorções em relação às componentes fundamentais de tensão e corrente. As diversas unidades eletrô nicas devem então ser testadas através de montagens experimentais, cujos resultados permitirão concluir sobre o desempenho e a validade da operação, segundo as metas pretendidas. Procede-se então à construção de um protótipo, do detetor de distor ções e, através de testes, em um sistema elétrico simulado em laboratório, procurar-se-á verificar a sua precisão e o funcio namento global.

IV.2.1. DISTORÇÕES HARMÔNICAS DE TENSÃO E CORRENTE

A experiência de vários países sobre a medição e quantificação dos níveis harmônicos, tem levado ao longo de vá

rios anos, a procedimentos uniformes de se avaliar as distorções harmônicas de tensão e corrente, [03], [04], [31]. Segundo estas referências as expressões para a determinação das di<u>s</u> torções individual e total, em valores porcentuais são:

distorção individual de tensão
$$=\frac{V_n}{V_1}$$
. 100 [%] (1V.1)

distorção individual de corrente = $\frac{I_n}{I_1}$. 100 [%] (IV.2)

distorção total de tensão = $\frac{\sum_{n=2}^{\infty} V_n^2}{V_1}$. 100 [%] (IV.3)

distorção total de corrente = $\frac{\sum_{n=2}^{\infty} I^2_n}{I_1}$.100 [%] (IV.4)

onde:

1

۲

٢

())

۲

٢

Ċ

<u></u>

4

鳓

4

6

1

1

6

۵

4

۱.

織

Ð

4

쐜

3

3)

2

B

勸

 V_n = tensão harmônica de ordem "n" I_n = corrente harmônica de ordem "n" V_1 = tensão fundamental I_1 = corrente fundamental.

Essas expressões, além de definirem o efeito da distorção, estabelecem as bases matemáticas para os desenvolvimen tos de circuitos eletrônicos que constituirão o alarme de distorção harmônico.

IV.2.2. ESTRUTURA BÁSICA DO INDICADOR DE DISTORÇÃO

a

6

6

688

8

1

(A)

ø

()))

De acordo com as definições da distorção harmônica apresentada na literatura especializada e dentro do que determina as expressões (IV.3 e IV.4), a partir de um sinal distorcido o instrumento deverá proceder a filtragens apropriadas, de forma que, num dado canal, se disponha de um sinal correspondente ao valor fundamental da tensão, e, num outro, das tensões harmônicas.

Dentro desta filosofia, o instrumento deverá, através de um primeiro estágio, denominado por divisor de sinal, produzir uma amostra do sinal distorcido. Em seguida este sinal deve rá ser aplicado simultaneamente às entradas de dois canais. 0 primeiro canal corresponderá a um circuito com a finalidade de separar a componente fundamental e produzir, através de uma retificação, um sinal contínuo proporcional e variável em função da componente fundamental do sinal amostrado. O outro circuito é aquele que permitirá somente a passagem das componentes harmô nicas, que, após retificação, produzirão uma tensão continua proporcional e variável. Estes dois sinais continuos, uma vez comparados, definirão o nível de distorção da tensão ou corrente analisados. O valor encontrado, além de uma indicação analógica ou digital, poderá também acionar estágios de alarmes sono ro e visual, caso a distorção ultrapasse niveis pré-definidos.

Dentro do exposto, a figura IV.1, ilustra de uma forma sucinta as unidades que compõem o equipamento descrito.

IV.2.3. DESCRIÇÃO DAS PRINCIPAIS UNIDADES DO DETETOR DE DISTOR ÇÕES HARMÔNICAS

Os blocos que constituem a figura IV.1 são discutidas em maiores detalhes a seguir.

BLOCO - DIVISOR DE TENSÃO

6

0

(D)

8

O circuito do bloco divisor de tensão está melhor de talhado na figura IV.2. Este circuito tem por finalidade reduzir o sinal de entrada da tensão distorcida, a níveis compatíveis à operação dos circuitos integrados a serem utilizados nos estágios posteriores. Este circuito, está fundamentado nos amplificadores operacionais, apenas diferenciando do circuito bá sico tradicional por possuir na sua entrada uma opção de sinal trifásico. Isto possibilita originar um neutro artificial atra vés de três resistores iguais. A fase a ser analisada é conectada ao terminal F_M , através de um divisor de tensão ($R_4 = T_1$) e amplificado de acordo com o nível de tensão do projeto, pelo "trimpot" T_1 . Este circuito serve também para a análise de ci<u>r</u> cuitos monofásicos e bifásicos, apenas curto-circuitando os três terminais R, S e T de entrada.

4

۲

@

•

1

儘

1

0

æ.,

(11)

6

0

633

Ø

0

Figura IV.2 - Circuito adaptador do sinal de tensão.

BLOCO - FILTRO "NOTCH" - 60 Hz

()

Ð

•

0

۲

ß

0

0

0

6

0

0

0

Este estágio tem por função bloquear a componente de tensão na frequência fundamental do sinal distorcido em análise. O circuito, ilustrado na figura IV.3, permite que somente os sinais de frequências mais elevadas sejam transmitidos para as unidades subsequentes. Os diversos resistores utilizados neste filtro ativo constituído do CI-741, são obtidos através de um fator de qualidade "Q" unitário e da adoção dos capacitores "C₁" de mesmo valor. Assim, em concordância com a clássica teoria dos filtros ativos, pode-se determinar R_5 , $R_6 \in R_7$ com as seguintes expressões [58]:

$$R_5 = \frac{0.796}{Q} \cdot \frac{100}{f_{60} \cdot C}$$
 (IV.5)

$$R_6 = 3,183 \cdot Q \cdot \frac{100}{f_{60} \cdot C}$$
 (IV.6)

$$R_7 = \frac{R_2}{(4Q^2 + 1)}$$
(IV.7)

A frequência de corte "f₆₀", pode ser ajustada através do resistor R₅, o qual, na prática, é substituído por um "trimpot", evitando assim problemas relacionados às tolerâncias citadas pelos fabricantes.

pleta.

BLOCO - FILTRO PASSA FAIXA

Este estágio tem por função eliminar do sinal disto<u>r</u> cido todas as frequências harmônicas, permitindo passar somente a frequência de 60 Hz correspondente a componente fundamental. Utilizando-se de características importantes do tipo: alta seletividade a fim de minimizar a influência das harmônicas, e baixa sensibilidade quando a variação dos componentes em função da temperatura ou de troca de componente. Tal filtro eletr<u>ô</u> nico foi implementado através de dois filtros ativos de ordens 2 e 1 em cascatas, sendo que o filtro de 2ª ordem foi utilizado para obter significativa redução das amplitudes enquanto que o filtro de 1ª ordem, além de atenuar as harmônicas, possibilita ajuste de fase e de ganho.

Na figura IV.5 são mostrados o filtro passa-baixas de 2ª ordem, de baixa sensibilidade, em cascata com o de 1ª ordem.

Figura IV.5 - Cascata de filtros para obtenção do sinal correspondente somente à frequência fundamental.

BLOCO - COMPARADOR

6

0

0

0

ø

Este estágio, ilustrado pela figura IV.6, possibilita uma comparação entre a tensão proporcional às harmônicas e uma tensão de referência proporcional ao nível da fundamental, det<u>e</u> tando assim, o nível da distorção em porcentagem da fundamental.

A função básica deste circuito é o de produzir em sua saída um nível de tensão de 15 |V|, quando os sinais de compar<u>a</u> ção forem iguais. Por outro lado, quando o sinal proporcional às harmônicas for menor que o correspondente ao sinal fundamental, o sinal de saída terá um nível zero.

Figura IV.6 - Circuito comparador de sinais.

BLOCO - AJUSTE DAS ESCALAS DE DISTORÇÕES

6

A partir do sinal de saída do bloco-retificador correspondente ao sinal da frequência fundamental, obtém-se vários níveis de tensões continuas proporcionais às distorções harmôn<u>i</u> cas, obtidas no sinal de tensão distorcido (bloco-divisor de tensão). Tal estágio foi implementado por vários "trimpots", de acordo com o número de distorções a serem avaliadas. A figura IV.7, ilustra o circuito, contendo cinco "trimpots", que são s<u>e</u> lecionados através de uma chave rotativa. O instrumento permite a seleção de cinco níveis para a distorção harmônica. Neste protótipo, em particular, tem-se os ajustes de 2%, 4%, 5%, 6% e 8% em relação a fundamental, podendo-se facilmente adicionar outros valores.

Figura IV.7 - Circuito para ajuste de distorções: 2% 4%, 5%, 6% e 8%.

BLOCO - ALARME VISUAL E SONORO

Q O

0

0

6

0

 \bigcirc

0

0

8

0

Após a atuação do circuito comparador, o nível de saida deste, igual a 15 |V|, se constitui na entrada aplicada às bases de dois transistores, que saturando-se, aciona uma sirene e acende um LED, respectivamente, indicando de forma sonora e visual, que a distorção selecionada foi detectada. Os dois circuitos para este propósito são mostrados na figura IV.8(a) e IV.8(b).

(a) visual

(b) sonoro

Figura IV.8 - Alarme da distorção harmônica

IV.2.4 - OBTENÇÃO DO SINAL A SER ANALISADO

Quanto ao sinal a ser analisado, destaca-se que o mesmo pode ser oriundo da tensão da rede ou da corrente de alimentação. Na figura IV.9, ilustram-se situações práticas a partir das quais o sinal é obtido.

Cabe observar que, embora o assunto fuja ao escopo do desenvolvimento apresentado neste capítulo, a utilização de um sinal obtido no secundário de um transformador de tensão indutivo, pode levar a erros consideráveis na medição a ser realizada. De vido a isto, a melhor opção está no uso de divisores capaciti vos. Quanto aos sinais de corrente, obtidos dos transformadores de corrente, estes são considerados relativamente precisos.

Embora o equipamento seja destinado a medir distorção harmônica total de tensão, o mesmo pode, através de uma simples conexão, mensurar distorções harmônicas totais de corrente. Uma outra opção de medida, ao invés de distorção total, seria também a de medição de distorção harmônica individual, tanto para tensão como para a corrente.

A figura IV.10 mostra o indicador de distorção harmônica desenvolvido.

Figura IV. 10 - Indicador de distorção

IV.2.6 - RESULTADOS EXPERIMENTAIS

Para a verificação do desempenho do equipamento, foram realizados diversos testes. Estes, em essência, consistiram em analisar a operação dos diferentes estágios que entram na composição do instrumento e do funcionamento global do indicador de distorção harmônica.

IV.2.6.1 - TESTES DOS ESTÁGIOS

Nas figuras IV.11 e IV.12 tem-se, respectivamente, as formas de onda do sinal de entrada e do sinal já filtrado que envolve apenas as componentes harmônicas. Estes sinais foram ob tidos a partir da tensão do barramento do conversor, conforme montagem experimental ilustrada na figura IV.13, adequada ao propósito de testes do instrumento.

Figura IV.11 - Sinal distorcido, de entrada

IV.2.7 - TESTES DO INSTRUMENTO:

0

())

۲

4

0

۲

0

0

.

۲

Para os testes do detetor de distorções considere o sistema ilustrado na figura IV.13, correspondente a uma instala ção conversora, a qual, como se sabe, constitui uma das, formas mais características que levam a geração de distorções harmônicas.

Figura IV.13 - Sistema simulado.

O modelo possui os seguintes parâmetros:
barramento da concessionária: infinito, com tensão de 127 [V] eficaz, fase-neutro
impedância simulada para o alimentador:
R_g = 0 [Ω]; L_g = 5 [mH]
banco de capacitores, conectado em Y:
C = 40 [µF]
transformador: não foi considerado
conversor trifásico: 6 pulsos
Para uma condição de operação definida por I_d = 1 [A]
e utilizando-se de um analisador espectral (HP - 3582 A) e de
um analisador de ondas individuais determinou-se para o barra mento do conversor: $V_1 = 125[V]$, $V_5 = 5,1[V]$, $V_7 = 3[V]$, $V_{11} = 0,6$ [V], $V_{13} = 0,4$ [V], etc. Estes níveis levam a uma distorção harmônica total calculada de 4,8%.

Instalando-se o Detetor de Distorções Harmôniças no circuito, o mesmo indicou, para o caso em análise, uma distorção total de 5,0%, enquanto que o analisador espectral mediu o nível de distorção em 4,9%.

Procedendo-se de forma semelhante para as distorções de 2%, 4%, 6% e 8%, constatou-se resultados bastantes próximos, concluindo-se daí, sobre a adequação e precisão do instrumento para o fim a que o mesmo se propõe.

IV.3 - DETETOR DIRECIONAL DE FLUXO HARMONICO

6

(D)

O

•

æ

A

O outro instrumento que compõe este capítulo destinase a identificar o sentido predominante da injeção harmônica, d<u>e</u> finindo o principal gerador do fluxo harmônico parauma frequência em particular. Utilizando a mesma estratégia anterior, descrever-se seus fundamentos aplicativos, seguido do estabelec<u>i</u> mento dos conceitos matemáticos sobre a geração e absorção de harmônicos. Baseando-se nestes princípios discute-se a estrutura básica, através de circuitos eletrônicos, que permite detetar efetivamente a direcionalidade das componentes harmônicas.

IV.3.1 - UM EXEMPLO ILUSTRATIVO DA NECESSIDADE DE UM DETETOR DIRECIONAL DE FLUXO HARMÔNICO

A figura IV.14 ilustra um sistema constituído por qua tro consumidores industriais conectados a um barramento de 34,5 KV. O consumidor A é constituído de uma carga linear contendo um considerável banco de capacitores para correção do fator de potência, o consumidor B é uma carga linear, a qual possui uma característica de alta sensibilidade às distorções harmônicas de tensão, o consumidor C é uma carga do tipo não linear e o consumidor D é uma carga linear normal.

Figura IV.14 - Diagrama unifilar simplificado de um sistema elétrico.

As correntes harmônicas geradas pela carga não linear C leva o barramento de 13,8 KV da Subestação II a possuir uma tensão distorcida. Similar distorção de tensão também ocorre

6

•

na barra de 34,5 KV. Um pouco mais distante da carga não-linear C, na barra de 13,8 KV da Subestação I, o banco de capacitores e a reatância do transformador T₁, formam um circuito ressonante a uma determinada frequência harmônica. Como consequência, poderá ocorrer uma amplificação da distorção harmônica, que resultará em deformações mais acentuadas para o correspondente barramento de 13,8 KV. Desta forma, os consumidores A e B senti riam mais intensamente os problemas causados pela carga nãolinear C. Sem o conhecimento completo do sistema e, sem a identificação real da fonte causadora de todo o problema, o consu midor A, poderá ser acusado de ser o causador da geração harmônica. A suposição de que a carga A é a provocadora da injeção harmônica ficará reforçada se ela for desconectada do sistema. Isto ocorrerá porque, nesta condição, a distorção da tensão naquele barramento vai diminuir consideravelmente (uma vez que não mais existirá o circuito ressonante que provocava a amplifi cação harmônica). Assim, a equipe de medição poderá ser levada a concluir equivocada e desfavoravelmente ao consumidor A, e, exigindo do mesmo medidas corretivas e penalizando um consumidor indevidamente.

Um modo adequado de se verificar a origem da distorção harmônica é através da determinação da direção do fluxo harmônico. Por exemplo, no caso apresentado na figura IV.14, um equipamento instalado na barra de 13,8 KV da Subestação I e que fornecesse a direção do fluxo harmônico indicaria que as correntes harmônicas chegam àquela barra através do transforma-

dor T₁ e não por geração da carga A. Medições semelhantes pod<u>e</u> riam ser repetidas nas barras de 34,5 KV e de 13,8 KV da Sube<u>s</u> tação II e, finalmente, a carga C seria detectada como aquela causadora do problema.

IV.3.2 - FUNDAMENTOS TEÓRICOS SOBRE A GERAÇÃO E ABSORÇÃO HARMÔ NICA

A figura IV.15 mostra um circuito onde a fonte alter nada senoidal (sem distorção) $V_f(t)$ alimenta, através de uma impe dância Z_f , uma carga linear (Z_1) e uma outra não-linear (Z_2).

1

0

•

(1)

6

1

6

0

Figura IV.15 - Circuito elementar para a fundamentação da geração e da absorção harmônica

A corrente não-senoidal $i_2(t)$ associada à impedância Z_2 produz uma queda de tensão, também não-senoidal ou distorc<u>i</u> da em Z_f , consequentemente distorcendo a tensão na carga $V_L(t)$ e a corrente $i_1(t)$ na carga (Z_1) . A tensão distorcida e as correntes podem ser analisadas matematicamente , o que permite tratá-las em componentes fundamental e harmônicas. Conhecidas a tensão e corrente em cada elemento, para cada frequência har mônica particular calculada, pode-se proceder a determinação do que se denomina por potência harmônica para cada componente individual.

O circuito elementar, exemplificado através da figura IV.15, pode ser mais facilmente trabalhado através de uma cor respondente transformação de Thévenin, que conduz ao arranjo in dicado na figura IV.16.

Figura IV.16 - Transformação de Thévenin

Na figura IV.16:

6

6

翻

e:

$$V_{\rm T}(t) = V_{\rm f}(t) \frac{Z_{\rm 1}}{Z_{\rm f} + Z_{\rm 1}}$$
 (IV.8)

$$Z_{T} = \frac{Z_{1} \cdot Z_{f}}{Z_{1} + Z_{f}}$$
 (IV.9)

 $V_{L}(t) = V_{T}(t) - Z_{T}i_{2}(t)$ (IV.10)

Tendo em vista a não-linearidade da carga pode-se con siderar a corrente i₂(t) como sendo do tipo:

175

 $i_2(t) = A_0 + \sum_{n=1}^{\infty} (a_n \cosh \omega t + b_n \operatorname{senn} \omega t)$ (IV.11)

ou:

0

0

۲

8

0

0

0

6

0

$$i_{2}(t) = A_{0} + \sum_{n=1}^{\infty} [c_{n} \operatorname{sen}(n\omega t + \phi_{n})]$$
 (IV.12)

onde:

De acordo com a equação (IV.8), sendo $V_f(t)$ uma tensão senoidal, e, sendo $Z_f \in Z_1$ impedâncias lineares, a tensão equivalente de Thévenin $V_T(t)$ será também senoidal, e dada por uma equação do tipo:

$$V_{\rm T}(t) = \hat{V}_{\rm Sen}\omega t$$
 (IV.15)

onde:

 $\hat{\mathbf{v}}$ = valor de pico da tensão $\mathbf{v}_{\mathbf{r}}$.

Substituindo (IV.15) em (IV.10), tem-se que a tensão $V_{L}(t)$, que se encontra aplicada aos terminais de $Z_{1} e Z_{2}$ será dada por uma equação do tipo:

$$V_{L}(t) = \widehat{V}sen \omega t - Z_{T(n)} \left[A + \sum_{n=1}^{\infty} (a \cos \omega t + b senn \omega t) \right]$$
 (IV.16)

A utilização de $Z_{T(n)}$ em substituição a Z_{T} está base<u>a</u> da no fato que, para cada frequência harmônica, a impedância de Thévenin apresentará características próprias. Disto resulta que:

- Componente continua:
$$Z_{T(o)} = R_{o}$$
 (IV.17)

- Componente harmônica: $Z_{T(n)} = R_{T(n)} + jX_{T(n)}$ (IV.18)

Substituindo (IV.17), (IV.18) em (IV.16):

0

0

8

$$v_{L}(t) = \widehat{V}sen\omega t - R_{O}A_{O} - n = 1 [R_{T}(n) + jX_{T}(n) (a_{n}cosn\omega t + b_{n} senn\omega t)]$$
(IV.19)

A potência média na carga não-linear Z₂ pode ser calculada através de:

 $P_{2} = \frac{1}{T} \begin{cases} T \\ v_{L}(t) \cdot i_{2}(t) dt \\ 0 \end{cases}$ (IV.20)

Tendo em vista que o produto de termos de frequências diferentes, assim como, o produto de senos por cossenos de mesma frequência, conduzem a um valor médio igual a zero, concluise que as equações que comporão a potência média serão do tipo a seguir.

$$\frac{1}{T} \begin{bmatrix} T \\ (a \text{ sen}\omega t) (b \text{ sen}\omega t) = \frac{1}{2} ab \quad (IV.21) \\ 0 \end{bmatrix}$$

A qual permite a obtenção da potência média total, através da equação (IV.22) a seguir:

$$P_{2} = \frac{1}{2} \left[V_{b_{1}} + R_{T1} \left(a_{1}^{2} + b_{1}^{2} \right) - R_{OO}^{2} - \sum_{n=2}^{\infty} R_{T(n)} \left(a_{n}^{2} + b_{n}^{2} \right) \right]$$
 (IV.22)

ou:

0

0

0

8

۲

8

$$P_{2} = \frac{1}{2} [P_{2(1)} - P_{2(0)} - \sum_{n=2}^{\infty} P_{2(n)}]$$
 (IV.23)

sendo:

^P 2	Π	potência média total	
^P 2(1)	=	componente fundamental da potência média	
^P 2 (o)	=	componente continua da potência média	
^P 2(n)	=	componente harmônica, de ordem n, da potência média	

A equação (IV.23) dá margem a uma interpretação das mais expressivas envolvendo o comportamento físico do sentido do fluxo harmônico. O sinal positivo atribuído ao termo funda mental implica que a potência positiva (assim como a corrente) vem a ser aquela proveniente da fonte e entregue à carga nãolinear. Esta, como no processo da transmissão das ondas eletromagnéticas, transforma parte da energia fundamental em trabalho útil e, uma outra parcela é retornada à rede, como num processo de reflexão. Todavia, a energia revertida apresenta-se, neste caso, com frequências diferentes da fundamental. Finalmente cabe observar que sendo Z₂ uma carga elétrica a potência média to tal P_2 deverá ser positiva, isto é, $P_{2(1)}$ deverá dominar numeri camente a equação.

Seja agora a questão da potência média total associada a carga Z₁ da figura IV.15. Para tanto basta observar que v_{L} (t), dada pela equação (IV.19), é a mesma tensão imposta sobre z_{1} . Se, para o espectro harmônico, esta impedância apresenta:

$$Z_{1(n)} = R_{1(n)} + jX_{1(n)}$$
 (IV.24)

E, a tensão sobre a mesma for:

0

0

0

-

۲

9

62

 $v_{L}(t) = \overline{v}_{senwt} - A_{O}R_{O} - \sum_{n=1}^{\infty} (R_{T(n)} + jZ_{T(n)}) (a_{n} \cos n\omega t + b_{n} senn\omega t)$ $= c_{O} + c_{1} \cos \omega t + d_{1} sen\omega t + \sum_{n=2}^{\infty} (c_{n} \cos n\omega t + d_{n} senn\omega t)$ (IV.25)

Da equação (IV.25):

$$c_{o} = -A_{o} R_{o}$$
 (IV.26)

$$c_1 = a_1 R_{T1} - b_1 X_{T1}$$
 (IV.27)

$$d_1 = \hat{v} - a_1 X_{T1} + b_1 R_{T1}$$
 (IV.28)

$$c_n = a_n R_T(n) - b_n X_T(n)$$
 (IV.29)

 $d_n = -a_n X_{T(n)} + b_n R_{T(1)}$ (IV.30)

As componentes harmônicas de corrente que serão estabelecidas em $Z_{1(n)}$, podem ser obtidas através da equação (IV.31).

O O BALL PROGRAMA	
BB BP UNICAMP BC	
PEDIDO N. 66061 A	í

$$i_{1(n)} = \frac{v_{L(n)}}{Z_{1(n)}} = v_{L(n)} \frac{\left(\frac{R_{1(n)} - jX_{1(n)}}{(R_{1(n)}^{2} + X_{1(n)}^{2})}\right)}{(IV.31)}$$

Portanto:

•

$$i_{1} = \frac{c_{0}}{R_{1}(0)} + \frac{c_{1}}{R_{1}^{2}(1)} + \frac{d_{1}}{R_{1}^{2}(1)} \cos \omega t + c_{1} + \frac{d_{1}}{R_{1}^{2}(1)} + \frac{c_{1}}{R_{1}^{2}(1)} + \frac{X_{1}(1)}{R_{1}^{2}(1)} + \frac{c_{1}}{R_{1}^{2}(1)} + \frac{X_{1}(1)}{R_{1}^{2}(1)} + \frac{C_{1}}{R_{1}^{2}(1)} + \frac{X_{1}(1)}{R_{1}^{2}(1)} + \frac{C_{1}}{R_{1}^{2}(1)} + \frac{C_{1}}{R_{1}^{2$$

Analogamente ao que foi realizado para a carga nãolinear Z₂, pode-se agora proceder à determinação da expressão da potência média associada a carga linear Z₁.

$$P_{1} = \frac{1}{T} \int_{0}^{T} v_{L}(t) \cdot i_{1}(t) dt$$
 (IV.33)

Substituindo $v_{(t)}$ pela equação (IV.25) e $i_1^{(t)}$ pela (IV.32) chega-se a:

$$P_{1} = \frac{1}{2} \left[\frac{(c_{1}^{2} + d_{1}^{2})R_{1}(1)}{R_{1}^{2}(1) + X_{1}^{2}(1)} + \frac{c_{0}^{2}}{R_{1}(0)} + \frac{c_{0}^{2}}{R_{1}(0)} + \frac{c_{0}^{2}}{R_{1}^{2}(1) + X_{1}^{2}(1)} \right]$$
(IV.34)

ou:

$$P_{1} = \frac{1}{2} \left[P_{1(1)} + P_{1(0)} + n = 2 P_{1(n)} \right]$$
 (IV

IV.35)

onde:

0

8

P₁ = potência média total associada a Z₁ P₁₍₁₎ = componente fundamental da potência média em Z₁

P1(o) = componente continua da potência média em Z₁
P1(n) = componente harmônica, de ordem n, da potência
média em Z₁.

A equação (IV.35) indica que a carga linear comportase como um consumidor de potência fundamental, contínua e harm<u>ô</u> nica. Esta observação pode ser feita devido à coincidência entre os sinais de todas as parcelas de potência. Em outras palavras, embora a carga linear apresente tensão e corrente distorcidas, a mesma comporta-se apenas como um consumidor de harmôn<u>i</u> cos.

As análises matemáticas e físicas precedentes constituem as bases para o projeto e construção de um instrumento para a determinação do sentido, e por conseguinte da responsabil<u>i</u> dade, da geração harmônica. De fato, procedendo individualmente harmônico por harmônico no sentido de determinar a componente de tensão harmônica e sua correspondente corrente, e efetuando em seguida a determinação do que se denomina por potência harmô nica individual, pode-se concluir sobre sua origem. Para a con firmação desta afirmativa basta observar as equações (IV.23) e (IV.35), onde o sinal de P_(n) inverte quando da consideração de um gerador ou um consumidor de harmônicos.

Em vista do fato que:

$$P_{(n)} = V_{(n)} I_{(n)} \cos\phi_{(n)}$$
 (IV.36)

Constata-se que:

U

57

$$P_{(n)} + (+) + \text{implica que} - 90^{\circ} \leq \phi_{(n)} \leq 90^{\circ}$$

$$P_{(n)} + (-) + \text{implica que} -180^{\circ} \leq \phi_{(n)} \leq 90^{\circ} \text{ ou}$$

$$180 \geq \phi_{(n)} \geq 90^{\circ}$$

Associando o termo (-) a um gerador de harmônicos, en tão, o sinal (+) seria automaticamente relacionado a um consumi dor de harmônicos. Este é pois o princípio dos desenvolvimentos que se seguirão.

IV.3.3 - ESTRUTURA BÁSICA DO DETETOR DIRECIONAL DE COMPONENTES HARMÔNICAS

Dentro da filosofia empregada a partir de um sinal dis torcido de tensão v(t) e corrente i(t), o instrumento deverá através de dois circuitos divisores de sinais produzir em suas saídas dois sinais. Um correspondente a uma amostra de tensão e outro da corrente distorcida. Estes dois sinais v'(t) e i'(t) de amostragem, passam então por dois filtros, eliminando-se as frequências de 60 Hz. Assim, na saída de cada filtro obtém-se um sinal constituído somente das componentes harmônicas repre sentadas por v"(t) e i"(t). Em seguida, estes dois sinais passam por filtros passa faixa, os quais se encontram ajustados pa ra uma dada frequência harmônica, permitindo que somente esta frequência de interesse exista na saída do filtro. Estes sinais nas saídas dos dois filtros, denominados por $v_n(t) e i_n(t)$ são agora quadrados e constituem a entrada de um circuito detetor do ângulo de fase entre os sinais harmônicos. Este ângulo é finalmente indicado de forma digital por um contador numérico de ângulo entre 0[°] e 180[°]. Este último estágio definirá, por sua vez, através do valor do ângulo medido o sentido do fluxo harmônico.

0

6

-

E.F.

4

A figura IV.17, representando o diagrama completo em blocos do equipamento, ilustra de uma forma sucinta a filosofia de uma técnica eletrônica que atende a sequência anteriormente descrita.

Figura IV.17 - Diagrama em blocos do detetor direcional de fluxo harmônico.

Os blocos constituintes da figura IV.17 são desenvolvidos em mais detalhes a seguir.

BLOCO - DIVISOR DE TENSÃO/CORRENTE

Ξ)

۲

e.

Este estágio, mostrado através da figura IV.18, tem por finalidade reduzir os sinais de entrada de tensão e corren te distorcidas, a niveis compativeis à operação dos circuitos integrados a serem utilizados nos estágios posteriores.

O circuito é o mesmo que se utilizou para o divisor de tensão, apresentado no detetor de distorção harmônico, sendo novamente ilustrado, por questão de conveniência, através da figura IV.18.

Figura IV.18 - Circuito adaptador do sinal de tensão

Para a obtenção do sinal de corrente, utiliza-se de um circuito semelhante ao apresentado na figura anterior, dif<u>e</u> renciando apenas na exclusão do neutro artificial. Este sinal de corrente é obtido na medição através do resistor shunt R_{SH}, e, amplificado pelo trimpot T_3 do circuito amplificador diferencial da figura IV.19.

0

•

0

0

0

9

Figura IV.19 - Circuito adaptador do sinal de corrente

BLOCO - FILTRO NOTCH (60 Hz) PARA TENSÃO E CORRENTE

Este estágio tem por função bloquear as componentes de tensão e corrente na frequência fundamental, dos sinais distorcidos em análise, permitindo que somente os sinais de frequências mais elevadas sejam transmitidas para as unidades subsequentes. A figura IV.20 ilustra o circuito empregado.

BLOCO - FILTRO PASSA FAIXA PARA TENSÃO E CORRENTE

Estes tipos de filtros permitem as análises das componentes harmônicas da saída do filtro NOTCH, individualmente, atuando como um filtro passa faixa, apresentando uma resposta constante para a frequência de interesse, com ganho unitário ou um ganho qualquer desejado ao projeto. Fora desta faixa de frequência em análise, apresenta um ganho igual a zero. O circuito de um filtro passa faixa de segunda ordem é ilustrado na figura IV.21. Este circuito, considerando que $f_{n1} < f_{n0} e f_{n2} < f_{n0}$, sejam as duas frequências situadas de cada lado da frequência harmônica "f_{n0}" desejada, determina um fator de qualidade igual a:

 $Q = \frac{f_{nO}}{B}$ (IV.37)

onde:

1

0

0

钄

伯

鎆

\$

1

6

.

٢

۲

1

۲

0

 $B = f_{n2} - f_{n1}$ (IV.38)

Os cálculos dos resistores, assumindo-se que os valores de C₃ e C₄ são conhecidos, podem ser obtidos pelas seguin tes equações [60].

$$R_{10} = \frac{Q}{21 \cdot f_{n0} \cdot A_{0}}$$
 (IV.39)

$$R_{11} = \frac{R_{10} \cdot R'}{R_{10} - R'}$$
(IV.40)

$$R_{12} = \frac{Q}{2 \cdot f_{n0} \cdot \frac{C_1 \cdot C_2}{C_1 + C_2}}$$
(IV.41)

Figura IV.21 - Circuito de um filtro passa faixa de segunda ordem.

BLOCO - QUADRADOR DA TENSÃO E CORRENTE HARMÔNICA

 \mathbf{I}_{ij}

A função do quadrador dos sinais harmônicos é o de obter um sinal quadrado a partir dos sinais harmônicos senoidais, provenientes do bloco anterior, com respeito aos semi-ciclos positivos e negativos. Em outras palavras, este bloco é um detetor de zeros da função senoidal, proporcionando a informação do início da onda, tanto de tensão como de corrente, conforme mostra o sinal de saída deste estágio, indicado na figura IV.22. O papel do diodo no circuito é o de retificação, uma vez que o semi-ciclo negativo não fará parte das análises posteriores.

Figura IV.22 - Quadrador e retificação dos sinais har mônicos de tensão e corrente.

BLOCO - SINALIZAÇÃO DAS COMPONENTES HARMÔNICAS DE TENSÃO E COR-RENTE

Este bloco tem por objetivo sinalizar no painel do equipamento, a existência dos dois sinais harmônicos, necessá rios à indicação do fluxo harmônico. O circuito para este propó sito é ilustrado na figura IV.23. No caso dos sinais da saída do estágio anterior, apresentarem um nível zero, o transistor o pera um estado de corte e o LED emissor de luz fica apagado, in dicando a falta do sinal harmônico para as análises. A indica ção da ausência de um dos sinais já impossibilita a operação cor reta do equipamento, uma vez que, a técnica de verificação da direção no fluxo harmônico exige a presença dos dois sinais simultaneamente. Por outro lado, se estas componentes harmônicas possuirem um valor mínimo, capaz de ativar os filtros passa-fai xas, estes por sua vez, operam os circuitos quadradores de si-

0

1.

nais, gerando um nível de 15 [V] em sua saída, permitindo a ope ração dos estágios posteriores. Este nível de tensão igual a 15 [V] na entrada do circuito da figura IV.23 e aplicado na base do transistor, coloca-o em saturação, permitindo ao LED conectado ao emissor entrar em operação e emitir luz, indicando assim, a presença do sinal harmônico.

Figura IV.23 - Indicador visual da presença dos sinais harmônicos.

BLOCO - DETETOR DIRECIONAL

Este bloco é a principal parte do equipamento por ser responsável pela determinação da direção do fluxo harmônico, pro priamente dito. A função deste estágio é a de somar os sinais lógicos de corrente e tensão já quadradas e retificados. Isto é obtido através da denominada PORTA "OU", classicamente utilizada em eletrônica, com duas entradas e uma simples saída. Este

188

circuito funciona de forma tal que, a saida de um "OU" apresenta o nível "1" se uma ou mais entradas apresentam o nível "1". O circuito utilizado é mostrado na figura IV.24, e a saida obed<u>e</u> ce a forma ilustrada na figura IV.25. Nesta última figura fica evidenciado que a saída obtida não indica diretamente o ângulo de defasagem entre os sinais harmônicos sob medição.

•

۲

۲

•

۲

۲

() () ()

•

۲

•

۲

0

0

6

Figura IV.24 - Circuito somador de $V_n(t)$ e $I_n(t)$ atr<u>a</u> vés de PORTAS "OU" positiva.

•

•

æ

.

Figura IV.25 - Interpretação do primeiro estágio do sinal produzido pelo bloco detetor di recional.

Através de uma inversão do sinal quadrado da corrente e, posteriormente, do próprio sinal de saída chega-se a uma indicação do tipo ilustrado na figura IV.26.

0

0

()注意

6

11:50

B

٠

0

0

()

0

0

۲

۲

Figura IV.26 - Inversão do sinal produzido pelo bloco detetor direcional.

Dentre os vários circuitos clássicos que podem fazer esta inversão do nível lógico, apresenta-se na figura IV.27 um inversor típico a transistor, o qual foi utilizado neste projeto.

Figura IV.27 - Inversor de sinal a transistor de ação rápida O transistor nesta configuração trabalhará no estado de corte e saturação. Quando na entrada tiver o nível "O", o transistor vai operar no estado de corte, pois não tem tensão na base, e desta forma, a saída assume o nível lógico "1", co<u>r</u> respondente a tensão V_{cc} . Por outro lado, se a entrada for o nível "1" o transistor operará na região de saturação, defini<u>n</u> do em sua saída o nível lógico "O", o qual corresponde a uma tensão de valor nulo.

Embora as análises e figuras ilustrativas preceden tes tratem somente de um elemento absorvendo potência, e, portanto com um ângulo de fase compreendido entre 0° a 90° ; po de-se afirmar que as análises para o caso de um elemento forne cendo potência, este ângulo detetado irá variar de 90° a 180° , indicando que a direção do fluxo harmônico é agora da carga pa ra o barramento alimentador.

IV.3.4 - OBTENÇÃO DO SINAL A SER ANALISADO

Embora existam preocupações relativas à precisão do TP na presença de harmônicos, estas não procedem neste equipamento em discussão, pois o mesmo não tem a finalidade de medição dos níveis das componentes, mas sim a de detetar o sentido do fluxo das mesmas. Cabe entretanto observar, que a utiliza ção de um sinal obtido no secundário de um transformador de tensão indutivo, pode levar a erros de relação consideráveis na medição a ser realizada, para os diversos componentes harmô nicos. Devido a isto, a melhor opção está no uso de divisores capacitivos. Quanto aos sinais de corrente, obtidos através dos

transformadores de corrente convencionais, estes são considerados relativamente precisos.

IV.3.5 - CARACTERÍSTICAS DO EQUIPAMENTO

O equipamento desenvolvido é portátil apresentando as seguintes características:

Entrada de Tensão :	220, 127, $127/\sqrt{3}$ [V]
Entrada de Corrente:	1, 2, 3, 4, 5, 10, 15, 25, [A]
Filtro NOTCH :	Atenuação de 40 [dB] para a frequência de
	60 Hz
Filtro Passa Faixa :	Atenuação de 30 [dB] para as frequências

não desejadas na análise

Saida

÷.

 $(\mathbf{0})$

1

1

8

Ð

6

Ø

Ø

9

8

翻

componente harmônica

-Indicador visual da existência dos sinais de tensão e corrente harmônicas

:-Indicador visual do fluxo direcional

Frequências Harmônicas: 120, 180, 300, 420, 540, 660 [Hz]

Embora o dispositivo detetor em discussão tenha sido inicialmente projetado e construído para analisar as 2ª, 3ª, 5ª, 7ª e a 11ª harmônicas, o mesmo pode detetar qualquer outra fr<u>e</u> quência, e através de acessórios adicionais, mensurar o nível de distorção harmônica da componente em análise, em relação a componente fundamental.

A figura IV.28 mostra o aspecto físico das placas do detetor direcional do fluxo harmônico desenvolvido.

da

Figura IV.28 - Placas dos circuitos eletrônicos, correspondentes aos vários estágios que constituem o detetor direcional.

IV.3.6 - RESULTADOS EXPERIMENTAIS

@ #

-41)

a II...

()

8

Para a verificação do desempenho do equipamento, foram realizados diversos testes. Estes em essência, consistiram em analisar a operação dos diferentes estágios que entram na composição do instrumento e do funcionamento global do indica dor direcional de componentes harmônica.

(1) - TESTES DOS ESTÁGIOS

Nas figuras (IV.29), (IV.30), (IV.31), (IV.32) e (IV.33) tem-se respectivamente as formas de ondas dos sinais da rede que constituem a entrada do equipamento, os sinais já filtrados que correspondem apenas às componentes harmônicas, os si nais das harmônicas já quadradas e as formas de ondas do ângulo

de fase entre a tensão e a corrente, que está sendo medida atra vés de um contador digital.

9

0

8

0

8

6

Figura IV.29 - Sinais de corrente e tensão distorci das

Figura IV.30 - Sinais correspondentes a todas as harmônicas que constituem os sinais da re de distorcida.

6

0

•

0

•

•

•

•

•

0

0

Figura IV.31 - Sinal harmônico correspondente a fre quência de 300 (Hz)

Figura IV.32 - Sinal harmônico na frequência de 300 Hz, quadrado e retificado.

Figura IV.33 - Forma de onda correspondente a faixa do ângulo " $\check{\phi}_n$ " medido pelo contador digital

IV.3.7 - TESTES DO INSTRUMENTO

æ

1

Com o propósito de verificar a validade do equipamento desenvolvido, montou-se dois sistemas experimentais, os quais procuraram retratar situações práticas encontradas no sistemas industriais. Nestes foram simulados duas situações onde os fluxos de correntes harmônicas se encontravam em oposição, para um mesmo barramento.

No primeiro teste, instalou-se o detetor direcional entre uma carga resistiva de 10 [Ω] e o barramento distorcido contendo os harmônicos de ordens 6K <u>+</u> 1, conforme mostrado no sistema ilustrado na figura IV.34, no qualse conhece a geração e o sentido dominante da 5ª harmônica. Ajustando o equipamento para analisar a 5ª harmônica, cujo nível de tensão era de 3,74 [$V_{\rm EF}$], verifica-se um defasamento de zero grau entre esta tensão e a respectiva corrente harmônica de 0,374 [A]. O resultado, como era esperado, indicou o sentido direcional do fluxo harmônico do barramento para a carga resistiva.

Figura IV.34 - Sistema alimentador distorcido suprindo uma carga resistiva.

O segundo teste foi realizado no sistema elétrico indicado na figura IV.35, a qual mostra como carga, uma instalação conversora. Neste caso, o barramento alimentador, que possuia inicialmente característica senoidal pura, passa a conter distorções harmônicas, devido a presença do conversor, da qual se conhece a geração e o sentido dominante das injeções harmônicas. Ajustando o detetor de fluxo novamente para a 5ª harmônica e in<u>s</u> talando-o entre o barramento e a carga, obteve-se um ângulo de 128⁰, correspondente ao defasamento entre a tensão e a corrente harmônica em análise. Tal resultado mostra que a corrente harm<u>ô</u> nica está fluindo do conversor para o barramento alimentador, conforme era previsto.

6

1

8

9

6

Figura IV.35 - Sistema conversor injetando corrente harmônica no barramento alimentador.

Procedeu-se de forma semelhante para outras frequências e ângulos de disparo da ponte conversora, concluindo-se so bre o mesmo sentido do fluxo harmônico.

Várias outras situações, como por exemplo, a instalação de uma carga tipo regulador CA, etc, foram também testadas e os resultados obtidos foram dentro do esperado.

IV.4 - CONCLUSOES

0

0

Discutiu-se, neste capítulo, as necessidades e aplica ções de instrumentos utilizados para a medição e monitoração de harmônicos nas redes elétricas. Constatou-se então que em complemento aos sofisticados analisadores espectrais, é de fundamental importância e existência de outros utilizados para uma primeira avaliação da existência de distorções harmônicas e, do sentido da injeção dos harmônicos. Dentro deste enfoque foram propostos dois instrumentos idealizados, projetados e construídos com tecnologia própria, visando simplicidade operativa e re dução de custos construtivos. Assim, acredita-se que os protóti pos venham a contribuir no campo dos recursos utilizados nas me dições dos níveis harmônicos de tensão e corrente.

O primeiro dispositivo denominado por detetor de distorções harmônicas a partir da amostragem do sinal de tensão ou corrente, define o nível de distorção total através de escalas pré-ajustadas. O nível determinado em valor porcentual além de uma indicação analógica ou digital aciona também estágios de alarme sonoro e visual, alertando sobre a distorção determinada. O outro instrumento, destinado a identificar o sentido predomi-

nante da injeção harmônica, é utilizado para definir o principal gerador do fluxo harmônico. Isto foi obtido através da medição do ângulo de fase entre a tensão e a correspondente corrente harm<u>ô</u> nica, o qual é indicado de forma digital por um contador númer<u>i</u> co de 0° a 180° .

A

Objetivando a idealização destes instrumentos foram apresentados os respectivos fundamentos matemáticos, a partir dos quais foram desenvolvidos os projetos das diferentes unidades eletrônicas. Uma vez construído os protótipos procedem-se as análises de desempenho dos diversos estágios e dos protótipos como um todo. Estes, uma vez testados através de montagens exp<u>e</u> rimentais mostraram-se bastante compatíveis com as metas traçadas.

Para a verificação da precisão dos resultados, os valo res encontrados para a distorção total foram comparados à outros obtidos por equipamentos mais complexos como o Analisador Espec tral - AE-I (Departamento de Engenharia Elétrica da Universidade Federal de Uberlândia). A aproximação dos níveis encontrados levaram a concluir sobre o sucesso do Detetor de Distorção, face ao seu desempenho e precisão. Quanto ao funcionamento do Detetor Direcional, este foi averiguado pela definição prévia de fontes geradoras, montagens experimentais, instalação do equipa mento desenvolvido e leitura do ângulo de defasagem entre correspondentes tensões e correntes harmônicas. A definição prévia do sentido direcional do fluxo harmônico e os resultados numéri cos indicados comprovam a teoria e o funcionamento global do protótipo.

Destaca-se finalmente que os desenvolvimentos objetivaram atender às características desejáveis de qualquer instrumen to comercial, isto é, além de possuir precisão, tempo de respo<u>s</u> ta compatível, baixo custo, operação e manutenção simples util<u>i</u> zou-se de componentes eletrônicos facilmente obtidos no país.

•

CAPITULO V

UMA PROPOSTA PARA A DETERMINAÇÃO DA IMPEDANCIA HARMONICA DO SISTEMA CA

V.I - INTRODUÇÃO

4

6

Dentre as possíveis medidas corretivas para a compen sação de harmônicos, destaca-se a utilização de filtros, cuja especificação correta e operação efetiva são funções da impedân cia do sistema CA. Várias propostas para a representação desta impedância têm sido apresentadas e discutidas nos últimos tempos. As propostas podem variar, desde um modelo básico obtido a través da potência de curto-circuito, adaptando-se apenas as correspondentes reatâncias para cada frequência harmônica, até a consideração mais completa sob o ponto de vista topológico de seus componentes. Nesta última situação ter-se-á a representa ção mais realística do complexo elétrico, pois com modelagens apropriadas e considerações físicas reais sobre a localização das indutâncias, capacitâncias e resistências, seriam detetados as diferentes ressonâncias possíveis de existir no complexo elé trico.

Com o propósito de ilustrar a variação da impedância equivalente de um barramento, a figura V.1, mostra um diagrama polar em função da frequência. Os resultados evidenciam que o sistema CA, considerado quase sempre indutivo à frequência fundamental, varia para as frequências harmônicas de indutiva para

1

1

(1)

-

Figura V.1 - Diagrama polar da impedância equivalen te de um sistema, em função da frequên cia.

Para a obtenção deste diagrama, basicamente existem dois procedimentos: o cálculo teórico e a medição direta.

O primeiro consiste em simulações digitais e/ou an<u>a</u> lógicas do sistema em questão; o segundo é obtido pela medição direta através das injeções e determinação das relações entre as componentes harmônicas de tensão e corrente ou outro proce<u>s</u> so.

Embora existam os métodos teóricos, face às dif<u>i</u> culdades da representação exata dos componentes do sistema el<u>é</u> trico às frequências harmônicas, acredita-se que a determina - ção da impedância equivalente Z_n , de forma precisa, somente se atinge através da medição direta em campo.

Dentre as formas possíveis para a medição direta destacam-se:

 (i) Injeção de sinais harmônicos de corrente medin do-se a tensão correspondente e calculando-se:

$$|\mathbf{z}_n| = \frac{\mathbf{v}_n}{\mathbf{I}_n}$$

 (ii) Utilização de uma técnica de chaveamento, envolvendo parâmetros conhecidos e uma fonte har mônica existente no complexo elétrico.

Quanto ao método da injeção de sinais harmônicos, destaca-se o processo empregado pelo ECRC (Electricity Council Research Centre UK) [32], que consiste em injetar correntes harmôn<u>i</u> cas no sistema CA, obtidas de um gerador eletrônico. Através de um receptor altamente seletivo, integrado ao equipamento, m<u>e</u> dem-se a magnitude e fase da tensão resultante. A relação entre estes dois sinais permitem determinar Z_n para cada frequência harmônica. Realizadas medições para diversas frequên cias, as impedâncias correspondentes às ordens harmônicas características (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...), P<u>o</u> dem ser obtidas através de um processo de interpolação.

A segunda filosofia compreende um método desenvolvi do, pela EDF (Electricite de France). O método é fundamentado em medições de tensões e correntes harmônicas, produzidas por uma carga não-linear já existente no sistema elétrico. Como <u>e</u> xemplo de utilização desta estratégia, a BPA (Bonneville Power Administration) e EPRI (Electric Power Research Institute) [34], utilizam instalações conversoras de alta potência como carga não-linear e um banco de capacitores já existente no barramento.

Utilizando esta segunda forma direta, que dispensa a injeção harmônica através de equipamentos específicos, proc<u>u</u> rar-se-á, a seguir, discutir seu fundamento e forma de aplic<u>a</u> ção.

V.2 - <u>CONSIDERAÇÕES FÍSICAS SOBRE O SISTEMA SUPRIDOR E O CON-</u> SUMIDOR NÃO-LINEAR

Um sistema elétrico de potência é sempre planejado de forma a suprir diversos usuários. Para tanto, utilizam-se de configurações típicas, como a ilustrada na figura V.2, na qual indica-se um consumidor possuidor de uma carga não-linear. Na ilustração constata-se ainda a existência de uma rede de su primento, caracterizada por uma fonte que além da frequência fundamental, possui outras frequências superiores. Com tal hi pótese tem-se a caracterização de eventuais geradores de harmô nicos, outros que não a carga não-linear. A ilustração de ele mentos como os dispositivos de chaveamento, impedância auxiliar, transdutores, etc., tem por propósito o fornecimento de subsídios necessários aos desenvolvimentos a serem discutidos.

Figura V.2 - Complexo elétrico com carga não-linear.

65

Ø

Ø

67

Para os estudos que se seguirão é conveniente reduzir a área denominada por sistema CA em uma equivalente harmônica, como mostra a figura V.3. Nesta, a rede é modelada por um equivalente de Thévenin, considerado ativo para todas as frequências harmônicas. A carga não-linear pode estar associada a um retificador ou outra qualquer. O ponto mais relevante é que a mesma é tratada como uma fonte ideal de correntes har mônicas. A impedância paralela e auxiliar pode ser atribuída a um banco de capacitores para a correção do fator de potência, a um filtro, ou mesmo, a uma simples impedância auxiliar, adicionada com o propósito de atender o método. Qualquer que seja a sua natureza, o fato comum a todas elas é que a mesma 👘 tem uma natureza concentrada e é plenamente conhecida para quàlquer frequência harmônica.

6

12

6

Figura V.3 - Configuração simplificada do sistema <u>a</u> limentador/impedância auxiliar/carga não-linear.

Fundamentando-se na existência de um diagrama unif<u>i</u> lar desta natureza, e na possibilidade de conexões e desconexões da impedância auxiliar e da própria carga não-linear, é possível, através de uma sequência de chaveamento, determinar a impedância equivalente do sistema alimentador para diferen tes frequências harmônicas. O procedimento é detalhado a seguir.

V.3 - MÉTODOS

9

8

O desenvolvimento de métodos para a determinação das impedâncias harmônicas equivalentes de um sistema elétrico, vi<u>s</u> tas a partir de um ponto de instalação de um consumidor, deve basear-se na existência e/ou na injeção de sinais harmônićos. A<u>s</u> sim sendo, destacam-se filosoficamente dois processos, que, por questões vinculadas a faixa de frequências de interesse ou dev<u>i</u> do aos baixos níveis previamente existentes, são, de fato, de<u>s</u> membrados em 3 métodos, conforme a seguir.

V.3.1 - MÉTODO I

Neste, admite-se que a rede seja ativa para as fr<u>e</u> quências harmônicas nas quais se deseja a correspondente imp<u>e</u> dância equivalente. A figura V.4 ilustra a situação, onde "n" representa a ordem harmônica para a frequência em que a rede dispõe de uma tensão V_n causada por efeitos diversos, como, o<u>u</u> tros consumidores, saturações magnéticas, etc. Borromento

sob_analis e

Figura V.4 - Circuito equivalente com sistema supr<u>i</u> dor ativo à frequência f_n. Com o sistema correspondente às cargas industrial desconectadas (chave CH-1 aberta), bem como a impedância auxi liar aberta através da chave CH-2, procede-se a uma primeira medição utilizando-se de um analisador espectral, instalado ju<u>n</u> to ao barramento sob análise.

6

0

1

As componentes harmônicas de tensão assim encontradas estarão relacionadas à uma referência definida pela tensão fundamental \dot{v}_1 . Esta situação é ilustrada através do diagrama fasorial da figura V.5. Destaca-se que o ângulo de fase de \dot{v}_n , isto é θ_n , encontra-se na base da frequência f_n .

Figura V.5 - Diagrama fasorial para o harmônico de tensão \dot{v}_n , em relação à referência \dot{v}_1 .

Após a identificação e determinação das diferentes tensões disponíveis \dot{v}_n , procede-se a uma segunda etapa de medi ções. Para tanto deve-se fechar a chave CH-2, conectando a im pedância auxiliar, e após tal procedimento através de um anali sador espectral investigar a nova tensão e a corrente que se estabelece pela impedância. É de extrema importância destacar que o analisador, utilizando como referência para disparo, a tensão fundamental da rede no seu ponto de conexão, definirá uma outra referência (\dot{v}_1) para as novas tensões e correntes

harmônicas. A figura V.6 ilustra o circuito equivalente utiliza do e,a figura V.7 o diagrama fasorial associado à segunda fase das medições.

N.S.

4)

4

8

.

۲

•

۲

.

•

•

0

۲

9

0

۲

0

۵.

•

6

*

۲

۲

9

Start V

841 章

Figura V.6 - Circuito equivalente obtido pela conexão da impedância auxiliar.

Figura V.7 - Diagrama fasorial para as tensões e cor rentes de ordem "n" associadas à conexão de \ddot{z}_{aux} .

Na figura V.7:

0

•

0

6

•

•

•

•

•

•

0

0

0

0

0

0

0

•

•

0

0

- V₁ tensão fundamental junto ao barramento sob aná lise, com a rede à vazio
- v'_1 tensão fundamental junto ao barramento sob an<u>á</u> lise com \dot{z}_{aux} conectada

$$v_n$$
 - tensão harmônica de ordem "n" junto ao PAC, com
a rede à vazio, referida à v_1

 v'_n - tensão harmônica de ordem "n" junto ao PAC, com Z_{aux} conectada, referida à v'_1

I' - corrente harmônica de ordem "n" que se estabelece através de Z_{aux}

 $\Delta \theta_1$ - diferença angular entre as tensões fundamentais à vazio e com carga (associada à conexão de \dot{z}_{aux})

$$\theta_n$$
, $\theta_n^{\prime} = \phi_n^{\prime} - \hat{a}$ ngulos de fase correspondentes à v_n^{\prime}
 $v_n^{\prime} = I_n^{\prime}$, em relação às referências.

Para a obtenção de $\Delta \theta_1$ utiliza-se expressões clássicas [66] do tipo:

$$\Delta \theta_{1} = tg^{-1} \left[\frac{I_{1}'(X_{1} \cos \phi_{1} - R_{1} \sin \phi_{1})}{V_{1}' + I_{1}(X_{1} \sin \phi_{1} - R_{1} \cos \phi_{1})} \right]$$
(V.1)

Onde:

 I'_1 - componente fundamental da corrente V'_1 - componente fundamental da tensão ϕ_1 - ângulo de fase entre V'_1 e I'_1 X_1 - reatância da rede à frequência fundamental R_1 - resistência da rede à frequência fundamental.

211

Utilizando pois do diagrama fasorial, dos resultados de medições com um analisador espectral $(V_1, V_1, V_n, V_n, \theta_n, \theta_n, \theta_n, \phi_n)$, do ângulo $\Delta \theta_1$ acima calculado, e alterando-se a referência para a posição fasorial da corrente I_n^* pode-se escrever:

$$v_{n} \underline{/ \phi_{n}^{\dagger} + n (\Delta \theta_{1}) - \theta_{n}} = (R_{n} + jX_{n})I_{n}^{\dagger} \underline{/ \theta^{\circ}} + v_{n}^{\dagger} \underline{/ \phi_{n}^{\dagger} - \theta_{n}^{\dagger}}$$
(V.2)

Chamando:

$$\alpha_{n} = \left[\phi_{n}^{\dagger} + n \left(\Delta\theta_{1}\right) - \theta_{n}\right]$$
 (V.3)

 $\beta_n = (\phi_n^* - \theta_n^*)$ (V.4)

obtem-se da equação (V.2) as expressões de $R_n \in X_n$:

$$R_{n} = \frac{V_{n} \cos \alpha_{n} - V_{n}^{\dagger} \cos \beta_{n}}{I_{n}^{\dagger}}$$
(V.5)

$$X_{n} = \frac{V_{n} \operatorname{sen} \alpha_{n} - V_{n}^{\dagger} \operatorname{sen} \beta_{n}}{I_{n}^{\dagger}}$$
(V.6)

V.3.2 - MÉTODO II

Este processo baseia-se na total ausência ou insign<u>i</u> ficância de harmônicos na rede supridora. Em essência, o mesmo consiste em se injetar sinais harmônicos conhecidos junto do ponto elétrico para o qual se deseja determinar as impedâncias Z_n , e, através das relações das tensões e correspondentes correntes medidas, determinar o espectro de impedâncias desejado. É evidente que o método poderá empregar fontes harmônicas já existentes e relacionadas às próprias cargas não-lineares componentes do complexo industrial, ou, através da injeção de si nais especialmente gerados à este fim. De fato, esta última hi pótese tem sido utilizada em outros paises, à exemplo da Ingla terra.

•

•

8

63

6)

Partindo, pois, do fato de que para uma dada ordem harmônica "n" a rede de alimentação seja passiva, o circuito da figura V.8 ilustra o arranjo equivalente que considera a corrente harmônica como procedente de uma fonte ideal.

Figura V.8 - Circuito equivalente visto por uma fon te ideal de corrente harmônica, considerando a rede passiva à ordem "n".

Uma vez efetuadas as medições com um analisador espectral e conhecidas as tensões, correntes e correspondentes ângulos de fase relativos a uma mesma referência (v_1^n) , faci<u>l</u> mente obtém-se:

$$\dot{Z}_{n} = R_{n} + jX_{n} = \frac{\dot{V}_{n}^{"}}{i_{n}^{"}} = \frac{V_{n}^{"}}{I_{n}^{"}} \frac{/\theta_{n}^{"} - \phi_{n}^{"}}{(v.7)}$$

onde:

4

- V" = módulo da tensão harmônica de ordem "n" resultante na rede e, devida à injeção da corrente I"n
- I" = módulo da corrente harmônica de ordem "n" inje
 tada na rede
- $\theta_n^{"}, \phi_n^{"} = \hat{a}ngulo de fase de <math>V_n^{"} e I_n^{"}$, relativas à uma referência comum que é $V_1^{"}$
- $v_1^{"}$ = tensão fundamental do barramento sob análise, <u>a</u> pós a inserção da carga não-linear.

V.3.3 - MÉTODO III

Quando da existência de tensões harmônicas em níveis incompatíveis com as precisões da instrumentação utilizada, o primeiro método pode conduzir a resultados indevidos. Por outro lado, a aplicação do método II ignorando a presença destas distorções pode, por sua vez, também produzir resultados impr<u>e</u> cisos. Estes fatos levaram à necessidade de novas investigações que culminaram no método aqui proposto.

Partindo da identificação do conteúdo harmônico relatado no método I, quando da operação com a carga e impedân cia auxiliar desconectadas, procede-se a seguir, a conexão de uma carga não-linear conforme indicado na figura V.9.

Figura V.9 - Circuito equivalente com sistema supri dor ativo, utilizando injeção de fr<u>e</u> quência através de carga não-linear.

O diagrama fasorial correspondente é indicado na fi

gura V.10.

•

0

•

1

6

0

潮

0

0

0

0

0

0

0

1.1.1

and the second states in states in the

Baseando-se na referência estabelecida para o equacionamento e, indicada na figura V.10, bem como, no circuito <u>e</u> quivalente da figura V.9, pode-se escrever:

$$V_{n} / \frac{n(\Delta \theta_{1}^{*}) - \theta_{n} + \phi_{n}^{**}}{n} = -(R_{n} + jX_{n})I_{n}^{**} / \frac{0^{\circ}}{n} + V_{n}^{**} / \frac{\phi_{n}^{**} - \theta_{n}^{**}}{n}$$
(V.8)

Chamando

0

0

۲

•

0

Ð

•

9

6

0

0

8

0

0

0

•

0

0

0

0

0

0

0

$$\overline{\gamma}_{n} = [n(\Delta \theta_{1}^{*}) - \theta_{n} + \phi_{n}^{**}] \qquad (V.9)$$

$$\delta_n = (\phi_n^{\dagger n} - \theta_n^{\dagger n}) \qquad (V.10)$$

E considerando que:

- I'" = módulo da corrente harmônica de ordem "n" in jetada na rede
- V'" = tensão harmônica de ordem "n" obtida com a injeção da corrente I'"

 ϕ_n' , $\theta_n'' =$ ângulos de fase de I'' e V_n'' relativos a uma referência comum que é V_1''

$$\Delta \theta_{1}^{*} = tg^{-1} \left[\frac{I_{1}^{*} (X_{1} \cos \phi_{1}^{*} - R_{1} \sin \phi_{1}^{*})}{V_{1}^{*} + I_{1}^{*} (X_{1} \sin \phi_{1}^{*} - R_{1} \cos \phi_{1}^{*})} \right] \quad (v.11)$$

Verifica-se que:

$$R_{n} = \frac{V_{n}^{\prime \prime \prime \prime} \cos \gamma_{n} - V_{n} \cos \delta_{n}}{I_{n}^{\prime \prime \prime \prime}}$$
(V.12)

$$X_{n} = \frac{V_{n}^{\dagger \parallel} \operatorname{sen} \gamma_{n} - V_{n} \operatorname{sen} \delta_{n}}{I_{n}^{\dagger \parallel}}$$
(V.13)

V.4 - VERIFICAÇÃO EXPERIMENTAL

0

0

A

()

O

6

0

640

Objetivando comprovar experimentalmente as metodol<u>o</u> gias desenvolvidas para a determinação das impedâncias harmôn<u>i</u> cas equivalentes " Z_n ", seja o sistema ilustrado na figura V.11. Este arranjo mostra que a simulação consiste na alimentação de uma instalação retificadora, através de um barramento supridor caracterizado pela fonte e uma impedância série oferecida por um reator linear. O elemento auxiliar é definido por um banco de capacitores.

O arranjo possui os seguintes parâmetros:

- barramento da concessionária: tensão fundamental nominal de 220 [V], $L_s = 1,3$ [mH]. $R_s = 0,1$ [Ω]
- impedância série simulada caracterizada por: R = 0,7 [Ω]
 L = 7 [mH]
- conversor trifásico de seis pulsos não controlado
- impedância auxiliar: C = 60 μF

6

0

()

6

0

0

6

۵

0

V.4.1 - MEDIÇÕES COM CARGA NÃO-LINEAR E IMPEDÂNCIA ZAUXILIAR DESCONECTADOS

De acordo com a metodologia exposta, para a primeira medição, com as chaves CH-1 e CH-2 abertas, mediu-se os módulos e ângulos de fase das tensões fundamental e harmônicas <u>e</u> xistentes no barramento B-1. Para isto, utilizou-se o analisador de harmônicos (AE-I), obtendo-se:

Ordem	Tensão [V]	Ângulo de Fase [Grau]							
1	134,5	0							
5	2,8	115							
7	0,7	75							
<u>OBS</u> .: (1) Os ângulos de fase encontram-se referidas as cor- respondentes frequências harmônicas. (2) A referência dos ângulos é $\dot{V}_1 = 134,5/0^{\circ}$.									

Tabela V.1 - Resultado das medições com o analisador espectral. A figura V.12 mostra o oscilograma da tensão anali-

sada.

O

1

0

0

•

Figura V.12 - Oscilograma da tensão no barramento B-2 com a carga não-linear e impedância auxiliar desconectada.

V.4.2 - MÉDIÇÕES COM A IMPEDÂNCIA AUXILIAR CONECTADA E CARGA NÃO-LINEAR DESCONECTADA

A segunda etapa das medições, caracterizada pela con nexão da impedância auxiliar, conduziu às correntes harmônicas provenientes do sistema supridor e às correspondentes tensões resultantes sobre a impedância auxiliar. Os valores obtidos peno lo analisador são mostrados na tabela V.2, com os respectivos ângulos de fase.

Tensões Ordem Angulos de Fase Correntes Angulos de Fase [V] [Grau] [A] [Grau] 90⁰ 00 145,4 1 3,29 5 305 3,1 0,35 35 7 0,26 264 0,041 354 OBS.: (1) Os ângulos de fase encontram-se referidas as correspondentes frequências. (2) A referência dos ângulos das tensões são referidas a $\dot{v}_1^{\prime} = 145, 4/0^{\circ}$. е correntes

> Tabela V.2 - Resultados das medições com o analisador espectral.

As figuras V.13(a) e V.13(b) ilustram os oscilogramas das tensões e correntes analisadas.

Figura V.13 - Oscilogramas da tensão e corrente no barramento B-2 com a impedância auxiliar conectada e a carga não-linear desconectada.

V.4.3 - MEDIÇÕES COM CARGA NÃO-LINEAR CONECTADA E IMPEDÂNCIA AUXILIAR DESCONECTADA

1

10

0

۲

•

8

A última etapa das medições, caracterizada pela op<u>e</u> ração da carga não-linear, responsável pela injeção de correntes harmônicas no sistema supridor, conduziu aos resultados p<u>a</u> ra as correntes e tensões indicadas na tabela V.3.

Ordem	Tensões [V]	Ângulos de Fase [Grau]	Correntes [A]	Ângulos de Fase [Grau]						
1	• 130	0	2,44	344						
5	6,43	244,30	0,47	177						
7	6,94	233	0,27	149						
11	5,65	11,5	0,15	283						
13	3,60	1,6	0,093	273						
17	2,96	340,7	0,050	252						
<u>OBS</u> .: (1) Os ângulos de fase encontram-se referidos as cor- respondentes frequências. (2) A referência dos ângulos é $V_1 = 130/0^{\circ}$ [V].										

Tabela V.3 - Resultados das medições obtidas com o analisador espectral AE-I.

As figuras V.14(a) e V.14(b) ilustram os oscilogra-

mas das tensões e correntes analisadas.

Figura V.14 - Oscilogramas da tensão e corrente no barramento B-2 com a impedância auxiliar desconectada e a carga não-linear conectada.

Através dos dados obtidos nas medições, e dos cál culos de $\Delta\theta_1 e \Delta\theta_1$, das equações (V. 2), (V. 7) e (V. 8) final mente se determinam a impedância equivalente "Z_n" do sistema . Os resultados da impedância pelos três métodos e através do cálculo a partir da impedância simulada, são mostrados na tabela V.4. É conveniente destacar que a coluna correspondente a imp<u>e</u> dância calculada não levou em consideração qualquer influência da frequência na resistência determinada à 60 Hz.

ñ		METODO - I						MÉTODO - III			CÁLCULO TEÓRICO					
	Rn	x _n	z _n	• n	R _n	Xn	z _n	¢n	R _n	x _n	z _n	[¢] n	R _n	×n	z _n	¢n
5	0,75	16,86	16,88	87,48	5,22	12,64	13,68	67,56	.0,98	16,84	16,87	86,66	0,8	15,65	15,67	87;11
$\left \frac{1}{7} \right $	0,6	23,2	23,21	88,52	2,69	25,55	25,70	84	1,0	24	24,02	87,79	0,8	22	22	87,92
11	-		c		1,12	37,70	37,67	88,30	1,12	37,70	37,67	88,30	0,8	34,5	34,51	88,67
13	-				0,95	38,70	38,71	88,60	0,95	38,70	38,71	88,60	0,8	40,7	40,71	88,87
17	-			-	1,34	59 <u>,</u> 18	59,20	88,70	1,34	59,18	59,20	88,70	0,8	53,21	53,21	89,14

Tabela V.4 - Impedância equivalente $\dot{z}_n = R_n + jX_n$ obtidas através dos métodos de medições I, II e III e pelo cálculo teórico.

V.5 - CONCLUSÕES

(8:14)

1

8

Ø

E.

E

Este capítulo, associado com aspectos relacionados com a determinação da impedância harmônica equivalente às áreas elétricas, destacou a importância de uma representação adéquada para esta variável, principalmente com vistas aos projetos de filtros.

Além de discussões físicas sobre a impedância harmônica, foram desenvolvidos, esclarecidos, discutidos e aplicados métodos que conduzirão a valores mais realísticos para as impedâncias equivalentes " Z_n ". Estes métodos, baseados na existên cia ou na injeção de sinais harmônicos, apresentam uma alternativa experimental para o conhecimento de " Z_n ", o que, acreditase ser um procedimento mais adequado que os métodos teóricos. Is to é particularmente válido até os dias de hoje, pois os modelos de componentes de sistemas elétricos às frequências harmôn<u>í</u> cas, não são ainda bastante confiáveis.

O método I, embora bastante simples e evidente, não foi destacado pela literatura até o presente momento. Seus incovenientes estão relacionados, via de regra, com a inexistên cia d uma ampla faixa de frequência presente numa rede elétrica. Além disto, as harmônicas frequentemente encontrada podem se apresentar com pequenas amplitudes. Estes fatos restringem as frequências que podem ser identificadas e, reduzem drasticamente às precisões necessárias à determinação de "Z_".

O método II, também simples em seu princípio já é classicamente recomendado e utilizado por alguns usuários. Destaca-se, todavia, imprecisões que poderão existir devido ao fa to do processo ignorar eventuais efeitos ativos da rede elétri ca, em dadas frequências, quando da injeção harmônica por fontes conhecidas.

0

•

(

8

0

6

()

6

1

64

Para contornar este incoveniente, desenvolveu-se o método III, o qual, baseando-se nas injeções harmônicas produzidas por fontes existentes e conhecidas, e, na possibilidade de redes ativas às frequências consideradas, conduziu a uma formulação mais apropriada que aquelas até agora utilizadas.

Embora os métodos I e III apresentem incovenientes causados pela necessidade de chaveamentos e medições não-simul tâneas de tensões e correntes harmônicas, procurou-se com estes processos de medições reduzir os erros introduzidos na determinação de " Z_n ", através de correções de referências. Acre dita-se que caso as redes sejam estáveis quanto as suas distor ções, o método será correto. Entretanto, caso exista uma dinâmica apreciável na rede, entre os instantes de medição, é conveniente repetir as medições e, estabelecer critérios estatísticos, os quais, não foram aplicados nesta tese.

CAPÍTULO VI

CONCLUSÕES GERAIS

Embora muitas conclusões específicas já tenham sido destacadas ao longo da tese, este capítulo tem por objetivo <u>a</u> presentar os aspectos conclusivos mais gerais sobre os estudos, métodos desenvolvidos e resultados obtidos.

O Capítulo I, embora bastante amplo em seu objetivo. realizou uma abordagem geral sobre o estado da arte de geração de harmônicos, suas fontes, seus limites, métodos de medições e efeitos causados nos componentes de sistemas elétricos. Após as considerações feitas, concluiu-se que nesta área de engenha ria elétrica, apesar dos grandes desenvolvimentos já ocorridos, pode-se facilmente identificar grandes lacunas a serem investi gadas. Esta tese procurou contribuir efetivamente em vários pontos destacados, tais como nos aspectos relacionados com: е quipamentos nas medições e geração de harmônicos, efeitos provo cados por harmônicos e na apresentação de um método prático pa ra a determinação da impedância harmónica equivalente "Z_". Não obstante estes fatos, destaca-se que há ainda muito a ser fei to neste campo de trabalho.

No Capítulo II, apresentou-se uma opção de desenvol vimento de uma fonte harmônica de potência.

Dentre as opções possíveis e apresentadas optou-se pelo princípio da saturação de elementos eletromagnéticos. Os fundamentos e as bases da modelagem matemática para este proje

()

to, foram então estabelecidos a partir das unidades magnéticas saturadas e alimentadas por correntes senoidais. Através deste procedimento do projeto desenvolveu-se a especificação de uma unidade geradora de harmônicos que, por questões financeiras não pode ser integralmente construída.

227

Apesar disto, verificou-se a validade do método e objetivando analisar o desempenho das unidades magnéticas, ef<u>e</u> tuou-se vários testes em laboratório.Estes, em essência, consistiram em comprovar as formas de ondas das correntes da fonte de alimentação, e, da tensão de saída de cada unidade magn<u>é</u> tica. Os resultados obtidos no ensaio e as considerações das análises teóricas relativas ao projeto, mostraram a adequação da metodologia proposta, e acima de tudo, uma técnica simples e robusta, para a geração de potências harmônicas monofásicas, com altos níveis de tensão e corrente, com a vantagem de se utilizar somente materiais 100% nacionais.

(1)

Tendo em vista uma das metas prioritárias desta tese, associada com os efeitos causados por harmônicos em componentes de sistemas elétricos, o Capítulo III analisou questões relacionadas à instrumentos utilizados nas medições de energia sob a ação de sinais distorcidos. Referindo-se ao medidor de energia elétrica do tipo indução, foram estabelecidas modelagens matemáticas objetivando apresentar um dos modelos mais completos para o seu desempenho, quando o mesmo se encontra sub metido a ondas de tensões e correntes senoidais e não-senoidais. Este tratamento resultou numa estratégia analítica para a ava liação do erro resultante na indicação do consumo de energia , baseada nas equações da velocidade angular (S) do disco do me didor. Com tais fundamentos desenvolveu-se um programa computa cional, através do qual, diversas situações práticas puderam ser retratadas e seus resultados discutidos e analisados. Das várias situações práticas simuladas e analisadas, concluiu-se que nos casos onde as formas de ondas da tensão e corrente são distorcidas, o erro é relativamente apreciável.

6

٨

a

0

B

Verificou-se que a direção do fluxo harmônico, é de suma importância nos estudos e resultados. Constatou-se que o erro é função da magnitude e do ângulo de fase das componentes harmônicas envolvidas no registro do medidor. Isto foi observa do em vários casos simulados, dos quais o "erro negativo" resultante, indicando uma desaceleração do medidor, relacionou se ao fluxo harmônico na mesma direção do fluxo fundamental . Em outros casos simulados, constatou-se que o erro encontrado possuia um valor positivo quando este estava relacionado com uma direção oposta do fluxo harmônico em relação ao da fundamental.

Além destes aspectos outras dependências foram an<u>a</u> lisadas, e concluídas, tais como a influência das conexões dos transformadores, etc. Estes efeitos foram detalhadamente abordados no capítulo específico.

Quanto aos erros de resposta em frequências de trans formadores de potencial, estes foram inicialmente registrados experimentalmente, quando obteve-se discrepâncias de até três vezes a relação nominal do transformador. Além dos relatos experimentais e da análise física de sua origem, o capítulo discutiu propostas de circuitos equivalentes à parâmetros concentrados para T.P.'s submetidos à tensões distorcidas. A partir

destes modelos desenvolveu-se um programa computacional através do qual foram estabelecidas comparações entre resultados exper<u>i</u> mentais e teóricos. Destes estudos foi possível concluir que o modelo à parâmetros concentrados representa, com certa aproxim<u>a</u> ção, as respostas às frequências harmônicas, no regime permane<u>n</u> te.

No tocante ao transformador de corrente, os estudos e simulações realizados no Capítulo apenas confirmaram a inexistência de erros apreciáveis na sua operação, quando da presença de harmônicos em regime permanente.

Devido a importância e interesses nacionais quanto a disponibilidade de instrumentos auxiliares para a medição de harmônicos, o Capítulo IV dedicou-se aos desenvolvimentos de um alarme para distorções harmônicas e de um detetor direcional de fluxo harmônico. Estes equipamentos têm por finalidade complementar os sofisticados equipamentos utilizados na medição de harmônicos. Fundamentalmente estes equipamentos encontram aplicações numa primeira avaliação da existência de distorções har mônicas e, do sentido da injeção das harmônicas.

O primeiro dispositivo denominado por detetor de dis torções harmônicas a partir da amostragem do sinal de tensão ou corrente, define o nível de distorção total através de escalas pré-ajustadas. O outro instrumento, destinado a identificar o sentido predominante da injeção harmônica, é utilizado para definir o principal gerador do fluxo harmônico.

Objetivando a idealização destes instrumentos foram apresentados os respectivos fundamentos matemáticos, a partir dos quais foram desenvolvidos os projetos das diferentes unida-

des eletrônicas. Uma vez construído os protótipos, procedeu-se às análises de desempenho dos diversos estágios e dos protótipos como um todo. Estes, uma vez testados através de montagens experimentais mostraram-se bastante compatíveis com as metas traçadas.

A adequação, a confiabilidade e a precisão dós pro tótipos foram verificadas através de inúmeros testes em labora tórios e em campo, utilizando-se para isto das ondas padrões e de equipamentos mais complexos, como o Analisador Espectral -AE-I. A aproximação dos níveis encontrados, levaram a concluir sobre o sucesso do detetor de distorção harmônica, face ao seu desempenho e precisão. Quanto ao funcionamento do Detetor Dire cional, este foi averiguado pela definição prévia de fontes ge radoras, montagens experimentais, instalação do equipamento de senvolvido e leitura do ângulo de defasagem entre corresponden tes tensões e correntes harmônicas. A definição prévia do sentido direcional do fluxo harmônico e os resultados numéricos indicados comprovam a teoria e o funcionamento global do prot<u>ó</u> tipo.

Como última contribuição desta tese, no Capítulo V, foram considerados e propostos os princípios de métodos prát<u>i</u> cos para a determinação da impedância harmônica " Z_n " de um sistema alimentador. Estes procedimentos, denominados por mét<u>o</u> do I, II e III, baseando-se na existência ou na injeção de sinais harmônicos conhecidos apresentaram uma alternativa exper<u>i</u> mental para a determinação da impedância harmônica e, acredit<u>a</u> se serem técnicas mais adequadas que a maioria dos métodos de cálculo teóricos. As propostas foram devidamente verificadas <u>a</u>

67

9

0

3

través de montagens e resultados experimentais e, dentro do que foi concluído e ressalvado, conduziram a resultados compatíveis.

Æ

6

0

 \bigcirc

۲

Finalmente deve-se ressalvar que embora os temas <u>a</u> bordados nesta tese tenham procurado explorar com profundidade os assuntos descritos, muito há ainda a ser investigado. Adicionalmente, outros tópicos não considerados neste trabalho e associados e necessários à área de harmônicos deverão <u>i</u> ainda oferecer várias oportunidades para pesquisa.

Focalizando os desenvolvimentos realizados neste trabalho destaca-se inicialmente que a busca de fontes alterna tivas para a geração de sinais harmônicos isolados e superpostas deverá ser vista com muita atenção. De fato, a solução ele trônica através de amplificadores de potência pode ser uma solução adequada aos fins desejados.

Quanto à questão de efeitos de harmônicas, este é sem dúvida, um campo aberto para futuras pesquisas. No tocante aos assuntos desenvolvidos observa-se que no caso de medidores de KWh há necessidade de trabalhos de análise de desempenho de instrumentos de diferentes classes de precisão, dos modelos <u>e</u> letrônicos, etc. Para a resposta em frequência de T.P.'s <u>e</u> T.C.'s, em particular para os primeiros, torna-se relevante mo delagem mais apropriadas onde possam ser representados os efeitos individuais e sobrepostos das perdas magnéticas, satutação, etc.

Referindo-se aos protótipos desenvolvidos, estes não devem ser considerados como exclusivos e finalizados, mas sim, devem ser interpretados como estímulos para novas versões, e adaptações às necessidades do mercado. A exemplo disto, cita se o projeto de um relé direcional de harmônicos, cujos fundamentos iniciais podem ser encontrados no Capítulo IV.

0

ing.

•

۲

•

۲

(B)

6

and.

æ

0 0

0

0

a

0

0

0

「「「「「「「「「「「「」」」」」」

Finalmente, em relação aos métodos experimentais pa ra a avaliação das impedâncias harmônicas de uma área elétrica, destaca-se a necessidade de complementação das investigáções ; através, do uso de equipamentos mais apropriados e, a análise estatística correspondente e necessária.

APENDICE

۲

0

0

۲

(a)

0

0

0

0

DESENVOLVIMENTOS DOS POLINÔMIOS REFERENTES AOS FLUXOS DE TENSÃO E CORRENTE

As equações a serem desenvolvidas são apresentadas novamente, por questão de conveniência, segundo as expressões a seguir:

$$\phi_{v}^{i} = a_{v1} \phi_{v} + a_{v2} \phi_{v}^{3} + a_{v3} \phi_{v}^{5}$$
(1)

 $\phi_{i}^{\prime} = a_{i1} \phi_{i} + a_{i2} \phi_{i}^{3} + a_{i3} \phi_{i}^{5}$ (2)

Considerando-se a situação particular, onde a distorção na tensão e corrente são constituídas pelas harmônicas de \Im , 53 e 74 ordem, e que o fluxo $\overline{\phi}_v$ é dado pela equação:

$$\phi_{\mathbf{v}} = \sum_{n=1,3,5,7} \widehat{\phi}_{\mathbf{v}(n)} \cos(n\omega_1 t - \alpha_{\mathbf{v}n} - \theta_{\mathbf{v}n})$$
(3)

obtém-se as expressões para ϕ_v , ϕ_v^3 e ϕ_v^5 de acordo com as equações:

 $\phi_{\mathbf{v}} = [\phi_{\mathbf{v}1} \cos(\omega_1 t - \alpha_{\mathbf{v}1} - \theta_{\mathbf{v}1}) + \phi_{\mathbf{v}3} \cos(3\omega_1 t - \alpha_{\mathbf{v}3} - \theta_{\mathbf{v}3}) + \phi_{\mathbf{v}3}$

 $+\Phi_{v5}\cos(5\omega_{1}t-\alpha_{v5}-\theta_{v5})+\Phi_{v7}\cos(7\omega_{1}t-\alpha_{v7}-\theta_{v7})] \quad (4)$

$$\phi_{\mathbf{v}}^{3} = \left[\phi_{\mathbf{v}1}\cos\left(\omega_{1}t - \alpha_{\mathbf{v}1} - \theta_{\mathbf{v}1}\right) + \phi_{\mathbf{v}3}\cos\left(3\omega_{1}t - \alpha_{\mathbf{v}3} - \theta_{\mathbf{v}3}\right) + \right]$$

$$+ \Phi_{v5} \cos(5\omega_{1}t - \alpha_{v5} - \theta_{v5}) + \Phi_{v7} \cos(7\omega_{1}t - \alpha_{v7} - \theta_{v7})]^{3}$$
(5)

$$\phi_{v}^{5} = [\phi_{v1}\cos(\omega_{1}t - \alpha_{v1} - \theta_{v1}) + \phi_{v3}\cos(3\omega_{1}t - \alpha_{v3} - \theta_{v3}) + \phi_{v3}\cos(3\omega_{1}t - \theta_{v3}) + \phi_{v3}$$

$$\Phi_{\mathbf{v}5}\mathbf{cos}(5\omega_{1}\mathbf{t}-\alpha_{\mathbf{v}5}-\theta_{\mathbf{v}5})+\Phi_{\mathbf{v}7}\mathbf{cos}(7\omega_{1}\mathbf{t}-\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}7})]^{5} \quad (6)$$

Portanto para o desenvolvimento da equação (2), temse que determinar inicialmente as equações (5) e (6). Para isto, considere as seguintes denominações dos termos das equações citadas:

$$\mathbf{a} = \Phi_{\mathbf{v}1} \cos \left(\omega_1 \mathbf{t} - \alpha_{\mathbf{v}1} - \theta_{\mathbf{v}1} \right)$$
(7)

$$b = \Phi_{v3} \cos \left(\omega_{3}t - \alpha_{v3} - \theta_{v3}\right)$$
(8)

$$c = \Phi_{v5} \cos \left(\omega_5 t - \alpha_{v5} - \theta_{v5}\right)$$
(9)

$$\mathbf{d} = \Phi_{\mathbf{v}7} \cos \left(\omega_7 \mathbf{t} - \alpha_{\mathbf{v}7} - \theta_{\mathbf{v}7} \right) \tag{10}$$

Substituindo (7), (8), (9) e (10) na equação (7), e:

obtém-se:

0

0

۲

$$\phi_{v}^{3} = [a + b + c + d]^{3} = [(a + b) + (c + d)]^{3}$$

$$\phi_{v}^{3} = (a+b)^{3} + 3(a+b)^{2}(c+d) + 3(a+b)(c+d)^{2} + (c+d)^{3}$$
(11)

Desenvolvendo-se a equação (10), e colocando os termos em ordem resulta:

0

•

0

$$\phi_{v}^{3} = a^{3} + b^{3} + c^{3} + d^{3} + 3a^{2}b + 3a^{2}c + 3a^{2}d + 3b^{2}a + 3b^{2}c + 3b^{2}d + 3c^{2}a + 3c^{2}b + 3c^{2}d + 3d^{2}a + 3d^{2}b + 3d^{2}c + 6abc + 6abd + 6cda + 6cdb$$
(12)

Substituindo os valores de a, b, c, e d na equação (12), e, fazendo-se os desenvolvimentos necessários chega-se ao seguinte resultado final.

 $\phi_{v}^{3} = \phi_{v1}^{3} \left[\frac{1}{4}\cos\left(3\omega_{1}t - 3\alpha_{v1} - 3\theta_{v1}\right) + \frac{3}{4}\cos\left(\omega_{1}t - \alpha_{v1} - \theta_{v1}\right)\right] + \phi_{v3}^{3} \left[\frac{1}{4}\cos\left(9\omega_{1}t - 3\alpha_{v3} - \theta_{v3}\right) + \frac{3}{4}\cos\left(\omega_{1}t - \alpha_{v1} - \theta_{v1}\right)\right] + \phi_{v3}^{3} \left[\frac{1}{4}\cos\left(9\omega_{1}t - 3\alpha_{v3} - \theta_{v3}\right) + \frac{3}{4}\cos\left(\omega_{1}t - \alpha_{v1} - \theta_{v1}\right)\right] + \phi_{v3}^{3} \left[\frac{1}{4}\cos\left(9\omega_{1}t - 3\alpha_{v3} - \theta_{v3}\right) + \frac{3}{4}\cos\left(\omega_{1}t - \alpha_{v1} - \theta_{v1}\right)\right] + \phi_{v3}^{3} \left[\frac{1}{4}\cos\left(9\omega_{1}t - 3\alpha_{v3} - \theta_{v3}\right) + \frac{3}{4}\cos\left(\omega_{1}t - \alpha_{v1} - \theta_{v1}\right)\right] + \phi_{v3}^{3} \left[\frac{1}{4}\cos\left(9\omega_{1}t - 3\alpha_{v3} - \theta_{v3}\right) + \frac{3}{4}\cos\left(\omega_{1}t - \alpha_{v1} - \theta_{v1}\right)\right] + \phi_{v3}^{3} \left[\frac{1}{4}\cos\left(9\omega_{1}t - 3\alpha_{v3} - \theta_{v3}\right) + \frac{3}{4}\cos\left(\omega_{1}t - \alpha_{v1} - \theta_{v1}\right)\right] + \phi_{v3}^{3} \left[\frac{1}{4}\cos\left(9\omega_{1}t - 3\alpha_{v3} - \theta_{v3}\right) + \frac{3}{4}\cos\left(\omega_{1}t - \alpha_{v1} - \theta_{v1}\right)\right] + \phi_{v3}^{3} \left[\frac{1}{4}\cos\left(9\omega_{1}t - 3\alpha_{v3} - \theta_{v3}\right) + \frac{3}{4}\cos\left(\omega_{1}t - \alpha_{v1} - \theta_{v1}\right)\right] + \phi_{v3}^{3} \left[\frac{1}{4}\cos\left(9\omega_{1}t - \alpha_{v3} - \theta_{v3}\right) + \frac{3}{4}\cos\left(\omega_{1}t - \alpha_{v1} - \theta_{v3}\right)\right] + \phi_{v3}^{3} \left[\frac{1}{4}\cos\left(9\omega_{1}t - \alpha_{v3} - \theta_{v3}\right) + \frac{3}{4}\cos\left(2\omega_{1}t - \alpha_{v3} - \theta_{v3}\right)\right] + \phi_{v3}^{3} \left[\frac{1}{4}\cos\left(9\omega_{1}t - \alpha_{v3} - \theta_{v3}\right) + \frac{3}{4}\cos\left(2\omega_{1}t - \alpha_{v3} - \theta_{v3}\right)\right] + \phi_{v3}^{3} \left[\frac{1}{4}\cos\left(9\omega_{1}t - \alpha_{v3} - \theta_{v3}\right) + \frac{3}{4}\cos\left(2\omega_{1}t - \alpha_{v3} - \theta_{v3}\right)\right] + \phi_{v3}^{3} \left[\frac{1}{4}\cos\left(9\omega_{1}t - \alpha_{v3} - \theta_{v3}\right) + \frac{3}{4}\cos\left(9\omega_{1}t - \alpha_{v3} - \theta_{v3}\right)\right] + \phi_{v3}^{3} \left[\frac{1}{4}\cos\left(9\omega_{1}t - \theta_{v3}\right)\right$

 $+\frac{3}{4}\cos(3\omega_{1}t-\alpha_{v3}-\theta_{v3})]+\phi_{v5}^{3}[\frac{1}{4}\cos(15\omega_{1}t-3\alpha_{v5}-3\theta_{v5})+\frac{3}{4}\cos(5\omega_{1}t-\alpha_{v5}-\theta_{v5})]+$

 $+\Phi_{v7}^{3} [\frac{1}{4} \cos (21\omega_{1} t - 3\alpha_{v7} - 3\theta_{v7}) + \frac{3}{4} \cos (7\omega_{1} t - \alpha_{v7} - \theta_{v7})] + \frac{3}{2} \Phi_{v1}^{2} \Phi_{v3} [\cos (3\omega_{1} t - \alpha_{v3} - \theta_{v3}) + \frac{3}{4} \cos (3\omega_{1} t - \alpha_{v3} - \theta_{v3})] + \frac{3}{4} \cos (3\omega_{1} t - \alpha_{v3} - \theta_{v3})]$

 $+\frac{1}{2}\cos \left[\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+\theta_{v3}-2\theta_{v1})\right]+\frac{1}{2}\cos \left[5\omega_{1}t-(\alpha_{v3}+2\alpha_{v1}+\theta_{v3}+2\theta_{v1})\right]+\frac{3}{2}\phi_{v1}^{2}.$

235

 $\cdot \Phi_{v5} \left[\cos(5\omega_1 t - \alpha_{v5} - \theta_{v5}) + \frac{1}{2} \cos[3\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{2} \cos[5\omega_1 t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v1} + \theta_{v1}$ $-(\alpha_{v3}+2\alpha_{v1}+\theta_{v3}+2\theta_{v1})] + \frac{3}{2} + \frac{2}{2} + \frac{3}{2} + \frac{2}{2} + \frac{3}{2} + \frac{2}{2} + \frac{3}{2} + \frac{3}{2} + \frac{2}{2} + \frac{3}{2} + \frac{3}{2}$ $\frac{1}{2}\cos[9\omega_{1}t - (\alpha_{v7} + 2\alpha_{v1} + \theta_{v7} + 2\theta_{v1})] + \frac{3}{2}\phi_{v3}^{2}\phi_{v1} \left[\cos(\omega_{1}t - \alpha_{v1} - \theta_{v1}) + \frac{1}{2}\right]$ $\cdot \cos[5\omega_{1}t - (2\alpha_{v3} - \alpha_{v1} + 2\theta_{v3} - \theta_{v1})] + \frac{1}{2}\cos[7\omega_{1}t - (2\alpha_{v3} + \alpha_{v1} + 2\theta_{v3} + \theta_{v1})] + \frac{3}{2}\phi_{v3}^{2}\phi_{v5}$ $\cdot \left[\cos(5\omega_{1}t-\alpha_{V5}-\theta_{V5})+\frac{1}{2}\cos[\omega_{1}t-(2\alpha_{V3}-\alpha_{V5}+2\theta_{V3}-\theta_{V5})]+\frac{1}{2}\cos[11\omega_{1}t-(2\alpha_{V3}+\alpha_{V5}+2\theta_{V3}+\theta_{V5})]+\frac{1}{2}\cos[11\omega_{1}t-(2\alpha_{V3}+\alpha_{V5}+2\theta_{V3}+\theta_{V5})]+\frac{1}{2}\cos[11\omega_{1}t-(2\alpha_{V3}+\alpha_{V5}+2\theta_{V3}+\theta_{V5})]+\frac{1}{2}\cos[11\omega_{1}t-(2\alpha_{V3}+\alpha_{V5}+2\theta_{V3}+\theta_{V5})]+\frac{1}{2}\cos[11\omega_{1}t-(2\alpha_{V3}+\alpha_{V5}+2\theta_{V3}+\theta_{V5})]+\frac{1}{2}\cos[11\omega_{1}t-(2\alpha_{V3}+\alpha_{V5}+2\theta_{V5}+\theta_{V5})]+\frac{1}{2}\cos[11\omega_{1}t-(2\alpha_{V3}+\alpha_{V5}+2\theta_{V5}+\theta_{V5})]+\frac{1}{2}\cos[11\omega_{1}t-(2\alpha_{V3}+\alpha_{V5}+2\theta_{V5}+\theta_{V5})]+\frac{1}{2}\cos[11\omega_{1}t-(2\alpha_{V3}+\alpha_{V5}+2\theta_{V5}+\theta_{V5})]+\frac{1}{2}\cos[11\omega_{1}t-(2\alpha_{V3}+\alpha_{V5}+2\theta_{V5}+\theta_{V5}+\theta_{V5})]+\frac{1}{2}\cos[11\omega_{1}t-(2\alpha_{V3}+\alpha_{V5}+2\theta_{V5}+$ $+\frac{3}{2}\phi_{v3}^{2}\phi_{v7}\left[\cos(7\omega_{1}t-\alpha_{v7}-\theta_{v7})+\frac{1}{2}\cos[\omega_{1}t-(\alpha_{v7}-2\alpha_{v3}+\theta_{v7}-2\theta_{v3})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+\omega_{v7}+2\theta_{v7})+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+\omega_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+\omega_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+\omega_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+\omega_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+\omega_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+\omega_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+\omega_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}t-(\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[13\omega_{1}+$ $+2\alpha_{v3}+\theta_{v7}+2\theta_{v3})] +\frac{3}{2}\phi_{v5}^{2}\phi_{v1} \left[\cos(\omega_{1}t-\alpha_{v1}-\theta_{v1})+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v2}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v2}-\theta_{v1})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v2}-\theta_{v2})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v2}-\theta_{v2})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v2}-\theta_{v2})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v2}-\theta_{v2})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v2}-\theta_{v2})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v2}+2\theta_{v2}-\theta_{v2})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v2}+2\theta_{v2}-\theta_{v2})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v2}+2\theta_{v2}-\theta_{v2})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v2}+2\theta_{v2}-\theta_{v2})]+\frac{1}{2}\cos[9\omega_{1}t-(2\alpha_{v2}+2\theta_{v2}-\theta_{v2}-\theta_{v2})]+\frac{1}{2}\cos[9\omega_{1}t \frac{1}{2}\cos[11\omega_{1}t - (2\alpha_{v5}+\alpha_{v1}+2\theta_{v5}+\theta_{v1})] + \frac{3}{2}\phi_{v5}^{2}\phi_{v3} \left[\cos(3\omega_{1}t - \alpha_{v3}-\theta_{v3}) + \frac{1}{2}\right]$ $\left.\cos\left[7\omega_{1}t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3})\right] + \frac{1}{2}\cos\left[13\omega_{1}t - (2\alpha_{v5} + \alpha_{v3} + 2\theta_{v5} + \theta_{v3})\right] + \frac{3}{2}\phi_{v5}^{2}\phi_{v7}$ $\cdot \left[\cos(7\omega_1 t - \alpha_{v7}^{-\theta} v_7) + \frac{1}{2} \cos[3\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{+\alpha} v_7 + 2\theta_{v5}^{+\theta} v_7)] \right] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{+\alpha} v_7 + 2\theta_{v5}^{+\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_7)] + \frac{1}{2} \cos[17\omega_1 t - (2\alpha_{v5}^{-\alpha} v_7 + 2\theta_{v5}^{-\theta} v_$ $+\frac{3}{2} \phi_{v7}^2 \phi_{v1} \left[\cos(\omega_1 t - \alpha_{v1} - \theta_{v1}) + \frac{1}{2} \cos[13\omega_1 t - (2\alpha_{v7} - \alpha_{v1} + 2\theta_{v7} - \theta_{v1})] + \frac{1}{2} \cos[15\omega_1 t - (2\alpha_{v7} - \theta_{v1})] \right]$ $+\alpha_{v1}+2\theta_{v7}+\theta_{v1})] + \frac{3}{2} \phi_{v7}^{2} \phi_{v3} \left[\cos(3\omega_{1}t-\alpha_{v3}-\theta_{v3}) + \frac{1}{2}\cos[11\omega_{1}t-(2\alpha_{v7}-\alpha_{v3}+2\theta_{v7}-\theta_{v3})] + \frac{1}{2}\cos[11\omega_{1}t-(2\alpha_{v7}-\alpha_{v7}+2\theta_{v7}-\theta_{v7}-\theta_{v7})] + \frac{1}{2}\cos[11\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{v7}-\theta_{v7}$ $\frac{1}{2}\cos[17\omega_{1}t - (2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})] + \frac{3}{2}\phi_{v7}^{2}\phi_{v5} \left[\cos(5\omega_{1}t-\alpha_{v5}-\theta_{v5}) + \frac{1}{2}\cos[9\omega_{1}t - \frac{1}{2}\cos[9\omega_{1}t$ $+(2\alpha_{v7}-\alpha_{v5}+2\theta_{v7}-\theta_{v5})]+\frac{1}{2}\cos[19\omega_{1}t-(2\alpha_{v7}+\alpha_{v5}+2\theta_{v7}+\theta_{v5})]]+6\phi_{v1}\phi_{v3}\phi_{v5}\cdot[$ 1 $\cdot \cos[\omega_{1}t - (\alpha_{v5} - \alpha_{v3} - \alpha_{v1} + \theta_{v5} - \theta_{v3} - \theta_{v1})] + \frac{1}{4} \cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + \frac{1}{4} \cdot$ $\cdot \cos [7\omega_1 t - (\alpha_{v5} + \alpha_{v3} - \alpha_{v1} + \theta_{v5} + \theta_{v3} - \theta_{v1})] + \frac{1}{4} \cos [9\omega_1 t - (\alpha_{v5} + \alpha_{v3} + \alpha_{v1} + \theta_{v5} + \theta_{v3} + \theta_{v1})] \Big] + 6 \phi_{v1} \cdot$

237 $\cdot \Phi_{v2} \Phi_{v7} \left[\frac{1}{4} \cos [3\omega_1 t - (\alpha_{v7} - \alpha_{v3} - \alpha_{v1} + \theta_{v7} + \theta_{v3} - \theta_{v1})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \alpha_{v1} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \alpha_{v1} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \alpha_{v1} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \alpha_{v1} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \alpha_{v1} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \alpha_{v1} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \alpha_{v1} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \alpha_{v1} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \alpha_{v1} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \alpha_{v1} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \alpha_{v1} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \alpha_{v1} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \alpha_{v1} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \alpha_{v1} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \theta_{v7} + \theta_{v7} - \theta_{v3} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \theta_{v7} + \theta_{v7} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v3} + \theta_{v7} + \theta_{v7} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v7} + \theta_{v7} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v7} + \theta_{v7} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v7} + \theta_{v7} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v7} + \theta_{v7} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v7} + \theta_{v7} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v7} + \theta_{v7} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v7} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} - \alpha_{v7} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} + \theta_{v7} + \theta_{v7})] + \frac{1}{4} \cos [5\omega_1 t - (\alpha_{v7} + \theta_{v7})] + \frac{1$ $+\frac{1}{4}\cos[9\omega_{1}t - (\alpha_{v7} + \alpha_{v3} - \alpha_{v1} + \theta_{v7} + \theta_{v3} - \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v3} + \alpha_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v1} + \theta_{v7} + \theta_{v7} + \theta_{v1} + \theta_{v7} + \theta_{v1})] + \frac{1}{4}\cos[1\omega_{1}t - (\alpha_{v7} + \alpha_{v1} + \theta_{v7} + \theta_{v1} + \theta_{v$ $+6\Phi_{v3}\Phi_{v5}\Phi_{v7} \left[\frac{1}{4}\cos[\omega_{1}t - (\alpha_{v3} - \alpha_{v7} + \alpha_{v5} + \theta_{v3} - \theta_{v7} + \theta_{v5})] + \frac{1}{4}\cos[5\omega_{1}t - (\alpha_{v3} + \alpha_{v7} - \alpha_{v5} + \theta_{v3} +$ $+\theta_{v7}-\theta_{v5})]+\frac{1}{4}\cos[9\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v3}+\theta_{v7}+\theta_{v5}-\theta_{v3})+\frac{1}{4}\cos[15\omega_{1}t-(\alpha_{v7}+\alpha_{v5}+\alpha_{v3}+\theta_{v7}+\theta_{v5}+\theta$ $+\theta_{v_{3}}]+\frac{1}{4}\cos[9\omega_{1}t-(\alpha_{v_{7}}+\alpha_{v_{5}}-\alpha_{v_{3}}+\theta_{v_{7}}-\theta_{v_{5}}-\theta_{v_{3}})]+\frac{1}{4}\cos[15\omega_{1}t-(\alpha_{v_{7}}+\alpha_{v_{5}}+\alpha_{v_{3}}+\theta_{v_{7}}+\theta_{v_{5}}+\theta_{$ $+\theta_{v_{3}})]] + 6\theta_{v_{1}}\theta_{v_{5}}\theta_{v_{7}} \left[\frac{1}{4}\cos[\omega_{1}t - (\alpha_{v_{7}} - \alpha_{v_{5}} - \alpha_{v_{1}} + \theta_{v_{7}} - \theta_{v_{5}} - \theta_{v_{1}})] + \frac{1}{4}\cos[3\omega_{1}t - (\alpha_{v_{7}} - \alpha_{v_{5}} + \theta_{v_{1}} - \theta_{v_{1}})] + \frac{1}{4}\cos[3\omega_{1}t - (\alpha_{v_{7}} - \alpha_{v_{5}} + \theta_{v_{1}} - \theta_{v_{1}})] + \frac{1}{4}\cos[3\omega_{1}t - (\alpha_{v_{7}} - \alpha_{v_{5}} + \theta_{v_{1}} - \theta_{v_{1}})] + \frac{1}{4}\cos[3\omega_{1}t - (\alpha_{v_{7}} - \alpha_{v_{5}} + \theta_{v_{1}} - \theta_{v_{1}})] + \frac{1}{4}\cos[3\omega_{1}t - (\alpha_{v_{7}} - \alpha_{v_{5}} + \theta_{v_{1}} - \theta_{v_{1}})] + \frac{1}{4}\cos[3\omega_{1}t - (\alpha_{v_{7}} - \alpha_{v_{5}} + \theta_{v_{1}} - \theta_{v_{1}})] + \frac{1}{4}\cos[3\omega_{1}t - (\alpha_{v_{7}} - \alpha_{v_{5}} + \theta_{v_{1}} - \theta_{v_{1}})] + \frac{1}{4}\cos[3\omega_{1}t - (\alpha_{v_{7}} - \alpha_{v_{5}} + \theta_{v_{1}} - \theta_{v_{1}})] + \frac{1}{4}\cos[3\omega_{1}t - (\alpha_{v_{7}} - \alpha_{v_{5}} + \theta_{v_{1}} - \theta_{v_{1}})] + \frac{1}{4}\cos[3\omega_{1}t - (\alpha_{v_{7}} - \alpha_{v_{5}} + \theta_{v_{1}} - \theta_{v_{1}})] + \frac{1}{4}\cos[3\omega_{1}t - (\alpha_{v_{7}} - \alpha_{v_{5}} + \theta_{v_{1}} - \theta_{v_{1}} - \theta_{v_{1}})] + \frac{1}{4}\cos[3\omega_{1}t - \theta_{v_{1}} +\alpha_{v1}+\theta_{v7}-\theta_{v5}+\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}+\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}+\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}+\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}+\alpha_{v1}+\theta_{v7}+\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}+\alpha_{v1}+\theta_{v7}+\theta_{v5}+\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+\alpha_{v5}+\alpha_{v1}+\theta_{v7}$ + α_{v5} + α_{v1} + θ_{v7} + θ_{v5} + θ_{v1})] (13)Após ter sido estabelecida a equação (13) passa-se ago ra ao desenvolvimento da expressão (6).-Substituindo (7), (8), (9) e (10) na equação (6), obtém-se: $\phi_{1}^{5} = [a+b+c+d]^{5} = [(a+b)+(c+d)]^{5}$ $\phi_{y}^{5} = (a+b)^{5} + 5(a+b)^{4}(c+d) + 10(a+b)^{3}(c+d)^{2} + 10(a+b)^{2}(c+d)^{3} + 10(a+b)^{3}(c+d)^{3} + 1$ + $5(a+b)(c+d)^{4}+(c+d)^{5}$ (14)Desenvolvendo-se a equação (14), e colocando os termos em ordem resulta:

62

(1)

 $b^{5} = a^{5} + b^{5} + c^{5} + d^{5} + 5a^{4}b + 5a^{4}c + 5a^{4}d + 5b^{4}a + 5b^{4}c + 5b^{4}d + 5c^{4}a + 5c^{4}b + 5c^{4}d + 5c^{4}d + 5c^{4}a + 5c^{4}b + 5c^{4}d + 5c^{$ $+5d^{4}a+5d^{4}b+5d^{4}c+10a^{3}b^{2}+10a^{3}b^{2}+10a^{3}d^{2}+10b^{3}a^{2}+10b^{3}c^{2}+10b^{3}d^{2}+$ $+10c^{3}a^{2} + 10c^{3}b^{2} + 10c^{3}d^{2} + 10d^{3}a^{2} + 10d^{3}b^{2} + 10d^{3}c^{2} + 20a^{3}bc + 20a^{3}bd +$ + $2Ca^{3}cd + 20b^{3}ac + 20b^{3}ad + 20b^{3}cd + 20c^{3}ab + 20c^{3}ad + 20c^{3}bd + 20d^{3}ab + 20c^{3}ab + 20$ + $20d^{3}ac + 20d^{3}bc + 30a^{2}b^{2}c + 30a^{2}b^{2}d + 30a^{2}c^{2}b + 30a^{2}c^{2}d + 30a^{2}d^{2}b + +$ + $30a^2d^2c + 30b^2c^2d + 30b^2d^2a + 30b^2d^2c + 30c^2d^2a + 30c^2d^2b + 60a^2bcd +$ $\div 60b^2acd + 60c^2abd + 60d^2abc$ (15)Substituindo os valores de a, b, c e d na equação (15), e, fazendo-se os desenvolvimentos necessários chega-se ao seguinte resultado final: $\phi_{v}^{5} = \Phi_{v1}^{5} \left[\frac{1}{16} \cos(5\omega_{1}t - 5\omega_{v1} - 5\theta_{v1}) + \frac{5}{16} \cos(3\omega_{1}t - 3\omega_{v1} - 3\theta_{v1}) + \frac{5}{8} \cos(\omega_{1}t - \omega_{v1} - \theta_{v1}) \right] + \frac{5}{16} \cos(5\omega_{1}t - 2\omega_{1} - \theta_{v1}) + \frac{5}{16} \cos(5\omega$ $+ \phi_{v3}^{5} [\frac{1}{16} \cos (5\omega_{1}t - 5\omega_{v3} - 5\theta_{v3}) + \frac{5}{16} \cos (9\omega_{1}t - 3\omega_{v3} - 3\theta_{v3}) + \frac{5}{8} \cos (3\omega_{1}t - \omega_{v3} - \theta_{v3})] +$ $+\phi_{V5}^{5} [\frac{1}{16} \cos (25\omega_{1}t - 5\alpha_{V5} - 5\theta_{V5}) + \frac{5}{16} \cos (15\omega_{1}t - 3\alpha_{V5} - 3\theta_{V5}) + \frac{5}{8} \cos (5\omega_{1}t - \alpha_{V5} - \theta_{V5})] +$ $+\phi_{v7}^{5} [\frac{1}{16} \cos(35\omega_{1}t - 7\alpha_{v7} - 7\theta_{v7}) + \frac{5}{16} \cos(21\omega_{1}t - 3\alpha_{v7} - 3\theta_{v7}) + \frac{5}{8} \cos(7\omega_{1}t - \alpha_{v7} - \theta_{v7})] +$ $+5\phi_{v1}^{4}\phi_{v3}\left[\frac{1}{16}\cos[\omega_{1}t-(4\alpha_{v1}-\theta_{v3}+4\theta_{v1}-\theta_{v3})+\frac{1}{16}\cos[7\omega_{1}t-(4\alpha_{v1}+\alpha_{v3}+4\theta_{v1}+\theta_{v3})]\right] +$ + $\frac{1}{4}\cos[\omega_1 t - (\alpha_{v3} - 2\alpha_{v1} + \theta_{v3} - 2\theta_{v1})] + \frac{1}{4}\cos(5\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + 2\theta_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1} + \theta_{v3})] + \frac{3}{8}\cos(3\omega_1 t - (2\alpha_{v1$ $-\alpha_{v3}-\alpha_{v3}$ + 5 $e_{v1}^{4}e_{v5}\left[\frac{1}{16}\cos[\omega_{t}-(\alpha_{v5}-4\alpha_{v1}+\theta_{v5}-4\theta_{v1})] + \frac{1}{16}\cos[9\omega_{t}t - (\alpha_{v5}+\omega_{v5}-4\theta_{v1})]\right]$

239 $+4\alpha_{v1}+\theta_{v5}+4\theta_{v1})]+\frac{1}{4}\cos(3\omega_{1}t-(\alpha_{v5}-2\alpha_{v1}+\theta_{v5}-2\theta_{v1})]+\frac{1}{4}\cos(7\omega_{1}t-(\alpha_{v5}+2\alpha_{v1}+\theta_{v5}+2\theta_{v1})]+$ $+\frac{3}{8}\cos(5\omega_{1}t-\alpha_{V}5-\theta_{V}5)\right] +5\phi_{V1}^{2}\phi_{V7}\left[\frac{1}{16}\cos[3\omega_{1}t-(\alpha_{V7}-4\alpha_{V1}+\theta_{V7}-4\theta_{V1})] +\frac{1}{16}\cos[11\omega_{1}t-(\alpha_{V7}-4\alpha_{V1}+\theta_{V7}-4\theta_{V1})]\right]$ $-(\alpha_{v7}^{+4}\alpha_{v1}^{+\theta}+\theta_{v7}^{+4\theta}+\eta_{v1}^{-1})] + \frac{1}{4}\cos[5\omega_{1}t - (\alpha_{v7}^{-2}\alpha_{v1}^{+\theta}+\theta_{v7}^{-2\theta}+\eta_{v1}^{-1}) + \frac{1}{4}\cos(9\omega_{1}t - (\alpha_{v7}^{+2}\alpha_{v1}^{-1}+\theta_{v7}^{-2\theta}+\eta_{v1}^{-1}) + \frac{1}{4}\cos(9\omega_{1}t - (\alpha_{v7}^{+2}\alpha_{v1}^{-1}+\theta_{v1}^{-1})) + \frac{1}{4}\cos(9\omega_{1}t - (\alpha_{v7}^{+2}\alpha_{v1}^{-1}+\theta_{v1}^{-1}+\theta_{v1}^{-1})) + \frac{1}{4}\cos(9\omega_{1}t - (\alpha_{v7}^{-1}+\theta_{v1}^{-1}+\theta_{v1}^{-1}+\theta_{v1}^{-1})) + \frac{1}{4}\cos(9\omega_{1}^{-1}+\theta_{v1}^{-1}+\theta_{v1}^{-1}+\theta_{v1}^{-1})) + \frac{1}{4}\cos(9\omega_{1}^{-1}+\theta_{v1}^{-1}+\theta_{v1}^{-1}+\theta_{v1}^{-1}+\theta_{v1}^{-1})) + \frac{1}{4}\cos(9\omega_{1}^{-1}+$ $+\theta_{v7}+2\theta_{v1})]+\frac{3}{8}\cos(7\omega_{1}t-\alpha_{v7}-\theta_{v7})]+5\phi_{v3}^{2}\phi_{v1}\left[\frac{1}{16}\cos[11\omega_{1}t-(4\alpha_{v3}-\alpha_{v1}+4\theta_{v3}-\theta_{v1})]+\right]$ + $\frac{1}{16}\cos[13\omega_1t - (4\alpha_{v3} + \alpha_{v1} + 4\theta_{v3} + \theta_{v1})] + \frac{1}{4}\cos[5\omega_1t - (2\alpha_{v3} - \alpha_{v1} + 2\theta_{v3} - \theta_{v1})] +$ $+\frac{1}{4}\cos[7\omega_{1}t-(2\alpha_{v3}+\alpha_{v1}+2\theta_{v3}+\theta_{v1})]+\frac{3}{8}\cos(\omega_{1}t-\alpha_{v1}+\theta_{v1})\Big]+5\phi_{v3}^{4}\phi_{v5}\left[\frac{1}{16}\cos[7\omega_{1}t-\omega_{v1}+\theta_{v1})\right]$ $-(4\alpha_{v3}-\alpha_{v5}+4\theta_{v3}-\theta_{v5})]+\frac{1}{16}\cos[17\omega_{1}t-(4\alpha_{v3}+\alpha_{v5}+4\theta_{v3}+\theta_{v5})]+\frac{1}{4}\cos[\omega_{1}t-(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v3}-2)(2\alpha_{v$ $-\alpha_{v5}+2\theta_{v3}-\theta_{v5})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v3}+\alpha_{v5}+2\theta_{v3}+\theta_{v5})]+\frac{3}{8}\cos(5\omega_{1}t-\alpha_{v5}-\theta_{v5})]+$ $+5\phi_{v3}^{4}\phi_{v7} \left[\frac{1}{16} \cos[5\omega_{1}t - (4\alpha_{v3} - \alpha_{v7} + 4\theta_{v3} - \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v3} + \alpha_{v7} + 4\theta_{v3} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v3} + \alpha_{v7} + 4\theta_{v3} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v3} + \alpha_{v7} + 4\theta_{v3} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v3} + \alpha_{v7} + 4\theta_{v3} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v3} + \alpha_{v7} + 4\theta_{v3} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v3} + \alpha_{v7} + 4\theta_{v3} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v3} + \alpha_{v7} + 4\theta_{v3} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v3} + \alpha_{v7} + 4\theta_{v3} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v3} + \alpha_{v7} + 4\theta_{v3} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v3} + \alpha_{v7} + 4\theta_{v3} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v3} + \alpha_{v7} + 4\theta_{v3} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v3} + \alpha_{v7} + 4\theta_{v3} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v3} + \alpha_{v7} + 4\theta_{v3} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v3} + \alpha_{v7} + 4\theta_{v3} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v3} + \alpha_{v7} + 4\theta_{v7} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v7} + 4\theta_{v7} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v7} + 4\theta_{v7} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v7} + 4\theta_{v7} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v7} + \theta_{v7} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v7} + \theta_{v7} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v7} + \theta_{v7} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v7} + \theta_{v7} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v7} + \theta_{v7} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v7} + \theta_{v7} + \theta_{v7})] + \frac{1}{16} \cos[19\omega_{1}t - (4\alpha_{v7} + \theta_{v7})] + \frac{1}{16$ $+\frac{1}{4}\cos[\omega_{1}t-(\alpha_{v7}-2\alpha_{v3}+\theta_{v7}-2\theta_{v3})]+\frac{1}{4}\cos[13\omega_{1}t-(\alpha_{v7}+2\alpha_{v3}+\theta_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v7}+2\theta_{v3})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{3}{8}\cos(7\omega_{1}t-\omega_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_$ $-\alpha_{v7} - \theta_{v7}) + 5\phi_{v5}^{4}\phi_{v1} \left[\frac{1}{16}\cos[19\omega_{1}t - (4\alpha_{v5} - \alpha_{v1} + 4\theta_{v5} - \theta_{v1})] + \frac{1}{16}\cos[21\omega_{1}t - (4\alpha_{v5} - \alpha_{v1} + 4\theta_{v5} - \theta_{v1})]\right] + \frac{1}{16}\cos[21\omega_{1}t - (4\alpha_{v5} - \alpha_{v1} + 4\theta_{v5} - \theta_{v1})] + \frac{1}{16}\cos[21\omega_{1}t - (4\alpha_{v5} - \alpha_{v1} + 4\theta_{v5} - \theta_{v1})]$ $-(4\alpha_{v5}+\alpha_{v1}+4\theta_{v5}+\theta_{v1})]+\frac{1}{4}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v5}-\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v5}+2\theta_{v1})]+$ $+\alpha_{v1}+2\theta_{v5}+\theta_{v1})]+\frac{3}{8}\cos(\omega_{1}t-\alpha_{v1}-\theta_{v1})] + 5\phi_{v5}^{4}\phi_{v3}\left[\frac{1}{16}\cos[17\omega_{1}t-(4\alpha_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+4\theta_{v5}-\frac{6}{7}3+2\theta_{v5}-\frac{6}{7}3+2\theta_{v5}-\frac{6}{7}3+2\theta_{v5} -\theta_{v3})] + \frac{1}{16} \cos \left[23\omega_1 t - (4\alpha_{v5} + \alpha_{v3} + 4\theta_{v5} + \theta_{v3}) \right] + \frac{1}{4} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v3} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - \alpha_{v5} + 2\theta_{v5} - \theta_{v3}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - 2\theta_{v5} - \theta_{v5}) \right] + \frac{1}{16} \cos \left[7\omega_1 t - (2\alpha_{v5} - 2\theta_{v5} - \theta_{v5}) \right]$ $+\frac{1}{4}\cos[13\omega_{1}t-(2\alpha_{v5}+\alpha_{v3}+2\theta_{v5}+\theta_{v3})]+\frac{3}{8}\cos(3\omega_{1}t-\alpha_{v3}-\theta_{v3})] + 5\phi_{v5}^{4}\phi_{v7}^{*}.$ $\frac{1}{16}\cos[13\omega_{1}t - (4\alpha_{v5} - \alpha_{v7} + 4\theta_{v5} - \theta_{v7})] + \frac{1}{16}\cos[27\omega_{1}t - (4\alpha_{v5} + \alpha_{v7} + 4\theta_{v5} + \theta_{v7})] +$

240 $+\frac{1}{4}\cos[3\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})]+\frac{1}{4}\cos(17\omega_{1}t-(2\alpha_{v5}+\alpha_{v7}+2\theta_{v5}+\theta_{v7})]+\frac{3}{8}\cos(7\omega_{1}t-\alpha_{v7}-1)$ $-\theta_{v7}) \Big] + 5\phi_{v7}^{4}\phi_{v1} \Big[\frac{1}{16} \cos [27\omega_1 t - (4\alpha_{v7} - \alpha_{v1} + 4\theta_{v7} - \theta_{v1})] + \frac{1}{16} \cos [29\omega_1 t - (4\alpha_{v7} + \alpha_{v1} + 4\theta_{v7} + \theta_{v7} + \theta_{v$ $+\theta_{v1})]+\frac{1}{4}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{1}{4}\cos[15\omega_{1}t-(2\alpha_{v7}+\alpha_{v1}+2\theta_{v7}+\theta_{v1})]+\frac{3}{8}\cos[15\omega_{1}t-(2\alpha_{v7}+\alpha_{v1}+2\theta_{v7}+\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v1}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v1}-\alpha_{v1}+2\theta_{v1}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v1}-\alpha_{v1}+2\theta_{v1}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v1}-\alpha_{v1}+2\theta_{v1}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}t-(2\alpha_{v1}-\alpha_{v1}+2\theta_{v1}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}+2\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}+2\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}+2\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}+2\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}+2\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}+2\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1})]+\frac{3}{8}\cos[13\omega_{1}+2\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1}-\theta_{v1$ $\cdot (\omega_1 t - \alpha_{v1} - \theta_{v1}) \Big] + 5 \Phi_{v7}^4 \Phi_{v3} \Big[\frac{1}{16} \cos [25 \omega_{1t} - (4 \alpha_{v7} - \alpha_{v3} + 4 \theta_{v7} - \theta_{v3})] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} + 4 \theta_{v7} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v3} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v7} - \theta_{v3})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v7} - \theta_{v7})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v7} - \theta_{v7})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (4 \alpha_{v7} - \theta_{v7} - \theta_{v7})] \Big] + \frac{1}{16} \cos [31 \omega_1 t - (3 \omega_1 - \theta_{v7} - \theta_{v7})] \Big] + \frac{1}{16} \cos$ $+\alpha_{v3}+4\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[11\omega_{1}t-(2\alpha_{v7}-\alpha_{v3}+2\theta_{v7}-\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+2\theta_{v7}+\theta_{v3})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v7}+2\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7})]+\frac{1}{4}\cos[17\omega_{1}t-(2\alpha_{v7}+\alpha_{v7}+2\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta$ $\frac{3}{+8}\cos(3\omega_{1}t-\alpha_{V3}-\theta_{V3}) + 5\Phi_{V7}^{4}\Phi_{V3} \left[\frac{1}{16}\cos(23\omega_{1}t-(4\alpha_{V7}-\alpha_{V5}+4\theta_{V7}-\theta_{V7})] + \frac{1}{16}\cos[33\omega_{1}t-(4\alpha_{V7}-\alpha_{V5}+4\theta_{V7}-\theta_{V7})] + \frac{1}{16}\cos[33\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{1}+4\omega_{$ $-(4\alpha_{v7}+\alpha_{v5}+4\theta_{v7}+\theta_{v5})]+\frac{1}{4}\cos(9\omega_{1}t-(2\alpha_{v7}-\alpha_{v5}+2\theta_{v7}-\theta_{v5})]+\frac{1}{4}\cos[19\omega_{1}t-(2\alpha_{v7}+\alpha_{v5}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7$ $+\theta_{v5})]+\frac{3}{8}\cos(5\omega_{1}t-\alpha_{v5}-\theta_{v5})]+\frac{5}{4}\phi_{v1}^{3}\phi_{v3}^{2}\left[\cos(3\omega_{1}t-3\alpha_{v1}-3\theta_{v1})+3\cos(\omega_{1}t-\alpha_{v1}-\theta_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3\phi_{v1}+3$ $\frac{1}{2}\cos[3\omega_{1}t - (2\alpha_{v3} - 3\alpha_{v1} + 2\theta_{v3} - 3\theta_{v1})] + \frac{1}{2}\cos[9\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 2\theta_{v3} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v3} + 3\alpha_{v1} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v1} + 3\omega_{v1} + 3\theta_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - (2\alpha_{v1} + 3\omega_{v1} + 3\omega_{v1})] + \frac{3}{2}\cos[5\omega_{1}t - 3\omega_{1}t = (2\alpha_{v3} + \alpha_{v1} + 2\theta_{v3} + \theta_{v1}) + \frac{3}{2}\cos[7\omega_1 t - (\alpha_{v1} + 2\alpha_{v3} + \theta_{v1} + 2\theta_{v3})] + 5\phi_{v1}^3 \phi_{v5}^2 \left[\cos(3\omega_1 t - \theta_{v1} + 2\theta_{v3})\right]$ $-3\alpha_{v1}^{-3\theta} + 3\cos(\omega_{1}^{-\alpha} + \alpha_{1}^{-\theta} + \alpha_{1}^{-\theta}) + \frac{1}{2}\cos[7\omega_{1}^{-\alpha} + (2\alpha_{v5}^{-\alpha} - 3\alpha_{v1}^{-\alpha} + 2\theta_{v5}^{-\alpha} - 3\theta_{v1}^{-\alpha})] + \frac{1}{2}\cos[7\omega_{1}^{-\alpha} + (2\alpha_{v5}^{-\alpha} - 3\alpha_{v1}^{-\alpha} + 2\theta_{v5}^{-\alpha} - 3\theta_{v1}^{-\alpha})] + \frac{1}{2}\cos[7\omega_{1}^{-\alpha} + (2\alpha_{v5}^{-\alpha} - 3\alpha_{v1}^{-\alpha} + 2\theta_{v5}^{-\alpha} - 3\theta_{v1}^{-\alpha})] + \frac{1}{2}\cos[7\omega_{1}^{-\alpha} + (2\alpha_{v5}^{-\alpha} - 3\alpha_{v1}^{-\alpha} + 2\theta_{v5}^{-\alpha} - 3\theta_{v1}^{-\alpha})] + \frac{1}{2}\cos[7\omega_{1}^{-\alpha} + (2\alpha_{v5}^{-\alpha} - 3\alpha_{v1}^{-\alpha} + 2\theta_{v5}^{-\alpha} - 3\theta_{v1}^{-\alpha})] + \frac{1}{2}\cos[7\omega_{1}^{-\alpha} + (2\alpha_{v5}^{-\alpha} - 3\alpha_{v1}^{-\alpha} + 2\theta_{v5}^{-\alpha} - 3\theta_{v1}^{-\alpha})] + \frac{1}{2}\cos[6\alpha_{1}^{-\alpha} + (2\alpha_{v5}^{-\alpha} - 3\alpha_{v1}^{-\alpha} + 2\theta_{v5}^{-\alpha} - 3\theta_{v1}^{-\alpha})] + \frac{1}{2}\cos[6\alpha_{1}^{-\alpha} + (2\alpha_{v5}^{-\alpha} - 3\alpha_{v1}^{-\alpha} + 2\theta_{v5}^{-\alpha} - 3\theta_{v1}^{-\alpha})] + \frac{1}{2}\cos[6\alpha_{1}^{-\alpha} + (2\alpha_{v5}^{-\alpha} - 3\alpha_{v1}^{-\alpha} + 2\theta_{v5}^{-\alpha} - 3\theta_{v1}^{-\alpha})] + \frac{1}{2}\cos[6\alpha_{1}^{-\alpha} + (2\alpha_{v5}^{-\alpha} - 3\alpha_{v1}^{-\alpha} + 2\theta_{v5}^{-\alpha} - 3\theta_{v1}^{-\alpha})] + \frac{1}{2}\cos[6\alpha_{1}^{-\alpha} + 2\theta_{v5}^{-\alpha} - 3\theta_{v1}^{-\alpha} + 2\theta_{v5}^{-\alpha} - 3\theta_{v1}^{-\alpha})] + \frac{1}{2}\cos[6\alpha_{1}^{-\alpha} + 2\theta_{v5}^{-\alpha} - 3\theta_{v1}^{-\alpha} + 2\theta_{v5}^{-\alpha} + 2\theta_{v5}^{-\alpha} - 3\theta_{v1}^{-\alpha} + 2\theta_{v5}^{-\alpha} + 2\theta_{v5}^{-\alpha$ $+\frac{1}{2}\cos[13\omega_{1}t-(3\alpha_{v1}+2\alpha_{v5}+3\theta_{v1}+2\theta_{v5})]+\frac{3}{2}\cos[9\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v5}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v2}-\theta_{v1})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v2}-\theta_{v2})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v1}+2\theta_{v2}-\theta_{v2})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v5}-\alpha_{v2}+2\theta_{v2}-\theta_{v2})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v2}-\alpha_{v2}-\theta_{v2})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v2}-\alpha_{v2}-\theta_{v2})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v2}-\alpha_{v2}-\theta_{v2})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v2}-\alpha_{v2}-\theta_{v2})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v2}-\alpha_{v2}-\theta_{v2})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v2}-\alpha_{v2}-\theta_{v2})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v2}-\alpha_{v2}-\theta_{v2})]+\frac{3}{2}\cos[11\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_$ $-(2\alpha_{v5}^{+}+\alpha_{v1}^{+}+2\theta_{v5}^{+}+\theta_{v1}^{-})]\Big] + \frac{5}{4}\varphi_{v1}^{3}\varphi_{v7}^{2} \Big[\cos(3\omega_{1}^{+}t-3\alpha_{v1}^{-}-3\theta_{v1}^{-})+3\cos(\omega_{1}^{+}t-\alpha_{v1}^{-}-\theta_{v1}^{-})+\frac{1}{2}.$ $\cdot \cos[11\omega_{1}t - (2\alpha_{v7} - 3\alpha_{v1} + 2\theta_{v7} - 3\theta_{v1})] + \frac{1}{2}\cos[17\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 3\theta_{v1} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 2\alpha_{v7} + 2\theta_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7} + 2\alpha_{v7})] + \frac{3}{2}[13\omega_{1}t - (3\alpha_{v1} + 2\alpha_{v7})] + \frac{3}{2}[13\omega_{1}t$ $-(2\alpha_{v7}^{-\alpha}\alpha_{v1}^{+2\theta}\alpha_{v7}^{-\theta}\alpha_{v1}^{-\theta})] + \frac{3}{2}\cos[15\omega_{1}t - (2\alpha_{v7}^{+\alpha}\alpha_{v1}^{+2\theta}\alpha_{v7}^{+\theta}\alpha_{v1}^{-\theta})]] + \frac{5}{4}\omega_{v3}^{3}\omega_{v1}^{2} \left[\cos(9\omega_{1}t - (2\alpha_{v7}^{+\alpha}\alpha_{v1}^{+2\theta}\alpha_{v7}^{+\theta}\alpha_{v1}^{-\theta})\right] + \frac{5}{4}\omega_{v3}^{3}\omega_{v1}^{2} \left[\cos(9\omega_{1}t - (2\alpha_{v7}^{+\alpha}\alpha_{v1}^{+\theta}\alpha_{v1}^{-\theta}))\right] + \frac{5}{4}\omega_{v3}^{3}\omega_{v1}^{2} \left[\cos(9\omega_{1}t - (2\alpha_{v7}^{+\alpha}\alpha_{v1}^{+\theta}\alpha_{v1}^{-\theta}))\right] + \frac{5}{4}\omega_{v3}^{3}\omega_{v1}^{2} \left[\cos(9\omega_{1}t - (2\alpha_{v7}^{+\alpha}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}))\right] + \frac{5}{4}\omega_{v3}^{3}\omega_{v1}^{2} \left[\cos(9\omega_{1}t - (2\alpha_{v7}^{+\alpha}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta})\right] + \frac{5}{4}\omega_{v3}^{3}\omega_{v1}^{2} \left[\cos(9\omega_{1}t - (2\alpha_{v7}^{+\alpha}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta})\right] + \frac{5}{4}\omega_{v3}^{3}\omega_{v1}^{2} \left[\cos(9\omega_{1}t - (2\alpha_{v7}^{+\alpha}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta})\right] + \frac{5}{4}\omega_{v3}^{3}\omega_{v1}^{2} \left[\cos(9\omega_{1}t - (2\alpha_{v7}^{+\alpha}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta})\right] + \frac{5}{4}\omega_{v3}^{3}\omega_{v1}^{2} \left[\cos(9\omega_{1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha_{v1}^{-\theta}\alpha$ $-3\alpha_{v3}^{-3\theta} - 3\theta_{v3}^{-3\theta} + 3\cos(3\omega_1 t - 3\alpha_{v3}^{-\theta} - \theta_{v3}^{-\theta}) + \frac{1}{2}\cos(7\omega_1 t - (3\alpha_{v3}^{-\theta} - 2\alpha_{v1}^{-\theta} + 3\theta_{v3}^{-\theta} - 2\theta_{v1}^{-\theta})] +$

241 $+\frac{1}{2}\cos[11\omega_{1}t-(3\alpha_{v3}+2\alpha_{v1}+3\theta_{v3}+2\theta_{v1})]+\frac{3}{2}\cos[\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v3}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v1}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v1}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}t-(\alpha_{v3}-2\alpha_{v1}+2\theta_{v1}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}+2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}+2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1})]+\frac{3}{2}\cos[5\omega_{1}+2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1})]+\frac{3}{2}\cos[6\omega_{1}+2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v1}-2\theta_{v$ $-(a_{v3}+2a_{v1}+\theta_{v3}+2\theta_{v1})] + \frac{5}{4} \frac{\phi^3}{v_3} \frac{\phi^2}{v_5} \left[\cos(9\omega_1 t - 3\alpha_{v3} - 3\theta_{v3}) + 3\cos(3\omega_1 t - 3\alpha_{v3} - \theta_{v3}) + 3\cos(3\omega_1 t - 3\alpha_{v3} \frac{1}{2}\cos[\omega_{1}t - (2\alpha_{v5} - 3\alpha_{v3} + 2\theta_{v5} - 3\theta_{v3})] + \frac{1}{2}\cos[19\omega_{1}t - (3\alpha_{v3} + 2\alpha_{v5} + 3\theta_{v3} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v3} + 2\alpha_{v5} + 3\theta_{v3} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v3} + 2\alpha_{v5} + 3\theta_{v3} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v3} + 2\alpha_{v5} + 3\theta_{v3} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v3} + 2\alpha_{v5} + 3\theta_{v3} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 3\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 3\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 3\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 3\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 3\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 3\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 2\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 2\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 2\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 2\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 2\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 2\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 2\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 2\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 2\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 2\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - (3\alpha_{v5} + 2\theta_{v5} + 2\theta_{v5} + 2\theta_{v5})] + \frac{3}{2}\cos[7\omega_{1}t - 2\theta_{v5} + 2\theta_{v$ $-(2\alpha_{v5}-\alpha_{v3}+2\theta_{v5}-\theta_{v3})]+\frac{3}{2}\cos[13\omega_{1}t-(\alpha_{v3}+2\alpha_{v5}+\theta_{v3}+2\theta_{v5})]]+\frac{5}{4}\phi_{v3}^{3}\phi_{v7}^{2}\left[\cos(9\omega_{1}t-\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega_{1}+2\omega$ $-3^{\alpha}v_{3} - 3^{\theta}v_{3}) + 3\cos(3^{\omega}_{1}t - 3^{\alpha}v_{3} - {}^{\theta}v_{3}) + \frac{1}{2}\cos[5^{\omega}_{1}t - (2^{\alpha}v_{7} - 3^{\alpha}v_{3} + 2^{\theta}v_{7} - 3^{\theta}v_{3})] + \frac{1}{2}\cos[23^{\omega}_{1}t - (2^{\omega}v_{7} - 3^{\omega}v_{3} + 2^{\theta}v_{7} - 3^{\theta}v_{3})] + \frac{1}{2}\cos[23^{\omega}_{1}t - (2^{\omega}v_{7} - 3^{\omega}v_{3} + 2^{\theta}v_{7} - 3^{\theta}v_{3})] + \frac{1}{2}\cos[23^{\omega}_{1}t - (2^{\omega}v_{7} - 3^{\omega}v_{3} + 2^{\theta}v_{7} - 3^{\theta}v_{3})] + \frac{1}{2}\cos[23^{\omega}_{1}t - (2^{\omega}v_{7} - 3^{\omega}v_{3} + 2^{\theta}v_{7} - 3^{\theta}v_{3})] + \frac{1}{2}\cos[23^{\omega}_{1}t - (2^{\omega}v_{7} - 3^{\omega}v_{3} + 2^{\theta}v_{7} - 3^{\theta}v_{3})] + \frac{1}{2}\cos[23^{\omega}_{1}t - (2^{\omega}v_{7} - 3^{\omega}v_{3} + 2^{\theta}v_{7} - 3^{\theta}v_{3})] + \frac{1}{2}\cos[23^{\omega}_{1}t - (2^{\omega}v_{7} - 3^{\omega}v_{3} + 2^{\theta}v_{7} - 3^{\theta}v_{3})] + \frac{1}{2}\cos[23^{\omega}_{1}t - (2^{\omega}v_{7} - 3^{\omega}v_{3} + 2^{\theta}v_{7} - 3^{\theta}v_{3})] + \frac{1}{2}\cos[23^{\omega}_{1}t - (2^{\omega}v_{7} - 3^{\omega}v_{3} + 2^{\theta}v_{7} - 3^{\theta}v_{3})] + \frac{1}{2}\cos[23^{\omega}_{1}t - (2^{\omega}v_{7} - 3^{\omega}v_{3} + 2^{\theta}v_{7} - 3^{\theta}v_{3})] + \frac{1}{2}\cos[23^{\omega}v_{7} - 3^{\omega}v_{7} + 2^{\theta}v_{7} - 3^{\theta}v_{3})] + \frac{1}{2}\cos[23^{\omega}v_{7} - 3^{\omega}v_{7} + 2^{\theta}v_{7} - 3^{\theta}v_{7} + 2^{\theta}v_{7} + 2^{\theta}v_{7} - 3^{\theta}v_{7} + 2^{\theta}v_{7} - 3^{\theta}v_{7} + 2^{\theta}v_{7} + 2$ $-(3\alpha_{v3}+2\alpha_{v7}+3\theta_{v3}+2\theta_{v7})] + \frac{3}{2}\cos[11\omega_{1}t - (2\alpha_{v7}-\alpha_{v3}+2\theta_{v7}-\theta_{v3})] + \frac{3}{2}\cos[17\omega_{1}t - (\alpha_{v3}+2\alpha_{v7}+2\theta_{v7}-\theta_{v3})] + \frac{3}{2}\cos[17\omega_{1}t - (\alpha_{v3}+2\alpha_{v7}+2\theta_{v7}+2\theta_{v7}-\theta_{v3})] + \frac{3}{2}\cos[17\omega_{1}t - (\alpha_{v3}+2\alpha_{v7}+2\theta_{v7}-\theta_{v3})] + \frac{3}{2}\cos[17\omega_{1}t - (\alpha_{v3}+2\alpha_{v7}+2\theta_{v7}+2\theta_{v7}-\theta_{v3})] + \frac{3}{2}\cos[17\omega_{1}t - (\alpha_{v3}+2\alpha_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}$ $+\theta_{\mathbf{v}\mathbf{3}}+2\theta_{\mathbf{v}\mathbf{7}})] + \frac{5}{4}\theta_{\mathbf{v}\mathbf{5}}^{\mathbf{3}}\theta_{\mathbf{v}\mathbf{1}}^{2} \left[\cos(15\omega_{1}t-3\alpha_{\mathbf{v}\mathbf{5}}-3\theta_{\mathbf{v}\mathbf{5}})+3\cos(5\omega_{1}t-\alpha_{\mathbf{v}\mathbf{5}}-\theta_{\mathbf{v}\mathbf{5}}) + \frac{1}{2}\cos[13\omega_{1}t-3\omega_{\mathbf{v}\mathbf{5}}-3\theta_{\mathbf{v}\mathbf{5}}] + 3\cos(5\omega_{1}t-3\omega_{\mathbf{5}}-\theta_{\mathbf{v}\mathbf{5}}) + \frac{1}{2}\cos[13\omega_{1}t-3\omega_{\mathbf{5}}-\theta_{\mathbf{v}\mathbf{5}}] + \frac{1}{2}\cos[13\omega_{\mathbf{5}}+2\theta_{\mathbf{5}}-\theta_{\mathbf{5}}] + \frac{1}{2}\cos[13\omega_{\mathbf{5}}+2\theta_{\mathbf{5}}-\theta_{\mathbf{5}}] + \frac{1}{2}\cos[13\omega_{\mathbf{5}}+2\theta_{\mathbf{5}}-\theta_{\mathbf{5}}] + \frac{1}{2}\cos[13\omega_{\mathbf{5}}+2\theta_{\mathbf{5}}-\theta_{\mathbf{5}}] + \frac{1}{2}\cos[13\omega_{\mathbf{5}}+2\theta_{\mathbf{5}}-\theta_{\mathbf{5}}] + \frac{1}{2}\cos[13\omega_{\mathbf{5}}+2\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}] + \frac{1}{2}\cos[13\omega_{\mathbf{5}}+2\theta_{\mathbf{5}}-\theta_{\mathbf{5}}] + \frac{1}{2}\cos[13\omega_{\mathbf{5}}+2\theta_{\mathbf{5}}-\theta_{\mathbf{5}}] + \frac{1}{2}\cos[13\omega_{\mathbf{5}}+2\theta_{\mathbf{5}}-\theta_{\mathbf{5}}] + \frac{1}{2}\cos[13\omega_{\mathbf{5}}+2\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}] + \frac{1}{2}\cos[13\omega_{\mathbf{5}}+2\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}] + \frac{1}{2}\cos[13\omega_{\mathbf{5}}+2\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}] + \frac{1}{2}\cos[13\omega_{\mathbf{5}}+2\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}] + \frac{1}{2}\cos[13\omega_{\mathbf{5}}+2\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}] + \frac{1}{2}\cos[13\omega_{\mathbf{5}}+2\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf{5}}-\theta_{\mathbf$ $-(3\alpha_{v5}-2\alpha_{v1}+3\theta_{v5}-2\theta_{v1})] + \frac{1}{2}\cos[17\omega_{1}t - (3\alpha_{v5}+2\alpha_{v1}+3\theta_{v5}+2\theta_{v1})] + \frac{3}{2}\cos[3\omega_{1}t - (\alpha_{v5}-2\alpha_{v1}+3\theta_{v5}+2\theta_{v1})] + \frac{3}{2}\cos[3\omega_{1}t - (\alpha_{v5}-2\alpha_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1})] + \frac{3}{2}\cos[3\omega_{1}t - (\alpha_{v5}-2\alpha_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1})] + \frac{3}{2}\cos[3\omega_{1}t - (\alpha_{v5}-2\alpha_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{$ $+ \frac{\theta}{v_{5}} - 2 \frac{\theta}{v_{1}} \right] + \frac{5}{4} \frac{\phi^{3}}{v_{5}} \frac{\phi^{2}}{v_{3}} \left[\cos(15\omega_{1}t - 3\alpha_{v_{5}} - 3\theta_{v_{5}}) + 3\cos(5\omega_{1}t - \alpha_{v_{5}} - \theta_{v_{5}}) + \frac{1}{2}\cos[9\omega_{1}t - 3\alpha_{v_{5}} - 3\theta_{v_{5}}] \right] + \frac{1}{2}\cos[9\omega_{1}t - 3\alpha_{v_{5}} - 3\theta_{v_{5}}] + \frac{1}{2}\cos[9\omega_{1}t - 3\alpha_{v_{5}}] + \frac{1}{2}\cos[9\omega_{1}t - 3\alpha_{v_{5}} - 3\theta_{v_{5}}] + \frac{1}{2}\cos[9\omega_$ $-(3\alpha_{v5}-2\alpha_{v3}+3\theta_{v5}-2\theta_{v3})] + \frac{1}{2}\cos[21\omega_{1}t - (3\alpha_{v5}+2\alpha_{v3}+3\theta_{v5}+2\theta_{v3})] + \frac{3}{2}\cos[\omega_{1}t - (2\alpha_{v3}-\alpha_{v5}+2\theta_{v3})] + \frac{3}{2}\cos[\omega_{1}t - (2\alpha_{v3}-2\theta_{v3})] + \frac{3}{2}\cos[\omega_{1}t$ $+2\theta_{v3}-\theta_{v5})]+\frac{3}{2}\cos[11\omega_{1}t-(2\alpha_{v3}+\alpha_{v5}+2\theta_{v3}+\theta_{v5})]]+\frac{5}{4}\phi_{v5}^{3}\phi_{v7}^{2}\left[\cos(15\omega_{1}t-3\alpha_{v5}-3\theta_{v5})+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_{v5}^{2}+\frac{3}{4}\phi_$ $+3\cos(5\omega_{1}t-\alpha_{v5}-\theta_{v5})+\frac{1}{2}\cos[\omega_{1}t-(3\alpha_{v5}-2\alpha_{v7}+3\theta_{v5}-2\theta_{v7})]+\frac{1}{2}\cos[29\omega_{1}t-(3\alpha_{v5}+2\alpha_{v7}+3\theta_{v5}-2\theta_{v7})]+\frac{1}{2}\cos[29\omega_{1}t-(3\alpha_{v5}+2\alpha_{v7}+3\theta_{v5}-2\theta_{v7})]+\frac{1}{2}\cos[29\omega_{1}t-(3\alpha_{v5}+2\alpha_{v7}+3\theta_{v5}-2\theta_{v7})]+\frac{1}{2}\cos[29\omega_{1}t-(3\alpha_{v5}+2\alpha_{v7}+3\theta_{v5}-2\theta_{v7})]+\frac{1}{2}\cos[29\omega_{1}t-(3\alpha_{v5}+2\alpha_{v7}+3\theta_{v5}-2\theta_{v7})]+\frac{1}{2}\cos[29\omega_{1}t-(3\alpha_{v5}+2\alpha_{v7}+3\theta_{v5}-2\theta_{v7})]+\frac{1}{2}\cos[29\omega_{1}t-(3\alpha_{v5}+2\alpha_{v7}+3\theta_{v5}-2\theta_{v7})]+\frac{1}{2}\cos[29\omega_{1}t-(3\alpha_{v5}+2\alpha_{v7}+3\theta_{v5}-2\theta_{v7})]+\frac{1}{2}\cos[29\omega_{1}t-(3\alpha_{v5}+2\alpha_{v7}+3\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[29\omega_{1}t-(3\alpha_{v5}+2\alpha_{v7}+3\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[29\omega_{1}t-(3\alpha_{v5}+2\alpha_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[29\omega_{1}t-(3\alpha_{v5}+2\alpha_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7})]+\frac{1}{2}\cos[29\omega_{1}t-(3\alpha_{v5}+2\alpha_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}$ $+3^{\theta}v_{5}+2^{\theta}v_{7})]+\frac{3}{2}\cos[9^{\omega}_{1}t-(2^{\alpha}v_{7}-^{\alpha}v_{5}+2^{\theta}v_{7}-^{\theta}v_{5})]+\frac{3}{2}\cos[19^{\omega}_{1}t-(2^{\alpha}v_{7}+^{\alpha}v_{5}+2^{\theta}v_{7}+^{\theta}v_{5})]]+$ $+ \frac{5}{4} \frac{3}{v7} \frac{6}{v1} \left[\cos(21\omega_1 t - 3\alpha_{v7} - 3\theta_{v7}) + 3\cos(7\omega_1 t - \alpha_{v7} - \theta_{v7}) + \frac{1}{2}\cos[19\omega_1 t - (3\alpha_{v7} - 2\alpha_{v1} + 3\theta_{v7} - 3\theta_{v7} - 2\alpha_{v1} + 3\theta_{v7} - 3\theta_{v7}$ $-2^{\theta}v_{1})] + \frac{1}{2} \cos[23^{\omega}_{1}t - (3^{\alpha}v_{7} + 2^{\alpha}v_{1} + 3^{\theta}v_{7} + 2^{\theta}v_{1})] + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\alpha}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\alpha}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\alpha}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\alpha}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\alpha}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\alpha}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\alpha}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\alpha}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\alpha}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\alpha}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\alpha}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\omega}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\omega}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\omega}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\omega}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\omega}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\omega}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\omega}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\omega}v_{1} + \theta_{v_{7}} - 2^{\theta}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\omega}v_{1} + \theta_{v_{7}} - 2^{\omega}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\omega}v_{1} + \theta_{v_{7}} - 2^{\omega}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\omega}v_{1} + \theta_{v_{7}} - 2^{\omega}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\omega}v_{1} + \theta_{v_{7}} - 2^{\omega}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - (\alpha_{v_{7}} - 2^{\omega}v_{1} + \theta_{v_{7}} - 2^{\omega}v_{1}) + \frac{3}{2} \cos[5^{\omega}_{1}t - 2^{\omega}v_{1} + 2^{\omega}v_{1$ $\frac{3}{2}\cos[9\omega_{1}t - (\alpha_{v7} + 2\alpha_{v1} + \theta_{v7} + 2\theta_{v1})] + \frac{5}{4}\phi_{v7}^{3}\phi_{v3}^{2} \left[\cos(21\omega_{1}t - 3\alpha_{v7} - 3\theta_{v7}) + 3\cos(7\omega_{1}t - 3\alpha_{v7} + 3\phi_{v7})\right]$
		242
	$-\alpha_{v7}-\theta_{v7})+\frac{1}{2}\cos[15\omega_{1}t-(3\alpha_{v7}-2\alpha_{v3}+3\theta_{v7}-2\theta_{v3})]+\frac{1}{2}\cos[27\omega_{1}t-(3\alpha_{v7}+2\alpha_{v3}+3\theta_{v7}+2\theta_{v3}+3\theta_{v7}+2\theta_{v3})]+\frac{1}{2}\cos[27\omega_{1}t-(3\alpha_{v7}+2\alpha_{v3}+3\theta_{v7}+2\theta_{v3}+2\theta_{v3}$	₂)]+ .
	$+\frac{3}{2}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{3}{2}\cos[13\omega_{1}t - (\alpha_{v7} + 2\alpha_{v3} + \theta_{v7} + 2\theta_{v3})]] + \left[\frac{5}{4} \phi_{v7}^{3} \phi_{v5}^{2}\right]$	5 *
	$\cdot \cos(21\omega_{1}t - 3\alpha_{v7} - 3\theta_{v7}) + 3\cos(7\omega_{1}t - \alpha_{v7} - \theta_{v7}) + \frac{1}{2}\cos[11\omega_{1}t - (3\alpha_{v7} - 2\alpha_{v5} + 3\theta_{v7} - 2\theta_{v5})]$]+
	$+\frac{1}{2}\cos[31\omega_{1}t-(3\alpha_{v7}+2\alpha_{v5}+3\theta_{v7}+2\theta_{v5})]+\frac{3}{2}\cos[3\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})+\frac{3}{2}\cos[17\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})]$	t-
	$-(2\alpha_{v5}+\alpha_{v7}+2\theta_{v5}+\theta_{v7})] + \frac{5}{4} + \frac{3}{4} + \frac{3}{2} + \frac{3}{4} + \frac{3}{2} + \frac{3}{4} + \frac{3}{2} $	
	$\cdot [5^{\omega_1 t - (3^{\alpha_1 - \alpha_{v_3} + \alpha_{v_5} + 3^{\theta_{v_1} - \theta_{v_3} + \theta_{v_5}})] + \cos [5^{\omega_1 t - (\alpha_{v_5} + \alpha_{v_3} - 3^{\alpha_{v_1} + \theta_{v_5} + \theta_{v_3} - 3^{\theta_{v_1}})] + \cos [5^{\omega_1 t - (\alpha_{v_5} + \alpha_{v_3} - 3^{\alpha_{v_1} + \theta_{v_5} + \theta_{v_3} - 3^{\theta_{v_1}})] + \cos [5^{\omega_1 t - (\alpha_{v_5} + \alpha_{v_3} - 3^{\alpha_{v_1} + \theta_{v_3} - 3^{\theta_{v_1}})] + \cos [5^{\omega_1 t - (\alpha_{v_5} + \alpha_{v_3} - 3^{\alpha_{v_1} + \theta_{v_3} - 3^{\theta_{v_1} + \theta_{v_3} - 3^{\theta_{v_1}})] + \cos [5^{\omega_1 t - (\alpha_{v_5} + \alpha_{v_3} - 3^{\alpha_{v_1} + \theta_{v_3} - 3^{\theta_{v_1} + \theta_{v_3} - 3^{\theta_{v_1}})] + \cos [5^{\omega_1 t - (\alpha_{v_5} + \alpha_{v_3} - 3^{\alpha_{v_1} + \theta_{v_3} - 3^{\theta_{v_1} + \theta_{v_3} - 3^{\theta_{v_3} + \theta_{v_3} - 3^{\theta_{v_1} + \theta_{v_3} - 3^{\theta_{v_3} - 3^{\theta$	+
	+cos[11 ω_1 t-($3\alpha_{v1}$ + α_{v3} + α_{v5} + $3\theta_{v1}$ + θ_{v3} + θ_{v5})]+ $3\cos[\omega_1$ t-(α_{v1} + α_{v5} - α_{v3} + θ_{v1} + θ_{v5} - θ_{v3})]+
	+3cos[7 ω_1 t-(α_{v5} + α_{v3} - α_{v1} + θ_{v5} - θ_{v3} - θ_{v1})+3cos[9 ω_1 t-(α_{v5} + α_{v3} + α_{v1} + θ_{v5} + θ_{v3} + θ_{v1})]	
	$ + \frac{5}{4} \phi_{v1}^{3} \phi_{v3}^{0} \phi_{v7} \left[\cos \left[\omega_{1} t - (\alpha_{v7}^{-\alpha} \alpha_{3}^{-3\alpha} v_{1}^{+\theta} v_{7}^{-\theta} v_{3}^{-3\theta} v_{1}^{-1}) \right] + \cos \left[7 \omega_{1} t - (3 \alpha_{v1}^{+\alpha} v_{7}^{-\alpha} v_{3}^{+\theta} v_{7}^{-\theta} v_{3}^{-1} v_{1}^{-\theta} v_{1}^{-1} v_{1}^{-$	
	$+3\theta_{v1}+\theta_{v7}-\theta_{v3})]+\cos[7\omega_{1}t-(\alpha_{v7}+\alpha_{v3}-3\alpha_{v1}+\theta_{v7}+\theta_{v3}-3\theta_{v1})]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+\alpha_{v7}+4)+2\alpha_{v7}+4)]+\cos[13\omega_{1}t-(3\alpha_{v1}+2)+2)]+\cos[13\omega_{1}t-(3\alpha_{v1}+2)]+\cos[13\omega_{1}t-(3\alpha_{v1}+2)]+\cos[13\omega_{1}t-$	^a v3 ⁺
	$+3\theta_{v1}+\theta_{v7}+\theta_{v3}]+3\cos[3\omega_{1}t-(\alpha_{v7}-\alpha_{v1}-\alpha_{v3}+\theta_{v7}-\theta_{v1}-\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v7}-\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}-\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v3}+\theta_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v3}+\theta_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v3}+\theta_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v3}+\theta_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v3}+\theta_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v3}+\theta_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v3}+\theta_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v1}+\alpha_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}$	r3 †
1	$+\theta_{v1}+\theta_{v7}-\theta_{v3})]+3\cos[9\omega_{1}t-(\alpha_{v7}+\alpha_{v3}-\alpha_{v1}+\theta_{v7}+\theta_{v3}-\theta_{v1})]+3\cos[1!\omega_{1}t-(\alpha_{v1}+\alpha_{v3$	r7 +
	$+\theta_{v1}+\theta_{v3}+\theta_{v7})] +\frac{5}{4}\phi_{v1}^{3}\phi_{v5}\phi_{v7} \left[\cos[\omega_{1}t-(3\alpha_{v1}-\alpha_{v7}+\alpha_{v5}+3\theta_{v1}-\theta_{v7}+\theta_{v5})]+\cos[5\omega_{1}t-(3\alpha_{v1}-\alpha_{v7}+\alpha_{v5}+3\theta_{v1}-\theta_{v7}+\theta_{v5})]\right]$	L _
	$-(3\alpha_{v1}^{+\alpha}v7^{-\alpha}v5^{+3\theta}v1^{+\theta}v7^{-\theta}v5^{)}]+\cos[9\omega_{1}t-(\alpha_{v7}^{+\alpha}v5^{-3\alpha}v1^{+\theta}v7^{+\theta}v5^{-3\theta}v1^{)}]+\cos[9\omega_{1}t-(\alpha_{v7}^{+\alpha}v5^{-3\alpha}v1^{+\theta}v7^{+\theta}v5^{-3\theta}v1^{)}]+\cos[9\omega_{1}t-(\alpha_{v7}^{+\alpha}v5^{-3\alpha}v1^{+\theta}v7^{+\theta}v5^{-3\theta}v1^{+\theta}v5^{-4$	
	$\cdot [15\omega_{1}t - (3\alpha_{v1} + \alpha_{v7} + \alpha_{v5} + 3\theta_{v1} + \theta_{v7} + \theta_{v5})] + 3\cos[\omega_{1}t - (\alpha_{v7} - \alpha_{v5} - \alpha_{v1} + \theta_{v7} - \theta_{v5} - \theta_{v1})]$	+
	$\frac{1}{2}\cos[3\omega_1t-(\alpha_{\nu1}+\alpha_{\nu7}-\alpha_{\nu5}+\theta_{\nu1}+\theta_{\nu7}-\theta_{\nu5})]+3\cos[11\omega_1t-(\alpha_{\nu7}+\alpha_{\nu5}-\alpha_{\nu1}+\theta_{\nu7}+\theta_{\nu5}-\theta_{\nu1})]$]+
,)		
		1

ł

243 +3cos[13w1t-(av1+av5+av7+0v1+0v5+0v7)] + $\frac{5}{4}\phi_{v3}^{3}\phi_{v1}\phi_{v5}$ [cos[5w1t-(3av3-av5+av1+ $+3\theta_{v3}+\theta_{v5}+\theta_{v1})]+\cos[13\omega_{t}-(3\alpha_{v3}+\alpha_{v5}-\alpha_{v1}+3\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\alpha_{v3}-\alpha_{v5}-\alpha_{v1}+3\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\alpha_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\theta_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\alpha_{v5}-\theta_{v1}+2\theta_{v3}+\theta_{v5}-\theta_{v1})]+\cos[3\omega_{1}t-(3\omega_{v3}-\theta_{v2}+2\theta_{v3}+\theta_{v2}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v$ $+3\theta_{v3}-\theta_{v5}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v5}+\alpha_{v1}+3\theta_{v3}+\theta_{v5}+\theta_{v1})]+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-\alpha_{v3}+2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-\alpha_{v3}+2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-\alpha_{v3}+2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v1}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}t-(\alpha_{v5}-2)+3\cos[\omega_{1}$ $+\theta_{v5}-\theta_{v1}-\theta_{v3})]+3\cos[7\omega_{1}t-(\alpha_{v3}+\alpha_{v5}-\alpha_{v1}+\theta_{v3}+\theta_{v5}-\theta_{v1})]+3\cos[3\omega_{1}t-(\alpha_{v5}+\alpha_{v1}-\alpha_{v3}+\theta_{v3}+\theta_{v5}-\theta_{v1})]+3\cos[3\omega_{1}t-(\alpha_{v5}+\alpha_{v1}-\alpha_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3})]+3\cos[3\omega_{1}t-(\alpha_{v5}+\alpha_{v1}-\alpha_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3})]+3\cos[3\omega_{1}t-(\alpha_{v5}+\alpha_{v1}-\alpha_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}$ $+\theta_{v5}+\theta_{v1}-\theta_{v3})]+3\cos[9\omega_{1}t-(\alpha_{v3}+\alpha_{v1}+\alpha_{v5}+\theta_{v3}+\theta_{v1}+\theta_{v5})]] + \frac{5}{4}\phi_{v3}^{3}\phi_{v1}\phi_{v7} \left[\cos[3\omega_{1}t-\omega_{v3}+\omega_{v1}+\omega_{v5}+\theta_{v3}+\theta_{v1}+\theta_{v5})]\right] + \frac{5}{4}\phi_{v3}^{3}\phi_{v1}\phi_{v7}$ $-(3\alpha_{v3}-\alpha_{v7}+\alpha_{v1}+3\theta_{v3}-\theta_{v7}+\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+3\theta_{v3}+\theta_{v7}-\theta_{v1})]+\cos[15\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1$ $\cdot [\omega_1 t - (3\alpha_{v3} - \alpha_{v7} - \alpha_{v1} + 3\theta_{v3} - \theta_{v7} - \theta_{v1})] + \cos [17\omega_1 t - (3\alpha_{v3} + \alpha_{v7} + \alpha_{v1} + 3\theta_{v3} + \theta_{v7} + \theta_{v1})] +$ $+3\cos[3\omega_{1}t-(\alpha_{v7}-\alpha_{v1}-\alpha_{v3}+\theta_{v7}-\theta_{v1}-\theta_{v3})]+\cos[9\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v1}+\theta_{v3}+\theta_{v7}-\theta_{v1})]+$ $+3\cos[5\omega_{1}t-(\alpha_{v7}+\alpha_{v1}-\alpha_{v3}+\theta_{v7}+\theta_{v1}-\theta_{v3})]+3\cos[11\omega_{1}t-(\alpha_{v3}+\alpha_{v1}+\alpha_{v7}+\theta_{v3}+\theta_{v1}+\theta_{v7})]]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v1}+\alpha_{v7}+\theta_{v3}+\theta_{v1}+\theta_{v7})]]$ $+ \frac{5}{4} \frac{3}{4} \frac$ $+3\theta_{v3}+\theta_{v7}-\theta_{v5})]+\cos[3\omega_{1}t-(3\alpha_{v3}-\alpha_{v7}-\alpha_{v5}+3\theta_{v3}-\theta_{v7}-\theta_{v5})]+\cos[21\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}+\alpha_{v5}+3\theta_{v3}-\theta_{v7}-\theta_{v5})]+\cos[21\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}+\alpha_{v5}+3\theta_{v3}-\theta_{v7}-\theta_{v5})]+\cos[21\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}+\alpha_{v5}+3\theta_{v3}-\theta_{v7}-\theta_{v5})]+\cos[21\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}+\alpha_{v5}+3\theta_{v3}-\theta_{v7}-\theta_{v5})]+\cos[21\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}+\alpha_{v5}+3\theta_{v3}-\theta_{v7}-\theta_{v5})]+\cos[21\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}+\alpha_{v5}+3\theta_{v3}-\theta_{v7}-\theta_{v5})]+\cos[21\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}+\alpha_{v5}+3\theta_{v3}-\theta_{v7}-\theta_{v5})]+\cos[21\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}+\alpha_{v5}+2\theta_{v5}+2\theta_{v5}-\theta_{v5})]+\cos[21\omega_{1}t-(3\alpha_{v3}+\alpha_{v7}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5$ $+3\theta_{v3}+\theta_{v7}+\theta_{v5})]+3\cos[\omega_{1}t-(\alpha_{v3}-\alpha_{v7}+\alpha_{v5}+\theta_{v3}-\theta_{v7}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}-\alpha_{v5}+\theta_{v5})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\theta_{v7})]+3\cos[5\omega_{1}t-(\alpha_{v3}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}+\alpha_{v7}$ $+\theta_{v3}+\theta_{v7}-\theta_{v5})]+3\cos[9\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v3}+\theta_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[15\omega_{1}t-(\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{v7}+\theta_{$ $+\theta_{v_{3}}+\theta_{v_{5}}+\theta_{v_{7}})\Big]+\frac{5}{4}\phi_{v_{5}}^{3}\phi_{v_{1}}\phi_{v_{3}}\left[\cos[13\omega_{1}t-(3\alpha_{v_{5}}-\alpha_{v_{3}}+\alpha_{v_{1}}+3\theta_{v_{5}}-\theta_{v_{3}}+\theta_{v_{1}})]+\cos.\right]$ $\cdot [17\omega_{1}t - (3\alpha_{v5} + \alpha_{v3} - \alpha_{v1} + 3\theta_{v5} + \theta_{v3} - \theta_{v1})] + \cos [11\omega_{1}t - (3\alpha_{v5} - \alpha_{v3} - \alpha_{v1} + 3\theta_{v5} - \theta_{v3} - \theta_{v1})] +$ $+\cos[19\omega_{1}t - (3\alpha_{v5} + \alpha_{v3} + \alpha_{v1} + 3\theta_{v5} + \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \alpha_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \theta_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \theta_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \theta_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \theta_{v1} + \theta_{v5} - \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \theta_{v1} + \theta_{v5} + \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \theta_{v1} + \theta_{v3} + \theta_{v3} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v5} - \alpha_{v3} + \theta_{v3} + \theta_{v3$

244 $+3\cos[7\omega_{1}t-(\alpha_{v5}+\alpha_{v3}-\alpha_{v1}+\theta_{v5}+\theta_{v3}-\theta_{v1})]+3\cos[\omega_{1}t-(\alpha_{v5}-\alpha_{v3}-\alpha_{v1}+\theta_{v5}-\theta_{v3}-\theta_{v1})] +$ 6 0 $+3\cos[9_{\omega_{1}}t-(\alpha_{v5}+\alpha_{v3}+\alpha_{v1}+\theta_{v5}+\theta_{v3}+\theta_{v1})]+\frac{5}{4}\phi_{v5}^{3}\phi_{v1}\phi_{v7}\left[\cos[9_{\omega_{1}}t-(3\alpha_{v5}-\alpha_{v7}+\alpha_{v1}+\theta_{v5}+\theta_{v3}+\theta_{v1})]+\frac{5}{4}\phi_{v5}^{3}\phi_{v1}\phi_{v7}\right]$ ٩. $+3_{\theta_{v_{5}}-\theta_{v_{7}}+\theta_{v_{1}})}+\cos[21_{\omega_{1}}t-(3_{\alpha_{v_{5}}+\alpha_{v_{7}}-\alpha_{v_{1}}+3\theta_{v_{5}}+\theta_{v_{7}}-\theta_{v_{1}})}]+\cos[7_{\omega_{1}}t-(3_{\alpha_{v_{5}}-\alpha_{v_{7}}-\alpha_{v_{1}}+3\theta_{v_{5}}+\theta_{v_{7}}-\theta_{v_{1}})}]+\cos[7_{\omega_{1}}t-(3_{\omega_{v_{5}}-\alpha_{v_{7}}-\alpha_{v_{1}}+3\theta_{v_{5}}+\theta_{v_{7}}-\theta_{v_{1}})}]+\cos[7_{\omega_{1}}t-(3_{\omega_{v_{5}}-\alpha_{v_{7}}-\alpha_{v_{1}}+3\theta_{v_{5}}+\theta_{v_{7}}-\theta_{v_{1}})}]+\cos[7_{\omega_{1}}t-(3_{\omega_{v_{5}}-\alpha_{v_{7}}-\alpha_{v_{1}}+3\theta_{v_{5}}+\theta_{v_{7}}-\theta_{v_{1}})}]+\cos[7_{\omega_{1}}t-(3_{\omega_{v_{5}}-\alpha_{v_{7}}-\alpha_{v_{1}}+3\theta_{v_{5}}+\theta_{v_{7}}-\theta_{v_{1}})}]+\cos[7_{\omega_{1}}t-(3_{\omega_{v_{5}}-\alpha_{v_{7}}-\alpha_{v_{1}}+3\theta_{v_{5}}+\theta_{v_{7}}-\theta_{v_{1}})}]+\cos[7_{\omega_{1}}t-(3_{\omega_{v_{5}}-\alpha_{v_{7}}-\alpha_{v_{1}}+3\theta_{v_{5}}+\theta_{v_{7}}-\theta_{v_{1}})}]+\cos[7_{\omega_{1}}t-(3_{\omega_{v_{5}}-\alpha_{v_{7}}-\alpha_{v_{1}}+3\theta_{v_{5}}+\theta_{v_{7}}-\theta_{v_{1}})}]+\cos[7_{\omega_{1}}t-(3_{\omega_{v_{5}}-\alpha_{v_{7}}-\alpha_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta_{v_{1}}+\theta$ $+3\theta_{v5}-\theta_{v7}-\theta_{v1})]+\cos[23\omega_{1}t-(3\alpha_{v5}+\alpha_{v7}+\alpha_{v1}+3\theta_{v5}+\theta_{v7}+\theta_{v1})]+3\cos[\omega_{1}t-(\alpha_{v7}-\alpha_{v1}-\alpha_{v5}+\alpha_{v7}+\alpha_{v1}+3\theta_{v5}+\theta_{v7}+\theta_{v1})]+3\cos[\omega_{1}t-(\alpha_{v7}-\alpha_{v1}-\alpha_{v5}+\alpha_{v7}+\theta_{v1})]+3\cos[\omega_{1}t-(\alpha_{v7}-\alpha_{v1}-\alpha_{v5}+\alpha_{v7}+\theta_{v1})]+3\cos[\omega_{1}t-(\alpha_{v7}-\alpha_{v1}-\alpha_{v5}+\alpha_{v7}+\theta_{v1})]+3\cos[\omega_{1}t-(\alpha_{v7}-\alpha_{v1}-\alpha_{v5}+\alpha_{v7}+\theta_{v1})]+3\cos[\omega_{1}t-(\alpha_{v7}-\alpha_{v1}-\alpha_{v5}+\alpha_{v7}+\theta_{v1})]+3\cos[\omega_{1}t-(\alpha_{v7}-\alpha_{v1}-\alpha_{v5}+\alpha_{v7}+\alpha_{v1}+2\theta_{v5}+\theta_{v7}+\theta_{v1})]+3\cos[\omega_{1}t-(\alpha_{v7}-\alpha_{v1}-\alpha_{v5}+\alpha_{v7}+\alpha_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1})]+3\cos[\omega_{1}t-(\alpha_{v7}-\alpha_{v1}-\alpha_{v5}+\alpha_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1$ $+\theta_{\mathbf{v}7}-\theta_{\mathbf{v}1}-\theta_{\mathbf{v}5})]+3\cos[11\omega_{1}-(\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}1}+\theta_{\mathbf{v}5}+\theta_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}1}+\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}1})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}1}-\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}-\theta_{\mathbf{v}7}-\theta_{\mathbf{v}7})]+3\cos[3\omega_{1}t-(\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}-\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}7}+\alpha_{\mathbf{v}$ $+\theta_{v7}+\theta_{v1}-\theta_{v5})]+3\cos[13\omega_{1}t-(\alpha_{v5}+\alpha_{v7}+\alpha_{v1}+\theta_{v5}+\theta_{v7}+\theta_{v1})]]+\frac{5}{4}\phi_{v5}^{3}\phi_{v3}\phi_{v7}\left[\cos[11\omega_{1}t-\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+\omega_{1}+$ $-(3\alpha_{v5}-\alpha_{v7}+\alpha_{v3}+3\theta_{v5}-\theta_{v7}+\theta_{v3})]+\cos[19\omega_{1}t-(3\alpha_{v5}+\alpha_{v7}-\alpha_{v3}+3\theta_{v5}+\theta_{v7}-\theta_{v3})]+$ $+\cos[5\omega_{1}t - (3\alpha_{v5} - \alpha_{v7} - \alpha_{v3} + 3\theta_{v5} - \theta_{v7} - \theta_{v3})] + \cos[25\omega_{1}t - (3\alpha_{v5} + \alpha_{v7} + \alpha_{v3} + 3\theta_{v5} + \theta_{v7} + \theta_{v3})] +$ $+3\cos[\omega_{1}t - (\alpha_{v1} - \alpha_{v7} + \alpha_{v3} + \theta_{v1} - \theta_{v7} + \theta_{v3})] + 3\cos[11\omega_{1}t - (\alpha_{v5} + \alpha_{v7} - \alpha_{v3} + \theta_{v5} + \theta_{v7} - \theta_{v3})] +]$ $+3\cos[5\omega_{1}t-(\alpha_{v7}+\alpha_{v3}-\alpha_{v5}+\theta_{v7}+\theta_{v3}-\theta_{v5})]+3\cos[15\omega_{1}t-(\alpha_{v5}+\alpha_{v3}+\alpha_{v7}+\theta_{v5}+\theta_{v3}+\theta_{v7})]+$ $+ \frac{5}{4} \frac{3}{9} \frac{3}{19} \frac{1}{10} \frac{1}{10}$ $+3\theta_{v7}+\theta_{v3}-\theta_{v1})]+\cos[17\omega_{1}t-(3\alpha_{v7}-\alpha_{v3}-\alpha_{v1}+3\theta_{v7}-\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+3\theta_{v7}-\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\theta_{v3}-\theta_{v3}-\theta_{v1})]+\cos[25\omega_{1}t-(3\alpha_{v7}+\alpha_{v3}+\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_{v3}-\theta_$ $+ {}^{3\theta}v_{7} + {}^{\theta}v_{3} + {}^{\theta}v_{1})] + 3\cos[5\omega_{1}t - (\alpha_{v_{7}} - \alpha_{v_{3}} + \alpha_{v_{1}} + {}^{\theta}v_{7} - {}^{\theta}v_{3} + {}^{\theta}v_{1})] + 3\cos[9\omega_{1}t - (\alpha_{v_{7}} + \alpha_{v_{3}} - \alpha_{v_{1}} + {}^{\theta}v_{1} + {}^{\theta$ $+\theta_{v7}+\theta_{v3}-\theta_{v1})]+3\cos[3\omega_{1}t-(\alpha_{v7}-\alpha_{v3}-\alpha_{v1}+\theta_{v7}-\theta_{v3}-\theta_{v1})]+3\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\alpha_{v1}+\alpha_{v3}+\alpha_{v1}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3}+\alpha_{v3$ 9 $+\theta_{v7}+\theta_{v3}+\theta_{v1})]_{+4}^{5}\phi_{v7}^{3}\phi_{v1}\phi_{v5}\left[\cos\left[17\omega_{1}t-(3\alpha_{v7}-\alpha_{v5}+\alpha_{v1}+3\theta_{v7}-\theta_{v5}+\theta_{v1})\right]+\cos\right]$ $\cdot [25\omega_{1}^{t} - (3\alpha_{v7}^{+}\alpha_{v5}^{-}\alpha_{v1}^{+}3\theta_{v7}^{+}\theta_{v5}^{-}\theta_{v1}^{-})] + \cos [15\omega_{1}^{t} - (3\alpha_{v7}^{-}\alpha_{v5}^{-}\alpha_{v1}^{+}3\theta_{v7}^{-}\theta_{v5}^{-}\theta_{v1}^{-})] +$ 1

245 $+\cos[27\omega_{1}t - (3\alpha_{v7} + \alpha_{v5} + \alpha_{v1} + 3\theta_{v7} + \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} - \theta_{v5} + \theta_{v1})] + 3\cos[3\omega_{1}t - (\alpha_{v7} - \alpha_{v5} + \alpha_{v1} + \theta_{v7} + \theta_{$ +3cos[11 ω_1 t-(α_{v7} + α_{v5} - α_{v1} + θ_{v7} + θ_{v5} - θ_{v1})]+3cos[ω_1 t-(α_{v7} - α_{v5} - α_{v1} + θ_{v7} - θ_{v5} - θ_{v1})]+ $+3\theta_{v7}-\theta_{v5}+\theta_{v3})]+\cos[23\omega_{1}t-(3\alpha_{v7}+\alpha_{v5}-\alpha_{v3}+3\theta_{v7}+\theta_{v5}-\theta_{v3})]+\cos[13\omega_{1}t-(3\alpha_{v7}-\alpha_{v5}-\alpha_{v3}+3\theta_{v5}+\theta_{v3})]+\cos[13\omega_{1}t-(3\alpha_{v7}-\alpha_{v5}-\alpha_{v3}+\theta_{v3}+\theta_{v5}+\theta_{v3})]+\cos[13\omega_{1}t-(3\alpha_{v7}-\alpha_{v5}-\alpha_{v3}+\theta_{v3}+\theta_{v5}+\theta_{v3})]+\cos[13\omega_{1}t-(3\alpha_{v7}-\alpha_{v5}-\alpha_{v3}+\theta_{v3}+\theta_{v5}+\theta_{v3})]+\cos[13\omega_{1}t-(3\alpha_{v7}-\alpha_{v5}-\alpha_{v3}+\theta_{v3}+\theta_{v5}+\theta_{v3})]+\cos[13\omega_{1}t-(3\alpha_{v7}-\alpha_{v5}-\alpha_{v3}+\theta_{v5}+\theta_{v5}+\theta_{v3})]+\cos[13\omega_{1}t-(3\alpha_{v7}-\alpha_{v5}-\alpha_{v3}+\theta_{v5}+\theta_{v5}+\theta_{v3})]+\cos[13\omega_{1}t-(3\alpha_{v7}-\alpha_{v5}-\alpha_{v3}+\theta_{v5}+\theta_{v5}+\theta_{v3})]+\cos[13\omega_{1}t-(3\alpha_{v7}-\alpha_{v5}-\alpha_{v3}+\theta_{v5}+\theta_{v5}+\theta_{v3})]+\cos[13\omega_{1}t-(3\alpha_{v7}-\alpha_{v5}-\alpha_{v3}+\theta_{v5}+\theta_{v5}+\theta_{v3})]+\cos[13\omega_{1}t-(3\alpha_{v7}-\alpha_{v5}-\alpha_{v3}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v3})]+\cos[13\omega_{1}t-(3\alpha_{v7}-\alpha_{v5}-\alpha_{v3}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v5}+\theta_{v$ $+3\theta_{v7}-\theta_{v5}-\theta_{v3})]+\cos[29\omega_{1}t-(3\alpha_{v7}+\alpha_{v5}+\alpha_{v3}+3\theta_{v7}+\theta_{v5}+\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v7}-\alpha_{v5}+\alpha_{v3}+2\theta_{v3}+2\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v7}-\alpha_{v5}+\alpha_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3})]+3\cos[5\omega_{1}t-(\alpha_{v7}-\alpha_{v5}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2$ $+\theta_{v7}-\theta_{v5}+\theta_{v3})]+3\cos[9\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v3}+\theta_{v7}+\theta_{v5}-\theta_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\alpha_{v3}-\alpha_{v7}+\phi_{v5}-\theta_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\alpha_{v3}-\alpha_{v7}+\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\alpha_{v3}-\phi_{v3}+\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\alpha_{v3}-\phi_{v3}+\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\alpha_{v3}-\phi_{v3}+\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}+\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}+\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3})]+3\cos[\omega_{1}t-(\alpha_{v5}+\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3}-\phi_{v3$ $+\theta_{v5}+\theta_{v3}-\theta_{v7})] + 3\cos[15\omega_{1}t-(\alpha_{v7}+\alpha_{v5}+\alpha_{v3}+\theta_{v7}+\theta_{v5}+\theta_{v3})]] + \left[30\varphi_{v1}^{2}\varphi_{v3}^{2}\varphi_{v5} - \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{$ és: $\cdot \cos(5\omega_{1}t-\alpha_{v5}-\theta_{v5}) + \frac{1}{8}\cos[3\omega_{1}t-(2\alpha_{v1}-\alpha_{v1}+2\theta_{v1}-\theta_{v1})] + \frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{v1}+\alpha_{v5}+2\theta_{v1}+\theta_{v5})] + \frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{v1}+2\theta_{v1}+\theta_{v5})] + \frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{v1}+2\theta_{v1}+\theta_{v5})] + \frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{v1}+2\theta_{v1}+\theta_{v5})] + \frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{v1}+2\theta_{v5}+2\theta_{v1}+\theta_{v5})] + \frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{v1}+2\theta_{v5}+2\theta_{v1}+\theta_{v5})] + \frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{v1}+2\theta_{v5}+2\theta_{v1}+\theta_{v5})] + \frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{v1}+2\theta_{v5}+2\theta_{v1}+\theta_{v5})] + \frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{v1}+2\theta_{v5}+2\theta_{v1}+\theta_{v5})] + \frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{v1}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5})] + \frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{v1}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5})] + \frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{v1}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5})] + \frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{v1}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5})] + \frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{v1}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2$ $\frac{1}{8}\cos[\omega_{1}t - (2\alpha_{v3} - \alpha_{v5} + 2\theta_{v3} - \theta_{v5})] + \frac{1}{16}\cos[\omega_{1}t - (2\alpha_{v1} - 2\alpha_{v3} + \alpha_{v5} + 2\theta_{v1} - 2\theta_{v3} + \theta_{v5})] +$ $+\frac{1}{16}\cos[3\omega_{1}t-(2\alpha_{v1}+2\alpha_{v3}-\alpha_{v5}+2\theta_{v1}+2\theta_{v3}-\theta_{v5})]+\frac{1}{8}\cos[11\omega_{1}t-(2\alpha_{v3}+\alpha_{v5}+2\theta_{v3}+\theta_{v5})]+$ $+\frac{1}{16}\cos[9_{\omega_{1}}t-(2_{\alpha_{v_{1}}}-2_{\alpha_{v_{5}}}-\alpha_{v_{1}}+2_{\theta_{v_{7}}}-2_{\theta_{v_{5}}}-\theta_{v_{1}})+\frac{1}{16}\cos[13_{\omega_{1}}t-(2_{\alpha_{v_{1}}}+2_{\alpha_{v_{3}}}+\alpha_{v_{5}}+2_{\theta_{v_{1}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v_{3}}}+2_{\theta_{v$ $+\theta_{v5})] + \left[30\phi_{v1}^{2}\phi_{v3}^{2}\phi_{v7} - \frac{1}{4}\cos[7\omega_{1}t - \alpha_{v7} - \theta_{v7} + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v3} + \theta_{v7} - 2\theta_{v3})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v7} + \theta_{v7} - 2\theta_{v7})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v7} + \theta_{v7} - 2\theta_{v7})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v7} + \theta_{v7} - 2\theta_{v7})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v7} + \theta_{v7} - 2\theta_{v7})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v7} + \theta_{v7} - 2\theta_{v7})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v7} + \theta_{v7} - 2\theta_{v7})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v7} + \theta_{v7})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v7} + \theta_{v7})] + \frac{1}{8}\cos[\omega_{1}t - (\alpha_{v7} - 2\alpha_{v7} + \theta_{v7})] + \frac{1}{8}\cos[\omega_{1}t - \alpha_{v7} + \theta_{v7})] + \frac{1}{8}\cos[\omega$ $+ \frac{1}{8} \cos[13\omega_1 t - (2\alpha_{v3} + \alpha_{v7} + 2\theta_{v3} + \theta_{v7})] + \frac{1}{8} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16} \cos[5\omega_1 t - (\alpha_{v7} - 2\alpha_{v1} + 2\theta_{v1} + 2\theta_{v1} - 2\theta_{v1} + 2\theta_$ $\cdot [11\omega_{1}t - (2\alpha_{v3}+2\alpha_{v1}+\alpha_{v7}+2\theta_{v3}-2\theta_{v1}+\theta_{v7})] + \frac{1}{16}\cos[\omega_{1}t - (2\alpha_{v3}+2\alpha_{v1}-\alpha_{v7}+2\theta_{v3}+2\theta_{v1}-\theta_{v7})] + \frac{1}{16}\cos[\omega_{1}t - (2\alpha_{v3}+2\alpha_{v1}-\alpha_{v7}+2\theta_{v3}+2\theta_{v7}+2\theta_{v7})] + \frac{1}{16}\cos[\omega_{1}t - (2\alpha_{v3}+2\alpha_{v1}-\alpha_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_$ + $\frac{1}{8}\cos[9_{\omega_1}t - (2_{\alpha_{v_1}} + \alpha_{v_7} + 2_{\theta_{v_1}} + \theta_{v_7})] + \frac{1}{16}\cos[3_{\omega_1}t - (2_{\alpha_{v_1}} + \alpha_{v_7} - 2_{\alpha_{v_3}} + 2_{\theta_{v_1}} + \theta_{v_7} - 2_{\theta_{v_3}})] +$ $\frac{1}{16}\cos[15_{\omega_1}t - (2_{\alpha_{v3}} + 2_{\alpha_{v1}} + \alpha_{v7} + 2_{\theta_{v3}} + 2_{\theta_{v1}} + \theta_{v7})] + 30_{\phi_{v5}}^2 \phi_{v1}^2 \phi_{v3} \left[\frac{1}{4}\cos(3_{\omega_1}t - \alpha_{v3} - \theta_{v3}) + \frac{1}{16}\cos(3_{\omega_1}t - \alpha_{v3} - \theta_{v3})$

246 $\frac{1}{8}\cos[7\omega_{1}t - (2\alpha_{V5} - \alpha_{V3} + 2\theta_{V5} - \theta_{V3})] + \frac{1}{8}\cos[13\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \alpha_{V3} + 2\theta_{V5} + \theta_{V3})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + 2\theta_{V5} + \theta_{V5})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{V5} + \theta_{V5})] + \frac{1$ $-(a_{v_3}-2a_{v_1}+\theta_{v_3}-2\theta_{v_1})] + \frac{1}{16}\cos[11u_1t - (2a_{v_5}-2a_{v_1}+a_{v_3}+2\theta_{v_5}-2\theta_{v_1}+\theta_{v_3})] + \frac{1}{16}\cos[9u_1t - (2a_{v_5}-2a_{v_1}+a_{v_3}+2\theta_{v_5}+2\theta$ $-(2\alpha_{v5}+2\alpha_{v1}-\alpha_{v3}+2\theta_{v5}+2\theta_{v1}-\theta_{v3})] + \frac{1}{8}\cos[5\omega_{1}t - (2\alpha_{v1} + \alpha_{v3} + 2\theta_{v1} + \theta_{v3})] +$ $+\frac{1}{16}\cos[5\omega_{1}t-(2\alpha_{v5}-2\alpha_{v1}-\alpha_{v3}+2\theta_{v5}-2\theta_{v1}-\theta_{v3})]+\frac{1}{16}\cos[15\omega_{1}t-(2\alpha_{v5}+2\alpha_{v1}+\alpha_{v3}+2\theta_{v5}+2\theta_{v$ $+2\theta_{v1}+\theta_{v3})] + 30\phi_{v5}^{2}\phi_{v1}^{2}\phi_{v7} \left[\frac{1}{4}\cos(7\omega_{1}t-\alpha_{v7}-\theta_{v7})+\frac{1}{8}\cos[3\omega_{1}t-(2\alpha_{v5}-\alpha_{v7}+2\theta_{v5}-\theta_{v7})]+\right]$ $\frac{1}{8}\cos[17\omega_{1}t - (2\alpha_{v5} + \alpha_{v7} + 2\theta_{v5} + \theta_{v7})] + \frac{1}{8}\cos[5\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (\alpha_{v7} - 2\alpha_{v1} + \theta_{v7} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - 2\omega_{1} + 2\omega_{1$ $-(2\alpha_{v5} 2\alpha_{v1} + \alpha_{v7} + 2\theta_{v5} - 2\theta_{v1} + \theta_{v7})] + \frac{1}{16} \cos[5\omega_{1}t - (2\alpha_{v5} + 2\alpha_{v1} - \alpha_{v7} + 2\theta_{v5} + 2\theta_{v1} - \theta_{v7})] +$ $+\frac{1}{8}\cos[9\omega_{1}t-(2\alpha_{v1}+\alpha_{v7}+2\theta_{v1}+\theta_{v7})]+\frac{1}{16}\cos[\omega_{1}t-(2\alpha_{v5}-2\alpha_{v1}-\alpha_{v7}+2\theta_{v5}-2\theta_{v1}-\theta_{v7})]+$ $+\frac{1}{16}\cos[19\omega_{1}t-(2\alpha_{v5}+2\alpha_{v1}+\alpha_{v7}+2\theta_{v5}+2\theta_{v1}+\theta_{v7})]]+30\phi_{v7}^{2}\phi_{v1}^{2}\phi_{v3}\left[\frac{1}{4}\cos[3\omega_{1}t-\alpha_{v3}-\theta_{v3})]+$ $+\frac{1}{8}\cos[11\omega_{1}t - (2\alpha_{v7} - \alpha_{v3} + 2\theta_{v7} - \theta_{v3})] + \frac{1}{8}\cos[17\omega_{1}t - (2\alpha_{v7} + \alpha_{v3} + 2\theta_{v7} + \theta_{v3})] +$ $\frac{1}{8}\cos[\omega_{1}t - (\alpha_{v3} - 2\alpha_{v1} + \theta_{v3} - 2\theta_{v1})] + \frac{1}{16}\cos[15\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} + \alpha_{v3} + 2\theta_{v7} - 2\theta_{v1} + \theta_{v3})] + \frac{1}{16}\cos[15\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} + \alpha_{v3} + 2\theta_{v7} - 2\theta_{v1} + \theta_{v3})] + \frac{1}{16}\cos[15\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} + \alpha_{v3} + 2\theta_{v7} - 2\theta_{v1} + \theta_{v3})] + \frac{1}{16}\cos[15\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} + \alpha_{v3} + 2\theta_{v7} - 2\theta_{v1} + \theta_{v3})] + \frac{1}{16}\cos[15\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} + \alpha_{v3} + 2\theta_{v7} - 2\theta_{v1} + \theta_{v3})] + \frac{1}{16}\cos[16\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} + \alpha_{v3} + 2\theta_{v7} - 2\theta_{v1} + \theta_{v3})] + \frac{1}{16}\cos[16\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} + \alpha_{v3} + 2\theta_{v7} - 2\theta_{v1} + \theta_{v3})] + \frac{1}{16}\cos[16\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} + \alpha_{v3} + 2\theta_{v7} - 2\theta_{v1} + \theta_{v3})] + \frac{1}{16}\cos[16\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} + \alpha_{v3} + 2\theta_{v7} - 2\theta_{v1} + \theta_{v3})] + \frac{1}{16}\cos[16\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} + \alpha_{v3} + 2\theta_{v7} - 2\theta_{v1} + \theta_{v3})] + \frac{1}{16}\cos[16\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} + \alpha_{v3} + 2\theta_{v7} - 2\theta_{v1} + \theta_{v3})] + \frac{1}{16}\cos[16\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} + \alpha_{v3} + 2\theta_{v7} - 2\theta_{v1} + \theta_{v3})] + \frac{1}{16}\cos[16\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} + \alpha_{v3} + 2\theta_{v7} - 2\theta_{v1} + \theta_{v3})] + \frac{1}{16}\cos[16\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} + 2\theta_{v7} + 2\theta_{v7}$ $+\frac{1}{16}\cos[13\omega_{1}t-(2\alpha_{v7}+2\alpha_{v1}-\alpha_{v3}+2\theta_{v7}+2\theta_{v1}-\theta_{v3})]+\frac{1}{8}\cos[5\omega_{1}t-(2\alpha_{v1}+\alpha_{v3}+2\theta_{v1}+\theta_{v3})]+$ $+\frac{1}{16}\cos[9\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} - \alpha_{v3} + 2\theta_{v7} - 2\theta_{v1} - \theta_{v3})] + \frac{1}{16}\cos[19\omega_{1}t - (2\alpha_{v7} + 2\alpha_{v1} + \alpha_{v3} + 2\theta_{v7} + 2$ $+2\theta_{v1}+\theta_{v3})] + 30\phi_{v7}^{2}\phi_{v1}^{2}\phi_{v5}[\frac{1}{4}\cos(5\omega_{1}t-\alpha_{v5}-\theta_{v5})+\frac{1}{8}\cos[9\omega_{1}t-(2\alpha_{v7}-\alpha_{v5}+2\theta_{v7}-\theta_{v5})]+$ $\frac{1}{8}\cos[19\omega_{1}t - (\alpha_{v7} + \alpha_{v5} + \theta_{v7} + \theta_{v5})] + \frac{1}{8}\cos[3\omega_{1}t - (\alpha_{v5} - 2\alpha_{v1} + \theta_{v5} - 2\theta_{v1})] + \frac{1}{16}$ 0 $\cdot \cos[17\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v1} + \alpha_{v5} + 2\theta_{v7} - 2\theta_{v1} + \theta_{v5})] + \frac{1}{16}\cos[11\omega_{1}t - (2\alpha_{v7} + 2\alpha_{v1} - \alpha_{v5} + 2\theta_{v7} + 2\theta_{v7}$

 $+\frac{1}{8}\cos[19\omega_{1}t - (2\alpha_{v7} + \alpha_{v5} + 2\theta_{v7} + \theta_{v5})] + \frac{1}{8}\cos[\omega_{1}t - (2\alpha_{v3} - \alpha_{v5} + 2\theta_{v3} - \theta_{v5})] + \frac{1}{16}\cos[13\omega_{1}t - (2\alpha_{v3} - \alpha_{v5} + 2\theta_{v3} - \theta_{v5})] + \frac{1}{16}\cos[13\omega_{1}t - (2\alpha_{v3} - \alpha_{v5} + 2\theta_{v3} - \theta_{v5})] + \frac{1}{16}\cos[13\omega_{1}t - (2\alpha_{v3} - \alpha_{v5} + 2\theta_{v3} - \theta_{v5})] + \frac{1}{16}\cos[13\omega_{1}t - (2\alpha_{v3} - \alpha_{v5} + 2\theta_{v3} - \theta_{v5})] + \frac{1}{16}\cos[13\omega_{1}t - (2\alpha_{v3} - \alpha_{v5} + 2\theta_{v3} - \theta_{v5})] + \frac{1}{16}\cos[13\omega_{1}t - (2\alpha_{v3} - \alpha_{v5} + 2\theta_{v3} - \theta_{v5})] + \frac{1}{16}\cos[13\omega_{1}t - (2\alpha_{v3} - \alpha_{v5} + 2\theta_{v5} - \theta_{v5})] + \frac{1}{16}\cos[13\omega_{1}t - (2\alpha_{v3} - \alpha_{v5} + 2\theta_{v5} - \theta_{v5})] + \frac{1}{16}\cos[13\omega_{1}t - (2\alpha_{v3} - \alpha_{v5} + 2\theta_{v5} - \theta_{v5})] + \frac{1}{16}\cos[13\omega_{1}t - (2\alpha_{v3} - \alpha_{v5} + 2\theta_{v5} - \theta_{v5})] + \frac{1}{16}\cos[13\omega_{1}t - (2\alpha_{v3} - \alpha_{v5} + 2\theta_{v5} - \theta_{v5})] + \frac{1}{16}\cos[13\omega_{1}t - (2\alpha_{v5} - \alpha_{v5} - \theta_{v5})] + \frac{1}{16}\cos[13\omega_{1}t - (2\alpha_{v5} - \theta_{v5} - \theta_{v5})] + \frac{1}{16}\cos[13\omega_{1}t - (2\alpha_{v5} - \theta_{v5})] + \frac{1}{16}\cos[13\omega_{$ $-(2\alpha_{v7}-2\alpha_{v3}-\alpha_{v5}+2\theta_{v7}-2\theta_{v3}-\theta_{v5})] + \frac{1}{16}\cos[15\omega_{1}t - (2\alpha_{v7}+2\alpha_{v3}-\alpha_{v5}+2\theta_{v7}+2\theta_{v3}-\theta_{v5})] + \frac{1}{16}\cos[15\omega_{1}t - (2\alpha_{v7}+2\alpha_{v3}-\alpha_{v5}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_$ $+\frac{1}{8}\cos[11\omega_{1}t-(2\alpha_{v3}+\alpha_{v5}+2\theta_{v3}+\theta_{v5})]+\frac{1}{16}\cos[3\omega_{1}t-(2\alpha_{v7}-2\alpha_{v3}-\alpha_{v5}+2\theta_{v7}-2\theta_{v3}-\theta_{v5})] +$ $+\frac{1}{16}\cos[3\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v3} - \alpha_{v5} + 2\theta_{v7} - 2\theta_{v3} + \theta_{v5})] + \frac{1}{16}\cos[25\omega_{1}t - (2\alpha_{v7} + 2\alpha_{v3} + \alpha_{v5} + 2\theta_{v7} + 2$ $+2\theta_{v3}+\theta_{v5})] +30\phi_{v7}^{2}\phi_{v5}^{2}\phi_{v1} -\frac{1}{4}\cos(\omega_{1}t-\alpha_{v1}-\theta_{v1}) +\frac{1}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v7}-\theta_{v1})] +\frac{1}{8}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v1}+2\theta_{v1}-\theta_{v1})] +\frac{1}{8}\cos[13\omega_{1}t-(2\alpha_{v1}+2\theta_{v1}-\theta_{v1})] +\frac{1}{8}\cos[13\omega_{1}t-(2\alpha_{v1}+2\theta_{v1}-\theta_{v1})] +\frac{1}{8}\cos[13\omega_{1}t-(2\alpha_{v1}+2\theta_{v1}-\theta_{v1})] +\frac{1}{8}\cos[13\omega_{1}t-(2\alpha_{v1}+2\theta_{v1}-\theta_{v1})] +\frac{1}{8}\cos[13\omega_{1}t-(2\omega_{v1}+2\theta_{v1}-\theta_{v1})] +\frac{1}{8}\cos[13\omega_{1}t-(2\omega_$ $+\frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[9\omega_{1}t - (2\alpha_{v5} - \alpha_{v1} + 2\theta_{v5} - \theta_{v1})] +$ $+\frac{1}{16}\cos[5\omega_{1}t-(2\alpha_{v7}-2\alpha_{v5}+\alpha_{v1}+2\theta_{v7}-2\theta_{v5}+\theta_{v1})]+\frac{1}{16}\cos[23\omega_{1}t-(2\alpha_{v7}+2\alpha_{v5}-\alpha_{v1}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v$ $+2\theta_{v5}-\theta_{v1})]+\frac{1}{8}\cos[11\omega_{1}t-(2\alpha_{v5}+\alpha_{v1}+2\theta_{v5}+\theta_{v1})]+\frac{1}{16}\cos[3\omega_{1}t-(2\alpha_{v7}-2\alpha_{v5}-\alpha_{v1}+2\theta_{v7}-2\theta_{v7}+2\theta_{v7}-2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v$ $-2\theta_{v5}-\theta_{v1})] + \frac{1}{16} \cos [25\omega_1 t - (2\alpha_{v7}+2\alpha_{v5}+\alpha_{v1}+2\theta_{v7}+2\theta_{v5}+\theta_{v1})] + 30\phi_{v7}^2\phi_{v5}^2\phi_{v3}.$ $\cdot \frac{1}{4}\cos(3\omega_{1}t-\alpha_{V3}-\theta_{V3}) + \frac{1}{8}\cos[11\omega_{1}t-(2\alpha_{V7}-\alpha_{V3}+2\theta_{V7}-\theta_{V3})] + \frac{1}{16}\cos[17\omega_{1}t-(2\alpha_{V7}+\alpha_{V3}+2\theta_{V7}-\theta_{V3})] + \frac{1}{16}\cos[17\omega_{1}t-(2\alpha_{V7}+2\theta_{V7}+2\theta_{V7}-\theta_{V3})] + \frac{1}{16}\cos[17\omega_{1}t-(2\alpha_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}-\theta_{V7})] + \frac{1}{16}\cos[17\omega_{1}t-(2\alpha_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_{V7}+2\theta_$ $+2\theta_{\mathbf{v}7}+\theta_{\mathbf{v}3})]+\frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{\mathbf{v}5}-\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}5}-\theta_{\mathbf{v}3})]+\frac{1}{16}\cos[7\omega_{1}t-(2\alpha_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}3}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}5}+\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}-2\alpha_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+2\theta_{\mathbf{v}7}+$ $-2\theta_{v5}+\theta_{v3})] + \frac{1}{16}\cos[21\omega_{1}t - (2\alpha_{v7}+2\alpha_{v5}-\alpha_{v3}+2\theta_{v7}+2\theta_{v5}-\theta_{v3})] + \frac{1}{8}\cos[13\omega_{1}t - (2\alpha_{v5}+\alpha_{v3}+2\theta_{v3}+2\theta_{v5}-\theta_{v3})] + \frac{1}{8}\cos[13\omega_{1}t - (2\alpha_{v5}+\alpha_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v$ $+2\theta_{v5}+\theta_{v3})]+\frac{1}{16}\cos[\omega_{1}t-(2\alpha_{v7}-2\alpha_{v5}-\alpha_{v3}+2\theta_{v7}-2\theta_{v5}-\theta_{v3})]+\frac{1}{16}\cos[27\omega_{1}t-(2\alpha_{v7}+2\alpha_{v5}+2\theta_{v5}-\theta_{v3})]+\frac{1}{16}\cos[27\omega_{1}t-(2\alpha_{v7}+2\alpha_{v5}+2\theta_{v3}+2\theta_{v5}-\theta_{v3})]+\frac{1}{16}\cos[27\omega_{1}t-(2\alpha_{v7}+2\alpha_{v5}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3})]+\frac{1}{16}\cos[27\omega_{1}t-(2\alpha_{v7}+2\alpha_{v5}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{v3}+2\theta_{$ $+\alpha_{v3}+2\theta_{v7}+2\theta_{v5}+\theta_{v3})] +60\phi_{v1}^{2}\phi_{v3}\phi_{v5}\phi_{v7} -\frac{1}{8}\cos[9\omega_{1}t-(\alpha_{v7}+\alpha_{v5}-\alpha_{v3}+\theta_{v7}+\theta_{v5}-\theta_{v3})] +$ $\frac{1}{+8^{cc}} [15^{\omega_1 t} - (^{\alpha_{v7}+\alpha_{v5}+\alpha_{v3}+\theta_{v7}+\theta_{v5}+\theta_{v3}})] + \frac{1}{16^{cos}} [11^{\omega_1 t} - (2\alpha_{v1}-\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+2\theta_{v1} - (2\alpha_{v1}-\alpha_{v3}+\alpha_{v5}+\alpha_{v7}+2\theta_{v1})] + \frac{1}{16^{cos}} [11^{\omega_1 t} - (2\alpha_{v1}-\alpha_{v3}+2\theta_{v7}+2\theta_{v1})] + \frac{1}{16^{cos}} [11^{\omega_1 t} - (2\alpha_{v1}-\alpha_{v3}+2\theta_{v7}+2\theta_{v7}+2\theta_{v1})] + \frac{1}{16^{cos}} [11^{\omega_1 t} - (2\alpha_{v1}-\alpha_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+2\theta_{v7}+$ $+\theta_{v3}+\theta_{v5}+\theta_{v7})]+\frac{1}{16}\cos[7\omega_{1}t-(\alpha_{v5}+\alpha_{v7}-\alpha_{v3}-2\alpha_{v1}+\theta_{v5}+\theta_{v7}+\theta_{v3}-2\theta_{v1})]+$

$\begin{aligned} &+2\theta_{Y1}-\theta_{Y2}) + \frac{1}{2}\cos\left[7\omega_{1}t-(2\omega_{Y1}+\omega_{Y2}+2\theta_{Y1}+\theta_{Y2})\right] + \frac{1}{16}\cos\left[7\omega_{1}t-(2\omega_{Y2}-2\omega_{Y1}-\omega_{Y2}+2\theta_{Y2}-2\theta_{Y1}+\theta_{Y2})\right] \\ &+2\theta_{Y1}-\theta_{Y2}) + \frac{1}{16}\cos\left[2(\omega_{1}t-(2\omega_{Y2}+2\omega_{Y1}+\omega_{Y2}+2\theta_{Y2}+2\theta_{Y1}+\theta_{Y2})\right] + 50\theta_{Y2}^{2}\theta_{Y2}^{2}\theta_{Y1}\left[\frac{1}{4}\cos^{2}\right] \\ &+ (\omega_{1}t-\omega_{Y1}-\theta_{Y1}) + \frac{1}{8}\cos\left[2(\omega_{1}t-(2\omega_{Y2}-\omega_{Y1}+2\theta_{Y2}-2\theta_{Y1}+2\theta_{Y2}-2)\right] + 50\theta_{Y2}^{2}\theta_{Y2}^{2}\theta_{Y1}\left[\frac{1}{4}\cos^{2}\right] \\ &+ \frac{1}{8}\cos\left[5\omega_{1}t-(2\omega_{Y3}-\omega_{Y1}+2\theta_{Y3}-\theta_{Y1})\right] + \frac{1}{16}\cos\left[5\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}+\omega_{Y1}+2\theta_{Y2}-2\theta_{Y3}+\theta_{Y1})\right] + \\ &+ \frac{1}{16}\cos\left[5\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}-\omega_{Y1}+2\theta_{Y2}-2\theta_{Y3}-\theta_{Y1})\right] + \frac{1}{8}\cos\left[12\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}+\omega_{Y1}+2\theta_{Y2}+\theta_{Y1})\right] + \\ &+ \frac{1}{16}\cos\left[5\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}-\omega_{Y1}+2\theta_{Y2}-2\theta_{Y3}-\theta_{Y1})\right] + \frac{1}{8}\cos\left[12\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}+\omega_{Y1}+2\theta_{Y2}+\theta_{Y2})\right] + \\ &+ \frac{1}{16}\cos\left[12\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}-\omega_{Y1}+2\theta_{Y2}-2\theta_{Y3}-\theta_{Y1})\right] + \frac{1}{8}\cos\left[12\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}+\omega_{Y1}+2\theta_{Y2}-\theta_{Y2})\right] + \\ &+ \frac{1}{16}\cos\left[12\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}+\omega_{Y1}+2\theta_{Y2}-2\theta_{Y3}-\theta_{Y2})\right] + \frac{1}{8}\cos\left[5\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}+\omega_{Y1}-2\theta_{Y2}-2\theta_{Y3}-\theta_{Y2})\right] + \\ &+ \frac{1}{16}\cos\left[12\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}+\omega_{Y1}+2\theta_{Y2}-2\theta_{Y3}+\theta_{Y2})\right] + \frac{1}{16}\cos\left[5\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}+\omega_{Y1}-2\theta_{Y2}-2\theta_{Y3}-\theta_{Y2})\right] + \\ &+ \frac{1}{16}\cos\left[12\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}+\omega_{Y1}+2\theta_{Y2}-2\theta_{Y3}+\theta_{Y2})\right] + \frac{1}{8}\cos\left[5\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}+\omega_{Y1}-2\theta_{Y2}-2\theta_{Y3}+\theta_{Y1})\right] + \\ &+ \frac{1}{16}\cos\left[12\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}+\omega_{Y1}+2\theta_{Y2}-2\theta_{Y3}+\theta_{Y1})\right] + \frac{1}{8}\cos\left[5\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}+\omega_{Y1}+2\theta_{Y2}-2\theta_{Y3}+\theta_{Y1})\right] + \\ &+ \frac{1}{16}\cos\left[12\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}+\omega_{Y1}+2\theta_{Y2}-2\theta_{Y3}+\theta_{Y1})\right] + \frac{1}{8}\cos\left[2\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}+\omega_{Y1})\right] + \\ &+ \frac{1}{16}\cos\left[12\omega_{1}t-(2\omega_{Y2}-2\omega_{Y3}-\omega_{Y1})\right] + \frac$			248
$\begin{split} &-28_{v1}-8_{v5}(1)+\frac{1}{16}\cos\{21\omega_{1}t-(2\alpha_{V7}+2\alpha_{V1}+\alpha_{V5}+28_{V7}+28_{V1}+8_{V5}(1)\}+304_{2}^{2}9_{2}^{2}9_{2}^{2}9_{V1}\left[\frac{1}{2}\cos+\frac{1}{2}\cos(2\omega_{1}t-(2\alpha_{V5}-\alpha_{V1}+28_{V5}-8_{V1})\right]+\frac{1}{3}\cos\{11\omega_{1}t-(2\alpha_{V5}-\alpha_{V1}+28_{V5}-8_{V1})\}+\frac{1}{3}\cos\{11\omega_{1}t-(2\alpha_{V5}-\alpha_{V1}+28_{V5}-8_{V1})\}+\frac{1}{3}\cos\{11\omega_{1}t-(2\alpha_{V5}-\alpha_{V1}+28_{V5}-8_{V1})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V1}+28_{V5}-8_{V1})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V1}+28_{V5}-8_{V1})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V1}+28_{V5}+2\alpha_{V5}-8_{V1})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}-8_{V1})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}-8_{V1})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}-8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}-8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}-8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}-8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}-8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}-8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}-8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}-8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}-8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}-8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}-8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}+2\alpha_{V5}+8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}+8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+2\alpha_{V5}+8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}+2\alpha_{V5}+2\alpha_{V5}+8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}+2\alpha_{V5}+2\alpha_{V5}+8_{V7})\}+\frac{1}{16}\cos\{11\omega_{1}t-(2\alpha_{V5}+2\alpha_{V5}+2\alpha_{V5}+8_{V7})\}+\frac{1}{16}\cos\{12\omega_{1}t-(2\alpha_{V7}+2\alpha_{V5}+2\alpha_{V5}+2\alpha_{V5}+2\alpha_{V5}+8_{V7})\}+\frac{1}{16}\cos\{12\omega_{1}t-(2\alpha_{V7}+2\alpha_{V5}+2\alpha_{V7}+8_{V7})\}+\frac{1}{16}\cos\{12\omega_{1}t-(2\alpha_{V7}+2\alpha_{V5}+2\alpha_{V7}+8_{V7})\}+\frac{1}{16}\cos\{12\omega_{1}t-(2\alpha_{V7}+2\alpha_{V5}+2\alpha_{V7}+2\alpha_{V5}+8_{V7})\}+\frac{1}{16}\cos\{12\omega_{1}t-(2\alpha_{V7}+2\alpha_{V5}+2\alpha_{V7}+2\alpha_{V5}+2\alpha_{V7}+2\alpha_{V7}+2\alpha_{V5}+2\alpha_{V7}+$	() ()	$+2\theta_{v1}-\theta_{v5})]+\frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{v1}+\alpha_{v5}+2\theta_{v1}+\theta_{v5})]+\frac{1}{16}\cos[7\omega_{1}t-(2\alpha_{v7}-2\alpha_{v1}-\alpha_{v5}+2\theta_{v7}-2\theta_{v7$	
$\begin{split} & \cdot (\omega_{1} t - \alpha_{V1} - \theta_{V1}) + \frac{1}{3} \cos \left[3\omega_{1} t - (2\alpha_{V2} - \alpha_{V1} + 2\theta_{V2} - \theta_{V1}) \right] + \frac{1}{3} \cos \left[11\omega_{1} t - (2\alpha_{V2} + \alpha_{V1} + 2\theta_{V2} + \theta_{V1}) \right] + \\ & + \frac{1}{8} \cos \left[5\omega_{1} t - (2\alpha_{V2} - \alpha_{V1} + 2\theta_{V2} - \theta_{V2} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[5\omega_{1} t - (2\alpha_{V2} + \alpha_{V1} + 2\theta_{V2} - \theta_{V1}) \right] + \\ & + \frac{1}{16} \cos \left[15\omega_{1} t - (2\alpha_{V2} - \alpha_{V1} + 2\theta_{V2} + 2\theta_{V2} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[17\omega_{1} t - (2\alpha_{V2} + \alpha_{V1} + 2\theta_{V2} + \theta_{V1}) \right] + \\ & + \frac{1}{16} \cos \left[15\omega_{1} t - (2\alpha_{V2} - 2\alpha_{V2} - \alpha_{V1} + 2\theta_{V2} - 2\theta_{V2} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[17\omega_{1} t - (2\alpha_{V2} + \alpha_{V1} + 2\theta_{V2} + \theta_{V1}) \right] + \\ & + \frac{1}{16} \cos \left[17\omega_{1} t - (2\alpha_{V2} - \alpha_{V2} + \alpha_{V1} + 2\theta_{V2} + \theta_{V2} - 2\theta_{V2} + \theta_{V1}) \right] + \\ & + \frac{1}{16} \cos \left[17\omega_{1} t - (2\alpha_{V2} - \alpha_{V2} + \alpha_{V7} + 2\theta_{V2} + \theta_{V7}) \right] + \frac{1}{8} \cos \left[\omega_{1} t - (\alpha_{V7} - 2\alpha_{V2} + \theta_{V7} - 2\theta_{V2} - \theta_{V7}) \right] + \\ & + \frac{1}{8} \cos \left[17\omega_{1} t - (2\alpha_{V2} + \alpha_{V7} + 2\theta_{V2} + \theta_{V7}) \right] + \frac{1}{8} \cos \left[\omega_{1} t - (2\alpha_{V2} - 2\alpha_{V2} + \alpha_{V7} - 2\theta_{V2} - 2\theta_{V2} + \theta_{V7}) \right] + \\ & + \frac{1}{16} \cos \left[11\omega_{1} t - (2\alpha_{V2} - 2\alpha_{V2} + \alpha_{V7} + 2\theta_{V2} - 2\theta_{V2} + \theta_{V7}) \right] + \\ & + \frac{1}{16} \cos \left[13\omega_{1} t - (2\alpha_{V2} + \alpha_{V7} + 2\theta_{V2} + 2\theta_{V2} + \theta_{V7}) \right] + \frac{1}{16} \cos \left[3\omega_{1} t - (2\alpha_{V2} - 2\alpha_{V2} + \alpha_{V7} - 2\theta_{V2} + \theta_{V7}) \right] + \\ & + \frac{1}{16} \cos \left[13\omega_{1} t - (2\alpha_{V7} + \alpha_{V7} + 2\theta_{V7} + 2\theta_{V7} + 2\theta_{V7} + 2\theta_{V7} + \theta_{V1}) \right] + \\ & + \frac{1}{16} \cos \left[13\omega_{1} t - (2\alpha_{V7} - \alpha_{V1} + 2\theta_{V7} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[15\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V2} + \alpha_{V1} + 2\theta_{V7} + \theta_{V1}) \right] + \\ & + \frac{1}{16} \cos \left[15\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V2} + \alpha_{V1} + 2\theta_{V7} + 2\theta_{V2} + \theta_{V1}) \right] + \\ & + \frac{1}{16} \cos \left[15\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V2} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V2} + \theta_{V1}) \right] + \\ & + \frac{1}{16} \cos \left[15\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V2} + \alpha_{V1} + 2\theta_{V7} + 2\theta_{V2} + \theta_{V1}) \right] + \\ & + \frac{1}{16} \cos \left[15\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V2} + \alpha_{V1} + 2\theta_{V7} + 2\theta_{V2} + \theta_{V1}) \right] + \\ & + \frac{1}{16} \cos \left[15\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V2} + \alpha_{V1} + 2\theta_{V7} + 2\theta_{V7} + 2\theta_{$	©.	$-2\theta_{v1}-\theta_{v5})] + \frac{1}{16}\cos[21\omega_{1}t - (2\alpha_{v7}+2\alpha_{v1}+\alpha_{v5}+2\theta_{v7}+2\theta_{v1}+\theta_{v5})]] + 30\phi_{v5}^{2}\phi_{v3}^{2}\phi_{v1}\left[\frac{1}{4}\cos(2\theta_{v5}+$	
$ + \frac{1}{3} \cos \left[5\omega_{1} t - (2\omega_{V3} - \omega_{V1} + 2\theta_{V3} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[5\omega_{1} t - (2\omega_{V5} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V5} - 2\theta_{V3} + \theta_{V1}) \right] + \frac{1}{16} \cos \left[5\omega_{1} t - (2\omega_{V5} + 2\alpha_{V3} - \alpha_{V1} + 2\theta_{V5} + 2\theta_{V3} - \theta_{V1}) \right] + \frac{1}{3} \cos \left[7\omega_{1} t - (2\omega_{V5} + 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V5} + \theta_{V1}) \right] + \frac{1}{16} \cos \left[5\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} - \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[5\omega_{1} t - (2\alpha_{V5} + 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V5} + \theta_{V1}) \right] + \frac{1}{16} \cos \left[5\omega_{1} t - (2\alpha_{V5} - \alpha_{V7} + 2\theta_{V5} + \theta_{V7}) \right] + \frac{1}{16} \cos \left[5\omega_{1} t - (2\alpha_{V5} - \alpha_{V7} + 2\theta_{V5} + \theta_{V7}) \right] + \frac{1}{16} \cos \left[5\omega_{1} t - (2\alpha_{V5} - \alpha_{V7} + 2\theta_{V5} - \theta_{V7}) \right] + \frac{1}{3} \cos \left[17\omega_{1} t - (2\alpha_{V5} - \alpha_{V7} + 2\theta_{V5} - \theta_{V7}) \right] + \frac{1}{3} \cos \left[17\omega_{1} t - (2\alpha_{V5} - \alpha_{V7} + 2\theta_{V5} - \theta_{V7}) \right] + \frac{1}{3} \cos \left[15\omega_{1} t - (2\alpha_{V5} - \alpha_{V7} + 2\theta_{V5} - \theta_{V7}) \right] + \frac{1}{3} \cos \left[15\omega_{1} t - (2\alpha_{V5} - \alpha_{V7} - 2\theta_{V5} - \theta_{V7}) \right] + \frac{1}{3} \cos \left[15\omega_{1} t - (2\alpha_{V5} - \alpha_{V7} - 2\theta_{V5} - 2\theta_{V5} - 2\theta_{V5} - \theta_{V7}) \right] + \frac{1}{3} \cos \left[15\omega_{1} t - (2\alpha_{V5} - 2\alpha_{V5} + \theta_{V7} - 2\theta_{V5} - 2\theta_{V5$		$\cdot (\omega_1 t - \alpha_{v1} - \theta_{v1}) + \frac{1}{8} \cos[9\omega_1 t - (2\alpha_{v5} - \alpha_{v1} + 2\theta_{v5} - \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \alpha_{v1} + 2\theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \alpha_{v1} + 2\theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \alpha_{v1} + 2\theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \alpha_{v1} + 2\theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \alpha_{v1} + 2\theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \alpha_{v1} + 2\theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \alpha_{v1} + 2\theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \alpha_{v1} + 2\theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \alpha_{v1} + 2\theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \alpha_{v1} + 2\theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \alpha_{v1} + 2\theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \alpha_{v1} + 2\theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \alpha_{v1} + 2\theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \alpha_{v1} + 2\theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \theta_{v1} + \theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \theta_{v1} + \theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \theta_{v1} + \theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \theta_{v1} + \theta_{v5} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \theta_{v1} + \theta_{v2} + \theta_{v1})] + \frac{1}{8} \cos[11\omega_1 t - (2\alpha_{v5} + \theta_{v1} + \theta_{v2} + \theta_{v$	
$\begin{aligned} &+\frac{1}{16}\cos[15\omega_{1}t-(2\alpha_{V5}+2\alpha_{V5}-\alpha_{V1}+2\theta_{V5}+2\theta_{V3}-\theta_{V1}])\frac{1}{8}\cos[7\omega_{1}t-(2\alpha_{V3}+\alpha_{V1}+2\theta_{V3}+\theta_{V1})] +\\ &+\frac{1}{16}\cos[5\omega_{1}t-(2\alpha_{V7}-2\alpha_{V3}-\alpha_{V1}+2\theta_{V7}-2\theta_{V3}-\theta_{V1})] +\frac{1}{16}\cos[17\omega_{1}t-(2\alpha_{V5}+2\alpha_{V3}+\alpha_{V1}+2\theta_{V5}+2\theta_{V3}+\theta_{V1})] +\\ &+\frac{1}{16}\cos[17\omega_{1}t-(2\alpha_{V5}+\alpha_{V7}+2\theta_{V5}+\theta_{V7})] +\frac{1}{8}\cos[17\omega_{1}t-(2\alpha_{V5}-\alpha_{V7}+2\theta_{V5}-\theta_{V7})] +\\ &+\frac{1}{3}\cos[17\omega_{1}t-(2\alpha_{V5}+\alpha_{V7}+2\theta_{V5}+\theta_{V7})] +\frac{1}{8}\cos[1\omega_{1}t-(\alpha_{V7}-2\alpha_{V3}+\theta_{V7}-2\theta_{V3})] +\\ &+\frac{1}{6}\cos[11\omega_{1}t-(2\alpha_{V5}+\alpha_{V7}+2\theta_{V5}-2\theta_{V3}+\theta_{V7})] +\frac{1}{16}\cos[9\omega_{1}t-(2\alpha_{V5}-2\alpha_{V3}+\alpha_{V7}-2\theta_{V5}-2\theta_{V5}+\theta_{V7})] +\\ &+\frac{1}{6}\cos[11\omega_{1}t-(2\alpha_{V5}+\alpha_{V7}+2\theta_{V5}+2\theta_{V3}+\theta_{V7})] +\frac{1}{16}\cos[9\omega_{1}t-(2\alpha_{V5}-2\alpha_{V3}+\alpha_{V7}-2\theta_{V5}-2\theta_{V5}+\theta_{V7})] +\\ &+\frac{1}{6}\cos[13\omega_{1}t-(2\alpha_{V5}+2\alpha_{V5}+\alpha_{V7}+2\theta_{V5}+2\theta_{V3}+\theta_{V7})] +\frac{1}{16}\cos[9\omega_{1}t-(2\alpha_{V5}-2\alpha_{V3}+\alpha_{V7}-2\theta_{V5}-2\theta_{V5}+\theta_{V7})] +\\ &+\frac{1}{6}\cos[23\omega_{1}t-(2\alpha_{V5}+2\alpha_{V5}+\alpha_{V7}+2\theta_{V5}+2\theta_{V3}+\theta_{V7})] +\frac{1}{16}\cos[9\omega_{1}t-(2\alpha_{V5}-2\alpha_{V3}+\alpha_{V7}-2\theta_{V5}-2\theta_{V5})] +\\ &+\frac{1}{16}\cos[23\omega_{1}t-(2\alpha_{V7}+2\alpha_{V5}+\alpha_{V7}+2\theta_{V5}+2\theta_{V3}+\theta_{V7})] +\frac{1}{16}\cos[15\omega_{1}t-(2\alpha_{V7}-\alpha_{V1}+2\theta_{V7}+\theta_{V1})] +\\ &+\frac{1}{16}\cos[15\omega_{1}t-(2\alpha_{V7}-\alpha_{V1}+2\theta_{V7}-\theta_{V1})] +\frac{1}{16}\cos[15\omega_{1}t-(2\alpha_{V7}-\alpha_{V1}+2\theta_{V7}+\theta_{V1})] +\\ &+\frac{1}{16}\cos[19\omega_{1}t-(2\alpha_{V7}-2\alpha_{V3}-\alpha_{V1}+2\theta_{V7}+2\theta_{V7}+2\theta_{V3}+\theta_{V1})] +\frac{1}{16}\cos[21\omega_{1}t-(2\alpha_{V7}-2\omega_{V3}+\alpha_{V1}+2\theta_{V7}+\theta_{V7})] +\\ &+\frac{1}{16}\cos[19\omega_{1}t-(2\alpha_{V7}-2\alpha_{V3}-\alpha_{V1}+2\theta_{V7}-2\theta_{V3}-\theta_{V1})] +\frac{1}{16}\cos[21\omega_{1}t-(2\alpha_{V7}-2\omega_{V3}+\alpha_{V1}+2\theta_{V7}+\theta_{V7})] +\\ &+\frac{1}{16}\cos[19\omega_{1}t-(2\alpha_{V7}-2\alpha_{V3}-\alpha_{V1}+2\theta_{V7}-2\theta_{V3}-\theta_{V1})] +\frac{1}{16}\cos[21\omega_{1}t-(2\alpha_{V7}-2\omega_{V3}+\alpha_{V1}+2\theta_{V7}+\theta_{V7})] +\\ &+\frac{1}{16}\cos[7\omega_{1}t-(2\alpha_{V7}-2\alpha_{V3}-\alpha_{V1}+2\theta_{V7}-2\theta_{V3}-\theta_{V1})] +\frac{1}{16}\cos[9\omega_{1}t-(2\alpha_{V7}-2\omega_{V3}+\alpha_{V1}+2\theta_{V7}+\theta_{V7}+\theta_{V7})] +\\ &+\frac{1}{16}\cos[7\omega_{1}t-(2\alpha_{V7}-2\alpha_{V3}-\alpha_{V1}+2\theta_{V7}-2\theta_{V3}-\theta_{V1})] +\frac{1}{16}\cos[9\omega_{1}t-(2\alpha_{V7}-2\omega_{V3}+\alpha_{V1}+2\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_{V7}+\theta_$		+ $\frac{1}{8}\cos[5\omega_1t - (2\alpha_{v3} - \alpha_{v1} + 2\theta_{v3} - \theta_{v1})] + \frac{1}{16}\cos[5\omega_1t - (2\alpha_{v5} - 2\alpha_{v3} + \alpha_{v1} + 2\theta_{v5} - 2\theta_{v3} + \theta_{v1})] +$. 1
$\begin{aligned} &+\frac{1}{16}\cos[3\omega_{1}t-(2\alpha_{V7}-2\alpha_{V3}-\alpha_{V1}+2\theta_{V7}-2\theta_{V3}-\theta_{V7}])+\frac{1}{16}\cos[17\omega_{1}t-(2\alpha_{V5}+2\alpha_{V3}+\alpha_{V1}+2\theta_{V5}+\\ &+2\theta_{V3}+\theta_{V1}])] +30\theta_{V5}^{2}\theta_{V3}^{2}\theta_{V3}\left[\frac{1}{4}\cos(7\omega_{1}t-\alpha_{V7}-\theta_{V7})+\frac{1}{8}\cos[3\omega_{1}t-(2\alpha_{V5}-\alpha_{V7}+2\theta_{V5}-\theta_{V7})]+\\ &+\frac{1}{8}\cos[17\omega_{1}t-(2\alpha_{V5}+\alpha_{V7}+2\theta_{V5}+\theta_{V7})]+\frac{1}{8}\cos[\omega_{1}t-(\alpha_{V7}-2\alpha_{V3}+\theta_{V7}-2\theta_{V3})]+\\ &+\frac{1}{16}\cos[11\omega_{1}t-(2\alpha_{V5}-2\alpha_{V3}+\alpha_{V7}+2\theta_{V5}-2\theta_{V3}+\theta_{V7})]+\frac{1}{16}\cos[9\omega_{1}t-(2\alpha_{V5}-2\alpha_{V5}+\alpha_{V7}-2\theta_{V5}-2\theta_{V5}+\theta_{V7})]\\ &+\frac{1}{8}\cos[13\omega_{1}t-(2\alpha_{V5}+\alpha_{V7}+2\theta_{V5}+2\theta_{V5}+2\theta_{V3}+\theta_{V7})] +30\theta_{V7}^{2}\theta_{V3}^{2}\theta_{V1}\left[\frac{1}{4}\cos(\omega_{1}t-\alpha_{V1}-\theta_{V1})+\\ &+\frac{1}{16}\cos[23\omega_{1}t-(2\alpha_{V5}+2\alpha_{V3}+\alpha_{V7}+2\theta_{V5}+2\theta_{V3}+\theta_{V7})]\right] +30\theta_{V7}^{2}\theta_{V3}^{2}\theta_{V1}\left[\frac{1}{4}\cos(\omega_{1}t-\alpha_{V1}-\theta_{V1})+\\ &+\frac{1}{8}\cos[13\omega_{1}t-(2\alpha_{V7}-\alpha_{V1}+2\theta_{V7}-\theta_{V1})]+\frac{1}{8}\cos[15\omega_{1}t-(2\alpha_{V7}+\alpha_{V1}+2\theta_{V7}+\theta_{V1})]+\\ &+\frac{1}{8}\cos[5\omega_{1}t-(2\alpha_{V7}-\alpha_{V1}+2\theta_{V7}-\theta_{V1})]+\frac{1}{16}\cos[9\omega_{1}t-(2\alpha_{V7}-2\alpha_{V3}+\alpha_{V1}+2\theta_{V7}+\theta_{V1})]+\\ &+\frac{1}{16}\cos[5\omega_{1}t-(2\alpha_{V7}-2\alpha_{V3}+\alpha_{V1}+2\theta_{V7}-2\theta_{V3}+\theta_{V1})]+\frac{1}{16}\cos[9\omega_{1}t-(2\alpha_{V7}-2\alpha_{V3}+\alpha_{V1}+2\theta_{V7}+\theta_{V1})]+\\ &+\frac{1}{16}\cos[19\omega_{1}t-(2\alpha_{V7}-2\alpha_{V3}+\alpha_{V1}+2\theta_{V7}-2\theta_{V3}+\theta_{V1})]+\frac{1}{16}\cos[21\omega_{1}t-(2\alpha_{V7}+2\alpha_{V3}+\alpha_{V1}+2\theta_{V7}+\theta_{V7}+\theta_{V7})]+\\ &+\frac{1}{16}\cos[7\omega_{1}t-(2\alpha_{V7}-2\alpha_{V3}+\alpha_{V1}+2\theta_{V7}-2\theta_{V3}+\theta_{V1})]+\frac{1}{16}\cos[21\omega_{1}t-(2\alpha_{V7}-2\alpha_{V3}+\alpha_{V1}+2\theta_{V7}+\theta$	•	$\frac{1}{16}\cos[15\omega_{1}t - (2\alpha_{v5}+2\alpha_{v3}-\alpha_{v1}+2\theta_{v5}+2\theta_{v3}-\theta_{v1})] + \frac{1}{8}\cos[7\omega_{1}t - (2\alpha_{v3}+\alpha_{v1}+2\theta_{v3}+\theta_{v1})] + \frac{1}{16}\cos[7\omega_{1}t - (2\alpha_{v3}+2\theta_{v1}+2\theta_{v3}+\theta_{v1})] + \frac{1}{16}\cos[7\omega_{1}t - (2\alpha_{v3}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+\theta_{v1})] + \frac{1}{16}\cos[7\omega_{1}t - (2\alpha_{v3}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+2\theta_{v1}+$,
		$+\frac{1}{16}\cos[3\omega_{1}t-(2\alpha_{v7}-2\alpha_{v3}-\alpha_{v1}+2\theta_{v7}-2\theta_{v3}-\theta_{v1})]+\frac{1}{16}\cos[17\omega_{1}t-(2\alpha_{v5}+2\alpha_{v3}+\alpha_{v1}+2\theta_{v5}+2\theta_{v$	
$ + \frac{1}{8} \cos \left[17\omega_{1} t - (2\alpha_{V5} + \alpha_{V7} + 2\theta_{V5} + \theta_{V7}) \right] + \frac{1}{8} \cos \left[\omega_{1} t - (\alpha_{V7} - 2\alpha_{V3} + \theta_{V7} - 2\theta_{V3}) \right] + \\ + \frac{1}{16} \cos \left[11\omega_{1} t - (2\alpha_{V5} - 2\alpha_{V3} + \alpha_{V7} + 2\theta_{V5} - 2\theta_{V3} + \theta_{V7}) \right] + \frac{1}{16} \cos \left[3\omega_{1} t - (2\alpha_{V5} - 2\alpha_{V3} + \alpha_{V7} - 2\theta_{V5} - 2\theta_{V5} + \theta_{V7}) \right] \\ + \frac{1}{8} \cos \left[15\omega_{1} t - (2\alpha_{V5} + \alpha_{V7} + 2\theta_{V5} + 2\theta_{V3} + \theta_{V7}) \right] + \frac{1}{16} \cos \left[3\omega_{1} t - (2\alpha_{V5} + \alpha_{V7} - 2\alpha_{V5} + 2\theta_{V3} + \theta_{V7} - 2\theta_{V5}) \right] + \\ + \frac{1}{16} \cos \left[23\omega_{1} t - (2\alpha_{V5} + 2\alpha_{V3} + \alpha_{V7} + 2\theta_{V5} + 2\theta_{V3} + \theta_{V7}) \right] \right] + 30\theta_{V7}^{2} \theta_{V3}^{2} \theta_{V1} \right] \left[\frac{1}{4} \cos \left(\omega_{1} t - \alpha_{V1} - \theta_{V1} \right) + \\ + \frac{1}{8} \cos \left[13\omega_{1} t - (2\alpha_{V7} - \alpha_{V1} + 2\theta_{V7} - \theta_{V1}) \right] + \frac{1}{8} \cos \left[15\omega_{1} t - (2\alpha_{V7} + \alpha_{V1} + 2\theta_{V7} + \theta_{V1}) \right] + \\ + \frac{1}{8} \cos \left[5\omega_{1} t - (2\alpha_{V7} - \alpha_{V1} + 2\theta_{V7} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[9\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} + \theta_{V1}) \right] + \\ + \frac{1}{16} \cos \left[5\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} + \theta_{V1}) \right] + \\ + \frac{1}{16} \cos \left[19\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} + \theta_{V1}) \right] + \\ + \frac{1}{16} \cos \left[7\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[21\omega_{1} t - (2\alpha_{V7} + 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} + \theta_{V7} + 2\theta_{V7} + 2\theta_{V7} - 2\theta_{V3} - \theta_{V1}) \right] + \\ + \frac{1}{16} \cos \left[7\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} - \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[21\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} + 2\theta_{V7} + 2\theta_{V7} - 2\theta_{V3} - \theta_{V7} \right] + \\ 2\theta_{V3} + \theta_{V1} \right] \right] + 30\theta_{V7}^{2} \theta_{V3}^{2} \theta_{V5} \right] \left[\frac{1}{4} \cos \left[(5\omega_{1} t - \alpha_{V5} - \theta_{V5}) + \frac{1}{8} \cos \left[9\omega_{1} t - (2\alpha_{V7} - \alpha_{V5} + 2\theta_{V7} - \theta_{V5} \right] \right] + \\ $		$+2\theta_{v3} + \theta_{v1})] + 30\theta_{v5}^2 \Phi_{v3}^2 \Phi_{v7} \left[\frac{1}{4}\cos(7\omega_1 t - \alpha_{v7} - \theta_{v7}) + \frac{1}{8}\cos[3\omega_1 t - (2\alpha_{v5} - \alpha_{v7} + 2\theta_{v5} - \theta_{v7})] + \right]$	
$ \frac{1}{16} \cos \left[11\omega_{1} t - (2\alpha_{V5} - 2\alpha_{V3} + \alpha_{V7} + 2\theta_{V5} - 2\theta_{V3} + \theta_{V7}) \right] + \frac{1}{16} \cos \left[9\omega_{1} t - (2\alpha_{V5} - 2\alpha_{V3} + \alpha_{V7} - 2\theta_{V5} - 2\theta_{V5} + \theta_{V7}) \right] $ $ + \frac{1}{16} \cos \left[13\omega_{1} t - (2\alpha_{V3} + \alpha_{V7} + 2\theta_{V3} + \theta_{V7}) \right] + \frac{1}{16} \cos \left[3\omega_{1} t - (2\alpha_{V3} + \alpha_{V7} - 2\alpha_{V5} + 2\theta_{V3} + \theta_{V7} - 2\theta_{V5}) \right] $ $ + \frac{1}{16} \cos \left[23\omega_{1} t - (2\alpha_{V5} + 2\alpha_{V3} + \alpha_{V7} + 2\theta_{V5} + 2\theta_{V3} + \theta_{V7}) \right] \right] + 30\theta_{V7}^{2} \theta_{V3}^{2} \theta_{V1} \left[\frac{1}{4} \cos (\omega_{1} t - \alpha_{V1} - \theta_{V1}) + \frac{1}{16} \cos \left[13\omega_{1} t - (2\alpha_{V7} - \alpha_{V1} + 2\theta_{V7} - \theta_{V1}) \right] \right] $ $ + \frac{1}{16} \cos \left[13\omega_{1} t - (2\alpha_{V7} - \alpha_{V1} + 2\theta_{V7} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[15\omega_{1} t - (2\alpha_{V7} + \alpha_{V1} + 2\theta_{V7} + \theta_{V1}) \right] $ $ + \frac{1}{8} \cos \left[5\omega_{1} t - (2\alpha_{V3} - \alpha_{V1} + 2\theta_{V3} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[9\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} + \theta_{V1}) \right] $ $ + \frac{1}{16} \cos \left[19\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[9\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} + \theta_{V1}) \right] $ $ + \frac{1}{16} \cos \left[19\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} - \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[10\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} + \theta_{V1}) \right] $ $ + \frac{1}{16} \cos \left[19\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} - \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[10\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} - \theta_{V1}) \right] $ $ + \frac{1}{16} \cos \left[19\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} - \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[10\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V7}$		$+ \frac{1}{8} \cos [17\omega_1 t - (2\alpha_{v5}^{+\alpha} + \alpha_{v7}^{+2\theta} + 2\theta_{v5}^{+\theta} + \theta_{v7}^{-1})] + \frac{1}{8} \cos [\omega_1 t - (\alpha_{v7}^{-2\alpha} - 2\alpha_{v3}^{-2\alpha} + \theta_{v7}^{-2\theta} - 2\theta_{v3}^{-2\theta})] +$	
$ + \frac{1}{8} \cos \left[13\omega_{1} t - (2\alpha_{V3} + \alpha_{V7} + 2\theta_{V3} + \theta_{V7}) \right] + \frac{1}{16} \cos \left[3\omega_{1} t - (2\alpha_{V3} + \alpha_{V7} - 2\alpha_{V5} + 2\theta_{V3} + \theta_{V7} - 2\theta_{V5}) \right] + \\ + \frac{1}{16} \cos \left[23\omega_{1} t - (2\alpha_{V5} + 2\alpha_{V3} + \alpha_{V7} + 2\theta_{V5} + 2\theta_{V3} + \theta_{V7}) \right] \right] + 30\theta_{V7}^{2} \theta_{V3}^{2} \theta_{V1} \left[\frac{1}{4} \cos \left(\omega_{1} t - \alpha_{V1} - \theta_{V1} \right) + \\ + \frac{1}{8} \cos \left[13\omega_{1} t - (2\alpha_{V7} - \alpha_{V1} + 2\theta_{V7} - \theta_{V1}) \right] + \frac{1}{8} \cos \left[15\omega_{1} t - (2\alpha_{V7} + \alpha_{V1} + 2\theta_{V7} + \theta_{V1}) \right] + \\ + \frac{1}{8} \cos \left[5\omega_{1} t - (2\alpha_{V7} - \alpha_{V1} + 2\theta_{V3} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[9\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} + \theta_{V1}) \right] + \\ + \frac{1}{16} \cos \left[19\omega_{1} t - (2\alpha_{V7} + 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} + 2\theta_{V3} + \theta_{V1}) \right] + \frac{1}{16} \cos \left[7\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} + \theta_{V1}) \right] + \\ + \frac{1}{16} \cos \left[7\omega_{1} t - (2\alpha_{V7} - 2\alpha_{V3} - \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} + \theta_{V1}) \right] + \frac{1}{16} \cos \left[21\omega_{1} t - (2\alpha_{V7} + 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} + \theta_{V7} + 2\theta_{V7} + 2\theta_{$	9	$\frac{1}{16} \cos \left[11\omega_{1} t - (2\alpha_{v5} - 2\alpha_{v3} + \alpha_{v7} + 2\theta_{v5} - 2\theta_{v3} + \theta_{v7})\right] + \frac{1}{16} \cos \left[9\omega_{1} t - (2\alpha_{v5} - 2\alpha_{v3} + \alpha_{v7} - 2\theta_{v5} - 2\theta_{v5} + 2\theta_$	³ v7]
$ + \frac{1}{16} \cos [23\omega_{1}t - (2\alpha_{V5} + 2\alpha_{V3} + \alpha_{V7} + 2\theta_{V5} + 2\theta_{V3} + \theta_{V7})] + 30\theta_{V7}^{2} \theta_{V3}^{2} \theta_{V1} [\frac{1}{4} \cos (\omega_{1}t - \alpha_{V1} - \theta_{V1}) + \frac{1}{8} \cos [13\omega_{1}t - (2\alpha_{V7} - \alpha_{V1} + 2\theta_{V7} - \theta_{V1})] + \frac{1}{8} \cos [15\omega_{1}t - (2\alpha_{V7} + \alpha_{V1} + 2\theta_{V7} + \theta_{V1})] + \frac{1}{8} \cos [5\omega_{1}t - (2\alpha_{V3} - \alpha_{V1} + 2\theta_{V3} - \theta_{V1})] + \frac{1}{16} \cos [9\omega_{1}t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} + \theta_{V1})] + \frac{1}{16} \cos [19\omega_{1}t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} + \theta_{V1})] + \frac{1}{16} \cos [19\omega_{1}t - (2\alpha_{V7} + 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} + \theta_{V1})] + \frac{1}{16} \cos [19\omega_{1}t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} + \theta_{V1})] + \frac{1}{16} \cos [21\omega_{1}t - (2\alpha_{V7} + \alpha_{V1} + 2\theta_{V7} + \theta_{V7} + \theta_{V7$		$+\frac{1}{8}\cos[13\omega_{1}t - (2\alpha_{v3}+\alpha_{v7}+2\theta_{v3}+\theta_{v7})] + \frac{1}{16}\cos[3\omega_{1}t - (2\alpha_{v3}+\alpha_{v7}-2\alpha_{v5}+2\theta_{v3}+\theta_{v7}-2\theta_{v5})] +$	
$ \frac{1}{8} \cos \left[13\omega_{1}t - (2\alpha_{V7} - \alpha_{V1} + 2\theta_{V7} - \theta_{V1}) \right] + \frac{1}{8} \cos \left[15\omega_{1}t - (2\alpha_{V7} + \alpha_{V1} + 2\theta_{V7} + \theta_{V1}) \right] + \frac{1}{8} \cos \left[5\omega_{1}t - (2\alpha_{V3} - \alpha_{V1} + 2\theta_{V3} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[9\omega_{1}t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} + \theta_{V1}) \right] + \frac{1}{8} \cos \left[19\omega_{1}t - (2\alpha_{V7} + 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} + 2\theta_{V3} + \theta_{V1}) \right] + \frac{1}{16} \cos \left[19\omega_{1}t - (2\alpha_{V7} + 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} + 2\theta_{V3} + \theta_{V1}) \right] + \frac{1}{16} \cos \left[7\omega_{1}t - (2\alpha_{V7} - 2\alpha_{V3} - \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[21\omega_{1}t - (2\alpha_{V7} + 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} + 2\theta_{V7} + 2\theta_{V3} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[21\omega_{1}t - (2\alpha_{V7} + 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} + 2\theta_{V7} + 2\theta_{V3} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[21\omega_{1}t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} + 2\theta_{V7} + 2\theta_{V3} - \theta_{V1}) \right] + \frac{1}{16} \cos \left[21\omega_{1}t - (2\alpha_{V7} - 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} + 2\theta_{V7} + 2\theta_{V3} + \theta_{V1}) \right] + 30\phi_{V7}^{2}\phi_{V3}^{2}\phi_{V5} \right] \left[\frac{1}{4} \cos \left(5\omega_{1}t - \alpha_{V5} - \theta_{V5} \right) + \frac{1}{8} \cos \left[9\omega_{1}t - (2\alpha_{V7} - \alpha_{V5} + 2\theta_{V7} - \theta_{V5}) \right] + \frac{1}{16} \cos \left[9\omega_{1}t - (2\alpha_{V7} - \alpha_{V5} + 2\theta_{V7} - \theta_{V5}) \right] + \frac{1}{16} \cos \left[9\omega_{1}t - (2\alpha_{V7} - \alpha_{V5} + 2\theta_{V7} - \theta_{V5}) \right] + \frac{1}{16} \cos \left[9\omega_{1}t - (2\alpha_{V7} - \alpha_{V5} + 2\theta_{V7} - \theta_{V5}) \right] + \frac{1}{16} \cos \left[9\omega_{1}t - (2\alpha_{V7} - \alpha_{V5} + 2\theta_{V7} - \theta_{V5}) \right] + \frac{1}{16} \cos \left[9\omega_{1}t - (2\alpha_{V7} - \alpha_{V5} + 2\theta_{V7} - \theta_{V5}) \right] + \frac{1}{16} \cos \left[9\omega_{1}t - (2\alpha_{V7} - \alpha_{V5} + 2\theta_{V7} - \theta_{V5}) \right] + \frac{1}{16} \cos \left[9\omega_{1}t - (2\alpha_{V7} - \alpha_{V5} + 2\theta_{V7} - \theta_{V5}) \right] + \frac{1}{16} \cos \left[9\omega_{1}t - (2\alpha_{V7} - \alpha_{V5} + 2\theta_{V7} - \theta_{V5}) \right] + \frac{1}{16} \cos \left[9\omega_{1}t - (2\alpha_{V7} - \alpha_{V5} + 2\theta_{V7} - \theta_{V5}) \right] + \frac{1}{16} \cos \left[9\omega_{1}t - (2\alpha_{V7} - \alpha_{V5} + 2\theta_{V7} - \theta_{V5}) \right] + \frac{1}{16} \cos \left[9\omega_{1}t - (2\alpha_{V7} - \alpha_{V5} + 2\theta_{V7} - \theta_{V5}) \right] + \frac{1}{16} \cos \left[9\omega_{1}t - (2\alpha_{V7} - \alpha_{V5} + 2\theta_{V7} - \theta_{V5}) \right] + \frac{1}{16} \cos \left[9\omega_{1}t - (2\alpha_{V7} - \alpha_{V5} + 2\theta_{V7} - \theta_{V5}) \right] + \frac{1}{16} \cos \left[9\omega_{1}t - (2\omega_{1} - \omega_{1} - \omega_{1} - \omega_{1} - \omega_{1} - \omega_{1} - \omega_{1} - \omega_{1$		$+\frac{1}{16}\cos[23\omega_{1}t - (2\alpha_{v5} + 2\alpha_{v3} + \alpha_{v7} + 2\theta_{v5} + 2\theta_{v3} + \theta_{v7})] + 30\phi_{v7}^{2}\phi_{v3}^{2}\phi_{v1} \left[\frac{1}{4}\cos(\omega_{1}t - \alpha_{v1} - \theta_{v1}) + \frac{1}{4}\cos(\omega_{1}t - \alpha_{v1} - \theta_{v1}) + \frac{1}{4$	
$ + \frac{1}{8} \cos \left[5\omega_{1} t - (2\alpha_{v3} - \alpha_{v1} + 2\theta_{v3} - \theta_{v1}) \right] + \frac{1}{16} \cos \left[9\omega_{1} t - (2\alpha_{v7} - 2\alpha_{v3} + \alpha_{v1} + 2\theta_{v7} - 2\theta_{v3} + \theta_{v1}) \right] + \frac{1}{16} \cos \left[19\omega_{1} t - (2\alpha_{v7} + 2\alpha_{v3} + \alpha_{v1} + 2\theta_{v7} + 2\theta_{v3} + \theta_{v1}) \right] + \frac{1}{8} \cos \left[7\omega_{1} t - (2\alpha_{v3} + \alpha_{v1} + 2\theta_{v3} + \theta_{v1}) \right] + \frac{1}{16} \cos \left[7\omega_{1} t - (2\alpha_{v7} - 2\alpha_{v3} - \alpha_{v1} + 2\theta_{v7} - 2\theta_{v3} - \theta_{v1}) \right] + \frac{1}{16} \cos \left[21\omega_{1} t - (2\alpha_{v7} + 2\alpha_{v3} + \alpha_{v1} + 2\theta_{v7} + 2\theta_{v7$		$\frac{1}{8}\cos[13\omega_{1}t - (2\alpha_{v7} - \alpha_{v1} + 2\theta_{v7} - \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + 2\theta_{v7} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \alpha_{v1} + \theta_{v1})] + \frac{1}{8}\cos[15\omega_{1}t - (2\alpha_{v7} + \theta_$	
$\frac{1}{16}\cos[19\omega_{1}t - (2\alpha_{V7} + 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} + 2\theta_{V3} + \theta_{V1})] + \frac{1}{8}\cos[7\omega_{1}t - (2\alpha_{V3} + \alpha_{V1} + 2\theta_{V3} + \theta_{V1})] + \frac{1}{16}\cos[7\omega_{1}t - (2\alpha_{V7} - 2\alpha_{V3} - \alpha_{V1} + 2\theta_{V7} - 2\theta_{V3} - \theta_{V1})] + \frac{1}{16}\cos[21\omega_{1}t - (2\alpha_{V7} + 2\alpha_{V3} + \alpha_{V1} + 2\theta_{V7} + $		$+\frac{1}{8}\cos[5\omega_{1}t - (2\alpha_{v3} - \alpha_{v1} + 2\theta_{v3} - \theta_{v1})] + \frac{1}{16}\cos[9\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v3} + \alpha_{v1} + 2\theta_{v7} - 2\theta_{v3} + \theta_{v1})] +$	
$ \frac{1}{16} \cos[7\omega_{1}t - (2\alpha_{v7} - 2\alpha_{v3} - \alpha_{v1} + 2\theta_{v7} - 2\theta_{v3} - \theta_{v1})] + \frac{1}{16} \cos[21\omega_{1}t - (2\alpha_{v7} + 2\alpha_{v3} + \alpha_{v1} + 2\theta_{v7} +$		$+\frac{1}{16}\cos[19\omega_{1}t - (2\alpha_{v7}^{+2}\alpha_{v3}^{+\alpha}+2\theta_{v7}^{+2}\theta_{v3}^{+\theta}+\theta_{v1})] + \frac{1}{8}\cos[7\omega_{1}t - (2\alpha_{v3}^{+\alpha}+2\theta_{v3}^{+\theta}+\theta_{v1})] +$	
$2\theta_{v3}+\theta_{v1})] + 30\phi_{v7}^{2}\phi_{v3}^{2}\phi_{v5} \left[\frac{1}{4}\cos(5\omega_{1}t-\alpha_{v5}-\theta_{v5}) + \frac{1}{8}\cos[9\omega_{1}t-(2\alpha_{v7}-\alpha_{v5}+2\theta_{v7}-\theta_{v5})] + \frac{1}{8}\cos[9\omega_{1}t-(2\alpha_{v7}-2\theta_{v5}+2\theta_{v7}-\theta_{v5})] + \frac{1}{8}\cos[9\omega_{1}t-(2\alpha_{v7}-2\theta_{v5}+2\theta_{v7}-\theta_{v5})] + \frac{1}{8}\cos[9\omega_{1}t-(2\alpha_{v7}-2\theta_{v5}+2\theta_{v7}-\theta_{v5})] + \frac{1}{8}\cos[9\omega_{1}t-(2\alpha_{v7}-2\theta_{v7}-\theta_{v5})] + \frac{1}{8}\cos[9\omega_{1}t-(2\alpha_{v7}-2\theta_{v7}-\theta_{v5})] + \frac{1}{8}\cos[9\omega_{1}t-(2\alpha_{v7}-2\theta_{v5}-\theta_{v5})] + \frac{1}{$		$\frac{1}{16}\cos[7_{\omega_{1}}t - (2\alpha_{v_{7}} - 2\alpha_{v_{3}} - \alpha_{v_{1}} + 2\theta_{v_{7}} - 2\theta_{v_{3}} - \theta_{v_{1}})] + \frac{1}{16}\cos[21\omega_{1}t - (2\alpha_{v_{7}} + 2\alpha_{v_{3}} + \alpha_{v_{1}} + 2\theta_{v_{7}} + 2\theta_{v_{7}}$	
	() ()	$2\theta_{v3}+\theta_{v1})] + 30\phi_{v7}^2\phi_{v3}^2\phi_{v5} \left[\frac{1}{4}\cos(5\omega_1 t - \alpha_{v5} - \theta_{v5}) + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \alpha_{v5} + 2\theta_{v7} - \theta_{v5})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \theta_{v7} - \theta_{v7} - \theta_{v7})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \theta_{v7} - \theta_{v7} - \theta_{v7})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \theta_{v7} - \theta_{v7})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \theta_{v7} - \theta_{v7})] + \frac{1}{8}\cos[9\omega_1 t - (2\alpha_{v7} - \theta_$	
			ţ

1 <u>8</u>

249 $\frac{1}{16}\cos \left[13\omega_{1}t - (\alpha_{v3}^{+\alpha}v5^{+\alpha}v7^{-2\alpha}v1^{+\theta}v3^{+\theta}v5^{+\theta}v7^{-2\theta}v1^{})\right] + \frac{1}{16}\cos \left[17\omega_{1}t - (2\alpha_{v1}^{+\alpha}v3^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}v5^{+\alpha}$ $+\alpha_{v7}^{+2\theta}+\theta_{v3}^{+\theta}+\theta_{v5}^{+\theta}+\theta_{v7})]+ \ 60\phi_{v3}^{2}\phi_{v1}^{+\phi}+\phi_{v5}^{+\phi}+\gamma_{0}^{-1}\left[\frac{1}{8}\cos[\omega_{1}^{t-(\alpha_{v7}^{-\alpha_{v1}^{-\alpha_{v5}^{+\theta}}+\theta_{v7}^{-\theta_{v1}^{-\theta_{v5}^{-\theta}}+1}+\theta_{v5}^{-\theta_{v1}^{-\theta_{v5}^{-\theta_{v5}^{-\theta}}+1}+\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta_{v5}^{-\theta$ $\frac{1}{8}\cos[13\omega_{1}t - (\alpha_{v7}^{+\alpha}+\alpha_{v5}^{+\alpha}+\alpha_{v1}^{+\theta}+\alpha_{v5}^{+\theta}+\alpha_{v1}^{-1})] + \frac{1}{16}\cos[5\omega_{1}t - (2\alpha_{v3}^{+\alpha}+\alpha_{v1}^{+\alpha}+\alpha_{v5}^{+\alpha}+\alpha_{v3}^{-1}+\alpha_{v3}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5}^{-1}+\alpha_{v5$ $+\theta_{v5}+\theta_{v7})]+\frac{1}{16}\cos[7\omega_{1}t-(2\alpha_{v3}+\alpha_{v7}-\alpha_{v1}-\alpha_{v5}+2\theta_{v3}+\theta_{v7}-\theta_{v1}-\theta_{v5})]+\frac{1}{16}[7\omega_{1}t-(\alpha_{v7}+\alpha_{v5}+2\theta_{v3}+\theta_{v7}-\theta_{v1}-\theta_{v5})]+\frac{1}{16}[7\omega_{1}t-(\alpha_{v7}+\alpha_{v5}+2\theta_{v5}+\theta_{v7}-\theta_{v1}-\theta_{v5})]+\frac{1}{16}[7\omega_{1}t-(\alpha_{v7}+\alpha_{v5}+2\theta_{v5}+\theta_{v7}-\theta_{v1}-\theta_{v5})]+\frac{1}{16}[7\omega_{1}t-(\alpha_{v7}+\alpha_{v5}+2\theta_{v5}+\theta_{v7}-\theta_{v1}-\theta_{v5})]+\frac{1}{16}[7\omega_{1}t-(\alpha_{v7}+\alpha_{v5}+2\theta_{v5}+\theta_{v7}-\theta_{v1}-\theta_{v5})]+\frac{1}{16}[7\omega_{1}t-(\alpha_{v7}+2\theta_{v5}+2\theta_{v5}+\theta_{v7}-\theta_{v1}-\theta_{v5})]+\frac{1}{16}[7\omega_{1}t-(\alpha_{v7}+2\theta_{v5}+2\theta_{v5}+\theta_{v7}-\theta_{v5})]+\frac{1}{16}[7\omega_{1}t-(\alpha_{v7}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+\theta_{v7}-\theta_{v5})]+\frac{1}{16}[7\omega_{1}t-(\alpha_{v7}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5}+2\theta_{v5$ $+\alpha_{v1}^{-2\alpha}v_{3}^{+\theta}v_{7}^{+\theta}v_{5}^{+\theta}v_{1}^{-2\theta}v_{3}^{-2\theta}v_{3}^{-1}] + \frac{1}{16}\cos[19\omega_{1}^{t} - (2\alpha_{v3}^{+\alpha}v_{1}^{+\alpha}v_{5}^{+\alpha}v_{7}^{+2\theta}v_{3}^{+\theta}v_{1}^{+\theta}v_{5}^{+\theta}v_{7}^{-1})] + \frac{1}{16}\cos[19\omega_{1}^{t} - (2\alpha_{v3}^{+\alpha}v_{1}^{+\alpha}v_{5}^{+\alpha}v_{7}^{+2\theta}v_{7}^{+\theta}v_{7}^{+\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}v_{7}^{-\theta}$ $+60\phi_{v5}^{2}\phi_{v7}^{2}\phi_{v3}\phi_{v1}\left[\frac{1}{8}\cos[3\omega_{1}t-(\alpha_{v7}-\alpha_{v3}-\alpha_{v1}+\theta_{v7}-\theta_{v3}-\theta_{v1})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3}-\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3}-\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]+\frac{1}{8}\cos[11\omega_{1}t-(\alpha_{v7}+\alpha_{v3}+\theta_{v3})]$ $+ a_{v1} + \theta_{v7} + \theta_{v3} + \theta_{v1}) + \frac{1}{16} \cos [7\omega_1 t - (2\alpha_{v5} - \alpha_{v7} + \alpha_{v1} + \alpha_{v3} + 2\theta_{v5} - \theta_{v7} + \theta_{v1} + \theta_{v3})] + \frac{1}{16} \cos [7\omega_1 t - (2\alpha_{v5} - \alpha_{v7} + \alpha_{v1} + \alpha_{v3} + 2\theta_{v5} - \theta_{v7} + \theta_{v1} + \theta_{v3})] + \frac{1}{16} \cos [7\omega_1 t - (2\alpha_{v5} - \alpha_{v7} + \alpha_{v1} + \alpha_{v3} + 2\theta_{v5} - \theta_{v7} + \theta_{v1} + \theta_{v3})] + \frac{1}{16} \cos [7\omega_1 t - (2\alpha_{v5} - \alpha_{v7} + \alpha_{v1} + \alpha_{v3} + 2\theta_{v5} - \theta_{v7} + \theta_{v1} + \theta_{v3})] + \frac{1}{16} \cos [7\omega_1 t - (2\alpha_{v5} - \alpha_{v7} + \alpha_{v1} + \alpha_{v3} + 2\theta_{v5} - \theta_{v7} + \theta_{v1} + \theta_{v3})] + \frac{1}{16} \cos [7\omega_1 t - (2\alpha_{v5} - \alpha_{v7} + \alpha_{v1} + \theta_{v3} + 2\theta_{v5} - \theta_{v7} + \theta_{v1} + \theta_{v3})] + \frac{1}{16} \cos [7\omega_1 t - (2\alpha_{v5} - \alpha_{v7} + \alpha_{v1} + \theta_{v3} + 2\theta_{v5} - \theta_{v7} + \theta_{v1} + \theta_{v3})] + \frac{1}{16} \cos [7\omega_1 t - (2\alpha_{v5} - \alpha_{v7} + \alpha_{v1} + \theta_{v3} + 2\theta_{v5} - \theta_{v7} + \theta_{v1} + \theta_{v3})] + \frac{1}{16} \cos [7\omega_1 t - (2\alpha_{v5} - \alpha_{v7} + \alpha_{v1} + \theta_{v3} + 2\theta_{v5} - \theta_{v7} + \theta_{v1} + \theta_{v3})] + \frac{1}{16} \cos [7\omega_1 t - (2\alpha_{v5} - \alpha_{v7} + \theta_{v1} + \theta_{v3} + \theta_$ $\cdot [13\omega_{1}t - (2\alpha_{v5}^{+\alpha}v7^{-\alpha}v1^{-\alpha}v3^{+2\theta}v5^{+\theta}v7^{-\theta}v1^{-\theta}v3^{)}] + \frac{1}{16}cos[\omega_{1}t - (\alpha_{v7}^{+\alpha}v3^{+\alpha}v1^{-2\alpha}v5^{+\theta}v7^{+\alpha}v7^{-2\alpha}v5^{+\theta}v7^{+\alpha}v7^{-2\alpha}v5^{+\theta}v7^{+\alpha}v7^{-2\alpha}v5^{+\theta}v7^{+\alpha}v7^{-2\alpha}v5^{+\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v7^{-\alpha}v$ $+\theta_{v3}+\theta_{v1}-2\theta_{v5})]+\frac{1}{16}\cos[21\omega_{1}t-(2\alpha_{v5}+\alpha_{v1}+\alpha_{v3}+\alpha_{v7}+2\theta_{v5}+\theta_{v1}+\theta_{v3}+\theta_{v7})]] +$ $+60^{4}v_{7}^{9}v_{5}^{9}v_{3}^{9}v_{1}\left[\frac{1}{8}\cos[\omega_{1}t-(\alpha_{v5}^{-\alpha}v_{3}^{-\alpha}v_{1}^{+\theta}v_{5}^{-\theta}v_{3}^{-\theta}v_{1}^{-\theta})]+\frac{1}{8}\cos[9\omega_{1}t-(\alpha_{v5}^{+\alpha}v_{3}^{+\alpha}v_{1}^{+\theta}v_{5}^{-\theta}v_{3}^{-\theta}v_{1}^{-\theta})]+\frac{1}{8}\cos[9\omega_{1}t-(\alpha_{v5}^{+\alpha}v_{3}^{+\alpha}v_{1}^{+\theta}v_{5}^{-\theta}v_{3}^{-\theta}v_{1}^{-\theta})]+\frac{1}{8}\cos[9\omega_{1}t-(\alpha_{v5}^{+\alpha}v_{3}^{+\alpha}v_{1}^{+\theta}v_{5}^{-\theta}v_{3}^{-\theta}v_{1}^{-\theta})]+\frac{1}{8}\cos[9\omega_{1}t-(\alpha_{v5}^{+\alpha}v_{3}^{+\alpha}v_{1}^{+\theta}v_{5}^{-\theta}v_{3}^{-\theta}v_{1}^{-\theta})]+\frac{1}{8}\cos[9\omega_{1}t-(\alpha_{v5}^{+\alpha}v_{3}^{+\alpha}v_{1}^{+\theta}v_{5}^{-\theta}v_{3}^{-\theta}v_{1}^{-\theta})]+\frac{1}{8}\cos[9\omega_{1}t-(\alpha_{v5}^{+\alpha}v_{3}^{+\alpha}v_{1}^{+\theta}v_{5}^{-\theta}v_{3}^{-\theta}v_{1}^{-\theta})]+\frac{1}{8}\cos[9\omega_{1}t-(\alpha_{v5}^{+\alpha}v_{3}^{+\alpha}v_{1}^{+\theta}v_{5}^{-\theta}v_{3}^{-\theta}v_{1}^{-\theta})]+\frac{1}{8}\cos[9\omega_{1}t-(\alpha_{v5}^{+\alpha}v_{3}^{+\alpha}v_{1}^{+\theta}v_{5}^{-\theta}v_{3}^{-\theta}v_{1}^{-\theta})]+\frac{1}{8}\cos[9\omega_{1}t-(\alpha_{v5}^{+\alpha}v_{3}^{+\alpha}v_{1}^{+\theta}v_{5}^{-\theta}v_{3}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{5}^{-\theta}v_{3}^{-\theta}v_{1}^{-\theta}v_{5}^{-\theta}v_{1}^{-\theta}v_{5}^{-\theta}v_{1}^{-\theta}v_{5}^{-\theta}v_{1}^{-\theta}v_{5}^{-\theta}v_{1}^{-\theta}v_{5}^{-\theta}v_{1}^{-\theta}v_{5}^{-\theta}v_{1}^{-\theta}v_{5}^{-\theta}v_{1}^{-\theta}v_{5}^{-\theta}v_{1}^{-\theta}v_{5}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{5}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{5}^{-\theta}v_{1}^{-\theta}v_{5}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{-\theta}v_{1}^{$ $+\theta_{v5}+\theta_{v3}+\theta_{v1})]+\frac{1}{16}\cos[13\omega_{1}t-(2\alpha_{v7}-\alpha_{v5}+\alpha_{v1}+\alpha_{v3}+2\theta_{v7}-\theta_{v5}+\theta_{v1}+\theta_{v3})]+\frac{1}{16}\cos[15\omega_{1}t-(2\alpha_{v7}-\alpha_{v5}+\alpha_{v1}+\alpha_{v3}+2\theta_{v7}-\theta_{v5}+\theta_{v1}+\theta_{v3})]+\frac{1}{16}\cos[15\omega_{1}t-(2\alpha_{v7}-\alpha_{v5}+\alpha_{v1}+\alpha_{v3}+2\theta_{v7}-\theta_{v5}+\theta_{v1}+\theta_{v3})]+\frac{1}{16}\cos[15\omega_{1}t-(2\alpha_{v7}-\alpha_{v5}+\alpha_{v1}+\alpha_{v3}+2\theta_{v7}-\theta_{v5}+\theta_{v1}+\theta_{v3})]+\frac{1}{16}\cos[15\omega_{1}t-(2\alpha_{v7}-\alpha_{v5}+\alpha_{v1}+\alpha_{v3}+2\theta_{v7}-\theta_{v5}+\theta_{v1}+\theta_{v3})]+\frac{1}{16}\cos[15\omega_{1}t-(2\alpha_{v7}-\alpha_{v5}+\alpha_{v1}+\alpha_{v3}+2\theta_{v7}-\theta_{v5}+\theta_{v1}+\theta_{v3})]+\frac{1}{16}\cos[15\omega_{1}t-(2\alpha_{v7}-\alpha_{v5}+\alpha_{v1}+\alpha_{v3}+2\theta_{v7}-\theta_{v5}+\theta_{v1}+\theta_{v3})]+\frac{1}{16}\cos[15\omega_{1}t-(2\alpha_{v7}-\alpha_{v5}+\alpha_{v1}+\alpha_{v3}+2\theta_{v7}-\theta_{v5}+\theta_{v1}+\theta_{v3})]+\frac{1}{16}\cos[15\omega_{1}t-(2\alpha_{v7}-\alpha_{v5}+\alpha_{v1}+\alpha_{v3}+2\theta_{v7}-\theta_{v5}+\theta_{v1}+\theta_{v3})]+\frac{1}{16}\cos[15\omega_{1}t-(2\alpha_{v7}-\alpha_{v5}+\alpha_{v1}+\theta_{v3}+2\theta_{v7}-\theta_{v5}+\theta_{v1}+\theta_{v3}+2\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{v3}+\theta_{$ $-(2\alpha_{v7}+\alpha_{v5}-\alpha_{v3}-\alpha_{v1}+2\theta_{v7}+\theta_{v5}-\theta_{v3}-\theta_{v1})] + \frac{1}{16}\cos[5\omega_{1}t - (2\alpha_{v7}-\alpha_{v5}-\alpha_{v3}-\alpha_{v1}+2\theta_{v7}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v5}-\theta_{v$ $-\theta_{v3}-\theta_{v1})]+\frac{1}{16}\cos[23\omega_{1}t-(2\alpha_{v7}+\alpha_{v3}+\alpha_{v5}+\alpha_{v1}+2\theta_{v7}+\theta_{v3}+\theta_{v5}+\theta_{v1})]]$ (16)

Finalmente as substituições das expressões (4), (13) e (16) na equação (2), resulta em uma equação constituida de um elevado número de termos, que pode ser representada de _acordo com a equação a seguir:

$$\phi_{v}^{\prime}(t) = k=1, 3, 5...35 \text{ h}=1, 3, 5...21 \text{ vkh}^{\phi} \cos(k\omega_{1}^{\prime}t-\beta_{vkh})$$
 (17)

onde:

6

9

•

B

0

A

- $\tilde{\Phi}_{vkh}$ = valor de pico em [pu] do fluxo de tensão, referente a cada termo obtido no desenvolvimento do polinômio
- k = ordem dos termos resultantes no desenvolvimen to do polinômio
- h = ordem dos diferentes ângulos de fase que cons tituem uma mesma componente harmônica origina da do desenvolvimento do polinômio
- β_{vkh} = angulos de fase correspondentes aos termos ob tidos no desenvolvimento do polinômio.

A equação (17) denotada em [pu] é escrita de acordo com a expressão a seguir:

$$\bar{\phi}_{v}^{\prime}(t) = k=1, 3, 5...35 \text{ h}=1, 3, 5...21 \cos(k\bar{t} - \beta_{vkh})$$
 (18)

De forma análoga, obtém-se a expressão para o fluxo de corrente segundo a equação (19):

$$\bar{\phi}_{i}^{\prime}(t) = k=1, 3, 5, ..., 35 h=1, 3, 5, ..., 21 \tilde{\phi}_{vkh} \cos(k\bar{t} - \beta_{ikh})$$
 (19)

REFERÊNCIAS BIBLIOGRÁFICAS

Ø

•

•

•

•

•

•

	[01]	STRATFORD, R.P. and SMITH, R.L. "Aplication Considerations
		in Handling Effects of SCR Generated Harmonicsin Cement
		Plants", IEEE Transactions on Industry Aplications, Vol.
i		IA-17, Nº 1, January/February, 1981, pp. 63-70.
	[02]	STRATFORD, R.P., "Rectifier Harmonics in Power Systems"
		IEEE Transactions on Industry Aplications, Vol. IA-16,
44		Nº 2, March/April, 1980, pp.271-276.
	[03]	Limits for Harmonics in the United Kingdon Electricity
		Supply System - ENGINEERING RECOMMENDATION G5/3, System
		Design and Development Comittee, September, 1976.
	[04]	Limitation of Harmonic Levels - New Zeland Gazette of 3rd
		December, 1981.
ł	[05]	GOES, NILSON, "Análise - Modelagem e Simulação des Fontes
5		Geradoras de Harmônicas, (Tese de Mestrado - EFEI/81).
1 N	[06]	PINHEIRO, RICARDO. FERREIRA, "Equipamentos Estáticos, para
		Compensação de Reativos e Desequilíbrios em Sistemas
		Elétricos, (Tese de Mestrado - EFEI/80).
	[07]	WANENER, E., "The Static Compensator as a Means of
		Limiting the Disturbance Caused by Iteavy Industrial
		Loads on the Power Supply" - Brow Boveri - Q 200015 P1
• -		01.

[08] OLIVEIRA, ALOISIO DE. "Uma Contribuição ao Estudo da Insta bilidade Causada por Conversores Estáticos, (Tese de Mestrado - UNICAMP/83).

6

6

۲

0

æ

62

(b)

0

O

- [09] ARAN, G. Phadke, "Generation of Abnormal Harmonics in High - Voltage AC-DC Power Systems. IEEE Transactions on PAS, Vol. 87, Nº 3, March, 1968, pp. 873-882.
- [10] JOHN REEVE and KRISHNAYYA, P.C.S., " Unusual Current Harmonics Arising from High - Voltage DC Transmission, IEEE on PAS, Vol. 87, March, 1968, pp. 883-893.
- [11] JOHN REEVE and JOHN A. BARON, "Harmonic DC Line Voltages Arising from HV DPower Conversion. IEEE Transactions on PAS, Vol. 89, Nº 7, Sep/Oct., 1970, pp. 1619-1624.
- [12] SUBBARAO, T. and JOHN REEVE, "Harmonics Caused by Imbalanced Transformer Impedances and Imperfect Twelve - pulse Operation in HV DC Conversion". IEEE Transactions on PAS, Vol. 95, Nº 5, Sep/Oct. 1976, pp. 1732-1737.
- [13] CLIVEIRA, ALOISIO DE, OLIVEIRA, JOSÉ CARLOS DE, Apostila Sistemas Estáticos de Conversão e Aplicações em Aciona mentos Elétricos, UFU, Uberlândia, 1983.
- [14] Projeto e Construção de um Instrumento para Análise Espec tral, Projeto de Pesquisa - FINEP/UFU, Convênio Nº 52860519 - 1987.
- [15] BOWLES, J.P., AC System and Transformer Representation for HV DC Transmission Studies, IEE Transactions on PAS, Vol. 89, Nº 7, Sept/Oct. 1970, pp. 1603-1609.

- [16] HINGORANI, N.G., Simulation of AC System Impedance in HVDC System Studies. IEEE Transactions on PAS, Vol. 89, n95/6, May/June, 1970, pp. 820-826.
- [17] VILELA, LUIS CARLOS, Modelagem de Sistemas Elétricos para Estudos de Fluxo Harmônico, (Tese de Mestrado, EFEI - 1981).
- [18] OLIVEIRA, LUIS CARLOS ORIGA DE, Cálculo de Harmônicos Trifásicos Gerados por Conversores e Compensadores Estáticos, (Tese de Mestrado, EFEI - 1983).

6.

1

1.00

R

0

- [19] PIRES, FRANCISCA A. C, Fluxo Harmônico Trifásico: Fontes e Propagação, em fase final de conclusão (Doutorado pela UNICAMP).
- [20] DIAS, EDUARDO MÁRIO, Estudo de Harmônicas em Sistemas de Potência (Livre Docência - USP - 1980).
- [21] TSCHAPPU, F. "Problems of the Exact Measurement of Electrical Energy in Networks Having Harmonics Content in the Current. Landis & Gyr Review 28(1981)2, pp. 8-14.
- [22] FUCHS, E.F., ALASHHAB, T.F. HOCK and SEN, P. "Impact of Harmonics on Home Apliances", Topical Report, First Draft, Prepared for us. Dept. of Energy Contract, Nº AC-02 -80RA50150, June, 1981.
- [23] GOLDBERG, G., "Behavior of Apparatus Under the Influence of Voltage and Current Harmônics", Bull, Soc. R. Belge Electr., (Belgium), Vol. 91, Nº 4, Oct-Dec, 1975, pp. 225-235.

[24] WARDER, S.B., FRIEDLANDER, E. and ARMAN, A.N., "The Influence of Rectifier Harmonics in a Railway System on the Dieletric Stability of 33 KV Cables", Proc. IEE, Vol.98, 1951, pp. 399-421.

O^{max}

۲

0

-

- [25] KEY, T.S. "Deagnosing Power Quality Related Computer Problems", IEEE Transactions, Vol. IA-15, July, 1979, pp. 381-393.
- [26] LINDERS, J.R. "Electric Wave Distortions: Their Hidden cost and Containment", IEEE Transactions, Vol. IA-15, Sept, 1979, pp. 458-469.
- [27] FAUCETT, M.A. and KEENER, C.A., "Effects of Harmonics on Walthour Meter Accuracy", Electrical World, Oct. 1945, pp. 82-84.
- [28] CHALMERS, B.J. and SARKAR, B.R., "Induction Motor Losses Due to Nonsinusoidal Supply Waveforms, Proc. IEE, Vol. 115, Nº 12, Dec., 1968, pp. 1777-1781.
- [29] XIA, D. and HEYDT, G.T., "Harmonic Power Flow Studies, Part I and Part II", IEEE Transactions on PAS, Vol.101, Nº 6, June, 1982, pp. 1257-1270.
- [30] KUUSSAARI, M. and PESONEN, A.J., "Measured Power Line Harmonics Currents and Induced Telephone Noise Interference With Special Reference to Statistical Approach, Paper, Cigre, Paris, 1976, 36-05.

[31] ARRILLAGA, J. "Power System Harmonics, Wiley-Intercience, Chichester, (Cap. 5 Harmonic Effects).

- [32] BAKER, W.P., "Measired Impedances of Power Systems - International Conference on Harmonics in Power Systems", UMIST, Manchester, England, 1-2, September, 1981, pp. 141-158.
- [33] McGRANAGHAN, M.F. SHAW, J.H. and OWEN, R.E., "Measuring Voltage and Current Harmonics on Distribution Systems", IEEE Transactions on PAS, Vol. 100, Nº 7, July, 1981, pp. 3599-3608.
- [34] BREUER, G.D., CHOW, J.H., ADDIS, R.H. LASSETER and J.J. VITHAYATHIL, "HVDC - AC Harmonic, Interation, Part I - Development of a Harmonic Mesaurement System Hardware and Software", IEEE Transactions on PAS, Vol. 101, Nº 3, March, 1982, pp. 701-708.
- [35] BREUER, G.D., CHOW, J.H., ADDIS, G. LASSETER and J.J. VITHAYATHIL, "HVDC - AC Harmonic Interation, Part II - AC System Harmonic Model With Comparison of Calculated and Measured Data. IEEE Transactions on PAS, Vol. 101, Nº 3, March, 1982, pp. 709-718.
- [36] HARRIOTT, L.G., Magnetic Frequency Conversion, Proceedings of the National Electronics Conference, Chicago, III, Vol, 9, pp. 78-87.
- [37] JOHNSON, L.J., RAUCH, S.E., Magnetic Frequency Multipliers, A IEE Transactions, Part I (Communication and Electronics), Vol. 73, Nov., 1954, pp. 448-52.
- [38] BIRINGER, PAUL P. The Traductor, Ibid. Vol. 75, Nov., 1956, pp. 590-94.

- [39] WILLIAN, MCMURRAY, Magnetic Frequency Multipliers and their Rating, Ibid, Sept, pp. 384-389.
- [40] MARVIN, CAMRAS, A New Frequency Multiplier, IEEE, December, 1963, pp. 844-851.
- [41] "Harmonics, Characteristic Parameters, Methods of Study Estimates of Existing Values in the Network" Electra NO 77 - CIGRE, Working Group, July, 1981.
- [42] DICK, E.P., "Transformer Diagnostic Testing By Frequency Response Analisys", IEEE Transactions on PAS, Vol 97, Nov/Dec. 1978.
- [43] BRADLEY, D.A.; BODGER, P.S.; HYLAND, P.R., "Harmonic Response Testes on Voltage Transducer for the New Zeland Power System", IEEE Transactions on PAS, Vol. 104, July, 1985.
- [44] OLIVIER, G.; BOUCHARD, R.P.; GERVAIS, Y.: MUKHEDKAR, D., "Frequency Response of KV Test Transformers and the Associated Measurement Problems", IEEE Transactions on PAS, Vol. 99, Jan/Fev., 1980.

霸

6

673

14

6

- [45] DOUGLAS, D.A., "Current Transformer Accuracy With Asymmetric and High Frequency Fault Currents" IEEE Transactions on PAS, Vol. 100, NQ, March, 1986, pp. 1006-1012.
- [46] TSCHAPPU, F., "Modern Methods of Lossfree Load Control an their Influence on the Measuring Accuracy of Electricity Meters, Landis & Gyr Review 20(1973) pp. 20-26.

	[47]	TSCHAPPU, F., "Fields of Application and Limitation of the
)	Modern SCR Power Control With a View to the Influence on
0	 definition 	Modelin bek fower concret with a view to the infidence of
A	•	the Measurement of Energy, Landis & Gyr Review 26(1979).
	•	pp. 15-21.

[48] BAGGOTT, A.J., "The Effect of Wave Distortions on the Measurement of Energy Tariff Meters". IEE Conference Publication Nº 156, Metering, Apparatus and Tariffs for Electricity Supply, London, Nov., 1977, pp. 280-294.

257

- [49] WELLER, C.T.; TREKELL, H.E. and STEBBINS, F.O., "Watthour -Meter Performance With Power Rectifiers", A IEE Trans. Vol. 59, August, 1940, pp. 449-57.
- [50] DOWING, W.G., "Watthour Meter Accuracy on SCR Controlled Resistance Loads", IEE Transactions on PAS, Vol. 93, 1983, pp. 89.
- [51] TSHAPPU, F., "Problems of the Exact Measurement of Electrical Energy in the Networks Having Harmonic Content in the Current", Landis & Gyr Review 28(1981)2, pp. 8-17.
- [52] SAUL GOLDBERG and WILLIAN F. HORTON, "Induction Watthour Meter Accuracy With Non Sinusoidal Currents", IEEE Transactions on PAS, Vol. Nº 3, July, 1987, pp. 683-690.

[53] HIRANO, T. and WADA, H., "Effect of Waveform Distortion on Characteristics of Watthour Induction Meter", Electrical Engineering in Japan, Vol. 89, Nº 4, April, 1969, pp. 29-39.

- [54] BAGHZOUS Y. and OWEN T. TAN, "Harmonic Analysis of Induction Watthour Meter Performance", IEEE Transactions on PAS, Vol. Nº 2, February, 1985, pp. 399-406.
- [55] EMANUEL A.E. and LEVITSKY, F.J., "Induction Watthour Meter Performance on Rectifier/Inverter Circuits", IEE Trans. on PAS, Vol. 100, Nº 11, November, 1981, pp. 4422-27.
- [56] AUGER, M. et BERGEROT, J.L., "Influence des Harmoniques sur la Précision des Compteurs (Wattheur - Meters), a Induction", EDF Bulletiñ de la Direction et Recherches, Serie B, Reseaux Electríques, Materiels, Electríques, NQ 2, 1972, pp. 5-44.
- [57] ARY, D'Ajuz, Equipamentos Elétricos "Especificação e <u>A</u> plicação em Subestações de Alta Tensão" - Furnas Cen trais Elétricas S.A./UFU - 1985.
- [58] GOBIND, Daryanani, "Principles of Active Network Synthesis and design", John Wiley and Sons, 1976.

[59] ALLAN, Greenwood, "Electrical Transients in Power Systems, Wiley - Interscience, Division of John Wiley & Sons, Inc. - Canada, 1971, Cap. 15, pp. 412-444.

[60] MILLMAN, Halkias, "Eletrônica, Dispositivos e Circuitos " Vol. 2, Cap. 16, McGraw Hill do Brasil, 1981.

[61] GREENE, J. David and GROSS, Charles A., "Nonlinear Modeling of Transformers", IEEE Transactions on Industry Aplications, Vol. 24, Nº 3, May/June, 1988, pp.434-438.

腽

[62] NIKOLA, Rajakovic and ADAM, Semlyen, "Harmonic Domain Analysis of Field Variables Related to Eddy Current and Hysteresis Losses in Satured Laminations, IEEE Transactions on Power Delivery, Vol. 4, Nº 2, April, 1989, pp. 1111-1116.

CO TRANSPORT

in the second

٩

۲

۲

۵

6

(

- [63] KEMA, N.V., "Transformer Model for High Frequencies", IEEE Transactions on Power Delivery, Vol. 3, Nº 4, October, 1988, pp. 1761-1768.
 - [64] JACOBS, M.L. and LANGER, G. An Ultra Low Distortion, Isolation Potencial Transformer for Power System Harmonic Measurements, Third International Conference on Harmonics in Power - September 28 - October 1, 1988, Nashville, Indiana, USA.
 - [65] EMANUEL, Alexander E., Harmonic Power Effect on Energy and Power Meters Accuracy – Actual and Future Instrummentation, BRASILCON'88 – "Harmônicos em Sistemas Elétricos", Coordenação IEE, Seção Rio de Janeiro, (Furnas Centrais Elétricas), Dezembro, 1988.
 - [66] FUCHS, Rubens Dário, "Trnasmissão de Energia Elétrica", Li vros Técnicos e Científicos Editora, 1977.
 - [67] VAN DEN EIJKEL, D.A., Measurement of Harmonics and Unbalance, 4th International Conference on a.c. and d.c. Power Transmission, IEE Conference Publication, London, Nº 255, pp. 164-167, September, 1985.

6	
0	
•	260
O	
	[68] GOLDBERG, Saul and HORTON, William, F., Induction watthour
	Meter Accuracy with Non - Sinusoidal Currents, IEE
Ŏ	Transactions on Power Delivery, Vol. PWRD-2, Nº 3,
	July, 1987, pp. 683-690.
, 0	[69] OLIVEIRA, José Carlos de, DIAS, Eduardo Mário, SAMESIMA,
	Milton Itsuo, OLIVEIRA, Aloisio de, - Uma Contribui -
0	ção à Modelagem e à Verificação Experimental das Res-
9	postas em Frequências de Transformadores de Potencial
	e de Corrente, III Encontro Nacional Latino Americano
	da CIGRE - Foz do Iguaçu - PR, Brasil.
• 6	[70] OLIVEIRA, Aloisio de, OLIVEIRA, José Carlos de, LIMA, Lu
	ciano Vieira, - Desenvolvimentos Nacionais na Área de
0	Instrumentação para a Medição de Harmônicos em Siste-
	mas Elétricos, III Encontro Nacional Latino Americano
() ()	da CIGRE - Foz do Iguaçu - PR, Brasil.
	[71] OLIVEIRA, Aloisio de, OLIVEIRA, José Carlos de, SAMESIMA,
0	Milton Itsuo, - Resposta em Frequências de Transforma
0	dores de Potencial nas Medições Harmônicas, X Seminá-
	rio Nacional de Distribuição de Energia Elétrica, Rio
0	de Janeiro - RJ, 2 a 7 de Outubro de 1988.
. 0	
0	[72] OLIVEIRA, Aloisio de, OLIVEIRA, José Carlos de, NETO,
	Francisco Rennó, Detetor Direcional de Fluxo Harmôni-
	co, X Seminário Nacional de Distribuição de Energia <u>E</u>
	létrica, Rio de Janeiro - RJ, 2 a 7 de Outubro de
	1988.
0	

- [73] OLIVEIRA, Aloisio de, OLIVEIRA, José Carlos de, Detetor
 "ON-LINE" de Distorções Harmônicas em Sistemas Elétri cos de Potência, VII Congresso Chileno de Ingeniaria
 Electrica, Santiago, Chile, 18-20 Noviembro, 1987.
- [74] OLIVEIRA, Aloisio de, OLIVEIRA, José Carlos de, MISKULIN, Mauro Sérgio, RESENDE, José Wilson, "A New Practical Approach for AC System Harmonic Impedance Measurement", CIGRE, SC-14 HVDC Colloquium, August, 1989, Recife - PE, Brasil.