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Preface

BIOMOVS II (BlOspheric MOdel Validation Study - Phase II) is an international
cooperative study to test models designed to quantify the transfer and
bioaccumulation of radionuclides and other trace substances in the environment.

The BIOMOVS II study is jointly managed by five organisations:

• The Atomic Energy Control Board of Canada;

• Atomic Energy of Canada Limited, AECL Research;

• Centro de Investigaciones Energeticas Medioambientales y Tecnol6gicas,
Spain;

• Empresa Nacional de Residuos Radiactivos SA, Spain;

• Swedish Radiation Protection Institute.

This report has been produced to provide guidelines for uncertainty analysis for
use by participants in the BIOMOVS II study. It is hoped that others with an
interest in modelling contamination in the biosphere will also find it useful. The
report has been prepared by members of the Uncertainty and Validation
Working Group and has been reviewed by other BIOMOVS II participants. The
opinions expressed are those of the authors and should not be taken to represent
the views of the BIOMOVS II sponsors or other BIOMOVS II participating
organisations.
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1. Introduction

An uncertainty analysis provides a quantitative estimate of the range of model
outputs that results from uncertainties in the structure of the model or the inputs
to the model. If the analysis is carried out in an appropriate way, the probability
will be high that the range will contain the true value (or values) that the model
seeks to predict. The analysis can also be extended to identify the sources that
dominate the overall uncertainty, so that priorities can be set for work aimed at
reducing the uncertainty. For these reasons, uncertainty analysis is an integral
and important part of simulation modelling. But if the uncertainty estimates are
to be meaningful and of practical use, the analysis must be carried out
systematically, with due regard to the purpose of the model, the quality of the
data, and the nature of the application. The methods and assumptions used in
the analysis must be clearly documented.

BIOMOVS I was the first international model evaluation program in which best
estimate predictions were accompanied by a confidence interval. However, the
uncertainties estimated by the various participants often differed widely in
magnitude for a given scenario. Some variability is to be expected because many
aspects of uncertainty analysis are largely subjective, but a part of the variation
could also be explained by a lack of familiarity with the formal techniques of
uncertainty analysis, and the use of different techniques by different participants
at each step in the process. This made it difficult to use the results to draw
conclusions regarding the agreement between models, or to know the degree of
confidence that should be placed in the predictions for this set of scenarios and
modellers.

The present guidelines are an attempt to bring consistency to the uncertainty
analysis carried out for BIOMOVS II. They outline the steps to be followed in an
uncertainty analysis, recommend methods to be used at each step, and provide
practical information on implementing the methods, since there are many ways to
perform an uncertainty analysis, and the methods must be chosen to match the
type of model and data available, and the application in question. The intended
audience for these guidelines is BIOMOVS participants, and the methodologies
have been specifically chosen for use with the models and scenarios developed
within the BIOMOVS program. Moreover, an attempt was made to recommend
approaches that are generally familiar and accessible to participants in the
study. Where appropriate, alternative methods are mentioned briefly, and
references given to point readers to more in depth discussions. It is beyond the
scope of this document to justify the choice of methods, or to detail their
limitations.

The two main classical approaches to uncertainty analysis involve analytical
methods (Cox and Baybutt 1981, Worley 1987) and statistical methods based on
random (Monte Carlo) sampling (IAEA 1989). They may be applied directly to
the models, or used in conjunction with techniques such as response surface
replacement and differential analysis (Cox and Baybutt 1981, Iman and Helton
1988). Moreover, the application of fuzzy set theory to uncertainty analysis has
recently been investigated (Shaw and Grindrod 1989). Only the approach based
on Monte Carlo simulation will be discussed here. This technique is well
matched to the complexity of environmental transfer models.

It is not intended that participants adhere rigidly to these guidelines.
Approaches other than those recommended may be more appropriate for some
applications. Also, some participants may have alternative uncertainty analysis
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procedures in place. In general, participants are free to chose whatever method
they feel is most suitable, keeping in mind the need to produce meaningful
uncertainty estimates that can be compared with those of others. Consistency
does not imply that all participants will produce uncertainty estimates that are
equal in magnitude; the need to make many judgmental decisions in the analysis
makes differences inevitable.

The guidelines are not meant to be comprehensive, or to replace the many
excellent publications that already exist on uncertainty analysis. Rather, they
attempt to summarize existing work in practical form, drawing heavily on the
International Atomic Energy Agency (IAEA) Safety Series 100 (IAEA 1989) in
particular. The document has been kept brief to encourage participants to read it
and to use it. This has meant that many important issues associated with
uncertainty analysis have not been covered. Additional information can be
found in the references, or in the extensive bibliography of work on uncertainty
that is appended to the guidelines. The terminology used in the guidelines
conforms to the definitions given in the Glossary, which will shortly be published
as a BIOMOVS II report.

It is not particularly difficult to perform an uncertainty analysis. The techniques
are generally straightforward and readily accessible, through publications such as
this and IAEA Safety Series 100. Moreover, there exist a number of software
packages for uncertainty analysis, available either commercially or free of charge.
These include TAM3 (Gardner 1988), TAMDYN (Kanyar and Nielsen 1989),
TIME-ZERO (Kirchner 1989), CRYSTAL BALL (Decisioneering, Inc. 1990), and
packages developed by Sandia National Laboratories (Iman and Shortencarier
1984, Iman et al. 1985) and Gesellschaft fur Reaktorsicherheit (Banaschik 1992).

The techniques discussed here are applicable to (linear or nonlinear) deterministic
models, where the set of mathematical expressions acting on the variables (the
mathematical operator) gives the rate of change of these variables. Stochastic
modelling is an alternative approach in which the mathematical operator gives
the probability of change in the state of the variables per unit of time. Markov
models and master equations are examples of stochastic models. Due to their
larger complexity these models are frequently used without uncertainty analysis.

2. Main Steps in an Uncertainty Analysis

Uncertainty in model predictions can arise from a number of sources, including
specification of the problem, formulation of the conceptual model, formulation of
the computational model, estimation of parameter values, and calculation,
interpretation and documentation of results. Of these sources only uncertainties
due to estimation of parameter values can be quantified in a straightforward
manner. The main steps in a parameter uncertainty analysis are:

i) Identify the parameters that could contribute significantly to the
uncertainty in the final model prediction. Care should be exercised here
not to discard potentially significant uncertainties without good cause.

ii) For each parameter, construct a probability density function (PDF) to
reflect the belief that the parameter will take on the various values within
its possible range.

iii) Account for dependencies (correlations) among the parameters.
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iv) Propagate the uncertainties through the model to generate a PDF of
predicted values.

v) Derive confidence limits and intervals from the PDF of predicted values
to provide a quantitative statement about the effect of parameter
uncertainty on the model prediction.

Steps (i) to (iv) are discussed in Chapters 3 to 6, and step (v) in Chapter 9.
Chapter 6 also deals briefly with uncertainty analysis for a stochastic endpoint.
Chapter 7 deals with sensitivity analysis, and the use of intermediate results
from the uncertainty analysis to rank the model parameters according to their
contribution to the overall uncertainty in the model prediction. Methods to treat
uncertainties arising from environmental and cultural change are discussed in
Chapter 8. The document concludes in Chapter 10 with a brief summary of the
key recommendations.

Uncertainty should be considered at the beginning of a consequence assessment,
when the model is first chosen or developed for the problem in question. It is
then possible to match the form of the uncertainty analysis to the answer that the
model seeks to address, and to the available data.

3. Sources of Uncertainty

The principal factors affecting the reliability of results from environmental
transfer models can been arranged into the following classes:

(1) Specification of the problem and definition of the scenario.

(2) Formulation of the conceptual model.

(3) Formulation of the mathematical model.

(4) Estimation of parameter values.

(5) Formulation of the computer code, and calculation and
documentation of results.

Sources (2) and (3) are often called model structure uncertainties. Each source is
discussed in turn below.

3.1 Specification of the Problem

Uncertainty can arise at the outset of a study if the type of model, the processes
to be simulated, and the parameter values to be used are not carefully chosen to
match the application. Inappropriate choices could result in predictions that are
correct for the problem modelled, but not relevant to the problem that was
supposed to be modelled. A number of factors should be considered in
interpreting the scenario:

• the intended use of the results. Modelling is done for purposes that range
from licensing through assessment to emergency response, and each
purpose requires a different modelling approach. For example, the
predictions of screening models, which are designed to be extremely
conservative, could lead to inappropriate decisions if used for emergency
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response purposes where realistic predictions are desired;

• temporal resolution. The modeller must decide if time-dependent or
time-integrated results are required by the scenario, and whether diurnal
or seasonal effects must be considered. The simulation time and the
averaging time for the parameter values must be chosen to match the
desired endpoints;

• spatial resolution. The scenario will determine whether generic parameter
values are sufficient, or if site specific values are needed; whether the
spatial scale is local or regional; and the appropriate spatial scales for
averaging the parameter values; and

• the source term. The choice of model and parameter values will depend
upon the character of the release, including the facility involved (reactor or
disposal site), the type of release (routine or accidental), the radionuclides
involved (rate of decay, chemical behaviour) and so on.

3.2 Formulation of the Conceptual Model

A conceptual model is in this context a description of the physical, chemical and
biological properties of the system in question, the pathways by which
radionuclides move through the system, and the processes responsible for the
movement. The description should be as complete and as appropriate to the
scenario as possible, based on the information and data available, and on
previous experiences with similar types of problems. The formulation of the
conceptual model can lead to uncertainty in a number of ways:

• not all relevant pathways and processes may be included in the model;

• the model may contain some pathways or processes that are not relevant;

• the state of the system may be poorly known, and

• the spatial variability and the future evolution of the system are likely to
be poorly understood.

3.3 Formulation of the Mathematical Model

The mathematical model expresses the conceptual model through a series of
equations and parameter values. Together with input data, boundary conditions
and solution algorithms, it allows quantitative model results to be generated. The
structure of the mathematical model depends on the scenario in question, and on
the available knowledge and data. All models are simplifications of the real
system, and their formulation gives rise to uncertainty in the following ways:

• some processes may be too poorly understood to be modelled adequately;

• the available data may be too scarce to allow some processes to be
modelled in detail;

• some complex processes are formulated in terms of aggregated parameters
that do not describe the process well;

• empirical models may result in large errors if applied outside their range
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of applicability;

• the natural spatial and temporal variability of the environment can lead
to large uncertainties when predictions are made for a particular location
and a given time;

• models designed for long-term predictions are subject to uncertainties due
to change in the environment and in human culture and technology;

• nonlinear systems that contain many feedbacks (chaotic systems) are
sensitive to external perturbations. Uncertainties can arise when
modelling such systems because their dynamic response is largely
unpredictable for a given set of initial conditions.

One of the simplest mathematical formulations of transfers in a system is the
compartmental approach. The system is regarded as composed of simple
containers (subsystems) with well mixed contents. The transfers from any one
subsystem to another are frequently proportional only to the concentration in the
donor subsystem. These assumptions give rise to a set of coupled first order
differential equations, which can be solved using analytical methods. For smaller
systems it is even possible to write down closed solutions. The theory of
compartmental analysis was developed some 40 years ago for biomedical
applications. It has, however, since then seen widespread use in different areas
mainly because of its simplicity.

A large number of compartmental models have been developed for environmental
transfer studies throughout the years. A problem here may be that modellers
may be tempted to use existing models where they do not apply, for example,
when the assumption that the contents of a compartment are well mixed is not
valid.

3.4 Sources of Uncertainty due to Estimation of Parameter Values

Most environmental transfer models involve a large number of parameters, which
describe the state of the system through which the radionuclides move, the source
term, the physical and biological transfer rates and the behaviour of exposed
groups of humans. The parameter values used in a given model may be uncertain
for a number of reasons:

• values obtained from observational data will contain measurement errors;

• observational data on which to base input variables and parameter values
may be lacking;

• many parameters are known on a purely empirical basis. Use of these
parameters outside their range of applicability will result in uncertainty in
the model prediction;

• many parameters are subject to large variations in time and space.
Averaging done on these parameters must be consistent with the model
objectives;

• macroscopic processes made up of complex lower scale processes are
frequently represented by using coarse-grained or lumped parameters,
which do not describe the processes well;
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data derived from laboratory experiments may be quite different from
values that are applicable in the field;

the parameter may depend upon a set of (unknown) variables, which
were not kept under control when the parameter values were
experimentally determined;

inappropriate generic values may be used for a site-specific study if
detailed information about the site is not available;

the modeller may be unfamiliar with the derivation and limitations of the
parameter values, and use values that are unsuitable for the purpose;

data from which parameter values have been derived may not be relevant
to the specific set of conditions addressed by the model; and

the uncertainty in parameters describing processes that undergo
environmental or cultural change can increase as the calculations are
extended further and further into the future.

3.5 Sources of Uncertainty due to a Stochastic Endpoint

In the discussion so far it has been assumed that the endpoint of the calculations
has been of a deterministic nature - i.e. it has a specific true value. If better and
better parameter values and models were used, the results would converge
towards this true value. There exist, however, situations where this is not the
case, but where one is left with irreducible uncertainties in the end, simply
because the endpoint is a stochastic variable. This stochastic uncertainty which
is of a different nature from the deterministic uncertainty, related to parameter
values, is discussed further in Chapter 6.

3.6 Formulation of the Computer Code, and Calculation and
Documentation of Results

The mathematical equations representing the conceptual model are translated
into a set of numerical algorithms. This set of algorithms, which constitutes the
computer code, may be inconsistent with the mathematical model for a number of
reasons:

• numerical approximations for solutions to mathematical equations;

• inappropriate computer programming techniques;

• errors in programming, calculating, manual copying and reporting; and

• expertise of the model user.

For the most part, these represent errors rather than uncertainties, and will have
a larger impact on the accuracy of the model predictions than on their
uncertainties. They can be eliminated, or greatly reduced, through standard code
verification methods, including the use of software engineering tools to construct
the numerical algorithms, testing numerical solutions against analytical results,
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intercomparing model results, peer review, and application of a variety of
software verification tools (Sheng and Oren 1990).

3.7 Discussion

In theory, all of the above sources will contribute to the overall uncertainty in a
given application of a model. However, the dominant source will depend upon
the application. In the case of emergency response models, which must be run in
real time, incomplete and inconsistent data, particularly for the source term, will
likely be the primary source of uncertainty. Similarly, parameter values are likely
to cause the larger uncertainties in short-term assessments (a few tens of years or
less), assuming that the modeller is well versed in the assessment question and in
the model itself. For long-term assessments (hundreds or thousands of years),
which must deal with changes in the environment, exposure pathways and
human behaviour at times far in the future, large uncertainties will be associated
with scenario interpretation, the conceptual model, and the parameter values.
On the other hand, for retrospective analyses of past events, where parameter
values can be optimised by fitting model predictions to observations, structural
uncertainty is frequently dominant (Garcia-Olivares 1992).

Ideally, uncertainty estimates for a given model prediction should include
contributions from all relevant sources. However, with the exception of
parameter uncertainty, none of the various sources is easy to treat in a
quantitative manner. A modeller is often unaware that he has misinterpreted a
scenario, left a process out of his model, or made a mistake in calculation. There
is no way to account for such errors in the uncertainty estimates, although their
contribution is potentially large. Similarly, a rigorous uncertainty analysis cannot
be done when a process is so poorly understood that its correct mathematical
representation is in doubt.

It is recommended that uncertainty analysis done for BIOMOVS purposes be
based on uncertainties in parameter analysis and - if possible - also for other
sources of uncertainty. There exist standard methods for carrying out a
parameter analysis (Chapters 4 - 6 ) which, if followed, will ensure that the
results are consistent, and useful for comparing the predictions of different
models. Uncertainty analysis for an endpoint that is a stochastic variable is
briefly discussed in Chapter 6. Uncertainties due to model structure, and to the
expertise (or lack thereof) of the user, are the subjects of special studies within
BIOMOVS II. The magnitude of the uncertainties from these sources may become
available as the studies progress, at least for certain cases. In some special cases
it is possible to treat uncertainties due to model structure in a manner similar to
that of uncertainties in parameter values, viz. when there is a finite set of
different model formulations which can be assigned different probabilities. If
calculations are performed for all the alternative models, and their respective
output distributions are weighted together, the result is a measure of the total
uncertainty. It is also possible to include the "model structure parameters" in the
set of ordinary parameters in a single Monte Carlo uncertainty analysis.

Although rigorous methods for estimating uncertainties from sources other than
parameter values are not available at this time, semi-quantitative approaches can
be applied in some cases. These are discussed below, together with measures for
keeping these uncertainties to a minimum:

(i) Specification of the problem: It is the responsibility of the individual
designing the scenario to ensure that the definition is as clear and
complete as possible, consistent with the study objectives. Uncertainty
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estimates should be provided for any variable whose value is given in the
scenario definition, whether the variable describes the state of the system
or the source term. It is the responsibility of each modeller to ensure that
he has interpreted the scenario correctly. Interaction between designer
and modeller may be necessary to achieve these goals. The modeller
should also make a conscious effort to choose models, processes and
parameter values to match the objectives of the scenario.

(ii) Conceptual and mathematical models: The modeller should try to ensure
that all pathways and processes of importance in the scenario have been
included in the model. The mathematical representation of the conceptual
model should be based on the most appropriate methods, taking into
account the required level of detail and the data available. Situations
may arise in which a modeller is unsure of the need to include a particular
process in the model. In this case, the model can be run both with and
without the process, and an uncertainty analysis done for each run. Any
change in the uncertainty range from run to run will provide a
semi-quantitative estimate of the contribution of the process in question to
the overall uncertainty.

(iii) Code formulation and execution: Modellers should ensure that they
understand the workings of the computer code, the type of data the code
requires, and the behaviour of the code when applied to the scenario in
question. Modellers should use the various verification tools available to
ensure that the code is a faithful representation of the conceptual model,
and that the mathematical equations expressing the model are correctly
solved. Theoretical error terms are available for many numerical
procedures, and can be employed to estimate uncertainties in the
algorithms used to solve the mathematical equations.

(iv) Long-term assessments: There are special problems involved in estimating
uncertainties for scenarios that extend hundreds and thousands of years
into the future, because of potential changes in the environment, and in
human technology and culture. It is possible to account for some of this
uncertainty in the parameter distributions, which reflect the possible
values of the parameters in space and time. However, more rigorous
approaches to the problem have been developed, and are discussed in
Chapter 8. The Reference Biosphere Working Group of BIOMOVS II is
using one of these approaches, and may be able to give advice on how to
quantify some aspects of the uncertainty due to environmental and
cultural change as the study progresses.

4. Constructing Probability Density Functions

4.1 General Guidance

All parameters that are subject to uncertainty, and to which model predictions
are sensitive, should have distributed values. This includes parameters that
describe the state of the system, such as soil density, lake depth or wind speed;
driving variables such as the radionuclide concentration in the source
compartment; and transfer parameters such as the soil solid/liquid distribution
coefficient and the soil to plant concentration ratio. Distributions for the state
and driving variables should be set as part of the scenario definition, whereas
distributions for the transfer parameters are the responsibility of the modeller.
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The methods described below apply in either case.

The PDFs for uncertain parameters must be carefully constructed if the
uncertainty estimates for the model prediction are to be meaningful. This is
generally a difficult task. The data available for a given parameter are often
limited in both quality and quantity. Moreover, some of the data may not be
consistent with the model and its application. The process of deriving PDFs is
therefore largely subjective, and requires specialised knowledge and judgement of
each parameter and its database. It is best done by scientists with expertise in
the discipline in question. The uncritical adoption of published distributions is
not recommended, since the data seldom reflect the parameter uncertainty for a
given model and application.

Principles for the formal collection and use of expert opinion have received
considerable attention in recent years (Hofer 1986). The process involves a
number of steps, including the selection and calibration of experts, the selection
of issues, elicitation training, elicitation of opinions, synthesis of opinions, review
of conclusions, and complete and clear documentation. Formal techniques have
been developed to study risks of reactor operation (Hora and Iman 1989), and
the Commission of the European Communities (CEC) and United States Nuclear
Regulatory Commission (US NRC) are currently developing procedures to be
used to quantify uncertainties in accident consequence codes. It is likely that the
techniques developed in the latter study will apply to environmental transfer
models as well.

The formal solicitation of expert opinion is an expensive and time-consuming
procedure. In addition, consensus has not yet been reached on standard
approaches. For these reasons, the formal techniques are not appropriate for the
BIOMOVS study. Instead, it is recommended that informal procedures be used.
In constructing their PDFs, modellers are encouraged to seek input from
colleagues who are easily accessible and who are knowledgeable about the
parameter in question, and about its intended use. Input from at least two
individuals is preferred, with conflicting views resolved through discussion to
arrive at a consensus.

Construction of a PDF for a given parameter should start by assembling values,
from the literature or from personal knowledge, that are consistent with the
model and the application. These values will vary because of measurement error,
spatial and temporal variability, extrapolation of data from one situation to
another, lack of knowledge, and so on. The role of the expert is to define a PDF
that reflects the probability that the parameter will take on the various values
that are within its possible range. Perhaps the most objective way to do this is
by first specifying the largest and smallest values that the parameter could
conceivably have, and then by specifying the degree of belief (in percentage) that
the parameter value will not be larger than values selected from this range. The
degrees of belief so obtained will define a cumulative distribution function from
which the corresponding PDF can be deduced.

The construction of the PDF becomes more objective, and the role of the expert
less important, as the amount of data for a given parameter increases.
Occasionally, sufficient data will exist that the PDF can be estimated using
standard statistical methods. Even here, subjective judgement plays an
important role, since the data must be carefully reviewed to ensure that they are
relevant to the purpose of the calculation. A large data set does not
automatically imply the existence of a suitable PDF. The statistical methods are
discussed more fully in Section 4.2 below.
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Some general guidance is given below on the type of PDF to choose for a given
amount of available data:

i) Little or no relevant data exist, and no information is available on
maximum, minimum, or most probable values. In this case, the
specification of PDF would be entirely arbitrary. It is recommended that
calculations be carried out using different PDFs for this parameter,
constructed to reflect whatever information is available. The range of
results will give a rough indication of the uncertainty in the predictions
arising from the lack of knowledge of this parameter. This is very like a
fuzzy approach.

ii) Little relevant information exists, but maximum and minimum values can
be defined. In this case, a uniform distribution is recommended, since this
is the least biased assumption (Tiwari and Hobbie 1976). If the range of
parameter values is large (greater than one order of magnitude), a log
uniform distribution is preferred to a uniform one.

iii) Little relevant information exists, but extremes and mean or modal values
can be estimated. In this case a triangular distribution represents a least
biased assumption (Tiwari and Hobbie 1976). A log triangular
distribution is preferred if the parameter values cover a wide range.

iv) Some relevant data exists, but cannot be represented by any standard
statistical distribution. A piecewise uniform (empirical) distribution is
recommended in this case. It is here that expert opinion can be most
fruitfully used to set the cumulative probabilities that define the PDF.

v) A substantial amount of relevant data exists and appears to be
reasonably well represented by a standard distribution (normal or log
normal for example). In this case, statistical methods can be used to
define the attributes of the distribution (Section 4.2). If a standard PDF is
assigned to a given parameter, the PDF may have to be truncated at either
its upper or lower end to eliminate physically impossible values.

vi) If a parameter can be expressed as a quotient of other variables, it is often
possible to approximate its PDF with a log normal distribution.

Interactive computer programs are available that allow a set of data to be
compared visually with a variety of distribution functions (Freeh and O'Connor
1986, Kloos et al. 1990). The programs aid the transition from the expert's
judgmental qualifications to subjective PDFs that best represent his state of
knowledge about the uncertain parameters. Appendix I of IAEA (1989) contains
definitions of some common distributions and mathematical expressions for
their means and variances.

4.2 Statistical Methods for Deterministic Parameter Uncertainties

Assume that a set of observations has been documented for the values of a
parameter in a given scenario, and that there are reasons to expect these values
to be well approximated by a standard PDF. In this situation it is in general
possible to obtain the statistical parameters of the PDF (mean, variance etc.)
which best fit the observed data. A number of different statistical methods may
be used, including the maximum likelihood method, the method of moments and
the method of Bayes. The maximum likelihood method has some properties that

10
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makes it attractive:

i) It converges to the true value of the statistical parameter as the sample
size increases.

ii) It is asymptotically unbiased.

iii) Among other unbiased estimators, no other has a smaller asymptotic
variance.

iv) The maximum likelihood estimator of a function of the parameter is equal
to that function evaluated at the maximum likelihood estimator of the
parameter.

Only the maximum likelihood method will therefore be discussed here.
(BIOMOVS participants are not expected to perform calculations like these. The
reason to include this piece of mathematics here is simply to give the reader a
feeling of the philosophy underlying the maximum likelihood method.)

The first step is to construct the maximum likelihood function L, which is the
mathematical expression giving the probability of finding the collection of
observed data, given that the type of PDF is known. L is simply the product of
the probabilities of achieving each of the observed data values. Then the
statistical parameters of the PDF are fitted so that the probability to obtain the
observed data is a maximum. The solution of this maximisation problem gives us
the maximum likelihood estimators of the statistical parameters. A simple
example will illustrate the reasoning:

Example: The mean and variance of a normal PDF

A parameter 6 is expected to be associated with a normal PDF, and a set of n
measured data are all equally probable. What is the maximum likelihood
estimation of the mean and variance of the distribution?

The probability of each measured value 8j is given by the normal distribution

p(0i) = [2na2]-i/2 exp[-(9rm)2/2a2]

where m and a 2 are the mean value and variance. The probability of the set of
observations {9^ 92,— 9n} is the product of the probabilities for each individual
observed value:

.... P(en)
i.e.

L(e1,e2,...,9n) = [27«j2]-n/2 exp[-E (erm)2/2o2]

where the summation in the exponent ranges over the n measured values. We
now seek the values of m and a2 that maximise L. Formally this can be done by
taking the logarithm of L, (since the logarithm of L must have its maximum
located at the same place as L), differentiating this expression with respect to m
and c2 respectively and setting these two equations equal to 0.

11
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Since

log L(m,a2) = -n log(2KC2)/2 - I (e rm)2/2a2

we find that

d(log U/dm = p (erm)] /cr2 = 0 and

d2(logL)/da2 = - n/202 + Z [(9i-m)2]/2a4 = 0

which implies the following estimates

m = Z9j / n

a2 = Z(e i-m)2/n

This is a quite simple application of the maximum likelihood principle. In general
the calculations tend to be more complicated.

5. Correlation between Parameters

5.1 General Remarks

Correlations between parameters in a model, i.e. their covariations, may
sometimes influence the uncertainties of the results substantially. In some cases
the correlations tend to cancel the parameter uncertainties, as in a simple ratio
with positively correlated parameters as numerator and denominator. Generally,
however, the effect may go either way.

To a modeller it is important to master correlations for two different reasons.
The first, and perhaps the most obvious one, is that if there are correlations
present between model parameters, then these correlations should be
incorporated in the model. The second reason is that with a good knowledge of
existing parameter correlations it may sometimes be possible to reformulate the
model to a more efficient form. If the model is of a "scientific" or "mechanistic"
kind, then one should perhaps try to use parameters that are as uncorrelated as
possible. If, on the other hand, the model is intended for assessment or
forecasting, then one could sometimes reduce the uncertainties in the predictions
by taking advantage of correlations by lumping parameters in a clever way.

Correlations between parameters are always caused by some underlying
mechanisms, which sometimes can be very intricate. In a modelling situation two
different strategies may be employed to deal with existing correlations: a
simplified "statistical" one which makes use solely of the matrix of variances
and covariances between the parameter, and a more cumbersome "physical" one.
In the former method it is assumed that the relation between the parameters can
be described simply in terms of covariances, and that these quantities are known
beforehand. Any temporal relation between the parameters in the model is
disregarded. A minimum of input data is required, and the computational effort
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is small (the price being that some more complicated types of correlations cannot
be modelled). The BIOMOVS participants are advised to use this method, which
is outlined below.

When using the second strategy one instead tries to mimic the processes in
nature, including any existing relations between the parameters and using
conditional probability functions. This strategy relies much more on good
experimental and theoretical knowledge of the system studied. If, on the other
hand, the knowledge is there, much more complex parameter interplays may also
be modelled. It is also worth noticing that once the conditional probabilities
needed are known, a covariance matrix can easily be constructed. If only the
covariance matrix is given, it is not possible to construct any of the conditional
probability distributions. The data reduction that is effected in the construction
of a covariance matrix inevitably leads to a substantial loss of data.

5.2 The Covariance Matrix Method, Background

Consider a system which can be represented by two parameters, X and Y. The
means of both parameters (denoted <X> and <Y> respectively) are given by
known probability distributions. Without limiting the scope, both these
distributions can be transformed to mean 0 and variance 1. Thus,

<X> = <Y> = 0; <X2> = <Y2> = 1.

There may also be a correlation between X and Y. Such a correlation is
introduced if Y contains a fraction of X (or X a fraction of Y). We can write this
as:

X = x; Y = ax + by,

where x and y are (unknown) uncorrelated normalised parameters, and a and b
are constants. Since <Y> = 1, we have that

<Y2> = <(ax + by)(ax + by)> = a2 <x2>+ b2 <y2> + 2ab<xy> = a2 + b2 = 1,

since x and y are uncorrelated. Likewise, the covariance between X and Y is
found from

<XY> = <x (ax + by)> = a.

Thus, the covariance is simply the normalised mixture of parameter X into Y. If
we now add a third parameter Z into the system, this parameter can be written
as:

Z = ex + dy + ez,

where z is normalised and uncorrelated with x and y. As above we then find:

<Z2> = c2 + d2 + e2 = 1;

<ZX> = c;

<ZY> = ac + bd.
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If matrix notation is used, the correlated parameters are found from

(X, Y, Z) = Ml* X

y
z

where Ml = 1
a
c

0
b
d

0
0
e

and the covariances are found in

M2 =

\ a c
a a2 + b2 ac + bd

c ac + bd c2 + d2 + e2

Now there is a simple relation between the two matrices: the first one multiplied
by its own transpose gives the second:

M2 = Ml M1T.

In those cases where this composition is possible, it is also unique apart from the
sign of the diagonal elements of Ml. However, since these must always be
positive following the definition of Ml, a unique relation exists between given
covariances (in M2) and the mixing of uncorrelated parameters (in Ml). Since in
both matrices rows are unaffected by those further down, a straightforward
elimination process will give Ml from M2.

5.3 Algorithms

This relation between Ml and M2, which of course is valid for any number of
parameters, is the starting point for the covariance method to produce normally
distributed, correlated values. The procedure, described in Rubinstein (1981), is
the following:

1. Construct the matrix M2 from the given variances and covariances.

2. Find Ml from M2.

3. Produce a number of uncorrelated, normally distributed random values
with standard deviations corresponding to the parameter uncertainties,
forming the vector (x, y, z,...)

4. Left multiply this vector by Ml to produce the vector of correlated values
(X, Y, Z,...). These are automatically distributed as N(0, 1) with the
correct variances. Finally the known parameter mean values should be
added.

A simple Pascal code for this can be found in an earlier BIOMOVS paper
(Gardner 1988). Gardner extended the code to handle distributions other than
normal distributions. The modified algorithm is the following:

1. Construct the correlation matrix, not the variance-covariance matrix. (If
all parameters are N(0,1) the results are unchanged.)
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2.

3.

4.

5.

Find Ml as above.

Produce uncorrelated N(0, 1) values, and construct correlated N(0, 1)
distributed values from these and Ml as described above.

Use the inverse normal density function to find the probabilities for each
of these correlated values.

Use the parameter probability density functions to find the corresponding
correlated parameter values.

This algorithm will produce parameters having not the prescribed correlations,
but the same rank-order correlation as the one found in the input matrix M2.

6. Methods to Propagate Parameter Uncertainties

To find the uncertainties in the different endpoints of a model, the uncertainties
in the input parameters must be propagated through the model. A good
discussion of this subject is found in IAEA (1989). We will therefore here give
but a very short introduction to the subject, with some emphasis only on a few
points not mentioned in the IAEA publication.

6.1 Common Methods

A graphical representation of parameter uncertainty propagation is found in
Figure 1 below.

P1

P2 MODEL

P3

Input parameters pdfs

Figure 1: The propagation of input parameter density functions via the model
to the resulting endpoint probability density function.

15



BIOMOVS II
TR-1

Two main classes of propagation methods can be used: analytical and numerical.
Analytical methods usually provide fast results, but can only be applied to very
simple models. Numerical methods, on the other hand, can be tailored to models
of high complexity, but may require substantially increased computer time. For
further details on analytical methods, the reader is referred to IAEA (1989) and
references therein.

Numerical methods all involve choosing a number of different sets of input
parameters from their PDFs, running the model for all parameter sets, and
constructing PDFs for the resulting predictions from the set of individual model
results. Usually the parameters are chosen at random from the input PDFs, using
simple random sampling (SRS) or Latin hypercube sampling (LHS - see IAEA
(1989) Appendix II for a very brief description), but systematic non-random
sampling can also be used. In SRS each parameter is chosen with a probability
that is solely determined by its PDF. Correlations between the parameters can be
introduced as described in Chapter 5. An important merit of SRS is the fact that
the resulting endpoint distributions can be seen as drawn at random from the
true endpoint distributions. They can thus be used for direct statistical analysis.
This is not the case if LHS is used. The merit of this technique as compared to
SRS is that usually a much smaller number of samples of sets of input parameters
can be used to achieve a certain variance of the endpoint distributions. This
latter fact should, at least in theory, be especially marked if some of the
important parameters PDFs contain long tails, i.e. if parameter values that would
severely affect the resulting prediction could occur with a low probability. For
SRS, reasonably stable statistics can usually be achieved from 1000 sets of input
parameters; a few hundreds is usually sufficient for LHS.

The sampling strategy must be modified slightly when dealing with standard
distributions that have been truncated. Each sample should initially be chosen in
the normal way from the full distribution. However, if the value selected lies
within the excluded ranges, it should be discarded and the distribution
resampled until a value in the allowable range is chosen.

In most cases the set of input parameters chosen initially is assumed to remain
constant through the entire computation. At least for short-term environmental
models this may seem reasonable. It implies, however, that two important
assumptions are built into the model:

i) the parameter values are time independent;

ii) there is no temporal causality in the model, i.e. intermediate results
achieved during the calculations are not allowed to change the initial
parameter choices.

The first of these restrictions can, at least in principle, be overcome by a change in
the model parameterisation: if we know the time development of a parameter we
can replace it with a time dependent expression containing time explicitly and a
number of time independent new parameters.

The second restriction is much more difficult to handle. Assume as an example
that you want to model a process that at some stage can go either of two
completely different ways. If it goes "right", then all parameter values remain
valid, but if it goes "left" the situation is so completely changed that (at least)
one of the parameters in the model is no longer valid. A new value must be
found, from a new PDF which may depend on the results so far, and with a
completely new correlation between the changed parameter and all other
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parameters. (It could be a small change such as a decrease in soil pH, or a large
change such as a new ice age.) In such situations, it is clearly not possible to use
an analytical approach, nor will standard numerical approaches do. It is
necessary to follow the whole process over time and perform new parameter
sampling, including the computation of correlations, as the time changes occur.

6.2 Uncertainty Analysis for a Stochastic Endpoint

So far it has been assumed that the parameters or variables used in the
calculations, and the endpoint of the calculation itself, are of a deterministic
nature - i.e. they have specific true (but unknown) values. If better and better
parameter values and models could be used, the calculated endpoint would
converge towards its "true" value. There exist, however, situations where this is
not the case. A typical example is when health effects are calculated for
individuals in a population. Even if all calculations up to and including the
absorbed dose are performed with negligible uncertainties, one is left with the
individual dose-effect variations, which cannot be reduced. The endpoint is
stochastic.

Stochastic uncertainties in the calculations can be included on top of the
deterministic results. One way to do this is to use Monte Carlo techniques.
Hoffman and Hammonds (1992) describe how to proceed in a simple case. The
stochastic nature of the endpoint will be reflected in the resulting cumulative or
complementary cumulative distribution functions (Chapter 9). Since in this case
there are no unique endpoint results, the uncertainty curves must be represented
either by a number of different curves or by bands.

6.3 A Note on Random Number Generation

The so-called random numbers used in probabilistic calculations are, for practical
reasons, never truly random. True random numbers cannot be software
generated. Instead, one has to rely upon pseudo-random numbers -
automatically generated sequences of numbers constructed to be as "random" in
nature as possible. This means basically that the numbers should be generated as
evenly as possible over their allowed range, that the autocorrelation in a sequence
of numbers should be kept as close to zero as possible, and that the period of the
number sequence (before it repeats itself) should be as long as possible.

Most pseudo-random numbers are generated using so-called linear congruent
generators, in which a new number N ,+i is generated from the old value Ni by the
recurrence relation

Ni+i = (a Ni + b) mod c

a, b and c are integers which, if carefully chosen, give rise to a series of
pseudo-random numbers with a period equal to c. Not always, however, are the
generators provided as part of different programming language compilers as good
as one might expect or need. A simple algorithm to substantially upgrade the
performance of the "random number" generator is the following (Knuth 1981):

Initialise

1) Set up a buffer of size n (n = 100 or so)
2) Fill this buffer with n sequential numbers from the generator
3) Generate a random index j in the interval 1 to n
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Then almost uncorrelated numbers can be generated by repeating the following
sequence

4) The first random number to use is the j'th value in the buffer.
5) Generate a new number from the generator and replace the value in

the j'th position in the buffer with this one.
6) Linearly transform this new random number from its original range

to the interval 1 to n. The transformed value is a new index j .
7) The next random number to use is the j'th value in the buffer.
8) Repeat from (5).

A source code covering this algorithm can be found in Press et al. (1989).

6.4 Generating Random Numbers from Non-uniform Distributions

If a uniform random number generator is available, it is possible to construct
sequences of (pseudo) random numbers from other distributions as well.

A common procedure is to take a uniformly distributed sample along the
independent axis of the inverse of the probability function F(x). Since F(x) ranges
from 0 to 1, the sampling range is (0 - 1).

Example: A random sample from a negative exponential
distribution is needed. Here the normalised probability function
F(x) is given by y = F(x) = 1 - exp(- x). Taking the inverse of F(x)
we get

x= -ln(l-y)

If a sample of y is taken from a uniform distribution on the
interval (0 - 1) the corresponding x's can be regarded as
randomly sampled from an exponential distribution. (Since y is
randomly distributed on (0 - 1) the expression can as well be
written x = - In (y).)

If the inverse cannot be given in a closed form (as is the case for example for the
normal distribution) one may use polynomial fitted approximations. Other
methods exist as well, and can be found in textbooks on probability models, such
as Ross (1989).

Normally distributed random numbers are of great importance themselves, and
can also be used to produce random numbers from other distributions. They may
be found in different ways. If the accuracy needed is not extraordinarily high,
one may use the simple algorithm

12

N = X «i - 6

where the u's are uniform random numbers on the (0 - 1) interval. The random
numbers N so produced will be N(0,1) distributed.

Computer generation of random variables is treated for example in Ripley (1983).
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7. Methods for Ranking Uncertain Parameters

One of the applications of an uncertainty analysis is to rank the model
parameters according to their contribution to the overall uncertainty in the model
prediction. This ranking may then provide a criterion to efficiently allocate
further research efforts aimed at reducing the overall uncertainty. (Uncertainty
analyses of environmental models often show that a few parameters explain
most of the variance in the model output.)

One procedure for ranking the parameters is to do a series of Monte Carlo runs
with all parameters except one varied. Repeat the exercise for the other
parameters in turn. The ranking can be established by comparing the reduction in
the uncertainty of the predictions from these runs with the case where all
parameters were varied. Although simple in principle, this method tends to be
quite tedious and expensive for more complex models, and so methods that
allow a ranking without a large number of Monte Carlo simulations are desired.

This goal can be reached by basically two different approaches, depending on the
model type and complexity. It can be conducted either within the framework of
classical sensitivity analysis, or by applying methods of correlation and
regression and using related measures of sensitivity.

7.1 Classical Sensitivity Analysis

In its simplest form, sensitivity analysis consists of varying selected input
parameters, one at a time, over a specified range and recording the corresponding
changes in the model predictions. Those parameters causing the largest relative
changes in the predictions are defined as the important model parameters. The
results may strongly depend on magnitude and direction of the perturbation in
the selected input parameters.

Another disadvantage of the sensitivity approach is its local aspect, i.e.
sensitivity coefficients are calculated at one point in the parameter space of the
model, generally the one defined by the set of nominal (or best estimate) values of
the parameters. In practice, it is necessary to evaluate sensitivity functions for
several sets of input parameter values, if large variations in the inputs are to be
accommodated (Cox and Baybutt 1981), leading to increased computational
efforts.

The deterministic approach of differential sensitivity analysis is thus of limited
use in most modelling situations. One may prefer a statistical approach which
can make use of the information gathered during the propagation of the
parameter uncertainties. A statistical analysis of the relationship between the
selected values of the input parameters and the values of the model predictions
provides measures of sensitivity in the form of correlation and regression
coefficients.

7.2 Correlation and Regression Measures of Sensitivity

The statistical approach exploits the random sample of values of the input and
output variables, already generated during the uncertainty propagation. The
measures of sensitivity are global, since they estimate the degree of association
between the output and the different input parameters over their entire sampled
distributions. Sensitivity analysis is here closely related to the fitting of
regression models intended to approximate the relationship between the output
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and the different input parameters of the prediction model.

If the model prediction Y is a function of the parameters P l r P2/..., Pm/ a multiple
linear regression model of the following form can be constructed from a given
random sample

(P1#j/ P2/j,.. Pm,j, Yj) of size n (j= 1, 2,..., n):

Y = ao + aiPi + a2P2 + - + amPm + e

£ being the residual and the coefficients a o , a\,..., am being obtained according to
a given criterion, which is usually the least squares criterion: minimisation of
Z(Yj - Yj)2, where Yj is the value estimated by the regression model. A commonly
accepted procedure to build a regression model is the stepwise regression
procedure (Draper and Smith 1966), designed to include only statistically
significant variables in the model. The procedure is described in many statistical
textbooks.

A convenient way to measure the adequacy of the fitted model is provided by
the coefficient of determination R2. This coefficient indicates the proportion of
the variation in Y that is explained by the regression model. Different coefficients
of correlation and regression can be computed, either on the values themselves or
on rank-transformed values. They may be used in ranking the contribution of the
different uncertain parameters to the uncertainty in the model predictions.

The coefficients au i = 1, 2, ..., m of the multiple linear regression input are the
partial derivatives of Y with respect to the input parameters Pj. The ai indicate
the change in Y associated with a unit change in Pj, all other P remaining
constant. These regression coefficients provide therefore a measure of the
sensitivity of the output to changes in the input parameters. However, since the
values of the coefficients depend on the units in which the parameters are
expressed, they cannot serve to measure the relative importance of the
parameters. If Y and Pj are standardised according to

Y* = (Y - <Y>) / oy, Pi* = (Pi - <Pi>) / axi, i = l ,2, . . . ,m

where <Y> and <X> are the sample means and cy and ax i are the sample
standard deviations, the standardised linear regression model in the
standardised variables is

Y*= at*Pi*+ a2*P2*+ - + am*Pm*

The standardised regression coefficients (SRC) a* indicate how many standard
deviation changes in Y are associated with one standard deviation change in Pi,
all other P remaining constant, and can therefore provide a measure of the
relative importance of the input parameters. However, if strong correlations exist
between the uncertain parameters, the standardised regression coefficients
estimated from different random samples of the same size may show a large
variability (IAEA 1989). The ranking is in this case less reliable than in the case
of weak or no correlations.

A partial correlation coefficient (PCC) indicates the degree of linear relationship
between those portions of the model prediction and the uncertain parameter that
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cannot be explained by a linear relationship of each to the remaining uncertain
parameters. In other words, it measures the linear relationship between the
model prediction and an input parameter, with the possible linear effects of the
remaining parameters removed.

The partial correlation of Y and P,, adjusted for all Pk, k* i, may be explained as
follows:

If Y = b0 + IbkPk+ei and Pt = Co + ZckPk+e2

are linear regression models for Y and P, in the variables Pk, k= 1, 2,..., m, k* i,
then the partial correlation coefficient of Y and Pi is the correlation coefficient of
the residuals £1 and £2.

From a given random sample (Pi,j, P2,j, — , Pm,j/ Yj) of size n (j = 1, 2, ..., n) the
sample partial correlation coefficient is obtained as the sample correlation
coefficient rrir2 of residuals (£ij, £2,]), j= 1,2,..., n.

Both standardised and partial regression coefficient measures may be useful in
ranking the importance of the input parameters. The partial coefficients measure
the unique contribution of each variable, while the standardised coefficients
parcel out the non-unique or shared contribution in a manner consistent with
maximising the explanatory power of the regression model (Iman et al. 1985).
The ranking may be based on the absolute values of either the partial derivatives
of the standardised regression model or the unique contribution of the input
parameters to the explanatory capability of the fitted model.

Nonlinear relationships between variables as well as extreme values may affect
the ability to use the previous measures, which are based on the assumption of
linearity. If the raw data are replaced by rank-transformed data, the same
regression procedures can be applied on the ranks. The rank transformation
tends to linearise nonlinear relationships and to reduce the effect of extreme
values. However, since the procedure also eliminates the insight into the amount
of variance accounted for by each parameter, it is of a somewhat limited use.

7.3 Recommendations

Although automated procedures are available nowadays to ease the
implementation of classical (differential) sensitivity analysis (Horwedel et al.
1992), the use of the statistical approach is strongly advised when analyzing
environmental transfer models. It uses the same information that was produced
during the propagation of the parameter uncertainties, and the derived measures
of sensitivity are global, since the parameters are allowed to vary over their full
ranges. It is important to remember, however, that sensitivity measures derived
from regression are meaningful only as long as the regression model has a high
explanatory power (expressed by the coefficient of determination R2).

Codes to perform correlation and regression analyses are found in a number of
commercial statistical packages. A code for FORTRAN 77 is available from
Sandia Laboratories (Iman et al. 1985). Source codes for FORTRAN, C and
Pascal are described in for example Press et al. (1989). Standardised regression
coefficients and partial correlation coefficients provide slightly different and
complementary information, and so it can be of value to calculate both sets.
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Finally, it is worth mentioning that other techniques of sensitivity analysis are
emerging, like the uncertainty reduction method (Ishigami and Homma 1989),
which was compared with PCC/SRC and shown to lead to close agreement
(Togawa and Homma 1991). However, at the present stage, it seems too early to
endorse this method and prefer it to the more established methods based on
regression.

8. Specific Sources of Uncertainty in Models for Long Term
Prediction

8.1 General Remarks

Some assessments require predictions to be made over very long time frames.
The migration of radionuclides from a high-level waste repository through the
geosphere and biosphere provides an example. High level wastes do not decay
to a radioactivity level similar to that of natural uranium ores until several tens of
thousands of years or so. This time scale is, therefore, sometimes used as the
simulation period in assessing the fate of high level wastes. Some authors
recommend that even longer time periods be considered.

Over long periods of time, processes of change are expected to occur in the
biosphere, as well as in the geosphere and the repository itself. These may
include:

• changes in the climate;

• changes in human activities that may affect the system, or the
exposure pathways;

• changes in the transport processes; and

• structural changes in the biosphere itself.

In order to deal with such changes, it is necessary to model the evolution of the
geosphere/biosphere system, to model radionuclide transport in that system,
and to model possible unforeseen events and perturbations to the system. The
uncertainties in the predictions of such models are large, because the evolution of
the system is often poorly understood. Moreover, the uncertainties stemming
from model structure, and from parameter values and input data are larger in
long-term models than they are in short-term models.

The prediction of the future state of the biosphere, and of radionuclide transport
through it, can be aided by studies of similar systems and processes that were
active in the past. These natural analogue studies provide evidence of
radionuclide transport and behaviour in evolving systems over long periods of
time. Similarly, current studies on environmental changes that are presently
occurring on global scales will help to guide the development of long-term models.

It is probably unrealistic to model the long-term evolution of social practices, or
populations. However, some probabilistic predictions could be made of the
maximum size of future populations by requiring that they be compatible with
biosphere processes such as photosynthesis, the total area of arable soil, mineral
resources and other economic and ecological constraints.
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8.2 Long Term Models and ways to Quantify the Prediction Uncertainties

There are currently two main approaches to the description and modelling of the
geosphere-biosphere system, and to estimate the uncertainties of the predictions:
the scenario analysis approach (Cranwell 1990) and the environmental
simulation approach (Thompson 1988, Dames and Moore 1989, Ringrose 1991).

Both approaches include events and processes. The first approach focuses
mainly on events, the second approach focuses mainly on processes. A process
is the action of a set of forces in a given system with a given set of boundary
constraints resulting in some response of the system. Events are unpredictable
phenomena affecting the system behaviour and which (i) are not effects of known
processes, or (ii) are related to known processes but the relationship cannot be
modelled.

Both approaches are complex and time-consuming, and require the input of a
large group of experts. It is not expected that participants in most BIOMOVS
scenarios will carry out such analyses, even for scenarios that extend far into the
future. The methods are presented for interest and completeness, and to
demonstrate the effort required to perform a rigorous uncertainty analysis in
long-term models. The Reference Biosphere Working Group of BIOMOVS is using
the scenario analysis approach in its work, and may be able to quantify some
aspects of the uncertainty due to environmental and cultural change by the end of
the study.

8.2.1 The Scenario Analysis Approach

The scenario analysis approach begins by developing a list of all events or
processes believed to be relevant to the system (Bonano 1990). The list can be
generated using a variety of techniques including literature review, expert opinion,
a public consultation program and brainstorming sessions. The emphasis at this
stage is on completeness. The list could include items such as "transport",
"geological medium", "water", "thermal variations", "probability of faults",
"disturbances from external systems" and so on. Parameters dealing with future
populations, economics and human practices can in principle be included in this
list. To aid in identifying items that were initially missed, the factors are
classified in several ways, and considered from a number of different viewpoints.
For example, transport may be one-dimensional, two-dimensional or
three-dimensional; the geological medium may be fracture dominated, matrix
dominated or a combination of the two; the water may be associated with
saturated or unsaturated media or a combination; and so forth. Each of these
branches can then generate another set of alternatives, which in turn can generate
new sets and so on, until the degree of detail is found satisfactory. It is generally
impossible to demonstrate that the list is fully comprehensive. The entire list is
then screened to eliminate those events that are physically unreasonable, those
that have negligible consequences and those unlikely to occur.

In the next step, events and processes are combined through failure tree analysis
to obtain a set of conceivable event sequences, or "scenarios". Construction of
the scenarios can be aided by the techniques used to facilitate problem-solving
within groups, including forward and backward induction, value-driven
generation, and analogy or antithetical-driven generation (Bonano 1990). The set
of scenarios is screened using criteria similar to those applied to the list of events
and processes.

Consequences for each scenario are estimated in turn, together with the
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associated uncertainty. In order to combine the results from the individual
scenarios into overall estimates of consequence and uncertainty, the probabilities
of occurrence must be specified. These probabilities are not given by the method
itself, and must be set subjectively. This is one of the most critical and difficult
steps in this approach.

8.2.2 The Environmental Simulation Approach

The environmental simulation approach attempts to predict the evolution of the
environment, and the transport of radionuclides through it, taking into account
all the relevant processes. It begins by using historical information to define a
number of discrete climatic states. The evolution of the climate is then predicted
by constructing sequences of these states, taking into account their probability of
occurrence and their persistence. Within each state, long-term average
characteristics are assumed to remain constant, but parameter values may vary
on short time scales to reflect the natural variability of the system. The
time-dependent climate conditions are used to drive the evolution of other parts
of the environment, by providing boundary conditions and driving forces for
models of ground water flow, erosion, glaciation and so on. Radionuclides are
then introduced and their transport modelled, subject to the changing state of the
system through time. A large number of simulations are performed, each of
which describes a different potential evolution of the climate and its effects on
the environment. The results can be used to construct a probabilistic estimate of
the consequences of radionuclide transport in a time-dependent system.
Uncertainty estimates derived from the calculations will include uncertainties due
to environmental evolution. Examples of this approach are given by Dames and
Moore (1989) and Ringrose (1991).

The environmental simulation approach incorporates the effects of environmental
variability on several scales. However, as with other environmental transfer
models, the uncertainties due to assumptions in the conceptual model are not
quantified; these uncertainties could be very large in this case.

8.2.3 Comparing the Two Approaches

The distinction between the scenario analysis and the environmental simulation
approaches is not very strict. In fact, in a way, they depend on each other:

• The representativeness of the finite set of reference scenarios obtained
using the first methodology must be demonstrated. This can be done
through models like those used in the environmental simulation approach.

• The driving forces used by the environmental simulation models must be
selected using some screening method, which in many respects resembles
that of the first methodology.

Correlations among events and processes, time dependent processes and the
timing of events and processes are more easily addressed by the environmental
simulation approach. However, Cranwell et al. (1990) have provided insights
into how these issues can be incorporated into a scenario approach.

The scenario approach has a simplicity and a structure that make it attractive as
a tool in decision making. The environmental simulation approach, on the other
hand, is state of the art in modelling of natural variability, geobiosphere
processes etc. It can therefore be a good tool for research into sophisticated
ways of modelling nature, but still be applied to practical problems.
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9. Presentation of Results

A key aspect of uncertainty analysis is documentation. The presentation of
results for BIOMOVS scenarios should include quantitative statements of the
uncertainties associated with model predictions, and a ranking of the parameters
that contribute most to the overall uncertainty. Because of the subjective nature
of uncertainty analysis, it is equally important to document clearly the methods
used and the assumptions made. The following issues should be addressed in
the documentation:

• what sources of uncertainty were included in the analysis;

• which model features and parameters were assigned initial uncertainties,
and some comments on the validity of the estimates of these uncertainties;

• the sources of uncertainty that were not included in the calculations, both
due to lack of knowledge and conceptual difficulties;

• possible differences in expert opinion connected to the uncertainty
estimates;

• what parameters were correlated and how the correlation was achieved;

• how the parameter uncertainties were propagated through the model.

The final overall uncertainty for the deterministic results should be presented (in
descending order of information content) as follows:

• graphically as cumulative distribution functions (cdf, Figure 2a), which
show the probability p(Y<y), or as complementary cumulative
distributions functions (ccdf, Figure 2b), which show the probability
p(Y>y) (with Y the quantity of interest and y a certain level of concern).
IAEA (1989) describes how to construct a cdf, or ccdf;

• graphically as the time variation of the results with the 90% confidence
band if the time evolution of the system is followed (Figure 3);

• as best estimate values of the deterministic results with the uncertainty
stated as 5% and 95% fractiles representing the endpoints of the 90%
confidence interval;

• as upper and lower limits (in case of small sample sizes).

For judging the need for additional information and for setting priorities for
further research efforts, a ranking of the uncertain parameters with respect to
their contribution to the overall uncertainty should be given as explained in
Chapter 7. The result of this ranking should be included in the final presentation.
Here, as elsewhere, it is worth the effort to try to explain the kind of information
that is hidden in the different statistics used-
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Figures 2: (a) respectively the cumulative distribution function (cdf) and (b)
the complementary cumulative distribution function (ccdf)

An even greater effort must be put into documentation when the analysis is
undertaken for a real assessment (as opposed to a model intercomparison study
such as BIOMOVS), and the results are used as input to make practical decisions
regarding dose reduction, licensing, plant siting and so on. Those using the
results often have little experience in the field of modelling, and may have serious
problems in interpreting the results. They may have too high or too low a belief in
the results, and may completely misunderstand the messages inherent in the
analysis. A very important task in a complete analysis is therefore to present the
results in such a way that they can be fully understood by non-experts, but at the
same time be fully appreciated by the experts. The difference between (the
unknown) truth, and best estimates from model calculations must be clarified.
Cdf's and ccdf's contain a lot of information, and have the advantage that the
confidence limits are easily read. However, these curves are notoriously difficult
for non-scientists to understand, especially if they are presented with one or both
axes in a nonlinear scale. Therefore they should always be followed by an
explanatory text.

Outcome

90% confidence
interval

best estimate

Time

Figure 3: A way to illustrate the time development of uncertainties
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The report documenting the analysis should contain both an executive summary
(preferably in English, irrespective of the language of the main report) and a final
concluding chapter. The closer to the final decision the reader is, the less he or
she finds time to read long technical reports but instead relies on summaries. If
the modeller does not produce one, someone else, less knowledgeable, may do it.
The report should also include a brief discussion on the problems connected to
point estimates, and the value of performing uncertainty analysis. The calculated
time evolution in the system should be presented, and not endpoint results only.
It may happen that significant radiological events occur at unforeseen times.

10. Summary of Recommendations

The key recommendations of this report are summarised briefly below:

• Estimate the uncertainty in all model predictions. This will allow the
predictions to be used in a meaningful way.

• Choose methods of uncertainty analysis that are appropriate to the
purpose of the model, the quality of the data, and the nature of the
scenario.

• Try to account for all sources of uncertainty. Be aware of potential
sources, even if it is not possible to quantify them. Reduce the magnitude
of uncertainties that are difficult to estimate by:

interacting with the Working Group leader to ensure that the
scenario is well defined and understood,

becoming familiar with the model and data to be used,

using software engineering techniques and computer verification
tools, and

- including all relevant processes in the model at the appropriate
level of detail.

• Include in the analysis all parameters that are subject to uncertainty, and
to which model predictions are sensitive.

• Use informal expert elicitation and the guidance given in Section 4.1 to
construct PDFs for the uncertain parameters.

• Ensure that the data used to construct the PDFs are relevant to the
endpoint of the calculations.

• Account for correlations between parameters using the covariance matrix
method discussed in Chapter 5.

• Use statistical methods based on simple random sampling (Chapter 6) to
propagate parameter uncertainties through the model.
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• Perform a sensitivity analysis and rank the parameters according to their
contribution to the overall uncertainty in the model prediction. Use both
standardised regression coefficients and partial correlation coefficients
(Chapter 7).

• Uncertainties due to long-term changes in the environment and in human
culture and technology can be treated by the methods discussed in
Chapter 8. However, because of the effort involved, it is not expected
that individual BIOMOVS participants would undertake these methods.

• Express the uncertainty estimates quantitatively in terms of 90%
confidence intervals (Chapter 9).

• Document in detail the methods used and assumptions made in carrying
out the uncertainty analysis.

• Recognize that an uncertainty analysis is a subjective process.

The recommendations given here will not guarantee a "correct" estimate because
of the many judgmental decisions required at all stages of the process. They are
provided for guidance only. Participants are free to use other methods if they
feel the suggestions here are inappropriate for a given application. Alternative
methods should be well documented so that the results can be compared with
those of others.
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