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par

Terry Andres
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RÉSUMÉ

SYVAC3 (Systems Variability Analysis Code, generation 3) (Code d'analyse de variabilité
des systèmes, 3e génération) est un programme de calcul qui permet d'appliquer une méthode
appelée Analyse variabilité des systèmes pour analyser le comportement probable d'un sys-
tème devant l'incertitude. La méthode est basée sur la simulation répétée du système pour
déterminer la variation de comportement qu'il peut manifester. SYVAC3 est utilisé spéciale-
ment pour les systèmes représentant la migration des contaminants, et comport plusieurs élé-
ments permettant de simplifier la modélisation de ces systèmes. D constitue un outil général
de prédiction des impacts de la dispersion de contaminants sur l'environnement.

Dans le présent rapport, on décrit un type d'objets pour logiciel appelé Distribution de para-
mètres. On peut se servir de ce type d'objets dans SYVAC3 et aussi s'en servir indépendam-
ment. Distribution de paramètres comporte les sous-types d'objets suivants : (1) Distribution
bêta, (2) Distribution binomiale, (3) Distribution constante, (4) Distribution log-normale, (5)
Distribution log-uniforrne, (6) Distribution normale, (7) Distribution normale par morceaux,
(8) Distribution triangulaire, et (9) Distribution uniforme. On peut transformer certaines de
ces distributions en établissant la relation entre deux objets (paramètres de distribution).

On y donne les spécifications des distributions des paramètres et y explique comment s'en
servir, n devrait répondre aux besoins des utilisateurs occasionnels, examinateurs et pro-
grammeurs désirant ajouter leurs propres sous-types d'objets.
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SYVAC3 PARAMETER DISTRIBUTION PACKAGE

by

Terry Andres

with contributions from Annette Skeet

ABSTRACT

SYVAC3 (Sy_stems Variability Analysis C_ode, generation 3) is a computer program that im-
plements a method called systems variability analysis to analyze the behaviour of a system in
the presence of uncertainty. This method is based on simulating the system many times to
determine the variation in behaviour it can exhibit. SYVAC3 specializes in systems
representing the transport of contaminants, and has several features to simplify the modelling
of such systems. It provides a general tool for estimating environmental impacts from the
dispersal of contaminants.

This report describes a software object type (a generalization of a data type) called Parameter
Distribution. This object type is used in SYVAC3, and can also be used independently.
Parameter Distribution has the following subtypes: (1) Beta Distribution, (2) Binomial
Distribution, (3) Constant Distribution, (4) Lognormal Distribution, (5) Loguniform
Distribution, (6) Normal Distribution, (7) Piecewise Uniform Distribution, (8) Triangular
Distribution, and (9) Uniform Distribution. Some of these distributions can be altered by
correlating two Parameter Distribution objects.

This report provides complete specifications for Parameter Distributions, and also explains
how to use them. It should meet the needs of casual users, reviewers, and programmers who
wish to add their own subtypes.
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How to Use This Document

This document is a manual for the use and further development of the Parameter Distribution
object type implemented in the Parameter Sampling Package (PSP) of the SYVAC3 computer
program. It has three main parts. The first part, in chapters 1 to 3, is a user manual. These
chapters describe SYVAC3 and Parameter Distributions, and they provide information so
that programmers can use Parameter Distributions with programs other than SYVAC3. The
second part, in chapters 4 to 6, specifies Parameter Distributions, Probability Distributions
and Pseudorandom Generators in an object-oriented way. The third part, in chapters 7 to
12, presents design information stating how the current implementation was developed, and
suggests alternatives. This preface helps the reader find the section most appropriate for his
immediate needs.

This document is a manual. Its purpose is to provide a clear description of the PSP for users
of the package, programmers who modify the package, and reviewers. It is intended that
most readers will go immediately to the section that is of interest to them. Few readers will
read the entire document from cover to cover. The manual contains several features to
facilitate the intended use. First, there are three ways for the reader to find the relevant
section: the flowchart below; extensive tables of contents, algorithms, tables and figures; and
an index at the back. Second, the manual is divided into three parts. The first part (chapters
1 to 3) is a user manual, which provides information in the form needed by a programmer
using the PSP. The second part (chapters 4 to 6) provides a formal specification of the
software, and the third part (chapters 7 to 12) describes the design of the software. The last
two parts are to help the developer understand and modify the PSP. The third feature of the
manual to aid in quick reference is the division of the manual into two-page sections that tend
to stand alone.

One side-effect of the design of the manual is a certain amount of redundancy. The intent is
to avoid as much as possible making the reader search back and forth. This intent was not
completely achievable. One way this intent was realized was to define abbreviations in each
two-page section in which they occur. Two technical terms are used so frequently that they
are not defined in each section. They are the terms CDF and PDF which are used throughout
this report to refer to the cumulative distribution function and the probability density function
respectively. In addition, SV309 is used throughout to refer to version 3.09 of SYVAC3.

The following flowchart can be used to find a particular section of the document:

[1] To learn about Parameter Distributions in general terms, or to use them inside or
outside of SYVAC3, go to [2]; for more detailed information go to [5].

[2] To learn more about SYVAC3, or to acquire SYVAC3, including the code for
Parameter Distributions, read Chapter 1; otherwise go to [3].



[3] To learn more about Parameter Distributions, including the subtypes and the
operations provided, read Chapter 2; otherwise go to [4].

[4] To apply Parameter Distributions outside SYVAC3, read Chapter 3.

[5] To examine in detail the essential requirements for the Parameter Distribution object
type and any related object types, go to [6]; for design information go to ?.

[6] To understand the essential requirements for the Parameter Distribution,
Conditional Distribution, Truncation Interval, or Probability Distribution object
types, read Chapter 4; for other object types go to [7].

[7] To understand the essential requirements for the subtypes of the Probability
Distribution object type (e.g., Beta Distribution, Normal Distribution), read
Chapter 5; for information on Pseudorandom Generators go to [8].

[8] To understand the essential requirements for the Pseudorandom Generator
object type, read Chapter 6.

[9] To learn more about the design for the current implementation (SV309) of Parameter
Distribution, go to [10]; otherwise look up related topics in the index and seek out the
relevant passages.

[10] To learn more about the major design decisions that shaped the Parameter
Sampling Package, including the choice of data structures used in the current
implementation, read Chapter 7; otherwise go to [12].

[11] To obtain general information about the Parameter Sampling Package opera-
tions on Parameter Distributions and Probability Distributions, read Chapter 8;
otherwise go to [12].

[12] To learn more about the algorithms used for routines associated with the Beta
Distribution and Binomial Distribution subtypes, read Chapter 9; otherwise go
to [13].

[13] To learn more about the algorithms used for routines associated with the
Constant, Triangular and Uniform family of Probability Distribution subtypes,
read Chapter 10; otherwise go to [14].

[14] To learn more about the algorithms used for routines associated with the
Normal and Lognormal Distribution subtypes, read Chapter 11; otherwise go to
[15].

[15] To learn more about the algorithms used for Pseudorandom Generators, read
Chapter 12.
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1.1 What is Systems Variability Analysis?

Systems Variability Analysis (SVA) is a procedure for analyzing the probable behaviour of a
system in the presence of uncertainty (Dormuth and Quick 1981). SVA is based on simulating
the system many times to determine the variation in behaviour it can exhibit. SYVAC3 is a
computer program shell used to perform Systems Variability Analysis.

SVA was developed to assess the environmental impacts of nuclear fuel waste disposal. In
the disposal concept being considered, the wastes are placed in a vault deep underground in
plutonic rock. The vault is then sealed, and all shafts and tunnels are filled to isolate the
vault from the ground surface. Without actually building a disposal vault, researchers can use
mathematical models of the disposal system to estimate its environmental impacts. The
modelling process introduces uncertainty because the natural environment around the vault
cannot be investigated in great detail without destroying its integrity. SVA is a procedure by
which researchers can analyze the probable behaviour of the disposal system in the presence
of this uncertainty.

Figure 1.1/1 shows how SVA works. As shown on the left, researchers identify both a
system model and data appropriate for the assessment task. The system model is generally
deterministic, that is, it takes single values for model parameters and derives single values for
consequence variables. The system model may have internal structure, such as the vault, geo-
sphere and biosphere components shown in the figure. The data inputs are not deterministic;
instead, each parameter has a probability distribution that shows the relative likelihood of its
taking particular values.

Specific values for the model parameters must be selected before the system can be simulated
using the system model and parameter distribution. In SVA the selection for each simulation
is done by random sampling. Many independent simulations are performed. Each one is a
"what-if ' experiment. Individually, simulations estimate the environmental impacts that
would occur under specific sets of conditions. Taken collectively, a statistical analysis of the
simulation results can produce frequency distributions showing the relative likelihood of
different consequences.

There are other procedures that could generate data sets for simulations, but none is as repre-
sentative as random sampling. For example, it would not be appropriate to assume the worst
about every uncertain aspect of the disposal system, for that approach would quickly lead to
irrational behaviour. Imagine a motorist driving to work who assumes the worst about every
aspect of his trip. Instead of carrying a single spare tire, he fills the back of his van with
them since it is possible that he could drive over not just one, but several nails and pieces of
glass on his way to work. Instead of wearing one seatbelt, he wears at least two, since the
first one may give way in an accident. In addition he has two airbags to protect the driver.
He carries several tanks of fuel, in case some of them spring a leak or have faulty gauges.
And he travels at 30 kilometres per hour on the highway, since greater speed can cause
greater damage and injury in an accident.
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A driver who behaves this way has gone far beyond the point of diminishing returns. And so
it is with a waste disposal concept. An analyst should be realistic in his assessment, and con-
servative where there is doubt. If he wants to recommend a rational approach to waste dis-
posal, he may not be able to assume the worst (or the best) about every situation. Instead he
can employ available information to its fullest by applying SVA.

The box marked S Y VAC in the figure represents the computer program used to conduct
simulations of the target system. The labels on top of the box represent the respective roles
of SYVAC and the models. SYVAC is the executive, controlling the operation of the system
model, which comprises the submodels and the procedural glue to bind them together.

The dashed arrows represent the simulation loop. Each time they pass through the loop,
parameter values sampled from the parameter distributions drive the models, producing
consequence estimates that are stored for later analysis. Iteration translates the uncertainty in
the inputs into a distribution of possible results in the output.

SYSTEMS VARIABILITY ANALYSIS

accumulate
consequences

FIGURE 1.1/1: SYVAC3 Invokes a System Model Many Times to Determine the
Distribution of Environmental Consequences
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1.2 Four-Step Procedure for Systems Variability Analysis: An Example

Systems Variability Analysis (SVA) consists of a four-step procedure. Its essence can be
illustrated by looking at an example where the amount of paint required to paint a fence is
calulated (see Figure 1.2/1).

FIGURE 1.2/1: Paint the Fence

SVA applies to more than just assessment projects. It can be applied fruitfully in situations
where

• partial information about a problematic situation is available—the situation concerns a
system of related components (e.g., wasteform, barriers, groundwater);

• the general behaviour of the system is understood to some degree-for example,
scientists may know the mechanisms by which contaminants can disperse in the
environment; and

• the objective is to make a decision based on the value of a specified consequence,
which is a quantitative measure of system behaviour (e.g., the total amount of
contaminant released).

In these cases, a system model represents the actual system. By performing experiments on
the system model, researchers find out how the model behaves. By extension, researchers can
extrapolate this behaviour, when appropriate, to the actual system. As with an airplane cock-
pit simulator, researchers can try experiments that would be unacceptable or impossible in
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real life. The validity of the results from such experiments depends on the validity and appli-
cability of the system model and the parameter distributions.

SVA consists of the following four steps:

(1) Construct a mathematical model that allows you to calculate the specified consequence
from the available information. Models must represent the system as it is understood
to work. And of course the models must lead to precisely the required consequence.

(2) Fit probability distributions to parameters of the model using available numeric
information that is consistent with your understanding of the system.

(3) Simulate the system many times by executing the model with random data sampled
from the probability distributions. Store the simulation results.

(4) Analyze simulation results to determine the behaviour of the specified consequence.

To show the general nature of SVA, it is applied here to the simple problem of determining
how much paint is needed to paint a fence. The mathematical model is shown in Table 1.2/1.

TABLE 1.2/1
SYSTEM MODEL FOR THE FENCE EXAMPLE

SAMPLED PARAMETERS

C = number of coats of paint to be applied [ ]
H = height of the fence [m]
L = length of the fence [m]
P = paint coverage [m2/can]
S = number of sides to the fence to be painted [ ]

CONSEQUENCES

N = number of cans of paint required [can]

MATHEMATICAL MODEL

N = (L • H • S • C)/P

Assume that the amount of paint required can be calculated using a simple formula based on
the length of the fence, its height, and the paint coverage. If precise values are given for all
the parameters of the model, the mathematical model can be used to calculate exactly the
amount of paint required. If we are uncertain about the parameter values, and assign proba-
bility distributions to their values, then the amount of paint required will be a random vari-
able. But can these parameter values be stated precisely? SVA uses probability distributions.
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1.3 Parameter Distributions for the Fence Example

A typical model has some parameters with values that are known quite accurately, and others
wiîh values that are uncertain. The former arc treated as constants in SVA, and the latter
are assigned probability distributions. In the fence example, the number of sides of the fence
and the number of coats of paint are considered constant. The other parameters are assigned
normal distributions that are truncated below to prevent selection of negative values.

Usually the dimensions of a fence can be measured accurately, but in this case let us assume
that the fence is inaccessible, perhaps because it is at a distant cpttage. The dimensions must
be estimated from memory, and so there is a considerable amount of uncertainty in the
estimates. The paint coverage is naturally uncertain, since it depends on temperature,
humidity, condition of the wood, and skill of the painter.

Normal distributions are used in this example because they are commonly known. They are
shown in Table 1.3/1 and in Figure 1.3/1.

TABLE 1.3/1

DISTRIBUTIONS OF FENCE PARAMETERS

PARAMETER SYMBOL
NAME

Number of coats C

Height of the H
fence

Length of the L
fence

Paint coverage P

Number of sides S

DISTRIBUTION ATTRIBUTES
TYPE

Constant constant value

Normal mean
sigma

lower bound
upper bound

Normal mean
sigma

lower bound
upper bound

Normal mean
sigma

lower bound
upper bound

Constant constant value

VALUES

2

1
0.1

0
00

25
2
0

oo

60
10
0

00

2

n

[m]
[m]
[m]
[m]

[m]
[m]
[m]
[m]

[mVcan]
[mVcan]
[mVcan]
[mVcan]

[ ]



-7-

1" 4

S" 3

o
21

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Fence Height [m]

E-0-2

û 0.1

£•

JO

I o
10 20 30
Fence Length [m]

0.04

l^P 0.03

0.02!

0.01

0

s
8

CL

0 20 40 60 80 100

Paint Coverage [m2/can]

FIGURE 1.3/1: Parameter Distributions
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1.4 Applying Systems Variability Analysis to the Fence Example

SVA operates by repeatedly simulating an uncertain system. In the fence-painting case, many
sets of random wlucs arc generated for fence length, fence height and paint coverage. Each
set is placed in a row of a table, along with the computed paint requirement, in cans. For
500 simulations, the table has 500 rows. This data set can be analyzed statistically to assess
paint requirements.

Table 1.4/1 shows part of a table containing 500 simulations of the fence-painting example.
Each row of the table corresponds to one simulation. In each row, the sampled parameters
were randomly sampled from their distributions, and the number of cans of paint required was
calculated from the mathematical model. Values for different simulations were chosen
independently.

The constants (number of sides, number of coats) had the same values in every simulation.
The other parameters took values that matched their distributions. For example, the theoreti-
cal distribution and the observed frequencies for fence length are plotted together in Figure
1.4/1. They show good agreement.

CD
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I
(Uor

15 20 25 30

Fence Length [m]

35

FIGURE 1.4/1: Theoretical Distribution and Relative Frequencies for Fence Length



-9-

TABLE 1.4/1

SOME SIMULATIONS OUT OF 500

Number Number Fence
of Sides of Coats Height

Fence Paint Cans of
Length Coverage Paint

Min
Avg
Max
Std Dev

2
2
2
0

2
2
2
0

0.76
0.99
1.29
0.10

19.1
24.9
30.7
2.0

32.4
60.4
91.2
9.5

0.9
1.7
3.1
0.3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29.
30
31
32
33
34
35
36
37
38
39
40

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

1.08
1.06
0.97
1.11
1.13
1.18
0.94
1.03
1.01
0.92
0.86
0.86
1.22
0.92
0.99
1.04
0.95
0.80
0.88
1.13
1.24
1.15
1.01
0.84
0.93
0.91
0.78
0.93
1.10
1.09
0.96
0.92
0.91
0.89
0.87
1.07
0.92
0.80
0.98
1.12

23.5
25.8
25.4
27.0
21.2
27.8
24.3
23.4
24.9
23.3
23.7
27.2
23.4
24.1
22.0
25.3
25.0
28.2
22.7
24.3
25.1
24.3
26.0
24.7
25.8
23.9
24.2
23.7
29.9
21.5
25.9
23.3
24.4
23.1
24.6
24.7
26.6
22.4
26.8
28.6

52.3
64.6
57.8
56.2
53.1
61.6
54.5
45.4
47.5
38.4
54.1
73.8
56.7
50.2
49.8
69.7
79.4
64.2
45.9
44.8
66.7
57.3
66.2
65.9
78.7
59.4
55.9
58.9
49.4
64.6
57.7
69.0
50.0
61.9
65.6
69.8
62.8
52.9
57.2
61.3

1.9
1.7
1.7
2.1
1.8
2.1
1.7
2.1
2.1
2.2
1.5
1.3
2.0
1.8
1.7
1.5
1.2
1.4
1.7
2.5
1.9
1.9
1.6
1.3
1.2
1.5
1.4
1.5
2.6
1.5
1.7
1.2
1.8
1.3
.3
.5
.6
.4
.8

2.1



-10-

1.5 Results from the Fence Example

Figure 1.5/1 shows a histogram and a cumulative distribution plot obtained from 500 simu-
lations of the fence painting example. From one to four cans of paint were required in the
simulations. Table 1.5/1 shows the cumulative probabilities for whole cans of paint. An
average of 1.7 cans is required. The painter can choose a solution that matches his level of
risk-taking.

I 10°
"3

c/5
"5L-
(D

E

Avg = 1.7 cans

1 2 3 4

Number of cans [ ]

1 2 3

Number of cans [ ]

FIGURE 1.5/1: Histogram and Cumulative Frequencies of Cans of Paint Required

TABLE 1.5/1



-11 -

CUMULATIVE FREQUENCIES FOR WHOLE CANS OF PAINT

Number of Cans

0
1
2
3
4

Fraction of Simulations

0.000
0.004
0.830
0.998
1.000

There are many ways of exploring the data in Table 1.4/1. One can plot histograms and
cumulative distributions of computed (or sampled) quantities, as shown in Figure 1.5/1.
Means, standard deviations, and other statistics can be estimated. Sensitivity analysis can be
performed to identify particularly influential parameters. All of this information can be used
by an analyst to understand the model and how it performs when parameters vary according
to their distributions.

In the case of the fence example, the histogram shown in Figure 1.5/1 indicates a skewed
distribution. That is, the peak of the distribution is to the left of the average value of 1.7
cans, and the tail to the right of the mean is longer than the tail to the left. As a result, there
is a high probability that a small number of cans (i.e., one or two) will do. There is a low
probability that more paint will be required, but in no simulation was there a need for more
than four cans.

Decision makers can use this type of information as an aid in making sound decisions. But
S VA does not tell a decision maker which decision to make. Considering Table 1.5/1, it is
clear that one can of paint is unlikely to be sufficient. Two cans will be sufficient most of
the time. Three cans will almost certainly provide enough paint. Four cans of paint will be
too much in almost all cases. A risk-taking decision maker (or one who does not like to
paint) may still choose one can as his initial purchase. A decision maker who is highly risk-
averse may buy three or even four cans. Clearly other pieces of information, such as whether
one can buy more matching paint later, could affect the decision.

In applying SVA, an analyst strives to obtain relevant and reliable information to help the
decision maker reach his decision. The use of this method helps the decision maker deal
rationally with situations fraught with uncertainty.
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1.6 The Role of SYVAC3

SYVAC3 is a tool to assist analysts in carrying out the third step in SVA, i.e. simulating the
system to yield an estimate of the specified consequence. SYVAC3 must be provided with the
results of the first t\vo steps in systetn variability analysis: models and data. SWAC3 has
five primary functions, shown in Figure 1.6/1. It links together six major object types: Case
Simulation, Case Variable, Model Version, Parameter Distribution, SYVAC3 Case, and
Variable Value.

SYVAC3 is a computer program shell; when linked with a system model it forms a computer
program that performs simulations. Figure 1.6/1 shows five primary functions of SYVAC3:

(1) Input Case Data, including attributes of Case Variables and Parameter Distributions,
and prepare to simulate.

(2) Sample Parameter Values for every Case Sampled Parameter in each Case Simulation.

(3) Simulate the System, that is, compute Variable Values for all Case Variables that
depend on the Variable Values assigned to Case Sampled Parameters.

(4) Save Simulation Results—store Variable Values for every Case Variable in a Case
Simulation so that they can be retrieved and analyzed later.

(5) Output Case Summary—wind up the simulations, and write a summary of what
happened to the relevant output files.

The first and last steps in this procedure are carried out once for every case; i.e., once for
every set of simulations performed as a group. The middle three steps are performed once
for every simulation in the group. The looping arrow in the figure represents this iteration
carried out within a case.

The capitalized phrases in this procedure represent major object types that play a role in
SVA. SYVAC3 links these all together. In alphabetical order, they are:

(1) Case Sampled Parameter—a subtype of Case Variable that takes a sampled value in
each Case Simulation in a SYVAC3 Case.

(2) Case Simulation—within a SYVAC3 Case, the operation of invoking a Model Version
with a set of input Variable Values, thus generating a set of output Variable Values.

(3) Case Time Series Variable—a subtype of Case Variable that takes a value consisting of
a single-valued function of time from time zero to the end time of a Case Simulation.

(4) Case Variable—a variable belonging to any of various subtypes that takes a unique
value for each Case Simulation in a SYVAC3 Case.
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FIGURE 1.6/1: Primary Functions of SYVAC3

(5) Model Version-consists of a set of input Case Variables, a set of output Case
Variables, and rules for computing Variable Values for the outputs, given the inputs.

(6) Parameter Distribution—one of several types of probability distributions (e.g., Normal
Distribution or Uniform Distribution) assigned to a Case Sampled Parameter. It
describes the relative likelihood of sampling Variable Values from different intervals.

(7) SYVAC3 Case—a set of Case Simulations performed as a group that all use the same
Model Version and the same Case Variables with the same attributes. They differ in
the Variable Values assigned to Case Variables.

(8) Variable Value—a value assigned to a Case Variable in a Case Simulation. A Variable
Value can take a number as a value, or it can belong to a subtype with a structured
value, such as a Time Series.

The Time Series Routines highlighted in Figure 1.6/1 perform a variety of operations on the
subtype of Variable Value called Time Series. SYVAC3 is typically used with system
models that represent the transport of contaminants. Time Series operations have greatly
simplified the calculations in this type of model. As a result of their usefulness, they have
grown to become a significant fraction of the SYVAC3 code.
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1.7 SYVAC3 and Related Software

A modelling group using SYVAC3 codes a model and several interface routines, and compiles
and links them together with SYVAC3. Programmers require a significant amount of time to
train, and a considerable amount of effort is needed to prepare each application. Once
prepared, the code is relatively efficient to run, and large simulations can be carried out.
With somewhat less training and preparation, it is possible to use packages from SYVAC3
(e.g., the Parameter Sampling Package, and the Time Series Package) as libraries of routines.
Other products that may be of value include the SAMPLE program, which generates input
files based on a variety of statistical experimental designs, and the Mathematical Algorithm
library that contains routines to model the one-dimensional transport of contaminants in the
presence of advection, diffusion/dispersion, sorption, decay (n-member decay chains) and a
variety of boundary conditions. The CC3 model is a very large system model representing
the potential radioactive dose from nuclides in a high-level waste disposal vault. Many of the
features of SYVAC3 were designed to support this model.

SYVAC3 is a computer program shell that is distributed as Fortran source code, so that users
can compile and link their code directly with it. SYVAC3 comprises about 20 000 lines of
Fortran code arranged in 170 modules. SYVAC3 has been coded in Fortran 77 for portability
and execution efficiency. Typical users of SYVAC3 are familiar with Fortran and software
development, and are prepared to code their models in Fortran.

Users can expect to go through a training period before they become expert in developing
models to link with SYVAC3. Experience has shown that the greatest productivity comes
from modifying existing simple models to create new ones. There are many details to learn,
and so potential users should be willing to invest a significant amount in training and
development if they choose to use SYVAC3.

A series of manuals provides support for users. These manuals typically combine functional
specifications, design specifications, and user documentation in each volume. They are:

• SYVAC3 Manual (Andres in preparation): explains how to use the entire SYVAC3
system to develop simulation applications. Unlike the other manuals, it does not
include specifications, but has only user documentation.

• Parameter Distribution Manual (this document): describes the Parameter Distribution
software object, and how it may be used both within and without SYVAC3.

• File Reading Manual (Andres in preparation): explains how to use the File Reading
Package to read text files and Fortran code. The operations provided by this package
allow free format input that skips over comments and allows "logical lines" to span
many physical lines in a file.

• Time Series Manual (Andres in preparation): describes the Time Series software
object, and how it may be used both within and without SYVAC3. The Time Series
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Package (TSF) comprises over half of SYVAC3. It is used in modelling to represent
time-varying quantities and to solve systems of differential equations.

* SYVAC3 Specifications (Andres in preparation): specifies the parts of SYVAC3 not
specified in the other manuals, showing how all the parts fit together.

Potential users with simple applications may prefer to use one of the available spreadsheet
applications, such as ©RISK1 or Crystal Ball2. In these products the system mode] and
parameter distributions reside in a spreadsheet, and the results of simulations are deposited
there. Unlike SYVAC3, these packages have neither the capacity nor the speed to handle
models with thousands of variables, thousands of simulations, and solutions to differential
equations. However, they would be quite appropriate for the fence-painting example.

Certain parts of SYVAC3 can be used independently of the main code. For example, the
Parameter Sampling Package could be used fairly easily to add random sampling to any
Fortran program. The TSP handles functions of a single time variable in solving transport
equations and compartment models for flows and concentrations of contaminants. The
routines in this package could be used in any model, not just one linked to SYVAC3.

The following software has been developed in conjunction with SYVAC3:

• SAMPLE-This menu-driven program generates an input file for SYVAC3 that con-
tains a statistical experimental design. A wide variety of possible designs are sup-
ported, including simple random sampling, fractional factorial, and latin hypercube,
with or without discretization and importance sampling (Andres 1987).

• ML3—This Mathematical Algorithm Library provides response functions (i.e., Green's
functions) to use with the Time Series Management Package in solving systems of
one-dimensional transport equations. These equations describe advection, diffu-
sion/dispersion, sorption, and radionuclide decay for any length of decay chain. Semi-
infinite and mass transfer coefficient boundary conditions are supported.

• CC3—This model repiesents a hypothetical disposal system compatible with the
Canadian concept for nuclear fuel waste disposal. The model describes the release of
radionuclides from containers in the vault, transport through a network of one-dimen-
sional flows in the geosphere, and estimation of dose by a wide variety of pathways in
the biosphere. The model has thousands of parameters, and yields thousands of output
variables, yet takes only a few minutes per simulation on a modern personal computer
(PC).

1 At this writing, @RJSK works with Lotus 1-2-3 for MS-DOS and with Microsoft Excel for Windows; it is
produced by Palisade Corp., 31 Decker Rd., Newfield, NY 14867.

2 Crystal Ball for the Macintosh or for Microsoft Excel comes from Decisioneering, Inc., 1380 Lawrence St.,
#610, Denver, CO 80204.
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2.1 What is a Parameter Distribution?

A Parameter Distribution is a software object that represents one of several types of possibly
truncated probability distributions (e.g., Normal Distribution or Uniform Distribution). It
describes the relative likelihood of randomly sampling a Variable Value for a Case Sampled
Parameter at different locations. The Parameter Distribution object type supports several
operations. The most important are the evaluation of a cumulative distribution function
(CDF) and inverse CDF. These operations make it possible for SYVAC3 to perform random
sampling of Case Sampled Parameters with different Parameter Distribution subtypes. The
Parameter Sampling Package (PSP) implements these operations. It can be used independent-
ly of SYV ACS.

A Parameter Distribution is a software object. That is, it exists in software, and like any
software object, it has attributes and operations. A software object type is an abstraction of a
family of similar objects, all with the same attributes and operations. The concept of a
software object type is a generalization of the traditional concept of data type. In Fortran 77
(the language of SYVAC3), the simplest software objects are variables and constants that
have either character, integer, logical, real, complex or double precision values. They have
attributes such as precision and value. The Fortran language defines operations such as
addition or multiplication for these data types. Fortran 77 data types together with their
attributes (e.g., numeric value) and operations (e.g., +) form simple numeric object types.

Unlike languages such as C and Pascal, Fortran 77 has very limited support for programmer
extensions to the set of data objects. The only structuring mechanisms are to define arrays of
simple values or common blocks containing variables. It is not possible in Fortran 77 to
define new data types. It is also not possible to define operations for existing data types,
although these can be emulated with subroutines and function calls.

Some other languages like Pascal and C do permit the programmer to define new data types;
these types can have attributes that are stored in named fields like a common block. But
whereas a Fortran common block is unique, in Pascal and C the programmer can define
multiple objects, all with the same data type. In this way these languages provide support for
more complicated software objects. Nevertheless, data types defined in these languages do
not have associated operations. Some newer languages like C++ allow programmers to define
object types with specified attributes (fields) and also operations. These object types can
exhibit encapsulation (the storage representation is hidden, or encapsulated), inheritance (new
object types are based on old ones) and polymorphism (operators like "+" work differently for
different object types).

Several authors (e.g., Coad and Yourdon 1990; Rumbaugh et al 1991) have shown that
software object types can be specified even if the final implementation occurs in a language
such as Fortran 77 that does not directly support object types. This manual describes several
types of software objects using the object-oriented paradigm. Their names are capitalized
wherever they appear. Later chapters show how these object types can be implemented in
Fortran 77. The Parameter Distribution object type in particular is the focus of the manual.
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Informally speaking, a Parameter Distribution is an object consisting of a probability distribu-
tion that is possibly truncated and confined to a finite interval. Each Case Sampled Parameter
in a SYVAC3 Case has an associated Parameter Distribution object that describes the relative
likelihood of randomly sampling Variable Values from different locations in the permitted
interval. More formally, the Parameter Distribution object type consists of a Probability
Distribution object type combined with a Truncation Interval object type. This formal
definition is discussed more fully in Chapter 4.

As an example, suppose that a model of waste migration has a Case Sampled Parameter
called "Path Length," or PATHL for short, and that PATHL is normally distributed, i.e., it is
linked to a Parameter Distribution containing a Normal Distribution. That Normal Distribu-
tion has two attributes, a Mean Value and a Standard Deviation. Suppose that the Mean
Value is 7000 m and the Standard Deviation is 1000 m. The PDF and CDF of PATHL
appear in Figure 2.1/1.

0.0004

3 4 5 6 7 8 9 1 0 1 1

Path Length [1000m]

8 9 10 11

Path Length [1000m]

FIGURE 2.1/1: Parameter Distribution for a Normal Variate PATHL

The PDF plot shows the well-known bell-shaped curve of a normal PDF. Values of PATHL
are shown across the horizontal axis in the CDF plot, and the corresponding probabilities are
plotted on the vertical axis. For example, the plot shows there is a probability of 0.5 that
PATHL would have a value less than 7000 m, and a probability of 0.9 that PATHL would
have a value less than about 8300 m.

The PSP converts back and forth between values of Case Sampled Parameters and the corre-
sponding cumulative probabilities, in accordance with Parameter Distributions. These
conversions occur during the input of parameter distributions into SYVAC3, and during the
sampling of parameter values for each simulation. In this example, the PSP converts back
and forth between the values of PATHL and the corresponding cumulative probabilities.
Mathematically, it evaluates two functions: the CDF and the inverse CDF. These evaluations
are available not just for a Normal Distribution, as in this example, but for all the different
Parameter Distribution subtypes.
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2.2 How SYVAC3 Uses the Parameter Sampling Package

SYVAC3 uses the Parameter Sampling Package (PSP) to convert bet\veen probabilities and
quantiles of a Parameter Distribution, The. most important application is sampling Variable
Values for Sampled Parameters. The cumulative probability associated with each sampled
value comes from either a Pseudorandom Generator or from an external Sampling Method.
The PSP inverts the CDF of the Parameter Distribution to convert the cumulative probability
to a quantile, which becomes the new sampled value. SYVAC3 also uses the PSP to convert
Truncation Limits on a Parameter Distribution into both probability and quantile forms.

Figure 2.2/1 shows the main operations of the object type Parameter Distribution: (1) to eval-
uate the CDF at a specified point in the distribution to yield a cumulative probability, and
(2) to invert the CDF to find a quantile of the distribution, given a cumulative probability.
These operations are implemented in the PSP so that SYVAC3 can use them in random
sampling.

SYVAC3 uses a technique called the probability transform method (Rubinstein 1981) to
sample random values for Sampled Parameters. If X is a Sampled Parameter with a CDF
F(x), the random variable Y = F(X) is distributed uniformly between zero and one. Converse-
ly, if Y is distributed uniformly between zero and one, then X = F\Y) is distributed according
to the CDF F(x). Variâtes like y with a uniform distribution between zero and one can be
generated in many different ways. A typical way, as in SYVAC3, is to use a Pseudorandom
Generator, i.e., an object that uses a deterministic formula to generate a sequence of values
that resembles a random sequence. Then values can be generated for any parameter X by
inverting its CDF at a value y generated by the Pseudorandom Generator.

Evaluate CDF
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Invert CDF

Variable Values [unit]

FIGURE 2.2/1: Transformations Through the CDF
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Truncation Limits arise when the expert providing a Parameter Distribution stipulates lower
and/or upper limits on the possible values of a parameter. For example, without limits, the
distribution mentioned in Section 2.1 for the parameter PATHL (normal with mean 7000 m
and standard deviation 1000 m) can take on any value from negative infinity to positive
infinity. There are no intrinsic limits on a Normal Distribution. Values that are further than
three or four standard deviations from the mean are extremely unlikely to arise, but they are
possible. Values of PATHL less than zero are meaningless. An expert may therefore stipu-
late a lower Truncation Limit on PATHL, perhaps at zero, or perhaps at some larger value.
Alternatively, the expert could specify a lower "quantile bound" of 0.005. This means that
the lowest acceptable value of the parameter is the quantile having the associated cumulative
probability of 0.005.

When a Parameter Distribution has Truncation Limits, the sampling process changes.
Cumulative probabilities between zero and one must be mapped to a smaller interval that
corresponds to the Truncation Limits, as shown in Figure 2.2/2. Variable Values generated in
this way will follow the appropriate truncated distribution.

SYVAC3 uses the PSP to transform Truncation Limits. The expert providing a Parameter
Distribution can specify limits as either cumulative probabilities or as Variable Values.
Whichever is provided, SYVAC3 calculates both values and reports them in an output file.
The transformations again involve evaluating or inverting a CDF.

Original
Probabilities

Truncated
Probabilities

1

QJ...

Upper Truncation Limit

Variable Values [unit]

FIGURE 2.2/2: Effect of Truncation Limits
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2.3 Features of the Parameter Sampling Package

The Parameter Sampling Package (PSP) currently supports the Parameter Distribution type
and 10 different subtypes. It also contains a Pseudorandom Generator instance called
SUPRAN (Walker 1985). The PSP is part of SYVAC3, but other programs can use it too.
The PSP can evaluate and invert the CDF for each Parameter Distribution subtype. It can
sample a Variable Value for any Sampled Parameter, whatever its Parameter Distribution
subtype, from a single random number. Conversions are done in double precision, with an
accuracy of at least eight significant figures, and usually more. Each Parameter Distribution
is checked for internal consistency on each operation.

The PSP implements 10 subtypes of the Parameter Distribution object type, and one instance
of a Pseudorandom Generator object. The following are the Parameter Distribution subtypes:

(1) Beta Distribution—has a variety of shapes of PDF on a finite domain.

(2) Uniform Distribution-any value in the domain is equally likely to be sampled.

(3) Constant Distribution—the same constant value is always sampled.

(4) Lognormal Distribution-when the PDF is plotted on a logarithmic scale, the PDF
looks exactly like a normal distribution.

(5) Loguniform Distribution—when viewed on a logarithmic scale, any value in the domain
is equally likely to be sampled.

(6) Normal Distribution-the normal or gaussian distribution has a PDF with the familiar
bell shape..

(7) Piecewise Uniform Distribution—converts a histogram into a distribution; it can also
represent finite discrete distributions.

(8) Triangular Distribution-the triangular PDF has a single mode in a finite domain.

(9) Correlated Normal Distribution-sampled values depend upon values sampled from an
independent Normal Distribution or Lognormal Distribution; the marginal PDF is
normal.

(10) Correlated Lognormal Distribution—sampled values depend upon values sampled from
an independent Normal Distribution or Lognormal Distribution; the marginal PDF is
lognormal.

PDFs of these distributions appear in Section 4.8. Stephens et al. (1989) provide additional
information on how and when to use each Parameter Distribution subtype. The Binomial
Distribution is also a Parameter Distribution subtype, but it is not completely integrated into
the PSP yet. It is described in Sections 5.3, 5.4 and 9.5.
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By design, the PSP is independent of SYVAC3; other programs can use it. Such programs
should be written in Fortran 77, or should be able to call Fortran subroutines. Calls to the
package appear in the code, which must be linked with the library containing the PSP.

A modeller writing a model to be linked with SYVAC3 can also call the PSP directly. For
example, a model might use a random process to represent rainfall over successive years. To
implement the random process, the model could issue calls to the Pseudorandom Generator,
SUPRAN, in the PSP to sample rainfall for each year. This approach is appropriate when the
number of values to be sampled is not known in advance. When a specific set of variables is
to be assigned single values, it is easier for the modeller to make them into Case Sampled
Parameters, because then SYVAC3 takes care of sampling and storing of values. Since
SUPRAN supports generating multiple pseudorandom sequences of values at the same time,
calls to SUPRAN from within a model would not affect the regular sampling of parameters.

When used by SYVAC3 or another program for random sampling, the PSP guarantees that
each value sampled from a Parameter Distribution requires only one random seed. (In
contrast, some procedures for generating normal variâtes require 12 random seeds.) The
probability transform method of sampling, combined with support for Truncation Limits,
makes single-seed sampling possible. Each value is sampled by generating a uniform variate
between zero and one with SUPRAN (or another generator) and transforming that value by
inverting the CDF of the appropriate Parameter Distribution (see Section 2.2). If the same
sequence of parameters is sampled more than once from the same sequence of random seeds,
the same values will always be obtained. If two SYVAC3 Cases are identical apart from
some Parameter Distributions, and if the two use the same sequence of seeds, the values of all
parameters with unchanged distributions will stay the same. This feature permits the use of
sensitive statistical tests to determine the effect of changing a Parameter Distribution.

Transformations carried out by the PSP use high precision. All routines in the PSP operate in
double precision (i.e. with about 16 decimal digits precision on a computer with a 32-bit word
size). All CDF and inverse CDF routines are accurate to at least eight significant figures, and
most are more accurate. The Pseudorandom Generator in the package, SUPRAN, uses all 32
bits of precision in the underlying random seed. It generates a double precision uniform
variate between zero and one with about nine digits of precision. An emphasis is placed on
high precision because the probability transform method is used for parameter sampling in
SYVAC3. One potential disadvantage of this technique is loss of precision in distribution
tails because of a coarse spacing of possible sampled values. Maintaining high precision in
the computations makes the spacing finer and avoids this problem.

External code can treat routines in the PSP like black boxes that perform well-defined
functions. If the call to such a routine is not correct, however, it may not be obvious to the
calling program when it gets unreliable numbers back. To increase the likelihood of correct
usage, conversions done by the main subroutines in the package (TRAVAL and TRAQUA)
begin with consistency checks. For example, the standard deviation of a normal distribution
should be positive, and the left range end of a uniform distribution should not be greater than
the right range end. TRAVAL and TRAQUA test such properties and return an error flag to
the calling routine. In SYVAC3, these checks are applied to Parameter Distributions as they
are read from an input file, so that erroneous inputs can be flagged to the user.
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3.1 Structure of the Package

Most calls to the Parameter Sampling Package (PSP) invoke operations on Parameter Distri-
bution or Pseudorandom Generator objects. CKDIST, TRAQUA and TRAVAL invoke opera-
tions on Parameter Distributions, and SUPRAN generates a random value from a Pseudo-
random Generator. These routines in turn call other subroutines in the package. The lower
level routines perform useful mathematical functions, such as evaluation of the error function
erf(x). Users of the PSP can invoke the mathematical routines directly. This chapter
provides the argument lists for all routines in the PSP that could have value to users. The
main subroutines and their interconnections are shown in Figures 3.1/1 and 3.1/2.

TRAQUA converts from a probability to a Variable Value by inverting the cumulative
distribution function (CDF) of a Parameter Distribution. TRAQUA performs the calculations
internally for a simple distribution like the Uniform Distribution. For more complicated
distributions, like the Normal Distribution, TRAQUA calls an external routine. Figure 3.1/1
shows the routines called by TRAQUA. A dashed line to INVBIN indicates that INVBIN
exists but TRAQUA does not yet call it in SV309. Double bars along the sides of a box
indicate a subroutine; single lines indicate a function.

INVPU
Invert CDF

of Piecewise
Uniform

MAXRELINC
MINPOS.INC
SQRT2.INC

II 1= subroutine = function | | = external link

FIGURE 3.1/1: Structure Chart for TRAQUA
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TRAVAL evaluates the CDF of a Parameter Distribution to convert from a Variable Value to
a cumulative probability. As with TRAQUA, TRAVAL calls an external routine only for the
more complicated distributions. Figure 3.1/2 shows the routines called by TRAVAL.
TRAVAL does not yet call BIND1S in SV309. Some routines appear in both Figures 3.1/1
and 3.1/2.

Both TRAQUA and TRAVAL call CKDIST to check the validity of a Parameter Distribution
before performing their computations. CKDIST may also be called independently to check a
Parameter Distribution, as shown in Figures 3.1/1 and 3.1/2.

The routines WRSPER find WRSPWN shown Figures 3.1/1 and 3.1/2 are general error-
handling routines that may be called from anywhere in the PSP.

SUPRAN implements a Pseudorandom Generator. Each call to SUPRAN generates a new
uniform random number between zero and one. SUPRAN does not appear in the structure
charts because it is a single routine that does not call any other routines.

Also not shown in the diagrams are the functions DERFC and DERF and the subroutine
EXERFC. These routines evaluate the mathematical functions erfc(;e), erf(x) and
exp(x)(erfc(y) - erfc(z)) respectively. They have been placed in this package as general
library routines because their evaluation is similar to the evaluation of NORDIS.

TRAVAL
Transform
value to

probability

X

PUDIS
Evaluate

Plecewlse
Uniform CDF

X^•\
X

NORDIS
Evaluate

Normal CDF

MAXRELINC
MINPOS.INC
SQRT2.INC

\

\
TRIDIS
Evaluate

Triangular
CDF

CKDIST
Check

distribution

INDXER
Check

parameter
Index

< subroutine » function | | - external link

FIGURE 3.1/2: Structure Chart for TRAVAL
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3.2 How SYVAC3 Calls the Parameter Sampling Package

SYVAC3 calls subroutines in the Parameter Sampling Package (PSP)from only three places:
the INPDIS, SKIP, and ASSVAL subroutines. The PSP routines call two SYVAC3 routines,
RETMES and PEXP. PSP routines use three include files from the rest of SYVAC3:
MAXRELINC and MINPOS.INC from the Time Series Package (TSP) and MXPAR.INC from
the general SYVAC3 Package (SVP). These are the only interfaces between this package and
the rest of SYVAC3.

Figure 3.2/1 shows how the PSP fits into SYVAC3. The top of the hierarchy shows three
SYVAC3 routines that call routines in the PSP. The bottom two routines are SYVAC3
routines that are called by the PSP.

The SYVAC3 subroutine INPDIS reads Parameter Distributions from an input file. It calls
TRAVAL and TRAQUA in the Parameter Sampling Package to transform truncation limits
either from Variable Values to cumulative probabilities or vice versa. The user can specify
bounds in either form. Both forms are printed in an output file. By calling these routines,
INPDIS also checks the newly read distribution, since both TRAVAL and TRAQUA call
CKDIST. The only distribution type not checked by CKDIST is the constant distribution,
which has no truncation limits and no error conditions to check.

SYVAC3 calls the subroutine SKIP to pass over some simulations not needed for a SYVAC3
Case. It would call SKIP for simulations 1 to 49, for example, if the simulations in a
SYVAC3 case started at simulation 50. SYVAC3 would also call SKIP if a SYVAC3 Case
specified simulations in two or more ranges, such as 1 to 50, and 101 to 150. SKIP calls the
Pseudorandom Generator, SUPRAN, enough times to update the random seed to the value it
should have at the beginning of the next simulation to be performed. Since SUPRAN is a
short routine with no loops, these calls do not take much time compared to the time it would
take to rerun all the simulations being skipped. The ability to perform exactly the right
number of calls to SUPRAN depends on the fact that SYVAC3 uses exactly one random seed
in each simulation to generate a value for each parameter.

The SYVAC3 subroutine ASSVAL samples parameter values. It calls different routines in
the sampling package, depending on which sampling method is being used:

(1) Random sampling. For each parameter, ASSVAL calls SUPRAN to generate a uni-
form variate between zero and one. This value is treated as a cumulative probability.
ASSVAL calls TRAQUA to transform the cumulative probability to a parameter value.

(2) Quantile sampling. For each parameter, ASSVAL reads a number between zero and
one from an input file, and treats it as a cumulative probability. ASSVAL calls
TRAQUA to transform the cumulative probability to the corresponding parameter
value.

(3) "On file" sampling. For each parameter, ASSVAL reads a parameter value from an
input file. It calls TRAVAL to determine the corresponding cumulative probability.
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The cumulative probability is checked against the quantile parameter bounds, and if it
lies outside the bounds, WRSPWN prints a warning message to an output file.

The include files MAXREL.INC, MINPOS.INC, and MXPAR.INC all define constants that
are used in the PSP. MAXREL is the largest representable floating-point number. MINPOS
is the smallest positive floating-point number. These two constants depend on the
floating-point hardware of the computer on which the code runs. MXPAR sets a limit on the
number of parameters in a SYVAC3 simulation.

The SYVAC3 subroutines TiETMES and PEXP provide needed functions to the PSP.
RETMES retrieves a list of message files where messages should be written. PEXP evaluates
a protected exponential function that gracefully handles numeric underflow conditions.

Two of the files that logically belong to the PSP reside in the SVP in SV309. These are
HINDIS and INVBIN. They will be moved to the PSP in a later version of the code that
fully installs the Binomial Distribution.

SYVAC3

PARAMETER
SAMPLING
PACKAGE

INDXER
Check
Parameter
Index

> , ,

INPDIS
Input
Parameter
Distributions

NORDIS
Evaluate
Normal CDF

;̂  * * '

\

:!AvV-"

= subroutine ; function : data store

FIGURE 3.2/1: Links Between the PSP and the Rest of SYVAC3
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3.3 How Any Program Can Call the Parameter Sampling Package

Any other program can call routines in the Parameter Sampling Package (PSP) in much the
same way that SYVAC3 does. Code from that program would call specific routines in the
PSP. The most common targets of those calls are likely to be TRAQUA, TRAVAL, CKD1ST,
and SUPRAN, although other routines can also be called. In turn, the PSP routines call two
routines that the calling program must provide, RETMES and PEXP. PSP routines must have
access to three include files from the calling program: MAXREL.INC, MINPOS.INC, and
MXPAR.INC. These are the only interfaces needed between the PSP and the calling
program.

Figure 3.3/1 shows how the PSP fits into another program other than SYVAC3. The avail-
able calls to routines in the PSP are at the top of the hierarchy. Routines that include files
needed by the PSP are at the bottom of the hierarchy.

SYVAC3 appears in Figure 3.3/1 because the PSP is not entirely independent of the rest of
SYVAC3. The two routines BINDIS and INVBIN, which evaluate and invert the CDF for a
Binomial Distribution, should be in the PSP. In SYVAC3 Version 3.09 (SV309), they reside
in the general SYVAC3 package (SVP). The mathematical routine PEXP can also be found
in SVP, and that is the most convenient place to get a copy to use with the PSP. The include
files MAXREL.INC and MINPOS.INC can be borrowed from the Time Series Package (TSP)
of SYVAC3.

In contrast, the routine RETMES and the include file MXPAR.INC are likely to be adapted to
each calling program. RETMES retrieves a list of message files on which to write error and
warning messages. That list will depend on the error handling approach of the calling pro-
gram. MXPAR puts a limit on the number of Parameter Distributions, and that limit is speci-
fic to the calling program.

The three include files MAXREL.INC, MINPOS.INC and MXPAR.INC each define a single
constant in a Fortran PARAMETER statement. These constants are:

MAXREL.INC: MAXREL = an estimate of the maximum double-precision value that
can be represented in the floating-point system being
used.

MINPOS.INC: MINPOS = an estimate of the minimum positive double-precision
value that can be represented in the floating-point system
being used, usually close to 1/MAXREL.

MXPAR.INC: MXPAR = the maximum permitted value of a Parameter Distribution
index.
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Not all routines in the PSP appear in Figure 3.3/1. The missing routines would clutter the
diagram without adding significantly to the links shown. In principle, all routines in the
package are visible externally and, in practice, all but a few have some possible use by a
calling program. Programming interfaces for all routines in the PSP can be found in
Sections 3.7 to 3.10.

PROGRAM, P P P .p= PP P P P

• subroutine • (unction • data store I - external link

FIGURE 3.3/1: Links Between the PSP and a Calling Program
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3.4 Data Structure for Parameter Distributions

When calling TRAQUA, TRAVAL, or CKDIST, the calling routine must pass a Parameter
Distribution object down in the argument list. The data structure that defines a Parameter
Distribution object is shown in Figure 3.4/7. In addition, there are some special fields for
correlated distributions and for the Piecewise Uniform Distribution. Since the Parameter
Sampling Package (PSP) routines were programmed in Fortran 77, it is not possible just to
define a new data type with these fields. Instead, a group of Parameter Distribution objects
is stored in a set of arrays, with an entry or a column in each array for each object. A
program can retrieve an individual Parameter Distribution object by indexing into these
arrays.

A routine must initialize the seven arrays in Table 3.4/1 before calling TRAQUA, TRAVAL,
or CKDIST. These arrays constitute the data structure to store a set of Parameter Distribution
objects. They are one-dimensional arrays, except for the two with entries in the column
"Number of Rows," which are two-dimensional arrays. An "*" in the "Number of Columns"
column indicates that the variables passed down have an "assumed size," to use Fortran
jargon. That is, any variable with the right rank (i.e., the right number of subscripts) and the
right first dimension (if there are two) can be passed down. A constraint on all the variables
except PUDPAR is that the dimensions represented by "*" be no more than the value of
MXPAR, available from the include file MXPAR.INC.

TABLE 3.4/1

STORAGE STRUCTURE FOR A SET OF PARAMETER DISTRIBUTIONS

Name of
Array

PSNAME

DSTTYP

DSTPAR

IDXCOR

LOBNDD

HIBNDD

PUDPAR

Number Number of
of Rows Columns

*

*

4 *

*

*

*

3 . *

Fortran
Data Type

Character*(*)

Character*(*)

Double Precision

Integer

Double Precision

Double Precision

Double Precision

Description

Name of variable in Fortran code

Name of distribution type

Values of distribution attributes

Index of correlated parameter

Lower truncation limit for probabilities

Upper truncation limit for probabilities

Attributes of a Piecewise Uniform
Distribution

The Parameter Distribution data structure consists of a name, a distribution type, a set of up
to four numerical attributes (depending on distribution type), and a set of lower and upper
truncation limits. These are shown in Figure 3.4/1, where each column represents a single
variable. For example, column two describes a parameter PRECIP associated with a Normal
Distribution having mean 78.0 and standard deviation 11.0, and quantile bounds 0.0001 and 1.
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The numbers in the DSTPAR array mean different things for different distributions. Table
3.5/4 defines their use. The arrows in Figure 3.4/1 show the effects of pointers. The first
attribute of a Piecewise Uniform Distribution is a pointer into the PUDPAR array—it points to
the position just before the first location related to that distribution. The EDXCOR array
points to a correlated parameter for each Correlated Normal or Correlated Lognormal
Distribution.

PSNAME: name of variable in Fortran code

FWIDTH PRECIP SDEPTH SDENST STYPE TORTUO

DSTTYP: name of distribution type

UNIFM NORML LGNRM CORNR PCUFM TRIAN

DSTPAR: values of distribution attributes

5.0

20.0

78.0

11.0

^

1.0

2.0

^
^

1.9

0.3/

^

,*

' 4

90

2

4

7

IDXCOR: index of correlated parameter

LOBNDD: lower truncation limit for a probability

0 [0.0001 0 0.001 0 0

HIBNDD: upper truncation limit for a probability

1 KJ 0.9999 0.999 1 1

4 5 6
Parameter Number

PUDPAR: attributes of a Piecewise Uniform Distribution

1.0

1.0

23

2.0

2.0

33

3.0

3.0

20

4.0

4.0

14

FIGURE 3.4/1: Storage Structure for a Set of Parameter Distributions
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3.5 Contents of the Parameter Distribution Data Structure

The data arrays shown on the previous page contain data about Parameter Distributions in a
coded format. The fables shown here define the possible entries in these arrays acceptable to
the Parameter Sampling Package (PSP).

TABLE 3.5/1
VALID ENTRIES FOR PSNAME

Keep the declared length of character strings in PSNAME to no more than 80 characters.

Each variable name can be any character string, since the PSP uses this data only in formatting warning and error
messages.

TABLE 3.5/2
VALID ENTRIES FOR IDXCOR

Rules for IDXCORfi], 0 < / < length(IDXCOR):

If ( DSTTYP[/j = 'CORLN' or DSTTYP[i] = 'CORNR' ) then
IDXCOR[/]=j, where:
1) 0 < y < i , and
2) DSTTYP[/] = 'LGNRM' or DSTTYP[/] = 'NORML'

Else
IDXCOR[i] is undefined

End if

TABLE 3.5/3
VALID ENTRIES FOR PUDPAR

If ( DSTTYP[j] = 'PCUFM', for 0 < i <, length(DSTTYP) ) then
1) Parameter / has a distribution with attributes al, a2, and a3 that is formed as a mixture of a2 Uniform

Distributions.
2) Columns al-rl to al+a2 of PUDPAR contain data on these Uniform Distributions.
3) For column aJ+j such that 1 < j < a2,

a) Ordered endpoints: PUDPAR[l,aJ+j] <, PUDPAR[2,a7+y], where these two values define the
endpoints of the/th Uniform Distribution.

b) Positive weights: 0 < PUDPAR[3,a7+/], which is the relative weight assigned to the/th Uniform
Distribution.

c) Nonoverlapping intervals: If ( 1 < j < a2 ) then:
a2 PUDPAR[2,a7+/-l] £ PUDPAR[l,a7+/]

4) a3 = f)PUDPAR[3,fl7+/]
;-i

Else
PUDPAR is not used by Parameter Distribution /

End if
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TABLE 3.5/4

Distribution

Beta

Binomial*

Constant

Correlated
Lognormal"

Correlated
Normal"

Lognormal

Loguniform

Normal

Piecewise
Uniform""

Triangular

Uniform

VALID

DSTTYP

BETA

BINOM

CONST

CORLN

CORNR

LGNRM

LGUFM

NORML

PCUFM

TRIAN

UNIFM

ENTRIES FOR DSTTYP AND DSTPAR

DSTPAR

(al) left range end
(a2) right range end
(a3) exponent a
(a4) exponent b

(al) number of Bernoulli trials
(a2) probability of success

(al) constant value

(al) geometric mean
(a2) geometric standard deviation
(a3) corrélation coefficient

(al) mean
(a2) standard deviation
(a3) correlation coefficient

(al) geometric mean
(a2) geometric standard deviation

(al) left range end
(a2) right range end

(al) mean
(a2) standard deviation

(al) pointer to PUDPAR
(a2) number of ranges
(a3) total weight

(al) left range end
(a2) mode
(a3) right range end

(al) left range end
(a2) right range end

Checks

al<.a2
al <,a2
0<a3
0 <a4

QZal
0 <, a2 Z 1

-

0<al
\<a2

-I£o3£l

0<a2
-1 Z a3 £ 1

0 < a 7
1 <a2

0<al
al < a2

0<a2

0<al
0<a2
Q<a3

al Za2£ a3
al <a3

al <a2

"Not yet implemented in SV309. "Uses data array IDXCOR. '"Uses data array PUDPAR.

TABLE 3.5/5
VALID ENTRIES FOR LOBNDD AND HIBNDD

Rules for LOBNDD[i] and HIBNDD[i], for 0 < i < length(LOBNDD) = length(fflBNDD):

If ( DSTTYPfi] = 'CONST' ) then
LOBNDD[/] and HIBNDD[/] are undefined

Else
0 <: LOBNDDt/] < HffiNDD[:] < 1

End if
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3.6 Setting Up a RETMES Routine

A RETMES routine is required for the error checking in CKDIST, TRAVAL and TRAQUA to
work. RETMES allows the main program to customize the error handling of the Parameter
Sampling Package (PSP). RETMES returns one or t\vo output unit numbers. Each unit num-
ber designates an output file where error and warning messages are to be written. RETMES
also returns a character string to be written at the beginning of the error or warning
message.

The subroutines TRAVAL, TRAQUA, and CKDIST perform extensive error checking on in-
coming data. TRAVAL and TRAQUA each call CKDIST, and each do additional checking.
CKDIST checks the validity of the parameter index INDX, which identifies the distribution of
interest. It then checks the indicated distribution for internal consistency. For example, a
normal distribution is checked to ensure that the standard deviation is positive, and a uniform
distribution is checked to ensure that the range ends are in the correct order (lower value,
then higher value). In addition to these checks, TRAVAL tests whether the parameter value
being transformed is outside the range of the distribution, and prints a warning if it is.
TRAQUA tests that the cumulative probability being transformed is outside the range zero to
one, and prints an error message if it is.

To print warning and error messages correctly, the calling program must provide a RETMES
subroutine (see Table 3.6/1). The code for the RETMES subroutine on the following page is
that used in SYVAC3. It uses a MESSGE.INC include file where values of output file unit
numbers, IUMESG(1:NIUMSG), have been stored by code not shown here. The number of
the current run (simulation) is in a variable called RNMSG, also from the MESSGE include
file. SYVAC3 starts its value at zero and increases it by one at the beginning of each run.

Inspection of the code shows that this version of RETMES can handle two specific values for
MSGTYP, namely "ERROR" and "WARNING." Other values are treated as messages that
are not errors, and a suitable prefix containing just the run number is placed in BEGIN. The
value of BEGIN is not entirely fixed in this version of RETMES, but depends on the state of
the program, as well as on MSGTYP. For example, if RNMSG has the value zero, BEGIN
will return the character string "**ERROR**" if MSGTYP is "ERROR." Once the simula-
tions have started, and RNMSG is greater than 0, the value that BEGIN returns changes to
"**ERROR IN RUN # nnn **" .

TABLE 3.6/1
RETRIEVE ERROR MESSAGE INFORMATION

SUBROUTINE RETMES(MSGTYP,BEGIN,NMSGFL,IUMESG)

Name

MSGTYP

BEGIN

NMSGFL

IUMESG

Declared Type

character*(*)

character*(*)

integer

integer

Rank

scalar

scalar

scalar

2

In/Out

in

out

out

out

Definition

type of message to write

prefix to message

number of files to receive message

unit numbers of files

RETMES

Constraints

WARNING, ERROR, other

keep it short

in {0, 1, 2}

implementation-dependent
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TABLE 3.6/2

EXAMPLE OF A RETMES ROUTINE

SUBROUTINE RETMES(MSGTYP,BEGIN,NMSGFL,IUMESG}
C
£****************************************************************
C
C Retrieve error message information - the beginning of the message
C and the unit numbersof the message files.
C
C 87-FEE-08 VERSION 01B A. SKEET
C
Q***********************************************************************

C
IMPLICIT NONE

C
INCLUDE 'MESSGE.INC' '

C
CHARACTER
1 BEGIN*(*), ! beginning of an error message, in

! standard format []
1 CHVAL*5, ! character representation of a value U
1 MSGTYP*(*) ! message type []

C
INTEGER
1 IUMESG(2), ! Fortran unit numbers of message files

! []
1 J, ! general index []
1 NMSGFL ! number of message files

C
IF (MSGTYP .EQ. 'ERROR' ) THEN

C create the beginning of the error message.
IF (RNMSG .GT. 0) THEN

WRITE(CHVAL,10)RNMSG
10 FORMAT(15)

BEGIN = '**ERROR IN RUN # ' // CHVAL // ' **'
ELSE

BEGIN = '**ERROR**'
END IF

ELSE IF (MSGTYP .EQ. 'WARNING') THEN
C create the beginning of a warning message

IF {RNMSG .GT. 0) THEN
WRITE(CHVAL,10)RNMSG
BEGIN = '--WARNING IN RUN # ' // CHVAL // ' --'

ELSE
BEGIN = '--WARNING—'

END IF
ELSE

C create the beginning of a message that is not an error
C or warning

IF (RNMSG .GT. 0) THEN
WRITE(CHVAL,10)RNMSG
BEGIN = 'RUN # ' // CHVAL

ELSE
BEGIN = ' '

END IF
END IF

C set message file unit numbers.
NMSGFL = NIUMSG
DO 20 J = 1,NIUMSG

IUMESG(J) = IUMSG(J)
20 CONTINUE

RETURN
END
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3.7 Argument Lists for Parameter Sampling Routines, BINDIS-EXERFC

The boxes in this section show the arguments in the order needed to call each routine in the
Parameter Sampling Package (PSP). The arguments that define Parameter Distributions
(e.g., in CKDIST) were described in Section 3.4. The others are defined here briefly. For
more detail, see the specifications for these routines in Chapters 8 to 12.

TABLE 3.7/1
BINOMIAL DISTRIBUTION CDF

(from the SYVAC3 general code (SV) package, not the Parameter Sampling Package)

SUBROUTINE BINDIS(VARVAL, NTRIAL, SPROB, CPROB)

Name

VARVAL
NTRIAL

SPROB

CPROB

Declared Type

double
double

double

double

precision

precision

precision

precision

Rank

scalar

scalar

scalar

scalar

In/Out

in
in

in

out

Definition

BDMDIS

Constraints

value of binomial variate
number of

probability

probability

Bernoulli trials

of success

X < VARVAL

integer in [O.NTRIAL]

integer >

in

in
[0,1]

0

[0,1]

TABLE 3.7/2
STANDARD BETA DISTRIBUTION CDF (INCOMPLETE BETA RATIO FUNCTION)

SUBROUTINE BTADIS(SHPBT1, SHPBT2, STDVAL, BTAPRB) BTADIS

Name Declared Type Rank In/Out Definition Constraints

SHPBT1 double precision scalar

SHPBT2 double precision scalar

STDVAL double precision scalar

BTAPRB double precision scalar

in first shape attribute

in second shape attribute
in standardized value

out beta CDF F(STDVAL)

>0

> 0

in [0,1]

in [0,1]

TABLE 3.7/3
CHECK PARAMETER DISTRIBUTION

SUBROUTINE CKDIST(INDX, PSNAME, DSTTYP, DSTPAR, IDXCOR, PUDPAR,
LOBNDD, HIBNDD, DSTOK)

Name

INDX

PSNAME
DSTTYP

DSTPAR

IDXCOR

PUDPAR
LOBNDD

HIBNDD

DSTOK

Declared Type

integer

character*(*)

character*(*)

double precision

integer

double precision

double precision

double precision

logical

Rank

scalar
*

*

4,*
*

3,*
*
*

scalar

In/Out

in

in

in

in

in

in

in

in

out

Definition

index of Parameter Distribution

name of variable in code

name of distribution type

values of distribution attributes

index of correlated parameter

attributes of Uniform Distributions

lower truncation limit

upper truncation limit

input distribution is OK

CKDIST

Constraints

> 0, valid index

see Table 3.5/1

see Table 3.5/4

see Table 3.5/4

see Table 3.5/2

see Table 3.5/3

see Table 3.5/5

see Table 3.5/5

in [TRUE, FALSE]
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TABLE 3.7/4
ERROR FUNCTION erffo)

DOUBLE

Name

XND

DERF

PRECISION FUNCTION DERF(XND)

Declared Type

double precision

double precision

Rank In/Out Definition

scalar in any value

scalar out erf(XND)

DERF

Constraints

in [-1,1]

TABLE 3.7/5
COMPLEMENTARY ERROR FUNCTION erfcto

DOUBLE PRECISION FUNCTION DERFC(XND)

Name

XND

DERFC

Declared Type

double

double

precision

precision

Rank

scalar

scalar

In/Out

in

out

Definition

any value

erfc(XND)

DERFC

Constraints

in [0,2]

TABLE 3.7/6
EVALUATE exp(x2)erf(;t) OVER A RESTRICTED

DOUBLE PRECISION FUNCTION DRERF(XND)

Name

XND

DRERF

Declared Type

double

double

precision

precision

Rank

scalar

scalar

In/Out

in

out

Definition

any value in domain

exp(XND2)erf(XND)

DOMAIN
DRERF

Constraints

in [0,0.5]

in [0,1]

TABLE 3.7/7
EVALUATE exp(jc2)erfc(*) FOR POSITIVE x

DOUBLE

Name

XND

DRERFC

PRECISION FUNCTION DRERFC(XND)

Declared Type Rank In/Out Definition

double precision scalar in any positive value

double precision scalar out exp(XND2)erf(XND)

DRERFC

Constraints

> 0

in [0,1]

TABLE 3.7/8
EVALUATE expOcïïerfcM - erfcfe)!

SUBROUTINE EXERFC(XND, YND, 2ND, RESULT)

Name

XND

YND

ZND

RESULT

Declared Type Rank In/Out Definition

double precision scalar in any value

double precision scalar in any value

double precision scalar in any value

double precision scalar out exp(XND2)[erfc(YND)-erfc(ZND)]

EXERFC

Constraints

no result overflow
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3.8 Argument Lists for Parameter Sampling Routines, GAMMAL-INVTRI

This section continues the list of subroutines and functions used in the Parameter Sampling
Package (PSP). The boxes show the arguments in order needed to call each routine. For
more detail, see the specifications for these routines in Chapters S to 12.

TABLE 3.8/1
LOG GAMMA FUNCTION [In rfa)1

SUBROUTINE GAMMAL(X, LOGGAM)

Name

X

LOGGAM

Declared Type

double precision

double precision

Rank

scalar

scalar

In/Out

in

out

Definition

any positive value

In T(X)

GAMMAL

Constraints

> 0, no result overflow

> -0.13

TABLE 3.8/2
CHECK PARAMETER INDEX FOR ERROR

SUBROUTINE INDXER(MODULE, INDX, INDXOK)

Name

MODULE

INDX

INDXOK

Declared Type

character*(*)

integer

logical

Rank

scalar

scalar

scalar

In/Out

in

in

out

Definition

name

index

index

of calling module

of a parameter

lies in the acceptable range

INDXER

Constraints

correct name

in [1.MXPAR]

TRUE or FALSE

TABLE 3.8/3
INVERT BINOMIAL CDF

(from the SYVAC3 general code (SV) package, not the Parameter Sampling Package)
SUBROUTINE INVBIN(QUANTL, NTRIAL, SPROB, BINVLU) INVBIN

Name Declared Type Rank In/Out Definition Constraints

QUANTL double precision scalar

NTRIAL double precision scalar

SPROB double precision scalar

BINVLU double precision scalar

in cumulative probability

in number of Bernoulli trials

in probability of success

out least n where CDF F(«) > QUANTL

in [0,1]

integer > 0

in [0,1]

integer in [O.NTRIAL]

TABLE 3.8/4
INVERT STANDARD BETA CDF

SUBROUTINE INVBTA(QUANTL, SHPBT1, SHPBT2, BTAVLU)

Name

QUANTL

SHPBT1

SHPBT2

BTAVLU

Declared Type

double

double

double

double

precision

precision

precision

precision

Rank

scalar

scalar

scalar

scalar

In/Out

in

in

in

out

Definition

cumulative probability

first shape attribute

second shape attribute

inverse beta CDF F'(QUANTL)

INVBTA

Constraints

in [0,1]

> 0

> 0

in [0,1]



-41-

TABLE 3.8/5
INVERT CDF OF CORRELATED NORMAL

SUBROUTINE INVCOR(QUANTL, MEAN,
CORVAL, CORVLU)

Name

QUANTL

MEAN

STDDEV

LOBND

HIBND

CORCOF

CORMU

CORSIG

CORVAL

CORVLU

Declared Type

double précision

double précision

double précision

double précision

double précision

double précision

double précision

double précision

double précision

double précision

Rank

scalar

scalar

scalar

scalar

scalar

scalar

scalar

scalar

scalar

scalar

STDDEV, LOBND, HIBND, CORCOF, CORMU, CORSIG. .

In/Out

in

in

in

in

in

in

in
in

in

out

Definition

cumulative probability

mean of CORNR variate

standard deviation of CORNR variate

lower probability bound of CORNR variate

upper probability bound of CORNR variate

correlation coefficient

mean of correlated variate

standard deviation of correlated variate

value of correlated variable

inverse conditional CDF F'(QUANTLICORVAL)

INVCOR

Constraints

in [0,1]

-

> 0

in [0,1]

in [0,1]

in [-1,1]

-
> 0
-

-

TABLE 3.8/6
INVERT STANDARD NORMAL CDF

SUBROUTINE INVNOR(QUANLT, NORVLU)

Name

QUANLT

NORVLU

Declared Type

double precision

double precision

Rank

scalar

scalar

In/Out

in

out

Definition

cumulative probability

inverse normal CDF F'(QUANLT)

INVNOR

Constraints

in [0,1]

TABLE 3.8/7
INVERT PIECEWISE UNIFORM CDF

SUBROUTINE INVPU(QUANTL, PUPTRS,

Name

QUANTL

PUPTRS

NUMCLS

TOTWGT

PUDPAR

BINVLU

Declared Type

double precision

integer

integer

double precision

double precision

double precision

Rank

scalar

scalar

scalar

scalar

3, *

scalar

NUMCLS, TOTWGT, PUDPAR, PUVLU)

In/Out

in

in

in

in

in

out

Definition

cumulative probability

pointer to attributes in PUDPAR

number of Uniform Distributions

total of weights for each distribution

attributes of Uniform Distributions

inverse Piecewise Uniform CDF
F'(QUANTL)

INVPU

Constraints

in [0,1]

see Table 3.5/4

see Table 3.5/4

> 0

see Table 3.5/3

inside a bin

TABLE 3.8/8
INVERT STANDARD TRIANGULAR CDF

SUBROUTINE INVTRI(QUANTL, MODE,

Name

QUANTL

MODE

TRIVLU

Declared Type

double precision

double precision

double precision

Rank

scalar

scalar

scalar

TRIVLU)

In/Out

in

in

out

Definition

cumulative probability

location of mode

inverse triangular CDF F'(QUANTL)

INVTRI

Constraints

in [0,1]

in [0,1]

in [0,1]
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3.9 Argument Lists for Parameter Sampling Routines, NORDIS-TRAVAL

This section continues the list of subroutines and functions used in the Parameter Sampling Package
(PSP). The boxes show the arguments in the order needed to call each routine. For more detail, see
the specifications for these routines in Chapters 8 to 12.

TABLE 3.9/1
EVALUATE STANDARD NORMAL CDF

SUBROUTINE NORDIS(XND, CDF)

Name

XND

CDF

Declared Type

double precision

double precision

Rank

scalar

scalar

In/Out

in

out

Definition

any value

normal CDF F(XND)

NORDIS

Constraints

in [0,1]

TABLE 3.9/2
EVALUATE PROTECTED EXPONENTIAL FUNCTION

(from the SYVAC3 general code (SV) package, not in the Parameter Sampling Package)

DOUBLE

Name

X

PEXP

PRECISION FUNCTION

Declared Type

double precision

double precision

PEXP(X)

Rank

scalar

scalar

In/Out

in

out

Definition

any value

exp(XND), or 0 to prevent underflow

PEXP

Constraints

< In MAXREAL

>0

TABLE 3.9/3
EVALUATE POLYNOMIAL

DOUBLE PRECISION FUNCTION POLYNM(DEGREE,COEF,XND)

Name

DEGREE

COEF

XND

POLYNM

Declared Type

integer

double precision

double precision

double precision

Rank

scalar

OiDEGREE

scalar

scalar

In/Out

in
in

in

out

Definition

degree of polynomial

polynomial coefficients

argument of polynomial

polynomial p(XND)

POLYNM

Constraints

S O
no overflow

no overflow

-

TABLE 3.9/4
EVALUATE PIECEWISE UNIFORM CDF

SUBROUTINE PUDIS(STDVAL,

Name

STDVAL

PUPTRS

NUMCLS

TOTWGT

PUDPAR

PUPRB

Declared Type

double precision

integer

integer

double precision

double precision

double precision

PUPTRS, NUMCLS, TOTWGT, PUDPAR, PUPRB)

Rank

scalar

scalar

scalar

scalar

3,*
scalar

In/Out

in

in

in

in
in

out

Definition

any value

pointer to attributes in PUDPAR

number of Uniform Distributions

total of weights for each distribution

attributes of Uniform Distributions

Piecewise Uniform CDF F(XND)

PUDIS

Constraints

-
see Table 3.5/4

see Table 3.5/4

> 0
see Table 3.5/3

in [0,1]
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TABLE 3.9/5
"SUPER-DUPER" PSEUDORANDOM NUMBER GENERATOR

SUBROUTINE SUPRAN(SEED,

Name

SEED

RNDNUM

Declared Type

integer

double precision

RNDNUM)

Rank

scalar

scalar

//ft?ur Definition

both random seed

out pseudorandom number

SUPRAN

Constraints

in [0,1]

TABLE 3.9/6
TRANSLATE QUANTILE FROM PROBABILITY TO VALUE

SUBROUTINE TRAQUA(INDX, QUANTL,
LOBNDD, HIBNDD, PARVAL, TRANOK)

Name

INDX

QUANTL

PSNAME

DSTTYP

DSTPAR

IDXCOR

PUDPAR

LOBNDD

HIBNDD

PARVAL

TRANOK

Declared Type

integer

double precision

character*(*)

character*(*)

double precision

integer

double precision

double precision

double precision

double precision

logical

Rank

scalar

scalar
*

*

4, *
*

3,*
*

*

scalar

scalar

PSNAME, DSTTYP, DSTPAR, IDXCOR, PUDPAR,

In/Out

in

in

in

in

in

in

in

in

in

out

out

Definition

index of Parameter Distribution

cumulative probability

name of variable in code

name of distribution type

values of distribution attributes

index of correlated parameter

attributes of Piecewise Uniform

lowev :r:incation limit

upper truncation limit

inverse CDF F'(INDX; QUANTL)

transformed OK

TRAQUA

Constraints

> 0, valid index

in [0,1]

see Table 3.5/1

see Table 34/4

see Table 3.5/4

see Table 3.5/2

see Table 3.5/3

see Table 3.5/5

see Table 3.5/5

in distribution range

TRUE or FALSE

TABLE 3.9/7
TRANSLATE QUANTILE FROM VALUE TO PROBABILITY

SUBROUTINE TRAVAL(INDX, PARVAL, PSNAME, DSTTYP, DSTPAR, IDXCOR, PUDPAR,
LOBNDD, HIBNDD, QUANTL, TRANOK)

Name

INDX

PARVAL

PSNAME

DSTTYP

DSTPAR

IDXCOR

PUDPAR

LOBNDD

HIBNDD

QUANTL

TRANOK

Declared Type

integer

double precision

character*(*)

character*(*)

double precision

integer

double precision

double precision

double precision

double precision

logical

Rank

scalar

scalar
*

*

4,*
*

3,*
*

*

scalar

scalar

In/Out

in

in

in

in

in

in

in

in

in

out

out

Definition

index of Parameter Distribution

parameter value

name of variable in code

name of distribution type

values of distribution attributes

index of correlated parameter

attributes of Piecewise Uniform

lower truncation limit

upper truncation limit

CDF F(INDX; PARVAL)

transformed OK

TRAVAL

Constraints

> 0, valid indc-x •

-

see Table 3.5/1

see Table 34/4

see Table 3.5/4

see Table 3.5/2

see Table 3.5/3

see Table 'J.5/5

see Table 3.5/5

in [0,1]

TRUE or FALSE
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3.10 Argument Lists for Parameter Sampling Routines, TRIDIS-WRSPWN

This section continues the list of subroutines and Junctions used in the Parameter Sampling Package
(PSP). The boxes show the arguments in the order needed to call each routine. For more detail, see
the specifications for these routines in Chapters 8 to 12.

TABLE 3.10/1
EVALUATE STANDARD TRIANGULAR CDF

SUBROUTINE TR1DIS(VARVAL, MODE, TRIPRB)

Name

VARVAL

MODE

TRIPRB

Declared Type

double

double

double

precision

precision

precision

Rank

scalar

scalar

scalar

In/Out

in

in

in

Definition

variable value

location of mode

triangular CDF F(VARVAL)

TRIDIS

Constraints

-

in [0,1]

in [0,1]

TABLE 3.10/2
WRITE ERROR MESSAGE

SUBROUTINE WRSPER(MODULE, ERROR, INDX
PUDPAR, LOBNDD, HIBNDD, STOPP)

Name

MODULE

ERROR

INDX

PARVAL

PSNAME

DSTTYP

DSTPAR

1DXCOR

PUDPAR

LOBNDD

HIBNDD

STOPP

Declared Type

character*(*)

character*(*)

integer

double precision

character*(*)

character*(*)

double precision

integer

double precision

double precision

double precision

logical

Rank

scalar

scalar

scalar

scalar
*

*

4, *

*

3,*
*

*

scalar

In/Out

in

in

in

in

in

in

in

in

in

in

in

out

, PSNAME, DSTTYP, DSTPAR, 1DXCOR,

Definition

name of module with error

error message

index of Parameter Distribution

parameter value

name of variable in code

name of distribution type

values of distribution attributes

index of correlated parameter

attributes of Piecewise Uniform

lower truncation limit

upper truncation limit

stop execution because of error

WRSPER

Constraints

valid module

-

> 0, valid index

-

see Table 3.5/1

see Table 34/4

see Table 3.5/4

see Table 3.5/2

see Table 3.5/3

see Table 3.5/5

see Table 3.5/5

in [TRUE.FALSE]

TABLE 3.10/3
WRITE WARNING MESSAGE

SUBROUTINE WRSPWN(MODULE, WARNIN)

Name

MODULE

VVARNIN

Declared Type

character*(*)

character*(*)

Rank

scalar

scalar

In/Out

in

in

Definition

name of module with error

warning message

WRSPWN

Constraints

valid module
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4.1 Parameter Distribution and Associated Object Types

The Parameter Sampling Package (PSP) provides a Parameter Distribution object type so
lhat softivare developers can create and use Paramefer Distribution objects. ' An object of this
type has t\vo parts: a Probability Distribution object and a Truncation Interval object. The
Parameter Distribution object type has one subtype, the Conditional Distribution, tied by a
correlation operation to another independent Parameter Distribution. A Probability Distri-
bution object has many subtypes, each corresponding to a different family of Probability
Distributions. A Truncation Interval has t\vo subtypes, corresponding to bounds based on
parameter values and bounds based on probabilities respectively. Figure 4.1/1 illustrates
these object types and their subtypes. Chapters 4 and 5 discuss the attributes and operations
of these object types.

Section 2.1 introduced the concept of software objects and software object types. The PSP
implements several software object types related to the basic Parameter Distribution object
type. Figure 4.1/1 shows the associations among these types. It is an object diagram based
on (but not identical to) the object diagram notation of Rumbaugh et al. (199l)1.

A Parameter Distribution object represents the distribution of values that could be associated
with a physical parameter of a model. Each such object consists of a Probability Distribution
and a Truncation Interval. The Probability Distribution object represents a statistical proba-
bility distribution, such as a normal distribution or a uniform distribution. The Truncation
Interval represents an allowed range of values in which the physical parameter must lie.
Essentially a Parameter Distribution is a Probability Distribution truncated so that there is
zero possibility of a value occurring outside the Truncation Interval.

The PSP also implements subtypes of these major object types. A Conditional Distribution is
a subtype of the Parameter Distribution. It represents the distribution of values for a physical
parameter when that parameter is known to be correlated with another parameter. A Condi-
tional Distribution has a correlation association with an independent Parameter Distribution.

The Truncation Interval object type has two subtypes, Value Interval and Probability Interval.
A Value Interval represents an allowed range of values for a parameter, expressed in the same

The squares in the diagram represent software object types. The name of each type appears in the top part of
the square. The bottom part of each square is to list attributes and operations of the object type, which arc not needed
here.

Three types of associations are indicated by lines joining the object types. First there are simple associations like
correlation and mixture of that are shown by lines with optional arrowheads on each end. No arrowhead on the end
of a line near an object type means that there is a one-to-one correspondence between objects of that type and
instances of the association. A single arrowhead means that only one object is involved, and that the association is
optional. A double arrowhead means that any number of such objects can be involved in the association. The second
type of association is an aggregation association like composed of, indicated by a diamond shape, which shows the
parts of an object type. In this case, each Parameter Distribution object is composed of one Truncation Interval object
and one Probability Distribution object. The third type of association, with a bar across the connection, shows that an
object type is a generalization of several other object types. For example, the subtypes association indicates that
Truncation Interval and Probability Distribution are each generalizations of multiple subtypes.
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units as the parameter (e.g., 30 cm to 50 cm). A Probability Interval also represents an
allowed range of values, but these are expressed as quantiles of a distribution (e.g., from the
0.01 quantile to the 0.99 quantile of the untruncated distribution, where 0.01 and 0.99 are
probabilities). An unconstrained parameter has the Probability Interval from the zero quantile
to the one quantile.

The Probability Distribution object type has many subtypes (Figure 4.1/1), which are
described in Chapter 5.

correlation

V
Parameter
Distribution

è
subtypes

Conditional
Distribution

^ ^composed of

Truncation
Interval

-subtype

Plecewlse
Uniform

Triangular
Distribution

mixture of

Uniform
Distribution

f

FIGURE 4.1/1: Parameter Distribution and Associated Object Types, Including
Subtypes
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4.2 Mathematica Notation for Specifying Objects

Diagrams like Figure 4.1/1 can show the associations between object types, but another tech-
nique is used to specify unambiguously the details of an object type. In this report, object
specifications are written in a subset of the Mathematica language, a general-purpose pro-
gramming language with strong mathematical features. This section summarizes the Mathe-
matica conventions used in this document.

CRITERIA

Specifications for object types can be written in several different ways, such as with data-flow
diagrams, structured English, pseudocode, or decision tables. The following criteria were
used to select among the candidate methods for documenting the Parameter Sampling Package
(PSP):

(1) Use a formal language that can be checked for correct syntax. Informal specifications
for SYVAC3 models have had problems with high defect rates, since there was no
effective way to check them.

(2) Use an executable language that can produce results. Having an "oracle" that can
generate correct results simplifies testing of the final implementation.

(3) Use a language that can support object-oriented programming. The specifications are
object-oriented, so they should be expressed in a language that supports inheritance,
encapsulation and overloading.

(4) Use a language with strong support for mathematical functions. The PSP evaluates
some classical nonlinear functions, and the specifications are easier to express if these
functions can be called directly without further definition in the programming
language.

CONVENTIONS

One language that met all these criteria was Mathematica (Wolfram 1991). It is an interac-
tive symbolic manipulation language with arbitrary-precision arithmetic that is available on a
variety of computers. Object attributes and operations are described here in Mathematica
notation. The final implementation does not need to follow the same syntax as the
Mathematica code, but it should produce the same results. The following conventions apply:

(1) Each object type is represented by an expression of the form "object type name [attri-
bute list]." The attribute list contains not just attributes, but also component objects
and associated objects. For example, Table 4.2/1 lists the ^^-esentations for the
major object types shown in Figure 4.1/1.

(2) A definition consists of an expression, followed by ":=" and the expansion to be used.
(3) A definition may introduce a variable to represent an expression by using the follow-

ing syntax: "name_object type name". The three parts to this form are
name: used to refer to the expression in the definition. It may be omitted if

the expression is not referenced again.
_: (underscore) represents a single expression; " " ( two underscores)



-49-

may be used instead to represent a non-empty sequence of expressions
(e.g., definition of ProbDis in Table 4.2/1), and " " (three under-
scores) represent a possibly empty sequence (e.g., last entry in
ParDis [. . . ] in Table 4.2/1).

object type name: identifies the type of object matched (e.g., x_Real, j_In-
teger, q_ParDis). Each object in a sequence must be of the same
type. This part may be omitted if any type of object will do.

(4) A variable that must match a particular pattern has the syntax "name -.pattern". For
example, "q : ParDis [d_ProbDis, t_Trunc!nt 1 " means a variable q that is
not only a Parameter Distribution, but one containing Probability Distribution object d
and one Truncation Interval object t, and no other components.

(5) A variable that must satisfy a logical function (see the list in Table 4.2/1) has the
syntax "name?logical Junction". For example, "p_?NumberQ" means any expression
p such that NumberQ [p] ==True.

(6) The numerical comparison operators for equality and relative size are "<", "<=", "==",
">=", ">", and " ! =", where the last operator means "is not equal to."

(7) Each operation on an object type is represented by an expression of the form "opera-
tion name [argument list] ". For example, the probability density function (PDF) of a
Parameter Distribution object q at point x is represented by PDF [q, x].

(8) Parts of an expression "name [al, a2, . . . ] " are denoted by double brackets, so that
al == name [ [ 1 ] ] , a2 == name [ [2 ] ], and so on.

TABLE 4.2/1
MATHEMATICA DEFINITIONS

Object Definitions

ProbDis [st ] a Probability Distribution with a subtype and attributes given by the non-empty
sequence st (see Section 4.4)

Trunclnt [ ] a Truncation Interval with a subtype and attributes given by an unnamed non-
empty sequence (see Section 4.5)

ParDis[d_ProbDis, t_TruncInt, st ]
a Parameter Distribution composed of Probability Distribution d and Truncation
Interval t, with an optional sequence st to specify a subtype and its attributes.

ConDis[d_ProbDis, tjrrunclnt, c_?CorrCoefQ, q_ParDis]
:= ParDis[d, t, ConDis, c, q]

a Conditional Distribution composed of Probability Distribution d and Truncation
Interval /, along with a Correlation Coefficient c, and an independent Parameter
Distribution q. The expression on the right shows a Conditional Distribution
expressed as a subtype of Parameter Distribution.

Logical Tests of Numerical Values

CorrCoefQ[x_]:= NumberQ[x] && (-1 <= x) && (x <= 1)
test for a valid correlation coefficient (&& means "and")

NumberQ [x_] gives True if x is a number, and False otherwise
ProbabilityQ[x_]:= NumberQ[x] && (0 <= x) && (x <= 1)

test for a valid probability
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4.3 Parameter Distribution Objects

A Parameter Distribution is essentially a Probability Distribution restricted to lie in a Trun-
cation Interval, as shown in Figure 4.3/1. The composition and subtypes of the Parameter
Distribution object type have already been discussed in Section 4.1, and they reappear here
in Figure 4.3/2. The main requirement on the Parameter Distribution object type is to pro-
vide the operations CDF and quandle.

ASSOCIATIONS

Correlation-Each Conditional Distribution
object (CCDF is the conditional CDF) is
correlated with an independent Parameter
Distribution object, in the sense that know-
ing a value chosen from the latter influences
the distribution of the former. This associ-
ation is strictly one-way, even though, statis-
tically, values sampled from the two Para-
meter Distributions are mutually correlated.
While a Conditional Distribution is associ-
ated with precisely one independent Para-
meter Distribution, each Parameter Distri-
bution can be the target of 0, 1 or several
correlations. Section 4.5 discusses the cor-
relation association.

ATTRIBUTES AND OPERATIONS

The full set of Parameter Distribution opera-
tions is shown in Table 4.3/1. Of these,
some are optional parts of a conforming
implementation. In particular, PDF, mean,
median and Sigma are optional (and not
implemented in SV309). Section 4.4 gives
full specifications for each operation in the
table.

PDF

CDF

Original

Truncated

FIGURE 4.3/1: Comparing a Truncated
Distribution to the Original Distribution

The Parameter Distribution operations shown in Figure 4.3/2 are abbreviated. "Statistics"
refers to mean, median and Sigma; "bounds" refers to LowValue, HighValue, LowProbability
and HighProbability. This figure also shows the attributes (preceded by ":") and operations
(preceded by "-") of the Parameter Distribution object types. The operations differ from those
of the same name applied to a Probability Distribution in that they allow for the Truncation
Interval. For example, in Figure 4.3/1, the truncated PDF, shown by a solid line, is clearly
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correlat'on

Parameter
Distribution

-PDF, CDF
-Quantile
-statistics
-bounds

subtypes

Conditional
Distribution

:Correlation
Coefficient
-CCDF
-InvertCCDF

^ ^composed of

FIGURE 4.3/2: Parameter Distributions and Associated Object Types
(CCDF is the conditional CDF)

TABLE 4.3/1

OPERATIONS ON A PARAMETER DISTRIBUTION

CDF[g_ParDis, x_?NumberQ]
HighProbabi1i ty[q_ParDis]

HighValue[q_ParDis]
Lev/Probability [q_ParDis]

LowValue[g_ParDis]
mean[q_ParDis]

median[q_ParDis]
PDF[q_ParDi s, x_?NumberQ]

quantile[g_ParDis, p_?ProbabilityQ]
invert CDF at probability p

Sigma[q_ParDis] compute standard deviation

evaluate CDF at x
evaluate the cumulative probability of the Probability Distribu-
tion component at the upper limit of the Parameter Distribution
find the upper limit of the Parameter Distribution
evaluate the cumulative probability of the internal Probability
Distribution at the lower limit of the Parameter Distribution
find the lower limit of the Parameter Distribution
compute average value
compute 50lh percentile
evaluate PDF at x

narrower and higher than the untruncated PDF, shown with a dotted line. To be valid PDFs,
both must have an area of one. Similarly, the truncated CDF is narrower, but still ranges
from zero to one.
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4.4 Operations on Parameter Distributions

The Parameter Distribution operations defined in Section 4.3 are based on applying
operations of the same name to the Probability Distribution part of the Parameter
Distribution. The Truncation Interval modifies these operations the same way, whatever the
subtype of Probability Distribution involved.

The CDF of a Parameter Distribution at a point x gives the probability of sampling a value
less than x and within the Truncation Interval. The PDF gives the corresponding density,
which for continuous functions is the derivative of the CDF. The PDF must be zero outside
the bounds of the Truncation Interval. Therefore, the CDF must be constant outside the
Truncation Interval. The CDF takes the constant value zero to the left of the Truncation
Interval, and it takes the constant value one to the right of the Truncation Interval.

Truncation also affects statistics of a Parameter Distribution. If an infinite tail of a distribu-
tion is truncated on the left, then the mean and median shift to the right, and the standard
deviation becomes smaller. If truncated on the right, the mean and median shift left and the
standard deviation becomes smaller. If both tails are truncated, as shown in Figure 4.3/1, the
mean and median may move in either direction, but the standard deviation can only diminish.

The Mathematica expressions in Table 4.4/1 define the Parameter Distribution operations.
The conventions are explained in Section 4.2. Any new aspects of Mathematica used here are
explained where they occur. Notice that CDF of a ParDis object is defined in terms of
CDF of a ProbDis object, and similarly for PDF and quantile.

TABLE 4.4/1
PARDIS OPERATIONS

CDF

CDF [q: ParDis [d_ProbDis, t_Trundnt] , x_?NumberQ] : =
Which[

x < LowValue[q], 0,
x > HighValuetq] / 1,
True, (CDF[d,x] - CDF[d,LowValue[q]]) /

{CDF[d,HighValuetq]] - CDF[d,LowValue[q]]) ]

where Which [test,, value,,test2, value2, ...] returns the first value, associated with test, that evaluates to
True.

HighProbability

HighProbability[q:ParDis[d_ProbDis, t_Trunc!nt]] :=
Which[

MatchQtt, TruncInt[ProbInt, lp_?NumberQ, hp_?NumberQ]], t[[3]],
MatchQ[t, TruncInt[ValInt, lv_?NumberQ, hv_?NumberQ]], CDF[d,

t[[3]] ],
True, 1 ]

where MatchQtexp, pat] takes the value True if the expression exp matches the pattern pat, and False
otherwise.
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TABLE 4.4/1 (concluded)

HighValue

HighValue [q: ParDis [d_ProbDis, t_Trunc!nt] ] :=
Which [

MatchQ[t, TruncInt[ProbInt, lp_?NumberQ, hp_?NumberQ] ] , quantile [d,
t[[3]]],

MatchQft, TruncInt[ValInt, lv_?NumberQ, hv_?NumberQ] ] , t[[3J],
True, Infinity ]

LowProbability

LowProbability[q:ParDis[d_ProbDis, t_Trunc!nt]] :=
Which [

MatchQ [t, Trunclnt [Problnt, lp_?NumberQ, hp_?NuniberQ] ] , t [ [2] ] ,
MatchQft, Trunclnt [Vallnt, lv_?NumberQ, hv_?NumberQ] ] , CDF[d,

t [ [2]] 3 ,
True, 0 ]

LowValue

LowValue[q: ParDis [d_ProbDis, .t_Trunc!nt] ] :=
Which [

MatchQft, Trunclnt t Problnt, lp_?NumberQ, hp_?NumberQ] ]

MatchQft, Trunclnt [Vallnt, lv_?NumberQ, hv_?NumberQ] ]
True,

quantilefd,
t[[2]]J,
t[[2]],
-Infinity ]

mean

mean [q: ParDis [d_ProbDis , t_Trundnt] ] : =
Integrate [ (x PDF[q,x]), {x, LowValue [q], HighValue [q] } ]

median

median [q_ParDi s ] := quantile tq, 0.5]

PDF

PDF [q: ParDis [d_ProbDis, t_Trunc!nt] , x_?NumberQ ] :=
Which [

x < LowValue [q] , 0 ,
x > HighValue [q] , 0,
True, PDF[d,x] /

(CDF [d, HighValue [q] ] - CDF [d, LowValue [q] ] ) ]

quantile

quantile [q:ParDi s [d_ProbDi s , t_Trundnt] , p_?ProbabilityQ] : =
quantile[d, LowProbability [q] + p (HighProbability tq] -LowProbability [q] ) ]

Sigma

Sigma[q:ParDis[d_ProbDis, tJTrundnt] ] : =
Sqrt[ Integrate [ (x-mean[q] ) A2 PDFfq, x] , {x, LowValue [q] , HighValue [q] }] ]
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4.5 Conditional Distribution Objects

The Conditional Distribution object type is a subtype of Parameter Distribution having a cor-
relation association with another independent Parameter Distribution. A conforming imple-
mentation of the Parameter Sampling Package must support Conditional Distributions where
the Probability Distribution components of both correlated distributions are Normal or Log-
nonnal Distributions.

PDF

Let X and Y be two correlated normal random values, with the X values coming from a Para-
meter Distribution, and the Y values coming from a Conditional Distribution. Assume the

Correlation Coefficient is negative. Figure
4.5/1 shows three examples of the condi-
tional distributions for Y when low
(dashed), medium (solid) and high (dotted)
values of X are selected. The Conditional
Distribution operations CPDF (conditional
PDF) and CCDF (conditional CDF) evaluate
these conditional distributions. Figure 4.5/2
shows a scatter of points randomly sampled
from X and Y. Histograms and theoretical
PDFs plotted below and to the left of the
figure illustrate the marginal PDFs of X and
Y (i.e., the PDFs when each is examined
independently). The PDF operation for the
Conditional Distribution object Y is inherit-
ed from the Parameter Distribution object
type; it evaluates the marginal distribution
for Y just as PDF does for X. It is clear
from both Figure 4.5/1 and from the
scatterplot that the variation of Y-values

FIGURE 4.5/1: Marginal and Conditional
PDFs and CDFs for a Correlated Normal

given any particular value of X is less than
the variation allowed by the marginal distri-
bution. Table 4.5/1 lists the additional
Parameter Distribution operations for a
Conditional Distribution.

ASSOCIATIONS

Correlation—Each Conditional Distribution object is correlated with an independent Parameter
Distribution object, in the sense that knowing a value chosen from the latter influences the
distribution of the former. This association of object types is strictly one-way, even though,
statistically, values sampled from the two Parameter Distributions are mutually correlated.
While a Conditional Distribution is associated with precisely one independent Parameter
Distribution, each Parameter Distribution can be the target of 0, 1 or several correlations.
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ATTRIBUTES

Correlation Coefficient—The correlation coefficient establishes the strength of the correlation.
A value of zero means no correlation, whereas a value of 1 (-1) means a direct linear relation
with a positive (negative) slope. (The correlation coefficient in the two figures is -0.9.)

&v

rx̂

FIGURE 4.5/2: Scatterplot of Correlated Values with Marginal Distributions

TABLE 4.5/1

EXTRA PARAMETER DISTRIBUTION OPERATIONS
FOR A CONDITIONAL DISTRIBUTION

CCDF[q:ParDis[ , ConDis, ], y_?NumberQ, x_?NumberQJ
evaluate conditional CDF at x given independent value y

InvertCCDF[q:ParDis[ , ConDis, ] , y_?NumberQ, p_?ProbabilityQ]
invert conditional CDF at probability p given independent
value y

PDF[q:ParDis[ , ConDis, ], y_?NumberQ, x_?NumberQ]
evaluate PDF at x given independent value y
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4.6 Operations on Conditional Distributions

A Conditional Distribution has three parts: a Probability Distribution, a Truncation Interval,
and a correlation association with another Parameter Distribution. In general, this informa-
tion is not sufficient to uniquely identify a Conditional Distribution. There is one major
exception: if the Conditional Distribution object has an untruncated Normal Distribution,
and if the correlated Parameter Distribution object has an untruncated Normal Distribution,
then the conditional distribution is also normally distributed, whatever value is chosen for the
independent Parameter Distribution. It is essential that the implementation of a Conditional
Distribution handle this case correctly. The implementation must also handle untruncated
Lognormal Distributions correctly, using the assumption that it is the logarithm of the para-
meter that is correlated, not the parameter itself. Support for correlations of truncated
Normal and Lognormal Distributions, and for other subtypes of Parameter Distribution, is
optional. If support is given, it is desirable but not necessary that the achieved correlation
match exactly the specified Correlation Coefficient. It is necessary, however, that the actual
correlation be a monotonie function of the specified Correlation Coefficient.

Assume that X is a normally distributed variate with mean ux and standard deviation ox,
written X ~ N(ux,ax). Assume that Y ~ N(uK,aK): that is, Y is also normally distributed. If X and
Y are correlated, with correlation coefficient p, then the conditional distribution of X given a
specific value of Y (i.e., Y = y) is also normal. More specifically, the conditional mean and
variance of X are

E(X I Y=y) = ux + pax (y-uy) / ar and (4.6-1)

var(X I 7=v) = o£ (1-p2) . (4.6-2)

Together, the marginal distributions for both X and Y, the correlation coefficient p, and the
value of 7 uniquely specify the conditional distribution of X.

If either X or Y is distributed lognormally, then the logarithm of that variable is distributed
normally. If we assume that the correlation coefficient applies to the logarithm, and not to
the variable itself, then this case reduces to the previous case. Therefore, the case where
either X or Y (or both) is distributed lognormally also has a unique solution.

In general, however, knowing the distributions for X and Y, the correlation coefficient, and
the value of Y is not sufficient to uniquely define a conditional distribution for X. That is,
there can be an infinite number of different conditional distributions for X, all of which
satisfy the requirements.

This multiplicity of conditional distributions will arise even if X and Y have normal distribu-
tions, provided that at least one of the distributions is truncated. If the truncation is far out in
the tails of the distribution, then all the possible conditional distributions will be similar to
one another. They will also be similar to the conditional distribution for the untruncated case.
If one of the distributions is severely truncated, however, the possible conditional distributions
will be quite different from the untruncated case.
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The Mathematica algorithms below first map each distribution onto a standard normal dis-
tribution N(0,l), and then apply the correlation association. They work correctly for untrun-
cated Normal and Lognormal Distribution objects. They also give results when applied to
other Parameter and Conditional Distributions, but in general the correlation achieved will not
exactly match the target Correlation Coefficient. Implementation in these cases is optional.
Implementors may also use some other scheme to induce correlation among sampled para-
meters. It is not necessary to have the actual correlation match the target Correlation
Coefficient exactly since, in general, achieving that end is extremely difficult. The actual
correlation must, however, satisfy these conditions:

(1) The actual correlation must be a monotonie function of the target Correlation Coeffi-
cient.

(2) If the Correlation Coefficient has a value of zero, then the conditional CDF (CCDF)
and PDF must be the same as the marginal CDF and PDF.

(3) If the Correlation Coefficient has a value of ±1, then the range of the conditional
distribution must degenerate to a single point.

Table 4.6/1 lists the Conditional Distribution operations.

TABLE 4.6/1
CONDITIONAL DISTRIBUTION OPERATIONS

CCDF

CCDF[q:ParDis[d_ProbDis, t_Trunc!nt, ConDis, c_?CorrCoefQ, ql_ParDis],
y_?NumberQ, x_?NumberQ] :=

CDF[
NormalDistributiont

c Quantile[ NormalDistribution[0,1], CDF[ql,y] ],
Sqrt[ 1 - cA2 ] ] ,

Quantile[
NormalOistributionfO, 1],
CDF[Parois[d, t], x ] ] ]

where NormalDistribution[m«, sigma] is a Normal Distribution object provided in the standard
Mathematica package Statistics "ContinuousDistributions," and CDF and Quantile applied to a Normal
Distribution object are operations from the same package.

InvertCCDF

InvertCCDF[q:Parois[d_ProbDis, t_TruncInt, ConDis, c_?CorrCoefQ, ql_ParDis],
y_?NumberQ, p_?ProbabilityQ] :=

quantile[
ParDisfd, t],
CDF[

NormalDiFtributiontO, 1] ,
Quantilet

NormalDistributiont
c Quantilef NormalDistribution[0,1], CDF[ql,y] ],
Sqrtl 1 - c*2 ] },

P ] ] ]
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4.7 Truncation Interval Objects

Figure 4.7/2 shows the Truncation Interval and associated data types. A Truncation Interval
object describes a continuous interval wùhin which the value of a Sampled Parameter must
lie. Ordinarily it would simply be considered a pair of attributes of a Parameter Distribution
(i.e., Low Value and High Value). It is treated as an object with two subtypes because the
interval can be specified either in the value or the probability domain (Figure 4.7/2). Every
Parameter Distribution must have a single Truncation Interval component of one of the two
subtypes. A confonnins implementation may support only the Probability Interval subtype, in
which case a Truncation Interval will be a Probability Interval.

ASSOCIATIONS

Composed of—A Truncation Interval is
a required component of every Para-
meter Distribution.
Subtypes—A Truncation Interval can
be of one of two subtypes, either a
Probability Interval, or a Value Inter-
val. It must be one or the other.

ATTRIBUTES

Figure 4.7/2 shows the (nonlinear) correspon-
dence between values of a variable and cu-
mulative probabilities associated with variable
values. The set of attributes of a Truncation
Interval object depends on the subtype:

(1) Probability Interval: the attributes are
specified as lower and upper bounds
in the probability domain:
- Low Probability: the cumulative

probability at the lowest value in
the Truncation Interval, calculated
using the Probability Distribution
component of the Parameter
Distribution;

- High Probability: the cumulative
probability at the highest value in
the Truncation Interval calculated
using the Probability Distribution
component of the Parameter
Distribution.

Probability
Interval

:Low Probability
:High
Probability

Value Interval

:Low Value
:High Value

FIGURE 4.7/1: Truncation Interval and
Associated Data Types
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Value
Interval

FIGURE 4.7/2: Relationship Between Probability Interval
and Value Interval on a CDF Plot of a Probability Distribution

(2) Value Interval: the attributes are specified as lower and upper bounds in the value
domain.
- Low Value: the greatest lower bound on the interval having a non-zero PDF.
- High Value: the least upper bound on the interval having a non-zero PDF.

Table 4.7/1 lists the Truncation Interval subtypes.

TABLE 4.7/1
SUBTYPES OF TRUNCATION INTERVAL

Problnt[lp_?ProbabilityQ, hp_?ProbabilityQ] /; Ip < hp
:= TrunclnttProblnt, Ip, hp]

Probability Interval with low and high probabilities Ip and hp
ValInt[lv_?NumberQ, hv_?NumberQ] /; Iv < hv

:= TrunclnttValint, Iv, hv]
Value Interval with low and high values Iv and hv
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4.8 Probability Distribution Objects

The Probability Distribution object type encapsulates the characteristics of a mathematical
probability distribution. That is, it describes how wlucs for a random wriabïe are distri-
buted along a number line. A Parameter Distribution also performs this function; the differ-
ence between a Probability Distribution and a Parameter Distribution is the constraint that
the latter lie within a Truncation Interval. Having the two different object tyres simplifies the
discussion of operations such as PDF and CDF. These operations apply to the subtypes of
Probability Distribution (Figure 4.8/1) without truncation. Since truncation of a distribution
has a common effect on these operations, whatever the subtype of Probability Distribution in-
volved, the effects of truncation need be discussed only for Parameter Distribution objects.

composed of

Probability
Distribution

•PDF, CDF
-Quaralle
-Mean, Median
-Sigma

" subtypes

1
Beta
Distribution

lower Limit
:Upper Limit
.•Exponent a
:Exponent b

1
Lognormal
Distribution

iGeometrlc Mean
iGeometrlc Stan-
dard Deviation

1
Binomial
Distribution

iNumber Of
Trials
.•Probability

1
Logunlform
Distribution

:Lower Limit
;Upper Limit

1
Constant
Distribution

Constant Value

}
Normal
Distribution

:Mean Value
Standard
Deviation

mixture of

FIGURE 4.8/1: Probability Distribution and
Associated Object Types
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ASSOCIATIONS

The only associations that affect the Probability Distribution type are those that expand higher
level objects into lower level objects (Figure 4.8/1).

• Composed of—A Probability Distribution is a required component of every Parameter
Distribution.

• Subtypes—A Probability Distribution can be of one of 9 subtypes, with general shapes
as shown in Figure 4.8/2. It must be one of these.

The operations on a Probability Distribution are listed in Table 4.8/1 on the next page.

Constant PF Piecewise Uniform PDF

Uniform PDF Loguniform PDF

Normal PDF Lognormal PDF

Triangular PDF

Beta PDFS

FIGURE 4.8/2: Shapes of SYVAC3 Probability Distributions
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TABLE 4.8/1

OPERATIONS ON A PROBABILITY DISTRIBUTION

CDF[d_ProbDis, x_?NumberQ] evaluate CDF at x
mean[d_ProbDis] compute average value

median [d_ProbDis ] compute 50th percentile
PDF [d_ProbDis, x_?NumberQ] evaluate PDF at x

quantile[d_ProbDis, p_?ProbabilityQ]
invert CDF at probability p

Sigma [d_ProbDis] compute standard deviation
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5.1 Probability Distribution: Beta Distribution

Figure 5J/lf an excerpt from Figure 4.8/1., shows the object type Beta Distribution as a sub-
type of Probability Distribution. A Beta Distribution covers a finite interval specified by
Lower and Upper Limits. It has two shape attributes that give it a variety of possible PDF
shapes, as shown in Figure 5.1/2.

Probability
Distribution

-PDF, CDF
-Quantile
-Mean, Median
-Sigma

subtypes

Beta
Distribution

:Lower Limit
:Upper Limit
:Exponent a
•.Exponent b

FIGURE 5.1/1: Beta Distribution
as a Subtype of Probability Distribution

ASSOCIATIONS

• Subtypes-The Beta Distribution is a subtype of the Probability Distribution (Figure 5.1/1).

ATTRIBUTES

• Lower Limit-lower end of the interval with non-zero PDF.
• Upper Limit-upper end of the interval with non-zero PDF.
• Exponent a— the exponent of the independent variable X in the PDF for a Beta Distribution.
• Exponent fc-the exponent of the expression (l-X), where X is the independent variable, in the

PDF for a Beta Distribution.

The attributes must satisfy the following constraints:

• Lower Limit < Upper Limit,
• a > 0, and

OPERATIONS

The only operations are those inherited from the Probability Distribution. They are specified in detail
in Section 5.2. The Mathematica representation of a Beta Distribution is shown in Table 5.1/1.
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Exponent
b

0.5

0.5 1 2
Exponent a

FIGURE 5.1/2: Sample Shapes for the Beta PDF

TABLE 5.1/1
OPERATIONS ON A BETA DISTRIBUTION

BetaDis[low_?NumberQ, high_?NumberQ, a_?PositiveQ, b_?PositiveQ]
/; low < high := ProbDis[BetaDis, low, high, a, b]

Beta Distribution as a subtype of Probability
Distribution

CDF [d:ProbDis [BetaDis, ] , x_?NumberQ] evaluate cumulative distribution function at x
mean [d : ProbDis [BetaDis, ] ] compute average value

mediantd:ProbDis[BetaDis, ] ] compute 50th percentile
PDF [d: ProbDis [BetaDis, ] , x_?NumberQ] evaluate probability density function at *

quantile[d:ProbDis[BetaDis, ], p_?ProbabilityQ]
invert cumulative distribution function at
probability p

Sigma [d : ProbDis [BetaDis, ] ] compute standard deviation
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5.2 Beta Distribution Operations

Mathematica provides operations for a BelaDistribution object type, which is a subtype of
Beta Distribution with Lower Limit = 0 and Upper Limit = 1. This section defines operations
for a more general Beta Distribution in terms of the Mathematica operations. The definitions
are also provided algebraically.

Mathematically, a standard beta distribution is defined over the interval from zero to one. It has two
shape attributes a and b, which must both be positive. The PDF of a standard beta distribution is
given by

fx(a,b) = u ; 0<x<\,0<a,0<b (5.2-1)

where B(a,b) is the complete beta function, defined as

B(a,b} = r(fl)r^) 0<a,0<b (5.2-2)

and r(a) is the gamma function

Ha) = (°°t°-le -'dt 0 < a . (5.2-3)
Jo

The CDF of the standard beta distribution, also known as the incomplete beta ratio function, is

0 < ; c < l , 0<a, 0<b (5.2-4)

where £x(a,b) is the incomplete beta function

Bx(a,b) = V-'Cl-r)6-1^ 0 <: x Z 1, 0 < a, 0 < b. (5.2-5)

These functions are all discussed by Spanier and Oldham (1987).

The mean value of a variate X with a standard beta distribution with shape attributes a and b is

E(X) = ° 0<a,0<b. (5.2-6)
a+b
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The variance of such a variate is

var(X) = - — - 0 < a, 0 < b. (5.2-7)

Mathematica already implements all these equations, so the formal definitions in Table 5.2/1 give a
succinct description of Beta Distribution operations. The definitions there allow a Lower Limit
and Upper Limit that differ from zero and one, generalizing the standard beta distribution
described here algebraically.

TABLE 5.2/1

BETA DISTRIBUTION OPERATIONS

CDF

CDF[d:ProbDis[BetaDis, low_?NurnberQ, high_?NumberQ, a_?PositiveQ,
b_?PositiveQ] /; low < high, x_?NumberQ] :=

Which[
x < low, 0,
x > high, 1,
True, CDF[BetaDistribution[a, b], (x-low)/(high-low)] ]

mean

mean[d:ProbDis[BetaDis, a_?PositiveQ, b_?PositiveQ, low_?NumberQ,
high_?NumberQ]] :=

(b low + a high) / (a + b}

median

median[d:ProbDis[BetaDis, ] ] := quantile[d, 0 .5]

PDF

PDF[d:ProbDis[BetaDis, low_?NumberQ, high_?NumberQ, a_?PositiveQ,
b_?PositiveQ] /; low < high, x_?NumberQ ] :=

Which[
x < low, 0,
x > high, 1,
True, PDF[BetaDistribution[a,b], (x-low)/(high-low)] /

(high-low) ]

quantlie

guantile[d:ProbDis[BetaDis, low_?NumberQ, high_?NumberQ, a_?PositiveQ,
b_?PositiveQ], p_?ProbabilityQ] :=

low + Quantile[BetaDistribution[a, b], p] (high-low)

Sigma

Sigma[d:ProbDis[BetaDis, low_?NumberQ, high_?NumberQ, a_?PositiveQ,
b_?PositiveQ] /; low < high] :=

(high-low) Sqrt[a b/(a+b+1)] / (a+b)
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5.3 Probability Distribution: Binomial Distribution

Figure 5.3/1, an excerpt from Figure 4.8/1, shows the object type Binomial Distribution as a
subtype of Probability Distribution. A Binomial Distribution is discrete; only a finite number
of equally spaced values belong to its domain.

Probability
Distribution

PDF, CDF
Quantile

-Mean, Median
•Sigma

' subtypes

FIGURE 5.3/1: Binomial Distribution
as a Subtype of Probability Distribution

A binomial variate X represents the number of successes in a sequence of N Bernoulli trials, where
each trial independently has a probability p of success. For example, if a fair coin is tossed 10 times,
the number of times it comes up "heads" is a binomial variate with 10 trials and probability 0.5 of
success. As N gets to be very large, X/N falls on an ever denser scattering of possible values in the
interval from 0 to 1. The limiting distribution of these points is a normal distribution with mean p and
standard deviation [Np(l-p)]0'5. Figure 5.3/2 shows a plot of the probability Junction (PF) (not the
probability density function) for a binomial variate for N = 20 and p = 0.2. A probability function
associates a finite probability, here represented by a narrow bar, with each possible value.

ASSOCIATIONS

• Subtypes-The Binomial Distribution is a subtype of Probability Distribution (Figure 5.3/1).

ATTRIBUTES

• Number of Trials-The number of Bernoulli trials, n, used to generate a binomial variate; the
variate can take integer values from 0 to n.

• Probability—The probability p of success in any Bernoulli trial.

The attributes must satisfy the following constraints:

• n > 0, n an integer, and
0 < p < 1.
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PF

CDF

FIGURE 5.3/2: Probability Function and CDF
for a Binomial Distribution

OPERATIONS

The Binomial Distribution inherits most operations from the Probability Distribution. In addition,
there is PF, the probability function operation. Section 5.4 specifies all operations in detail. The
Mathematica representation of a Binomial Distribution is shown in Table 5.3/1.

TABLE 5.3/1

OPERATIONS ON A BINOMIAL DISTRIBUTION

BinoDis[n_?NonNeg!ntegerQ, p_?ProbabilityQ]
:= ProbDis[BinoDis, n, p]

Binomial Distribution as a subtype of Probability
Distribution

CDF[d:ProbDis[BinoDis, ], x_?NumberQ]
mean[d:ProbDis[BinoDis, ]]

medianfd:ProbDis[BinoDis, ]]
PDF[d:ProbDis[BinoDis, ], x_?NumberQ]
PF[d:ProbDis[BinoDis, ], x_?NumberQ]
quantile[d:ProbDis[BinoDis, ], pl_?ProbabilityQ]

invert cumulative distribution function at
probability pi

Sigma [d : ProbDis [BinoDis, _] ] compute standard deviation

evaluate cumulative distribution function at x
compute average value
compute 50th percentile
evaluate probability density function at x
evaluate probability function at x
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5.4 Binomial Distribution Operations

Mathemalica provides operations for a BinomialDistribution object, which is identical to a
BinoDis object in having nvo attributes: n, the Number of Trials, and p, the Probability of
success. This section defines operations in terms of the Mathematica operations. The defi-
nitions are also provided algebraically.

Mathematically, a binomial distribution is defined over the set of positive integers from 0 to n. It
gives the distribution of values for a variate that represents the number of successes in n independent
Bernoulli trials. In a single Bernoulli trial, "success" or "failure" is chosen randomly, with "success"
having a probability p of occurring. The maximum number of successes possible in n trials is n, and
the minimum number is 0.

The PDF for a discrete variable involves a "Dirac comb," or a sum of multipliers times Dirac delta
functions. The BinoDis PDF is

fx(n,p} = SMSOc-y) 0 < n, 0 < p <1, (5.4-1)

where gj(n,p) is the probability function (PF), which gives the probability of j successes out of n trials.
A sample PF is plotted in Figure 5.3/2. The definition of gj(n,p) is

8 M = ( n V;(! -P)"~J 0 < 7 < n, 0 < p < 1 . (5.4-2)
J \JJ

The CDF of the binomial distribution can be computed directly from the PDF or the PF:

*
Fx(nj>) = $XJx(n&dx = £ gjinj) 0 < n, 0 < p < 1, (5.4-3)

where k is chosen to satisfy the following conditions:

• if x < 0, then /: = -!; in this case the summation is empty, and Fx(n,p) = 0.
• if 0 < x < n, then k is the largest integer not greater than x; in this case the summation holds

over all integer values from 0 up to x.
• if n < x, then k = n; in this case Fx(n,p) = 1.

These conditions all arise because of the definition of the Dirac delta function and of its behaviour in
integrals. The behaviour when A: is an integer between 0 and n is subject to convention; since we have
defined the CDF Fx(n,p) to be the probability of sampling a value less than or equal to x, it includes
the probability of precisely x successes.

When n is large, these calculations of cumulative probability can be computationally intensive, and so
another method of computing the same result is of interest. Press et al. (1986) give the following
equivalence:

k
0 < * < n, 0 < p < 1, (5.4-4)
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where Ix(a,b) is the incomplete beta ratio function (but called the incomplete beta function by Press et
al. (1986)) defined in the discussion of the Beta Distribution in Section 5.2.

The mean and variance of a variate X with a binomial distribution having attributes n and p are

E(X) = np 0 < n, 0 < p < 1, (5.4-5)

var(X) = np(l -p) 0<n,Q<p<l. (5.4-6)

Table 5.4/1 lists the Binomial Distribution operations.

TABLE 5.4/1

BINOMIAL DISTRIBUTION OPERATIONS

CDF

CDF[d:ProbDis[BinoDis, n_?NoiiNeg!ntegerQ, p_?ProbabilityQ], x_?NumberQ] :=
CDF[BinomialDistribution[n, p] , x]

mean

mean[chProbDis [BinoDis, .i_?NonNegIntegerQ, p_?ProbabilityQ] ] := n p

median

median[chProbDis[BinoDis, ]:=quantile[d, 0.5]

PDF

PDF[d:ProbDis[BinoDis, n_?NonNeg!ntegerQ, p_?ProbabilityQ], x_?NumberQ ] :=
Which[

x < 0, 0,
x > n, 0,
True, PDF[BinomialDistribution[n, p], x] DiracDelta[0] ]

PF

PF[d:ProbDis[BinoDis, n_?NonNeg!ntegerQ, p_?ProbabilityQ], x_?NumberQ ] :=
Which[

x < 0, 0,
x > n, 0,
True, PDF[BinomialDistribution[n, p] , x] ]

quantlie

quantile[d:ProbDis[BinoDis, n_?NonNeg!ntegerQ, p_?ProbabilityQ],
p 1_? Probabi1i tyQ] : =

Quantile[BinomialDistribution[n, p] , pi]

Sigma

Sigma[d:ProbDis[BinoDis, n_?NonNeg!ntegerQ, p_?ProbabilityQ]] :=
Sgrt[n p (1-p)]
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5.5 Probability Distribution: Constant Distribution

Figure 5.5/1, an excerpt from Figure 4.8/1, shows the object type Constant Distribution as a
subtype of Probability Distribution. A Constant Distribution permits only a single value for a
random variable. It is a discrete distribution, but it can be thought of as the limiting case of
a Uniform Distribution as the Lower and Upper Limits approach each other, or as the limit-
ing case of a Normal Distribution as the Standard Deviation goes to 0. The PDF for a Con-
stant Distribution is a Dirac delta function, and the cumulative distribution function is a
Heaviside step function. Figure 5.5/2 shows the probability function (PF) and CDF.

subtypes

Figure 5.5/1: Constant Distribution
as a Subtype of Probability Distribution

ASSOCIATIONS

Subtypes—The Constant Distribution is a subtype of Parameter Distribution (Figure
5.5/1).

ATTRIBUTES

• Constant Value—The only permitted value for a random variable with this distribution.
There is no constraint on the Constant Value.

OPERATIONS

The Constant Distribution inherits most operations from Probability Distribution. In addition,
there is PF, the probability function operation. All operations are trivial because the distribu-
tion is so simple. They are specified in detail using Mathematica notation in Table 5.5/1.
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PF

CDF

FIGURE 5.5/2: Probability Function and CDF
for a Constant Distribution

TABLE 5.5/1
OPERATIONS ON A CONSTANT DISTRIBUTION

ConstDis[v_?NumberQ] := ProbDis[ConstDis, v]
Constant Distribution as a subtype of Probability
Distribution

CDF[d:ProbDis[ConstDis, v_?NumberQ], x_?NumberQ]
:= UnitStep[x-v]

evaluate cumulative distribution function at x
using the Heaviside step function, UnitStep(x-v)
which is 0 for x < v, and 1 for x £ v.

mean[d:ProbDis[ConstDis, v_?NumberQ]] := v
compute average value

median[d:ProbDis[ConstDis, v_?NumberQ]] := v
compute 50th percentile

PDF[d:ProbDis[ConstDis, v_?NumberQ], x_?NumberQ]
:= DiracDelta[x-v]

evaluate probability density function at x using
the Dirac delta function.

PF[d:ProbDis[ConstDis, v_?NumberQ], x_?NumberQ]
:= If[x==v, 1, 0]

evaluate probability function at x using the If
operation, which in this case takes the value 1 if
x = v, and 0 otherwise.

quantile[d:ProbDis[ConstDis, v_?NumberQ], pl_?Probability^]
:= v

invert cumulative distribution function at
probability pi

Sigma[d:ProbDis[ConstDis, v_?NumberQ]] := 0
compute standard deviation
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5.6 Probability Distribution: Lognormal Distribution

Figure 5.6/1, an excerpt from Figure 4.8/1, shows the object type Lognormal Distribution as
a subtype of Probability Distribution. A Lognormal Distribution has a domain stretching
from zero to infinity; all parameter values sampled from this distribution must be positive. A
Lognortnal Distribution has an asymmetric PDF skewed to the left (see Figure 5.6/2). In the
limiting case where the Geometric Standard Deviation is very close to one, a Lognormal
Distribution can resemble a Normal Distribution.

' subtypes

PDF

CDF

FIGURE 5.6/1: Lognormal
Distribution as a Subtype of

Probability Distribution

FIGURE 5.6/2:
PDF and CDF for a

Lognormal Distribution

The logarithm of a lognormal variate has a Normal Distribution. According to the central
limit theorem of statistics, the Lognormal Distribution occurs naturally when one computes
the geometric mean of the first N variâtes from an infinite sequence of positive random
variables, ail having the same variance.
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ASSOCIATIONS

• Subtypes—The Lognormal Distribution is a subtype of Probability Distribution (Figure
5.6/1).

ATTRIBUTES

• Geometric Mean gm—the exponential of the mean of the natural logarithm of the
Lognormal Distribution, with the same physical units as the random variable having
this distribution.

• Geometric Standard Deviation ssd— the exponential of the standard deviation of the
natural logarithm of the current Probability Distribution, having no physical units.

The attributes must satisfy the following constraints:

• gm > 0, and
• gsd> 1.

OPERATIONS

The only operations are those inherited from the Probability Distribution. They are specified
in detail in Section 5.7. The Mathematica representation of a Lognormal Distribution is
shown in Table 5.6/1.

TABLE 5.6/1

OPERATIONS ON A LOGNORMAL DISTRIBUTION

LogNorDis[gm_?PositiveQ, gsd_?MoreThanloj
:= ProbDis[LogNorDis, gm, gsd]

Lognormal Distribution as a subtype of Probability
Distribution, where

MoreThanlQ[x_] := NumberQ[x] && (1 < x)
test for a number greater than 1

PositiveQ[x_] := NumberOjx] && (0 < x)
test for a positive number

CDF[d:ProbDis [LogNorDis, ], x._?NumberQ]
evaluate cumulative distribution function at x

mean [d: ProbDis [LogNorDis, ] ] compute average value
median [d: ProbDis [LogNorDis, ] ] compute 50th percentile

PDF[d:ProbDis[LogNorDis, ], x_?NumberQ]
evaluate probability density function at x

quantile[d:ProbDis[LogNorDis, ], pl_?ProbabilityQ]
invert cumulative distribution function at probability pi

Sigma[d:ProbDis[LogNorDis, ]] compute standard deviation
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5.7 Lognormal Distribution Operations

Operations are provided by Mathematica for a LogNormalDistribution object having para-
meters mu and sigma to represent the mean and standard deviation. This section defines
operations for a Lognormal Distribution in terms of the Mathematica operations. The
definitions are also provided algebraically.

A random variable X has a lognormal distribution when Y = In X has a normal distribution.
If HY and <jy represent the mean and standard deviation of Y, then the geometric mean and
geometric standard deviation of X are defined by the following expressions:

gmx = exp(Hj,) (5.7-1)

and

gsdx = escp(Oy) . (5.7-2)

The PDF of a lognormal distribution is given by the following function:

fx(gmgsd) = -— exp
V/ZTWC logfesd)

1 ..._ _ (logs-log gm)2
0 < x, 0 < gm, 1 < gs45.1-3)

The CDF of a lognormal distribution is the same as that for a normal distribution, applied to
the log of the variate:

Fx(gmgsd) = *log;t(logg/n,loggsd) 0 < x, 0 < gm, 1 < g«S5.7-4)

where ^(u.o) is the CDF at x of a normal variate with mean u and standard deviation a.

The mean value of a variate X with a lognormal distribution with geometric mean gm and
geometric standard deviation gsd is

E(X) = gm^ 0<gm,l< gsd, (5.7-5)

where gv is the geometric variance, defined to be

gv = exp(oy) (5.7-6)

using the same definition for ay as in Equation (5.7-2).
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The variance of such a variate is

0 < S™* 1< S$d, (5.7-7)

Mathematica already contains equivalents to all these equations, given a LogNormalDistri-
bution object with specified mean and standard deviation for the logarithm. Here, however,
the simple equations above have been coded directly into Mathematica. Table 5.7/1 lists the
Lognormal Distribution operations.

TABLE 5.7/1

LQGNORMAL DISTRIBUTION OPERATIONS

CDF

CDF[d:ProbDis [LogNorDis, gm_?PositiveQ, gsd_?MoreThanlQ] , x_?NuitiberQ] : =
Which!

x <= 0, 0,
x > 0, CDF[NormalDistribution[Log[gm], Logtgsd]], Logtx] ] ]

mean

mean[d:ProbDis[LogNorDis, gm_?PositiveQ, gsd_?MoreThanlQ]] :=
Module[

{gv = Exp[ Log[gsd]A2 ]},
gm Sgrt[gv] ]

where Module [ (x = x0, y = ya, . . . }, body] defines a code structure with local variables x, y,
etc. The value of the module is given by the last line of the body.

median

median[d:ProbDis[LogNorDis, ] := quantile[d, 0.5]

PDF

PDF[d:ProbDis[LogNorDis, gm_?PositiveQ, gsd_?MoreThanlQ], x_?NumberQ ] ': =
Which[

x <= 0, 0,
x > 0, PDF[NormalDistribution[Log[gm], Log[gsd], Logfx] ] / x ]

quantlie

quantile[d:ProbDis[LogNorDis, gm_?PositiveQ, gsd_?MoreThanlQ],
p_?ProbabilityQ] :=

Exp[
Quantile[NormalDistribution[Log[gm], Logtgsd]], p] ]

Sigma

Sigma[d:ProbDis[LogNorDis, gm_?PositiveQ, gsd_?MoreThanlQ]] := . . .
Module[

{gv = Exp[ Log[gsd]A2 ]}, •
gm Sqrt[gv (gv-1)] ]
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5.8 Probability Distribution: Loguniform Distribution

Figure 5.8/1, an excerpt from Figure 4.8/1, shows the Loguniform Distribution as a subtype of Proba-
bility Distribution. A Loguniform Distribution has a domain stretching over a positive finite interval;
all parameter values sampled from this distribution must be positive. A Loguniform Distribution has
an asymmetric PDF skewed to the left (see Figure 5.8/2). In the limiting case where the interval is
very narrow compared to the Lower Limit, a Loguniform Distribution can resemble a Uniform
Distribution.

Probability
Distribution

•PDF. CDF
•Quantlle
•Mean, Median
-Sigma

' subtypes

FIGURE 5.8/1: Loguniform Distribution as a Subtype of
Probability Distribution

The logarithm of a loguniform variate has a Uniform Distribution. The Loguniform Distribution is
appropriate where a positive value is usually measured on a log scale (e.g., pH or loudness), and
where the value is completely unknown apart from sharp upper and lower bounds.

ASSOCIATIONS

Subtypes-Trie Loguniform Distribution is a subtype of the Probability Distribution (Fig-
ure 5.8/1).

ATTRIBUTES

• Lower Limit—lower end of the interval with non-zero PDF.
• Upper Limit-upper end of the interval with non-zero PDF.

The attributes must satisfy the following constraint:

• Lower Limit < Upper Limit.
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PDF

CDF

FIGURE 5.8/2: PDF and CDF for a
Loguniform Distribution

OPERATIONS

The only operations are those inherited from the Probability Distribution. Section 5.9 specifies these
operations in detail. The Mathematica representation of a Loguniform Distribution is shown in Table
5.8/1.

TABLE 5.8/1

OPERATIONS ON A LOGUNIFORM DISTRIBUTION

LogUniDis[low_?PosiciveQ, high_?PositiveQ] /; low < high
:= ProbDis[LogUniDis, low, high]

Loguniform Distribution as a subtype of Probability
Distribution

CDF[d:ProbDis[LogUniDis, ] , x.JPNumberQ]
evaluate cumulative distribution function at x

mean [d: ProbDis [LogUniDis, ] ] compute average value
median [d: ProbDis [LogUniDis, ] ] compute 50th percentile

PDF[d:ProbDis[LogUniDis, ], x_?NumberQ]
evaluate probability density function at x

quantile[d:ProbDis[LogUniDis, ], p_?ProbabilityQ]
invert cumulative distribution function at
probability p

Sigma [d: ProbDis [LogUniDis, ] ] compute standard deviation
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5.9 Loguniform Distribution Operations

Mathematica does not provide operations for a LogUniformDistribution object, but the equa-
tions are simple. Operations for a Loguniform Distribution are defined algebraically and by
the equivalent Mathematica expressions.

Statistically, a random variable X has a loguniform distribution between two positive values,
XL and XH, when Y = log X has a uniform distribution between log XL and log XH. The-PDF
of X, f^X^u), is just the PDF of Y at the same point, divided by the value of X

0 < x, 0 < XL < XH , (5.9-1)

where U(x) is the Heaviside step function, used to ensure that the PDF is zero outside the
domain [XLJCH],

The CDF of X is the same as that of Y at the corresponding point:

= U(X-XH)+[U(x-XL)-U(X-Xa)}

Q<x,0<XL<XH. (5.9-2)

Solving this equation for x when the CDF is 0.5 gives a simple expression for the median:

median(X) = JXLXE • (5.9-3)

Integration of xfx(XL^XH) from XL to XH shows that the mean value of the-variate X is

E(X) =
v _ yAH AL

logXH -
0 < x,0<XL<XH . (5.9-4)
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Integration of (x - E(X))2fx(XL^H) gives the variance of the variate X, which can be simplified
to:

-(XL + Xa) - E(X)} 0<x,0<XL<XH. (5.9-5)var(X) = E(X)

The formal definitions of these operations in Mathematica notation appear in Table 5.9/1.

TABLE 5.9/1

LOGUNIFORM DISTRIBUTION OPERATIONS

CDF

CDF[d:ProbDis[LogUniDis, low_?PositiveQ, high_?PositiveQ] /; low < high,
x_?NumberQ] : =

Which[
x < low, 0,
x > high, 1,
True, Log[x/low] / Log[high/low] ]

mean

meanfd:ProbDis[LogUniDis, low_?PositiveQ, high_?PositiveQ]
/; low < high ] :=

(high-low) / Log[high/low]

median

median[d:ProbDis[LogUniDis, low_?PositiveQ, high_?PositiveQ]
/; low < high ] :=

Sqrt[low high]

PDF

PDF[d:ProbDis[LogUniDis, low_?PositiveQ, high_?PositiveQ] /; low < high,
x_?NumberQ ] :=

Which[
x < low, 0,
x > high, 0,
True, 1 / (x Log[high/low]) ]

quantîle

quantile[d:ProbDis[LogUniDis, low_?PositiveQ, high_?PositiveQ]
/; low < high, p_?ProbabilityQ] :=

low (high/low)Ap

Sigma

Sigma[d:ProbDis[LogUniDis, low_?PositiveQ, high_?PositiveQ]
/; low < high ] :=

Sqrt[mean[d] ( (low+high)/2 - mean[d] )]
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5.10 Probability Distribution: Normal Distribution

Figure 5.10/1, an excerpt from Figure 4.8/1, shows the object type Normal Distribution as a
subtype of Probability Distribution. A Normal Distribution has an infinite domain stretching
from negative infinity to positive infinity. Its PDF is symmetric about the mean value, which
is also the median and mode. The PDF has the form of a bell-shaped curve (Figure 5.10/2).

' subtypes

FIGURE 5.10/1: Normal Distribution
as a Subtype of Probability Distribution

By the Central Limit Theorem of statistics, the probability distribution of the average of a large num-
ber of variâtes with similar distributions approaches a Normal Distribution as the number of variâtes
gets very large. As a result, this distribution is often used to represent sums and averages.

ASSOCIATIONS

• Subtypes-The Normal Distribution is a subtype of the Probability Distribution (Figure 5.10/1).

ATTRIBUTES

• Mean Value u-the position of the centre of symmetry of the distribution.
• Standard Deviation a-square root of the variance.

The attributes must satisfy the following constraint:

a> 0.
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FIGURE 5.10/2: PDF and CDF for a
Normal Distribution

OPERATIONS

The only operations are those inherited from the Probability Distribution. They are specified in detail
in Section 5.11. The Mathematica representation of a Normal Distribution is shown in Table 5.10/1.

TABLE 5.10/1

OPERATIONS ON A NORMAL DISTRIBUTION

NormDis[mu_?NumberQ, sigma_?PositiveQ] := ProbDis[NormDis, mu, sigma]
Normal Distribution as a subtype of Probability
Distribution

CDF [a: ProbDis [NormDis, ] , x_?NumberQ] evaluate cumulative distribution function at x
mean [d: ProbDis [NormDis, ] ] compute average value

median[d: ProbDis [NormDis, ] ] compute 50th percentile
PDF [d : ProbDis [NormDis, ] , x_?NumberQ] evaluate probability density function at x

quantile[d:ProbDis[NormDis, ], p_?ProbabilityQ]
invert cumulative distribution function at
probability p

Sigma [d : ProbDis [NormDis, ] ] compute standard deviation
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5.11 Normal Distribution Operations

Mathematica provides opérations for a NormalDistribuîion object having parameters n and G
to represent the mean and standard deviation. This section defines operations for a Normal
Distribution in terms of Mathematics operations. The definitions are also provided
algebraically.

The PDF of a normal distribution with mean n and standard deviation a is given by

v/2lto
exp

2o2
0 < a. (5.11-1)

The CDF of a normal distribution is defined by the integral of the exponential function,
<j>t(u,a), which has no closed form in terms of elementary functions. It can be expressed in
terms of other functions representing exponential integrals, however, and specifically in terms
of the error function:

0 < a, (5.11-2)

2 - erfcfi
Uojj

where erf(x) is the error function and erfc(*) is the complementary error function.

By definition, the mean and standard deviation of a variate X with a normal distribution are
just u and a respectively. The median is also u because of the symmetry of the distribution.

Mathematica already contains equivalents to all these equations, given a NormalDistribution
object with specified mean and standard deviation. The specifications in Table 5.11/1 use
those definitions.
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TABLE 5.11/1

NORMAL DISTRIBUTION OPERATIONS

CDF

CDF[d:ProbDis[NormDis, mu_?NumberQ, sigma_?PositiveQ], x_?NumberQ]
CDF[NormalDistribution[mu, sigma], x ]

mean

mean[d:ProbDis[NormDis, mu_?NumberQ, sigma_?PositiveQ]] := mu

median

median[d:ProbDis[NormDis, mu_?NumberQ, sigma_?PositiveQ] := rau

PDF

PDF[d:ProbDis[NormDis, mu_?NumberQ, sigma_?PositiveQ], x_?NumberQ
PDF[NormalDistribution[mu, sigma], x]

quantlie

quantile[d:ProbDis[NormDis, mu_?NumberQ, sigma_?PositiveQ],
p_?ProbabilityQ] :=

Quantile[NormalDistribution[mu, sigma], p]

Sigma

Sigma[d:ProbDis[NormDis, mu_?NumberQ, sigma_?PositiveQ]] := sigma
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5.12 Probability Distribution: Piecewise Uniform Distribution

Figure 5.22/1, an excerpt from Figure 4.8/1, shows the object type Piecewise Uniform Distri-
bution as a subtype of Probability Distribution. A Piecewise Uniform Distribution is defined
as a mixture of nonoverlapping Uniform Distributions. That is, the distribution is composed
of a set of Uniform Distributions, each of which has a certain probability of being chosen.
The PDF of a Piecewise Uniform Distribution is a histogram. As a result, it can approximate
any other continuous distribution. But it is more flexible than that. By reducing the widths
of the bins in the histogram to zero, the Piecewise Uniform Distribution can also represent a
discrete distribution with a finite number of possible values.

subtypes

Figure 5.12/2 shows a mixture of discrete components (where the bins have been kept wide
enough to see) and continuous components to illustrate the flexibility of this Probability Dis-
tribution subtype.

ASSOCIATIONS

• Mixture of—Each bin in
the PDF of a Piecewise
Uniform Distribution rep-
resents a Uniform Dis-
tribution (Figure 5.12/1);
the set of Uniform Distri-
butions forms an ordered
sequence associated with
the integers from 1 to J.

• Subtypes—The Piecewise
Uniform Distribution is a
subtype of Probability
Distribution (Figure
5.12/1).

OPERATIONS

The only operations are those in-
herited from the Probability Dis-
tribution (see Section 5.13). The
Mathematica representation of a
Piecewise Uniform Distribution
is shown in Table 5.12/1. mixture of

FIGURE 5.12/1: Piecewise Uniform Distribution
as a Subtype of Probability Distribution
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ATTRIBUTES

• Mixture Weights Wj- relative weights
(not normalized to sum to 1), for/
from 1 to 7, of sampling from each
of the Uniform Distributions that
make up a Piecewise Uniform
Distribution.

The attributes must satisfy the following
constraints:

• Wj > 0 for each j from 1 to J, with

If the/th Uniform Distribution is de-
fined on the interval [LpHj], for all
Uniform Distributions from 1 to J,
then LJ < Hjt for j from 1 to J; and
Hj < Lj+1, forj from 1 to 7-1.

PDF

CDF

FIGURE 5.12/2: PDF and CDF
for a Piecewise Uniform Distribution

TABLE 5.12/1

OPERATIONS ON A PIECEWISE UNIFORM DISTRIBUTION

PcwUniDis[ws_List, ds_List] /; VectorQ[ws, PositiveQ] &&
VectorQ[ds, UniformQ] && (Length[ws] == Length[ds])

:= ProbDis[PcwUniDis, ws,,ds]
Piecewise Uniform Distribution as a subtype of
Probability Distribution, where:
Mathematica operation to find the length of a list x
MatchQ[x, ProbDis[UnifDis, low_?NumberQ,
high_?NumberQ] /; low <= high]
tests for a valid Uniform Distribution (see Section 5.16)
Mathematica operation to test each entry of a list v using
operation test, and return True only if all entries pass

Length[x_]
UniformQ[x_]

VectorQ[v_List, test]

CDF[d:ProbDis[PcwUniDis, ], x_?NumberQ]
evaluate cumulative distribution function at x

mean [d: ProbDis [PcwUniDis, ] ] compute average value
median [d: ProbDis [PcwUniDis, ] ] compute 50th percentile

PDF[d:ProbDis[PcwUniDis, ], x_?NumberQ]
evaluate probability density function at x

quantile[d:ProbDis[PcwUniDis, ], p_?ProbabilityQ]
invert cumulative distribution function at probability p

Sigma [d: ProbDis [PcwUniDis, ] ] compute standard deviation



5.13 Piecewise Uniform Distribution Operations

The Piecewise Uniform Distribution is a mixture of Uniform Distributions. Most operations
have definitions based on that fact. Since Mathematica does not have built-in operations for
a Piecewise Uniform Distribution, the operational definitions in this section are expressed
both in algebraic and Mathematica notation.

The PDF of a mixture is the weighted sum of the PDFs of the probability distributions that
are mixed together. The weights for the PDF are the same as the weights that define the
mixture. Define the probability of selecting the/th distribution from a mixture by PJt and
define it to be

Wk
k-\

Then the PDF/fc) for Piecewise Uniform variate X is

where f^x) is the PDF of the/th Uniform Distribution making up the mixture (see Section
5.17).

The CDF is the integral of Equation (5.13-2):

j
F(x) =£PjFj(x) (5.13-3)

J-i
where Fj(x) is the CDF of the/th Uniform Distribution making up the mixture.

Similarly, the mean of a Piecewise Uniform Distribution is the weighted average of the means
of the contributing Uniform Distributions:

E(X) = £P.Ly + Hj • (5.13-4)
y-i 2

The median is more difficult to find - it can be evaluated as the inverse CDF at 0.5.

The variance of a Piecewise Uniform Distribution is made up of two parts: the average vari-
ance of the Uniform Distributions, plus variance of the expected values of the Uniform
Distributions from £(jc):

- J TO 1 J T 4. tf
I • » * / M 1 .. - 1*1 *<* *Z ; rf * rt f \

-- _ J2~(H, - L.f + - £, P-— j- - E(X) • (5.13-5)
J y.j 12 J j.i J[ 2
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TABLE 5.13/1
PIECEWISE UNIFORM DISTRIBUTION OPERATIONS

CDF

CDF[d:ProbDis[PcwUniDis, ws_List, ds_List], x_?NumberQ] /;
VectorQ[ws, PositiveQ] && VectorQ[ds, UniformQ] && (Lengthfws] == Length[ds])

Module[
{ arglist, cumprob },
arglist := Thread[List[ds, x] ] ;
cumprob := Apply[CDF, arglist, {1} ] ;
Dot[ws, cumprob] / Fold[Plus, 0, ws] ]

mean

mean[d:ProbDis[PcwUniDis, ws_List, ds_List] ] /; VectorQ[ws, PositiveQ] &&
VectorQ[ds, UniformQ] && (Length[ws] == Length[ds]} :=

Dot[ws, Map[mean, ds]] / FoldfPlus, 0, ws]

median

median[d:ProbDis[PcwUniDis, ws_List, ds_List] ] /; VectorQfws, PositiveQ] &&
VectorQ[ds, UniformQ] && (Length[ws] == Length[ds]) :=

quantilefd, 0.5]

PDF

PDF[d:ProbDis[PcwUniDis, ws_List, ds_List], x_?NumberQ] /;
VectorQfws, PositiveQ] && VectorQfds, UniformQ] && (Length[ws] == Length[ds])

Module[
{ arglist, localPDF },
arglist := Thread[List[ds, x]];
localPDF := Apply[PDF, arglist, {1} ];
Dot[ws, localPDF] / Fold[Plus, 0, wsj ]

quantité

guantile[d:ProbDis[PcwUniDis, ws_List, ds_List], p_?ProbabilityQ] /;
VectorQfws, PositiveQ] && VectorQ[ds, UniformQ] && (Lengthtws] == Length[ds])

Module[
{ wsloc, cumweight, udist, wtlist },
wsloc := ws / Fold[Plus, 0, ws];
cumweight := Dropf FoldList[Plus, 0, wsloc], 1];
wtlist := Thread[List[wsloc, cumweight, ds]];
udist := Flattent Select [wtlist., #[[2]j >= p &, 1] ] ;
quantile[udist[[3]], 1 - (udist[[2]]-p) / udist[[l]] ] ]

Sigma

Sigma[drProbDis[PcwUniDis, ws_List, ds_List] ] /;
VectorQfws, PositiveQ] && VectorQ[ds, UniformQ] && (Length[ws] == Length[ds])

Module[
{ Imean, Ivar, wsloc },
wsloc := ws / FoldfPlus, 0, ws];
Imean := mean[d];
Ivar := Dot[wsloc,

Map[Sigma, ds, {1}]A2 + (Imean - Maptmean, ds, {1}])A2 ];
Sqrt[lvar] ]

NOTE: Consult a Mathematica manual for an explanation of the functions.
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5.14 Probability Distribution: Triangular Distribution

Figure 5.14/1, an excerpt from Figure 4.8/1, shows the object type Triangular Distribution as
a subtype of the Probability Distribution. A Triangular Distribution has a domain stretching
over a finite interval (see Figure 5.14/2). It has a possibly asymmetric PDF with a single
mode (peak) inside the interval. The PDF diminishes to zero at the endpoints of the interval
unless the mode is at an endpoint. The Triangular Distribution is appropriate when all that
is known about a parameter's value is the upper and lower bounds, and the approximate
location of the mode.

ASSOCIATIONS

• Subtypes—The Triangular Distri-
bution is a subtype of Probability
Distribution (Figure 5.14/1).

ATTRIBUTES

• Lower Limit-lower end of the in-
terval with non-zero PDF.

• Mode—location of the peak of the
PDF.

• Upper Limit-upper end of the in-
terval with non-zero PDF.

The attributes must satisfy the following
constraints:

• Lower Limit < Mode,
• Mode < Upper Limit, and

Lower Limit < Upper Limit.

OPERATIONS

The only operations are those inherited
from the Probability Distribution (see Sec-
tion 5.15). The Mathematica representa-
tion of a Uniform Distribution is shown in
Table 5.14/1.

' subtypes

FIGURE 5.14/1: Triangular Distribution
as a Subtype of Probability Distribution
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PDF

CDF

FIGURE 5.14/2: PDF and CDF for a Triangular Distribution

TABLE 5.14/1
OPERATIONS ON A TRIANGULAR DISTRIBUTION

TriDis[low_?NumberQ, mode_?NumberQ, high_?NumberQ] /; (low<=mode) &&
(mode<=high) && (low<high) := ProbDis[TriDis, low, mode, high]

Triangular Distribution as a subtype of Probability Distribution

CDF[d:ProbDis[TriDis, low_?NumberQ, mode_?NumberQ, high_?NumberQ] /;
(low<=mode) && (mode<=high) && (low<high), x_?NumberQ]

evaluate cumulative distribution function at x

mean[d:ProbDis[TriDis, low_?NumberQ, mode_?NumberQ, high_?NumberQ] /;
(low<=mode) && (mode<=high) && (low<high) ]

compute average value

median[d:ProbDis[TriDis, low_?NumberQ, mode_?NumberQ, high_?NumberQ] /;
(low<=mode) && (mode<=high) && (low<high) ]

compute 50th percentile

PDF[d:ProbDis[TriDis, low_?NumberQ, mode_?NumberQ, high_?NumberQ] /;
(low<=mode) && (mode<=high) && (low<high), x_?NumberQ]

evaluate probability density function at x

quantile[d:ProbDis[TriDis, low_?NumberQ, mode_?NumberQ, high_?NumberQ] /;
(low<=rnode) && (mode<=high) && (low<high), p_?ProbabilityQ]

invert cumulative distribution function at probability p

Sigma[d:ProbDis[TriDis, low_?NumberQ, mode_?NumberQ, high_?NumberQ] /;
(low<=mode) && (mode<=high) Se& (low<high) ]

compute standard deviation
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5.15 Triangular Distribution Operations

Malhematica does not provide operations for a Triangular Distribution. They are simple,
however, and the formulas are given in this section, both mathematically and in Mathematica
notation.

Mathematically, a triangular distribution is defined over the interval from the Lower Limit a
to the Upper Limit c. The mode is located at a point b between a and c. The PDF f(x) is
continuous; it goes to 0 at a and c and takes the value 0 for all points below a and greater
than c. The value of the PDF at b is determined by the fact that the area under the PDF (i.e.,
the area of a triangle) must be 1; therefore fib) = 2l(c-a). These constraints define the PDF
as a piecewise linear function:

ff,s - 2(X-a)\U(X-d)-V(X-V)\ + 2(c-x)\U(X-b)-U(X-c)} a<b<c (5 15 n
J (b - a)(c - a) (c - b)(c -a) '

where U(x) is the Heaviside step function, and U(x-a)-U(x-b) is a top-hat function with the
value 1 between a and b, and 0 elsewhere. In the limiting cases, where b = a or b = c, the
PDF is discontinuous, and it equals the limiting form of Equation (5.15-1) as b approaches an
extreme value.

The CDF of the triangular distribution is a piecewise quadratic function that has the value 0
up to a, and the value 1 for x > c. By considering the areas of triangles, one can show that
F(x) takes the value (b-a)l(c-a) at b. It can readily be found by integrating Equation (5.15-1)
that

.. (c-x?\U(x-b)-U(x-c)] ,s 15 2)

(b - a)(c -a) (c - b)(c - a)

The mean value of a variate X with a triangular distribution is given by a very simple
expression:

E(X) = (a + b + c) . (5.15-3)

The median, in contrast, is more complicated and is best evaluated by inverting the CDF
above at 0.5.
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The variance also has a simple and symmetric expression:

var(*) = g2 + b2 + °2 ~ ab ~ ac ~ * . (5.15-4)
18

The Mathematica version of these expressions is given in Table 5.15/1.

TABLE 5.15/1
TRIANGULAR DISTRIBUTION OPERATIONS

CDF

CDF[d:ProbDis[TriDis, low_?NumberQ, mode_?NumberQ, high_?NumberQ] /;
(low<=mode) && (mode<=high) && (low<high), x_?NumberQ] :=

Which[
x < low, 0,
x > high, 1,
x < mode, (x-low)A2 / ((high-low) (mode-low)),
x == mode, (mode-low) / (high-low),
x > mode, 1 - (high-x)*2 / ((high-low) (high-mode)) ]

mean

mean[d:ProbDis[TriDis, low_?NumberQ, mode_?NumberQ, high_?NumberQ] /;
(low<=mode) && (mode<=high) && (low<high) ] :=

(low + mode + high) / 3

median
median[d:ProbDis[TriDis, low_?NumberQ, mode_?NumberQ, high_?NumberQ] /;
(low<=mode) && (mode<=high) && (low<high) ] :=

quantile[d, 0.5]

PDF

PDF[d:ProbDis[TriDis, low_?NumberQ, mode_?NumberQ, high_?NumberQ] /;
(low<=mode) && (mode<=high) && (low<high), x_?NumberQ] :=

Which[
x < low, 0,
x > high, 0,
x < mode, 2 (x-low) / ((mode-low) (high-low)),
x == mode, 2 / (high-low),
x > mode, 2 (high-x) / ((high-mode) (high-low)) ]

quantîle

quantile[d:ProbDis[TriDis, low_?NumberQ, mode_?NumberQ, high_?NumberQ] /;
(low<=mode) && (mode<=high) && (low<high), p_?ProbabilityQ] :=

Which[
p <= 0, low,
p <= (mode-low)/(high-low), low + Sqrt[p (high-low) (mode-low)],
p < high, high - Sqrt[(l-p) (high-low) (high-mode)],
True, high ]

Sigma

Sigma[d:ProbDis[TriDis, low_?NumberQ, mode_?NumberQ, high_?NumberQ] /;
(low<=mode) && (mode<=high) && (low<high) ] :=

Sqrt[ (loŵ 2 + modeA2 + highA2 - low mode - low high - mode high) / 18 ]
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5.16 Probability Distribution: Uniform Distribution

Figure 5.16/1, an excerpt from Figure 4.8/1, shows the object type Uniform Distribution as a
subtype of Probability Distribution. A Uniform Distribution has a domain stretching over a
finite inten'al. A Uniform Distribution has a symmetric PDF in which every location bet\veen
the Lower Limit and the Upper Limit has the same value (Figure 5.16/2). The Uniform
Distribution is appropriate where a value is completely unknown apart from sharp upper and
lower bounds.

ASSOCIATIONS
Probability
Distribution

-PDF, CDF
-Quantile
-Mean, Median
•Sigma

subtypes

• Mixture of—Each bin in
the PDF of a Piecewise
Uniform Distribution re-
presents a Uniform Dis-
tribution (Figure 5.16/1);
the set of Uniform Dis-
tributions forms an or-
dered sequence associ-
ated with the integers
from 1 to J.

• S ubtypes-TheUniformD
istribution is a subtype
of Probability Distribu-
tion (Figure 5.16/1).

ATTRIBUTES

• Lower Limit—lower end
of the interval with non-
zero PDF.

• Upper Limit—upper end
of the interval with non-
zero PDF.

The attributes must satisfy the
following constraint:

• Lower Limit < Upper Limit.

OPERATIONS

The only operations are those inherited from Probability Distribution (see Section 5.17). The
Mathematica representation of a Uniform Distribution is shown in Table 5.16/1.

mixture of

FIGURE 5.16/1: Uniform Distribution
as a Subtype of Probability Distribution
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CDF

FIGURE 5.16/2: PDF and CDF for a Uniform Distribution

TABLE 5.16/1

OPERATIONS ON A UNIFORM DISTRIBUTION

UnifDis[low_?NumberQ, high_?NumberQ] /; low <= high
:= ProbDis[UnifDis, low, high]

Uniform Distribution as a subtype of Probability Distribudon

CDF[d:ProbDis[UnifDis, low_?NumberQ, high_?NumberQ] /; low <= high,
x_?NumberQ] evaluate cumulative distribution function at x

mean[d:ProbDis[UnifDis, low_?NumberQ, high_?NumberQ] /; low <= high ]
compute average value

median[d:ProbDis[UnifDis, low_?NumberQ, high_?NumberQ] /; low <= high ]
compute 50lh percentile

PDF[d:ProbDis[UnifDis, low_?NumberQ, high_?NumberQ] /; low <= high,
x_?NumberQ] evaluate probability density function at x

quantile[d:ProbDis[UnifDis, low_?NumberQ, high_?NumberQ] /; low <= high,
p_?ProbabilityQ] invert cumulative distribution function at probability p

Sigma[d:ProbDis[UnifDis, low_?NumberQ, high_?NumberQ] /; low <= high ]
compute standard deviation
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5.17 Uniform Distribution Operations

Mathematica provides operations for a UniformDistribution[min,max] object, where mm and
max represent the Lower Limit and Upper Limit. The expressions to be evaluated are all
simple, and so they are shown here algebraically as well.

The PDF of Uniform Distribution is constant over the domain of the distribution, and zero
outside that domain. The value of the PDF is determined by the requirement that it integrate
to one. The PDF f[x) for a Uniform variate X is

fix) = \Uto-X,} - Utx-XH] . (5.17-1)
« :2 i ilL rttVifmnct*otherwise

where XL and XH represent the Lower Limit and Upper Limit respectively; U(x) is the Heavi-
side step function that takes the value one for x > 0 and the value zero otherwise; and 8(x) is
the Dirac delta function that represents an infinitesimally narrow spike with unit area.

The CDF is the integral of Equation (5.17-1):

U(x-XH) KXL-XB

x-X, !<;</ . (5.17-2)
U(x - XB) +[U(x- XL) - U(x - XB)]—-t- otherwise

The mean of a Uniform Distribution is the midpoint of the domain, by symmetry:

+ XH) . (5.17-3)

The median is the same as the mean, again by symmetry.

The standard deviation of a Uniform Distribution is proportional to the width of the interval
that defines its domain.

r, -XL] . (5.17-4)

The following table uses these explicit definitions instead of the built-in Mathematica routines
so that it is clear what transformation is taking place.
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TABLE 5.17/1

UNIFORM DISTRIBUTION OPERATIONS

CDF

CDF[d:ProbDis[UnifDis, low_?NumberQ, high_?NumberQ] /; low <= high,
x_?NumberQ] :=

Which[
low == high, UnitStep[x-low],
x < low, 0,
x > high, 1,
True, (x-low) / (high-low) ]

mean

mean[d:ProbDis[UnifDis, low_?NumberQ, high_?NumberQ] /; low <= high ] :=
(low + high) / 2

median

median[d:ProbDis[UnifDis, low_?NumberQ, high_?NumberQ] /; low <= high ] :
(low + high) / 2

PDF

PDF[d:ProbDis[UnifDis, low_?NumberQ, high_?NumberQ] /; low <= high,
x_?NumberQ] :=

Which[
low == high, DiracDelta[x-low],
x < low, 0,
x >= high, 0,
True, 1 / (high-low) ]

quantlie

guantile[d:ProbDis[UnifDis, low_?NumberQ, high_?NumberQ] /; low <= high,
p_?ProbabilityQ] :=

low -t- p (high-low)

Sigma

Sigma[d:ProbDis[UnifDis, low_?NumberQ, high_?NumberQ] /; low <= high ] :=
(high - low) / Sqrt[12]
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6.1 Role of the Pseudorandom Number Generator

Figure 6.1/1 shows the relationship between the SYVAC3 objects Pseudorandom Generator
and Parameter Distribution. During SYVAC3 simulations, a Sampling Method maintains a
slot for each Case-Sampled Parameter assigned to it. If the Sampling Method implements
random sampling, it uses a Pseudorandom Generator as a source of random numbers uni-
formly distributed benveen zero and one. In each simulation, each Case Sampled Parameter
gets such a number. SYVAC3 converts the value between zero and one to a suitable Variable
Value by invoking the operations of the appropriate Parameter Distribution. In non-SYVAC3
applications, a similar relationship is established between a Pseudorandom Generator and a
Parameter Distribution: the fanner generates uniform values between zero and one that are
converted to quantiles of the Parameter Distribution. The names of the other object classes
involved may be different outside of SYVAC3.

Section 2.2 showed how SYVAC3 converts uniformly distributed random numbers between
zero and one (hereafter called standard random numbers) to Variable Values from any Para-
meter Distribution by inverting the cumulative distribution function (CDF). Figure 2.2/1 is
reproduced here as Figure 6.1/2. There are many other ways of generating Variable Values
from particular distributions (Knuth 1969), but the CDF inversion technique has many
advantages:

• A predictable number of standard random numbers. We know in advance of any
sampling that each variable will require precisely one standard random number for

Case Sampled
Parameter samples

from

Parameter
Distribution

-PDF, CDF
-Quantité
•statistics
•bounds

FIGURE 6.1/1: Association between a Pseudorandom Generator
and Parameter Distributions in SYVAC3
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every Variable Value to be generated. As a result, we know how many standard
random numbers are needed. We can say with certainty which pseudorandom number
is associated with which Variable Value.

• Monotonie relationship. If two standard random values X; and X2 are used to generate
two Variable Values V, and V2 respectively, then V, < V2 if and only if Xt < X2. This
relationship simplifies implementation of sophisticated sampling methods other than
simple random sampling. For example, to get extreme values for any Case Sampled
Parameter, whatever its distribution, it is only necessary to assign it standard values
near zero or one.

• Addition of new distribution types. The CDF for a distribution must be inverted be-
fore a sampling procedure for that new distribution type can be developed. This inver-
sion is straightforward and can be performed without reference to other elements in
this report. It is often easier to evaluate a CDF than to invert it, and in such cases a
general approach to CDF inversion works quite well (see Section 7.7).

SYVAC3 can assign Case Sampled Parameters to different Sampling Methods, each one
associated with its own Pseudorandom Generator. Different objects of the Pseudorandom
Generator object type behave similarly—each one generates a sequence of standard "random"
numbers. They differ in the sequences that they generate. In general, the values produced by
one generator should be statistically independent of the values produced by any other
generator.

Evaluate CDF

£ Q.5\
o>

I
3
|

d

Variable Values [unit]

Invert CDF

Variable Values [unit]

FIGURE 6.1/2: Transformations Through the CDF
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6.2 Requirements for a Pseudorandom Generator

Each Pseudorandom Generator object is associated with a long sequence of standard
"random" numbers (Figure 6.2/1). This object type has three attributes: the Initial Random
Seed(s) that define the sequence, the Current Position in the sequence, and the Sequence
Length. This object type has t\vo main operations: Generate Value and Skip Values. The
first releases a single standard "random" number from the sequence and advances the
Current Position by one. The second (optional) operation advances the Current Position in
the sequence by a specified number of places.

ASSOCIATIONS

There are no associations internally within the Parameter Sampling Package (PSP) between
the Pseudorandom Generator object type and other object types. SYVAC3 does establish
associations between the Pseudorandom Generator object type and other SYVAC3 object
types, as was shown in Figure 6.1/1.

ATTRIBUTES

• Initial Random Seed(s)-Different instances of the Pseudorandom Generator object type
are virtually indistinguishable in their performance; they all generate sequences of
standard "random" numbers. They can be distinguished, however, by the Initial Ran-
dom Seed(s) used to initialize them. These are one or more integer values. Since
most common Pseudorandom Generators use a linear congruential or multiplicative
congruential algorithm, an Initial Random Seed typically plays a functional role in the
performance of the generator by providing a number on which the algorithm works.
But this functional role is not essential. Instead, the Initial Random Seed(s) can be
thought of as a set of integer "keys" that identify a specific pseudorandom sequence in
the space of all possible sequences.

• Current Position—When a Pseudorandom Generator is created, the Initial Random
Seed(s) uniquely identifies an underlying pseudorandom sequence of standard values.
By convention, a generator will start releasing values from the beginning of this
sequence. After some number have been generated or skipped, the generator must
remember where it is in the sequence; that location is its Current Position. It may be
stored in a coded form. For example, the Current Position for a multiplicative congru-
ential generator may actually be the current random seed the generator will use in its
next iteration.

• Sequence Length—This number describes the length of the underlying pseudorandom
sequence of standard values released one by one by the generator. It may be a hard
limit as in circumstances where the underlying algorithm can generate only a finite
number of values. It may also be an artificial limit. For example, a single long
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pseudorandom sequence may be broken up into shorter subsequences to create
multiple independent Pseudorandom Generator objects. Then the Sequence Length
would define the number of values that can be generated without overlapping those
released by another Pseudorandom Generator object.

OPERATIONS

Generate Value releases the next standard value (i.e., a number between zero and one)
in the underlying pseudorandom sequence, and advances the Current Position to the
next item in the sequence.

Skip Values (optional) discards a specified number of standard values from the under-
lying pseudorandom sequence, and advances the Current Position accordingly. This
operation is optional because its function can be achieved by invoking Generate Value
the requisite number of times and discarding the standard values released by these in-
vocations. The designer of an implementation may choose to implement this operation
for efficiency reasons, especially where hundreds of thousands or millions of values
are commonly skipped.

r — 3̂ 7:-;
ÏZ^CM^ ,r,à:o.ànr.l ^ëàcL

Current
Position

FIGURE 6.2/1: A Pseudorandom Generator is Based
on a Sequence of Standard Random Numbers
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6.3 Quality of a Pseudorandom Sequence

A truly random sequence of numbers uniformly distributed benveen zero and one is character-
ized by unpredictability—knowing the values of some entries in the sequence does not help in
predicting other entries. Pseudorandom sequences, in contrast, are generated repeatably by
a deterministic algorithm. Nevertheless, a high-quality pseudorandom sequence appears to be
random when statistical tests are applied. A sequence used for a Pseudorandom Generator is
required to have a long period, a large set of possible outcomes, uniform probabilities, and
documented performance against statistical tests.

What is a random number? Is 0.6931472783 a random number? These questions are difficult
to answer because they raise deep philosophical issues that have not yet been resolved to
everyone's satisfaction.

Richard von Mises (1919) introduced the concept of the. "irregular collective," which forms
the basis of some frequentist theories of probability. Durand (1971) describes Mises' collec-
tive as " . . . an infinite sequence £, say of elements e,, e2, e3, ..., each of which bears one of a
set of labels E,, E2, ..., Ek representing events. In addition, if E is to pass as a collective, it
must meet two requirements, as follows: first, that the relative frequency n/n of the event E,
in the first n elements ej, e2, ..., en shall approach a limit as n approaches infinity; second, that
the arrangement of events within E shall be random in terms of criteria developed by Mises.
Assuming both requirements are met, the limiting relative frequency, say lim(/t/n) = p,, is the
probability of the event E, within the collective E."

In this context, Durand (1971) reports a definition of relative randomness: "An infinite se-
quence E in which the labels (events) E,, E2, ..., Ek recur with relative frequencies /?/(£,) =
n/n that approach limits as n approaches infinity will be regarded as random with respect to a
systematic rule S for selecting an infinite subsequence E\S if the relative frequencies in £15
approach limits equal to those in £-that is, if lim fl/(£,IS) = lim

These definitions introduce several ideas associated with randomness:

Infinity required-Randomness in an infinite sequence can be defined, but randomness
in a finite sequence is an elusive concept. The number 0.6931472783 quoted above
might very well be random in an infinite sequence, but taken by itself it is not.

• Finite set of outcomes— While the sequence of events should be infinite, the number k
of possible outcomes in a sequence can be analyzed most easily when finite.

• Nonpredictabilitv— If you can find a selection rule S that forms a subsequence E\S of E
in which the probabilities of the possible outcomes £„ E2, ..., Ek differ from those in E
as a whole, then you have found nonrandomness. Randomness is associated with
having no such predictable pattern.
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In contrast to the foregoing, a pseudorandom sequence is a finite sequence R of elements rjt

r2,... rN, each of which bears a label from £„ E2, ... Ek. The elements of the sequence are
generated by a deterministic algorithm, so that the same sequence can be generated at differ-
ent times or by different people or computer programs. Nevertheless, such a sequence super-
ficially appears to be random in the sense given above. The probability p, of each event El is
defined to be n/N. The following criteria can be used to compare one pseudorandom se-
quence with another for use in simulation:

• Long sequence—The larger N is, the better. On an absolute scale, N > 109 is preferred
to allow some room for expansion, since some applications of SYVAC3 have already
used 50 000 simulations with about 4000 parameters each, for a total of about 2 x 10s.
Much larger values of N are desirable. Note that when practical (as opposed to theo-
retical) statistical tests are applied to a sequence, it matters little whether the sequence
is actually infinite, or just very long, since only a finite number of entries are tested.

• Uniformity—A sequence can be considered random whatever probability p-t is assigned
to the selection of label Eit but the role of a Pseudorandom Generator described in
Section 6.1 requires uniformly distributed variâtes between zero and one. Conse-
quently, the closer each pt is to \lk, the better. We can in fact require that pt = Ilk,
since this goal is commonly achieved.

• Large set of outcomes—The larger k is, the better. The labels E]t E2, ... Ek are mapped
onto rational numbers between zero and one. Applications of SYVAC3 are typically
concerned with probabilities of events on the order of 10"6. The value of k should be
at least 108 to make the pfs small with respect to 10"6.

• "Randomness"—A pseudorandom sequence should be free of obvious patterns. If an
observer can construct a selection rule 5 such that probabilities of outcomes in R\S
differ appreciably from l/k, then the randomness of the sequence is compromised. Of
course, it is always possible in a deterministic sequence that a selection rule based on
the generation algorithm could select a nonrandom subsequence. But selection rules
unrelated to the generation algorithm should be random with respect to R. Knuth
(1969) proposed a series of statistical tests that check for nonrandom behaviour. In
addition, several subsequent authors have documented their tests of well-known
pseudorandom number generators (e.g., Park and Miller 1988, Fishman and Moore
1983), and a sequence that fails one of these tests is considered suspect.
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7.1 Design Goals Affecting the Parameter Sampling Package (PSP)

A variety of package designs could achieve the requirements for the PSP expressed so far.
The actual design achieves design goals that include interoperability with SYVAC3, portability
beftveen platforms and applications, accurate results expressed with adequate precision, and
efficiency of operation.

INTEROPERABILITY WITH SYVAC3

While the PSP has a variety of uses, typically it provides services to SYVAC3. The same
people who developed the PSP also developed the rest of SYVAC3 in the same software
environment. Interoperability with SYVAC3 was a key goal for design of the PSP. This
goal affected the following aspects of the design:

• Language—Like the rest of SYVAC3, the PSP used Fortran 77 for source code, so that
its development could use the same hardware, software, procedures and staff as the
rest of SYVAC3.

• Software Library—The PSP took the form of a library of subroutines so that it could
link with SYVAC3 and a model, allowing the entire system to execute as one
program.

• Data Interface—SYVAC3 maintains descriptions of all the Parameter Distributions
needed for a model. The PSP uses SYVAC3's data structures as an interface with
SYVAC3 (see Section 3.4).

• Error Handling—SYVAC3 conducts many simulations in a single invocation. When it
detects errors, SYVAC3 puts the current simulation on hold to await later examination,
and continues with subsequent simulations. The PSP must therefore trap errors and
report them without stopping.

PORTABILITY

While the PSP typically functions as part of SYVAC3, it can also operate independently of
SYVAC3. It must be portable from one application to another, and not depend too much on
SYVAC3 services. Furthermore, SYVAC3 itself operates on several hardware platforms,
among them Digital Equipment Corporation's VAX computer and the IBM PC. The PSP
must therefore share SYVAC3's requirements for portability. The goal of portability affected
several parts of the design:

• Language—Fortran 77 is available universally, with only minor variations between
platforms. Its use promotes portability. To maintain this advantage, SYVAC3
developers used only a few well-documented extensions to this standard.

• Data Interface—As much as possible, the data interface between the PSP and calling
code consists only of the essentials, specifically a set of arrays required to transmit
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details of Parameter Distributions. Any program that can set up these arrays can call
the PSP.

« Error Handling—When the PSP detects error conditions, it uses the RETMES routine
(see Section 3.6) to obtain the minimum information needed from the host program to
report errors. The PSP does not need information about the hardware or software set-
up to communicate error reports back to the user.

ACCURACY AND PRECISION

The design of the PSP supports sampling of parameter values for simulations. The design
goal was to meet the quality requirements for pseudorandom sequences already stated in
Section 6.3:

• Long Sequences—Pseudorandom Generators provided by the PSP must generate
pseudorandom sequences with at least 109 entries. Since most algorithms for
generating pseudorandom sequences operate mostly on integers, this requirement
implies the need for at least 32-bit integer arithmetic (see Section 6.5).

• Probability Precision—To resolve probabilities of events down to 10"6 (one in a mil-
lion), a goal was set to make probability-related calculations maintain accuracy to at
least eight significant figures. Since 32-bit integers cover the range from -2147483648
to 2147483647, they meet the precision part of that requirement. Hence 32-bit integer
arithmetic is adequate for the Pseudorandom Generators. In contrast, the precision
possible with floating-point arithmetic on 32-bit computers is limited to about seven
significant figures. All floating-point calculations on such computers must use "double
precision" arithmetic to meet the precision part of the goal. To ensure accuracy as
well as precision, all cumulative distribution function (CDF) and inverse CDF calcula-
tions must calculate results that maintain an accuracy of at least eight significant
figures.

EFFICIENCY

The final design goal of the PSP was efficiency. When used with a model having N para-
meters, a single simulation requires N invocations of a Pseudorandom Generator, and N CDF
inversions. When N is large, say 4000, these calculations can be time-consuming. Meeting
an efficiency goal particularly affected the design of CDF evaluation and inversion code.
While many algorithms to evaluate a CDF may work reliably over a large domain, some are
faster than others in different parts of the domain. Several CDF routines in the PSP contain
code for a variety of algorithms. The argument values determine at runtime which algorithm
to invoke.

Several other design goals, including simplicity, reliability, maintainability, correctness,
testability, useability and completeness, played a role in constraining the design of the PSP.
The following sections discuss the implications of all these goals for the design of the PSP.
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7.2 The Choice of Fortran 77

For compatibility with SYVAC3, developers used Fortran 77 to program the Parameter
Sampling Package (PSP). Doing so promoted portability and ensured compatibility with
available skills and computing equipment Using Fortran 77 constrained the implementation
of the object-oriented features present in the specification. Programming standards filled the
gap, providing a means of implementing an object-oriented design in Fortran 77.

The team that developed SYVAC3 was working on a project to assess the environmental
impacts of nuclear fuel waste disposal. They adopted the Fortran 77 language for SYVAC3,
since that was the standard programming language in that project. As part of SYVAC3, the
PSP also used Fortran 77.

There were both advantages and disadvantages to the choice of Fortran 77, as shown in
Table 7.2/1. It greatly affected the design of the PSP, particularly with respect to the data
structures used.

To illustrate the impact, consider what would have happened if the developers had chosen
other languages. Today, many application developers use the language C++, which supports
object-oriented programming. C++ was not widely available in 1985 when SYVAC3 was first
designed. If it had been, developers could have mapped the object types described in the spe-
cification directly onto object classes in the code. They would map operations in the specifi-
cations onto methods in the code. Specifications and code would have been very similar in
structure.

Pascal and C were widely available in 1985. If developers had chosen one of these lan-
guages, they could have mapped the object types onto structured data types in the code. They
would implement operations as procedure calls. The gap between specification and code
would be larger, but the similarities would still be clear.

Fortran 77 has no object classes and no structured data types. There are still a variety of
ways to implement the data storage, as discussed in Section 7.3. But there cannot be a direct
mapping from the object type in the specification to a single construct in the code. Here a
limitation of Fortran 77 clearly constrains the design of the code.

Another limitation of Fortran 77 affects the choice of algorithms. Since Fortran 77 does not
support recursion, it was not possible to use recursion in any of the CDF and inverse CDF
routines. Where a recursive algorithm was used, as in the log F(x) function GAMMAL, it
had to be explicitly converted to an iterative algorithm.

One potential benefit of using Fortran 77 on the design of the PSP was the availability of a
variety of mathematical and statistical code libraries. For example, it would have been easy
and quick to develop the PSP by using commercial statistical libraries for CDFs and inverse
CDFs of beta, normal, and other distributions. Instead the development team created new
routines so that they would be more portable. That decision allowed AECL to sell SYVAC3



-111-

TABLE 7.2/1

ADVANTAGES AND DISADVANTAGES TO THE SELECTION OF Fortran 77 FOR
SYVAC3

ADVANTAGES

1. Available staff was familiar with Fortran 77.

2. Software tools and libraries were available for Fortran 77.

3. Fortran 77 produced efficient code that executed fast on available computing hardware.

4 Fortran 77 compilers were available for all available computers.

5. Programs written to conform to the Fortran 77 ANSI standard would run with little modification on all
available computers.

6. Fortran 77 had features (e.g., complex number support) to ease scientific programming.

DISADVANTAGES

1. Fortran 77 did not support many constructs of structured programming (e.g., WHILE loops).

2. Fortran 77 did not support user-defined object or data types, apart from arrays.

3. Fortran 77 did not support any of the characteristics of object-oriented programming (inheritance,
polymorphism, operator overloading)

4. Fortran 77 had primitive interactive input/output operations that did not lend themselves to user-friendly
interfaces.

5. Fortran 77 had primitive file-accessing operations that did not lend themselves to database management.

6. Fortran 77 did not support dynamic allocation of memory.

7. Fortran 77 had a complex syntax that did not lend itself easily to creation of tools to manage software.

8. Fortran 77 did not support recursion.

to customers using a variety of computers, without getting software licences for code libraries
for every computer type. Such licences would be necessary because we distribute SYVAC3
in source code form, so that it can be linked with models the customer develops.

In future implementations it may be possible to distribute SYVAC3 as an executable module
that can be linked with a model in other ways. Then the PSP could employ commercial
libraries at the cost of a runtime distribution fee. The disadvantage of that approach, of
course, is that the developers would need access to every type of computer on which the code
is to run in order to develop the executable files.

The choice of Fortran 77 also affected error handling in the PSP. Fortran 77 has no intrinsic
error handling, but the PSP can catch errors by explicit checks. It then reports them by print-
ing error messages on user-defined files and devices. It also passes flags back to the calling
routines when errors are encountered.
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7.3 Design of Data Structures for Parameter Distribution

As Figure 7.3/1 shows, each Parameter Distribution object contains a Truncation Interval
object and a Probability Distribution object. In Fortran 77, designers must use array data
structures to represent these object types. A 2-element vector can represent a Truncation
Interval object. In the majority of cases, a 4-element vector and a character string can
represent a Probability Distribution. Conditional Distributions and Piece-wise Uniform Dis-
tributions require special treatment.

The simple data structures shown in Figure 7.3/1 can represent most types of Parameter Dis-
tributions. There are two components to this data structure:

(1) A truncation interval—A 2-element double-precision vector can store upper and lower
bounds for either Probability Interval or Value Interval object types. Supporting both
subtypes of Truncation Interval as two alternatives would require a way of discrimi-
nating between them. Support for the Value Interval subtype is optional, however,
as stated in Section 4.7. The current design supports only Probability Interval sub-
types, and so the 2-element vector contains all the required data.

(2) A probability distribution—A 4-element double-precision vector can store the attributes
for the majority of subtypes. Figure 7.3/1 shows how the attributes fit in this vector.
All attributes can be stored as Fortran 77 DOUBLE PRECISION data types (although the
INTEGER data type is more appropriate for some, such as the Number of Trials in a Binomial
Distribution). A character string indicates clearly the Parameter Distribution subtype to permit
correct interpretation of the attributes. Unfortunately, there are some exceptional subtypes of
Parameter Distribution that cannot be handled by this simple structure:

• A Parameter Distribution that is also a Conditional Distribution needs an extra field to
store a Correlation Coefficient. In addition, the design must preserve the
"correlation" association, by retaining a link between the Conditional Distribution and
another Parameter Distribution. Section 7.4 addresses Conditional Distributions.

• Each Piecewise Uniform Distribution has several components that are Uniform
Distributions. There is no room in the structure shown in Figure 7.3/1 for these
distributions. Section 7.5 deals with Piecewise Uniform Distributions.
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7.4 Representation of Conditional Distributions

Section 4.5 points out that a marginal distribution and a Correlation Coefficient uniquely define a
Conditional Distribution only when the marginal distributions for both the Conditional Distribution
and the independent Parameter Distribution are untruncated Normal Distributions. Lognormal
Distributions also have this uniqueness property if we take the correlation with respect to the
logarithm of the variable rather than the variable itself. The Parameter Sampling Package (PSP)
must support these two cases, according to Section 4.5, and may or may not support other non-unique
Conditional Distributions. The SV309 design supports only these t\vo types of Conditional
Distribution, fulfilling the essential requirement. In this design, the two new Parameter Distribution
subtypes correspond to two new Probability Distribution subtypes called Correlated Normal and
Correlated Lognormal Distributions. These object subtypes require minor extensions to the data
structure introduced in Section 7.3.

SV309 supports only two types of Conditional Distribution objects. These appear in the design as
standard Parameter Distribution objects, with Probability Distribution subtypes that are either
Correlated Normal or Correlated Lognormal objects. The "correlation" association establishes a link
between each such object and an independent Parameter Distribution that must have a Normal or
Lognormal Distribution for its Probability Distribution component. Figure 7.4/1 shows the attributes
of the two new Probability Distribution subtypes. The Correlation Coefficient appears as an extra
attribute for these subtypes. Implementing the link to another distribution raises important design
issues.

Most languages that permit the definition of user-defined types (e.g., C or Pascal) also support pointers
to refer to instances of those types. In such a language, the correlation link required for correlated
distributions would be implemented as a pointer. However, Fortran 77 does not support pointers.
This leaves the designer with two options. The design could store multiple Parameter Distributions in
a single set of arrays, so that integer indices could point to individual Parameter Distributions. Or, it
could keep a full copy of the independent distribution as part of the correlated distribution. SV309
uses the former alternative.

More specifically, to represent multiple objects of the same object type, the design takes each array (or
scalar) required to implement a single Parameter Distribution object, and adds another dimension to it,.
For example, a single Parameter Distribution object requires a 4-element attribute vector. To store
multiple Parameter Distribution objects, it. is necessary to provide such a vector for each object.
SV309 accomplishes this feat by making the original vector into an array with four rows. Then each
Parameter Distribution object gets a single column with four entries in which to store its attributes.
By convention, the new dimension is always the last dimension, and so the last index of an array
reference identifies the specific object being referenced. This convention promotes efficient data
handling on computers with virtual memory, since Fortran 77 stores data in column-major order. In
this type of structure, the correlation link in Figure 7.4/1 is an integer pointer that identifies the
location of the correlated Parameter Distribution object.
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7.5 Representation of Piecewise Uniform Distributions

Figure 7.5/1 shows the Parameter Distribution data structure with storage for Piecewise Uniform
Distribution objects. The data placed in the auxiliary array PUDPAR describe the Uniform
Distribution objects that make up the Piecewise Uniform Distribution object, and the relative weights
that apply to each. By placing them in PUDPAR. this design distinguishes between Uniform
Distribution objects that stand alone and those that belong to a Piecewise Uniform Distribution.

The designer faces awkward design choices when implementing the Piecewise Uniform Distribution
because it is the only Probability Distribution subtype that requires a nondeterministic amount of
storage. In a computer language with user-defined types and dynamic allocation of memory, the
Uniform Distribution objects that make up a Piecewise Uniform Distribution could be stored as a
linked list of dynamically allocated data records linked by pointers. In Fortran 77, they must be stored
in an array.

Section 7.4 established the requirement to store multiple Parameter Distribution objects in arrays to
permit linking of correlated Parameter Distributions. Uniform Distributions from Piecewise Uniform
Distribution objects could be stored as additional Probability Distribution records in these arrays, but
this approach faces two criticisms. First, it violates the simplicity of the design in Figure 7.5/1, where
there are precisely one Probability Distribution object and one Truncation Interval object for every
Parameter Distribution object. If there are extra Uniform Distribution objects in the storage array, the
structure would need to be more complex. It would need to distinguish between those entries
containing Parameter Distribution objects and those containing extra Probability Distribution objects.
Second, the normal storage for a Uniform Distribution provides no place to record the relative weights
needed for an association with a Piecewise Uniform Distribution. To avoid these difficulties, the
SV309 design uses an auxiliary array called PUDPAR to store Uniform Distribution objects that
belong to a Piecewise Uniform Distribution.

Figure 7.5/1 shows the Pointer to PUDPAR as an attribute of a Piecewise Uniform Distribution. The
curve connects this pointer to the column of PUDPAR just before the storage for the current
distribution. That means that the columns of PUDPAR used for this distribution have indices P+l to
P+N, where P is the pointer value, and N is the Number of Ranges.

The design has a minor inconsistency. Pointers for Correlated Normal and Correlated Lognormal
Distributions have a separate pointer vector, whereas pointers for Piecewise Uniform Distributions
reside in attribute storage. This inconsistency comes from the original design. The inconsistency will
likely remain since any changes to make the two consistent would break old code calling the
Parameter Sampling Package. Inflexibility in changing implementations is a disadvantage of letting
the internal data structure become public.
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7.6 Data Storage for Multiple Instances of Parameter Distribution

The preceding sections laid out a set of data structures for Parameter Distribution object Type. As
those sections pointed out, the Parameter Sampling Package (PSP) extends the data structure arrays
with an extra dimension to store multiple objects. This section reviews the data storage alternatives in
more detail.

Fortran 77 lacks support for objects, structured data types (except arrays), dynamic allocation of
memory, and pointers. Nevertheless, a Fortran 77 program can implement an object-oriented
specification. Suppose an instance of an object type requires five named fields. To be specific,
suppose these fields are A, B, C, D and E. There are four main ways of implementing instances of
such an object type in Fortran 77:

(1) Separate declarations— To generate two instances of the object type, define five discrete
variables for each instance. A naming convention that links the five variable names together
makes the code clearer. For example, to store the components of an object instance known as
OBJ1, call the variables OBJ1A, OBJ1B, OBJ1C, OBJ1D and OBJ1E. A macro preprocessor
can generate the declarations for the variables automatically, simplifying the process at the
expense of using a nonportable software tool. This approach stretches the variable name space
of a program, especially when representing many object instances.

(2) Increase variable rank-Suppose A, B, C and D are scalars, while E is a vector of length four.
To implement up to 100 instances of the object type, add another dimension to each variable's
rank. For example, A becomes a vector of length 100, and E becomes a 4 x 100 array. Then
the set {A(/), B(0, C(/), D(/), E(*,/)} represents the i* object instance, with E(*,0 designating
the column consisting of {E(l,i), E(2,0, E(3,i), E(4,i)}. Fortran 77 stores arrays in column
order. On a computer with virtual memory, the new dimension should always come at the end
so that all fields of an object instance reside close together in memory, hopefully on the same
page of virtual memory.

(3) Simulate dynamic allocation-Although Fortran 77 does not support the dynamic allocation of
memory for new object instances, the code can simulate dynamic allocation in a long
preallocated vector. Suppose V is the storage vector. Let OBJ1 be a variable designating an
object instance. An elegant implementation of this mechanism uses statement function
subprograms to implement the fields. That is, A(OBJ1) represents the value of the A field for
the object OBJ1, and E(3,OBJ1) represents the third entry in the E vector for OBJL The code
must call special routines to create object instances and to assign values to them. Once
created, OBJ1 contains an integer pointer. Statement functions A(N) and E(N,J) have the
following definitions:

A(N) =
E(J,N) = V(N+5+J) .

That means that A(OBJ1) becomes shorthand for V(OBJ1+1). This method can work well if
implemented fully. It can be complex, however. Unless the code functions flawlessly, there
is a risk of overwriting values, causing mysterious errors. Because CHARACTER values are
incompatible with other data types in Fortran, they need a separate array. The SYVAC3 Time
Series Package uses a variation on this scheme.
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(4) File storage—While Fortran 77 does not support dynamic allocation of variables in memory, it
does support dynamic allocation of files. Each object instance could correspond to a file. The
file structure could be as complicated as necessary. However, this mechanism suffers from
performance problems since reference to a file is much, much slower than access to memory
on most machines. S (Becker et al. 1988) is one software system that uses this mechanism.
Furthermore it is difficult to standardize, since it depends on the file management capabilities
of the underlying operating system.

The PSP uses primarily the second method listed here. To store multiple Parameter Distributions, it
extends the rank of a data structure for a single Parameter Distribution. There is one exception. A
simple variation of method three maintains the array PUDPAR used to store Uniform Distribution data
from Piecewise Uniform Distributions.

Given that rank extension is the main mechanism for storing multiple Parameter Distributions, two
other design strategies complete the description of the storage design:

(1) Hidden or open storage-The PSP could have an internal data structure accessible to outside
routines only through subroutine calls. This "information cluster" (Page-Jones 1980) approach
permits occasional changes to the data structure without affecting calling programs as long as
the calling interface remains unchanged. The PSP uses an open data structure instead.
SYVAC3 already accesses all the fields stored in the data structure when it reads in the
Parameter Distribution descriptions, and so there is no point in hiding them. Another
alternative would be to use PSP routines to read Parameter Distribution data, but that choice
would create interdependencies between the PSP and the SYVAC3 File Reading Package,
limiting the portability of the former.

(2) COMMON block or argument list-The arrays that provide storage for Parameter Distributions
can be located in a Fortran 77 COMMON block defined in the PSP, or they can be passed in
argument lists when other routines call the PSP. PSP uses the argument list option, for one
main reason. If PSP defines a COMMON block, it must declare the maximum number of
Parameter Distributions to be stored. If AECL were to distribute the PSP as a compiled
library, this declared maximum would constrain the use of the package. When the calling
program passes arrays through the argument list, in contrast, it can declare their dimensions,
making the PSP more portable.
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7.7 Selection of Algorithms

The specifications call for PDF and CDF calculations, along with a variety of statistics, for all
Probability Distribution subtypes. However, Section 4.3 clearly states that PDF, mean, median, and
Sigma calculations are not essential for a conforming implementation. Current implementations of the
Parameter Sampling Package do not support these operations. Section 7.1 identifies the accuracy and
performance requirements for those calculations that are performed. The current design uses
algorithms that exceed the 8-significant-figure accuracy requirement where possible and practical. It
also provides access to extra mathematical functions (e.g., log T(x), erf(x)) needed for the required
calculations, or closely related to the required calculations. Finally, certain generic algorithms, such
as inverting a CDF with Newton's method, or scaling standard distributions, appear frequently.

REQUIRED VERSUS OPTIONAL OPERATIONS

The first implementations of the PSP preceded writing of the detailed specifications presented in this
document. Informal early designs called for the PSP to be a software library that implemented the
minimal set of routines needed explicitly by SYVAC3. The popularity of new object-oriented methods
in the early 1990's (particularly books by Goad and Yourdon (1989) and Rumbaugh et al. (1992)) led
to a reconsideration of the PSP. The package clearly supported object types, but it did not provide a
full range of common operations on these object types. Operations like evaluating the PDF or the
standard deviation were missing, even though authors like Stephens et al. (1989) emphasized the
importance of these aspects of probability distributions. To rationalize the object-oriented
requirements and the actual implementation, this report includes these extra operations in the
specifications, but deems them optional requirements.

The Binomial Distribution falls into the same category. It did not appear in early versions of the code,
but SV309 contains routines to perform both CDF and inverse CDF operations for this distribution.
However, the integration of the Binomial Distribution and the PSP is still not complete. The
specifications in this document describe the integration as it should be, but clearly identify this
distribution as an optional component of an implementation.

GUIDELINES FOR ALGORITHMS

While the PSP in SV309 does not implement some optional operations, it far exceeds some
requirements mentioned in the specifications. For example, Normal Distribution CDF and inverse'
CDF computations usually provide 16-significant-figure accuracy, rather than the required eight
significant figures. Furthermore, the PSP provides apparently unrelated functions such as the error
function erf(;c). The following guidelines were used to determine what algorithm to use and what
routines to implement.

• Strive for machine accuracy-Algorithms should provide a degree of accuracy that matches the
machine precision. For example, "double precision" floating-point arithmetic on a 32-bit
computer gives 16 (IBM PC) or 17 (DEC VAX) digits of precision. If only half of those
digits are correct, there is a risk of unknowing users placing excessive confidence on the
results. Furthermore, future revisions to the package will likely require better accuracy.
Where possible and where improvements would not degrade performance too much, accurate
algorithms were used.

• Maximize the number of useful products-The CDF of a normal distribution has a direct
linkage to the error function erf(;t) and complementary error function erfc(;c) (see Equation (?-
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2) in Section 5.11). To implement one function without the other would be wasteful,
especially since models used with SYVAC3 commonly employ the error function and
complementary error function in solving differential equations for diffusive transport. The PSP
includes several such routines, even though they may not be needed by SYVAC3.

GENERIC ALGORITHMS

Several distributions use the following generic algorithms in their CDF or inverse CDF calculations.

• Scaling and shifting to reach standard distribution-Beta. Normal, Uniform and other
Distributions have one or more attributes that share the same physical units as the random
variable represented by the distribution. These parameters are either location attributes (e.g.,
Mean of a Normal Distribution, Lower Limit of a Uniform Distribution) or scale attributes
(e.g., Standard Deviation of a Normal Distribution). Where such attributes exist, a standard
distribution can be defined with standardized values for the location and scale attributes.
Where possible, code in the PSP performs CDF and inverse CDF calculations on the standard
distributions using transformed arguments. Designs for TRAQUA and TRAVAL in the
following sections identify the location and scale attributes, and specify how to transform
them.

• Use Newton's method to invert a CDF-It is often easier to evaluate the CDF than the inverse
CDF for a given distribution, if only because more methods have been published. Newton's
method works very well at refining a crude estimate of an inverse CDF, given an accurate
CDF. If F(x) is the CDF being inverted at a point p, then Newton's method gives a way of
finding a zero yp of the function G(x) = F(x)-p such that CCy,,) = 0. (Any elementary
numerical analysis text may be consulted for details on Newton's method.) If xf is the i"1

approximation to yp, then a much better approximation is given by

(?(*,.) F(x)-p

where fix) is the PDF for the distribution. Typically this iterative scheme doubles the number
of correct figures in x with every iteration.
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8.1 Parameter Distribution Operations

Table 8.1/1 shows the Parameter Distribution operations identified in the requirements. Some
of these are optional, and are not implemented in SYVAC3 version 3.09 (SV309). Table 8.1/2
shows additional maintenance operations that are implicit in the definition of an object.
Because of the decision to expose the data structure for Parameter Distributions, not all of
these are required either. Table 8.1/3 shows the operations that have been implemented, and
identifies which routines perform these operations.

Table 8.1/1 (derived from Table 4.3/1) uses Mathematica notation to identify several opera-
tions for the Parameter Distribution object type. These operations should apply to any Para-
meter Distribution object, whatever the details of its internal structure (i.e., independently of
the Probability Distribution subtype). The operations identified as "optional" are desirable for
a complete Parameter Sampling Package (PSP), but not necessary for use with SYVAC3.
None of the operations so marked have been implemented in SV309. They appear here as
guidelines for future improvements to the PSP.

TABLE 8.1/1
EXPLICIT OPERATIONS FOR PARAMETER DISTRIBUTIONS

Operation Definition Optional
(Yes/No)

CDF[q_ParDis, x_?NumberQ]

HighProbabi1i ty[q_ParDis]

HighValue[q_ParDis]

LowProbabi1i ty[q_ParDi s ]

LowValue[q_ParDis]

mean[q_ParDi s]

median[q_ParDis]

PDF[q_ParDis, x_?NumberQ]

quantile[q_ParDis,
p_?ProbabilityQ]

Sigma[g_ParDis]

evaluate cumulative distribution function at x

evaluate the cumulative probability of the internal Probability
Distribution at the upper limit of the Parameter Distribution

find the upper limit of the Parameter Distribution

evaluate the cumulative probability of the internal Probability
Distribution at the lower limit of the Parameter Distribution

find the lower limit of the Parameter Distribution

compute average value

compute 50th percentile

evaluate probability density function at x

invert cumulative distribution function at probability p

compute standard deviation

No

No

No

No

No

Yes

No

Yes

No

Yes

In addition to the specialized operations that apply to Parameter Distributions, there are sev-
eral maintenance operations that apply to most object types. They were not shown in the
requirements since they arise automatically when trying to implement a new object type.
Table 8.1/2 lists these operations. Those that are labelled "optional" do not need to be imple-
mented at all. The rest are needed, but the PSP does not necessarily have to implement them
as packaged routines. Because the data structure of the Parameter Distribution object type is
open and available to calling routines, it suffices to let calling routines perform these opera-
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tions by manipulating the data structure directly. For example, a calling routine could read
Parameter Distribution attributes from a data file and store them into the data arrays directly.
This option is a valid implementation of the "read" operation. Table 8.1/3 summarizes the
required operations and how the PSP deals with them.

TABLE 8.1/2
MAINTENANCE OPERATIONS FOR PARAMETER DISTRIBUTIONS

Operation Definition Optional
(Yes/No)

check[pd_ParDis]

copy[pd_ParDis]

create[ParDis, d_ProbDis,
t_Trunc!nt, st ]

delete[pd_ParDis]

read[ParDis,inputdevice]

write[pd_ParDis,
outputdevice]

check pd for validity and internal integrity

creates new object identical to an old one

creates new object: ParDis[d, t, st]

deletes existing object pd

read data from inputdevice and create new ParDis object

write contents of ParDis object to outputdevice

No

Yes

No

Yes

No

No

TABLE 8.1/3
METHODS OF IMPLEMENTING ESSENTIAL OPERATIONS

Operation

CDF

check

create

HighPr obabi 1 i ty

HighValue

LowProbabi 1 i ty

LowValue

median

quantile

read

write

Method of Implementation

evaluate Probability Distribution CDF and scale to Truncation Interval

explicit routine

direct manipulation of data structures

calling routine looks up result in data structure

transform HighProbability in calling routine

calling routine looks up result in data structure

transform LowProbability in calling routine

explicit routine with special argument value

explicit routine

operation in calling routine with direct manipulation of data structures

operation in calling routine with direct manipulation of data structures

Routine

TRAVAL

CKDIST

TRAQUA

TRAQUA

TRAQUA

TRAQUA
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8.2 Direct Manipulation of Data Structures by Calling Routines

The operations create, HighProbability, and LowProbability, identified in Section 8.1, re-
quire the calling routine to directly manipulate the data arrays that store Parameter Distribu-
tion objects. This section shows how to perform these manipulations, and shows why they
should be performed by the calling routines.

The PSP does not directly support "HighProbability" and "LowProbability" operations because
these operations are trivially simple to implement in the calling routine. To demonstrate this
simplicity, Algorithm 8.2/1 shows the algorithm for HighProbability. The algorithm for
LowProbability is strictly analogous. Both are just table lookups.

ALGORITHM 8.2/1: Algorithm for the Operation "HighProbability"

Arguments Data Type

INDX Integer

HIBNDD Double Precision

<*)

HIGHP Double Precision

In/Out Definition Constraint

In Index / of Parameter 0 < /
Distribution

In Upper probability bounds 0 < p^i) < 1

PH

Out Probabilistic upper bound = p^i)

Special Cases

1: lower bound

0: lower bound
1: upper bound

Precondition Input arguments satisfy their constraints.

Postcondition Output arguments satisfy their constraints.

Algorithm

HIGHP <- pji)

Commentary

Simple table lookup.

The PSP does not support the "create" operation by providing a "Create Parameter Distribu-
tion" operation to generate new Parameter Distribution objects because the data interface
would be excessively cumbersome. Table 8.2/1 provides a possible argument list for such a
routine. The routine would need all the arrays used in the Parameter Distribution data struc-
ture, including pointers and counts. It would also require arguments containing all the fields
to be inserted into those arrays, including an array for Piecewise Uniform Distribution data.
In short, it would be about as much work for the calling routine to set up arguments for the
call to "create Parameter Distribution" as it is to perform the "create" operation itself. In a
language with structured data types, there would still be a point in implementing this routine,
because it would create a new instance of an object type. In this Fortran 77 design, however,
implementing a new object essentially means filling in a new row in each existing table. No
new data objects (i.e., no new arrays) are created.

Calling routines implement "create" by performing the following actions: (1) copying the
incoming fields into the permanent data structures, and (2) setting all pointers appropriately.
The only source of complexity is in handling the variety of Probability Distribution types.
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TABLE 8.2/1
EXAMPLE; EXCESSIVELY LONG ARGUMENT LIST FOR A

"CREATE PARAMETER DISTRIBUTION" ROUTINE

Arguments Data Type In/Out Definition Constraint Special Cases

PSNAME Character*(*) In Name of new parameter (useful for Unique None
error messages)

DTYPE Character*(*) In Distribution type for new parameter See Table 3.5/4 Derive from
Table 3.5/4

ATTRIB Double Precision In Distribution attributes for new See Table 3.5/4 Derive from
(4) parameter Table 3.5/4

ICORR Integer In Pointer A: to correlated parameter (for 0 < k < i 1: lower bound
DTYPE in {"CORLN", "CORNR"}) '': upper bound

NPUCMP Integer In Number of ranges in Piecewise 0<NPUCMP l:lower bound
Uniform

PUCOMP Double Precision In Piecewise Uniform ranges R(k,[) See Table 3.5/3 R(l,[) = R(2,l)
(3, NPUCMP) R(3J) = 0

LOWP Double Precision In Lower probability bound qL for new 0 £ qL < qH £ 1 0: lower bound
parameter qa: upper bound

HIGHP Double Precision In Upper probability bound qH for new 0 <> qL < qH < 1 qL : lower bound
parameter 1: upper bound

MXPAR Integer In Maximum number of Parameter i < MXPAR /'+!: lower bound
Distributions

MXPUCL Integer In Maximum number of components in j < MXPUCL j+l: lower bound
all Piecewise Uniform Distributions

LINDX Integer In/Out Index / of last Parameter Distribution 0 £ i < MXPAR 0: lower bound

LPUPTR Integer In/Out Index j of last Piecewise Uniform 0 ^ j < 0: lower bound
component MXPUCL

DSTTYP Character*(*) In/Out Distribution types Valid See Table 3.5/4
(MXPAR)

DSTPAR Double Precision In/Out Probability Distribution attributes See Table 3.5/4 Derive from
(4, MXPAR) A(*,0 Table 3.5/4

IDXCOR Integer (MXPAR) In/Out Indices K(I) of correlated parameters 0 < K(ï) <i 1: lower bound
for DSTTYP(0 in {"CORLN", See Table 3.5/4 f-1: upper bound
"CORNR"} only

PUDPAR Double Precision In/Out Piecewise Uniform detailed attributes See Table 3.5/3 2(1,0 = 2(2,0
(3, MXPUCL) Q(jt,0 2(3,0 = 0

2(2,0 =

LOBNDD Double Precision In/Out Lower probability bounds pL(ï) 0 < pL(i) < pH(ï) 0: lower bound
(MXPAR) pH(f): upper

bound

HIBNDD Double Precision In/Out Upper probability bounds p^i) pL(t) <, p^i) < 1 pL(î): lower
(MXPAR) bound

1: upper bound

OK Logical Out Created OK True or False
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8.3 Reading and Writing Parameter Distributions

The operations read and write (identified in Section 8.1) perform input and output of Para-
meter Distribution objects in a standard format. In an application like SYVAC3, the data
used to create new Parameter Distribution objects come from a data file. A read operation
would be a more practical addition to the Parameter Sampling Package (PSP) than a create
operation, since the new data does not come through the argument list (see Section 8.2). In
SYVAC3, the routine INPDIS reads Parameter Distributions from a data file, but it is not a
suitable routine for the PSP. A write routine to formal a Parameter Distribution would be
useful only if a standard format could suit all applications.

Table 8.3/1 shows the fields input by SYVAC3 and the order in which they are read. This
order is arbitrary, and could be different for a different application. Having "read" and
"write" routines for Parameter Distribution would standardize this order, making it easier to
write code to store and retrieve Parameter Distribution objects. Unfortunately, it is not clear
what format should be standard. Even a simple double-precision value in Fortran 77 can
appear differently, depending on the format code used. For example, the number of digits
shown and the use of exponential notation both depend on format codes. There are many
more options for an object with the complexity of a Parameter Distribution. For this reason,
each application is given the freedom of writing its own input/output routines.

The routine INPDIS reads Parameter Distribution data from an input file in the SYVAC3
standard order. It permits different formats and spacing of individual fields, as long as they
appear in the right order. INPDIS does not belong to the PSP for a couple of reasons. First,
it uses SYVAC3 file-reading operations, which would make the PSP depend on the SYVAC3
File Reading Package. Second, INPDIS is beyond the scope of the PSP. It actually reads a
set of Sampled Parameter descriptions, of which Parameter Distribution objects are only a
part. Note that the correlated distributions in Table 8.3/1 refer to a Sampled Parameter object
by name rather than to another Parameter Distribution object. To read these fields correctly,
a PSP routine would need to know something about Sampled Parameter objects.

INPDIS also writes out the newly read Parameter Distribution data to a SYVAC3 output file,
thereby defining an output format. In doing so, it writes both the Probability Interval and
Value Interval versions of the Truncation Interval. INPDIS computes Value Intervals for
Parameter Distributions where Probability Intervals are input, but it does not store them, since
only the Probability Interval appears in the current version of the Parameter Distribution data
structure. A standard PSP write routine would not be able to recreate Value Intervals that
were input if the bounds lay outside the Lower and Upper Limits of a finite distribution, and
so it could not reproduce the output currently provided by INPDIS.
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TABLE 8.3/1
FIELDS TO BE READ IN SYVAC3 FOR A PARAMETER DISTRIBUTION

Probability
Distribution

Subtype •

Beta

Binomial
(optional)

Constant

Correlated
Lognormal

Correlated
Normal

Lognormal

Parameter Distribution
Fields

fl. Subtype descriptor
f2. Lower limit
f3. Upper limit
f4. Exponent a
f5. Exponent b
f6. Quantile/value bounds
f7. Lower bound
f8. Upper bound

fl. Subtype descriptor
f2. Number of trials n
f3. Probability p
f4. Quantile/value bounds
f5. Lower bound
f6. Upper bound

fl. Subtype descriptor
f2. Constant value

fl. Subtype descriptor
f2. Geometric mean
O. Geometric standard

deviation
f4. Correlation coefficient
f5. Quantile/value bounds
f6. Lower bound
fl. Upper bound
f8. Correlated parameter

f 1 . Subtype descriptor
f2. Mean
f3. Standard deviation
f4. Correlation coefficient
f5. Quantile/value bounds
f6. Lower bound
f7. Upper bound
f8. Correlated parameter

fl. Subtype descriptor
f2. Geometric mean
f3. Geometric standard

deviation
f5. Quantité (probability)

or value bounds
f6. Lower bound
f7. Upper bound

Constraint

'BETA'
f 2 < f 3
f 2 ^ f 3
0 < f 4
0 < f 5

'Q' or 'V
f 7 < f 8
f 7 < f 8

'BINOM'
0 < f 2

0 5 f 3 5 1
'Q' or 'V

f 5 < f 6
f 5 < f 6

'CONST'

'CORLN'
0 < f 2
1 < f3

-1 <• f4 S 1
'Q' or 'V

f 6 < f 7
f 6 < f 7

valid name

'CORNR'

0 < f 3
-1 < f4 < 1
'Q' or 'V

f 6 < f 7
f 6 < f 7

valid name

'LGNRM'
0 < f 2
1 < f3

'Q' or 'V

f 6 < H
f 6 < f 7

Probability
Distribution

Subtype

Loguniform

Normal

Piecewise
Uniform

Triangular

Uniform

Parameter Distribution
Fields

fl. Subtype descriptor
f2. Lower limit
D. Upper limit
f4. Quantile/value bounds
f5. Lower bound
f6. Upper bound

fl. Subtype descriptor
f2. Mean
f3. Standard deviation
f4. Quantile/value bounds
f5. Lower bound
f6. Upper bound

fl. Subtype descriptor
f2. Number of ranges m
f3. Quantile/value bounds
f4. Lower bound
f5. Upper bound
m repetitions of:
f6. Lower range end
f7. Upper range end
f8. Mixture weight

fl. Subtype descriptor
fl. Lower limit
f3. Mode
f4. Upper limit
f5. Quantile/value bounds
f6. Lower bound
f7. Upper bound

fl. Subtype descriptor
f2. Lower limit
D. Upper limit
f4. Quantile/value bounds
f5. Lower bound
f6. Upper bound

Constraint

'LGUFM'
f 2 < f 3
f 2 < O

'Q' or 'V
f 5 < f 6
f 5 < f 6

'NORML1

0 < D
'Q1 or 'V

f 5 < f 6
f 5 < f 6

'PCUFM'
0 < m

'Q' or 'V
f 4 < f 5
f 4 < f 5

f 6 < f 7
f 6 < H
0 £ f 8

'TRIAN'
f 2 < f 4

f2 < D < f 4
f 2 < f 4

'Q' or 'V
f 6 < f 7
f 6 < f 7

'UNIFM'
f 2 < S f 3
f 2 < f 3

'Q' or 'V
f 5 < f 6
f 5 < f 6
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8.4 Argument List for Operations (e.g., CDF) that Do Not Modify Parameter
Distributions

The preceding sections have discussed some of the essential Parameter Distribution opera-
tions identified in Section 8.1. The remaining operations use Parameter Distribution objects
to perform calculations. These operations have a standard section in their argument lists that
passes down the Parameter Distribution data structure. The algorithm for CDF appears here
as an example of the use of this argument list.

The argument list for an operation that uses a Parameter Distribution object must provide all
the data arrays that store Parameter Distribution data. It is not possible to pass down the data
fields for just one distribution since some Probability Distribution subtypes (i.e., Correlated
Normal and Correlated Lognormal Distributions) refer to more than just one Parameter Distri-
bution. Nor is it possible to leave out arrays that store data for only a few Probability Distri-
bution subtypes (e.g., storage for Piecewise Uniform ranges), since the Parameter Distribution
of interest could have any type of Probability Distribution. One simplification can be made,
however, when compared to the argument list for the "create" operation in Section 8.2. It is
not necessary to pass down the sizes of the arrays because these routines make no additions
or changes to the entries. The only pointer required is the index of the Parameter Distribution
of interest. Table 8.4/1 shows the standard arguments required for such routines; these argu-
ments are referred to in the algorithms throughout the rest of Section 8.

TABLE 8.4/1
STANDARD ARGUMENTS FOR OPERATIONS ON PARAMETER DISTRIBUTIONS

Argument Definition

INDX Index / of Parameter Distribution

PSNAME Names of parameters

DSTTYP Distiribution types

DSTPAR Probability Distribution attributes A(k,l)

IDXCOR Indices K(l) of correlated parameters

PUDPAR Piecewise Uniform detailed attributes Q(k,l)

LOBNDD Lower probability bounds pL(i)

HIBNDD Upper probability bounds pw(i)

This standard argument list is defined in greater detail in Algorithm 8.4/1. In addition to the
required arguments, the argument list contains a list of Parameter Names. These names do
not take any part in the main operations of the called routines. They provide unique
identifiers for the Parameter Distributions for warning and error messages when some
problem arises in the calculations. In SYVAC3 these names are key attributes of Sampled
Parameter objects. Each Sampled Parameter possesses a single Parameter Distribution as
another attribute, and so there is a one-to-one relationship between Sampled Parameters and
Parameter Distributions.
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As an example of the use of the argument list in Table 8.4/1, Algorithm 8.4/1 shows how a
model could evaluate the CDF of a Parameter Distribution. For Conditional Distribution
objects, which have Correlated Normal or Correlated Lognormal Distributions, this algorithm
provides the marginal CDF operation, not the conditional CDF (CCDF) operation of a
Conditional Distribution. This algorithm uses a call to TRAVAL, which evaluates the CDF
of the Probability Distribution component of a Parameter Distribution. The Probability
Distribution CDF is all that SYVAC3 requires. The more complete Parameter Distribution
CDF described by Algorithm 8.4/1 has not yet been implemented as a separate routine. The
CCDF routine for Conditional Distribution objects has also not been implemented, although
TRAQUA provides the inverse CCDF routine.

ALGORITHM 8.4/1: CDF of a Parameter Distribution (Ignoring Correlation)

Arguments Data Type

INDX Integer

In/Out

In

PARVAL Double Précision In

PSNAME Character*(*) (*) In

DSTTYP Character*(*) (*) In

DSTPAR Double Précision In
(4,*)

IDXCOR Integer In

PUDPAR Double Précision In
(3,*)

LOBNDD Double Précision In
(*)

HIBNDD Double Précision In
(*)

QUANTL Double Precision Out

TRANOK Logical

Precondition

Postcondition

Out

Definition Constraint

Index i of Parameter 0 < /
Distribution

Parameter value x

Names of parameters

Distribution types

Probability Distribution
attributes A(k,[)

Indices K([) of correlated
parameters

Piecewise Uniform detailed
attributes Q(k,l)

—

Unique names

See Table 3.5/4

See Table 3.5/4

0 < K(t) < i
See Table 3.5/4

See Table 3.5/3

Lower probability bounds 0 £ pL(i) ^ p^i)

PL(')

Upper probability bounds

P/AO
CDF p of distribution at x

Transformed OK

PL(<") $ P/XO ^ !

0<p = F(x)< 1

True or False

Special Cases

1 : lower bound

Depends on
distribution type

See Table 3.5/1

See Table 3.5/4

Derive from
Table 3.5/4

1 : lower bound
/'-I: upper bound

2(1,0 = 2(2,0
2(3,0 = 0
Q(2,0 = 2CU+1)
0: lower bound
p^O- upper
bound

pL(i): lower bound
1: upper bound

0: lower bound
1: upper bound

All input arguments satisfy their constraints.

All output arguments satisfy their constraints.
TRANOK is True if and only if the routine terminated successfully.

Algorithm

call TRAVAL(INDX, PARVAL, PSNAME, DSTTYP,
DSTPAR, IDXCÛR, PUDPAR, LOBNDD,
HIBNDD, QUANTL, TRANOK)

if ( TRANOK ) then
QUANTL 4- ( QUANTL - pL(i) ) / ( PH(Î) - pL(ï) )
QUANTL <- max(Qt min(l, QUANTL) )

end if

Commentary

Evaluate the CDF of the Probability Distribution
component of the current Parameter Distribution,
without considering the Truncation Interval.

Scale the CDF to the Truncation Interval.
Ensure that the CDF lies in [0,1]. Values outside
this interval were truncated.
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8.5 Derived Operations Performed by Calling Routines

The operations High Value, Low Value, and median (identified in Section 8.1) require the
calling routine to perform calculations that involve calling TRAQUA in the Parameter
Sampling Package (PSP). This section provides algorithms for these calculations. Routines
in applications that use the PSP currently encode these algorithms inline. In future imple-
mentations, new PSP routines may encapsulate these operations to simplify their use.

The operations "HighValue" and "LowValue" together find the bounds on the Truncation
Interval as a Value Interval rather than a Probability Interval. To translate these bounds they
call TRAQUA. That routine inverts the CDF of the Probability Distribution component of a
Parameter Distribution, as shown in Algorithm 8.5/1 for "HighValue." The algorithm for
"LowValue" is similar, except that the CDF is inverted at the probability zero rather than one.

The operations "HighValue" and "LowValue/ when applied to a distribution over a finite
interval, always return values between the Lower Limit and the Upper Limit of the distribu-
tion. For example, the "HighValue" operation returns the value 5 when applied to an untrun-
cated Uniform Distribution from 3 to 5. When applied to an untruncated infinite distribution,
the "HighValue" and "LowValue" operations return values so far out in the tails of the distri-
bution that the CDF at those points is not significantly different from zero and one. These
operations do not return positive or negative infinity, as Fortran 77 has no way of represent-
ing those values.

ALGORITHM 8.5/1: HighValue for a Parameter Distribution

Arguments Data Type In/Out Définition Constraint Special Cases

The argument list containing INDX, PSNAME, DSTTYP, DSTPAR, 1DXCOR, PUDPAR, LOBNDD, and HIBNDD
(see Section 8.4) appears first, with the arguments listed below following HIBNDD.

HIVAL Double Precision Out Upper truncation bound XH

HIGHOK Logical Out High Value found OK

F(xH) = PH(I) ' F'(0): lower bound
F'(l): upper bound
Pr( X = XH ) > 0

True or False

Precondition Input arguments satisfy their constraints.

Postcondition Output arguments satisfy their constraints.
HIGHOK takes the value True if and only if the routine terminated successfully.

Algorithm Commentary

call TRAQUA(INDX, l.DO, PSNAME, DSTTYP,
DSTPAR, IDXCOR, PUDPAR, LOBNDD,
HIBNDD, HIVAL, HIGHOK)

Invert the Parameter Distribution CDF at 1. (The
inverse at 0 would give the "LowValue.")

Like "HighValue" and "LowValue," the "median" operation finds a particular value in a
Parameter Distribution. In the case of "median," the value has the property that the proba-
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bility of randomly selecting a higher value equals the probability of selecting a lower value.
That is, the "median" operation finds the 0.5 quantile of the Parameter Distribution. Algo-
rithm 8.5/2 shows how to compute this value. The algorithm is very similar to that of
"HighValue" and "LowValue."

ALGORITHM 8.5/2: Median for a Parameter Distribution

Arguments Data Type In/Out Definition Constraint Special Cases

The argument list containing INDX, PSNAME, DSTTYP, DSTPAR, IDXCOR, PUDPAR, LOGNDD, and
HIBNDD (see Section 8.4) appears first, with the arguments listed below following HIBNDD.

MEDIAN Double Precision Out Median value xu F(xM) = 0.5 Pr(X = XM)

MEDOK Logical Out Median found OK True or False

Precondition

Postcondition

>0

Input arguments satisfy their constraints.

Output arguments satisfy their constraints.
MEDOK takes the value True if and only if the routine terminated successfully.

Algorithm

call TRAQUA(INDX, 0.5DO, PSNAME, DSTTYP,
DSTPAR, IDXCOR, PUDPAR, LOBNDD,
HIBNDD, HIVAL, HIGHOK)

Commentary

Invert the Parameter Distribution CDF at 0.5
Truncation Interval applies.

. The

While the algorithms shown here will work for all Probability Distribution types, the results
may not always match expectations based on continuous distributions. If X has a continuous
distribution and a median of m, Pr(X < m) = 0.5 and Pr(X > m) =0.5, where Pr(a) is the
probability of event A. For a discrete or mixed distribution (i.e., one with finite probabilities
of achieving one or more specific values) with median m, the best that can be said is that
Pr(X < m) < 0.5 and Pr(X >m)> 0.5.

For example, consider a variable X associated with a Binomial Distribution object that has
only one trial with a probability p = 0.7 of success. X can take either the value zero (with a
probability of 0.3) or one (with a probability of 0.7). What is the median value? Is it zero,
or one, or some value in between? The median cannot be zero because the probability that
X exceeds zero is 0.7, which is greater than 0.5. The median cannot be any value between
zero and one for the same reason. Therefore, the median must be one. In this case,
Pr(X < median) = 0.3 and Pr(X > median) = 0. Both these probabilities would be
unacceptable for a continuous distribution, but they make sense for a discrete distribution.

The "HighValue" and "LowValue" operations for discrete and mixed distributions also behave
in ways that would be unacceptable for continuous distributions. For example, since the
"LowValue" of a discrete distribution is a discrete value, it may remain unchanged by signi-
ficant changes in the corresponding probability in LOBNDD.
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8.6 CKDIST: Check a Parameter Distribution

CKDIST checks a Parameter Distribution for adherence to all the constraints in Section 3.5.
Its argument list contains the list of arguments in Table 8.4/1. If CKDIST finds problems, it
sets a flag and also writes warning or error messages using WRSPWN or WRSPER.

CKDIST uses the generic argument list associated with the arguments in Table 8.4/1. Unlike
most other routines that use this argument list, CKDIST may change entries. Specifically, it
restricts entries in the arrays LOBNDD and HIBNDD to the interval [0,1].

CKDIST follows Algorithm 8.6/1, which for brevity does not show calls to WRSPWN and
WRSPER to write messages. Code derived from the algorithm should generate an error mes-
sage with WRSPER whenever one of the checks fails. It should generate a warning message
with WRSPWN if LOBNDD or HIBNDD is changed.

CKDIST is called by both TRAVAL and TRAQUA whenever these routines are invoked.
Because other routines call it frequently, its operation should be made efficient.

ALGORITHM 8.6/1: Subroutine CKDIST: Check Parameter Distribution

Argument Data Type
s

In/Out Definition Constr Special Cases
aint

The argument list from Section 8.4 containing INDX, PSNAME, DSTTYP, DSTPAR, IDXCOR, PUDPAR,
LOBNDD, and HIBNDD appears here, with one change: LOBNDD and HIBNDD are In/Out rather than In in this
routine. The argument listed below appears after HIBNDD.

DSTOK Logical Out Distribution is OK True
or

False

Precondition

Postcondition

No precondition-input arguments may or may not satisfy their constraints.

pL(i) has been increased to 0 if its original value was negative.
Pif(i) has been reduced to 1 if its original value was greater than 1.
Suitable error or warning messages have been written for each input constraint not satisfied.
DSTOK takes the value True if and only if: all constraints were satisfied or the only

constraints not satisfied were those requiring adjustments of pL(i) and/or />«(/)• •

Algorithm

call INDXER(MODNAM, i, DSTOK)

if ( DSTOK ) then

if ( DSTTYP(0 = 'BETA' ) then check that:
A(l,i) < A(2,() and 0 < A(3,i) and 0 < A(4,i)

else if (DSTTYP(i) = 'BINOM' ) then check that:
0<A( l , i ) a«^OSA(2 , i )< 1

else if ( DSTTYPO') = 'CONST' ) then
no checks needed

Commentary

Check the index / > 0.

Beta Distribution
Order of interval limits; positive shape parameters.

Binomial Distribution (optional)
Non-ner .live number of trials, and valid probability.

Constant Distribution
Any attribute value is acceptable.
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else if (DSTTYP(i) = 'CORLN') then check that:
0 < A(U) and 1 < A(2,i) and -1 < A(3,i) < 1 and
0 < K(i) < i and
( ( DSTTYP(K(0) = 'NORML1 and 0 < A(2,K(i)) )

or
( DSTTYP(AT(0) = 'LGNRM' and

0 < A(l,K(i)) and 1 < A(2,K(i)) ) )

else if (DSTTYP(i) = 'CORNR') then check that:
0 < A(2,i) and -1 < A(3,i) < 1 and
0 < K(i) < i and
( ( DSTTYP(K(/)) = 'NORML' and 0 < A(

or
( DSTTYP(K(/)) = 'LGNRM' and

0 < A(1,K(0) and 1 < A(2,K(i)) ) )

else if (DSTTYP(i) = 'LGNRM') then check that:
0<A( l , i ) and 1 <A(2,i)

else if (DSTTYP(/) = 'LGUFM') then check that:
0<A( l , / )<A(2 , i )

else if (DSTTYP(i) = 'NORML' then check that:
0 < A(2,0

else if (DSTTYP(i) = 'PCUFM') then check that:
0 < A(l,i) and 0 < A(2,i) and 0 < A(3,<) and
( PUDPAR(1 J) < PUDPAR(2,/) and 0 <,
PUDPAR(3J) )

for j from A(l,i)+l to A(l,/)+A(2,/) and
( PUDPAR(2J) < PUDPAR(1J+1) )forjfrom

else if (DSTTYP(0 = 'TRI AN') then check that:
A(1,/)SA(2,0<A(3,/)

else if (DSTTYP(i) = 'UNIFM') then check that:
A(l ,0<A(2, i )

end if
if (DSTTYP(i) ?t 'CONST') then check that:

LOBNDD(i) < HIBNDD(/)
end if
if ( any of the checks above failed ) then

write suitable error messages using WRSPER.
DSTOK <- False

else DSTOK <- True
end if
if (DSTTYP(i) * 'CONST') then

LOBNDD(i) <- max(0, LOBNDD(i))
HIBNDD(i) <- m/«(l, HBBNDD(f))
if (either bound required adjustment) then

write a warning message using WRSPWN.
end if

end if
end if

Correlated Lognormal Distribution
Geometric mean, geometric std deviation.correlation.
Index of correlated Parameter Distribution.
Correlated independent Normal Distribution.
Correlated independent Lognormal Distribution.
Geometric mean, geometric standard deviation

Correlated Normal Distribution
Standard deviation and correlation coefficient.
Index of correlated Parameter Distribution.
Correlated independent Normal Distribution.
Correlated independent Lognormal Distribution.
Geometric mean, geometric standard deviation.

Lognormal Distribution
Geometric mean, geometric standard deviation.

Loguniform Distribution
Interval limits are ordered correctly.

Normal Distribution
Positive standard deviation.

Piecewise Uniform Distribution
Pointer to PUDPAR, number of ranges, total weight.
Range ends are ordered correctly and each weight is
non-negative.
Ranges are ordered correctly.

Triangular Distribution
Interval limits ordered right, with mode in middle.

Uniform Distribution
Interval limits ordered right.

Verify that upper and lower bounds are properly ordered
for nonconstant distributions.

The programmer is free to construct suitable messages.

For nonconstant distributions, the lower and upper
bounds should lie in the interval [0,1] since they are
probabilities.
Invalid bounds do not cause a problem, and so they are
made to be valid, and only a warning message is
written.
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8.7 TRAVAL: CDF of a Probability Distribution

TRAVAL evaluates the CDF of the Probability Distribution component of a Parameter Distri-
bution. Its arguments use the data structure described by Table 8.4/1. TRAVAL calls
CKDIST to check incoming arguments to ensure a valid distribution is available. TRAVAL
performs simple calculations directly. It calls other routines in the package to perform more
complicated CDF calculations. TRAVAL applies scale and location transformations to a
standard distribution where appropriate.

TRAVAL uses Algorithm 8.7/1, which reveals some points of interest:

• Discrete/Mixed Distributions—Finite distributions have a finite interval within which the
probability density function (PDF) is positive. Values outside this interval have a CDF
of either zero or one. TRAVAL should assign CDF values correctly even when the
interval is of zero length, and the CDF is discontinuous. Discrete distributions (e.g.,
Constant Distribution, Binomial Distribution) where the variate can take only discrete
values, and mixed distributions (e.g., Piecewise Uniform Distribution) where some of the
values the variate can take are discrete, have discontinuous CDFs and must be treated
correctly.

• Location and Scale Transformations—Many distributions can be standardized (given
standard attribute values) by suitable transformations. CDF calculations on standardized
distributions require less computation. Location transformations shift the distribution so
that some selected attribute (e.g., the left end of a finite interval, or the mean of a
Normal Distribution) takes the value zero. Scale transformations renormalize the width
so that another selected attribute (e.g., the right end of a finite interval, or one standard
deviation from the mean for a Normal Distribution) takes the value one.

• Subroutine calls—Complicated calculations for normalized distributions take place in
independent routines (e.g., NORDIS for the standard normal CDF).

ALGORITHM 8.7/1: Subroutine TRAVAL: Evaluate CDF for a Probability
Distribution in a Parameter Distribution

Arguments Data Type In/Out Definition Constraint Special Cases

The argument list from Section 8.4 containing INDX, PSNAME, DSTTYP, DSTPAR, IDXCOR, PUDPAR,
LOBNDD, and HIBNDD appear first, with PARVAL inserted beMeen INDX and PSNAME; the following
additional arguments appear after HIBNDD.

PARVAL Double Precision In Parameter value x - Depends on
distribution
type

QUANTL Double Precision Out CDF p of distribution at 0 < p = F(x) 0: lower
x < 1 bound

1: upper
bound

TRANOK Logical Out Transformed OK True or False
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Precondition All input arguments satisfy their constraints.

Postcondition All output arguments satisfy their constraints.
TRANOK takes the value True if and only if QUANTL has been evaluated
successfully.

Algoritiim Commentary

call CKDIST(i, PSNAME, DSTTYP, 4, K, Q, pL, pH, TRANOK)
if ( TRANOK ) then

if ( DSTTYP(i) = 'BETA' ) then
call BTADIS(4(3,0, 4(4,0, (x - 4(1,0) / (4(2,0 - 4(1,0), p)

else if (DSTTYP(i) = 'BINOM' ) then
call BINDlS(x, 4(1,0, 4(2,0, p)

else if ( DSTTYP(j) = 'CONST' ) then
if (x < 4(1,0) then p <- 0 else p *- 1 end if

else if (DSTTYP(0 = 'LGNRM' or DSTTYP(0 = 'CORLN') then
if (x < 0) then p <- 0
else z <- log( x I 4(1,0 ) / log( 4(2,0 )

call NORDIS( z, p )
end if

else if (DSTTYP(0 = 'LGUFM') then
if (x< 4(1,0) then p <-0
else if (x > 4(2,0) then p <- 1
else p <- log(x I 4(1,0) / log( 4(2,0 / A(l,0 )
end if

else if (DSTTYP(0 = 'NORML' or DSTTYP(0 = 'CORNR') then
z<-(x~ 4(1,0)/4(2,0
call NORDIS( z, p )

else if (DSTTYP(0 = 'PCUFM') then
call PUDIS(x, round(A(l,i)), round(A(2,i)), 4(3,0, 0- P)

else if (DSTTYP(0 = 'TR1AN') then
call TRIDIS( (x - 4(1,0) / (4(3,0 - A(l,0),

(4(2,0-4(1,0) / (4(3,0-4(1,0), p)
else if (DSTTYP(0 = 'UNIFM') then

if (x< 4(1,0) then p <-0
else if (x > 4(2,0) then p <- 1
else p «-(JT-4(1,0) / (4(2,0-4(1,0)
end if

end if
end if

The constraints can be summarized as
"Use a valid distribution"; CKDIST
checks for validity.

Beta Distribution.
Evaluate CDF for standard beta
distribution.

Binomial Distribution (optional).
Evaluate CDF with BINDIS.

Constant Distribution.
The CDF jumps from 0 to 1 at 4(1,0-
Logn.ormal Distribution or Correlated
Lognormal Distribution.
CDF = 0 below and at 0.
Standard value with mean 0 and std.
dev. 1.
Evaluate CDF of standard normal.

Loguniform Distribution.
CDF = 0 below the range.
CDF = 1 above the range.
Interpolate in linear CDF on logarithmic
scale.

Normal Distribution or Correlated
Normal Distribution.
Standard value with mean 0 and std.
dev. 1.
Evaluate CDF of standard normal.

Piecewise Uniform Distribution.
Evaluate CDF. Round converts to
integer.

Triangular Distribution.
Transform x to standard value in [0,1]
and evaluate CDF with TRIDIS.

Uniform Distribution.
CDF = 0 below the range.
CDF = 1 above the range.
Interpolate in linear CDF to find
probability.



- 138-

8.8 TRAQUA: Invert the CDF of a Parameter Distribution

TRAQUA transforms a value between 0 and 1 to a value in the domain of a Parameter Distri-
bution by inverting the CDF. Its arguments use the arguments in Table 8.4/1 in the data
structure of Algorithm 8.4/1. TRAQUA calls CKDIST to check incoming arguments to ensure
a valid distribution is used. It may call other routines to perform complicated inverse
calculations.

TRAQUA uses Algorithm 8.8/1 to invert the CDF of a Parameter Distribution. If the Proba-
bility Distribution part of the Parameter Distribution has a Distribution Type of either
'CORLN' or 'CORNR,' the Parameter Distribution is a Conditional Distribution. In that case,
TRAQUA inverts the conditional CDF (CCDF) of the distribution. TRAQUA and TRAVAL
are in many respects inverse operations of each other, but not in their treatment of Condi-
tional Distributions.

When the distribution is discrete (e.g., a Constant Distribution) or mixed (e.g., some Piece-
wise Uniform Distributions with zero-width intervals), the distribution has a discontinuous
CDF. For example, a Constant Distribution has a CDF that jumps from 0 to 1. In such cases
TRAQUA maps any input probability that lies between the two discontinuous values onto the
location of the discontinuity.

Like TRAVAL, TRAQUA maps distributions that can be standardized onto a standard form.
For example, TRAQUA maps a Normal Distribution onto a standard normal with a mean of
zero and a standard deviation of one. TRAQUA then inverts the standard distribution, and
maps the result back onto the domain of the original distribution.

Finally, it is important to note that the input probability to TRAQUA lies in the interval [0,1],
not the interval [pL(i), pw(/)]- TRAQUA maps every input probability onto the interval
Oi.(0, PH(?)] before inverting.

ALGORITHM 8.8/1: Subroutine TRAQUA: Invert CDF of a Parameter Distribution

Arguments Data Type In/Out Definition Constraint Special Cases

The argument list containing INDX, PSNAME, DSTTYP, DSTPAR, IDXCOR, PUDPAR, LOBNDD, and HIBNDD
(see Section 8.4) appears first. The next argument, QUANTL, appears within this argument list behveen INDX and
PSNAME. PARVAL and TRANOK appear after HIBNDD.

QUANTL Double Precision In/Out Probability p designating a quantile 0 < p < 1 0: lower bound
1: upper bound

PARVAL Double Precision In/Out Parameter value X(i) - Depends on
(*) distribution type

TRANOK Logical Out Transformed OK True or False

Precondition All input arguments satisfy their constraints.

Postcondition All output arguments satisfy their contraints.
QUANTL may be changed, but only by replacing its value by 0 or 1 if it lies respectively

above or below the interval [0,1].
PARVAL(i) = F'(QUANTL), where F is the CDF of the ilh distribution.
TRANOK = True if and only if the routine terminated successfully.
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Algorithm Commentary

call CKDIST(i, PSNAME, DSTTYP, A, K, Q, pL, pH, TRANOK)

p <—
q <r-
if ( TRANOK ) then

if ( DSTTYP(f) = 'BETA' ) then
call INVBTA(c, A(3,i), A(4,i), v)
X(/)<- (l-y)A(U) + y 54(2,0

else if (DSTTYP(i) = 'BINOM' ) then
call INVBINGj, A(l,/), A(2,i), X(f)

else if ( DSTTYP(0 = 'CONST' ) then
X(i) «- A(U)

else if (DSTTYP(i) = 'CORLN') then
if (DSTTYPCKU)) = 'NORML') then

call INVCOR(p, log A(l,0, log A(2,0, , A(3,0,

else if (DSTTYP(K(0) = 'LGNRM') then
call INVCOR(p, log A(l,i), log A(2,0,

log A(1,K(0), log A(2,K(0), log
end if

else if (DSTTYP(i) = 'CORNR') then
if (DSTTYP(K(0) = 'NORML') then

call INVCOR(p, A(l,0, A(2,i), , A(3,i),

else if (DSTTYP(K(;)) = 'LGNRM') then
call INVCOR(p, A(l,/), A(2,0, pL(i), p«(0,

A(l, /:(/)), log A(2,X(0), log X(AT(0
end if

else if (DSTTYP(i) = 'LGNRM' ) then
call INVNOR(g, y)
X(0«-A( 1,0 54(2,1)"

else if (DSTTYP(0 = 'LGUFM') then

log

else if (DSTTYP(0 = 'NORML') then
call INVNOR(<?, y)
X(i) <- A(l,0 + y-A(2,i)

else if (DSTTYP(0 = 'PCUFM') then
q <- (1-/?K(0 + P^O
call INVPU(9, roKnd(A(l,0), r ), A(3,0, PUDPAR,

else if (DSTTYP(0 = 'TRIAN') then
call INVTRI^, [A(2,0-A(1,0] / [A(3,0-A(1,/)],
X(i) <- (7-y) A(l,0 + y-A(3,0

else if (DSTTYP(0 = 'UNIFM') then

end if
end if

CKDIST checks distribution validity.

Restrict probability to interval [0,1].
Interpolate between high and low probabilities.

Beta Distribution
Find standard beta variate v.
Map y onto the range of X(0-

Binomical Distribution (optional)
Invert binomial CDF.

Constant Distribution
Always the same point.

Correlated Lognormal Distribution
Correlated to Normal Distribution.
Invert conditional distribution to get log of
result.

Correlated to Lognormal Distribution.
Invert conditional distribution to get log of
result.
Transform from log scale to give final value.

Correlated Normal Distribution
Correlated to Normal Distribution.
Invert conditional distribution to get result.

Correlated to Lognormal Distribution.
Invert conditional distribution to get result.

Lognormal Distribution or
Invert standard normal at truncated probability.
Transform to log scale.

Loguniform Distribution
Linear interpolation on a log scale.

Normal Distribution
Invert standard normal distribution.
Change location and scale for this distribution.

Piecewise Uniform Distribution
Interpolate between high and low probabilities.
Invert distribution.

Triangular Distribution
Invert standard triangular distribution.
Change location and scale for this distribution.

Uniform Distribution
Interpolate to invert linear CDF.
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9.1 Overview of the Beta and Binomial Distribution Algorithms

The standard beta distribution is a flexible two-parameter distribution defined over the inter-
val [0,1]. Figure 9.1/1 shows the iwriety of PDF shapes thaf can be generated by appropri-
ate choices of the parameters a and b. The object-oriented and mathematical definitions of
the Beta Distribution appeared in Sections 5.1 and 5.2. The Parameter Sampling Package
(PSP) evaluates the CDF and the inverse CDF for this distribution using three interconnected
routines: BTADIS, GAMMAL, and INVBTA (Figure 9.1/2). In addition, the Binomial Distri-
bution CDF routine, BINDIS, calls the BTADIS routine. INVBIN, which inverts the binomial
CDF, does not use a Beta Distribution routine.

Exponent
b

0.5

0.5 1 2
Exponent a

FIGURE 9.1/1: Sample Shapes for the Beta PDF

Figure 9.1/1 (a copy of Figure 5.1/2) shows the variety of shapes that the standard beta PDF
can adopt. This flexibility stems from the two shape parameters, a and b, used by the distri-
bution. It comes at a cost—the CDF, inverse CDF, and even the PDF use functions are
difficult to evaluate using standard Fortran 77 function libraries.
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INVBTA
Invert
Beta CDF

BTADIS
Evaluate
Beta CDF

.>
X

BINDIS
Evaluate CDF
of Binomial
Distribution

GAMMAL
Evaluate
Log Gamma
Function

FIGURE 9.1/2: Beta Distribution
Routines

There are five routines in the PSP to handle
Beta Distribution and Binomial Distribution
operations. Figure 9.1/2 (synthesized from .
Figures 3.1/1 and 3.1/2) shows the relationships
among four of these routines. BTADIS and
INVBTA evaluate the beta CDF and inverse
CDF respectively. BINDIS evaluates the
binomial CDF. INVBIN, which evaluates the
inverse binomial CDF, is not shown since it
does not call any other routines. INVBTA calls
BTADIS because it uses Newton's method as
described in Section 7.5 to refine estimates of
the inverse CDF. Both BTADIS and INVBTA
call GAMMAL, which evaluates the log gamma
function. This routine is needed to evaluate the
complete beta function B(a,b), which appears in
the PDF and CDF. Equation (5.2-2) in Section
5.2 defines B(a,b) as a ratio of gamma func-
tions. Since T(x) gets large very rapidly with x,
it is preferable to deal with log T(x), to avoid
floating-point overflow on a computer. There is
currently no PSP routine to evaluate B(a,b) di-
rectly, which is an oversight that should be cor-
rected in the future.

To evaluate T(x) for large x, GAMMAL uses Stirling's approximation with a rational correc-
tion term provided by Hart et al. (1978). For small x, GAMMAL uses an iteration from
ACM Algorithm 291 by Pike and Hill (1966) to transform the variable to a large x.

BTADIS uses ACM Algorithm 179 by Ludwig (1963), with later corrections by Pike and Hill
(1966), Bosten and Battiste (1973), and Pike and Soohoo (1975) to evaluate the standard beta
CDF, also known as the incomplete beta ratio function.

INVBTA starts with an approximation of 0.5 and uses Newton's method, as described in
Section 7.5, to produce successive refinement in the estimated inverse. A bisection technique
ensures that the inverse is confined to steadily diminishing intervals.

The Binomial Distribution, described in Sections 5.3 and 5.4, is a discrete distribution. The
CDF can be evaluated by finite sums. There is also a closed formula for the CDF (Press et
al. 1986) in terms of the incomplete beta ratio function. The binomial CDF routine, BINDIS,
uses this approximation, and calls BTADIS. In contrast, the inverse CDF routine, INVBIN,
uses finite sums of probabilities since the inverse CDF is discontinuous.
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9.2 GAMMAL: The Log Gamma Function

To evaluate T(x) for large x, GAMMAL uses Stirling's approximation with a rational correc-
tion term provided by Hart et al. (I978). For smalt x, GAMMAL uses an iteration from ACM
Algorithm 291 by Pike and Hill (1966) to transform the variable to a large x.

Algorithm 9.2/1 specifies how GAMMAL works. GAMMAL is a subroutine (not a function)
with two arguments. The first argument specifies the value x at which the log gamma func-
tion is to be evaluated. The second argument returns the calculated value. This routine
works only for positive values of x.

GAMMAL has been adapted from CACM Algorithm 291 by Pike and Hill (1966). The basic
premise behind this algorithm is that Stirling's formula with a suitable correction term pro-
vides an accurate estimate of T(x) for x >. 7. A recurrence relation can convert smaller
values of x to larger ones so that Stirling's formula can be applied for all positive x. The
original algorithm provided an accuracy to about 10 decimal places. The implementation of
the algorithm in GAMMAL uses a different correction term from the one in Algorithm 291.
This approximation, from Hart et al. (1978), provides an accuracy to about 16 decimal places.
The transition point between the two parts of the algorithm was raised from 7 to 8 to
compensate for the higher accuracy demands.

Stirling's formula takes the form

Inn*) « \x - - lux - x + Inx + C(jc) , (9.2-1)

where C(x) is a small correction term. Pike and Hill used a Laurent series (i.e., a power
series in 1/x2) to estimate ^(x). Hart et al. recommend a rational approximation instead.
GAMMAL uses function LGAM 5443 from Hart et al.:

0.0691561607375687 |— + 0.498030766924499634 — + 0.28811928393554601533
r2 J r2

' —*- .(9.2-2)
— + 6.09161691641660296 — + 3.4574314072267450698
x2 }x2

The correction function in Equation (9.2-2) applies only for x > 8. For smaller x values, the
following recursion offers a means of transforming the argument to the accepted range:

F(x+l) = xT(x) ,

or (9.2-3)
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Algorithm 9.2/1 shows how these parts fit together.

ALGORITHM 9.2/1: Subroutine GAMMAL—Log Gamma Function

Arguments Data Type In/Out Definition Constraint Special Cases

X Double Precision In Argument of log gamma >0 0: lower bound
8: algorithm
switch

LOGGAM Double Precision Out Log gamma function value = In F(X) > -1

Precondition Input arguments satisfy their constraints.

Postcondition Output arguments satisfy their constraints.

Algorithm Commentary

LOGGAM <- 0
while ( X < 8 )

LOGGAM <- LOGGAM - In X
X < - X + 1

end while
LOGGAM <- LOGGAM + In T(X)

Initialize result
Loop to get X large enough for Stirling's algorithm
Correct result using Equation (9.2-3)
Increment X

Use Equation (9.2-1) to evaluate the In T(X) function, with the
correction term from Equation (9.2-2)
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9.3 BTADIS: The Beta CDF or Incomplete Beta Ratio Function

BTADIS uses ACM Algorithm 179 by Ludwig (1963) with later corrections by Pike and Hill
(1966), Bosten and Battiste (1973), and Pike and Soohoo (1975) to evaluate the standard beta
CDF, also known as the incomplete beta ratio function.

Algorithm 9.3/1 summarizes ACM Algorithm 179, as corrected by several authors. Bosten
and Battiste (1973) explain the ACM Algorithm as follows (equation numbers added).

Algorithm 179 (modified to include the remark by M.C. Pike and I.D. Hill (1966)) computes the Incomplete
Beta Ratio using

-x' • IXP5*p) + x' • (1 -*)« • IXP*«?) FINSVM ,Q - ..

) -rxp+i) rxp)-rx<?+i) ' v ' ;

1NFSUM and FINSVM represent two series summations defined as follows:

INFSUM ~ 2 i - .where (9.3-2)
fa p + i i\

(1-PS), = 1 P = 0 ]

m+f-ra (9>3'3)

-PS) - - V > 0]

FWSUM = V - rt?-lH<- -- _ (9.3.4)

where [q] is equal to the largest integer less than q. If [q] = 0, then FINSUM = 0. PS is defined as

PS = 1, if q is an integer; otherwise
(9.3-5)

= q - [q] •

In this quotation, p is the same as a in this report, and q is the same as b. The names
INFSUM and FINSUM appear in the Fortran code given with Algorithm 179, but they do not
have the same definitions as in Equations (9.3-2) and (9.3-4). Instead, INFSUM refers to the
entire first term of Equation (9.3-1), and FINSUM refers to the second term. BTADIS, which
is very similar to the published code, retains this convention.

BTADIS transforms its arguments using the following equality to obtain better convergence:

Ix(a,b) = 1 - I,.x(b,a) . (9.3-6)
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ALGORITHM 9.3/1: Subroutine BTADIS—Beta Distribution CDF

Arguments Data Type In/Out Definition Constraint Special Cases

SHPBT1 Double Precision

SHPBT2 Double Precision

STDVAL Double Precision

In Shape attribute a

In Shape attribute b

In Function argument x

BTAPRB Double Precision Out Cumulative probability p

>0

>0

Q<p<\

0: lower bound

0: lower bound

0: algorithm change
1: algorithm change

0: lower bound
1: upper bound

Precondition Input arguments satisfy their constraints.

Postcondition Output arguments satisfy their constraints.
BTAPRB = I,(a,b)

Algorithm Commentary

if (STDVAL < 0) then
BTAPRB <- 0

else if (STDVAL ^ 1) then
BTAPRB «- 1

else
if (STDVAL > 0.5) then

LARGEX <- true
STDVAL <- 1 - STDVAL
loca <— b; locb <— a

else
LARGEX <- false
loca <— a; locb <— b

end if
if (locb = integerpart(/ocf>)) then

PS<- 1
else

PS <r- locb - integerpart(/ocfe)
end if

XB <- loca log x + log T(PS+loca) - log T(PS) -
log r(/oca+l)

if (XB > log of the smallest representable number)
then

INFSUM <- Sum of infinite series * e*8

else
INFSUM <-0

end if

if (locb > 1) then
XB <- loca log x + locb log (1-x) +

log r(loca+locb) - log r(loca) -
log T(locb+l)

FINSUM «- Sum of finite series * e*8

else
FINSUM <-0

end if
BTAPRB <- INFSUM + FINSUM
if (LARGEX) then

BTAPRB <- 1 - BTAPRB
end if

end if

The PDF is nonzero only between 0 and 1.
Below 0, the CDF is 0.

Above 1, the CDF is 1.

If the argument is relatively large ...
Transform the arguments for a more efficient power
series, using Equation (9.3-6).
Exchange local values of a and b.

Set flag for later.

Use Equation (9.3-5) to calculate PS.

Log of the multiplier of INFSUM in Equation (9.3-1).
Use calls to GAMMAL.

Sum until terms stop affecting result; use Equation
(9.3-2) for sum of the series.

Empty summation.

XB is log of the multiplier of FINSUM in Equation
(9.3-1). Use calls to GAMMAL. Use Equation
(9.3-4) for FINSUM. Early and late terms in sum may
underflow; scale terms to keep them representable.

Empty summation.

Unlike Equation (9.3-1), both INFSUM and FINSUM
already include the coefficients.
Transform back using Equation (9.3-6).
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9.4 INVBTA: Inverse of the Beta CDF

INVBTA inverts CDF of the standard beta distribution to yield a value between 0 and 1.
INVBTA starts with an approximation of 0.5 and uses Newton's method, as described in Sec-
tion 7.5, to produce, successive refinements in the estimated inverse. A bisection technique
ensures that the inverse is confined to steadily diminishing intervals.

Newton's method, as described in Section 7.5, is a general method for finding zeros of
smooth, continuous functions. In this case, Newton's method finds a zero of the function
Ix(a,b) - p, where p is the probability value at which the beta CDF I^ajj) (defined in Equation
(5.2-4), Section 5.2) is to be inverted. Newton's method converges quickly when started with
a good estimate of the zero, except with pathological functions. In a typical case, Newton's
method doubles the number of correct significant figures (or the number of correct bits in the
binary representation) with each iteration. However, the whole iteration can diverge if the
initial estimate of the zero is not sufficiently accurate.

In contrast, successive bisection is a highly reliable, but rather slow, method of finding the
zero of a continuous function, once you have an interval containing precisely one zero. The
procedure is simple:

(1) Evaluate the function at the endpoints of the interval of interest. One function value
should be positive and the other negative.

(2) While the current interval is too long
(3) Evaluate the function at the midpoint of the interval.
(4) Find the new subinterval (either the left half or the right) that contains the zero.
(5) End while.

(6) Set the final estimate to the midpoint of the final interval.

Each iteration through the while loop in this algorithm requires one function evaluation and
adds one correct bit to the estimate of the zero.

The combined algorithm uses Newton's method to yield new estimates, and uses the bisection
method to prevent Newton's method from diverging if the starting estimate is too crude. The
combined algorithm still requires several evaluations of the beta CDF. To improve perform-
ance, INVBTA limits the resolution of the result to the minimum required by the specifica-
tions, namely one part in 108. Algorithm 9.4/1 shows the combined algorithm in detail.
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ALGORITHM 9.4/1: Subroutine INVBTA—Inverse Beta Distribution CDF

Arguments Data Type In/Out Definition Constraint Special Cases

QUANTL Double Precision In Cumulative probability p

SHPBT1 Double Precision In

SHPBT2 Double Precision In

BTAVLU Double Precision Out

Shape attribute a

Shape attribute b

Beta variate value x

>0

>0

0: lower bound
1: upper bound

0: lower bound

0: lower bound

Precondition Input arguments satisfy their constraints.

Postcondition Output arguments satisfy their constraints.

Algorithm Commentary

if ( QUANTL 5 0 ) then
BTAVLU <r- 0

else if ( QUANTL a 1 ) then
BTAVLU <- 1

else
BTAVLU <- 0.5
LOBND <-0
HIBND <- 1

call BTADIS(a, b, BTAVLU, CDFX)
while (HffiND-LOBND > 10'8 and

ICDFX-QUANTLI > io-8 )
if (CDFX > QUANTL) then

HIBND <- BTAVLU
else

LOBND <- BTAVLU
end if

PDFX <- exp( log T(a+b) - log F(a) -
log T(b) + (a-1) log x + (b-\) log (1-*) )

BTAVLU <- BTAVLU -
(CDFX - QUANTL) / PDFX

BTAVLU <- min(BTAVLU, HIBND)
BTAVLU <r- m<u(BTAVLU, LOBND)
w <- 0.8 + 0.2 (i - ICDFX - QUANTL |)'°

BTAVLU <- W * BTAVLU + (1 - W) *
(LOBND + HIBND)/2

call BTADIS(fl, b, BTAVLU, CDFX)
end while

end if

The only allowed case here is p = 0, which yields
the left end of the interval.

The only allowed case here is p = I , which yields
the right end of the interval.

Use combination of Newton's method and bisection.
Initial estimate.
Initial interval endpoints: [LOBND, HIBND]
We know that CDF(LOBND)-QUANTL < 0
and CDF(fflBND)-QUANTL > 0

Find CDF at 0.5.
Repeat while neither interval length nor fit to
QUANTL are good enough.

Pick left-hand half interval.

Pick right-hand half interval

Use Equation (5.2-1) in Section 5.2 to evaluate the
beta pdf.
Apply Newton's method to find new estimate of the
zero.

Restrict new estimate to lie within the current
interval.
W is a weight that depends on how well CDFX
matched QUANTL last time; it lies in [0.8,1.0].

The new point is a weighted average of midpoint
and corrected Newton's method estimate.
Find CDF at new point.
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9.5 BINDIS: The Binomial CDF

The Binomial Distribution, described in Sections 5.3 and 5.4, is a discrete distribution. The
CDF can be evaluated by finite sums. There is also a closed formula for the CDF (Press et
al. 19S6), in terms of the incomplete beta ratio function. The binomial CDF routine, BINDIS,
uses this approximation, and calls BTADIS.

Equation (5.4-2) in Section 5.4 provides an expression to compute g/n,/?). the probability of
achieving precisely j successes in a set of n independent Bernoulli trials, each with a proba-
bility p of success:

~PT'J 0 <; < n, 0 </? < 1, (9.5-1)

( M 1 M I

where = - ! — is the number of distinct combinations of n things taken j at a time.
(j ) ;!(«-;)!

The following recursive relationship, which can easily be derived from the defining equation,
provides an efficient means of evaluating a sequence of these binomial probabilities for p < 1:

g0(nj>) = (1 -py
(n + l -j)p for; from 1 to n. (9.5-2)

.3

Cumulative probabilities Fk(n,p) for integer k values are summations of these probabilities
from 0 to k, as established by Equation (5.4-3) in Section 5.4:

Fk(n,p) = Y, g(n,p) for k from ° to »•

An algorithm to evaluate the binomial CDF could easily be constructed on the basis of these
equations. It would involve few operations for small k or n, and many more operations for
large n and large k. That is the basis of Algorithm 9.5/1, to invert the binomial CDF.

Equation (5.4-4) in Section 5.4 provides a simpler alternative for calculating a single value of
the CDF:

k

/ - U + D 0 < fc < n, 0 <p < 1. (9.5-4)
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One function call to BTADIS returns the cumulative probability directly. The algorithm must
treat the case where k - n specially since the incomplete beta ratio function evaluated by
BTADIS would otherwise receive a shape parameter value of 0, which lies outside the region
in which the algorithm applies. Algorithm 9.5/1 shows how BINDIS can handle this
approach.

In some cases it would be more efficient to use the summation technique in BINDIS (for
example, when; = 0). Press et al. (1986) say that for n "larger than a dozen or so," the beta
probability technique is better. For smaller n, "either method is acceptable." BINDIS uses
only the beta probability technique to keep the code simple and robust.

ALGORITHM 9.5/1: Subroutine BINDIS—Binomial Distribution CDF

Arguments Data Type In/Out

VARVAL Double Precision In

NTRIAL Double Precision In

SPROB Double Precision In

CPROB Double Precision Out

Precondition

Postcondition

Input arguments

Definition

Number of successes k

Constraint

Q<k<,n

Number of Bernoulli trials n 0<n

Probability p of success in
each trial

Cumulative probability P

satisfy their constraints.

0<p< 1

0 < P < 1

Special Cases

0: lower bound
n: upper bound

0: lower bound

0: lower bound
1: upper bound

Output arguments satisfy their constraints.
P = F,(n,p)

Algorithm

if ( k < 0 ) then
P<-0

else if ( k Z n ) then
P<r- 1

else
call BTADIS( Jt+1
P<- 1 -P

end if

, n-k, p, P)

Commentary

Probability of negative number of successes is 0.

Probability of up to n or more successes is 1.

Calculate probability using Equations (9.5-4) from
Section 9.5 and Equation (9.3-6) from Section 9.3.



- 152-

9.6 INVBIN: Inverse of the Binomial CDF

The Binomial Distribution CDF can be evaluated by finite sums, as Section 9.5 shows. The
inverse CDF can evaluate the same sums to determine the inverse. The closed formula for
the CDF used in BINDIS is not appropriate for the inverse routine, however, since the distri-
bution is discrete and a discontinuous CDF is difficult to invert using smooth functions. The
inverse CDF routine, INVBIN, uses the finite sums approach.

Algorithm 9.6/1 shows how Equation (9.5-2) from Section 9.5 can be used to determine
cumulative probabilities efficiently. The iteration that generates these cumulative probabilities
stops when the input probability has been reached. The number of the last iteration is the
inverse of the CDF.

The inverse calculation can be affected by underflow. For example, the initial probability of
zero successes may be too small to represent in a computer's floating-point notation. If the
initial probability is incorrectly taken as zero, then all the probabilities will be evaluated as
zero because of the recursive formula. This difficulty can be circumvented in at least two
ways. First, all the probabilities can be scaled, perhaps by factoring out powers of (1 - p).
As the iteration proceeds, values will need to be rescaled. Alternatively, the routine could
store logarithms of probabilities to preserve significance. These options do not appear in
Algorithm 8.6/1, since nobody has expressed a requirement for handling Binomial Distri-
butions with large numbers of trials, where the underflow problem would arise.
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ALGORITHM 9.6/1: Subroutine INVBIN—Inverse Binomial Distribution CDF

Data Type In/Out Definition Constraint Special Cases

QUANTL Double Precision In Cumulative probability P

NTRIAL Double Precision In

SPROB Double Precision In

Number of Bernoulli trials n

Probability p of success in
each trial

0 £ P < 1

O S n

0 < p < 1

0: lower bound
1: upper bound

0: lower bound

0: lower bound
1: upper bound

BINVLU Double Precision Out Number of successes k

Precondition Input arguments satisfy their constraints.

Postcondition Output arguments satisfy their constraints.
If (p = 0) then k = 0,
else if (p = 1) then k = n,
else

if (P = 0) then k= 0,
else the probability of k-1 successes < P £ probability of k successes.

Algorithm Commentary

if (p <, 0) then
l t< -0

else if (p > 1) then
k <r- n

else
LSTPRB <- (1 - pf
CUMPRB <- LSTPRB
*«-0
while ( k < n and CUMPRB < P)

k<r-k+ 1
LSTPRB <- LSTPRB[(n + 1 - k)p]/[k(l - p)}

CUMPRB <- CUMPRB + LSTPRB
end while

end if

No chance for successful trials, so the number of
successes is 0.
Every trial is a success, so the number of successes
is NTRIAL.
Use recursion to find the number of successful trials.
Initialize probability.
Initialize cumulative probability.
Start with BINVLU at 0.
Loop until cumulative probability reaches QUANTL.

Apply recursion in Equation (9.5-2), Section 9.5, to
update LSTPRB
Update cumulative probability.
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10.1 Overview of Algorithms

The Uniform family of distributions includes the Uniform, Loguniform and Piecewise Uniform
Distributions. They are usually ad hoc distributions, applied for practical purpose when there
is little theoretical basis for the precise shape of the distribution. The Triangular Distribu-
tion, which is not otherwise related to the Uniform Distribution, is also an ad hoc distribu-
tion. Like the other members of the family, it has a finite domain. Unlike the Uniform and
Piecewise Uniform Distributions, it has a unique mode. The Constant Distribution can be
considered as a member of this family because it is the same as a Uniform (or Loguniform or
Triangular) Distribution with zero width. Algorithms for the Uniform, Loguniform and Con-
stant Distributions are simple. The CDF and inverse CDF can be computed inside TRAVAL
and TRAQUA respectively. The Piecewise Uniform and Triangular Distributions have their
own CDF and inverse CDF routines (Figure 10.1/1).

Figure 10.1/1 shows that TRAVAL and TRAQUA contain embedded code to evaluate and
invert the Constant, Uniform and Loguniform Distributions. Algorithms for these routines in
Chapter 8 specify the CDF calculations. Table 10.1/1 summarizes the formulas used. These
come directly from the equations in Chapter 5, and they summarize the relevant parts of
Algorithms 8.7/1 and 8.8/1.

TABLE 10.1/1

ALGORITHMS FOR EVALUATING AND INVERTING CDFs

Distribution Type

Constant

Loguniform

Triangular

Uniform

Attributes

Constant Value: a

Lower Limit: a
Upper Limit: b

Lower Limit: a
Mode: b
Upper Limit: c

Lower Limit: a
Upper Limit: b

FM
if ( x < a ) then 0 else 1

if ( x < a ) then 0
else if (x>b) then 1
else \n(xla)i\n(b/a)

if ( x < a ) then 0
else if ( x £ c ) then 1
else if ( x < b ) then

(x-fl)2/[(fc-a)(c-fl)]
else l-(c-x)V[(c-e)(c-a)]

if ( x < a ) then 0
else i((x>b) then 1
else (x-a)/(b-a)

/=»

a

if ( p < 0 ) then a
else if ( p > 1 ) then b
else exp[(l-p)ln a + p-ln b]

if ( p < 0 ) theri a
else if ( p > 1 ) then c
else if ( p < (b-a)/(c-a) ) then

a + \p(c-d)(b-d)}u

else c - [(l-p)(c-a)(c-e)]°-5

if ( p < 0 ) then a
else if ( p > 1 ) then b
else (l-p)a + p-b

Figure 10.1/1 also shows that the Triangular Distribution requires calls to TRIDIS and
INVTRI to perform CDF and inverse CDF calculations. Since the Triangular Distribution
PDF is piecewise linear, the CDF is piecewise quadratic. TRIDIS and INVTRI use straight-
forward formulas that are also shown in Table 10.1/1. TRIDIS and INVTRI assume a
standard triangular distribution in which a = 0 and c = 1, which simplifies the calculations
somewhat.
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The Piecewise Uniform Distribution has routines PUDIS and INVPU to perform CDF and in-
verse CDF calculations. Both these routines perform their calculations in two steps. The first
step identifies the Uniform Distribution within the Piecewise Uniform Distribution that ap-
plies. The second step performs calculations relative to this Uniform Distribution, using the
expressions in Table 10.1/1. These routines are described in more detail in Section 10.2.

n

TRAVAL
Transform
value to

probability

<embedded>
Evaluate CDF
of Constant

<embedded>
Evaluate CDF
of Loguniform

PUDIS
Evaluate CDF
of Piecewise

Uniform

<embedded>
Evaluate CDF

of Uniform

TRIDIS
Evaluate CDF
of Triangular

= subroutine : function | | = external link

<embedded>
Invert CDF
of Constant

<embedded>
Invert CDF

of Loguniform

TRAQUA
Transform
quantité

INVPU
Invert CDF

of Piecewise
Uniform

<embedded>
Invert CDF
of Uniform

INVTRI
Invert CDF

of Triangular

: subroutine = function | | = external link

FIGURE 10.1/1: Routines in the Constant, Triangular, and Uniform Family
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10.2 TRIDIS and INVTRI: Routines for the Triangular Distribution

Algorithms 10.2/1 and 10.2/2 show the algorithms for TRIDIS and INVTRI, used to calculate
the CDF and inverse CDF for a standard Triangular Distribution. Since the Triangular Dis-
tribution PDF is piecewise linear, the CDF is piecewise quadratic. The inverse CDF
requires a square root since it finds the root of a quadratic equation. TRIDIS and INVTRI
use straightforward formulas that appeared in Table 10.1/1.

The routines TRIDIS and INVTRI evaluate and invert the CDF of a standard Triangular Dis-
tribution, which ranges from 0 to 1, with a mode M somewhere between. The major routines
TRAVAL and TRAQUA call these routines. Other programs wishing to avoid the overhead
of the checks performed by these routines can call TRIDIS and INVTRI directly. In such a
case, the calling routine must ensure that the mode lies in the appropriate interval.

ALGORITHM 10.2/1: Subroutine TRIDIS—CDF of a Standard Triangular Distribution

Arguments Data Type In/Out Definition

VARVAL Double Precision In Value x in standard
triangular distribution

MODE Double Precision In Mode M of standard
distribution

TRIPRB Double Precision Out Cumulative probability p

Constraint

0<M< 1

0 < p=F(x) S 1
where F is the
triangular CDF

Special Cases

0: lower bound
1: upper bound

0: lower bound
1: lower bound

0: lower bound
1: upper bound

Precondition Input arguments satisfy their constraints.

Postcondition Output arguments satisfy their constraints.

Algorithm

if ( x <, 0 ) then p <~ 0
else if ( x > 1 ) then p <- 1
else if ( x < M ) then p <- x*/M
else p <- l-(l-;t)2/(l-M)
end if

Commentary

No chance of values below 0.
All values lie below 1.
Piecewise quadratic to the left of the mode.
Piecewise quadratic to the right of the mode.
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ALGORITHM 10.2/2: Subroutine INVTRI—Inverse CDF
of a Standard Triangular Distribution

Arguments Data Type In/Out Définition Constraint

QUANTL Double Precision In Cumulative probability p 0 S p <, 1

MODE Double Precision In Mode M of standard 0<,M<,1
distribution

TRIVLU Double Precision Out Value * in a standard Q£x£l;
triangular distribution F(x) = p, where F is

the triangular CDF

Special Cases

0: lower bound
1: upper bound

0: lower bound
1: lower bound

0: lower bound
1: upper bound

Precondition Input arguments satisfy their constraints.

Postcondition Output arguments satisfy their constraints.

Algorithm

if ( p < 0 ) then x <- 0
else, if ( p > 1 ) then x <- 1
else if ( p < M ) then x <- (pM)"-5

else**- l-[(l-p)(l-M)]°'5

end if

Commentary

No chance of values below 0.
All values lie below 1.
Probability of not exceeding mode M is also M.
quadratic to the right and left of the mode.

Invert piecewise
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10.3 PUDIS and INVPU: Routines for the Piecewise Uniform Distribution

Algorithms W.Bi'l and i0.3iQ show how to calculate the CDF and inwrse CDF for the Piece-
wise Uniform Distribution. The key step is to find the applicable Uniform Distribution, and
to transform probabilities appropriately for that distribution. With suitable transformations,
calculations then reduce to those for a Uniform Distribution.

ALGORITHM 10.3/1: Subroutine PUDIS—CDF for a Piecewise Uniform Distribution

Arguments Data Type In/Out Definition Constraint Special Cases

STDVAL Double Precision In

PUPTRS Integer In

NUMCLS Integer In

TOTWGT Double Precision In

PUDPAR Double Precision In

Value x in distribution

Pointer q to columns of
PUDPAR

Number n of columns in
PUDPAR used

Total weight W from all
components

Piecewise Uniform
detailed attributes Q(k,l)

PUPRB Double Precision Out Cumulative probability p

;z> 1

W>0
q+n

= £
;=<?+!

See Table 3.5/3

0 < p = F(x) < 1
where F is the

CDF

{Q('-9+/')} for
/ e {1,2},
y e {1,2, . . . n ] :
transition points

0: lower bound

1: lower bound

0: lower bound

2(1,0 = Q(2,0
2(2,0 = Q(l,/+l)
2(3,0 = 0
0: lower bound
1: lower bound

Precondition Input arguments satisfy their constraints.

Postcondition Output arguments satisfy their constraints.

Algorithm Commentary

1
if US 0(1, 9+1)) then p < - 0
else if ( x > Q(2,q+n) ) then p
else leftwt «- 0

bin <- q+l
while ( bin < q+n and Q(2,bin) < x ) do

leftwt <- leftwt + Q(3,bin)
bin «- bin + 1

end while
if ( x < 2(1, tin) ) then p <- leftwt I W
else rightwt «- leftwt + 2(3, bin)

if ( x = Q(2,bin) ) then p <- rightwt I \v

else ratio <- (x-Q(\,binft I (Q(2,bin)-Q(l,bin))
p <- (ratio-rightwt + (l-ratio)'leftwi) I W

end if
end if

end if

No chance of values to the left of all ranges.
All values lie to the left of right-hand end.
Between extremes; find where.
Initialize loop counter.
Loop invariants:
- bin lies between q+l and q+n-l
- x lies to right of current bin

leftwt is total weight of bins left of current bin.
x could lie between bins where probability is constant.
rightwt is cumulative weight including current bin.
This line is needed in case bin has zero width.
Relative position inside bin.
Linear interpolation.
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ALGORITHM 10.3/2: Subroutine INVPU—Inverse CDF
for a Piecewise Uniform Distribution

Arguments Data Type In/Out Definition Constraint Special Cases

QUANTL Double Precision In Cumulative probability p

PUPTRS Integer In

NUMCLS Integer In

TOTWGT Double Precision In

PUDPAR Double Precision In

PUVLU Double Precision Out

Pointer q to columns of
PUDPAR

Number n of columns in
PUDPAR used

Total weight W from all
components

Piecewise Uniform
detailed attributes Q(k,l)

Value x in Piecewise
Uniform Distribution

q>0

W > 0
q+n

= £ 0(3,0
/-?»!

See Table 3.5/3

F(x) = P
where F is the

CDF

0: lower bound
1: upper bound
Probabilities at
endpoints of bins

0: lower bound

1: lower bound

0: lower bound

2(1,0 = g(2,o
2(2,0 = G(U+l)
(2(3,0 = 0
endpoints of bins

Precondition Input arguments satisfy their constraints.

Postcondition Output arguments satisfy their constraints.

Algorithm Commentary

if ( p < 0 ) then x <- Q(l,q+l)
else if ( p > 1 ) then x <- Q(2,q+n)
else bin <— q+l

leftwt <- 0
rightwt <r- Q(3,bin)
targetweight «- p-W
while ( bin < q+n and rightwt < targetweight) do

bin «— bin + I
leftwt <— rightwt
rightwt <- rightwt + Q(3,bin)

end while
if ( Q(l,bin) = Q(2,bin) ) then x «- Q(l,bin)
else ratio <- (targetweight - leftwt) I Q(3,bin)

x <- ratio-Q(1,bin) + (\-ratio)-Q(l,bin)
end if

end if

No chance of values to the left of all ranges.
All values lie to the left of right-hand end.
Between extremes; find where, bin is a pointer to the
current column of Q. leftwt and rightwt are cumulative
weights to the left and right ends of this bin.
targetweight is p converted to a weight.
Loop invariants at start of loop:

bin lies between q+\ and q+n-l
- x lies to right of current bin

leftwt is total weight of bins left of current bin.
- rightwt is total weight of bins including current bin.
Pick the location of the current zero-width bin.
Relative position inside bin.
Linear interpolation.
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11.1 Overview of Normal Family Algorithms

The normal family of distributions includes the Normal, Lognormal, Correlated Normal and
Correlated Lognormal Distributions. These infinite or semi-infinite distributions have sound
theoretical justifications for their use. For example, a Nonnal Distribution represents the
limiting case when a variate is the sum of a large number of random additive influences.
Each distribution is based on a Normal Distribution through some transformation. Figure
11.1/1 shows the connection among the routines used in evaluating CDF s and inverse CDFs.
The CDF of a Normal Distribution can appear as an error function erf() or a complementary
error function erfcQ. The Parameter Sampling Package implements these and other related
routines that can be used as utility functions in other applications.

Table 11.1/1 shows how each distribution type in the family relates to the Normal Distribu-
tion type. For example, it shows that the logarithm of a variable with a Lognormal Distri-
bution is normally distributed. The attributes of each such Normal Distribution stem from the
attributes of the original distribution according to simple formulas shown in the table. The
cases where the correlated independent distribution is lognormal rather than normal do not
appear in the table. They are very similar to the ones shown (see Section 8.8).

TABLE 11.1/1

RELATIONSHIP OF EACH DISTRIBUTION TYPE WITH THE NORMAL
DISTRIBUTION

Distribution
Type

Normal

Correlated
Normal

Lognormal

Correlated
Lognormal

Attributes of Distribution ofX

Mean jo^

Standard Deviation ax

Mean \ix

Standard Deviation ax

Correlation Coefficient pxr

Geometric Mean gmx

Geometric Standard Deviation gsdx

Geometric Mean gmx

Geometric Standard Deviation gsdx

Correlation Coefficient pxr

Normal
Form of
Variate

X

X

I n X

I n X

Attributes of Related Normal Variate Given
Independent Normal Variate Y=y

Mean iix

Standard Deviation ax

Mean |ix + p^xCy-n^a* / oy

Standard Deviation ax (l-pw)°-5

Mean In gmx

Standard Deviation In gsdx

Mean ln(gmx) + p^-Hy)'
\n(gsdx) 1 oy

Standard Deviation ln(gsdx) (l-pxy)°
i5

Figure 11.1/1 shows the structure of the routines that support the normal family of
distributions. TRAVAL and TRAQUA appear at the top as main routines for evaluating and
inverting CDFs. The routines for evaluating and inverting Normal and Correlated Normal
Distribution CDFs appear in the figure as well, although TRAVAL evaluates the Correlated
Normal Distribution CDF internally (Section 8.7). TRAVAL and TRAQUA (Section 8.8)
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<embedded>
Evaluate CDF
of Correlated

Normal

INVCOR
Invert CDF of

Correlated
Normal

= subroutine = function | | = external link

FIGURE 11.1/1: Routines in the Normal Family

perform all of the Lognormal and Correlated Lognormal Distribution CDF calculations
internally as well. These do not appear at all in the figure to keep it relatively simple.

NORDIS is a key module in all these calculations, because all of the other distribution types
can be expressed in terms of the Normal Distribution, as shown by Table 11.1/1. NORDIS
transforms the argument to an appropriate region, and then separates the calculation of the
CDF into an exponential part and a correction factor, as recommended by Hart et al. (1978).
DRERF and DRERFC evaluate the correction factors. They use a variety of algorithms,
depending on the magnitude of the argument.

DERF and DERFC are functions to evaluate the error function erf(x) and complementary
error function erfc(;c). The algorithms for those are similar to that of NORDIS, and they call
the same routines. EXERFC evaluates a three-argument function that turns up in solving
nuclide transport problems: e*(erfc(>0 - erfc(z)). Direct computation of this function is diffi-
cult because the difference can be extremely small compared to the magnitudes of the terms,
and the exponential factor can be very large. EXERFC evaluates the function accurately if it
has a significant value, by transforming arguments and calling DRERFC.
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11.2 General Strategy for Evaluating Normal Distribution and Error Functions

The routines NORDIS, DERF, DERFC and EXERFC form a closely related nucleus for the
operations carried out for the normal family of distributions. Hart et al. (1978) discuss the
implementation of the error function erf() and complementary error function erfcQ in the real
domain. They recommend partitioning the domain of the functions into regions where differ-
ent approaches are used, as shown in Table 11.2/1. A similar partitioning works for NORDIS
and EXERFC, as shown in Table 11.2/2. Lower level routines, DRERF and DRERFC, pro-
vide building blocks to handle the calculations in these regions.

First consider the evaluation of erf(x) and erfc(;c). The domain of erf(;c) can be restricted to
nonnegative values, since erf(x) is an odd function:

erf(-;c) = -erf(x) .

The following identity relates the functions erf(x) and erfc(x) to one another:

erf(;c) + erfc(;c) = 1 .

(11.2-1)

(11.2-2)

For maximum accuracy in evaluating erf(*) and erfc(x), the smaller (in absolute magnitude)
should be evaluated directly, and the other function can be found by subtracting that value
from 1. Which function to evaluate depends on the value of x. Using these two equations,
Hart et al. recommended that the domain be divided as shown in Table 11.2/1.

TABLE 11.2/1

EXPRESSIONS FOR ACCURATE EVALUATION Of erffx) AND erfc(x)

X

x < -0.5

-0.5 < x < 0

0 < x < 0.5

0.5 <x

erf(*)

-[1 - erfcO*)]

-erf(-Jt)

erf(;c)

1 - erfc(jc)

erfc(;c)

2 - erfc(-x)

1 + erf(-;e)

1 - erf(jt)

erfc(x)

The standard normal CDF, O^O, 1), can also have its domain broken down in this way
because it has a linear relationship with both erf(;c) and erfc(x), as shown by the following
equations adapted from Section 5.11:

1 + erf

&
2 - erfc (11.2-3)
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The routine EXERFC, which calculates the function efl(erfc(;t) - erfc(y)), introduces an addi-
tional requirement. It is not uncommon in transport solutions that the first factor e° generates
a floating-point overflow, while the erfc terms each cause a floating-point underflow. The
result of the entire expression may neither underflow nor overflow, but may be a represent-
able floating-point number. To allow cancellation of exponents in this situation, one would
like to express erfc(;c) as:

erfc(x) = e-x*r(x) , (11.2-4)

thereby defining a new function r(). Then,

eflerfcOt) = e"'xtr(x) (11.2-5)

and large values of a and x can cancel off before the exponentiation takes place. This ap-
proach is practical because erfc(x) behaves like exp(-A^), to within a factor of x, for large x.
Most approximation formulas for erf(;r) and erfc(*) have a factor of exp(-^) in them. Ac-
cordingly, it is possible to implement a routine for r(x) s exp(x2)erfc(o:) efficiently. It is also
possible to implement efficiently a routine for the corresponding function s(x) = exp(^2)erf(A-).

Table 11.2/2 puts all these conditions together, and summarizes the calculation methods to be
followed. It shows that all the required expressions can be written easily in terms of r(x)
evaluated for large positive x values, and s(x) evaluated for nonnegative x values close to 0.
The routines DRERFC and DRERF implement r(x) and s(x) respectively over the restricted
ranges. They use rational approximations or continued fractions as described in later sections.

TABLE 11.2/2

EXPRESSIONS FOR ACCURATE EVALUATION OF FUNCTIONS

erf (A:) erfc(x) $,(0,1) e"erfc(x)

x < -0.5 -1 + exp(-jr)r(-j:) 2 - exp(-.r)r(-;c) e\p(-xr/2)r(-xJ2 ")/2 2ef -

-0.5 S * < 0 -exp(-J^)5(-^) 1 + expC-j^X-*) [1 - exp(-A^/2)j(-x/21/2)]/2 e" + i

0 < A : < 0 . 5 expt-^X*) 1 - exp(-A^X^) [1 + exp(-£l2)s(xl2iay\l2 e"-

0.5 < x 1 - expC-^M*)
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11.3 DERF, DERFC: Routines to Evaluate erf(jc) and erfc(x)

Section 11.2 outlines the general approach to be taken in evaluating erff*) and erfcfa).
Algorithms 11.3/1 and 11.3/2 flesh out the procedures. Both routines depend upon DRERF
and DRERFC, which implement the function r(x) and s(x) discussed in Section 11.2.

Algorithm 11.3/1 for DERF departs somewhat from the general approach of Section 11.2.
First, the domain of the argument x has more subintervals with different algorithms. The new
subintervals prevent underflow in the calculations. Second, to reduce the number of cases to
consider, the algorithm evaluates erf(|x|) first and then corrects for the algebraic sign.

ALGORITHM 11.3/1: Function DERF—Error Function

Arguments Data Type In/Out Definition Constraint Special Cases

XND Double Precision In Arbitrary argument x

DERF Double Precision Out Error function at x, z.

0, ±10'9, ±0.5, ±6.5:
algorithm points
of change

-1 < z=erf(;t) < 1 -1: lower bound
1: upper bound

Precondition None.

Postcondition Output arguments satisfy their constraints.

Algorithm Commentary

if ( .r < 0 ) then
absx = -x
sign = -1

else if ( x > 0 ) then
absx = x
sign = 1

else
absx = 0
sign = 0

end if

if (absx< 10"') then
DERF <- DRERF(afc«r)

else if ( absx < 0.5 ) then
DERF <r- e\

else if ( absx < 6.5 ) then
DERF <- 1 - exp(-a65AJ)DRERFC(at«)

else
DERF<- 1

end if

DERF <- DERF • sign

Assign absx, the absolute value of x, and sign, a unit value in
the direction of x.

Avoid underflow in squaring absx. Exponential factor is
effectively 1 to more than 16 significant figures.

Evaluate DERF in terms of DRERF.

Evaluate DERF in terms of DRERFC.

DERF is essentially 1 to more than 16 significant figures.

Correct for original sign.
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To compute erfc(;c), Algorithm 11.3/2 uses additional subintervals in computing a functional
value, like Algorithm 11.3/1. The added breakpoints are slightly different from those in
Algorithm 11.3/1 because underflows do not occur in exactly the same places. Unlike the
earlier algorithm, this one does not first evaluate the function at \x\, since erfc(;c) is neither
an odd nor an even function.

ALGORITHM 11.3/2: Function DERFC—Complementary Error Function

Arguments Data Type In/Out Definition Constraint Special Cases

XND

DERFC

Double Precision In Arbitrary argument x

Double Precision Out Complementary error
function at x, z.

0, ±10'18, ±0.5, -6.5,
100: algorithm
points of change

0 Z z=erfc(A-) S 2 0: lower bound
2: upper bound

Precondition None.

Postcondition Output arguments satisfy their constraints.

Algorithm Commentary

it(x< -6.5 ) then
DERFC <- 2

else if ( x < -0.5 ) then
DERFC <- 2 - exp(-^)DRERFC(-^)

else if U<-10-'8) then
DERFC <- 1+ exp(-^)DRERF(-Ar)

else if ( x < 10'18 ) then
DERFC <- 1

else if ( x < 0.5 ) then
DERFC <- 1 - exp(-^)DRERF(x)

else if ( x < 100 ) then
expfac <- PEXPC-x*)
if ( expfac > 0 ) then

DERFC <- expfac • DRERFC(x)
else

DERFC <- 0
end if

else
DERFC <- 0

end if

DERFC is effectively 2 to more than 16 significant figures.

Evaluate DERFC in terms of DRERFC.

Evaluate DERFC in terms of DRERF.

Avoid underflow in squaring x. DERFC is effectively 1 to
more than 16 significant figures.

Evaluate DERFC in terms of DRERF.

Arbitrary large number 100.
PEXPQ sets result to 0 if underflow occurs in exp().
Underflow in exponential factor?
Evaluate DERFC in terms of DRERFC.

DERFC is 0 to the precision available.

DERFC is 0 to the precision of any common computer.
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il. 4 NORDIS: Routine to Evaluate 0^(0,1), the Standard Normal CDF

is the standard normal CDF. Section 11.2 outlines the general approach to be taken
in evaluating this function with the subroutine NORDIS. Algorithm 11.4/1 specifies the pro-
cedure to follow in more detail. NORDIS depends upon DRERF and DRERFC, which imple-
ment the function r(x) and s(x) discussed in Section 11.2. It also requires a "protected expo-
nential" function PEXP to evaluate exponentials that may underflow in a floating-point
system.

Like DERFC, NORDIS evaluates a function that is neither an odd nor an even function.
Figure 11.4/1 shows the shape of this function, which is symmetric about the point (0,0.5).
Representing the value of 0^(0,1) at large negative x values is limited by the exponent range
of the floating-point system, since these values can be very small. Representing the value of
Oj(0,l) anywhere else is limited by the precision of the floating-point representation, since the
values are of significant size compared to the asymptotic value of one.

0.8

s
CL

0.6

H= 0.4

"5
E

O 0.2

Ot_J
-4 - 2 0 2

Standard Normal Values [ ]

FIGURE 11.4/1: CDF of a Standard Normal Distribution

Algorithm 11.4/1 for NORDIS departs somewhat from the general approach of Section 11.2
to deal with these precision concerns. The domain of the argument x has more subintervals
with different algorithms. The new subintervals prevent underflow in the calculations.
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ALGORITHM 11.4/1: Subroutine NOROIS—Standard Normal CDF

Arguments Data Type In/Out Definition Constraint Special Cases

XND

CDF

Double Precision In Arbitrary argument x

Double Precision Out CDF, p, of a standard
normal distribution at x.

0, ±10'', ±0.5, 6.5,
-100: algorithm
points of change

0 < p=<$t(Q,\) < 1 -1: lower bound
1: upper bound

Precondition None.

Postcondition Output arguments satisfy their constraints.

Algorithm Commentary

The actual argument to erf.

Arbitrary large negative number -100. Argument is too small to
represent CDF in any current floating-point system.

PEXP( ) sets result to 0 if underflow occurs in exp( ).
No underflow in exponential factor?
Evaluate CDF in terms of DRERFC.

If there was underflow, the result is 0.

Evaluate CDF in terms of DRERF.

Avoid underflow in squaring xbyrt2. Suppress the exponential
factor, which is effectively 1 to more than 16 significant figures.

Avoid underflow in squaring xbyrt2. Exponential factor is
effectively 1 to more than 16 significant figures.

Evaluate CDF in terms of DRERF.

Evaluate CDF in terms of DRERFC.

CDF is essentially 1 to more than 16 significant figures.

xbyrt2 <- x / 21/2

if (^rf2< -100) then
CDF<-0

else if ( xbyrt2 <, -0.5 ) then
expfac <- PEXP(-jfcyr/22)
if ( expfac > 0 ) then

CDF <- expfac • DRERFC(-^yrt2) / 2
else

CDF<-0
end if

else if ( xbyrt2 <, 10"' ) then
CDF <- (1/2) -

expM>yrr22) • DRERFMo
else if ( xbyrt2 < 0 ) then

CDF <- (1/2) - DKERF(-xbyrt2) I 2

else if ( xbyrt2 S 10'9 ) then
CDF <- (1/2) + DRERF(^yrf2) / 2

else if ( xbyrt2 < 0.5 ) then
CDF <- (1/2) +

expM>>>r/22) • DKEKF(xbyrt2) I 2
else if ( xbyrt2 <, 6.5 ) then

CDF <- 1 -
exp(-^rt22)DRERFC(^yrt2) / 2

else
CDF<- 1

end if

/ 2
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11.5 EXERFC: Routine to Evaluate gx(erfc(y) - erfcfe))

Table îî.2/2 summarizes the expressions to be used to yield high precision estimates of
e'erfcfyj in which exponents cancel to avoid overflow and underflow. Algorithm 11.5/1 takes
advantage of these expressions, and also transforms (y,z) pairs to obtain maximum precision
in calculating the difference erfc(y) - erfc(z). The potential precision gains are great, which
is the prime justification for evaluating this entire Junction in a separate subroutine.

Figure 11.5/1 shows the shape of the complementary error function erfc(*), which is symmet-
ric about the point (0,1). Large negative values of x correspond to erfc(;c) values that are very
close to two. If y and z both have large negative values, then computing the difference
erfc(y) - erfc(z) can involve loss of precision due to cancellation. For example, in 10-
significant-figure floating-point arithmetic:

erfc(-4.5) - erfc(-4) = (2.000000000 - 1.999999985) = 1.5-10'8 . (11.5-1)

The final result has only two significant figures. But suppose the following identity is
applied:

erfc(jt) + erfc(-x) = 2 . (11.5-2)

1.5

X

?
CD

0.5

0

X

FIGURE 11.5/1: Complementary Error Function erfc(x)
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Then:

erfc(-4.5) - erfc(-4) = (2 - erfc(4.5)) - (2 - erfc(4)) = erfc(4) - erfc(4.5)

= 1.541725790-10-8 - 1.966160442-10'10 s 1.522064186-10'8 .
(11.5-3)

In this version, full precision remains in the result. Algorithm 11.5/1 generalizes this example
and arranges computations to retain as much precision as possible in values of the target
function.

ALGORITHM 11.5/1: Subroutine EXERFC—Evaluate e*(erfc(y) • erfcfe))

Arguments Data Type In/Out Definition Constrain! Special Cases

XND Double Precision In

YND Double Precision In

ZND Double Precision In

Arbitrary argument x

Arbitrary argument y

Arbitrary argument z

=z: degenerate

=>•: degenerate

RESULT Double Precision Out Value w of function w = e*(eifc(y) - erfcfc)) underflow, overflow

Precondition None.

Postcondition Output arguments satisfy their constraints.

Algorithm Commentary

if ( y =
w <-

) then
0

else
locy <— y
locz <— z
if ( |minO>, z)| = max(|yj, |z|) ) then

locy <— -z
locz <- -y

end if

if ( min(/ocy, locz) < 0 ) then
diff<- DERFC(/ocy) - DERFC(/ocz)
if ( diff= 0 ) then RESULT <- 0
else RESULT <- PEXP(x + \og(\diff\) )

if ( r f i j<0) then
RESULT <- -RESULT

end if
end if

else RESULT

end if
end if

DRERFC(/oc>') -
DRERFC(/o«) )

Difference vanishes.

Make local copy of y.
Make local copy of z.
If larger absolute value has a negative sign ...
Reverse signs of local copies of y and z, and interchange
them to keep the right sign in the result.

If values of locy and locz have different signs ...
Evaluate difference in a straightforward manner.
Difference may be too small to represent.
Otherwise, avoid overflow in taking e* in cases where diff
is so small that the final result can be represented.
Copy sign from diff.

Otherwise both locy and locz are nonnegative ...
Perform cancellation of exponents for both erfc functions,
and evaluate expression in terms of DRERFC.
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11.6 DRERF: Routine to Evaluate s(x) = exp(x2)erf(;c)

Table 11.2/2 shows how the function s(x) can be used in evaluating several other functions.
As shown by the intervals for x in the table, s(x) need only be evaluated over the interval
[0,0.5]. DRERF is a function that evaluates s(x) over this interval. It uses a continued
fraction approximation given as equation (6.7.9) in the reference by Hart et al. (1978).

Figure 11.6/1 shows the shape of the function s(x) = expOt^erfOt) over the interval [0,0.5] in
which DRERF evaluates it. Hart et al. (1978) provide a continued fraction form of erf (A:) as
shown in Equation (11.6-1), which is a copy of their equation (6.7.9):

erfGc) = (11.6-1)

Then s(x) is just:

_2/_L 2X2 4x2 6x2

—i- - ~ (11.6-2)

co

0.6

0.5

0.4

0.3

0.2

0.1

0.1 0.2 0.3
X

0,4 0.5

FIGURE 11.6/1: s(x) = exp(.v2)erf(*)
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Algorithm 11.6/1 for DRERF utilizes a recursion technique, also described by Hart et al.
(1978), to evaluate the continued fraction. It applies the recursion a fixed number of times,
sufficient for 15-decimal-place accuracy across the entire interval. Substantial experimen-
tation with implementations of this function in APL established the required number of itera-
tions to be 10 for arguments in the interval [0,0.5]. Experimentation also showed that the
recursion technique was stable, with little accumulated error, across the function domain. In
contrast, using a rational function equivalent to the continued fraction yielded unstable results
and relatively large errors.

ALGORITHM 11.6/1: Function DRERF—Evaluate exp(x2) erf(x)

Arguments Data Type In/Out Definition Constraint Special Cases

XND

DRERF

Double Precision In

Double Precision Out

Arbitrary argument x

Value z of function.

0 < x < 0.5 0: lower bound
0.5: upper bound

0 < z=exp(;t2)erf(.x) <, 1 0: lower bound
-0.67: upper bound

Precondition Input arguments satisfy their constraints.

Postcondition Output arguments satisfy their constraints.

Algorithm Commentary

if ( x < 0 ) then locx <- 0
else if ( x > 0.5 ) then locx <- 0.5
else locx <— x
end if

nl <-0
n2 <- 2-locx I Tt"2

dl <- 1
d2<r- 1

if ( locx > 10'9 ) then
diff<-fl <- 2-locx2

f2<-3
sign <- -1
do for j from 1 to 10

n3 <- sign -fl-nl + f2-n2
d3 <r- sign-fl-dl + /2-d2
nl <- n2
n2 <- n3
dl <-d2
d2<r-d3
fH-fl+dijf

sign <— -sign
end do

end if
z <- n2 I d2

Make a local copy of the argument x and ensure that it falls
within the required interval.

Initialize the terms in the 2-term recursion for the numerator of
the continued fraction.
Initialize the terms in the 2-term recursion for the denominator
of the continued fraction.

If more than just a linear approximation is needed ...
Initialize the two factors used in the recursion.

Initialize the sign of the parts of the continued fraction.
Iterate in evaluating the continued fraction.
Evaluate new numerator iteration.
Evaluate new denominator iteration.
Reassign numerator and denominator iterates.

Increment factors.

Alternate signs.

Final result is ratio of numerator to denominator.
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il.? DRERFC: Routine to Evaluate r(x) =

Table 11,2/2 shows how the function r(x) can be used in evaluating several other functions.
DRERFC is a function that evaluates r(x) for any x> 0. It uses a rational approximation
(Algorithm 5708 in Hart et ai (1978)) or a continued fraction approximation (Equation
(6.7.10) in Hart et al. (1978)), depending on the magnitude of x.

Figure 11:7/1 shows the shape of the function r(x) = exp(^)erfc(x) for nonnegative x. Hart et
al. (1978) provide a rational function for r(x) (Algorithm 5708) that maintains about 16 signi-
ficant figures of precision for x over the interval [0,8]:

- «"erifctt * .

where the coefficients are given in Table 11.7/1. Algorithm 11.7/1 utilizes this approximation
for x in [0,8], and a continued fraction (Equation 6.7.10 from Hart et al. (1978)) to evaluate
s(x) for x > 8:

r(x) =

1 2

1 ~ 7
x+ x+ x+

'0 —2
X* X6 X* X10

10

(11.7-2)

Experimentation has shown that
the rational expression in (1/x2)
in Equation (11.7-2) can be
evaluated in a stable manner,
yielding 15 significant figures in
the result. The advantage of
this form over the continued
fraction is that every second
term vanishes, reducing the
work to be performed. The
coefficients are shown in Table
11.7/1.

0.8
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0.4

0.2

0 2 4 6 8

X

10

FIGURE 11.7/1: r(r) = exp(x2)erfc(;t)
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ALGORITHM 11.7/1: Function DRERFC—Evaluate exp(x2) erf(x)

Arguments Data Type In/Out Definition Constraint Special Cases

XND Double Precision In

DRERF Double Precision Out

Arbitrary argument x

Value z of function r(x).

0 < * 0: lower bound

0 è z=enp(x2)erfc(x) 0: lower bound
< 1 1: upper bound

Precondition Input arguments satisfy their constraints.
Local arrays PI and Ql contain Equation (11.7-1) coefficients from Table 11.7/1.
Local arrays P2 and Q2 contain Equation (11.7-2) coefficients from Table 11.7/1.

Postcondition Output arguments satisfy their constraints.

Algorithm Commentary

if ( x < 0 ) then hex «- 0
else locx «— x
end if

if ( locx Z 8 ) then
z *- POLYNM(8, PI, locx) I POLYNM(9, Ql, locx)

else if ( locx Z 10' ) then
y <- 1 / locx*

z <- (l/7i1/2)-POLYNM(5, P2, y) I
(/ocAr-POLYNM(5, Q2, y) )

else
Z <-(l/JI1/2) / IOCX

end if

Make a local copy of the argument x and ensure that it
falls within the required interval.

If AT is small ...
Apply Equation (11.7-1) using polynomial evaluation.

If x is large to enormous ...
Equation (11.7-2) is expressed as a rational function in

y-
Apply modified version of Equation (11.7-2).

If x is humongous ...
Use simplified version of Equation (11.7-2).

TABLE 11.7/1

COEFFICIENTS IN RATIONAL APPROXIMATIONS TO rfa)

Eq

1

2

j

0
1
2
3
4

5
6
7
8
9

0
1
2
3
4
5

Pi fy

3723

7113

6758
4032

1631

456
86
10
0

.50798

.66324

.21696

.26701

.76026

.26145

.08276

.06485

.56418

15548

69540

41104

08300
87537

87060
22119

89749

95867

06722

49873

85886

49736
14696

92630

48595

09542
61813

56717

40998

33275
20957

35150

64180

11755

53550
61369

6
86
28
913

0311

45307

505591
25465 862

Not Applicable

1
27
234

761
790
120

.5

.25

.3125

3723

11315

15802

13349

7542

2968

817
153
17
1

1
27
247
866
1082

324

.50798

.19208

.53599

.34656

.47951

.00490

.62238

.07771

.83949

.5

.5

.25

.8125

.84375

15548

18544

94020

12844

01934

14823

63045

07503
84391

06543 52472

05468 20144 3

42527 35884 57

57371 72173 17

75755 47208 583

08716 42765 2719

44077 02825 02642

62215 85695 20624
39556 52884 23873 4
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11.8 PEXP: Routine to Evaluate a Protected Exponential

PEXP evaluates an exponential function in such a way that results that would cause floating
point underflow return as zero. PEXP is not strictly a part of the Parameter Sampling Pack-
ages (PSP), but this specification is given anyway since the PSP uses PEXP in several places.
The algorithm is simple: check the argument's value, and return zero if the argument is a
large negative number.

The exponential routine exp(;c) has a very limited domain in typical floating-point arithmetic.
Arguments greater than 1000 cause overflow on any floating-point system, and arguments less
than -1000 cause underflow. In most floating-point systems, arguments with much smaller
magnitudes can cause underflow or overflow. Usually overflows are unintended. They repre-
sent error conditions that should be flagged. Underflows usually indicate very small numbers
that can safely be neglected and treated as zero. Algorithm 11.8/1 shows how to deal safely
with arguments that would cause underflow exceptions.

ALGORITHM 11.8/1: Function PEXP—Protected Exponential Function

Arguments Data Type In/Out

XND Double Precision In

PEXP Double Precision Out

Conunon Data Type In/Out

MAXREL:

MAXREL Double Precision In

Precondition

Postcondition Output

Algorithm

Definition

Arbitrary argument x

Value z. = e* of exponential
function

Definition

Maximum double precision
value, M

Constraint

z>0

Constraint

M > 0, no overflow

Special Cases

large magnitudes

underflows,
overflows

Special Cases

-

Input arguments and common variables satisfy their constraints.

arguments satisfy
If e1 would cause

if ( x <, -In M ) then PEXP <- 0
else PEXP <- exp(x)
end if

their constraints,
floating point underflow, then

Commentary

z=0.

Set result to 0 for very small arguments.
Otherwise use normal exponential; do not check for overflow,
which should fail.
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11.9 POLYNM: Routine to Evaluate a Polynomial

POLYNM evaluates a polynomial efficiently to simplify routines like DRERFC that evaluate
more than one polynomial. It uses Homer's scheme, the standard way of evaluating a poly-
nomial using nested multiplies (Hart et al 1978).

Equation (11.9-1) shows a general form for an n^-degree polynomial in x with coefficients pt.
The only constraint is that the coefficient pn be nonzero, or else the polynomial would have a
lesser degree.

P(x) = Po + Pi* + P2x + px n > 0. (11.9-1)

For more efficient evaluation, a polynomial can be expressed in a nested form:

p(x) = p0 +x(p{ + x[p2 + ... + x(pn_l + pnx)]} (11.9-2)

Algorithm 11.9/1 shows how POLYNM applies this form to evaluate an arbitrary polynomial.

ALGORITHM 11.9/1: Function POLYNM—Evaluate Polynomial

Arguments Data Type In/Out Definition

DEGREE Integer In Degree n of polynomial

COEF Double Precision In Constant coefficients pt,
i = 0(l)n

XND Double Precision In Arbitrary argument x

POLYNM Double Precision Out Value p(x) of polynomial.

Precondition

Postcondition

Constraint Special Cases

n > 0 0: lower bound

pn*o

no overflow, BO
underflow in
calculation

Input arguments satisfy their constraints.

Output arguments satisfy their constraints; p(x)
Equation (11. 9-1).

Algorithm

if ( n < 0 ) then POLYNM <- 0
else if ( n = 0 ) then POLYNM <- p0

else POLYNM <- Pa

do for; from n-1 to 0 by -1
POLYNM <- POLYNMvc +

Pi
end do

end if

is the value of the polynomial shown in

Commentary

Invalid degree; set result to 0.
Constant; the result does not depend on
Initialize value of polynomial.
Loop over remaining coefficients
Add contribution from each coefficient,

x.

using nested form.
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11.10 INVNOR: A Routine to Invert a Standard Normal Distribution

INVNOR is one of two special inversion routines shown in Figure 11.1/1. It inverts the CDF
of a standard normal distribution, one with mean 0 and standard deviation 1. TRAQUA
(Section 8.8) uses this routine to invert any Normal or Lognonnal Distribution CDF.
INVNOR uses ACM Algorithm 442 by Hill and Davis (1971) to approximate the inverse CDF
to about 16 significant figures.

Hill and Davis (1971) published a family of algorithms as ACM Algorithm 442 to invert a
standard normal CDF, given a routine like NORDIS to evaluate the CDF accurately.
INVNOR uses the approximation «4, based on four terms of a Taylor's series for the required
correction to an initial approximation, and claimed to give a relative error of 15.95 decimal
digits.

Algorithm 442 begins with an initial approximation to the inverse given by

. . . 1637.720 + 494.877* + 7.47395*2 _ . . n - / n m nx(p) = * - 0 < p < 0.5, (11.10-1)
659.935 + 908.401* + 117.9407*2 + *3

where p is the cumulative probability, * = (-2 In p)1'2, and x(p) is the corresponding quantile.
Different members of the family of algorithms use an expression of the same form as Equa-
tion (11.10-1), but with different coefficients.

Then the algorithm estimates a relative error in probability, z, corresponding to the initial
approximation x0 = x(p):

(11.10-2)

where O is the standard normal CDF, approximated by a call to NORDIS, and <j) is the proba-
bility density function

_ i

\/2rT

Then Algorithm 442 evaluates the final w4 approximation:

(11.10-3)

2 3 2
z + 1 z + , o • dl.10-4)
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Algorithm 11.10/1 specifies this algorithm in more detail.

ALGORITHM 11.10/1: Subroutine INVNOR—Inverse CDF of a Standard Normal

Arguments Data Type hi/Out Definition Constraint Special Cases

QUANLT Double Precision In

NORVLU Double Precision Out

Cumulative
probability p

Value x belonging
to standard normal
distribution

0 < p < 1

x = O"'(p), where
O is the standard

normal CDF

0: lower bound
1: upper bound

-°°: lower bound
oo; upper bound

Precondition Input arguments satisfy their constraints.
Local arrays P and Q have been initialized with the coefficients of the numerator and

denominator of Equation (11.10-1).

Postcondition Output arguments satisfy their constraints, except that extreme values are treated in
an implementation-specific manner, since floating point systems do not easily deal
with infinity.

Algorithm Commentary

if ( p <: 0.5 ) then
reap <— p
sign <— -1

else
reap <— \-p
sign <— 1

end if

if ( reap < 0 ) then
x «- 13 sign

else
s <- (-2 In redp)in

x <- sign- (s - POLYNM(2, P, s) /
POLYNM(3, Q, s) )

call NORDISOc, prob)
if ( prob & p ) then

z<-(p- proV) • (2n)M •
exp(;rV2)

x <- [({[(0.75^+0.875)2 + x]x +

end if
end if

Transform argument to reduced interval [0,0.5], maintaining
precision,

At the extreme end of the range ...
So far out that the CDF is close to the precision limit (the value
13 may vary, depending on the floating-point system)
Argument of rational approximation to inverse CDF.
Initial estimate of inverse CDF, from Equation (11.10-1).

Find corresponding CDF.
Check the agreement; if not good enough ...
Difference divided by PDF.

Final approximation, from Equation (11.10-4).
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11.11 INVCOR: A Routine to Invert a Correlated Normal CCDF

TRAQUA (Section 8.8) inverts the CDF of a Parameter Distribution. When the Parameter
Distribution is a Conditional Distribution, it inverts the conditional CDF (CCDF). TRAQUA
calls INVCOR to invert the CCDF for a Correlated Normal or Correlated Lognormal Distri-
bution. Algorithm 11.11/1 shows the algorithm for this inversion. When the distribution is
not truncated, the inversion is straightforward: calculate the attributes in the CCDF and per-
form a standard Normal Distribution inversion. When the distribution is truncated, care must
be taken to ensure that the truncation limits are observed.

The routine INVCOR inverts the CCDF of a Correlated Normal Distribution. The CCDF is
the CDF that represents the distribution of values for a parameter X when the value of a cor-
related parameter Y is known (Section 4.5). The limits on a Correlated Normal Distribution
come from a Probability Interval. These probabilistic limits apply to the marginal CDF of the
distribution (i.e., to the CDF when the value of Y is unknown). For the CCDF, INVCOR
must transform the limits to a Probability Interval that depends on Y. INVCOR should follow
Algorithm 11.11/1, which fleshes out the specification in Table 4.6/1.

ALGORITHM 11.11/1: Subroutine INVCOR—Inverse Conditional CDF
of a Correlated Normal Distribution

Arguments

QUANTL

MEAN

STDDEV

LOBND

H1BND

CORCOF

CORMU

CORSIG

CORVAL

CORVLU

Precondition

Postcondition

Data Type

Double Précision

Double Précision

Double Précision

Double Précision

Double Précision

Double Précision

Double Précision

Double Précision

Double Précision

Double Précision

In/Out Définition

In

In

In

In

In

In

In

In

In

Out

Input arguments

Output

Cumulative probability, p, in
the conditional distribution.

Mean value of distribution, ux

Standard deviation of
distribution, ax

Low probability of the
unconditional CDF, p^

High probability of the
unconditional CDF, pHX

Correlation coefficient, pXY

Mean value of correlated
distribution, ux

Standard deviation of
correlated distribution, aY

Value y of correlated
parameter

Value x in a Correlated
Normal Distribution

satisfy their constraints.

Constraint Special Cases

0 < p < 1 0:
1:

-

0 < ox 0:

0 ^ PLX ^ PHX 0:

lower bound
upper bound

lower bound

lower bound
PHX'- upper bound

PLX - PHX — 1 PL
1:

-l<pxï<l -1
0:
1:

- _

0 < ar 0:

-

PLX < CDF(.r) < -

PHX
CCDFCt) = p

x: lower bound
upper bound

: lower bound
no correlation
upper bound

lower bound

arguments satisfy their constraints.
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Algorithm Commentary

shistdmu <— pxr (y - \nr) I <3Y

shistdsig <- ( 1 - pxy
2 )'n

if ( pu. = 0 and pHX = 1 ) then

if (pXY= 1 orpxj. = -l ) then
x <r- /jx + shistdmu • ax

else call INVNOR(p, z)
.v <- nx +

(shistdmu + shistdsig • z) • ax

end if

else if ( put = pHX ) then
call INVNOR(pw , z)
.x <- ux + z • o*

else call INVNOR(p, z)
call NORDISCr/iisrdmu + shistdsig • z,

ship)
truncship <— (l-ship) • p^ + ship • pHX

call TNVNOR(truncship, z)
x<r-nx + z-ax

end if

Find shifted mean and standard deviation as if this distribution
were a standard normal with mean 0 and standard deviation 1.

If A" has an unlruncated distribution ...

If there is a strict linear relationship between X and Y ...
Linear interpolation for X.

Find location of desired quantité in a standard normal.
Correct for shifted mean and standard deviation, and then for
the actual mean and standard deviation.

If the bounds overlap, the result is always the same.
Find the point in a standard distribution corresponding to both
bounds, and map it onto the current distribution.

Use procedure from Table 4.6/1. Find location in a shifted
standard normal of the desired point, and evaluate standard
CDF.
Apply truncation limits to constrain the probability to the
allowed region, then evaluate the variate value in the current
truncated distribution.

In fact, INVCOR in SYVAC3 version 3.09 (SV309) does not follow Algorithm 11.11/1, but
uses a more complicated algorithm that is subject to numerical problems when the Condi-
tional Distribution is heavily truncated. The two algorithms produce similar results, and in
fact the same results for untruncated distributions. The following fragment, if used in place
of the last else clause in Algorithm 11.11/1, would yield the algorithm currently used.

ALGORITHM 11.11/2: Subroutine INVCOR—Modified Algorithm 11.11/1
Used in SYVAC3 (SV309)

else shimu «- nx + shistdmu • a*
shisig <- shistdsig • ox

Evaluate ship^ and shipHX using calls to
NORDIS and INVNOR.

truncp «- (1-p) • shipu + p • shipHX

call INVNOR(mmcp, z)
x <r- shimu + z • shisig

end if

Shifted mean for the conditional distribution.
Shifted standard deviation for the conditional distribution.
Evaluate Probability Interval for the conditional distribution that
corresponds to the limits imposed by the original Probability
Interval (pu , pHX ) on the marginal distribution.
Truncated probability in conditional distribution.
Standard normal variate corresponding to x.
Final value.

There are two problems with the current algorithm. First, evaluating shipu and shipHX is
complicated by special cases when pu or pHX is at an extreme value (zero or one), since the
corresponding value bounds are infinite. Second, x produced by this algorithm can in some
cases lie outside the original bounds, because of loss of precision in the calculations. In the
code it is necessary to check the final x value against the bounds. Future implementations
should use Algorithm 11.11/1.
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12.1 Overview of Algorithms

All versions of SYVAC3 up to SV309 use a linear congruential pseudorandom number gener-
ator called "Superduper" that was described by Marsaglia (1972). It is based on the recur-
sion Xi+I = (69069 Xj +1) mod 232. Walker (1985) summarized the properties of this gener-
ator and provided a portable implementation in the style ofMarse and Roberts (2983). The
version in SYVAC3 has^ been changed slightly from this implementation. Future implementa-
tions should adopt combined pseudorandom number generators as described and implemented
by L'Ecuyer (1988) and by L'Ecuyer and Côté (1991) to provide pseudorandom numbers with
smaller granularity, longer sequences, and independent subsequences from arbitrary single
random seeds.

Chapter 6 established the requirements for the Pseudorandom Generator object type that im-
plements a pseudorandom number generator. The major requirement is to generate a se-
quence of numbers between 0 and 1 that is (1) repeatable, given the same Initial Random
Seed(s), (2) uniformly spread over the interval, and (3) random (i.e., unpredictable). Condi-
tions (1) and (3) appear to be mutually contradictory. If the sequence of numbers is repeat-
able, it is predictable. An observer could simply generate the sequence once, store it, and
then be able to predict with 100% certainty each element of the sequence when it is generated
again. After discussing a particular method of generating pseudorandom numbers (the
"middle-square method"), Knuth (1969) describes the situation this way:

There is a fairly obvious objection to this technique: how can a sequence generated in such
a way be random, since each number is completely determined by its predecessor? The
answer is that this sequence isn't random, but it appears to be. In typical applications the
actual relationship between one number and its successor has no physical significance;
hence the nonrandom character is not really undesirable.

Two types of pseudorandom number generators have attained preeminence because of their
efficiency and good "random" properties: linear congruential and multiplicative congruential
generators. A linear congruential generator uses the following recursion to generate succes-
sive entries in a long integer sequence:

Xi+] s aX, + b mod c 0 < X, < c. (12.1-1)

A multiplicative congruential generator looks the same, except that b = 0. In both cases, the
pseudorandom number U, is a scaled version of X,-:

Ui = X i / c . (12.1

The idea is to choose a large enough that aX, typically exceeds c.. The remainder left over
when removing multiples of c bears little connection with X,-. Of course not just any combi-
nation of values a, b, and c produces a good pseudorandom number generator. They must be
carefully chosen. For example, a multiplicative generator has a maximum period (i.e., se-
quence length) c - 1 if c is prime and a is a primitive element modulo c (Knuth 1969).
Furthermore, the resulting generator must be thoroughly tested to ensure that the sequence it
generates displays good statistical properties. Walker (1985) cites some studies that have
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been carried out to test generators. Walker selected a linear congruential generator with
multiplier a = 69069, offset b = 1 and modulus c = 232 on the basis of such tests. This
generator comes from a statistical package called SuperDuper by Marsaglia (1972).

The SuperDuper generator has been implemented in the SUPRAN routine. It has some
limitations for use with SYVAC3:

• Short period-The period of the generator (232, or about 4 x 109) is too short. If 4000
parameters require random numbers in each simulation, then one million simulations
would exhaust the generator. While this limit has not been reached yet, it is within
reach.

• No support for subsequences—Sampling from independent streams of pseudorandom
numbers helps to maintain the independence of parts of a model. Independent streams
could be used to sample parameters for different submodels (e.g., a vault model or a
biosphere model), different objects (e.g., contaminants U-238 and C-14), and different
sources (e.g., contaminants from different wasteforms). A single long sequence such
as SUPRAN generates has only those subsequences defined by the user. To identify
subsequences, one must pick starting random seeds far enough apart in the sequence
so that the subsequences generated from those starting points will not overlap.

• Limited precision-Any 32-bit pseudorandom number generator can produce only 232

distinct results. That means that uniform values between 0 and 1 have only about nine
digits of precision, and the granularity (minimum separation between values) is of the
order of 10~9. This differs substantially from the precision with which double-precision
numbers are represented.

• Slow advancement-It is often desirable to skip thousands of seeds from the sequence
generated by a pseudorandom number generator. Skipping values is one of the opera-
tions on a Pseudorandom Generator identified in Section 6.2. SUPRAN has no short-
cuts; the only way to skip 10 000 values is to produce them one at a time and throw
them away.

Pierre L'Ecuyer (1988) has published a description of a set of portable combined pseudoran-
dom number generators that surpass all these limitations. L'Ecuyer and Côté (1991) have
published Pascal code to implement such combined generators. Their work should form the
basis of a modified Pseudorandom Generator object type to be implemented in SYVAC3.
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12.2 SUPRAN: A Routine to Generate Pseudorandom Numbers

In SV309, the Pseudorandom Generator type consists of a single data field, Random Seed,
and a single routine, SUPRAN. To support multiple Pseudorandom Generator objects, the
calling program need only reserve storage for multiple Random Seed fields, one for each
object. The only operation directly supported is to call SUPRAN, passing a Random Seed in
the argument list. This call accomplishes two things: first, the Random Seed advances by one
position in the sequence of integer values that SUPRAN can generate. Secondly, SUPRAN
generates a random value uniformly distributed between 0 and 1 from the Random Seed, and
returns it to the calling program. To ensure that multiple Pseudorandom Generator objects
are independent, the calling program must provide initial Random Seed values that are widely
separated in the sequence of pseudorandom numbers.

Algorithm 12.2/1 shows the operation of the routine SUPRAN, as designed by Walker (1985).
It uses an approach similar to that demonstrated by Marse and Roberts (1983). SUPRAN per-
forms arithmetic modulo c = 232 using 32-bit integers in 2's complement integer notation,
which can only represent values between -231 and 231-1.

The recursion used in SUPRAN is:

XM = 69069X,+l mod232 0 < X, < 232. (12.2-1)

SUPRAN cannot store numbers larger than 231-1 as integers, because they would be inter-
preted as negative numbers in 2's complement notation. Instead SUPRAN transforms the
values:

f X. ifO <X.< 231

y. = \ ' -231 < y, < 231. (12.2-2)

[x,-232 i/231 < X, < 232

The set of Yt values provide a different way of representing uniquely all the integers modulo
232. There is a one-to-one correspondence between the X,- and Y, values:

Y,s X. mod232 . (12.2-3)

As a result, the 7, values also satisfy the recursion in Equation (12.2-1).

A portable implementation of the random number generator must perform the multiplication
in Equation (12.2-1) using 32-bit arithmetic without integer overflow. This step can be
accomplished by breaking X; into two parts:

X, = 216tf. + L. , (12.2-4)
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where both Ht and L, lie in the interval [0, 216-lj. Calculations can be performed on the high-
order and low-order bits separately. Algorithm 12.2/1 shows this calculation in detail.

ALGORITHM 12211: Subroutine SUPRAN—Portable 32-bit
Random Number Generator

Arguments Data Type In/Out Definition Constraint Special Cases

SEED Integer In/Out Random seed Y in
pseudorandom sequence

RNDNUM Double Precision Out Pseudorandom probability p

-23 1<y<23 1- l

0<p< 1

-23': lower bound
231-1: upper
bound

0: lower bound
1 : upper bound

Precondition Input arguments satisfy their constraints.

Postcondition Output arguments satisfy their constraints.
You, = 1 + 69069 Yin mod 232

„ _ V / O32

Algorithm Commentary

if ( y < 0 ) then
y <- y + 231

L <- y - 2" H
H<r-H+2"

else
H <- |_y/21 6J
L <- y - 216 H

end if

L <- L • 23023
carry <-|_L/21 6J
L <- L - 216 carry
// <- carry + H • 23023
carry <-LW/2 1 6 J
H <- H - 216 carry

L < - L - 3
carry <- [ L / 216J
L «- L - 216 carry
^ <- carry + H • 3
carry <-LH/21 6J

carryH<r-H-216

carry <-[/// 215J
/ /<- / / - 215 carry
y <- 216 # + L
if ( carry = 1 ) then

y <- y - 231

end if
P <- y / 232

if ( y < 0 ) then p <- p + 1
end if

A negative seed is a transformed version of a seed > 23'. Transform
it back by adding 232 in stages; first add 231 to make it positive.
Then take the top 15 bits (H) and the bottom 16 bits (L) separately.
Adding 215 to H is equivalent to adding another 231 to the original
seed.

A positive seed is not transformed. Separate the top 15 bits and the
bottom 16 bits.

69069 = 3 • 23023, where 23023 < 216 < 69069. Multiply in stages
to protect against overflow.

Carry the extra bits to the H part of the seed.

Discard the carry from H, since it is congruent to 0 mod 232.

Second stage of multiplication.

Carry the extra bits to the H part of the seed.

Discard the carry from H.

Determine if the new seed is £ 231. By removing most significant
bit, find the part of the new seed that cannot overflow.
Reconstitute the new seed.
The new seed would overflow; transform it to a negative number.

Find pseudorandom number in the half-open interval [-0.5, 0.5).
Transform it to the right interval.
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12.3 Table of SUPRAN Seeds

SUPRAN generates a single sequence of 232 random seeds. To create multiple distinct Pseu-
dorandom Generator objects, it is necessary to initialize them with different initial random
seeds. For maximum independence, the subsequences of random seeds generated by these
Pseudorandom Generator objects should not overlap. That means that starting random seeds
should be long distances apart in the underlying sequence. To simplify the selection of initial
starting seeds, Table 12.3/1 lists equally-spaced random seeds covering a total of 200 million
seeds, about 5% of the total period of SUPRAN's generator.

TABLE 12.3/1

EVERY MILLION™ SEED IN A SEQUENCE OF
200 MILLION RANDOM SEEDS FROM SUPRAN

i/10e

0
1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30

Yi

0
1986273152
-155500800
-1358602624
-851280384
2138217856

-208290560
1470880896
-642450432
-1481565312
-274711808

-545105280
-1520993792
1864341888
1792719104
-964110208

-1339426816
1438521216
-448448768
-1933617536
2049734144

-611543680
-555764480
-1306143616
-2090929152
-2138369152

-676711680
-1229172096
1270968832
-994471552
1336193280

i/106

31
32
33
34
35

36
37
38
39
40

41
42
43
44
45

46
47
48
49
50

51
52
53
54
55

56
57
58
59
60

Yt

444780672
1398009856
672665472
-959500544
1568231040

437677568
715558272

-1121342208
-6304640

537455616

1281690496
-1296815360
-2131342720
-450139648
223578496

661563648
1635567744
-377624576
-311294080
-1688656128

557008512
-1392482816
1824556416
-1905023744
1075430528

-1347230720
188679040

-2135022848
1043350144
1905615360

J./106

61
62
63
64
65

66
67
68
69
70

71
72
73
74
75

76
77
78
79
80

81
82
83
84
85

86
87
88
89
90

YI

1223524736
-231169792
-1686716288
1923604480

-1513357440

1659051776
-672317824
854220288

-1579516544
1388158208

1939061888
844946432

-1122436224
1103633152
-295028096

-251700736
2005367168
-1342007040
-932136832
-288237568

1361442688
493688576

-2119747968
-1412147712
-906726016

168269056
-1710377856
-1475947520
1643312000
-170781952

continued .
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TABLE 12.3/1 (concluded)

i/106

91
92
93
94
95

96
97
98
99
100

101
102
103
104
105

106
107
108
109
110

111
112
113
114
115

116
117
118
119
120

121
122
123
124
125

126
127
128
129
130

y*

-1851510144
1667846656
-1725861504
1624019200
-395661184

1576783872
-276828288
-889778432
509685376
398347776

-452039296
-1269723904
-1282954112
280022016
-104010880

-1663300864
668871296

-925677056
-1380226688

76974336

-77289344
-1071265792
-2133203072
1803618048
-1373952384

1990739456
-215456384
1369146624
-1073634176
1817887744

-2069437568
921043712

-1323818368
557662720

-1252695680

-1688174336
22978688
357548032
87285632
-16056576

i/10s

131
132
133
134
135

136
137
138
139
140

141
142
143
144
145

146
147
148
149
150

151
152
153
154
155

156
157
158
159
160

161
162
163
164
165

166
167
168
169
170

Vi

819273344
-929939968
-196977280
-505053952
-1082418048

-1157317632
41999232

-1007682816
760355456
1822898688

-1343268480
623540480
-94857088
1568258048
2089670528

-2053835008
-1500572032
226244096
-396601984
1697608960

-1309305728
-55659520
1935332224
1140454144
-1668541824

-1424936448
-1651945088
-1577815808
-430796672
-1734103040

-421015680
-14749952
256446080
1164324352
-814330496

-612799232
-1754297216
827894784
-684405888
-1224480000

i/106

171
172
173
174
175

176
177
178
179
180

181
182
183
184
185

186
187
188
189
190

191
192
193
194
195

196
197
198
199
200

yt

-20575616
-595908096
2116241792
297691392
-984840064

-959600640
1145161600
1806231296
1795360384
1884300800

-1450162816
1153656064
1877574784
;,493345280
772719488

487449344
1409286784
15016448

1371357568
1955094784

-1756987264
-403202048
-1801732224
-885858560
-1178796416

-1908793856
1990868352
-1592959744
996375680
19406919^3
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12.4 Combined Multiplicative Congruential Generators for the Future

L'Ecuyer (1988) published a description of pseudorandom number generators based on com-
bining multiplicative congruential generators. L'Ecuyer and Côté (1991) extended the study
of such generators, and have published Pascal code to implement such a generator. The
combined generator has advantages over SUPRAN in terms of cycle length, generation of
subsequences, and rapid skipping of large numbers of seeds. With suitable adaptation it also
has a precision advantage. On the other hand, it is less efficient in terms of computer time.
Future versions of the Parameter Sampling Package (PSP) should use this type of generator.

L'Ecuyer and Côté employ / maximum period multiplicative congruential generators (MCGs):

s^ = a^.M modmy. j = 1, ..., /. (12.4-1)

They use MCGs rather than linear congruential generators (LCGs) because it is easier to
advance an MCG by an arbitrary number of steps:

V*SflA, modmJ ; = 1 , . . . / , 0 < * . (12.4-2)
s (aj modm^Sj; modrn^.

The power in brackets can be stored in a table if k is known in advance; otherwise it can be
computed readily with no more than 21og2fc multiplications using an ancient method described
by Knuth (1969, pp. 398-401).

An individual MCG may not have properties that are as good as a well-chosen LCG. For
example, the maximal period is m,- - 1 and it is attained only if m is prime and a} is a
primitive element modulo m^. For a 32-bit generator, the prime moduli are typically chosen
to be less than 231, giving a period that is less than half of SUPRAN's. In the case of a
combined random number generator, the use of multiple generators corrects for the deficien-
cies of the individual generators. L'Ecuyer and Côté described generators for which the
period is many orders of magnitude greater than SUPRAN's.

L'Ecuyer and Côté combine their generators in the following way:

mod(m,-l) . (12.4-3)

This generator has a period that is the least common multiple (LCM) of the individual
periods, since there are / independent seeds involved, and each must return to its original
value before the generation of seeds can repeat. The total period must then be divisible by
the period of each generator, and the LCM is the smallest number with this property.
L'Ecuyer and Côté transform Z, to the interval (0,1) using:
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Z./m. i f Z . > Q

Equations (12.4-3) and (12.4-4) are not ideal for use with SYVAC3. From Equation (12.4-3)
it is clear that there will be only m, - 1 distinct values possible for U,. That would exacer-
bate the precision and granularity problems mentioned in Section 12.1. From Equation
(12.4-4) it can be seen that there is a slight bias in the generator away from extreme values.
As shown in Figure 12.4/1, each real value that the generator can produce lies in one of
ml - 1 equal-width intervals. Values near zero lie near the right end of the enclosing interval;
those near one lie at the left end. Both deficiencies are resolved by the following generator,
which first generates a uniform variate between 0 and 1 for each of the / generators (Equation
(12.4-5) and then combines thes numbers modulo 1 (i.e., takes the fractional part of the sum):

Uu-'su/m, j = 1 , . - / (12.4-5)

W, = Y ^' + rC-iy-'t/,, modi • (12-4-6)
"'

By computing the double-precision uniform variâtes first, this approach guarantees that the
spacing between possible values is much smaller, at the expense of slower execution. The
alternating sign structure in Equation (12.4-6) reduces the loss of precision in dropping the
integer part of the sum. The first summation in Equation (12.4-6) can be precalculated as a
constant. It guarantees that W{ can never be identically 0. It gives the same result as if all
possible values for 5,-,- from 0 to m;- - 1 had been moved to the right by 0.5 to centre them in
intervals like those shown in Figure 12.4/1.

FIGURE 12.4/1: Equation (12.4-4) Puts 6 Points in 6 Intervals
if m, = 7, but They Are Biased in Positioning Away from the Ends

L'Ecuyer and Côté use a full set of initial seeds ^0= (s10, ... sl>0) to start up their combined
generator. It is possible instead to define a reduced set of initial seeds: s0= (s10, 1, 1, ... 1),
so that the user specifies only one random seed, sl<0, just as he does now. This limits the
number of distinct initial random seeds to m, - 1, but guarantees that each sequence has a
period that is the LCM of m^ - 1 to m, - 1.
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support for Conditional Distributions 114

Parameter Sampling Packages (PSP) 178
ParDis see Parameter Distribution 49
Pascal programming language 18
PcwUniDis 87
PDF
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algorithm 178
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data structure 32, 112, 116
inverse CDF 160
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Probability density function (PDF)
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data structure 112, 116
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writing 128

Probability transform method 20
ProbabilityQ 49
ProbDis see Probability Distribution 49
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Rational approximation 144, 175, 176, 180
Read operation

of a Parameter Distribution 125, 128
Recurrence relation 144, 150, 175, 186, 188
RETMES 28, 30

sample code 37
setting up 36

SAMPLE program 15
Sampled Parameter object type . 13, 19, 20, 58, 100,

128, 130
Sampling Method object type 20, 100

subtypes 28
Scale attributes 121, 136
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Simulations
fence painting example 9
skipped by SYVAC3 28

SKIP 28
Skip Values operation 103
Software object type 46

definition 18
Software object types 46

data structure 114, 118
in object-oriented methods 120
specification criteria 48

Standard Deviation attribute 82
Standard deviation see Sigma 50
Standard random numbers 100
Stirling's approximation 143, 144
structure charts 26
Subtypes association . 46, 58, 61, 64, 68, 72, 75, 78,

82, 86, 90, 94
SUPRAN 22, 26-28, 30, 187, 192

algorithm 188
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argument list 43
tabulated random seeds 190

SV309 29, 30, 114, 124, 183, 188
SVA see Systems Variability Analysis 2
Systems Variability Analysis (SVA) 2

decision making 11
fence painting example 8
four-step procedure 4

SYVAC3 . . 3, 18, 108, 110, 120, 124, 128, 130, 186
acquiring 14
calls PSP routines 28
case study 13
RETMES routine 36
role and functions 12
routines required by other programs 30
uses of PSP 20

SYVAC3 Case 23
SYVAC3 Case object type 13
Time Series Package (TSP) 13, 15

provides include files to PSP 30
TRAQUA 23, 27, 28, 30, 32, 36, 121, 125, 131,

132, 134, 156,164, 180, 182
algorithm 138
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structure chart 26

TRAVAL 23, 27, 28, 30, 32, 36, 121, 125, 131, 134,
138, 156, 164

algorithm 136
argument list 43
structure chart 26

Triangular Distribution object type 22
algorithms 156
associations and operations 90, 92
CDF 158
inverse CDF 158

TriDis 91, 156
algorithm 158
argument list 44

Truncation Interval object type 19, 20, 132
associations and operations 58
data structure 112
part of Conditional Distribution 56
part of Parameter Distribution 46
subtypes 46, 59
truncates PDF 52
writing 128

Trunclnt see Truncation Interval 49
UnifDis 95
Uniform Distribution object type . 18, 22, 72, 78, 86,

88, 112, 116, 121, 132, 160
algorithms 156
associations and operations 94, 96

UniformQ 87
Upper Limit attribute 64, 78, 90, 94, 132
Valint see Value Interval 59

Value Interval object type
writing

Variable Value object type . ..
assigning values to

VectorQ
Write operation

of a Parameter Distribution
WRSPER

argument list
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argument list
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