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INTRODUCTION

As a consequence of various IAEA programmes to sample airborne paniculate matter and

determine its elemental composition, the participating research groups are accumulating data on the

composition of the atmospheric aerosol. It is necessary to consider ways in which these data can be

utilized in order to be certain that the data obtained are correct and that the information then being

transmitted to others who may make decisions based on such information is as representative and correct

as possible. In order to both examine the validity of those data and extract appropriate information from

them, it is necessary to utilize a variety of data analysis methods. The objective of this workbook is to

provide a guide with examples of utilizing data analysis on airborne particle composition data using a

spreadsheet program (EXCEL1) and a personal computer based statistical package (StatGraphics2).

SAMPLE ANALYSIS METHODS

Other workbooks in this series have been prepared covering sampling of airborne paniculate

matter and the analysis of those samples by nuclear-based analytical methods. The three principal

methods are X-Ray Fluorescence (XRF), Ion-Beam Analysis (IBA), and Instrumental Neutron Activation

Analysis (INAA). Each of these nuclear methods have advantages and disadvantages and these are

summarized in Tables 1 to 3. Typically the choice of methods is determined largely by the availability of

a method. However, if there are choices that can be made, these tables in conjunction with the

workbooks can help provide useful information on each method. The different methods have different

elemental coverage and those differences can be important in source identification and apportionment.

For example, INAA does not provide analyses of S and Pb which are important species in fine particle

samples. However, it provides excellent results for Na and Al that can be very useful for coarse particle

mass apportionment, the choice of analytical method depends on the problem being studied as well as

the nature of the systems available. The data analysis process must take into account the potential

limitations of the analytical approaches used to obtain the data.

1. ©Microsoft Corporation
2. ©Statistical Graphics Corporation



Table 1. Comparison of the advantages and disadvantages of XRF for airborne particle analysis
Advantages
1.

2.
3.

4.
5.

7.
8.

9.

10.

11.

Nondestructive, sample available for
analysis by other techniques
Minimal sample preparation
Analysis time shorter than NAA; varies
with spectrometer characteristics,
Multielemental (Na to U)1

Sensitivity and applicability over a wide
concentration range (g/g to 100% for
many elements)
Good accuracy and precision
Possibility of semi-quantitative estimation
of concentrations
Possibility of automation for unattended
analysis of samples
Relatively cheap, does not require a major
irradiation facility
IAEA software support

Disadvantages
1.
2.

3.
4.
5.
6.

No chemical information
Filter medium selective - requires
homogeneous, thin deposit on non-fibrous
filter
Analysis time longer than PIXE
Particle size effects for low Z elements2

Interelement interference2

Blind spots due to limitations of
excitation mode or overlapping X-ray
lines

1. Analysis in vacuum with low exciting energy can improve detection of low Z elements.
2. Approaches for correction available.

Table 2. Comparison of the advantages and disadvantages of Ion Beam Analysis methods for airborne
particle analysis.

Advantages

1. Non destructive (low beam currents)
2. Minimal sample preparation
3. Quantitative (±3-5% if careful)
4. Multi-elemental (H to U)
5. Fast, less than 15 minute irradiation times
6. Sensitive (\ig/g to 100% for many elements)
7. Can handle small sample sizes (<lmg)
8. Cost effective for hundreds of samples

Disadvantages

1. No chemical information
2. Requires homogeneous solid samples
3. Cannot easily do liquid and gaseous samples.
4. Some particle size effects for low atomic
number

materials.
5. Not cost effective for a few samples
6. Requires access to an ion beam accelerator
(3MV)

Table 3. Comparison of the advantages and disadvantages of Instrumental Neutron Activation Analysis
methods for airborne particle analysis.

Advantages

1. Non destructive
2. Minimal sample preparation
3. Quantitative
4. Multi-elemental (Na to U)
5. Fast, less than 15 minute irradiation times
6. Sensitive (flg/g to 100% for many elements)
7. Can handle small sample sizes (<lmg)

Disadvantages

1. No chemical information
2. Long time to results for many elements
3. Samples have residual radioactivity
4. Not cost effective for a few samples
5. Requires access to nuclear reactor.
6. Does not include all elements
7. Sensitivity varies from element to element



DATA VALIDATION

The process of examining the data obtained in sampling and analysis campaigns such as those

performed under the auspices of the IAEA programmes on airborne particulate matter is technically

termed data validation. Data validation refers to those activities performed after the fact, that is, after the

data have been collected. Data validation and quality control techniques are somewhat different. Quality

control methods are employed to minimize the amount of bad data being collected, while data validation

seeks to prevent bad data from getting through the data collection and storage process without being

recognized as problematic. The idea is to prevent such data from being influential in decision making.

Data validation should be performed as soon as possible after data collection so that questionable data

can be checked by recalling information on unusual events and on specific meteorological conditions that

may have affected the environment being sampled. A detailed document on data validation is available

from the U.S. Environmental Protection Agency at http://es.epa.gov/ncerqa/qa/qa_docs.html. This site

contains a number of useful documents to describe a quality management system that would be helpful

for any environmental monitoring and analysis program.

Also, such validation efforts can help to identify problems that then result in prompt application

of corrective actions. Such an iterative process can lead to a higher rate of capture of acceptable quality

data. Data validation is the process by which data are filtered and either accepted or flagged for further

investigation following a predetermined set of criteria based on the study objectives and the type of data

being examined.

Data validation procedures can be conveniently divided into 4 categories:

D Routine check and review procedures which should be used to some extent in every data

validation process,

D Tests for internal consistency of the data,

D Tests for consistency with previous data, (historical or temporal consistency), and

Q Tests for consistency with other data sets, collected at the same time or under similar

conditions (consistency of parallel data sets).

It is possible to learn a considerable amount about the quality of a data set by examining the data

itself. Data validation methods can be used to identify potential problem points that require further

examination. These points can arise because of unusual events that produce very high or very low

values. It may be that these samples should be excluded from further analysis because they do not

represent the normally observed situation. They also may be present because of errors in the sampling

and analysis process and examination may permit identification of problems. If the data permit, new



values can be calculated after the process has been fixed. Alternatively it may only be possible to insure

that future data do not include such errors. The key point is that the data should be examined for their

quality before starting to use them for other purposes such as receptor modeling so that time is not spent

in analyzing problematic data.

ILLUSTRATIVE EXAMPLE

Through this workbook, examples of how to apply the methods will be presented using a data set

that has been reported by Alpert and Hopke (1981). These data are the result of XRF analysis of fine

particle samples taken using a dichotomous sampler located on the campus of Washington University in

St. Louis, MO. The samples were collected during July and August 1976. The samples were collected

in twelve hour increments (midnight to noon and noon to midnight). Only the fine particle (<2.5 fim)

samples will be discussed. At this time in the United State, gasoline still contained tetraethyl lead and

there were limited controls on point sources of atmospheric paniculate emissions. Thus, this set provides

an opportunity to illustrate the various methods described in the subsequent sections. These data can be

obtained at ftp://ftp.clarkson.edu/pub/hopkepk/lAEA.

PLOTTING

As an initial approach to the review of

any data, it is useful to plot the data in a variety

of ways. The objective is to begin to identify

any "ususal" data points as well as explore the

potential relationships among the variables

within the data set. Two types of data plots are

recommended to be routinely produced; time

series plots of each measured.

To illustrate time series plots, Figure 1

provides plots of K and S as a function. It can

Figure 1. Plot of the sulfur and potassium
concentrations measured in St. Louis, MO over the
period of July and August 1976.

be seen that in the K data, there are two high values while the rest of the values are very much lower.

This behavior is in contrast with the S series which has regular variations over the whole of the time



series. When those high points are examined, it is found that they occur for the noon to midnight sample

of July 4 and the midnight to noon sample on July 5. These high values are the result of fireworks that

were displayed near the sampling site to celebrate the 200th anniversary of the signing of the United

States Declaration of Independence. Thus, these two points can be clearly identified as real data. There

is no error in the chemical analysis, but they are the result of an unusual and non-recurring source. Thus,

although it is good that these high values can be easily identified, it is of little assistance in understanding

the normally occurring sources.

A second example of time series plots

is shown in Figure 2 where the Pb and Br

values are presented. It can be seen that there

is a strong similarity in the time patterns for

the two elements. The congruence of these

two series suggests that these elements are

likely to be strongly related to one another and

thus, potentially coming from the same

emission source.

The relationship between lead and

bromine can be further explored by plotting

the concentration values in a biplot. In this figure it can be seen that there is generally increasing Br

values as Pb increases. However, there is some spread in the relationship suggesting the possibility of

more than one source of one or the other of these elements. Such a diagram can help to identify

elemental relationships and those will be discussed in the next section.
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Figure 2. Plot of lead and bromine concentrations
measured in St. Louis, MO during July and August
1976.

ELEMENTAL RELATIONSHIPS

There are a variety of relationships that can be used to check if there are significant problems

with the data. These problems can be systematic or random. For example, if motor vehicles are burning

lead gasoline, there should be a well defined relationship between lead and bromine as seen in Figure 3.

The typical Br to Pb ratio for the fuel is around 0.48 which is shown as the solid line in the figure.

However, Br is lost from the lead halide particles by reaction with gaseous acids. For example,

PbBr2 HNO3 - PbBrNO3 HBr (1)



Similar reactions can be written for a reaction

with sulfuric acid. Thus, typically aged urban

aerosol containing leaded gasoline combustion

particles show a ratio of the order of 0.30 as

can be seen in Figure 3 as the dot-dash line.

A number of similar relationships

should typically be observed. For example,

aluminum and silicon should be closely related

in both coarse and fine sized particles that F i § u r e 3- P l o t o f B r concentration against the Pb
concentration for the data from St. Louis, MO in July

would reflect the ratio of these elements in a n (j August 1976.

local soils. A number of other sources will

also produce clearly observed relationships between pairs of elements.

MATERIAL BALANCE ANALYSIS

Material balance is a methodological approach that can combine the elements into composite

variables that represent significant sources of airborne particles. It is then possible to examine whether

the sum of these composite variables, the reconstructed mass, approximates the measured mass.

For example, sodium and chlorine can be combined to produce the source that we can call "sea

salt." Sea salt is produced by wave and sea spray producing droplets that then can evaporate to form

solid sea salt particles. The relative elemental composition should then be the same as that of seawater.

It has been found to be very useful in several large monitoring programs such as IMPROVE in the United

States and ASP in Australia to examine whether or not the measured elemental concentrations are close

to the measured mass after applying some reasonable assumptions regarding those elements that are not

measured. For example, sea salt is estimated by

'Sa/l'~ 25' Na

There is an implicit assumption that all of the sodium comes from sea salt. There is some sodium in soil,

but it is typically small enough (see Appendix A) that the increment of sodium from soils can be

neglected.

There can be displacement of chlorine from the sea salt particles by reaction with gaseous acids

like HNO3 and H2SO4 produce through photochemical reactions in the air.

NaCI + H2SO* = NaiSOi + 2NO



NaCl+ HNOi= NaNOl+ HO

Thus, the use of the formula would produce an erroneous estimate of sea salt if these reactions are taking

place to a significant extent.

Similarly all of the sulfur that would be detected in samples can generally be assumed to be in

the form of ammonium sulfate [(NH4)2SO4]. When the particles are collected, the sulfur is generally

present as a mixture of ammonium bisulfate and ammonium sulfate. However, given the typical time

between sampling and analysis and the access the samples have to ammonia being emitted by laboratory

personnel, the samples will be fully neutralized by the time the analyses are completed. Thus,

[(NH4),SO4]=4.125-S.

The crustal elements can be expected to be present in the airborne particles as oxides. Thus,

given measurements for a series of major crusta! elements (Al, Si, Ca, Ti, and Fe), it is possible to

estimate the concentration of soils based on their typical oxidized forms (A12O3, SiO2, CaO, TiO2, and

Fe2O3). In this approach, the presence of MgO, Na2O, and K2O as well as some associated water are

included by assuming that the oxides of the other elements account for 86% of the mass (Malm et al.,

1994). Using these assumptions leads to an equation of the form:

[Soif] = 2.20« [Al] + 2.49* [Si] + 1.63» [Ca] + 2.42• [Fe] + 1.94 • [77]

These values work well for the United States, but because iron can be present as both FeO and Fe2O3.

Also the iron coefficient is inflated to include the contribution of K to fine soil. Thus, there could be

some variations in these coefficients.

Cohen has found that biomass burning (bush fires) are a sufficiently important source that it is

useful to define a "smoke" variable which is based on the measured potassium value less the crustal

potassium.

[Smoke] = (K- 0.6 • Fe)

Biomass burning also contributes elemental and organic carbon to the aerosol mass. Thus, the equation

will necessarily underestimate the contribution of smoke to the total aerosol mass. In addition, this

parameter may produce negative values in urban areas where there may be sources emitting extra iron

into the air. However, in areas where there is active burning, it can prove useful to estimate the

contribution of biomass burning to the aerosol mass.

In ion beam analysis, it is possible to estimate the amount of organic carbon through the PESA

determination of the H concentration in the sample. Malm et al. (1994) have suggested that organic

matter mass can be estimated using the following expression:



[OMH] = — ( [ / / ] - 0.25[S])

where [H] is the concentration of hydrogen in the sample, [S] is the sulfur concentration, and a value of

l/f0H = 11 was found by forcing [OMH] to equal an alternatively estimated value of organic matter mass

concentration. The sulfur is accounted for in the

equation because (NH4)2SO4 represents a

significant contribution to the hydrogen

concentration in the sample. It is assumed that

there will be relatively low concentrations of

80000

NH4NO3.

Combining these various

pseudoelements permits an estimate of

reconstructed fine mass [RCFM].

[RCFM] = [stilfate] + [EC\ + [OMH] + [SOIL]

where [EC] is the elemental carbon as measured

by the reflectometer. One can then plot the

reconstructed mass against the actual mass

values. If there is no IBA available for [H]

to 40000
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Figure 4. Reconstructed mass against the measured
mass for the St. Louis data. The line is drawn to shown
the 1:1 relationship.

measurements, then the reconstructed mass will be reduced, but it can still be useful to examine the

reconstructed mass.

To illustrate this approach, Figure 4 shows the reconstructed mass against the measured fine

mass concentration. These samples wre only analyzed via XRF so there are no EC or OMH data

available. Thus, the reconstructed mass substantially underestimates the measured mass values. In this

case, we know that motor vehicles contribute a significant amount of airborne particle mass particularly

for the fine particle samples. Thus, we can improve the reconstruction of the mass for these samples by



estimating the contribution from motor vehicles to the aerosol mass. If source profiles for that period are

examined, it was found that lead would typically be 20% of the emitted particle mass. Thus, another

pseudoelement, cars, can be defined as

[Car.v]= 5*[Pb]

If this additional summary variable is added to

the reconstructed mass, the results shown in

Figure 5 are obtained. It can be seen that the

addition of this source type has produced

relatively good reproduction of the measured

mass. Thus, an understanding of the nature of

the sources and utilizing the information that is

available can still provide an opportunity to

examine the mass closure in the analysis.
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Figure 5. Reconstructed mass plotted as a function of
the measured mass for the St. Louis data after the

It is important that consideration be addition of [Cars]. The line is drawn to show the 1:1

made of the specific types of important sources "'

that may be operating in the area where the samples were collected. This section has provided some

general ideas about a set of pseudovariables that have proven useful in other regions. They may be

useful in other air sheds, but some thought needs to be included to develop a logical framework for the

calculations.

FACTOR ANALYSIS

In studies of the environment, many variables are measured to characterize the system. However,

not all of the variables are independent of one another. Thus, it is essential to have mathematical

techniques that permit the study of the simultaneous variation of multiple variables. One such analyses is

based on examining the relationships between pares of variables. This correlation analysis, however,

does not provide a clear view of the multiple interactions in the data. Thus, various forms of eigenvector

analysis are used to convert the correlation data into multivariate information. Factor analysis is the name

given to one of the variety of forms of eigenvector analysis. It was originally developed and used in

psychology to provide mathematical models of psychological theories of human ability and behavior

[Harman, 1976]. However, eigenvector analysis has found wide application throughout the physical and

life sciences. Unfortunately, a great deal of confusion exists in the literature in regard to the terminology

of eigenvector analysis. Various changes in the way the method is applied has resulted in it being called

10



factor analysis, principal components analysis, principal components factor analysis, empirical

orthogonal function analysis, Karhunen-Loeve transform, etc., depending on the way the data are scaled

before analysis or how the resulting vectors are treated after the eigenvector analysis is completed.

All of the eigenvector methods have the same basic objective; the compression of data into fewer

dimensions and the identification of the structure of interrelationships that exist between the variables

measured or the samples being studied. In many chemical studies, the measured properties of the system

can be considered to be the linear sum of the term representing the fundamental effects in that system

times appropriate weighing factors. For example, the absorbance at a particular wavelength of a mixture

of compounds for a fixed path length, z, is considered to be a sum of the absorbencies of the individual

components

£&> = e A + e2C2 + ... + epCp (10)

where t, is the molar extinction coefficient for the ith compound at wavelength A and C, is the

corresponding concentration. Thus, if the absorbencies of a mixture of several absorbing species are

measured at m various wavelengths, a series of equations can be obtained.

If we know what components are present and what the molar extinction coefficients are for each

compound at each wavelength, the concentrations of each compound can be determined using a multiple

linear regression fit to these data. However, in many cases neither the number of compounds nor their

absorbance spectra may be known. For example, several compounds may elute from an HPLC column at

about the same retention time so that a broad elution peak or several poorly resolved peaks containing

these compounds may be observed. Thus, at any point in the elution curve, there would be a mixture of

the same components but in differing proportions. If the absorbance spectrum of each of these different

mixtures could be measured such as by using a diode array system, then the resulting data set would

consist of a number of absorption spectra for a series of n different mixtures of the same compounds.

-L-J- = 2 e(A.)4Cfe.
 J. _ ' (12)

Z £=1 ' - x > "



For such a data set, factor analysis can be employed to identify the number of components in the mixture,

the absorption spectra of each component, and the concentration of each compound for each of the

mixtures. Similar problems are found throughout analytical and environmental chemistry where there are

mixtures of unknown numbers of components and the properties of each pure component are not known

a priori.

Another use for such methods is in physical chemistry where the measured property can also be

related to a linearly additive sum of independent causative processes. For example, the effects of

solvents on the proton NMR shifts for non-polar solutes can be expressed in a form of

*u. - S U^ (13)

where dia is the chemical shift of solute i in solvent a, Uy refers to the jth solute factor of the ith solvent,

and Vja refers to the jth solvent factor of the ath solvent with the summation over all of the physical

factors that might give rise to the measured chemical shifts. Similar examples have been found for a

variety of chemical problems and are described by Malinowski [1991].

Finally, similar problems arise in the resolution of environmental mixtures to their source

contributions. For example, a sample of airborne particulate matter collected at a specific site is made up

of particles of soil, motor vehicle exhaust, secondary sulfate particles, primary emissions from industrial

point sources, etc. It may be of interest to determine how much of the total collected mass of particles

comes from each source. It is then assumed that the measured ambient concentration of some species, Xj,

where i=l, m measured elements, is a linear sum of contributions from p independent sources of

particles. These species are normally elemental concentrations such as lead or silicon and are given in ng

of element per cubic meter of air. Each kth source emits particles that have a profile of elemental

concentrations, aik, and the mass contribution per unit volume of the kth source is fk. When the

compositions are measured for a number of samples, an equation of the following form is obtained.

zy = £ aikfkj (14)

The use of factor analysis for this type of study has been reviewed by Hopke [1985].

12
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The factor analysis problem can be visualized

with the following example. Suppose a series of

samples are taken in the vicinity of a highway where

motor vehicles are using leaded gasoline and a steel

mill making specialty steels. For these samples,

measurements of Pb, Br, and Cr are made. This set of

data can then be plotted in a three dimensional space as

in Figure 6. A cloud of points can be observed.

However, it is known that there are only two

particle sources. The problem is then to determine the

true dimensionality of the data and the relationships

among the measured variables. That is goal of a factor

analysis. In the case of this example, the relationships can be observed with a simple rotation of the axes

so that we look down onto the figure so that the Cr axis sticks out of the page. This view is seen in

Figure 7. Now it can be seen that the data really cluster

around a line that represents the Pb-Br relationship in

the particles emitted by the motor vehicles. The Cr

values are distributed vertically and are independent of

the other two elements. Factor analysis of this problem

would find two sources and provide the relationship

between the lead and bromine.

Figure 6Three dimensional plot of simulated
data.
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Figure 7Plot of the simulated data as viewed
from above relative to the view in Figure 1.

Principal Component Analysis

The most common form of factor analysis is

Principal Components Analysis (PCA). This method is

generally available in most computer packages for

statistical analysis. Since PCA can only be performed on a set of samples in which the various sources

contribute different amounts of particles to each sample, the mass balance needs to be expanded to a

matrix equation.

Z = A-F (15)

13



where Z is a matrix of sample vectors, A is the matrix of loading vectors related to the source

compositions, and F is the matrix of scores that are related to the contribution of that source type to the

variance of that particular measured variable. The mathematical details of PCA are given in Appendix A.

The general result of a PCA analysis

is illustrated in Figure 8. In a PCA analysis,

the data are normalized by subtracting a mean

value, x and divided by the standard

deviation, o.
u

In this case each standardized variable has a

mean value of zero and a standard deviation

of 1. The variance of a variable is given by

O . The line representing the maximum

variance for these two variables is shown in

Figure 8 as well as a line that is orthogonal to

Pb

Figure 8. Plot of the standardized values of the same
values of bromine and lead as shown in Figure 3. The
thin lines depict the original axes. The heavy lines
depict the directions of maximum variance.

the first that will reproduce the remaining variance in the variables.

PCA can produce components that have a strong relationship with only one variable. Since it is

quite reasonable for many environmental systems to show factors that produce such single variable

behavior, it is advisable to use a principal components analysis and extend the number of factors to those

necessary to reproduce the original data within the error limits inherent in the data set.

By design, the eigenvector analysis compresses the information content of the data set into as

few eigenvectors as possible. Thus, in considering the number of factors to be used to describe the

system, it is necessary to carefully examine the problems of reconstructing both the variability within the

data and reconstructing the actual data itself. Following the diagonalization of the correlation or

covariance matrix, it is necessary to make the difficult choice of the number of factors, p, to use in the

subsequent analysis. This problem occurs in any application of an eigenvector analysis of data

containing noise. In the absence of error, the eigenvalues beyond the true number of sources become

zero except for calculational error. The choice becomes more difficult depending on the error in the data.

Several approaches have been suggested [Duewer et al., 1976; Hopke et al., 1980].

14



A large relative decrease in the magnitude of the eigenvalues is one indicator of the correct

number of factors. If the data were without error, then there would be a clear distinction between factors

with non-zero eigenvalues and those whose values were zero. It can often be useful to plot the

eigenvalues as a function of factor number and look for sharp breaks in the slope of the line [Cattell,

1966]. If the eigenvalue is a measure of the information content of the corresponding eigenvector, then

only sufficiently "large" eigenvalues need to be retained in order to reproduce the variation initially

present in the data. One of the most commonly used and abused criteria for selecting the number of

factors to retain is retaining only those eigenvalues greater than 1 [Guttman, 1954]. The argument is

made that the normalized variables each carry one unit of variance. Thus, if an eigenvalue is less than

one, then it carries less information than one of the initial variables and is therefore not needed.

However, Kaiser and Hunka [1973] make a strong argument that although eigenvalue greater than one

does set a lower limit on the number of factors to be retained, it does not set a simultaneous upper bound.

Thus, there must be at least as many factors as there are eigenvalues greater than one, but there can be

more than that number that are important to the understanding of the system's behavior.

Hopke [1982] has suggested a useful empirical criterion for choosing the number of retained

eigenvectors. In a number of cases of airborne paniculate matter composition source identification

problems, Hopke found that choosing the number of factors containing variance greater than one after an

orthogonal rotation provided a stable solution. Since the eigenvector analysis artificially compresses

variance into the first few factors, reapportioning the variance using the rotations described in the next

section will result in more factors with total variance greater than one than there are eigenvalues greater

than one. In many cases, this number of factors will stay the same even after rotating more factors.

Because the matrices produced by the diagonalization process have been calculated in a way to

maximize the amount of variance contained in each factor, they may not reflect the pattern of variables

representative of a particle source. Thus, the factors are rotated generally to achieve what is termed

"simple structure" [Hopke et al, 1976]. A varimax rotation is most commonly used in such analyses.

More details of factor axis rotations are given in Appendix B.

Application of PC A to Illustrative Data

In the St. Louis data set, a total of 124 samples were obtained in each the fine and coarse

fractions. A summary of the data is presented in Table 4. Data were missing for 24 pairs of samples

leaving a total of 100 pairs of coarse and fine fraction samples. In order to produce the best possible

source resolutions, it is vital to have accurate measurements of the paniculate mass as well as

15



determinations for as many elements as possible. Of the twenty-seven elements determined for each of

the 100 remaining samples, over 50% of the determinations often elements had values that were missing

or below the detection limits. Since a complete and accurate data set is required to perform a factor

analysis, these ten elements were eliminated from the analysis. No element for which more than about

33% of the values are below detection limits should be included in the analysis. A value is required for

each value including those values that are below the detection limits. A good approach to providing

these values are to use a uniform random number generator to provide a number between zero and the

detection limit. In EXCEL©, the function, =RAND(), can be used to provide this value. Thus,

multiplying this function by the detection limit will provide a useful value. However, it is important to

convert these results into values since each time the spreadsheet is opened will result in a different value.

Thus, after all of the below detection limit values

have been replaced, the block of data is selected.

Under the "Edit" menu, select "Copy". Then again

in "Edit", select "Paste Special" and check

"Values". This function will replace all of the

formulae in the data block with the current values.

If this worksheet is then saved, it will be the same

each time it is opened.

The exclusion of elements leads to a loss

of information. In this example, arsenic was

6 8 10

Factor Number

excluded because almost all of the values were „. _ _. . . . _ r . .
Figure 9. Eigenvalues for the St. Louis data set as a

below the detection limits. Arsenic determinations function of factor number.

by x-ray fluorescence are often unreliable because of an interference between the arsenic K x-ray and the

lead L x-ray. A neutron activation analysis of these samples would produce better arsenic

determinations. Reliable data for arsenic may be important to the differentiation of coal flyash and

crustal material; these two materials have very similar source profiles. However, a low percentage of

measured values for species can lead to distortions in the resulting analysis.

The eigenvalues for this data set are given in Table 4. There are 4 factors with eigenvalue

greater than 1.0. However, there are values of 0.8. 0.6. and 0.6. A plot of these eigenvectors as a

function of factor number is given in Figure 9. It can be seen that there is a break in the curve at 7 factors

and then a smooth decrease from factor 8 up to factor 15. There are at least 4 factors, but it appears

likely that there will be 7 factors with total valiance greater than 1 after rotation.

16



The varimax rotated loadings are presented in Table 5. The loadings can be considered to be a

correlation coefficient between the original variables with the new factor variables that represent a linear

combination. However, it is not appropriate to use tables of statistical significance for correlation

coefficients because those significance values are based on an assumption that the variables being

correlated are each normally distributed. Environmental data show positively skewed, heavily tailed

distributions and thus, do not fit the underlying assumption. A useful rule of thumb is that loading values

over 0.50 are generally considered significant although smaller values may still provide insights into the

nature of the sources. The total variance in each factor is calculated as the sum of the squared loadings,

a 2 , for the given factor. Each of these seven factors have variance greater than 1 after rotation. It is

now necessary to interpret the pattern of elements for each factor.

Table 4. Eigenvalues for PCA of July-August 1976 Fine Fraction Data from RAPS Site 112

Factor Number Eigenvalue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

5.472
3.265
2.064
1.143
0.892
0.633
0.607
0.377
0.228
0.116
0.080
0.059
0.041
0.014
0.009

The first factor is unusual in that it has high values for Al, K, Ca, and Sr. It is not obvious what

might be the source of such an unusual combination of elements. In this case, the examination of the

corresponding scores, fkj, can prove helpful. A time series plot of the scores looks identical to the plot of

the K values in Figure 1. The score values are low with the exception of 2 samples. These scores are in

standardized space. Thus, a score of 0 means that the is an average contribution of the given source to

the given sample. The large score suggests a specific source that was only operating during these two

sampling period. These samples were taken during the period of noon to midnight on July 4 and
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midnight to noon on July 5 and again is bicentennial fireworks. We can compare the average values for

the measure variables in the complete data sets and in a subset in which the samples for July 4 and 5 have

been deleted. This comparison is provided in Table 6.

Table 5. Rotated Factor Loading Matrix for the Site 112 Fine Fraction Data

Element

Al
Si
S
Cl
K
Ca
Ti
Cr
Mn
Fe
Cu
Zn
Br
Sr
Pb

Variance

1

0.619
0.067

-0.040
0.248
0.982
0.827
0.062
0.143

-0.022
-0.048
0.173

-0.053
0.295
0.984
0.010

3.214

2

0.766
0.981

-0.041
-0.016
-0.002
0.379
0.115
0.012
0.137
0.830
0.016

-0.086
0.061

-0.018
0.044

2.429

3

-0.040
0.000
0.183
0.187
0.034
0.062
0.118
0.778
0.885
0.243
0.159
0.439
0.179
0.023
0.446

1.986

Factor
4

0.049
-0.034
0.118
0.473
0.075
0.226
0.169
0.271
0.143
0.124
0.239
0.087
0.872
0.068
0.747

1.823

Number
5

-0.085
-0.060
0.957
0.735
0.055
0.001
0.096
0.177
0.144
0.087
0.130
0.159
0.154
0.055
0.367

1.742

6

-0.054
-0.097
0.104
0.265
0.078
0.042

-0.003
0.220
0.240
0.125
0.859
0.762
0.182
0.051
0.238

1.634

7

-0.019
-0.052
0.049
0.137

-0.021
0.178
0.955
0.201
0.004
0.419

-0.070
0.112
0.186

-0.004
0.097

1.246
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Table 6. Comparison of Data With and Without Samples from July 4th and 5th (ng/m3)
RAPS Station 112, July and August 1976, Fine Fraction.

Element
Al
Si
S

Cl
K

Ca
Ti
Mn
Fe
Ni
Cu
Zn
Se
Br
Sr
Ba
Pb

With
July 4th & 5th

Mean
220 ± 30
440 ± 60

4370 ±310
90 ±10

320±130
110± 10
63 ±13
17 ± 3

220 ± 20
2.3 ± 0.2
16±3
78 ± 8

2.7 ± 0.2
140 ± 9

5 ± 4
19±5

730 ±50

Without
July 4th & 5th

Meana

200 ± 30
450 ± 60

4360 ± 320
80 ±9

150 ± 9
110± 10
64 ± 13
17±3

220 ± 20
2.3 ±0.2
15 ± 3
75 ± 8

2.7 ± 0.2
130±8
1.1 ±0.1
15 ± 4

720 ± 50

Table 7. Eigenvalues for PCA of July-August 1976 Fine Fraction Data from RAPS Site 112 without the
Fireworks Samples.

Factor Number Eigenvalue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

5.495
3.746
1.446
0.950
0.865
0.747
0.581
0.326
0.296
0.238
0.125
0.080
0.057
0.036
0.012
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Table 8. Rotated Factor Loading Matrix for the Site 112 Fine Fraction Data without Fireworks Samples
Element

Al
Si
S
Cl
K
Ca
Ti
Cr
Mn
Fe
Cu
Zn
Br
Sr
Pb

Variance

1

0.970
0.976

-0.072
-0.034
0.284
0.706
0.141
0.035

-0.094
-0.800
-0.006

-0.208
0.082
0.554
0.032

3.507

2

-0.060
0.004
0.184
0.198
0.169
0.037
0.126
0.801
0.887
0.275
0.228
0.467
0.195

-0.007
0.474

2.159

3

-0.110
-0.030
0.956
0.786
0.081

-0.065
0.111
0.183
0.156
0.131
0.147
0.179
0.188

-0.042
0.404

1.897

4

-0.024
-0.075
0.097
0.462
0.079
0.360
0.171
0.250
0.149
0.105
0.192
0.131
0.913
0.046
0.716

1.892

5

0.118
0.095
0.008
0.121
0.889
0.239
0.019

-0.004
0.200
0.161
0.082
0.524
0.091
0.708
0.038

1.744

6

-0.053
-0.055
0.065
0.210
0.141

-0.013
-0.022
0.210
0.120
0.104
0.918
0.526
0.145

-0.041
0.197

1.325

7

-0.040
-0.080
0.046
0.135

-0.090
0.295
0.948
0.213

-0.000
0.375

-0.030
0.082
0.172
0.234
0.072

1.305

It is clear that the presence of these 2 samples within a set of 99 has created a single factor. Such

a potent source could significantly distort the whole analysis. Since this source is unique to this

particular occasion and it is the average properties of the system that are of interest, another analysis with

these samples deleted is performed. The eigenvalue results for this analysis is presented in Table 7 and

the loadings are presented in Table 8. Now there are only 3 eigenvalues greater than 1, but there still

appear to be up to 7 factors. To examine the best model, each of the possible solutions including 5, 6,

and 7 factors need to be examined to see which makes the most physical and chemical sense and which

provides a reasonable overall fit to the data. An 8 factor solution is clearly one with too many factors

since the 8th factor does not have any loading with a significant value. After examining these solutions,

the 7 factor solution is presented in Table 8. The key is to be able to interpret them in terms of likely

emission sources.

The first factor is crustal elements with the exception of iron. We cannot distinguish between

soil or flyash based on the elements that are available so it could be either or a combination of both

source types. The Fe loading has a high negative value meaning that when there is significant soil/flyash

input to the samples, there is a significantly decreased iron concentration. There is a large iron/steel

complex to the northeast of the site in Granite City as discussed earlier which would provide high Fe
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values as well as several iron/steel works on the Missouri side of the Mississippi River. Major sources of

flyash or soil generally lie in other directions and thus, the samples for which there is high Fe from the

ferrous metal works are those which there is low values of the other crusta! species and vice-versa.

The second factor has high loadings for Cr and Mn. These elements would be expected to be

related to iron/steel works. It would have been more logical if Fe had also had a high positive loading on

this factor, but it appears that the negative correlation with the other crustal elements dominates over any

correlation between Fe and these other ferrous metals. The third factor is regional sulfate, but again there

is a curious additional loading from Cl. It would be expected that S is poorly correlated with the primary

paniculate emissions since local emissions of S would be in the form of SO2. It takes time to convert the

SO2 into SOJ and the dry deposition rate of SO2 is much more rapid than that of paniculate sulfate.

The fourth factor is clearly motor vehicles. These samples were taken in 1976 when leaded

gasoline was still in widespread use in the United States. The lead variance is also partially seen in the

second factor indicating that the steel complex being observed is probably the one in Granite City where

a secondary lead smelter was in operation. In the 5th factor, Sr, Zn, and K are featured. Although there

is no correlation with Pb, this factor is probably an indication of refuse incinerators. So much of the lead

variance is associated with motor vehicles and the Granite City source area, that it does not appear here.

Potassium and strontium are strongly related to the combustion of paper particularly when it would be

expected that there would be no wood combustion in the area.

The 6th factor is related to Cu and Zn. There are two significant sources of non-ferrous metals in

the Sauget, IL area to the east of site 105. It has been found [Rheingrover and Gordon, 1988] that the Cu

plant is a source of fine particles while the Zn smelter is a source of larger particles. Thus, we assign this

factor to being the Cu products plant. The final factor has a high loading only for Ti. There was a large

paint pigment plant that produces TiO2 and is a major source of fine particle titanium in the area.

Quantitative Factor Analysis Methods

Thus, the factor analysis can identify major source types and examine some of the relationships

among the measured compositions. However, it does not provide a quantitative apportionment in the

same way that a CMB analysis can. The problem is that the data are centered and scaled before they are

analyzed. It is possible to unscale them and them uncenter them to produce an Absolute Principal

Components Analysis (APCA) using the procedure outlined by Thurston and Spengler [1985]. This

approach has been successfully applied in a number of cases [Maenhaut and Cafmeyer, 1987; Andrade et

ai, 1993], However, it does involve centering of the data and uncentering of factor scores which
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propogates the uncertainties in the mean values twice. Thus, other methods have been developed that

avoid centering the data and thus, does not have to transpose the results back to the true zero in the

system.

One approach that avoids centering and then uncentering is Target Transformation Factor

Analysis that has been discussed by Hopke [1989; 1995]. Although it has been applied to a number of

data sets, it has been replaced with better factor analysis methods. Another approach to providing

quantitative source resolutions is Source Apportionment by Factors with Explicit Constraints (SAFER).

In this approach, the space in which the factor solution lies is truncated by imposing one or more of the

natural physical constraints discussed above. SAFER has been described by Henry and Kim [1989] and

by Henry [1991]. In addition to the natural constraints, it is also possible to incorporate additional

constraints based on additional knowledge of the system. If the range in which the concentration of an

element must lie can be estimated, then these limits can be added to the analysis. SAFER has been

applied to interpretation of airborne organic compound data from Atlanta, Georgia [Henry et ai, 1994].

In this study, they extracted the vehicle-related hydrocarbon source compositions from the ambient

sample analytical results with quite reasonable results.

Another new approach to factor analysis is Positive Matrix Factorization (PMF). In order to

properly scale the data, it is necessary to look explicitly at the problem as a least-squares problem. To

begin this analysis, the elements of the "Residual Matrix," E are defined as

VSkj (19)

where i =1,..., m elements

j =1,..., n samples

An "object function," Q, which is to be minimized as a function of G and F is given by

"2

Q(E) -tt (20)

where ŝ  is an estimate of the "uncertainty" in the ith variable measured in the jth sample. The factor

analysis problem is then to minimize Q(E) with respect to G and F with the constraint that each of the

elements of G and F is to be non-negative.
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PMF was initially applied to data sets of major ion compositions of daily precipitation samples

collected over a number of sites in Finland [Juntto and Paatero, 1994] and samples of bulk precipitation

[Anttila et al., 1995] in which they are able to obtain considerable information on the sources of these

ions. Polissar et al. [1996] applied the PMF2 program to Arctic data from 7 National Park Service sites

in Alaska as a method to more quantitatively resolve the major source contributions.

Recently there has been a series of applications of PMF to various source/receptor modeling

problems. Polissar et al. [1998] have reanalyzed an augmented set of Alaskan NPS data and resolved up

to 8 sources. Xie et al. [1999a&b] have made several analyses of data from an 11 year series of

particulate matter samples taken at Alert, N.W.T. Polissar et al. [1999] have examined the

semicontinuous aerosol data collected by NOAA at their atmospheric observatory at Barrow, Alaska..

Lee et al. [1999] have applied PMF to urban aerosol compositions in Hong Kong. They were able to

identify up to 9 sources that provided a good apportionment of the airborne particulate matter. Paterson

et al. [1999] applied PMF to air quality and temperature data collected at a series of sites around the

southern end of Lake Michigan in 1997 and used three factors to reproduce 75% of the variation in the

data. Huang et al. [1999] analyzed elemental composition data for particulate matter samples collected at

Narragansett, R.I. using both PMF and conventional factor analysis. They were able to resolve more

components with more physically realistic compositions with PMF. Thus, the approach is gaining

interest because it does have some inherent advantages particularly through its ability to individually

weight each data point. PMF is someone more complex and harder to use, but it appears to provide

improved resolution of sources and better quantification of impacts of those sources.

CHEMICAL MASS BALANCE ANALYSIS

It is also possible to calculate the source contributions for individual samples if the number and

the nature of those samples are known. Using source profiles derived by Alpert and Hopke (1981), the

methodology can be demonstrated. This analysis can be performed using the regression capability in

EXCEL®. It is essential that the Analysis Toolbox has been installed. It is not part of the default

installation and thus, must explicitly be installed.

It is essential to have good estimates of the source profiles. There are source profiles available as

a self-extracting zip file, SPECIATE.EXE from the U.S. Environmental Protection Agency at

http://www.epa.gov/ttn/chief/software.html. Because there are errors in the measurement of the source

profiles, the US Environmental Protection Agency prefers the use of a model that incorporates these

errors in the analysis using effective variance least squares (EVLS) [Watson et al., 1990; Watson et al.
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1991]. Cheng et al. (1988) have suggested that in many cases, the value of including these errors in the

analysis has relatively little effect on the results. However, if the EVLS analysis is desired, the DOS

program CMB7 that implements the algorithm can be downloaded from

http://www.epa.gov/ttn/scram/t22.html. A new Windows-compatible program, CMB8, is supposed to be

released in the spring of 2000.

A CMB analysis is performed on a vector representing the composition of an individual sample,

x, using a matrix of source compositions, A. The model can be written as

X = A f (20)

Multiplying both sides by the diagonal weight matrix, W, gives

Wx = WAf

where

(21)

1
2

0

0

0

1
2

0

0

0

1

0 0

^ 3

0
om

(22)

Multiplying both sides by the transpose of the source profile matrix, A1, yields

A*Wx= A* WAf

Solving for the source contribution vector, f, is possible by multiplying both sides by the inverse of

A*WA

(AtWA)"1AtWx= f

(23)

(24)

which is an ordinary weighted least squares solution. In EXCEL, there is no direct provision for

weighted regression. However, it can be easily accomplished by multiplying each value along a row of

the source profile matrix and the corresponding value in the x vector by the weight, I/a2. To illustrate
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this approach, a single sample and the appropriate set of source profiles is given in Table 9 while the

weighted source profile matrix is given in Table 10. These source profiles were taken from Albert and

Hopke(1981).

Table 9. Source Profiles and Data for the EXCEL CMB Analysis

Element

Al
Si

S
Cl

K
Ca
Ti
Mn

Fe
Ni

Cu

Zn

Se

Br

Sr

Ba
Pb

Motor

Vehicles

5000

0

20
2400

1400

11000
0
0

0
80

600

800

100

30000

90

700
107000

Sulfate

1100

1900

240000
1100

1600

0
700
0

1100
40

10

0

100

30

10

50
6500

Flyash/soil

53000

130000

19000
0

15000

16000
2500
700

36000
42

0

0

1

2500

150

70
5000

Paint

0

0

6000
4600

5700

34000
110000
4800

90000
11

0

3700

200

0

100

28000
0

Refuse

0

7000

0
22000

48000

1200
0

8600

36000
700

8700

65000

200

50

5

500
46000

Limestone

30000

150000

0
16000

15000

188000
1500
1600

34000
200

600

4200

20

3100

300

700
11000

112184-12

108.2

206.1

3859.6
29.9

121.1

60.8
60.9
7.5

91
0.8

8.3

54.9

2.9

124.7

0.6

12.9
588.5

Error

47

49

339
5

13

11
7
2

5
2

1

3

1

6

1

16
30

Weight

0.000

0.000

0.000
0.040

0.006

0.008
0.020
0.250

0.040
0.250

1.000

0.111

1.000

0.028

1.000

0.004
0.001

The solution is them obtained using the data analysis tool, REGRESSION. In this procedure, the

weighted measured concentration column is the dependent variable block. The weighted source profiles

are the independent block. The intercept should be set to be 0. Part of the resulting output tables are

presented in Tables 11 and 12. It can be seen that there is a high quality fit, but there is a negative

coefficient for the limestone source. There is also low t-values for both the limestone source and

flyash/soil. Thus, one repeats the analysis with that source omitted.

The results for the five source fit are given in Tables 13 and 14. All of the coefficients are

positive, but the value for flyash/soil is statistically insignificant since the standard error is twice the

source contribution value. Hence the analysis is performed one more time without
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Table 10. Weighted Source Profiles and Fine Particle Sample Composition
Element

Al
Si

S
Cl
K
Ca
Ti
Mn
Fe
Ni
Cu
Zn
Se
Br
Sr
Ba
Pb

Motor

Vehicles

1.100e+07
0.000e+00

2.298e+06
6.000e+04
2.366e+05
1.331e+06
0.000e+00
0.000e+00
0.000e+00
3.200e+02
6.000e+02
7.200e+03
1.000e+02
1.080e+06
9.000e+01
1.792e+05
9.630e+07

Sulfate

2.430e+06
4.562e+06

2.758e+10
2.750e+04
2.704e+05
0.000e+00
3.430e+04
0.000e+00
2.750e+04
1.600e+02
1.000e+01
0.000e+00
1.000e+02
l.O8Oe+O3
1.000e+01
1.280e+04
5.850e+06

Flyash/Soil

1.171e+08
3.121e+08

2.184e+09
0.000e+00
2.535e+06
1.936e+06
1.225e+05
2.800e+03
9.000e+05
1.680e+02
0.000e+00
0.000e+00
1.000e+00
9.000e+04
1.500e+02
1.792e+04
4.500e+06

Paint

Pigment

0.000e+00
0.000e+00

6.895e+08
1.15Oe+O5
9.633e+05
4.114e+06
5.390e+06
1.920e+04
2.250e+06
4.400e+01
0.000e+00
3.330e+04
2.000e+02
0.000e+00
1.000e+02
7.168e+06
0.000e+00

Refuse

Incineration

0.000e+00
1.700e+07
0.000e+00
5.500e+05
8.112e+06
1.452e+05
O.000e+00
3.440e+04
9.000e+05
2.800e+03
8.700e+03
5.850e+05
2.000e+02
1.8O0e+03
5.000e+00
1.280e+05
4.140e+07

Limestone

6.627e+07
3.602e+08

0.000e+00
4.000e+05
2.535e+06
2.275e+07
7.350e+04
6.400e+03
8.50Oe+05
8.000e+02
6.000e+02
3.780e+04
2.000e+01
1.116e+05
3.000e+02
1.792e+05
9.900e+06

112184F

2.390e+05
4.948e+05

4.435e+08
7.475e+02
2.047e+04
7.357e+03
2.984e+03
3.000e+01
2.275e+03
3.200e+00
8.3OOe+OO
4.941e+02
2.900e+00
4.489e+03
6.000e-01
3.302e+03
5.297e+05

Table 11. Summary statistics from EXCEL

for the 6 source solution.

SUMMARY OUTPUT

Regression Statistics
Multiple R
R Square
Adjusted R Square
Standard Error
Observations

0.9937
0.9875
0.8909
0.3185

17
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Table 12. Results of the CMB analysis with all 6 sources

Coefficients Standard Error tStat P-value

Intercept
Motor Vehicle

Sulfate
Flyash/Soil

Paint Pigment
Refuse Incineration

Limestone

0
0.0039
0.0198
0.0004
0.0004
0.0007
-2E-04

0.00036
0.00297
0.00046
0.00014
3.5E-05
0.00021

10.89
6.66
0.85
2.88

20.57
-0.93

3E-07
4E-05

0.4118
0.015
4E-10

0.3733

Table 13. Summary statistics from EXCEL for the 5

source solution.

SUMMARY OUTPUT

Regression Statistics
Multiple R
R Square
Adjusted R Square
Standard Error
Observations

Table 12. Results of the CMB analysis
Coefficients

Intercept 0
Motor Vehicles 0.003853

Sulfate 0.019490
Flyash/Soil 0.000210

Paint Pigment 0.000410
Refuse Incineration 0.000703

0.9932
0.9865
0.8987
0.3167

17

with 5 sources
Standard Error

0.000353
0.002937
0.000413
0.000142
0.000032

tStat

10.926240
6.636182
0.508394
2.895766

21.811297

A similar analysis can be performed even more easily using StatGraphics since it is easier to define the

individual sources to be included in the model. With EXCEL, the sources being included in the analysis

must be in a rectangular block. Thus, since the flyash source appears in the middle of the block, it would

have to be deleted or moved to the edge of the block in order to perform the 4 source analysis.
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APPENDIX A Reference Concentrations

Composition of Seawater as compiled by Goldberg (1963).

Element

Li
Be
F
Na
Mg
Al
Si
S
Cl
K
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge

Concentration

(ppm)

0.027
0.0000006

1.3
10500

1350
0.01

3
885

19000
380
400

0.00004
0.001
0.002

0.00005
0.002

0.01
0.0005
0.002
0.003
0.001

0.00003
0.00007

X/Na

2.571E-06
5.714E-11

0.00012
1

0.1285714
9.524E-07
0.0002857
0.0842857
1.8095238
0.0361905
0.0380952

3.81E-09
9.524E-08
1.905E-07
4.762E-09
1.905E-07
9.524E-07
4.762E-08
1.905E-07
2.857E-07
9.524E-08
2.857E-09
6.667E-09

Element

As
Se
Br
Rb
Sr
Y
Nb
Mo
Ag
Cd
Sn
Sb
I
Cs
Ba
La
Ce
W
Au
Hg
Pb
Th

Concentration

(ppm)

0.003
0.004

65
0.12

8
0.0003

0.00001
0.01

0.0003
0.00011

0.003
0.0005

0.06
0.0005

0.03
0.0003
0.0004
0.0001

0.000004
0.00003
0.00003
0.00005

X/Na

2.857E-07
3.81E-O7

0.0061905
1.143E-05

0.00076
2.857E-08
9.524E-10
9.524E-07
2.857E-08
1.048E-08
2.857E-07
4.762E-08
5.714E-06
4.762E-08
2.857E-06
2.857E-08

3.81E-08
9.524E-09

3.81E-10
2.857E-09
2.857E-09
4.762E-09
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Crustal Composition as Compiled by Mason (1966)

Element

Crustal

Abundance X/Al Element

Crustal

Abundance X/Al

H
Li
Be
B
C
N
O
F
Na
Mg
Al
Si
P
S
Cl
K
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Rb
Sr
Y
Zr
Nb
Mo
Ru

1400
20
2.8
10
200
20

466000
625

28300
20900
81300

277200
1050
260
130

25900
36300

22
4400
135
100
950

50000
25
75
55
70
15
1.5
1.8

0.05
2.5
90
375
33
165
20
1.5

0.01

0.01722
0.00025
0.00003
0.00012
0.00246
0.00025
5.73186
0.00769
0.34809
0.25707
1.00000
3.40959
0.01292
0.00320
0.00160
0.31857
0.44649
0.00027
0.05412
0.00166
0.00123
0.01169
0.61501
0.00031
0.00092
0.00068
0.00086
0.00018
0.00002
0.00002
0.00000
0.00003
0.00111
0.00461
0.00041
0.00203
0.00025
0.00002
0.00000

Rh
Pd
Ag
Cd
In
Sn
Sb
Te
I
Cs
Ba
La
Ce
Pr
Nd
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Hf
Ta
W
Re
Os
Ir
Pt
Au
Hg
Tl
Pb
Bi
Th
U

0.005
0.01
0.07
0.2
0.1
2

0.2
0.01
0.5
3

425
30
60
8.2
28
6
1.2
5.4
0.9
3
1.2
2.8
0.5
3.4
0.5
3
2
1.5

0.001
0.005
0.001
0.01
0.004
0.08
0.5
13
0.2
7.2
1.8

0.00000
0.00000
0.00000
0.00000
0.00000
0.00002
0.00000
0.00000
0.00001
0.00004
0.00523
0.00037
0.00074
0.00010
0.00034
0.00007
0.00001
0.00007
0.00001
0.00004
0.00001
0.00003
0.00001
0.O0O04
0.00001
0.O0O04
0.00002
0.00002
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
o.ooooi
0.O0O16
0.00000
0.00009
0.O0O02
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APPENDIX B

EIGENVECTOR ANALYSIS

Dispersion Matrix

The initial step in the analysis of the data requires the calculation of a function that can indicate

the degree of interrelationships that exists within the data. Functions exist that can provide this measure

between the two variables when calculated over all of the samples or between the samples when

calculated over all of the variables. The most well-known of these functions is the product-moment

correlation coefficient. To be more precise, this function should be referred to as the correlation about

the mean. The "correlation coefficient" between two variables, x; and xk, over all n samples is given by

2

W/2

)

The original variables can be transformed by subtracting the mean value and dividing by the standard

deviation,

_ XlJ - x t

V

Using the standardized variables, equation 6 can be simplified to

The standardized variables have several other benefits to their use. Each standardized variable has a

mean value of zero and a standard deviation of 1. Thus, each variable carries 1 unit of system variance

and the total variance for a set of measurements of m variables would be m.

There are several other measures of interrelationship that can also be utilized. These measures

include covariance about the mean as defined by
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where

are called the deviations, and x : is the average value of the ith variable; The covariance about the origin

is defined by

Cik

and the correlation about the origin

2 xtjxkJ
o _ 7 = 1

(2 V

The matrix of either the correlations or covariances, called the dispersion matrix, can be obtained

from the original or transformed data matrices. The data matrix contains that data for the m variables

measured over the n samples. The correlation about the mean is given by

Rm = ZZ>

where Z' is the transpose of the standardized data matrix Z. The correlation about the origin

= Z°Z°' = (XV)(Xl

where

v •
\l/2
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which is a normalized variable still referenced to the original variable origin and V is a diagonal matrix

whose elements are defined by

2 \l/2

This normalized variable also carries a variance of 1, but the mean value is not zero. The covariance

about the mean is given as

Cm = DD>

where D is the matrix of deviations from the mean whose elements are calculated using equation 10 and

D' is its transpose. The covariance about the origin is

C = XX'
o

the simple product of the data matrix by its transpose. As written, these product matrices would be of

dimension m by m and would represent the pairwise interrelationships between variables. If the order of

the multiplication is reversed, the resulting n by n dispersion matrices contain the interrelationships

between samples.

The relative merits of these functions to reflect the total information content contained in the data

have been discussed in the literature [Rozett and Petersen, 1975; Duewer et ai, 1976]. Rozett and

Petersen [1975] argue that since many types of physical and chemical variables have a real zero, the

information regarding the location of the true origin is lost by using the correlation and covariance about

the mean that include only differences from the variable mean. The normalization made in calculating

the correlations from the covariances causes each variable to have an identical weight in the subsequent

analysis. In mass spectrometry where the variables consist of the ion intensities at the various m/e values

observed for the fragments of a molecule, the normalization represents a loss of information because the

variable metric is the same for all of the m/e values. In environmental studies where measured species

concentrations range from the trace level (sub part per million) to major constituents at the percent level,

the use of covariance may weight the major constituents too heavily in the subsequently analyses. The

choice of dispersion function depends heavily on the nature of the variables being measured.

Another use of the correlation coefficient is that it can be interpreted in a statistical sense to test

the null hypothesis as to whether a linear relationship exists between the pair of variables being tested. It
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is important to note that the existence of a correlation coefficient that is different from zero does not

prove that a cause and effect relationship exists. Also, it important to note that the use of probabilities to

determine if correlation coefficients are "significant" is very questionable for environmental data. In the

development of those probability relationships, explicit assumptions are made that the underlying

distributions of the variables in the correlation analysis are normal. For most environmental variables,

normal distributions are uncommon. Generally, the distributions are positively skewed and heavy tailed.

Thus, great care should be taken in making probability arguments regarding the significance of pairwise

correlation coefficients between variables measured in environmental samples.

Another problem with interpreting correlation coefficients is that environmental systems are

often truly multivariate systems. Thus, there make be more than two variables that covary because of the

underlying nature of the processes being studied. Although there can be very strong correlations between

two variables, the correlation may arise through a causal factor in the system that cannot be detected

For each of the equations previously given in this section, the resulting dispersion matrix

provides a measure of the interrelationship between the measured variables. Thus, in the use of a matrix

of correlations between the pairs of variables, each variable is given equal weight in the subsequent

eigenvector analysis. This form of factor analysis is commonly referred to as an R-mode analysis.

Alternatively, the order of multiplication could be reversed to yield covariances or correlations between

the samples obtained in the system. The eigenvector analysis of these matrices would be referred to as a

Q-analysis. The differences between these two approaches will be discussed further after the approach to

eigenvector analysis has been introduced.

Eigenvector Calculation

The primary goal of eigenvector analysis is to represent a data matrix as a product of two other

matrices containing specific information regarding the sources of the variation observed in the data. It

can be shown [Horst, 1963] that any matrix can be expressed as a product of two matrices

nm np pm

where the subscripts denote the dimensions of the respective matrices. There will be an infinite number

of different A and F matrices that satisfy this equation.

To divide the matrix into two cofactor matrices as in equation 19, a question is raised about the

minimum value p can have and still yield a solution. This value is the "rank" of matrix X [Horst, 1963, p.

335]. The rank clearly cannot be greater than a matrix's smaller dimension and the rank of a product
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moment matrix cannot be greater than the smaller of the number of columns or the number of rows. The

rank of the product moment matrix must be the same as that of the matrix from which it was formed.

Associated with the idea of matrix rank is the concept of linear independence of variables. We

can look at the interrelationships between columns (or rows) of a matrix and determine if columns (or

rows) are linearly independent of one another. To understand linear independence let us examine the

relationship between the two vectors in Figure 11.

Figure 11. Illustration of the interrelationship between two vectors.

We can find the vector t such that

s = r - t

The vector t can then be generalized to be the resultant of the sum of r and s with coefficients ar and as:

t = afr + ass

If t = 0, then r and s are said to be collinear or linearly dependent vectors. Thus, a vector y is linearly

dependent on a set of vectors, v,, v2,...,vm if

and at least one of the coefficients, â  is non-zero. If all of the a, values in equation 22 are zero, then y is

linearly independent of the set of vectors, V;. The number of linearly independent column vectors in a

matrix defines the minimum number of dimensions needed to contain all of the vectors. The idea of the

rank or true dimensionality of a data matrix is an important concept in receptor modeling as it defines the

number of separately identifiable, independent sources contributing to the system under study. Thus

finding the rank of a data matrix will be an important task. In addition, the ability to resolve sources of
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material with similar properties or the resolution of various receptor models needs to be carefully

examined. To examine this question, several additional mathematical concepts need to be discussed.

A given data matrix can be reproduced by one of an infinite number of sets of independent

column vectors or basis vectors that will describe the axes of the reduced dimensionality space. The rank

of the matrix can be determined and a set of linearly independent basis vectors can be developed by the

use of an eigenvalue analysis. In this discussion, only the analysis of real, symmetric matrices such as

those obtained as the minor or major product of a data matrix will be discussed. Suppose there exists a

real, symmetric matrix R that is to be analyzed for its rank, remembering that the rank of a product

moment matrix is the same as the data matrix from which it is formed.

An eigenvector of R is a vector u such that

Ru = uX

where X is an unknown scalar. The problem then is to find a vector so that the vector Ru is proportional

to u. This equation can be rewritten as

Ru - uX = 0

or

{R - XI)u = 0

implying that u is a vector that is orthogonal to all of the row vectors of (R - Xl). This vector equation

can be considered as a set of p equations where p is the order of R:

1 - X) + u3r23 + ...

.2 + U3rp3 + - + Up(

Unless u is null vector, equation 25 can only hold if

R - XI = 0

There is a solution to this set of equations only if the determinant of the left side of the equation is zero:
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I R - X I \ = 0

This equation yields a polynomial in A of degree p. It is then necessary to obtain the p roots of this

equation, A;, i = 1, p. For each A; there is an associated vector Ui such that

Rux - u1Xl = 0

If these A; values are placed as the elements of a diagonal matrix A, and the eigenvectors can be collected

as columns of the matrix U, then we can express equation 25 as

RU = t/A

The matrix U is a square orthonormal so that

U'U = UU' = /

Postmultiplying equation 30 by U' yields

R = UU'A

Thus, any symmetric matrix R may be represented in terms of its eigenvalues and eigenvectors:

so that R is weighted sum of matrices u^', of order p by p and of rank 1. Each term is orthogonal to all

other terms so that for i £j

and

urfujuj = 0

Premultiplying equation 30 by U' yields

U'RU = A
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so that U is a matrix that reduces R to a diagonal form. The eigenvalues have a number of useful

properties [Joreskog et al., 1976].

1. Trace A = trace R; the sum of the eigenvalues equals the sum of the elements in the
principal diagonal of the matrix.

2. IIP, X{ = |R|; the product of the eigenvalues equals the determinant of the matrix. If one
or more of the eigenvalues is zero, then the determinant is zero and the matrix R is called
a singular matrix. A singular matrix cannot be inverted.

3. The number of non-zero eigenvalues equals the rank of R.

Therefore, if for a matrix R of order p, there are m zero eigenvalues, the rank of R is (p - m). The (p - m)

eigenvectors corresponding to those non-zero linearly independent vectors of R.

Another approach can be taken to examine the basic structure of a matrix. This method is called

a singular value decomposition of an arbitrary rectangular matrix. A very detailed discussion of this

process is given by Lawson and Hanson [1974]. According to the singular value decomposition theorem,

any matrix can be uniquely written as

R = UDV'

where R is an n by m data matrix, U is an n by n orthogonal matrix, V, is an m by m orthogonal matrix,

and D is an n by m diagonal matrix. All of the diagonal elements are non-negative and exactly k of them

are strictly positive. These elements are called the singular values of R. The column values of the U

matrix are the eigenvectors of XX'. The column values of the V matrix are the eigenvectors of X X .

Zhou et al. [ 1983] show that the R- and Q-mode factor solutions are interrelated as follows

AQ FQ

n
X = U D V1

ILJ

Although there has been discussion of the relative merits of R- and Q-mode analyses in the literature

[Rozett and Petersen, 1975; Hwang et al., 1984], the direction of multiplication is not the factor that

alters the solutions obtained. Different solutions are obtained depending on the direction in which the

scaling is performed [Heidam and Kronborg, 1985]. Thus, different vectors are derived depending on
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whether the data are scaled by row, by column, or both. Zhou et al. [1983] discuss this problem in more

detail.

By making appropriate choices of A and F in equation 38, the singular value decomposition is

one method to partition any matrix. The singular value decomposition is also a key diagnostic tool in

examining collinearity problems in regression analysis [Belsley et al., 1980]. The application of the

singular value decomposition to regression diagnostics is beyond the scope of this chapter.

In the discussion of the dispersion matrix, it becomes necessary to discuss some of the semantical

problems that arise in "factor" analysis. If one consults the social science literature on factor analysis, a

major distinction is made between factor analysis and principal components analysis. Because there are

substantial problems in developing quantitative models analogous to those given in the introduction to

this chapter in equations 1 to 5, the social sciences want to obtain "factors" that have significant values

for two or more of the measured variables. Thus, they are interested in factors that are common to

several variables. The model then being applied to the data is of the form:

where the standardized variables, ẑ , are related to the product of the common factor loadings, aik, by the

common factor scores, fkj, plus the unique loading and score. The system variance is therefore

partitioned into the common factor variance, the specific variance unique to the particular variable, and

the measurement error.

System Variance = (

In order to make this separation, an estimation is made of the partitioning of the variance

between the common factors and the specific factors. A common approach to this estimation is to

replace the l's on the diagonal of the correlation matrix with a estimate of the "communality" defined by
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The multiple correlation coefficients for each variable against all of the remaining variables are often

used as initial estimates of the communalities. Alternatively, the eigenvector analysis is made, the

communalities for the initial solution are then substituted into the diagonal elements of the correlation

matrix to produce a communality matrix. This matrix is then analyzed and the process repeated until

stable communality values are obtained.

The principal components analysis simply decomposes the correlation matrix and leads to the

model outlined in equation 39 without the d^y term. It can produce components that have a strong

relationship with only one variable. This single variable component could also be considered to be the

unique factor. Thus, both principal components analysis and classical factor analysis really lead to

similar solutions although reaching these solutions by different routes. Since it is quite reasonable for

many environmental systems to show factors that produce such single variable behavior, it is advisable to

use a principal components analysis and extend the number of factors to those necessary to reproduce the

original data within the error limits inherent in the data set.

Typically, this approach to making the eigenvector analysis compresses the information content

of the data set into as few eigenvectors as possible. Thus, in considering the number of factors to be used

to describe the system, it is necessary to carefully examine the problems of reconstructing both the

variability within the data and reconstructing the actual data itself.

Number of Retained Factors

Following the diagonalization of the correlation or covariance matrix, it is necessary to make the

difficult choice of the number of factors, p, to use in the subsequent analysis. This problem occurs in any

application of an eigenvector analysis of data containing noise. In the absence of error, the eigenvalues

beyond the true number of sources become zero except for calculational error. The choice becomes more

difficult depending on the error in the data. Several approaches have been suggested [Duewer et al,

1976;Hopkee?a/., 1980].

A large relative decrease in the magnitude of the eigenvalues is one indicator of the correct

number of factors. It can often be useful to plot the eigenvalues as a function of factor number and look

for sharp breaks in the slope of the line [Cattell, 1966]. If the eigenvalue is a measure of the information

content of the corresponding eigenvector, then only sufficiently "large" eigenvalues need to be retained

in order to reproduce the variation initially present in the data. One of the most commonly used and

abused criteria for selecting the number of factors to retain is retaining only those eigenvalues greater

than 1 [Guttman, 1954]. The argument is made that the normalized variables each carry one unit of
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variance. Thus, if an eigenvalue is less than one, then it carries less information than one of the initial

variables and is therefore not needed. However, Kaiser and Hunka [1973] make a strong argument that

although eigenvalue greater than one does set a lower limit on the number of factors to be retained, it

does not set a simultaneous upper bound. Thus, there must be at least as many factors as there are

eigenvalues greater than one, but there can be more than that number that are important to the

understanding of the system's behavior.

Hopke [1982] has suggested a useful empirical criterion for choosing the number of retained

eigenvectors. In a number of cases of airborne particulate matter composition source identification

problems, Hopke found that choosing the number of factors containing variance greater than one after an

orthogonal rotation provided a stable solution. Since the eigenvector analysis artificially compresses

variance into the first few factors, reapportioning the variance using the rotations described in the next

section will result in more factors with total variance greater than one than there are eigenvalues greater

than one. In many cases, this number of factors will stay the same even after rotating more factors.

For a different type of test, the original data are reproduced using only the first factor and

compared point-by-point with the original data. Several measures of the quality of fit are calculated

including chi-squared

X2 =
/•»'-> o\

where Xy is the reconstructed data point using p factors and oYl is the uncertainty in the value of xy-. The

Exner function [Exner, 1966] is a similar measure and is calculated by

p _
I

>li=l

where x° is a grand ensemble average value. The empirical indicator function suggested by Malinowski

[1977] can be used for this purpose and is calculated as follows:

X.
2 1—
P*i n{m-p)
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{m-pf

m(n-p)

IND- RSD

(n-p)2

where Aj are the eigenvalues from the diagonalization. This function has proven very successful with

spectroscopy results [Malinowski, 1977]. However, it has not proven to be as useful with other types of

environmental data [Hopke, 1989]. Finally, the root-mean-square error and the arithmetic average of the

absolute values of the point-by-point errors are also calculated. The data are next reproduced with both

the first and second factors and again compared point-by-point with the original data. The procedure is

repeated, each time with one additional factor, until the data are reproduced with the desired precision. If

p is the minimum number of factors needed to adequately reproduce the data, then the remaining n-p

factors can be eliminated from the analysis. These tests do not provide unequivocal indicators of the

number of factors that should be retained. Judgement becomes necessary in evaluating all of the test

results and deciding upon a value of p. In this manner the dimension of the A and F matrices is reduced

from n to p.

The compression of variance into the first factors will improve the ease with which the number

of factors can be determined. However, their nature has now been mixed by the calculational method.

Thus, once the number of factors has been determined, it is often useful to rotate the axes in order to

provide a more interpretable structure.

Rotation of Factor Axes

The axis rotations can retain the orthogonality of the eigenvectors or they can be oblique.

Depending on the initial data treatment, the axes rotations may be in the scaled and/or centered space or

in the original variable scale space. The latter approach has proved quite useful in a number of chemical

applications described by Malinowski [1991] and in environmental systems as described by Hopke

[1985]. To begin the discussion of factor rotation, it is useful to describe how one set of coordinate
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system axes can be transformed into a new set. Support that it is necessary to change from the coordinate

system x,, x2 to the system of y,, y, by rotating through angle 0 as shown in Figure 12. For this two-

dimensional system, it is easy to see that

= cos 0 Xj + sin 0 x.

= - sin 0 x, + cos 0

In matrix form, this equation could be written as

Y> = x'T

where T is the transformation matrix.

Figure 12. Illustration of the rotation of a coordinate system (x,, x-,) to a new system (y,, y,) by an angle
0.

In order to obtain a more general case, it is useful to define the angles of rotation in the manner

shown in Figure 13. Now the angle 9jj is the angle between the ith original reference axis and

the jth new axis. Assuming that this is a rotation that maintains orthogonal axes (rigid rotation), then, for

two dimensions,

01 2 = 0 n

e21 = 0 n

9 2 2 = 9 1 1

90°

90°
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There are also trigonometric relationships that

321 + 90°) = cos 021

8i2 + 90°) = sin (90'

exist,

so that equation 48 can be rewritten as

= cos 0,j xl + cos 02.
= cos 8,2 x, + cos 6 r

Figure 13. Illustration of the rotation of a coordinate system (x,, x2) to a new coordinate system (y,, y2)
showing the definitions of the full set of angles used to described the rotation.

This set of equations can then be easily expanded to n orthogonal axes yielding

c,

c l

+

+

+

cos
cos

COS

e2,
022

Q2n

x2

x2

X2

+ ••

+ ••

+ ••

• +

. +

. +

A transformation matrix T can then be defined such that its elements are

= c o s
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Then, for a collection of N row vectors in a matrix X with n columns,

Y = XT

and Y has the coordinates for all N row vectors in terms of the n rotated axes. For the rotation to be

rigid, T must be an orthogonal matrix. Note that the column vectors in Y can be thought of as new

variables made up by linear combinations of the variables in X with the elements of T being the

coefficients of those combinations. Also a row vector of X gives the properties of a sample in terms of

the original variables while a row vector of Y gives the properties of a sample in terms of the transformed

variables.
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