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RÉSUMÉ 

La séance de travail sur les mathématiques appliquées a eu lieu au Centre 
Cockcroft à Deep River en Ontario les 7 et 8 février 1992. Le but de la 
séance de travail a été de permettre un forum de spécialistes de mathémati­
ques appliquées pour étudier l'utilisation des mathématiques appliquées et 
examiner leur avenir à EACL Recherche. 

Cinquante sept personnes se sont inscrites pour participer à la séance de 
travail dont quatre personne ne faisant pas partie d'EACL, quatre faisant 
partie des Laboratoires de Vhiteshell et le reste faisant partie des 
Laboratoires de Chalk River. Les personnes d'EACL Recherche représentaient 
22 services et groupes différents. Il y a eu, au total, huit causeries de 
30 minutes et 25 causeries de 15 minutes qui ont englobé une très grande 
variété de sujets. 

Le nombre de personnes y ayant participé a été beaucoup plus grand qu'on ne 
l'avait d'abord prévu. L'ambiance, au cours de celle-ci, a été pleine 
d'entrain, vive et toute simple. Pour beaucoup de personnes, la réunion a 
été une occasion rare et agréable de parler de leur travail avec leurs 
confrères et consoeurs d'EACL Recherche et de savoir ce que les autres 
font. La bonne volonté, l'intérêt et l'enthousiasme ont été manifestes 
pendant les deux jours d'activités. De nombreuses nouvelles relations ont 
été établies et il se pourrait bien qu'il en résulte une collaboration 
entre les diverses disciplines engageant des personnes de différents 
services. 

Les points de vue quant à la fréquence des futures réunions de ce genre 
varient; on a suggéré un intervalle de un à cinq ans entre celles dont le 
sujet est aussi général que celle qui a eu lieu il y a quelque temps; les 
réunions de travail sur des sujets plus particuliers pourraient avoir lieu 
plus fréquemment; en outre, certaines personnes ont exprimé le besoin de 
cours théoriques de mathématiques supérieures. 

La séance de travail a été patronnée et en partie financée par l'unité 
organisationnelle de Sciences physiques. 
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ABSTRACT 

The Workshop on Applied Mathematics was held at the Cockcroft Centre, Deep River, Ontario, 
1992 February 7-8. The purpose of the workshop was to provide a forum for applied mathematicians 
to survey the use and to discuss the future of applied mathematics at AECL Research. 

There were 57 registered participants at the workshop, including four from outside AECLResearch, 
four from Whiteshell Laboratories and the balance from Chalk River Laboratories. The AECL 
Research participants came from 22 different branches and units. A total of eight 30-minute and 
25 15-minute talks, covering a very wide range of topics, were presented. 

The number of participants was significantly greater than first anticipated. The atmosphere at the 
workshop was lively, spontaneous and informal. For many, the meeting was a rare and refreshing 
opportunity to discuss their work with peers within AECL Research and to find out what others 
are doing. Goodwill, interest and enthusiasm were evident throughout the two-day event. Many 
new contacts were made, and it is not unlikely that interdisciplinary collaboration involving people 
from different branches will result. 

Opinions on how frequently similar meetings should be held vary; suggested intervals between 
meetings of a scope as general as in the one just held range from one to five years. Workshops 
on more specific topics could be held more frequently; some participants also expressed a need for 
formal courses on advanced mathematics. 

This workshop was sponsored and partially funded by the Physical Sciences Organizational Unit. 
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1992 October 
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DEDICATION 

We are deeply saddened by the sudden death of Bernard Lidicky in a tragic car 
accident. Bernard was an IAEA visiting fellow from Czechoslovakia attached to AECL 
Research and a participant at the workshop. This volume is dedicated to his memory. 
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APPROACHING MULTIPHASE FLOWS FROM THE PERSPECTIVE OF 
COMPUTATIONAL FLUID DYNAMICS 

ANDRZEJ O. BANAS 
Thermalhydraulics Development Branch 

AECL Research, Chalk River Laboratories 

ABSTRACT 

Thermalhydraulic simulation methodologies based on subchannel and porous-medium concepts are 
briefly reviewed and contrasted with the general approach of Computational Fluid Dynamics (CFD). An 
outline of the advanced CFD methods for single-phase turbulent flows is followed by a short discussion 
of the unified formulation of averaged equations for turbulent and multiphase flows. Some of the recent 
applications of CFD at Chalk River Laboratories are discussed, and the complementary role of CFD with 
regard to the established thermalhydraulic methods of analysis is indicated. 

1. Limitat ions o f Thermalhydraul ic S imulat ion M e t h o d o l o g i e s 

Multidimensional computations of internal flows and heat transfer in nuclear reactor components 
rely at present on two main methodologies for spatial discretization: porous-medium and subchannel 
approaches/1'2) Even though both are considered to be advanced computational tools, aimed at 
accommodating models for single and multiphase flows, these approaches target only relatively crude 
resolution of flow details, and their underlying theoretical bases rest firmly on hydraulic concepts. 
Methods of this kind are ideally suited for the geometries of densely-packed rod bundles and tube 
banks, widely used in the nuclear reactor systems, but they suffer from serious inherent limitations. 

The linear dimensions of computational cells, 'porous' control-volumes and subchannels, can be 
small compared to the scale of equipment size, but they must remain large relative to the scale of 
local flow-field variations. Whereas any subchannel layout must provide each subchannel with at 
least some solid-wall boundary, the lower-bound restriction on the sizes of 'porous' control-volumes 
stems from the requirement that they contain sufficient proportion of the solid matrix in order to 
smear the flow details over large enough regions. Only then can the wall effects, both mechanical 
and thermal, be accounted for through hydraulic means (empirical friction factors, heat-transfer 
coefficients, etc.) in these computational approaches. 

In both the porous-medium and subchannel computations, the finite-volume balances embody 
approximations whose effects cannot be diminished by the use (whenever possible) of finer meshes. 
The universally employed representation of the fluid-solid forces in terms of distributed resistances 
is compatible with the control-volume selection, but it precludes the rigorous consideration of mo­
mentum diffusion within the fluid, and the no-slip or velocity-profile-based boundary conditions at 
solid surfaces. Wall boundary conditions for scalars, such as temperature, are similarly avoided, 
and the effects of near-wall flow patterns on their local gradients cannot be considered. In addition, 
subchannel arrangements are, in general, non-orthogonal, preventing a rigorous treatment of the 
transverse momentum balances. 

2. Perspective of Computational Fluid Dynamics 
In essence, the porous-medium and subchannel methodologies bridge the gap between the sys­

tem (or component-level) thermalhydraulics and the truly micro-approach represented by Compu­
tational Fluid Dynamics (CFD). As a rule, the modern CFD algorithms are formulated for arbitrary 
multidimensional geometries, and accommodate progressively finer approximations to the continuum 
description of fluid flow, heat and mass transfer. When allotted sufficient numbers of degrees of free­
dom, the CFD analogues of continuum equations are able to capture at least some of the physics 
beyond the reach of hydraulics approaches, and therefore provide a framework in which the limita­
tions imposed by the use of the latter methods may be overcome. The CFD methods for internal 
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flows (based on finite-volume or finite-element discreatizations) adopt meshes that naturally allow 
for realistic representations of solid geometries, and enable the constraint of the computed fields 
through imposition of wall boundary conditions. In principle, the resolution of important physical 
and geometrical scales is then always better than that obtainable with subchannel or porous-media 
methods, and any empirical input to modelling is introduced at the more local level. 

Among the most distinctive and industrially-important CFD methodologies developed to date 
are the numerical simulation methods for turbulent flows, closely allied with turbulence modelling. 
The advanced methods for incompressible flows comprise four categories^8) 

• One-point-average formulations are based on a hierarchy of correlation equations obtained 
through one-point averaging of the Navier-Stokes equations. Closure of a truncated set of 
these equations must rely on hypotheses regarding higher-order correlations appearing in the 
equations governing the evolution of lower-order correlations. 

• Two-point-average methods are based on two-point averages of the Navier-Stokes equations, 
and were introduced to allow explicit consideration of scale information in modelling. 

• Large-Eddy-Simulation Methods, three-dimensional and time-dependent, proceed with explicit 
computation of large-scale flow-field structures, while accounting for the small-scale turbulence 
through the subgrid-scale models. 

• Direct (full) simulations of turbulent flows, currently feasible only for flows characterized by 
relatively small Reynolds numbers, attempt to resolve the flow-field at the Kolmogorov length-
scale by solving the discrete analogues of the unaveraged Navier-Stokes equations. 
Clearly, for flows characterized by realistic Reynolds numbers, the resolution limitations on 

present-day computers make it necessary to engage averaged formulations and turbulence models. 
Complex (and often poorly understood) physics, such as that encountered in the presence of multiple 
phases, adds additional burden. It has been argued recently by BorisM that the CFD methods 
available today can simulate flow either in complex geometry with simple physics or with complex 
physics in relatively simple geometry, but they cannot do both. Notwithstanding the difficulties, 
the goal of extending the CFD approach to multiphase flows continues to be steadily pursued, and 
general formulations that are not directly linked to any specific geometry, and refrain from using 
hydraulic concepts at the outset, are still in demand. 

3. Averaged Descriptions of Turbulent and Multiphase Flows 
The one-point averaging procedures yield turbulent-flow descriptions that form the basis of engi­
neering computations and virtually all the commercially developed CFD simulation software to date. 
Essentially the same procedures are also used to derive the averaged multifluid transport equations, 
which lead to models underlying a large class of numerical simulation methods for multiphase flows. 
While all multifluid formulations are based on the treatment of individual phases as interpenetrating 
continua coexisting in the flow domain, they differ in many details. It appears that most derivations 
can be put on a common ground by tracing their origin to the distributional form of the local instant 
(differential) balances for a multifluid continuum.(5'6) 

In the Eulerian description of a mixture of Newtonian fluids, the property balances accounting 
for transport within the bulk fluid are cast as partial differential equations, while transport across the 
interfaces (treated as singular massless surfaces) is accounted for by supplementary jump conditions. 
Denoting the density by p, the velocity field by u, the diffusive flux by J, and the source density of 
a given property, ip, by <f>, both balances can be written in the generic forms: 

^ M + V . ( p V u - J ) = P ^ (3.1) 

| W ( u - u . ) - J l - n = ^ . (3.2) 

Eqs. (3.1) and (3.2) yield balances of mass, momentum, and energy, respectively, for ip = 1, u, 
and e, where e denotes the specific energy. In addition, I ] denotes the property difference across 
the interface, n is the unit vector normal to the interface, u, is the interfacial velocity, and <j>, is the 
interfacial source of property tp (e.g., surface tension). 
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In the multifluid formulation of n-phase problem, a set of n binary phase-indicator functions, 
8k (A = l , . . . , n ) , is introduced to determine which of the phases is present at a given time and 
position. Considering all differential operations in the distributional sense, the gradient of 8k and 
its transport equation may be written as: (o) 

Veh = -non, (3.3) 

^ . + u . . V 0 * = O, (3.4) 

where the scalar delta-function, a*, is conveniently interpreted, in the limit, as the interfacial area 
per unit volume of the fluid mixture/0) Using Eqs. (3.3) and (3.4), the distributional balances 
describing the dynamics of the k-th. phase may be cast in the form, 

g ( y ) + V • [eh(prf,n - J)] = ehP<t> + (-pV(u - u . ) + J] • nak. (3.5) 

This set of balances represents the multifluid counterpart of the single-fluid continuity, Navier-
Stokes, and energy equations (to which it reduces in the absence of interfaces), and constitutes 
an ideal starting point for any kind of averaging (temporal, volumetric, statistical, etc.). In fact, 
Eq. (3.5) permits the development of higher-level approaches (multi-point averages or Large-Eddy-
Simulation concepts) for multiphase flows. The averaging operators are usually assumed to satisfy a 
set of Reynolds rvles,(s) of which the commutativity with the differential operators, 8/8t and V, can 
be proven for a large class of averaging operations. In general, the action of a one-point averaging 
operator, ( ), on both sides of Eq. (3.5), yields: 

^ y * + v • <ewu) - v • (j) = (ekf4) + ([-w(« - ».) + J] • *<*»). (3.6) 

Further transformations of Eq. (3.6) must involve expressing the averages of products in terms 
of products of averages. It is at this step where the traditional approaches to turbulence and mul­
tiphase flows diverge. Due to large uncertainties regarding the underlying physics, the correlations 
of fluctuations have been usually neglected in the three-dimensional modelling of multiphase flows. 
Only recently has the modelling of correlational terms started to be successfuly addressed within the 
scope of multifluid closure schemes/7'8) While this line of development is likely to continue, more 
experimental work of a fundamental nature is indispensable to assure reasonable validity of any new 
models. 

4. Recent Applications of CFD at Chalk River Laboratories 

The utility of CFD-based prediction methodologies, and their complementary role with regard to 
the more traditional thermalhydraulic analyses, are well illustrated by the recently launched project 
concerning the assessment of fuel-bundle appendage effects on the pressure drop and heat-transfer 
characteristics of a typical CANDU fuel channel. While it is well known that the price paid for higher 
heat-transfer rates (attained on account of bearing pads, spacers, end-plates, etc.) is an increase in 
pressure drop, an experimental quantification of these effects is difficult even in the single-phase flow 
regime. Adequate characterization of individual appendage contributions to those effects is required 
as part of the input information in thermalhydraulic analyses utilizing system and subchannel codes. 

The application of CFD tools to predict the integral effects, such as additional pressure drop or 
a change of average heat-transfer rate, caused by relatively minor perturbations of channel geometry, 
is a viable alternative to experimental testing. The initial phase of the project has demonstrated 
that the standard ft-e model of turbulence transport (in which the turbulent Reynolds stresses are 
represented by the two-parameter gradient model, and the parameters themselves are computed by 
solving their modelled transport equations) is adequate for predicting the form drag coefficient for 
a simple obstacle mounted on a fuel rod. The predicted flow patterns lead in turn to plausible 
estimates of heat-transfer enhancement, which can be characterized by the correction factor to the 
average heat-transfer coefficient for an unobstructed-rod surface. 



5. Conclusions 
The contributions of CFD to thermalhydraulic design are recogniced, and continue to gain in im­
portance with the increase of available computing power. As anticipated, modern tools of computer 
graphics make the CFD analyses more accessible and more widely appreciated by non-specialists. 
While these factors are expected to steadily enhance the supporting tole of CFD, the real hope for 
its future seems to rest with the incorporation of additional physics into the available mathemati­
cal algorithms and computer codes. Only then can some of the thermalhydraulic analysis tools be 
gradually replaced by the CFD technology in nuclear engineering applications. 
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FINITE ELEMENT METHOD - THEORY AND APPLICATIONS 

SALEH BASET 
Mathematics and Computation Branch 

Chalk River Laboratories 

ABSTRACT 

A brief summary of the mathematical basis of the Finite Element Method (FEM) has be?n presented. 
Attention is drawn to the natural development of the method as an engineering analysis tool into a 
general numerical analysis tool. A particular application to the stress analysis of rubber materials is 
presented. Special advantages and issues associated with the method are mentioned. 

1.Mathematical Basis of FEM 

The FEM is typically viewed as an approximation to the integral form of governing equations. Two 
distinct procedures are available to achieve such approximation; the weighied residual method and variational 
method V\ 

1.1 Weighted Residual Method 
The starting point here is the set of differential equations and boundary conditions which govern the 
behaviour inside the domain V and on the surface S, 

A(u) = 0 in V (1.1) 
B ( u ) = 0 on S (1.2) 

where the dependent variable u=u(xj,t) is a scalar (or vector) function of space and time. The differential 
operators A and B are obtained from the physics of the problem. 

The above equations can be combined in a single integral form, as follows: 

CTA(u) dV + DTB(u) dS = 0 (1.3) 
JS 

If Eq. (1.3) is satisfied for any arbitrary choice of functions C and D, then the differential Eqs. (1.1) and 
(1.2) would be satisfied at all points. It is usually possible to integrate Eq. (1.3) by parts to yield another 
integral form known as "the weak integral form". Of course, the shape of the functions A, B, C and D will 
now be different. As a result, the new differential operators A and B will include a lower order of 
differentiation, albeit at the expense of higher orders in the arbitrary functions C and D- This results in 
loosening the continuity condition on the trial functions in the approximation process. In some problems, 
it has been found that the boundary term in the weak integral is much simpler than the corresponding term 
in the original form. Such a simplification of boundary conditions constitutes one of the most impressive 
advantages of the FEM. It is interesting to note herein that if the integration by parts is continued once 
more, it is possible to entirely get rid of the domain integral by careful choice of arbitrary functions, which 
satisfies the differential equations in the domain, and hence reduces the dimensionality of the problem by one 
order of magnitude. This has led to the development of a new method, called the "Boundary Element 
Method", in the 1970's(2). Now, if an approximation to the variable u is assumed, Eqs. (1.3) will not be 
identically satisfied for any arbitrary function unless these functions are chosen to minimize the errors 
(residuals) to zero. Hence the name of weiglued residual methods. 

1.2 Variational Method 
A variational principle is a scalar quantity (functional), which is defined in integral form in terms of the 
dependent variable (e.g., u ) and/or its derivatives. The solution to the continuum problem is the function u, 
which makes the functional stationary with respect to any arbitrary variation 8u. Such variational principles 
are called natural if the physical aspects of the problem can be stated directly in such a way as to minimize 
some quantities, such as the potential energy of a mechanical system, energy dissipation in viscous flow, 
etc. If such a principle exists, standard procedures can be immediately established to approximate the 
solution^1). It is easy to show that this procedure is mathematically equivalent to the (Galerkin) weighted 
residual method. More important is the fact that the procedure will result in symmetric FEM equations, 
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which are attractive from a computational point of view. Unfortunately, the opposite is not true, i.e., a 
weighted residual procedure docs not necessarily produce symmetric equations. In this regard, the weighted 
residual method retains its advantage as a more general method, because it is not possible to find a 
variational principle for some problems which can otherwise be described by differential equations. Some 
researchers still luce to construct the so-called contrived variational principles by introducing additional 
variables called Lagrange multipliers. In these situations, the gain in having symmetric equations can be 
upset by having more variables and singular equations, which require special care in solving them. 

1.3. Trial (Shape or Interpolation) Functions 
The FEM can now be recognized as the special case when the approximation of the variable u is expressed in 
terms of piece-wise (i.e., defined element wise) trial functions, as follows: 

u » u = £ N/ a; = N a (1.4) 

where N; are assumed trial function (usually polynomial) and a; are the values of the variable u at the nodal 
points which constitute a given element in the domain. 

As for the weighting functions C and D in Eq. (1.3), various methods can be used. The most common one 
is known as the Galerkin method, wherein C and D are chosen to be the same as the trial functions N of 
Eq. (1.4). It can be seen by now that the most important step in FEM is the choice of trial functions N. In 
general, such functions should be continuously intcgrablc (over a single element) up to the highest order of 
differentiation in Eq. (1.3). In addition, they should avoid the presence of infinity at the inter-element 
boundaries. Polynomial functions which are chosen to equal unity at the corresponding nodal point and zero 
elsewhere are commonly used. They are usually expressed in terms of normalized space (i.e., ranging 
between -1 and +1). They can (hen be mapped to the real geometry using strndard transformation techniques. 
Experience has shown that simpler functions produce better results, especially in nonlinear analysis. Figure 
(1.1) shows some such functions for 2- and 3-node elements in 1-dimension space. Extension to 2- and 3-
dimension space is straightforward. 

Nodel 

(-1) 

Node 2 

(+1) 
Node 3 

(+1) 

Ni=(l- m Ni = -Ç(l-Ç)/2 

Figure 1.1 Shape Functions for 2-node and 3-node Finite Elements in 1-Dimension Space 

If the coordinates x\ are interpolated using the same trial functions N of Eq. (1.4), the element is further 
classified as an isoparametric element. Some researchers have shown that by simple relocation of the mid-
side node or by changing the trial function itself, it is possible to model such peculiarities as the 1/Vr 
singularity of linear fracture mechanics, or to map a semi-infinite domain to a finite space. Except for such 
peculiarities, experience has shown, however, that the simpler (linear) functions do usually produce better 
results (for the same degree of discretization), especially in nonlinear analysis. Finally, it is interesting to 
note that the well-known finite difference method can be viewed as a special case of the weighted residual 
method, in which the weighting function happens to be the Dirac function applied at grid points. 

2. Applications in Solid Mechanics 

The most convenient approach in solid mechanics is to write down the potential energy n of the system as 
follows: 

n = i 
2 

dV - U; t; dS (2.1) 

where o,y and e,y are die stress and strain tensors inside the domain, while u; and t; are the displacement and 
traction vectors on the boundary, respectively. If the problem is to be reduced to one dependent variable only 
(e.g., u,- ), all ouier variables have to be expressed in terms of u,- using whatever kinematic and constitutive 
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material relationship applicable to the problem. For example, in the case of small displacements and linear 
elastic material, the following relations can be assumed: 

a ij - E y w EJti 
'" 2\d%} 3xJ 

(2.2) 

where Eym is the generalized Hook's law. Now, by assuming a FEM approximation (similar to Eq. 1.4), 
the variable u and its derivatives can be expressed in terms of nodal variables a as follows: 

{ »}=[N] {a} 

(e) = [B] { a) 

(Su}=[N] {8a} 

(8e}=[B] {8a} 

(2.3) 

(2.4) 

The equilibrium of the mechanical system corresponds to the function u which minimizes the functional IÏ 
(i.e., oTI=0). By substituting Eqs. (2.2), (2.3) and (2.4) into Eq. (2.1), the variation of functional n is as 
follows: 

811 = {8a}T [ [Bf [E] [B] {a } dV - I [N]T (t} dS = 0 (2.5) 
JV JS I 

Since 8a is any arbitrary variation, the expression inside the {} brackets should equal zero. This leads to the 
following set of algebraic equations: 

where: 

[K]{a}-{F}={0} 

[K]= X [B]T[c][B]dV 
elements 

(F}= S |[N]T{t)dS 
elements 

(2.6) 

(2.7) 

It is understood that the summation in Eq. (2.7) represents the contribution at one node from all the elements 
connected to it. The formulation of several element matrices can be executed in parallel, making the FEM 
suitable for modern parallel and vector computer technology. 

large displacement 

gap rubber friction/ 
sliding 

Figure 2.1 Typical O-ring Problem 

In the case of rubber analysis, there are many 
sources of nonlinearities, such as the kinematic 
and material relationship (Eqs, 2.2), large • 
displacements due to moving boundaries, • 
gap/friction and slip/stick surface conditions, as 
shown in Figure 2.2. The solution procedure is 
similar to the above one, with the coefficient 
matrices K and F now being functions of the 
displacement u and stress o. The resulting 
algebraic equations are nonlinear, and standard 
numerical linearization procedures (e.g., Newton-
Raphson) are usually used for the solution. 
The general purpose FEM program MARC (3) has been used in the stress analysis of the O-ring of the solid 
rocket in the space shuttle. The stress, strains, displacements and reactions can be found at different loads, 
boundary and/or temperature conditions. These results can help the designer determine contact and/or 
maximum stress locations, which are crucial in operation conditions. The amount of output in a typical 
FEM analysis is usually very large, and interactive graphics toolsW have to be used to investigate the 
results. Figure 2.2 shows a typical colour (reprinted here in gray) contour of stress being superimposed on 
the deformed mesh. 

3- Current Activities in FEM 

With the mathematical foundation of FEM being established, a lot of R and D is still going on in this field. 
Questions such as accuracy, convergence, existence and/or uniqueness of die solution are being addressed. 
The development of new complicated materials and the need to push operational conditions to new heights 

7 



(e.g., high temperatures, supersonic speeds, etc.) have moved research beyond the realm of linear analysis. 
Automatic -adaptive mesh generation, interactive graphics and animation techniques are becoming 
indispensable standard tools of numerical analysis. Mixed (hybrid) formulation, wherein several dependent 
variables are explicitly included, have yielded very accurate results in some particular applications. 

4- Conclusions 

The FEM has been shown to be based on solid mathematical foundations. This explains the reason why the 
method has developed from being an intuitive engineering tool in its infancy, to being such a comprehensive 
numerical method tool now. The successful application of uiis method to the stress analysis of the O-ring 
used in the field joints of the solid rocket of the space shutUe has been demonstrated. More development is 
still taking place to extend FEM to new fields and applications. 
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MULTI-DIMENSIONAL TWO-FLUID FLOW COMPUTATION, AN OVERVIEW 

M.B. Carver 

Advanced Reactor Development Division 
Thermalhydraulics Development Branch 

Chalk River Laboratories 

ABSTRACT 

The paper discusses a repertoire of three-dimensional computer programs that have been developed 
to perform critical analyses of single-phase, two-phase and multi-fluid flow in reactor components. 
The basic numerical approach to solving the governing equations common to all the codes is pre­
sented and the additional constitutive relationships required for closure are discussed. Particular 
applications are presented for a number of computer codes. 

1. Introduction 

Because a nuclear reactor system relies entirely on fluid circuits for energy transport, mathematical modeling 
of thermal-hydraulic phenomena plays a pivotal role in reactor design and development. Methods of improv­
ing the accuracy and efficiency of thermal-hydraulic computations are continually sought. Reactor design 
is supported by a large repertoire of analytical computer programs. These programs embody knowledge 
accumulated from years of research and development focussed on quantifying fluid flow and heat transfer 
in single-phase and two-phase systems. Each computer program comprises several areas of expertise, in­
cluding physical modelling, which selects the appropriate conservation equations to be solved and associated 
constitutive relationships required to describe energy transfer between the fluid and its boundaries, and 
mathematical modelling, which chooses an appropriate approximation to the conservation equations and 
numerical means of solution. 

2. Geometric Framework 

The first step in any computational analysis is to select a model of the geometries required as a framework 
for the analysis. The appropriate form is often dictated by the hardware. In most of the coolant circuits 
of a CANDU reactor, the fluid behaviour may be adequately described by one-dimensional (cross-sectional-
averaged) models. However, in the reactor fuel channel, flow must distribute itself among the intricate flow 
passages of the fuel bundle. In the secondary side of the steam generator, and in the calandria, the flow 
distribution is also complex. Multi-dimensional analysis is necessary to model detailed local distribution of 
flows and temperatures in any of the geometrically complex components. AH of these components have a 
similar internal structure; i.e., flow passes through some array of rods or tubes. Alternative computational 
frameworks for rod array systems are reviewed by Sha [1]. 

Although the finite-element method lends itself readily to fitting complex external boundaries, it has not 
often been used for flow systems with complex internal boundaries. Instead, the equations have usually been 
formulated for finite control volumes and integrated in finite difference form [2]. 

Except for the 1-D case, the simplest and most natural geometric division of a rod array is a subchannel. 
Subchannels are readily defined as communicating flow channels bounded by rod surfaces, and fictitious lines 
between rod centers. Each subchannel is divided into a number of axial control volumes. 

An alternative approach is to impose a coordinate system on the entire flow vessel and represent the internal 
hardware by distributed resistances and heat sources. This classic "porous medium" approach is more 
suitable for geometries in which rods are densely packed. Information on overall flow distribution inside the 
rod array is required, rather than details Swithin each control volume. The volume available to the fluid 
(i.e., not occupied by hardware) and flow area blockages are computed suitably at control volume interfaces. 

Note that the porosity and subchannel concepts remain artifacts that do not reduce to the true solution in 
the limit, as zero velocity cannot be imposed at all solid surfaces. In fact, standard finite-element methods 
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do not so reduce either. This degree of fidelity can be achieved only by using finely divided body fitted 
coordinates [1]. 

The examples in this presentation are restricted to the subchannel and porous medium formulations. 

3. Models of Single-Phase Flow 

The next step in a computation is to decide on a flow model. As in modelling the geometry, the most 
complicated available model normally need not be used; simplifying assumptions are frequently valid and 
may reduce the complexity of the equations to be solved. 

Single-phase flow is normally modeled adequately by solving the conservation equations of mass, momentum, 
and energy. The exact form of the equations will depend on whether the fluid should be considered incom­
pressible or compressible, and inviscid or viscous. These decisions affect both the form of the equations and 
the behavioural modes of the solution. 

The above considerations are common to single or multi-dimensional form. However, the problem of tur­
bulence modeling is peculiar to modeling multi-dimensional flow. The model of turbulence exerts influence 
only by means of its effects on pressure drop in a 1-D calculation, but in multi-dimensional cases it de­
termines velocity distribution. It is usually modeled by a suitable means of computing the distribution of 
effective viscosity. This may be introduced by algebraic relationships or the more detailed models involving 
further differential equations of transport. Note that additional differential equations thus introduced are 
not governing equations of the flow field, but merely part of the turbulent model. 

4. Models of Two-Phase Flow 

The assumption of equilibrium produces the simplest model in which the phases are taken to be homoge­
neously mixed, and to have equal velocity and equal temperature (EVET). The two-phase mixture is treated 
as a single fictitious fluid having properties determined solely by the relative proportion by weight (quality) 
of vapour in the mixture. Thus the partial differential equations to be solved are the same as for single-phase 
flow: conservation of mass, momentum and energy of the mixture, while algebraic relationships cater for 
the two-phase properties' and the equation of state for the mixture. The homogeneous model is suitable for 
conditions in which departures from mechanical and thermal equilibrium are known to be minimal. 

For cases in which gravitational or centrifugal forces are known to induce phases to travel at different 
speeds, a two-velocity model is required, and an additional relationship is required for relative velocity. 
Early separated flow models used a void correlation instead of the equation of state, and a simple numeric 
slip factor to impose the higher velocity of the vapour phase in vertical flow. This was later quantified by 
relating relative velocity to the rise velocity of vapour bubbles in liquid and the radial distribution of vapour. 
This simple drift-flux model, also referred to as UVET (unequal velocity equal temperature), uses algebraic 
relationships for relative velocity, and hence still requires the solution of the same three partial differential 
equations of conservation, but an additional equation, usually based on gaseous phase continuity, is required 
for void distribution. 

None of the above models permits the temperature of either phase to depart from saturation. To simulate 
non-equilibrium phenomena such as subcooled boiling, superheated liquid, and flashing, etc., a mechanism 
that permits these effects must be added. Again, early studies used algebraic relationships, but more rigorous 
models now use a separate energy equation and equation of state for each phase, and model heat transfer 
between phases. 

The advanced drift flux, unequal-velocity, unequal-temperature model is a combination of both of the above, 
and therefore requires the solution of five conservation equations: a mixture momentum equation, two 
continuity equations and two energy equations. 

Finally, the full six-equation, two-fluid model abandons the algebraic definition of relative velocity and 
instead computes phase velocities using two momentum equations containing models of wall-to-fluid and 
fluid-to-fluid stresses. 
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It is apparent that with each level of complexity of the two-phase model, additional partial differential 
equations are added, and hence more involved numerical schemes are required. However, since the basic 
equations have the same form as for single-phase flow, most advances in numerical techniques for simulation 
of single-phase Sow can be extended to two-phase applications. 

The above discussion covers the options in two-phase flow, with boiling and condensation; however, it 
is frequently necessary to deal with a non-condensable component. For small concentration, when such a 
component can be considered to travel at the same velocity as the host flow, its distribution can be simulated 
by a transport equation with appropriate source terms. Otherwise, a separate momentum equation is also 
required for the component. 

5. The Conservation Equations of Two-Fluid Flow 

The equations are formulated using the principle of interpenetrating continua, Harlow and Amsden [3]. This 
permits the equations of each fluid to be written separately, as if each fluid behaved as a continuum, but 
with additional terms which represent their interaction. This yields for each fluid ib; 1 continuity equation, 
3 momentum equations, 1 energy equation, 1 state equation, and 1 algebraic constraint. This can be stated 
in Cartesian Vector form for fluids k and £ as follows: 

( I M + V - M ) } ^ ^ (l) 

{•fr(<xPU + V • (apUU)}k = -akVP + {apg)k + rki + rkw (2) 

{ap^ + V • (aphU)}k = -<*k^ + ( ^ ) f c + V • ( K V T ) * + ** + <f>kl (3) 

at + ak = 1 (4) 

P = i{h,Pk) (5) 

For three dimensional cases, these equations result in a set of 5*2 partial differential equations and 2 con­
straints. These are to be solved on a grid of at least 10*10*10, which, if converted to ordinary differential 
equations (ODES) in time, would yield 12 000 simultaneous ODE's. The domain must be discretised into 
control volumes and the equations integrated over each control volume, using appropriate interpolation func­
tions. As simultaneous solution is impossible, a class of iterative solutions have been developed for 3D 1 
fluid flow. They may be extended for 2 fluids [4]. 

In order to solve the equations, it is necessary to write them in discrete form with reference to finite control 
volumes. To maintain continuous definition of all variables, it is important that all variables are evaluated 
correctly where averages across grid points are required, using appropriate interpolation functions or weight­
ing functions. In this area, the finite element, finite difference and finite control volumes overlap somewhat 
(see [2]); however, finite control volume analyses are predominant. 

Most common schemes for multidimensional flow originate from one of two major sources, the ICE [3] 
procedures developed at Los Alamos National Laboratories and the SIMPLE [5] procedures from Imperial 
College in London. Both use the staggered grid concept, although the nomenclature is somewhat different. 
The ICE procedures solve the equations in differential form, whereas SIMPLE users prefer to integrate 
about the control volume. Both apply equally well to 1, 2, and 3D situations, and the resulting equations 
are equivalent. 
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6. Constitutive Relationships 

The next most important ingredients in a thermal-hydraulic code are the constitutive relationships required 
for closure. These are the models of the subprocesses which supply the algebraic relationships necessary for 
closure, in other words, to balance the number of definitive equations with the number of variables. 

In single-phase flow, detailed expressions are required for friction and heat transfer and elements of the 
turbulence model. In two-phase flow, depending on the model, correlations are needed for void fraction, 
relative velocity, heat transfer and friction between hardware and each phase and between phases. The 
question of flow regime affects all of these. 

Once a numerical scheme has been developed and exhibited convergence and consistence, the choice of the 
constitutive relationships determines the detailed results. These must obviously be chosen judiciously. A 
fairly satisfactory repertoire of relationships has been developed for the homogeneous model. Some doubt 
exists about the correct choice for the advanced models and further research is continuing. 

7. Application Examples 

The presentation will discuss examples of modelling three-dimensional two-phase flow in reactor components, 
including fuel channels, steam generators, and condensers. Some current computational concerns will be 
discussed. 

• ASSERT - Three-dimensional two-fluid analysis of flow and phase distribution in reactor fuel bundles; 
application to CANDU and MAPLE reactors [6]. 

• THIRST - Three-dimensional analysis of flow and phase distribution in steam generators; application 
to steam generators [7]. 

• THIRST/SLUDGE - Three-dimensional analysis of transport, deposition and entrainment of particulate 
matter (fouling) in steam generators; application to modelling fouling [8]. 

• SPOC - Three-dimensional analysis of steam, water and air distribution in power plant condensers 
application to design of tube banks [9]. 

• FAITH - Three-dimensional two-fluid analysis of two-component flow in ducts and vessels; application 
to flows in bends and through broach plates [10]. 

• FLOW3D - Three-dimensional analysis of flow in arbitrary geometries; application to flow in pool 
reactors [11]. 

Further details of the applications are in reference [12], and the above references. 

8. Validation 

Validation of code predictions against experimental evidence is essential to establish credibility. In order 
to illustrate that validation is a priority, the presentation will illustrate comparisons with data wherever 
possible. 
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Quantum Symmetr ies 

M. Couture 
Theoretical Physics Branch 
Chalk River Laboratories 

The concept of symmetry has played an important role in physics and mathematics. One might think 
of the close connection between spuce groups and classes of crystal, Lorentz symmetry and general 
relativity, Lie groups and gauge symmetries in subatomic physics. It is therefore not surprising that 
the discovery, approximately ten years ago,1 of symmetries that are continuous deformations of some 
of the symmetries mentioned above has caused great excitement among theoretical physicists. Stud­
ies have revealed close connections between solvable models in statistical mechanics (for instance, 
the two-dimensional Ising model) and field theory, knot theory, deformation theory of Lie algebras 
and noncommutative geometry. The unifying theme in all these seemingly unrelated topics is the 
Yang-Baxter equation. The following example illustrates the fact that these new symmetries may 
be viewed as the symmetries of noncommutative spaces. 

Consider a set of non-commutative two-dimensional spaces Q\ and Q2, whose coordinates x\,X2 
and Xi, X2 satisfy the following quadratic relations 

Ql : X1X2 — q'1 x2xi = 0 (1) 

Q2 : X\ = 0, X\ = 0, XXX2 + qX2Xx (2) 

where q is some arbitrary parameter known as the deformation parameter. We now define a matrix 
{V z2\ Z = I 1 2 I a n d impose that the following transformations on Ql and Q1 

(3)-*(:0 •(£)='(£) <3> 
are such that the zj"s and Xy$ still satisfy (1) and (2), respectively. This is possible only if one 
allows the z\ 's to be 'noncommutative. One finds that the relations (1) and (2) are preserved under 
the transformations (3) provided the z\ 's satisfy the following quadratic relations 

r 1 ? 2 — n~172z1 r1 z1 - n'1 z1 r1 
zlzl — Ï Zl zl>zlz2 — Q z 2 2 l 

Z2Z\ = az\z2iz2z2 ~ QZ2Z2 

z\z\ = z\z\, z\z\ - z\z\ = fa"1 - q)z\z\ 

These relations may be summarized as follows: 

R(Z ® I)(I <8>Z) = (Z® I)(I ® Z)R 

where I is the two-dimensional identity matrix, ® stands for tensor product and 

(
1 0 0 0 \ 

0 1 - g 2 q 0 
0 g 0 0 
0 0 0 1 / 

The matrix R is a solution of the braid relation 
(R ®I)(1® R)(R ® /) = (I ® R)(R ®I)(I® R) 

which is one form of the Yang-Baxter equation. Recently, P. Leivo and I found a generalized version 
of such quantum symmetries. 
References 
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APPLICATION OF NORMAL FORM METHODS TO THE ANALYSIS 
OF RESONANCES IN PARTICLE ACCELERATORS 

W.G. Davies 

Nuclear Physics Branch 
Chalk River Laboratories 

ABSTRACT 

The transformation to normal form in a Lie-algebraic framework provides a very powerful 
method for identifying and analysing non-linear behaviour and resonances in particle accelerators. 
The basic ideas are presented and illustrated by a simple yet important example. 

1. In t roduct ion 

In this paper, we will discuss the advantages of using state-of-the-art mathematical tools, in particular 
normal form methods and maps in a Lie-algebraic framework^1-3), to help us solve very complicated non­
linear behaviour in particle accelerators. Although these methods were invented about 100 years ago, they 
would still have limited utility without the availability of modern computers and considerable mathematical 
development^3). Two important developments are the advent of algebraic codes and differential algebra^4). 

In general, this is a study of systems of differential equations of the form 

x = f(x,\,t); i e B . " , A € R m , « e R . (1.1) 

In accelerator physics, these equations become Hamilton's equations 

C'=-[H,<] (1.2) 

where f{x,X,t) => H, ' = d/d9, t => 9, the new "time"; i € R " 4 ( = (^,Pr,z,Pz,r,pT) G R6, the 
"canonical variables" and the [•,•] are the familiar Poisson brackets. The relativistic Hamiltonian, H, in 
cylindrical coordinates will be used for explicitness. 

H = -epAe - p { ( Ç ) 2 - m V - [pP - eA„]2 - \pz - eA,)2)^ (1.3) 

where p= x + p0; po is the radius of curvature of the central or "design" trajectory, po is the total energy 
of the system and e is the electronic charge. The magnetic vector potential A has the form 

A=A(x,z,T;e); AeR3. (1.4) 

Equation (1.2) could be solved by brute-force numerical integration, which works up to a point for small 
systems like cyclotrons, but not for large systems. For example, the main ring of the Superconducting 
Supercollider has about 10 000 magnets; the Hamiltonian has 20 000 piece-wise continuous sections! Each 
particle trajectory must be integrated separately. Consequently, exploring phase space is extremely expensive 
and is accompanied by loss of numerical accuracy. In particular, the symplectic condition (conservation of 
phase space) for Hamiltonian systems is generally not preserved. Alternatively, we can use "state-of-the-art" 
methods to simplify the problem. This is essential for large systems. A truly enormous simplification of 
the problem is achieved by employing: 1) maps £/ = M(0)Ci ; 2) normal forms (reduces the problem to its 
"simplest" form — isolates resonances); 3) a Lie-algebraic formulation (ensures symplecticity, minimizes the 
number of terms, enhances understanding). 
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2. Lie-Algebraic Maps 

In the development, we use a Lie-algebraic formulation. The Poisson bracket [H, Ç] in Hamilton's equations 
(1.2) satisfies all of the requirements of a Lie algebra, namely, the commutation relation 

A * B = (A, B) = AB - BA (2.1) 

and the Jacobi identity 

(A, (B, C)) + (B, (C, A)) + (C, (A, B)) = 0. (2.2) 

Note: This Lie algebra is neither commutative nor associative. 

Traditionally, Taylor-series maps of the form Q = M(0)Ci have been employed, which when expanded 
become 

<T'» = ft;Cf + TijkCJNCiN + Uiiknti»<l'r&" + ••• (2.3) 

where, in general, R, T and V have 36, 126, and 336 terms, respectively. In a Lie-algebraic representation 
of M(0), we write 

M = Mf, Mj = e:':; :f:g-[f,g] (2.4) 

where 

e:/=
 àg £ ) i £ £ ; : / :°= X = {identity map}. (2.5) 

n=0 

The map Mj can be factored W into 

Mj = M2M3M4- = e:/2=e:/s:e:-K.. (2.6) 

where M and Mn are symplectic maps and /„ are homogeneous polynomials of degree n; Î2,fz, and / 4 

contain 21,56 and 126, terms respectively (compare with (2.3)). The maps Mn are elements of the symplectic 
group sp(2n, R). 

3. Normal Form 

The normal form is the transformation M = AMA~l such that If is in its "simplest" form; M must be 
expanded about a "centre manifold" or "closed orbit" (i.e. no Hi term in the Hamiltonian, H), which implies 
no Mi term in the map Jvi. The symplectic map A is an nth order canonical transformation that isolates 
the tune shifts and resonances to nth order. Using the factored map, we can normalize M order-by-order to 
obtain 

Jf = An---A4{A3{A2MA21}A^}AV---^ûl- (3-1) 

We proceed as follows. From the eigenvectors of the matrix representation R, of «M2!
 w e get a canonical 

transformation that rescales and block diagonalizes R. 

Next we normalize Mz 
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AT = A3AiRèh- • • -A^Aâ1 = e:Gs:7Je:S3: • • -e"*7^ = ttexp {: - ( î - ^ - 1 ) C ? 3 + 9z : } . (3.3) 

A further simplification results if we expand (2 — TZ-1) and g3 in a resonance or complex basis, as follows: 

/i± = x±ipx; v± = z±ipz. (3.4) 

Hence, 

and 

{I-H~1)\n,m> = 
n+m=3 

| n , m > , (3.5) 

93= J2 A . m | n , m > where | n , m > =AJ»/i™»i»^aw™a ••• (3.6) 
n+m=3 

and n, m,/* are vectors with components (nj, 712, • • •) etc. Substituting (3.5) and (3.6) into (3.3) and solving 
for G3, we obtain 

G* = Jï=3{l-°*Pli™-™)-AY (3"7) 

All terms in 53 can be incorporated into G3 except when n — m = 0 or (n — m) • ft = 2irk; k = integer; i.e., 
(ni — mi)ftx + (n2 — rm)Hz i1 2irk; k = 0, ± 1 , ±2 • • •. In a similar fashion, we could proceed to find GA, etc. 
A further substitution of Ix = /»+ft_, Iz = v+v-, the action invariants— leads to 

H = exp : {(/i r + H'XPT + PZP*)IX + (fi, + • • -)IZ + a,/* + az l] + • • •} : (3.8) 

where we have assumed no acceleration and no explicit resonances; ft are the phase advances, fi' and fi" 
are the first- and second-order chromaticities and all terms proportional to In are non-linear tune shifts. If 
explicit resonances occur with (n — m) • ft = lirk, k — integer, these must be added to (3.8). Finally, the 
normal form has the remarkable property that 

Mn=A-xtfnA (3.9) 

which also results in an enormous saving of work when applicable. 

As an example, consider the Hamiltonian for the superposition of a uniform magnetic field with quadrupole 
and sextupole components. The vector potential for this Hamiltonian up to 3 r d order is 

A9 = -X-±A B0-~{Qxx
2-rQzZ2}-^l^--xzA, (3.10) 

Po Po l à J 

with Ap = Az = 0; Qx, Qz, Sx are the quadrupole and sextupole strength, respectively. (With a proper 
choice of parameters, this Hamiltonian models all of the non-linearities of the TASCC superconducting 
cyclotron magnetic field up to third order.) Because (3.10) is independent of 0, the Hamiltonian (1.3) has 
the trivial solution 

M(0) = e x p j - | :H:dB'\ =4- M(6) = e~e:H- (3.11) 

which can be factored (with some work) into the form of (2.6). Because we are neglecting acceleration, the 
energy of each particle is conserved and we define pT = (EQ — E)/Eo, where E is the particle energy and EQ 
the energy of the central trajectory. If we factor (3.11), we find that f3 contains 19 complicated terms. 
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If we carry out the normalization procedure described above and there are no explicit resonances, the 
normal form contains 02 = fixh+h„ + fixv+v~, the "rotation matrix R" and 

(1 - 1/,) , . , ( ! -» / , ) 

k2 kxk 
+irSr-~h+h-pt - irSx-~-v+v-pt 

"xP vxP 

- t - ^ l ^ p f ^ ^ ^ p ? (3.12) 

which contains 4 chromaiicHy terms proportional to pT and two time-of-flight aberration terms proportional 
to p3., a substantial simplification. Furthermore, these are the terms that could potentially cause us trouble. 

We see from (3.12) that if vx = vz = 1 => fix = fiz = 2ir (that is, we make the system resonant!), then 2 
terms disappear and we are left with the terms proportional to Sx. If the remaining chromaiicHy terms can 
be removed (which they can), then Tti = 7̂ 2 = 1 ox Hx. = J . Hence 

M = {AZ 1A31/fA2M =le-xp*: !! (3.13) 

Eq. (3.13) tells us that under these circumstances, all of the non-linearities, except the one proportional to 
p%, annihilate each other up to 3 r d order in the map! Although one would never want to make the whole 
accelerator resonant in this way, parts of it can be made so to great advantage. 

4. Conclusions 

In the design and analysis of particle accelerators, we can achieve truly enormous savings in time and effort 
by: 

1. using maps, 
2. transforming to norma/ form to study iune-shifis and resonances, and 
3. using the Lie~algebraic framework which enhances insight and understanding. 
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THE PRESSURE-TUBE SAMPLER -
COMMUNICATION THEORY IN MECHANICAL ENGINEERING 

R.S. Davis 
Reactor Physics Branch 
Chalk River Laboratories 

ABSTRACT 

I became involved in the mechanical engineering of the pressure-tube sampler indirectly after I was 
assigned related reactor-physics calculations. I discovered a problem in the proposed method of 
operating a machine inside an operating CANDU reactor, considered it as a problem in commu­
nication theory and thus created a number of conceptual solutions to the problem. The role of 
mathematics in this work has been questioned because the same concepts could have been created 
in other ways. 

1. Introduction 

The story of my work on the pressure-tube sampler has two features that are particularly relevant io this 
workshop's aim of defining the role of applied mathematics in AECL. One such feature is the indirect manner 
in which an applied mathematician became involved in mechanical engineering - it was not that mechanical 
engineers decided that they needed a mathematician's help in mecbanical engineering. The other such 
point, which follows from that, is that the customer believes that my work is better described as mechanical 
engineering than as mathematics. Each member of my audience may decide for himself/herself the degree 
to which my work is describable as mathematics (and thence the degree to which this report is relevant to 
this workshop). 

The other sections of this report discuss the following topics: 

Section 2: The pressure-tube sampler. 
Section 3: The indirect route into mechanical engineering. 
Section 4: The use ôf communication theory. 
Section 5: The role of communication theory. 

2. The Pressure-Tube Sampler 

The purpose of the pressure-tube sampler is to monitor the hydriding of pressure tubes in CANDU reactors. 
This is fundamental to safety, and good monitoring also contributes to economy by avoiding unnecessarily 
frequent tube replacement. Specifically, the pressure-tube sampler goes right inside a pressure tube, extracts 
a tiny sample from the inner surface and bears it out so that a laboratory can analyze it. 

The goal of the team with which I am working is to make the process more economical, primarily by making 
it possible while the reactor is at or near full power, and as a corollary minimizing the amount of special 
tooling required. Clearly, some special tooling is necessary at the sample site, but other than that the 
in-reactor process is to involve little or no equipment that is not already part of a CANDU station. 

This is a challenging goal, because: 

(i) the tool's environment is very sensitive to variation from normal operating conditions; 
(it) the tool is subject to many sorts of strong, interfering forces and energy flows; 

(Hi) the tool is very isolated, inaccessible to, e.g., vision, manipulating tools, or even a cable; and, 
(iv) The environment of the tool is very destructive, rapidly making mincemeat of, e.g., hydraulics and 

electronics. 
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3. T h e Transit ion to Mechanical Engineering 

My involvement in this project started when R. Joynes arranged foi me to do some reactor physics calculations 
for the project. They were to determine: 

(i) what neutronic effects the tool will have on the reactor, and 
(ii) how the tool will be activated by the neutron irradiation. 

Since I am in Reactor Physics Branch, these calculations^1) were not out of the ordinary for me. 

The first stage in my transition to mechanical engineering came when I asked Joynes about possible detri­
mental effects of the reactor environment on the materials of the tool. We both considered that question to 
be out of our respective fields of expertise, but decided that I would ask around about it. I found out that 
the one potentially important effect was relaxation of springs.^2) 

The second stage in my transition to mechanical engineering came when I set out to calculate whether 
the potential relaxations would be tolerable or not. With CANDU engineering information^3-4) and patient 
explanation by Joynes of the functions of the springs in the tool, I calculated minimum and maximum 
loadings that the springs could have. We decided that a better margin was worth pursuing. 

The third stage in my transition to mechanical engineering came when I started to suggest corresponding 
design changes. Because of my experience in Unit 2000,1 started with divergent thinking, that is, by listing 
as many concepts as I could by which to redesign the tool. Although the reference design did not actually 
need a radical redesign, Joynes decided that we should consider all possible design concepts to ensure that 
we based our work on the best. Consequently, I prepared a list of all the concepts I could, and of all the 
combinations thereof that might work. J.M. King and I are now preparing an evaluation of the resulting 
concepts.(5) 

4. T h e Use of Mathematics 

The basic requirements of the tool inside the reactor are: 

(i) the raw energy to cut out the sample, 
(ii) control to ensure that it takes a sample in the right place (and even more importantly, not in the wrong 

place), and 
(Hi) monitoring, so that the operators know how the tool is responding to the controls. 

All these requirements are in fact just communication, and the problem is just to find suitable channels. 
Communication theory is therefore the appropriate tool for the problem. The problem of sensitivity of the 
environment limits the amplitude of signals, and the interfering forces are noise. The one problem is therefore 
low signal-to-noise ratio. Communication theory offers two means of overcoming this problem. 

(i) Narrow bandwidth - The narrower the bandwidth is, the less noise there is in the communication channel. 
This is particularly viable for the pressure-tube sampler because, since each mission will take several 
hours, a delay of several thousand seconds, corresponding to a bandwidth less than a millihertz, would 
be quite acceptable. 

(ii) Redundancy - The channel contains more information than is ideally necessary and, if part of the signal 
is spoiled by noise, the receiver uses the remaining signal to detect the fact. 

Communication theory served as a guide to my divergent thinking (if it is not an oxymoron to speak of 
guiding divergent thinking). I tried to think of: 

(i) every carrier, i.e., everything that passes, or can pass, into or out of the reactor (e.g., coolant flow, 
fueling machine rams, various fields and the tool itself), 

(ii) every way of modulating that carrier, 
(Hi) every way to restrict the bandwidth upon demodulation, and 
(iv) every compatible combination with adequate redundancy. 

I found four basic designs in this manner. 
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One of the designs illustrates the application of the above principles particularly well. The tool integrates 
coolant flow to determine elapsed time, and uses the same mechanism to power the process. The mechanism 
is a turbine, reduction gearing, a lead screw, and lost motion between the nut and the cutter. The time 
delay provides the narrow bandwidth. Since any length of pause may occur during the mission, this design 
needs redundancy to cope with noise. This may be a brake that stops the turbine when a fueling machine 
squeezes the tool. 

The reference design works entirely by force squeezing the tool. It copes with noise by means of a latch 
that is triggered by force exceeding a preset level greater than the greatest force the tool will undergo 
during handling. This is literally a brute-force design, which is possibly still the best, approach, although the 
signal-to-noise ratio is not ample. * 

5. Discussion 

The difficulty of assessing the role of mathematics in this work is that communication theory was not essential 
in it (aside from a few simple calculations). It did, however, serve as an effective means of generating ideas. 
Even more importantly, it provided a means of organizing and cataloguing concepts, so that we can be 
confident that, after we have invested several years and megabucks in design, we will not then learn of a way 
we could have done it better. 
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T There was not time at the talk to describe the other two basic designs. They both convey the necessary 
energy in a spring in the tool, cocked before each mission, and their control signal is to-and-fro axial move­
ment, which occurs very little in normal operation but may safely be performed enough to yield an ample 
signal-to-noise ratio. The mechanism is a constrained roller, unidirectional drive, reduction gearing and lost 
motion. To overcome the problem that the tool is actuated while moving, one design uses a tapered dashpot 
to make the cutter pause for the operators to stop the movement, and the other makes the cut much faster 
than the tool's movement, using a recoilless mechanism to eliminate recoil force on the adjacent fuel. 
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EDDY CURRENT SIMULATIONS IN 3D AND APPLICATIONS TO NDT PROBLEMS 

N J DISERENS 
Mathematics and Computation Branch 

Chalk River Laboratories 

ABSTRACT 

Tliis paper gives a brief summary of the use of the finite clement method in the solution of eddy current problems. It outlines 
one algorithm for 3D analysis and (lie attempts made at Chalk River Laboratories to apply it to the simulation of crack detection 
in metal plates and tubes. 

1. Introduction 

Development of three-dimensional computer programs for the numerical solution of electromagnetic problems 
has been proceeding over the past 20 years. Prior to that time, a number of two-dimensional codes had been 
written, mainly utilising analytic or finite difference methods. Limitations in computing power and a need 
for efficient numerical algorithms made extension to 3D difficult. 

With the advent of the Finite Element method, which was originally used for structural problems, it 
became possible to model intricate geometrical shapes and to use a mesh which mapped on to the surfaces. 

Finite Elements were applied first of all to static problems, and a number of successful codes were written 
which could model both electromagnets and electrostatic devices such as spark chambers. At the same time, 
improvements in the conjugate gradient method of solution of sparse linear equations by preconditioning gave 
an efficient way of handling non-linear (iron) problems where the matrix needed to be updated at each 
iteration. 

Other code developers, particularly in France, have concentrated on Boundary Integral methods, where 
only the material surfaces need to be meshed if the properties are linear. They have applied this technique 
to eddy current problems and have also developed hybrid boundary/volume methods for non linear cases. 

Extension to time;varying problems has been slow. The number of degrees of freedom required to solve 
even a simple AC problem in three dimensions can be of the order of twenty thousand. 

During the past ten years, there has been international collaboration to develop and test algorithms for 
solving these problems. A series of 'Eddy Current Seminars' at Ruuierford Appleton Laboratory in the UK, 
and the availability of the Felix superconducting coils at Argonne as a test bed, led to the establishment of 
an organisation known as TEAM*" (Testing Electromagnetic Analysis Methods). 

Three TEAM groups exist one in Asia, one in Europe and the other in North America. A series of 
benchmark problems has been devised for developers to test tieir algorithms. The criterion for a benchmark 
problem is that either measurements or analytic results must be available. A handbook is available with 
details of these. 

Two algorithms® have proved popular among code developers: 

(i) The T-£2 method, which solves for magnetic scalar potential W over all regions and for stream function 
T over conducting regions, (where J = curl T). 

ii) The A-<j> method, which solves for Vector Potential A in conducting regions and scalar potential f 
elsewhere. 

In the field of Non Destructive Testing there has been a great deal of practical measurement, particularly 
with both ferrous and non ferrous tubes, but very little in the way of 3D computer simulation. 

This paper describes the A-<b method and the difficulties in applying it to Non Destructive Testing. It 
reports the progress made in crack simulation at CRL and the requirements for future work. 
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2. The A-(j) Method 

Starting with Maxwell's Equations, we have: 

where: 

Integrating Equation (2.2) gives: 

Vx/f-/ CD 

VxE-— (2-2) 
ar 

B-fjH-VxA (2-3) 

2T—§i-W (2.4) 
9f 

where V is an electric scalar potential. 

Combining Equations (2.2) and (2.3) gives the operator equation: 

V x i - V x A - o [ ^ + w | (2-5) 

Uniqueness of solution cannot be guaranteed unless a gauge is imposed. This could be done by directly 
applying the condition that the Divergence of A should be zero. This is known as the Coulomb Gauge. 
However, there are problems both with the application of boundary conditions on conductors and with the case 
when two materials with different conducting properties are in contact, when a jump in A across the boundary 
may occur. 

The Lorentz Gauge, Equation (2.6), provides for uniqueness of solution and also gives continuous values 
of A across material interfaces. 

VA—yaV (2.6) 

In the space surrounding the conducting materials, the Laplace Equation: 

V.fiVQ-O (2-7) 

is used, where $ is the magnetic scalar potential. Interface conditions must be applied such that the normal 
component of B and the tangential component of H should be continous, and that the normal component of 
J should be zero on the external boundaries of conductors. 

For regions containing conductors in which drive currents are specified, then, to avoid the problem of m 
being multivalued, a reduced potential Y *s used, sucb that: 

iji-<|)-<|> (2.8) 
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where \|/s is the magnetic scalar potential due to the drive current, obtained by integration over the conductor, 
which is not meshed (see Fig. 1). 

Space d = 0 \> = constant 

Solve for f 

! Coil rrgion 

Conducting block ff, \i 

Solve for A, V, J 

Fig.l Potential regions for A-<t> method. 

In such cases, the rigbt-hand sides to the equations are provided by the values of fs and its derivatives 
at the interface between the reduced and total scalar potential regions. 

The above equations are solved using Finite Elements, employing the Galerkin weighted residual method 
for the formulation. Linear (8 node) or quadratic (20 node) brick elements are used. 

The equation solver uses a preconditioned conjugate gradient method. A solution is obtained, first for 
A, $ and y. Then the values of A are used to obtain a solution for V and J. 

3. Crack Simulation Tests on the ELEKTRA Package 

Two series of tests have been conducted on this package, which uses the A-<|) method: 

3.1 Simulation of a Fine Crack in a Non-Ferrous Plate. 

The plate had a resistivity of 50 microhm-cm and a relative permeability of 1. The plate has a surface crack 
12.7 mm long, and 0.12 mm wide. Results were required for depths of crack of 1 mm, 0.5 mm and 0.25 mm. 
The thickness of the plate was 4 mm. The detector probe was set with coil axis normal to the plate surface. 
The coil was 0.5 mm in axial length and its face was 0.5 mm from the plate. The inner and outer diameters 
of the probe coil were 2 mm and 3 mm, respectively. The frequency of excitation was 400 kHz. 

The experimental results were displayed as complex impedances. The probe scan was transversely across 
the centre of the crack. At a distance of 10 mm from the crack the probe was lifted. The display was set 
so that the impedance response was in line with the x axis. 

Many models were tried in attempts to simulate the crack, but with a limit of around 40 000 equations 
on the VAX, the resolution was not fine enough and the results were all 'model sensitive'. Figs. 2a and 2b 
show the experimental and the best computed results, respectively. (Here we are looking for patterns, not 
absolute values.) 
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'..0 mm deep 
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Fig.2a - Experimental. Fig. 2b - Computed. 

Impedance plot for crack-in-plate model. 

3.2 Simulation of Crack Detection in Pipes. 

A schematic of an 'RPEC (Remote Field Eddy Current) pipe inspection scheme is shown in Fig. 3. The field 
seen by the detector is regarded as being a combination of the direct field from the exciter coil and the indirect 
field through the wall of the pipe. The region where these cancel is called the 'transition zone'. An abrupt 
change of phase in the detected signal is seen in this region. Hence the detector coil is generally placed just 
beyond the transition zone. 

- 1 0 

2D 3D 

SE2SL*** »AU 

INDIRECT ENERCY TRANSMISSION PATH 

Radial' 

DIRECT 

DETECTOR 
-Axial 

Circumferential umct.{ • . t-ircumierenuai 
COUPLED! _ | ~* _ _ 

FIELD I TRANSITION ZONE, REMOTE FIELD ZONE 

10-6 

-0 ID 2D 3D 

Fig 3. RFEC detector arrangement 
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For ferrous tubes it is difficult to detect flaws which run in the longitudinal direction. For non-ferrous tubes 
circumferential the flaws are most difficult to find. 

For this reason, an investigation of the fields due to tilted exciter coils was initiated. Measurements have been 
made at Queen's University (Kingston, Ontario) with coil tilts of up to 6 degrees in a steel pipe. 

Axial Distance (pipe-IDs) 

I 
I 
ST 

I 

?1-0 . 38..0. . 

Distance from exciter coi l , 
52.0 66.0 

Fig. 4a. Experimental. Fig. 4b Computed. 

Axial magnetic field component 
along inner wall of pipe. 
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Axioi Oistonce (pipe-IDs) 

'0.0 21.0 38.0 

Distance froa e x c i t e r c o l l . 

Fig. 5a. Experimental. Fig. 5b. Computed. 

Phase of axial magnetic field component 

Computer simulations give close agreement Figs. 4a and 4b show the axial field component and Figs. 5a and 
5b the phase variation. 

When a longitudinal slot, 10 mm long by 0.2 mm wide, is introduced in the computer model using a 6 
degree coil tilt, it appears that the transition zone moves towards the exciter coil (Fig. 6). It is believed that 
this model is too coarse. More work is required to confirm the effect. 
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Fig. 6. Shift of transition zone for 
pipe with slot (compuî'îd). 

4. Conclusions and Possible Improvements 

More nodes are required throughout the model. At present, the practical limit is about 27 000 nodes with 
about 42 000 degrees of freedom on the VAX 6520, both for the analysis program and for the post processor. 

First-order nodes give smoother fields than second-order, using the same number of nodes. This suggests 
that there may be a coding error, as experience shows that second-order finite elements should give smoother 
fields. 

For the higher frequencies, the usual linear or quadratic shape functions are not appropriate to model the 
field variation normal to surfaces in materials where skin depth is small. A shape function representing an 
exponential decay would be much better. 

Another way of representing skin effect would be to use impedance elements(3). These would be surface 
elements having die usual shape functions for the tangential directions, but whose impedance per unit area 
depends on the material properties, the fields and the frequency. There are difficulties in using this type of 
element on edges and on plates thinner than the skin depth. 
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Abs t rac t 

Representations of curves with discontinuities of position and direction are often made with 
periodic basis functions, as, for example, in Fourier series, even when the shape of those curves 
is aperiodic- An unusual but perhaps more logical approach is that of using aperiodic basis 
functions to represent such curves. Examples are used to demonstrate situations where this 
approach can be used to advantage. 

1. I n t r o d u c t i o n 
The physical world abounds with examples of discontinuous curves. Among them are the paths 
traced ou t by animate creatures as they locomote, the boundary between water and land along a 
coastline, and the interaction cross section of a neutron as a function of distance along its pa th in a 
heterogeneous medium, to name just a few. 

Mathematical representations of discontinuous curves include both continuous and piecewise 
continuous functions. Representations by Fourier series or integrals are continuous approximations. 
On the other hand, representations obtained by splicing together various combinations of intervals 
of algebraic and transcendental functions are piecewise continuous. 

The representations which follow are continuous functions but they are unusual in that they are 
not periodic, like the sin and cos functions of the Fourier series. However, they may be combined 
in summation or product series to form close approximations to discontinuous curves in a similar 
manner. 

2 . D e t a i l s 

A monotonie increasing function of a single variable with constant unequal asymptotes can be made 
to look like Fig. 1(a) by suitable linear transformations of the dependent and independent variables. 

1 -

y o 

- i -

- 2 

• 

(a) 
/ / / * 

1 L . , . 1 1 _ L _ 1 .A 1 1 _ l 

^ ^ 

/ / / / 

• 1 . • , - l 1 t • 1 . . • 

- 5 - 4 - 3 - 2 - 1 0 
X 

Fig. 1 A continuous function made to look discontinuous. 

For example, Fig. 1(b) shows y = b+-Aarctan(ms:), with A = m = 1 and 6 = 0. Fig. 1(a) is the same 
curve, with A = 1/ir, m = 104, and b = £. The large value of m performs a scale transformation 
along the x axis to produce a curve which has approximations to discontinuities a t the points (0,0), 
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(0,1). A short list of functions which are candidates for this sort of transformation follows: 

= tanh x, 

= e 
arctan z, 

1 
1 + e- x ' 

(1) 

(2) 

(3) 

(4) 

They are listed in order of decreasing slope at the origin (following normalization to asymptotes 
(—oo, — £), (oo, ^) and translated, if necessary, with respect to », to pass through the origin). All 
of them, except for (2), possess symmetries which give the same "sharpness" to both the upper and 
lower approximate discontinuities. 

3 . Applications 
Transformations of discontinuous-looking functions like that of Fig. 1(a) can be added or multiplied 
together and combined with other functions in potentially useful ways. Two examples are shown in 
Fig. 2. 
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Fig. 2 A single pulse and a finite ramp. 

Fig. 2(a) shows a single pulse approximation given by 

y = 1 + itanh(40(3 + 1)) - itanh(l05(as - 1)). 
4 Ji 

(5) 

There are no unwanted oscillations near the edges, such as the Gibbs phenomenon found in Fourier 
integral approximations. Another advantage illustrated in this example is that the sharpnesses of 
the left and right edges are independent. 

In the numerical solution of differential equations describing the evolution of dynamical systems, 
the use of piece wise continuous ramps as driving functions can sometimes cause convergence problems 
near the discontinuities. Fig. 2(b) shows a finite ramp approximation given by 

^ i ( a r c t a n ( 1 0 4 ( œ + 1)) - arctan(104(z - 1))) + iarctan(104(z - 1)) - \ , 
2-K 

(6) 

which has no discontinuities, thereby avoiding such problems. 
The unusual representations of discontinuous curves discussed here can be made to undergo 

continuous transformations in higher dimensional spaces, extending their range of application to 
representations of discontinuous surfaces and volumes, as well. 
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H. Keech 
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ABSTRACT 

GLUBFIT was developed for rapid primary analysis and fitting of Neutron and Solid State Physics 
(NSSP) spectrometer data. TRIUMF low-level graphics routines are used. 

1. Introduction 

The interactive menu-driven program GLUBFIT is a general curve fitting program for a user se­
lectable combination of the fitting functions: Gaussian, Lorentzian, User-written, and Background. 
It is written in Fortran for a Micro Vax VMS 5.4 system, for terminals using VT100 text mode and 
Tektronics 4014 graphics mode. 

The spectrum input system is designed specifically for the internal structure used by NSSP 
spectrometer data files. However, the code is modular and for different data storage one only need 
substitute the proper input routines. 

The feature of most general interest for workshop attendees is the use of the low-level TRIUMF 
graphics library. The original work proposal concentrated on the standard curve fitting features. 
We have found that the graphics features introduced to give the user visible hands-on control over 
fitting operations have become in themselves an important and desirable end-product. 

2. Overview 
The input data consists of any linear combination of spectrometer data runs. One may select a 
subset of data in a fit window. The program permits a sum of 6 base functions and a total of 18 
fitting parameters. The parameters are allowed to vary freely or to be fixed. 

The calculated fit is stored on a user file that may be edited and used as input for a new fit. 
This allows minor perturbations to previous fits. One may add or remove a base function from the 
linear combination. 

An undo or backup feature allows use?1; to move both directions in the interactive program. One 
may very quickly test and revise initial estimates. An error trap is active during the least-squares 
fitting to prevent aborts on arithmetic overflows. 

3 . Conclusions 
The Gauss-Jordan curve-fitting algorithm has produced some excellent test results. It is important 
to start with reasonable initial values. A typical fit CP time is 15 seconds for a window with 6 peaks. 
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ABSTRACT 
We present a brief discussion of several interrelated topics: Stokes' law, classical holonomy, quantum 

holonomy, link and tangle invariants, quantum algebras. 

1. Stoke's Law in Electromagnetism 

Recall classical electromagnetism. Consider a space with magnetic field B. Let 5 be a surface. Then 

* = JgB-dS, (1) 

the number of fluxlines piercing the surface S, measures the magnetic field strength. 
Let A be the vector potential and OS be the boundary of S. Then 

B = V x A (2) 

and, from Stoke's law, the flux $ is given (in appropriate units) by the line integral of the vector 
potential along the boundary of S: 

$ = / A-dl (3) 
JdS 

The flux is not changed when A is changed by a gauge transformation 

Â—Â+Vf, (4) 

where / is an arbitrary function. 
The boundary S is just a closed contour C, or loop, in space. Let xo be a point in space and 

{Cj, Ci . . . Cjy} be a series of loops beginning and ending at XQ. Then {$i , $2 • ••$w| $i = 
§c. A-dl, i = 1,2,... JV}, gives a series of measurement of the field strength. Barring pathological 
situations, for any xo, the set of measurements with N < 00 gives a complete description of the 
magnetic field B. Equivalently, it gives a complete description of the vector potential A, modulo 
gauge transformations. 

2 . Phase Factor a n d Holonomy 
The measurement can be carried out by transporting a charged particle (say, an electron with charge 
e) slowly around a loop Cj. One can make the transportation sufficiently slow that the energy of 
the electron does not change. Then the wavefunction of the electron can at most change by a phase 
factor. One part of the phase depends on details (such as length) of the loop. Another part is just 
e times the flux encircled by Cj, and gives a geometric phase factor 

exp(ie$i). (5) 

This is a topological result [1], and, because the electron would acquire the factor (if $ ^ 0) even 
when the loop lies entirely in a region where the electric and magnetic fields are zero, it shows that 
the vector potential plays a more fundamental role than the field strengths in electromagnetism. 

The phase factor is a simple realization of a mathematical construction called holonomy, which 
is a fundamental kind of sampling, done by sending a 'test' particle around a contour in space, of 
the local properties of a system with a spatially dependent group structure. 
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3. Quan tum Holonomy 

In a more general setting, the space is generally some manifold M, and the vector potential is 
replaced by a matrix A[x) that transforms as a representation of some group G at each point x in 
M.. In particular vector potentials at two different point do not commute: 

[A(x), A(y)} = A(x)A(y) - A(y)A(x) ? 0. (6) 

Theories with this kind of vector potentials arc said to be nonabelian; the fields are known as 
Yang-Mills fields [2]. The electroweak force (the Standard Model) and the strong force (Quantum 
Chromodynamics, or QCD) are nonabelian theories with Yang-Mills fields plus matters particles 
such as electrons and quarks. 

As in electromagnetism, the nonabelian theory depends on A(x), modulo gauge transformations 

A{x) -» n-1(x)A(x)îî(ï) + Ù-1{x)dÙ{x), (7) 

where €l(x) is a matrix-valued function. (Indices attached to A and fl are suppressed.) 
In a nonabelian quantum field theory with action I[A], the system is described statistically by 

the formal partition function 

Z= fvAexp(U[A]). (8) 

The path integral J VA integrates over (each component of) A at each point s as an indepen­
dent integration variable, modulo gauge transformations. The expectation value of an ^-dependent 
operator O is then given by 

(0)=±JvAexp(iI[A])0[A]. (9) 

In this setting, the generalization of holonomy is a matrix-valued quantum holonomy, 

¥[C] = (Pexp(i £ Adx)), (10) 

where C is a closed contour in M. and P means path ordering, which is needed to define the 
integral because two .A's at two different points along C do not commute. Because Yang-Mills 
fields self-interact, unlike its counterpart in electromagnetism, quantum holonomy is nontrivial even 
when there are no matter particles or other external fields. In the absence of such, the set of all 
independent quantum holonomies corresponding to the set of all contours tells us everything about 
the self-interaction of Yang-Mills fields. 

4. Chern-Simons Theory, Topological Invariants a n d Quantum Algebra 

In general, we do not know how to exactly calculate Z, nor the quantum holonomy, nor any (O); 
instead, we use elaborate (but well established) purterbative methods to obtain approximations. 
There is one known exception to this rule, first discovered by Witten [3]. Witten pointed out that 
owing to the topological symmetry of the Chern-Simons theory in three dimensions, which has an 
action 

I[A]= [ dx3(A A dA + \A A A A A), (11) 
JM.

 3 

(A is the antisymmetric wedge product) the matrix trace of the quantum holonomy, also known as 
the Wilson line, 

W[C] = Trace{V[C]), (12) 

can be exactly computed by algebraic means - no explicit integration needs to be carried out. 
This result implies that W[C] is determined only by the representation of the group G and the 

topological property of C. The topological property of C in two dimensions is very restricted and 
in four and higher dimensions is trivial. But it can be highly nontrivial in three dimensions. In 
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particular, in three dimensions C can wind around itself to form knots, or around other loops as well 
as around itself to form links. 

So we can think of W[C] as a mapping, specified by a representation of G, of knots or links to 
number valued functions, namely, link invariants [4]. Loosely speaking, if we know the maps for all 
links, then we almost (because of trace taking) know everything about the Chern-Simons theory in 
three dimensions. 

The algebra we use to calculate W[C] exactly is a Hopf algebra that may be viewed as a defor­
mation of the Lie algebra of G. Some Hopf algebras are also called quantum groups [5], or quantum 
algebras, because they act on 'quantum' spaces with noncommuting coordinates. Nontrivial Hopf 
algebras were discovered only a few years ago; the best known ones are deformations of the Lie 
algebras of classical Lie groups. 

The Wilson line W[C] is not a quantum holonomy, but only the trace of a quantum holonomy. 
What is the quantum holonomy in the Chern-Simons theory? Recall that in an algebra there are 
central elements that commute with other element in the algebra. For example, in su(2) there is 
only one central element J 2 . It has eigenvalue J(J •+• 1) for the irreducible spin-J representation. 
The centre of an algebra is the set of all its central elements. Recently, we [6] have shown that 
in every representation of G each quantum holonomy commutes with all the elements of G. This 
means that a quantum holonomy is just a scalar function times a unit matrix. Therefore, quantum 
holonomy may be given the the same physical interpretation as holonomy in electromagnetism: for 
a given C, every state in an irreducible representation has the same phase factor. 

An application of this result to Chern-Simons theory in three dimensions leads to the following: 
quantum holonomy is a mapping of tangles (a tangle is a link cut in one place, with its two open 
ends held fixed on the surface of a sphere enclosing the tangle) to the centre of the Hopf algebra. 
Since there are an infinite number of tangles, there are also an infinite number of central elements in 
a Hopf algebra. It follows that if a physical system has a Hopf algebra symmetry, then the system 
has an infinite number of conserved quantum numbers (which are not integers or half integers, but 
are tangle invariants). This partly explains why such systems are integrable. 

Although the need is great, especially for the study of phase transitions, few nonperturbative 
methods applicable to realistic field theories such as QCD are known. These results on quantum 
holonomy raise the hope that some topological properties of such theories may be exactly computable 
by algebraic means. 
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ABSTRACT 
The algebraic approach to quantum groups is generalized to include what may be called an anyonic 

symmetry, reflecting the appearance of phases more general than ± 1 under transposition. 

1. Quantum Groups 
The notion of quantum groupe , a special type of bialgebra, originally abstracted from studies 
of integrable or exactly solvable physical systems, has been found to be quite pervasive in many 
diverse fields of physics, such as inverse scattering theory, solitons, statistical spin models, lattice 
gauge theory, conformai field theory and gravitation. 

There now exists a great deal of elegant mathematical machinery to unify the various historical 
approaches to quantum groups, but a straightforward algebraic approach^2) which led to one of the 
earliest incarnations of the concept is also very directly linked to interesting physical systems. A 
method of studying such solvable statistical systems^3) as the Heisenberg antiferromagnetic chain, 
the 2-d Ising model, the 1-d XY-model, the XYZ model, the hard-hexagon model, and the general 
eight-vertex model, centers on the existence of a transfer matrix Tij satisfying the equation' 

Rab\mnTmkTnl = TamTimRmn\ki (l.l) 

for some invertible R. A consistency condition for this structure is the Yang-Baxter relation 

. Rab\mnRnc\pkRmp\ij = Rbe\mn^am\ip^jm\jk' (1-2) 

It can be shown^2) that the associative algebra generated by the non-commuting Tij, subject to 
the relations (1.1), obtains the additional structure of a bialgebra when a coproduct is introduced of 
the form 

A ( r v ) = 3 l»®T w . (1.3) 

A coproduct is, in a sense, the opposite of a product: instead of combining two elements to yield a 
third, it distributes an element into a sum of pairs. A simple example is the Lie coproduct which 
may be defined for any Lie algebra: 

A(X) = X81 + 1QX. (1.4) 

In elementary physics the essential physical role of a coproduct is easy to overlook, since in the 
theory of angular momentum, for example, the Lie coproduct translates into the simple additive 
relation between the angular momentum operator of a compound system and the operators of the 
constituent systems, 

Jx=ii1) + ii2), (i.5) 
which one is tempted to take as intuitively obvious. 

The continuous deformation of Lie algebras away from their natural Lie product and the co-
product (1.5), while retaining a bialgebra structure and hence such important consequences as being 
able to generate all states from one 'highest weight' state using raising and lowering operators, is 
an important approach'4) to obtaining quantum groups of potential physical interest. The quan­
tum groups so obtained are, in fact, a subset of those obtained by considering a structure dual to 
that defined by equations (1.1) and (1.3). In the following we describe this structure and present a 
generalization. 

' Implicit summation on all repeated indices. 
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2. More Details 
The index acrobatics involved, in (1.1) and (1.2) may be eliminated by using the transposition 
operator Piiikl = 6uSjk. Then (1.1) may be written as RTiPTiP = TiPTiPR, where Tlij}kl = 
(T® l)y|*i = TihSji and the implicit summations are simply of the form J^, u4,;|pgJBpg(.fcj. 

The dual algebra (to which the term 'quantum group' is strictly applicable) is generated by 
non-commuting quantities Lfj with a coproduct of the same form as (1.3). The duality pairing 
obtained from 

(Lti,Tab) = R^jb, (2.1) 

where ii+ = RP and R~ = R~lP, requires the L^ to satisfy the relations 

RPL±PL± =L±PL±PR 

RPL+PL- =L~PL+PR (2.2) 

analogous to (1.1). 

3.. An Anyonic Generalization 

In analogy with the supersymmetric generalization^5) of the above structure, which replaces the 
transposition operator P with the graded transposition operator Pij\u = (—l)i3Pij\ki, we seek a 
generalization involving a transposition operator of the form Pyiju = IHjPij\kl- Unlike the regular 
and supersymmetric transposition operators, P is not a priori assumed to be symmetric, nor does 
P~l = P. There are thus a great many 'natural' generalizations of the equations in §2, in which 
one replaces P's with some selection of P's, or its inverses or their transposes. Elimination of 
inconsistent choices is best done with a symbolic manipulation program such as Mathematical. A 
consistent generalization, so derived, requires the fUj to satisfy mjUjkPki = Mi*M*iM;'i a Q d replaces 
the corresponding equations in §2 with 

RTiPTiP =T1PT1PR, 

R+ =RP , R~ = PPR-^P, 

RP-'iL±PL± =P~1L:tPL±R, 

RPL+PTL-PT=PTL-PTL+RP. (3.1) 

The utility of such an introduction of 'anyonic' symmetry in the context of solvable models is 
currently under investigation. 
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In condensed matter physics the type of problem one often addresses contains of order 1023 

particles. A typical example is electronic properties of a metal, where the relevant entities are the 
conduction electrons. Besides interacting with the lattice (a complication which is often dismissed 
by resorting to the "jellium" model whereby the positive ions of the lattice act only to balance 
overall charge) electrons interact with one another through the long-range (but screened) Coulomb 
repulsion. It is the interactions with both the positive ions and with one another that greatly 
complicates the many-electron problem. 

In this brief report, it is my intention to give the reader a taste of some of the techniques 
which are useful in attacking these kinds of problems. Generally speaking there are perhaps three 
approaches: exact solutions, variational techniques, and perturbation theory. In most of what 
follows I will discuss a particular aspect of (self-consistent) perturbation theory as applied to the 
phenomenon of superconductivity. Before doing so, however, it is perhaps useful to mention the dif­
ficulties involved in exact solutions. First of all, analytical exact solutions are few and far between. 
There are a number of analytical results involving model spin systems. Such models are useful for 
describing electrons which are localized (non-conducting) since only the spin (and not the charge) 
degree of freedom remains. Moreover, in one dimension analytical results do exist for the Hubbard 
model, for example, a result worked out by Lieb and WuW using "Bethe Ansatz" techniques/2^ 
Beyond one dimension, however, it has proven necessary to resort to numerical techniques. For 
definiteness, we consider the paradigm of correlated electron systems, the Hubbard Hamiltonian: 

H = ~ £ *y(4r<y«r + h.c.) + U J > i T n u . (1) 
<a> i 

The Hamiltonian (1) is written in second-quantized notation; the operator cia. creates an electron 
at site iV with spin 'a ' , while Cja annihilates an electron of spin ' c ' at site ' j ' . Hence the first term in 
the Hamiltonian is the kinetic part, whereby, an electron 'hops' from site ' j ' to site ' i ' or vice versa, 
with hopping amplitude tij. The indices T and ' j ' label sites on a periodic lattice, for example a two 
dimensional square lattice. In the second term, n ^ is the number operator, n{a = qaCjCT. Hence, 
if two electrons (necessarily of opposite spin due to the Pauli exclusion principle) occupy a single 
site ' i ' then there is an energy cost U. Clearly, only the very short range (and most dominant) part 
of the electron-electron Coulomb potential has been retained. Note that we have assigned a single 
orbital to each site, thus making this a single band model. One can diagonalize the Hamiltonian 
(1) analytically in either of two limits; (i) the non-interaction limit (U = 0) or (ii) the strong-
coupling limit (tij = 0). In between, an exact solution requires a computer. To enumerate the 
Hilbert space is quite simple if one begins in the localized (Wannier) representation. Each site 
can be in one of four states, 1) occupied, 2) occupied with a spin up electron, 3) occupied with 
a spin down electron, or 4) doubly occupied. The size of the Hilbert space is then 4^ , where N 
is the number of sites. Currently, a 4 x 4 lattice (N = 16) exhausts the capability of modern day 
computers, so that only small systems can be (or ever will be!) tackled by this method. Nonetheless, 
exact diagonalizations provide useful insight and checks on more approximate methods/3^ A second 
approach is Quantum Monte Carlo simulation/4^ The computer time requirements of this approach 
are Significant; however the time required increases algebraically with the size of the system (as 
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opposed to exponentially) so that as computers become faster, larger and larger systems can be 
tackled (workers in the field have used 16 X 16 lattices to study the Hubbard model). 

Since exact results are readily available in particular limits (i.e.the non-interacting limit), it 
becomes useful to perform perturbation theory. A systematic means of doing this is provided by 
Green function methods. The reader is referred to several books on this subject, in the many-body 
context/5^ For our purposes it is necessary only to realize that the Green function (or propagator, 
as it is sometimes called) contains most of the relevant information about a system. The single 
electron Green function is defined: 

G(^r-rO = { - < C { ^ ( ; ' ) > ' r , > r ' (2) 

The angular brackets denote quantum mechanical expectation values. Similarly, the phonon (quan­
tized ion vibration) propagator is given by 

ntaT-r')- {-<ui(T)ui(T')>> T>T' m 
V{q,T T ) - \ _ < „ g ( T ' ) u , ( r >, T'>T W 

where w9(r) is the ion displacement operator. The non-interacting propagators, Go(k,r) and 
Do(q,r), are both known analytically. For technical reasons, it is simplest to think of the variable 
V as imaginary time, so that the Fourier transform is in the imaginary frequency domain. We 
have 

Go(k,ium) = (4a) 

and 

K) 2 -w, 2 

where wm(= uT(2n — 1)) and ivn(= iirT2n) are the Fermion and Boson Matsubara frequencies, 
and £/; (uq) is the one-electron (phonon) energy. From general considerations one can derive 
Dyson's equations: 

G~l(k, ivm) = GôX(k, iu>m) - £(£, ium) (5a) 

and 

-D_1(g,^„) = Dô^q, ivn) - II((f,zVn) (56) 

E(£, iu>m) and U(q,ivn) are the electron and phonon self-energies, respectively, which, through eq. 
(5), give the exact electron and phonon propagators. The theory is perturbative because we use 
approximations for S and II which involve expansions in the electron-phonon coupling constant. 
In order to understand superconductivity, we need two added ingredients: (1) anomalous Green 
functions, 

*(*,*• r J - \ + < c _ f c i ( r ' ) c f c T ( r > , T'>T W 

and (2) infinite order perturbation theory for a select set of processes. The expectation values in 
eq. (6) are non-zero only in the superconducting state. 
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Omitting all details, we write down the equations for the superconducting order parameter, 
A(ium) (which is related to the electron self-energy): 

Z(ium)A(ium) = *T f; \(ium - i u m , ) — A ^ > (7<0 

Wwim»ttoo ^ , + A 2 ( i u ; m . ) 

where 

A(*) s ^ 2 • (8) 

and f£ is the phonon frequency and A is the electron-phonon coupling constant. Several assump­
tions have gone into eqs. (7), which we will not discuss here/6) The order parameter function 
A(ium) is related to the anomalous amplitude in eq. (6), while the renormalization function 
Z(iu)m) is related to the "normal" electron Green function given in eq. (2). These equations 
are solved numerically to self-consistency, giving A(iwm) and Z(ium) for all m, and for various 
temperatures. The self-consistency requirement is due to the fact that we are doing perturbation 
theory to infinite order. This information can then be used to calculate various superconducting 
properties, such as the free energy, the penetration depth, and the critical temperature. In many 
cases dynamical information (A(w) and Z(u), where u is real) is also required. Then, an analytical 
continuation is required. This can be accomplished either by using Padé approximants/7) or by 
solving another set of equations^8) based on the imaginary axis equations. The alternative (used 
originally) is to self-consistently solve the analogue of eqs. (7) written on the real axis. It turns out 
that the new procedure is roughly two orders of magnitude faster on a computer. An appreciation 
of this difference can be gained by considering a simple function, f(z) = sec(z). f(z) has poles on 
the real axis, at z = (2n — l)f , n = 0 ± 1, ± 2 , . . . , whereas f(z) is very smooth (sech function) on 
the imaginary axis. Hence, if a function with this structure is involved in an iteration, the equation 
will converge much more rapidly on the imaginary axis. 

In summary, I have tried to give a feeling for the kind of mathematics and numerical techniques 
required for solving many-body problems in condensed matter physics. 
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Abstract 

It is shown that iterating Aitken's A2 process, or equivalently, Shanks' c algorithm, on the 
partial sums of a Taylor series can lead to a dramatic convergence of the series. This method 
is compared to the standard technique of accelerating the convergence of series by construct­
ing Padé Approximants. Also, the problem of determining Taylor expansion coefficients horn 
experimental data fitted to Padé Approximants is reviewed, and it is suggested that a method 
based on this iteration scheme may be better. 

Introduction: 
In numerical analysis, methods that are useful in accelerating the convergence of a slowly converging 
procedure are important; this is especially true in high speed computing, where time is money. In this 
paper we shall consider ways to accelerate the convergence of Taylor series. Generally, an attempt 
to a better approximation of the function is constructed, from the known Taylor series coefficients, 
using Padé Approximants (PAs). This technique derives its name from Henri Padé who, in 1892, 
published an article on the approximate representation of ex by rational fractions [1]. Much later, 
Shanks showed many advantages of Padé's method [2]. Since then, there has been a growing interest 
in PAs as an alternative to the standard representation of functions by power series, and the method 
is now well established in such fields as scattering theory, field theory, computer science and critical 
phenomena [3-6]. 

Another application of PAs is in the parameterizing of experimental data. For many situations 
where physical observables are measured experimentally as functions of some variable, the functional 
form is not known. In this instance, it is often opportune to expand the function as a Taylor, or 
power, series. A useful expansion is one that converges, to the level of the noise in the measurements, 
sufficiently rapidly. This is the inverse of the standard problem outlined above; now the Taylor 
expansion coefficients are not known and are to be determined from the experimental observations. 

Ultimately, to make such a determination, the power expansion must be truncated. This intro­
duces two problems. First, if the series is slow to converge, then the amount of data required to 
determine the expansion parameters might be unpractically large, or in the extreme, a datum might 
be required for each successive expansion coefficient. Second, the determined parameters will contain 
the effects of the higher order parameters that have been constrained to zero by the truncation. PAs 
are sometimes used in an attempt to alleviate these problems. 

In this paper a practical scheme is introduced to accelerate the convergence of power series 
expansions. This method is compared with PAs. 

1. Theory: 
For an iterative solution of some general equation, say g(s) = 0, it is often convenient to define a 
generator G such that 

G(s{) = si+i (1) 

where each application of G gives a better approximation to the real root r. It follows that 

<7(r) = r (2) 
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Expanding this as a Taylor series and truncating after the linear term 

G(5,-) = G(r) + ( S , - - r )G' ( r ) (3) 

and rearranging 

r - « i + i = ( ? ( r ) ( r - « i ) (4) 
In the same way 

r - « = G ' ( r ) ( r -*<- i ) (5) 
Dividing equation 4 by equation 5 and solving for r yields 

Sj+i + S.-j - 2 s < 

This is the A2 formula of Aitken. Given a series of three successive itérants, equation 6 will produce 
a better approximation to the true root. Equation 6 is a good approximation for geometric series, 
amongst others [3]. 

In the present work, the sequence of successive itérants, An, is defined by the partial sums of the 
general Taylor series expansion of some arbitrary function. 

n 

An = J2aJxJ (7) 
j = 0 

Following equation 6 we write 

•-Ai+i+Ai^-iAi' w 

Specifically, given the first three partial sums 

n _ flo + tei - aoa2/ai] x 
* " l - ( a a / f l l ) * . • ( 9 ) 

It is interesting to note that by expanding equation 9 
2 3 

Si = a0 + ayx + aix2 + — ^ — . (10) 

The fraction term of equation 10 acts like a correction to the truncated Taylor series. 
The B\ above is also the [1/1] PA. For the function f(x) = Aoo the PA is defined as 

[L/M]=r5?^f^ (11) 
1 + 2^/3=1 <IPXP 

where the standard normalization qo = 1 has been adopted. The coefficients, pa and qp, can be 
calculated from the formal identity 

/ (* ) - [L/M] = 0(xL+M+1) (12) 

The sum of the greatest power of x in the numerator and denominator, L + M, is equal to the 
greatest power of x in the Taylor expansion used to calculate the PA. The most powerful PAs are 
the diagonal ones where L~M. 

1.1 The Iteration Algorithm: 
The algorithm we wish to consider consists of successive application of the A2 formula. The method 
was proposed by Shanks and used to accelerate the convergence of geometric series [2]. From one 
sequence of numbers, a second sequence is formed by taking in turn each successive 3-tuple and 
calculating the appropriate B{. This second sequence, of Bi's, is then taken three at a time, in the 
same way, to produce a third sequence, Cj, and so on. This process produces series, each of which 
is two shorter than the previous one, until the final series, which has only one or two members. In 
this paper we consider the advantages of this iterative method when the initial sequence is given by 
the partial sums of a general power series expansion. 
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Figure 1: Approximating e~* with A4, [2/2] and Ci. Clearly, the iteration algorithm deviates the 
least from the true value. 

2. An Example: Calculating the Approximate Value of e~x 

As an example we shall reconsider the problem posed by Padé: to find a better method than the 
standard Taylor expansion to calculate the function e~x. The series expansion is well known 

" = 1 - x + -^x2 - -TXZ + 4rx4 + ... 
2!" 3! 4!-

The best PA, given the expansion coefficients up to fourth order in x, is 

[2/2] 
x2 - 6x + 12 
x2 + 6x + 12 

(13) 

(14) 

The expansion of this in powers of x agrees up to fourth order with equation 13. Also, the greatest 
powers of x in the numerator and denominator sum to four, which is the greatest power in the Taylor 
expansion from whence came the PA (see equation 12). 

Using the same five coefficients, the iterated A2 algorithm gives 

C72 = 
x 3 - 2 x 2 - 1 8 x + 72 

2(x3 + 8x2 + 27x + 36) 
(15) 

Like the PA, expanding this in powers of x produces a series that agrees with the Taylor series up 
to fourth order. However, unlike the PA, the sum of the greatest powers of x is greater than the 
order of the Taylor expansion. 

In Figure 1 is plotted e~x and the approximate forms: A4, [2/2] and C2. It is important to 
remember that all three approximants were derived from the same five Taylor coefficients. Clearly, 
the iteration method produces a more precise approximation to the function than either the trucated 
Taylor series or the Padé Approximant. 

Similar observations are made for higher order series. From the coefficients in the Taylor expan­
sion, up to powers of six in x, we can construct the [3/3] PA and the D3 iterated A2 approximant. 
Given terms up to eighth order we can calculate [4/4] and E4. From these functions, plots like Fig­
ure 1 can be produced that show similar trends; again, the algorithm presented in this work clearly 
gives the better estimate. Furthermore, the iterated algorithm is progressively better than the PA 
as the order of the expansion increases. For example, at x = 1 the C2, D3 and E4 approximants 
are, respectively, 3, 15 and 100 times better at aproximating e " r than the corresponding PA. 
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3. Determining Taylor Expansion Coefficients from Experimental Da ta 

The introduction outlined the inverse problem of empirically determining the power series expansion 
terms given the value of the function, in this instance measured experimentally. In an attempt 
to avoid contamination of lower order coefficients with higher order effects and to accelerate the 
convergence of the power series expansion, experimental results are often fitted, for instance, in 
some least squares sense, to rational fractions. 

The problem is that there is a possible ambiguity in how to solve for the Taylor series coefficients. 
It is important to obtain these coefficients since they are the derivatives of the function we are 
investigating. 

As an example, consider some dependent variable fitted to a rational fraction of order three in 
both the numerator and denominator. If this is a [3/3] PA, then the rational fraction parameters 
should be linear combinations of the first seven Taylor expansion parameters. On the other hand, 
this rational fraction could instead represent the Ci approximant. In this instance, the rational 
fraction parameters will be linear combinations of only the first five Taylor coefficients. In light of 
the economy of determinable parameters, and the relative efficiency of the method demonstrated 
in the preceeding section, it is proposed that the iterated A2 algorithm could replace the Padé 
Approximant for experimental data analysis. 

Concluding Remarks: 

PA's are a generalization of Bit defined in equation 9. Recall that the sum of the highest powers 
of i in the numerator, L, and denominator, M, equals the highest power of i in the appropriate 
Taylor series. The generalization to PAs, equations 11 and 12, is to allow more terms in powers of 
x in both the numerator and denominator while still maintaining the above constraint on the sum 
L + M. Given the example of approximating e~x, it is clear that this generalization is not necessarily 
optimum. 

In contrast, the iteration method described in this work relies upon no such generalization; it 
only requires that equation 8 be valid. 

Finally, when experimental observables are parameterized by power series, it is suggested that 
the iterated A2 algorithm may work better than the Padé Approximant for empirical determinations 
of Taylor expansion coefficients. However, there is still cause for concern over the proposed iteration 
algorithm as a solution to the inverse problem, since even higher order rational fractions might be 
constructed whose coefficients are linear combinations of even fewer Taylor expansion parameters. 
Until an optimum algorithm can be found, the fitting of experimental data to rational fractions 
should prove difficult. 

In the end, the data will determine which approximate gives the best correction of the truncation 
error. If using a rational fraction results in a better fit, then something new has been learned about 
the convergence properties of the Taylor expansion. The PA may be the most popular rational 
fraction formulation, but the iteration scheme presented here may do a better job, and with fewer 
parameters. 
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CLASSICAL AND NOTSOCLASSICAL ANALYSIS 

M. Milgram 
Reactor Physics Branch 
Chalk River Laboratories 

1. Content 

The applications of classical analysis are manifold and ubiquitous, yet there exists a large gap in 
people's familiarity with some of the great unifying concepts in this field. In particular I refer to the 
Mellin-Barnes formulation of functions as contour integrals, a formulation that contains most of the 
results of classical analysis as special cases, and permits otherwise difficult results to be obtained 
with surprising ease. The special application to which I refer here is the Meijer G-function, whose 
properties and relationships are well set out in ref. 1. 

Consider the following form that arises anywhere a geometric field quantity or probability needs to 
be evaluated 

e-"R Ù-ndsdrdR -III 
where the integration is over a volume V. This integral describes the attenuated effect at a point, 
of an interaction at some distance R in some specified direction Ù from that point. For example, in 
neutron transport problems integrals of the form 

Jo 

often appear, where ij± = (1 — KH2)1!2 ± K(1 — i2)1 /2 is the third side of the interaction triangle 
defined by t = cos 8, and e = (0,1). The "n" index arises from expansion of the attenuation factor 
exp(—o~R±) as a convergent power series. Such integrals can be identified as Meijer G-functions^2) 
and hence simplified,- manipulated or evaluated in a large variety of ways, sometimes with recourse 
to computer algebra for particularly tedious simplifications — surely a non-classical tool. 

An instance that is particularly enlightening arises in the theory of neutron transport, where it 
is known^3) that the flux behaves as xn log7 x at a distance x from the boundary. The integrals 
resulting from the analysis can be written^4) 

4(*) = j°°t-ne-zt(logtydt 

and are natural generalizations of the exponential integral. For a simple, yet elegant analysis, 
consider the usual exponential integral generalized to n = s, a continuous variable 

Es(z) = Ji t e dt-Glt2(z\0>_1.)-—^—-T-r 

where the contour L encloses the non-negative integers and the pole at s — 1. It is only the iden­
tification as a G-function that makes the computation tractable when s ^ n a n integer. With this 
result, we have 

&<z\ - ^ lim & E(z\- l f r ( - * ) * ' dt 

En{z) ~ IT^n d&E>(z> ~27ijL (s-i-ty+i 

which is expressible as a sum of residues by elementary or notsoelementary (i.e. computer algebraic) 
techniques. 
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2. S u m m a r y 

The principles discussed here are applicable to a wide variety of problems in a large number of fields, 
and should be better known to all. 
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T h e o r y and Appl i ca t ions o f Differential A lgebra 

Gordon D. Pusch 

TASCC Accelerators & Development Branch 
Chalk River Laboratories 

ABSTRACT 

Differential algebra (DA) is a new method of automatic differentiation. DA can rapidly 
and efficiently calculate the values of derivatives of arbitrarily complicated functions, in arbi­
trarily many variables, to arbitrary order, via its definition of multiplication. I provide a brief 
introduction to DA, and enumerate some of its recent applications. 

1. W h a t is D A ? 

Differential Algebra C1»2) is a method of automatic differentiation" capable of calculating the values 
of derivatives for arbitrarily complicated functions, with arbitrarily many variables, to arbitrarily 
high order, and machine precision. Differential Algebra is not finite differencing, nor is i t symbolic 
manipulation. The immense power of DA is that it reduces differentiation to multiplication; i ts 
algebraic operations 1-, • , and o — faithfully represent the sum, product, and chain rules of 
differential calculus. 

Differential algebras in their most abstract form were first introduced by J. F . Ritt M in his 
s tudy of the properties of partial differential equations, and foreshadowed the theory of jets. (5) Since 
all nontrivial representations of Ri t t ' s DAs are infinite-dimensional, there is a practical barrier t o 
implementing them on a computer. M. Berz's^1 '2) quotient DAs overcame this barrier in 1986. Berz's 
DAs may be viewed as sub-rings of the "hyperreal numbers" of nonstandard analysis, consisting of 
the reals, and infinitesimals through some finite order. In Berz's notation, nD„ denotes a differential 
algebra of order ninv variables. Since I can only give a glimpse of the power of DA in this paper, I will 
only discuss quotient DAs in one variable: „ D i ; however, the extension to nDv is straightforward. 

2 . D A a n d t h e G e n e r a l i z e d L e i b n i t z ( P r o d u c t ) R u l e 

The simplest way to understand how DA works is to consider the generalized Leibnitz, or "product" 
rule: 

(FG)' = F'G + FG' 

(FG)" = F"G + 2F'G' + FG" 

(FG)'" = F'"G + ZF"G' + ZF'G" + FG" 

(FG)W = V ;—^rnr-F("~ i )G( i )- (*) £o(»-i)!i! 
The generalized Leibnitz rule shows that , in a sense, differentiating a product is a purely "algebraic" 
operation, in tha t the nth derivative of (FG) is an algebraic combination of the first n derivatives 
of F and G. 

If one defines "normalized derivatives" by F(t) := F^/kl, then the generalized Leibnitz rule 

simplifies to a convolution, (FG)(k) = X/i=o-^(*-i)^(i)> 0 < A: < n . Convolution is a commuta­
tive, associative product operation between two (n + l)-tuples, (/o, . . . , / „ ) and (go, • • • iffn). The 
"convolution product," plus scalar multiplication and componentwise addition, together define an 
algebra on ( n + l ) - t u p l e s , whose addition and multiplication are equivalent to the generalized "sum" 
and "product" rules; this algebra is in fact a faithful representation of nD\ . 

"Ref. (3) contains an alternative development of DA, along with references to other methods of automatic differ­
entiation. 
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I use Df to denote a general DA-valued quantity,6 Df = (/o, f\, fo, . . . ,fn), and / and df to 
denote the "real" and "differential" parts of Df, viz f = / 0 := H{Df} and df = (0, / i , / 2 , . . . , /„) := 
2?{Z?/}. The "real + differential split" will be of considerable importance in what follows. 

The multiplicative unit element of nD\ is e := (l , 0,0,0, . . . , 0); one can easily show the algebra 
of real-scalar multiples of e to be isomorphic to the real numbers. However, the most important 
element of nD\ is the unit first-order differential:" dx :— ( 0 ,1 ,0 ,0 , . . . ,0). The powers of dx 
generate a basis for nD\ '• 

dx° := (1,0,0,0 0), dx" = (0,0,0,0, . . . , 1), n = the "order" 
dx1 = (0,1,0,0 0), dasm j&(0,0,0,0, . . . , 0) V m > n. 
dx2 = (0,0,1,0, . . . . 0 ) , 

i (2) 
Note that the unit differential is nilpotent: all powers of dx (or any other differential) higher than n 
vanish identically. 

If one considers instead the powers of (x + dx), one sees that: 

(x + dx)2 = x2 + 2xdx + dx = (x2,2x, 1, 0,0 0) 

(x + dx)3 = x3 + 3x2dx + 3x dx2 + dx3 = (x3,3x2,3x, 1,0, . . . , 0) 

(x + dx)k = x* + kxk~Hx + kJ^xk~2dx2 + W-W~2)xk-*dx3 + ••• 

= (x* ,kx k ~\*%i ix*- ' , &=$!<=*lx*-*t ...). 

From the above, one sees that the j t h component of (x + dx)k equals the j t h normalized derivative 
ofx*. 

3. Analytic Functions of DA-valued Quantities 

To motivate Berz's definition of analytic functions of DA-valued quantities, let JF : I—» R be a real-
analytic function** over some open interval I Ç R. If xo G I, then .F(x) = £ ^ 1 0 -^(ijlx ( z "~ Z°V -

Replace x by Dw = w + du; G n-Dt,, with u> G I. After some work, one obtains: 

F{Dw) = Y/{jtFU+'<)\ (w-*o)*W (4) 
y=o U=o l ï0 J 

Now, the coefficient of dvP in (4) is just the Taylor expansion of F^ about xo; therefore as w 
approaches xo, the expansion converges uniformly to F(j)(xo), since by hypothesis F is analytic 
within I. The preceding should motivate: 

Definition 1 (The Fundamental Theorem of DA) 
For any F : I —* R, and for any Dw € „DV such that w = H{Dw} G I, if F is at least n-times 

differentiable at w, then the DA-extension of the function F :nJDr —» nDv is defined by: 

(3) 

dw>. (5) 
u> 

^Berz writes [f]n instead of my Df, because it describes an equivalence class. I choose to use uDf and "df" 
instead, because Df also extends the concept of "derivative as tangent-map" to higher-order tangency, while df has 
the formal properties of an infinitesimal. The DA-vector Df is also closely related to j£F, the n-jet prolongation of 
the function ^ ( i ) ; Omohundro (6) has shown that a jet-space is the natural geometric arena of perturbation theory. 

c I n n D „ , one has v commuting first-order unit differentials, dxi,tfx2, . . . ,dxv. A basis is generated by taking all 
possible products of the dr; of order less than or equal to n. 

''To help distinguish functions from their values, I will use uppercase letters for functions, and lowercase letters for 
values. 
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DA function evaluation automatically incorporates the n""-order generalized "chain" rule for 
composite functions (Faà di Bruno's formula). For example, the DA extension of a Gaussian is: 

exp [—a(x + dx)2] = exp [—ax2 — 2ax dx — adx2] = exp(—ax2) exp(—a(2x+dx)dx) 

= e - " ' [1 - a[2x+dx)dx + ia 2 (2z+dz) 2 dx 2 - . . . ] 

= e " " 3 [1 - 2ax dx + o(2ox2 - l)dx2 - . . . ] 

= (e~ax\ - 2 a x e - « \ a(2ax2 - l)e~ax\ ...) (6) 

— which is exactly what one would get by applying the generalized "chain" rule. 

4 . Differentiation as Algebra 

While one could in principle use the "fundamental theorem" to reduce the evaluation of compli­
cated functions to DA-products of simpler ones, in practice even this is often unnecessary. For most 
elementary functions, one can use various "tricks" instead, such as algebraic identities, addition the­
orems, inverse addition theorems, contractive maps, and recurrence relations. Using such tricks, one 
can beat the "combinatory: explosions" which often occur during repeated symbolic differentiation. 
For example, to calculate the multiplicative inverse of Dw, we can use the binomial theorem: 

Dw-1 = [w + dw)-l = -\l+^] 
10 [ VI J 

- èHS) + ®"--<-'Kï)']. m 
it is easy to show that DwDw"1 = 1. This example illustrates a general approach: split Dw into 
"real + differential" parts, and manipulate F[w -(- dw) into a form with a known series expansion; 
the series will always terminate at order n, because of the nilpotence of dw. 

Another approach is to use "addition theorems," i.e. expressions of the form F(a + b) = G(a, 6). 
If the expansion of G(a, b) about 6 has a simple form, then the "real -f- differential split" gives 
F(Dw) = F(w + dw) = G(w, dw); the expansion will again terminate at order n. For example: 

cos(Dto) = cos(tt> + dw) = cos(to) cos(dui) — sin(tu) sin(du) 

= cos(to) [l - ±dw2 + . . . ] - sin(tu) [dw - ±dw3 + . . . ] 

= (cos(u;), - sin(to), - i cos(tu), i sin(tu), . . . ) (8) 

Each addition theorem implies an "inverse-function difference theorem," F~1(a) — F-1(b) = 
F-1(G{F-1(a), - J F _ 1 (6 ) ) ) , which may be used if the r.h.s is tractable — vide: 

arctan {Dw) = arctan (TU) + ( arctan (Dw) — arctan (to) ) 

= arctan (w) + arctan I —— ]. (9) 
v ' \l + wDwJ v ' 

Another useful approach is that of contractive maps. For example, one can apply the implicit 
function theorem to invert the DA-extension of an equation u = F(w) as follows. By the "funda­
mental theorem," (5), 

n 
tt + dit = F(w) + i?(i)(to) dw + ^2 F(j)(w) dvP. (10) 

i=2 

Assume that one has first solved u — F(w) to sufficient accuracy, either analytically or numerically. 
One may then solve (10) for the first-order part: 

dw = 
F(1){w) 

du - ^2 F(j)(w) dw> 
3=2 

(11) 
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which has the form of a fixed-point problem for dw. Now one can show that if dw e „DV is a 
first-order differential accurate through oider k, then for m > 2, dwm is an m'^-order differential 
accurate through order fc + 1; because 1l{dw} = 0, the unknown (ifc + l)'ft order part of dw will make 
no contribution, so one may obtain an additional derivative, yet no "feed-down" of error will occur. 
Therefore, the recursion formula: 

dw[k+l] = F(1){w) 
du-^F{j)(w)dwik] (12) 

with initialization dw^ := du/.F(i)(w), gains one order of accuracy with each iteration, and con­
verges after exactly n iterations. Since in each iteration of (12), the error in Du = F(Dw) becomes 
an infinitesimal of one order higher — and therefore "infinitely smaller" — the recursion (12) is a 
"contractive map" which contracts "infinitely rapidly." If du = dx, the resulting dw will be the re­
version of the Taylor expansion of F. Generalizations of the above method may be used to calculate 
DA-extensions of implicitly defined functions or maps in arbitrarily many variables, compute Leg-
endre transforms of functions, interchange the roles of any subset of the dependent and independent 
variables (e.g. "partial" inversion of generating-function-based canonical transformations), etc. 

5. Further Applications and Conclusion: 

Given that many numerical methods were developed largely to avoid the use of analytic derivatives 
because they were either unavailable or too hard to compute, DA cannot help but alter the status 
quo. The list of successful applications of DA is already long' and continues to grow: derivatives 
of "hopelessly complicated" functions or maps, new methods of numerical integration, automatic 
"prolongation" of ODEs (equivalent to the "multiple scales" perturbation method), Lie transforms, 
normal forms, numerical solution of the Hamilton-Jacobi equation, solution of stochastic differential 
equations, etc., etc. In summary, DA provides us with an ideal vehicle to "seek out new methods — 
new algorithms . . . to boldly compute what no one has calculated before!" 
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COMPUTER SIMULATION WESTERN 

H. Rasmussen 
Department of Applied Mathematics 

University of Western Ontario 
London, Ontario, Canada 

(519) 679-2111 Ext 8800, Fax (519) 661-3292 

ABSTRACT 

Computer Simulation. Western is a unit within the Department of Applied Mathematics. The purpose 
of it is the development of computational and mathematical methods for practical problems in industry and 
engineering and the application and marketing of such methods. We will describe the unit and our efforts 
in obtaining research and development grants. Some representative projects will be presented. Finally we 
will discuss our future plans. 

1. Computer Simulation Western 

This unit within the Department of Applied Mathematics, University of Western Ontario was formed 
about four years ago by a group of researchers within the department. Members of other depart­
ments, such as engineering and statistics, may participate in particular projects for which their 
expertise is required. The research experience of the members of the unit is mainly in the modelling 
of physical phenomena and the analysis of these models using a mixture of analytic and computa­
tional methods. The final project is usually some form of a computer simulation package. 

The purpose of the unit is to encourage the development of numerical and mathematical methods 
for practical problems in industry and engineering and the application of such methods. We do 
this by soliciting projects' from industry and government agencies and form teams to carry out the 
required research and development. Usually this has required the employment of a full time research 
associate. 

There are several reasons why the department is involved in such activities. 
a) We feel that it is beneficial that at least some of our graduate students work on thesis topics of 
a practical orientation. 
b) We will obtain contacts in industry and government agencies which can be used in assisting 
students in finding employment. 
c) This is a method for obtaining additional research funds which in the present climate of government 
constraint can be valuable. 
d) This will bring some new and interesting research problems to our attention which will lead 
interesting publications. 

2. Marketing 

The process of obtaining contracts has been long and arduous, but has led to some very interesting 
research projects. However, it should be pointed that in average a large amount of time will be 
spent in obtaining a contract. 

The marketing of the services of Computer Simulation Western consists of two parts. 

a) Personal contacts 

We have approached all the personal contacts we had in industry and government agencies, such 
as former colleges, former graduate students, etc and made them aware of the aims of CSW and 
what we thought we could do for their organizations. This led to several invitations to visit the 
organizations and describe our expertise in more details. 
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b) Cold calls 

The main part of our marketing was to approach companies in which we had no contacts. This 
consisted of sending a letter to the relevant director of research or similar position describing CSW 
and informing the particular person/that we would phone him a week later in order to see if it would 
be mutually advantageous for us to visit the company. If a project of interest to both could be 
found and the company had the necessary money, a proposal would then be prepared. In general 
our experience shows that 

- One out of ten phone calls results in visit 
- One out of 25 visists results in a proposal 
- One out of two proposals results in a contract 
- Best success with foreign owned companies 

3. Examples of contracts 
We will describe in more detail some of the research projects that we have completed. I will be 
happy to supply more details of these projects. 

Adsorption simulation software 

Canmet at Energy, Mines, and Resources 

This program simulated the removal of unwanted nitrogen and sulphur compounds from the 
feedstock during the early stages of fuel production via an adsortion process using zeolites. Both 
batch and column models were simulated.The mathematical model consists of a coupled system of 
nonlinear partial differential equations which was solved using a method of lines. This resulted in a 
coupled nonlinear system of ordinary equations using the LSODI package. The numerical program 
was successfully run on a 386 microcomputer. 

Production of fibre glass 

Fiberglas Canada 

Glass fibres for insulation purposes are manufactured by pouring molten glass into rotating 
drums,called spinners, with perforated cylindrical walls. We modelled the production of a single 
glass fibre. The glass comes out of a spinner at roughly 1000 degrees and is reduced in thickness by 
a factor of 1000. The model is a system of ordinary and partial differential equations which must 
be solved numerically. The main effort in this project was in the development of the mathematical 
model. 

Simulation of an airbag crash sensor 

Siemens Automotive Products 

The sensor consists of a steel ball bearing in a steel tube. The ball is normally kept in one end 
by a permanent magnet while in the other end of tube there are two spring contacts. When the 
car is involved in a crash, the magnet cannot hold the ball in position and it rolls down the tube 
and closes the contact. This sends an electric signal to the airbag which is then inflated. After a 
considerable amount of analysis the model is reduced to a system of ordinary differential equations. 

4. Present Stategy 
We have concluded from our experience over the last four years that we should change our strategy. 
In the future we plan to develop simulation packages for industrial problems on our own time. We 
will then sell these packages to organizations who can use them. Quite often these packages will 
have to be customized for a particular project and this will create additional income for us. 

This approach will have two advantages over our present approach 
i) We can spread the development cost over several projects, and thus offer a lower price 
ii) We think it will be easier to sell an existing product rather than a contract for developing the 
project with delivery at a later time. 
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At the moment we are in the process of carrying out the following development projects. 

a) Simulation of passive ground water pollution 

Since the pollutant is passive, the model effectively consists of the three-dimensional diffusion-
convection equation. We have developed a fast and efficient procedure for solving it consisting of 
a Crank-Nicolson procedure for the time derivatives and a sparse matric techique for the resulting 
system of linear algebraic equations. The novel part of our work consists of 

i) An efficient visualization technique 
ii) Use of optimal control to design the placement and strength of pumping, 

b) School bus scheduling 

We are in the process of completing a software package for the optimal routing of school buses. The 
optimization is carried out using the method of simulated annealing and we are now testing the 
program on large realistic problems. The Anal design of the package will be done in conjunction 
with one of the local school boards which will supply us with advice and data. 

The package can easily be adjusted to treat other forms of transportation problems such as 
routing of emergency vehicles. 

c) Inverse problem of resistivity or induced polarization surveys 

We have developed a package for the direct problem where the structure of the ground is known 
and we calculated the resulting field on the surface. The package uses finite differences and a sparse 
matrix procedure for solving the resulting large system of linear equations. This program can be 
run for three dimensional problems on a 386 microcomputer. We plan to do the inverse part, where 
the surface field is known and we wish to find the corresponding subsurface structure, using the 
simulated annealing technique matrix procedure. The latter part has been completed and is now 
being tested. We expect to have a first version of the package ready in April. 

We will be pleased to supply additional details of these packages and present a demonstration 
of them. 
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ISOTOPE-SELECTIVE LASER IONIZATION OF ATOMS 
USING INTERMEDIATE STATE ALIGNMENT 

J.H. Rowat 
CRL, Waste Management Systems 

and 
L.W. Green and G.A. McRae 

CRL, Physical Chemistry 

ABSTRACT 

Experiments done at CRL and elsewhere have shown that isotopes with a nonzero nuclear spin can be selectively ionized 
by a sequence of broadband laser pulses. The process depends on hyperfine interactions and the relative polarizations 
of the laser pulses. A simple mathematical model for the process (and its application to isotope separation) will be 
outlined. 

1. Introduction 

The model to be presented here is illustrated by a three-level atomic system: 

Jo > J\ > J2 

The laser pulses (~ 10 ns), vx and v2, are plane-polarized, propagate in the same direction, and 
are separated by a time delay (~30 ns). 

The mechanism for isotope-selective ionization is as follows. The population distribution for 
the;0 sublevels (the ground state) is assumed to be uniform. An alignment in the intermediate 
level (/j) is created by the first pulse, due to the selection rules for electric dipole transitions. 
During the time interval between pulses, hf coupling redistributes the population among the j1 
sublevels and destroys the alignment—if 7^0. Atoms that have 7=0 retain their alignment. The 
second pulse "sees" either an aligned state, if the atom has 7=0, or a state with an 
approximately uniform distribution of sublevel populations, if the atom has 7;*0. This 
difference is the basis for the isotope selectivity. Decay and Trtype relaxation of the 
intermediate sublevels are assumed to be negligible. In practice a third pulse is required to 
create the ion and unbound electron from the excited atom in th&j2 level. It is assumed that this 
step is not isotope selective, and that probability of ionization is proportional to the total 
population of the/2 level. Hence, the total population of the_/2 level will be taken to represent 
the ionization rate. 

2. Basis Sets and Notation 

The I F,mF) representation is the appropriate basis for a free atom with hyperfine (hf) structure 
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(i.e., an atom having 1*0), and the \J,mj) basis is appropriate for atoms without hf structure. 
For the duration of a laser pulse, the strong atom/light interaction uncouples the weaker hf 
interaction—hyperfine uncoupling—and the \J,mj)\I,mi) basis is appropriate even if the atom has 
7*0. Conditions which ensure hyperfine uncoupling have been given elsewhere(1). During the 
pulse the probability of a nuclear spin flip is small, so the basis can be simplified to \J,m,). Of 
course, during the interval between pulses the hf interaction recouples / and 7. 

Two coordinate systems are used: (1) {x',y',z'} for u,, which is z'-polarized and propagates 
along y', and (2) {x,y,z} for v2, which is z-polarized and propagates along y. The y' and y axes 
coincide, and /3 is the angle between z and z'. To differentiate between coordinate systems, 
uppercase M is used to signify an eigenstate of J., (e.g., IJJ.A^»; lowercase m signifies an 
eigenfunction of Jz (e.g., {J^mJ). 

3. Transition Probabilities 

The relative populations of the j , sublevels are calculated from Fermi's golden rule, therefore: 

Mo=-Jo 

(h l h \2 

-MQ 0 Mx) 

PUQ,MQ) bM„ (3.1) 
0"'l 

where P(j1>Ml) is the population of 1-̂ , M,) and P(/0,M0) is the population of \J0,M0). Note that 
the population ?(./,, Afx) could equally well be called a population rate, because the golden rule 
is a first-order calculation. The (x',y',z') and (x,y,z) frames are related by rotation about the 
y axis, therefore: 

\J>m)= E < ( P ) U ^ > (3-2) 

M=-j 

where d^m(P) is an element of the reduced rotation matrix. Sums over states can be represented 
by incoherent superpositions. Therefore, from Eq. (3.1) and Eq. (3.2) it follows that: 
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1 h \
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The expression for the j\-j2 transition follows from Eq. (3.1)—note the change of basis—and 
is: 
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/ W J W J 

(3.4) 

where: 
(i) ?(;,,»(,) is calculated from Eq. (3.3) if 7=0, or 

(ii) ? ( ; > , ) = Avg.{F(.Jvmi)} , if 1*0. 
Item (ii) is an approximation that accounts for population redistribution (within the intermediate 
level) that occurs between pulses due to hf coupling. It assumes a complete (i.e., uniform) 
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redistribution of the intermediate sublevel populations. 

4. Results 

Figure 1 shows the total population of the/2 level, P(j2), as a function of /3 for a {/0=5, j\=6, 
y2=5} model system. This system has been realized in the lab by a system that is comprised of 
U-235 (7=7/2) and U-238 (7=0). The model calculations compare favourably with 
measurements®. 
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Fig. 1 Total population of the/2 level a s function of j8, the angle between 
the polarization planes of the electric fields of u, and v2. 
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Computed Tomography (CT) is a nondestructive imaging technique that produces cross-
sectional views of an object. Nondestructive evaluation of an object determines its internal 
structure or property from measurements made outside of it without damaging or altering it 
in any way. The imaging technique allows the internal structure or property to be presented 
in the form of an image or a map that presents object morphology in its correct geometry. 

The mathematical basis of tomographic techniques was formulated in 1917 by Radon (1). 
His theorem states that the 2-D function f(x,y) can be determined at all points from a 
complete set of its line integrals mi = jf(x,y)dl. In practical implementation, f(x,y) is a 
physical property and a line integral is a result of an interaction between radiation used for 
imaging and the substance of which the object is composed. A set of line integrals 
measured at one angle is called a projection. Tomography can be practiced using different 
types of radiation, but X- or 7-ray and NMR tomography are the techniques most used until 
now. In X- or 7-ray transmission tomography, line integrals of photon attenuation in the 
object under investigation are measured, and a computed CT image is a map of attenuation 
coefficients in the measured cross section, which can be transformed to a map of density 
variations. 

The current excitement of tomographic imaging started in the early 1970's (Nobel prize for 
Hounsfield and Cormack in 1972), when Hounsfield constructed an X-ray scanner and 
obtained the first useful CT image. The breakthrough was to show that, although projection 
data do not strictly satisfy theoretical models, and very many measurements with fairly 
complex mathematical operations are needed to construct a CT image, using the efficiently 
implemented reconstruction algorithms one can get incredibly accurate images. CT images 
have been dramatically improved since then owing to developments in reconstruction 
algorithms, and various versions of scanners have been constructed. This can be 
considered a second phase of CT development (the first was the formulation of the theorem 
by Radon). 

We are presently in the third phase of CT: CT is a standard diagnostic technique in medicine 
(most hospitals have CT scanners), the technique is spreading in scientific laboratories and 
industry, and further developments are being made in experimental techniques, equipment 
construction and mathematical methods. The experimental techniques progress from, on the 
one hand, constructing relatively inexpensive scanners for a variety of uses, and on the 
other, to building sophisticated equipment. The latter includes very high resolution 
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detectors (for materials analysis), employing synchrotron radiation sources (for 3-D 
tomography of small objects), very fast scanning (to image dynamical processes), and 
complex machines that incorporate such extra features as scanning objects under high 
pressure or radioactive materials. In both cases, high reconstruction accuracy is required 
and mathematical/computational techniques have to follow. In the first case, there is a 
switch to the use of personal computers; in the second case, dedicated fast processors are 
usually employed. CT techniques also progress towards very high resolution coupled with 
very high accuracy (i.e., high contrast) imaging, 3-D imaging, and tomography with 
truncated projection data; this requires not only fast computation techniques capable of 
handling large amounts of data, but also more precision in calculating CT images and new 
or improved mathematical approaches. CT using diffracting sources (for example for 
acoustic and electromagnetic refractive index measurements), an alternative to straight-ray 
(X- or -ray) tomography, is also being developed. 

Modern methods of image reconstruction include three approaches (2-4): (i) ART (algebraic 
reconstruction technique) with modifications SIRT (simultaneous iterative reconstruction 
technique) and SART (simultaneous algebraic reconstruction technique), (ii) convolution 
back-projection, and (iii) the Fourier transform method. There is no one best approach. 
There is always a compromise between how accurate reconstruction can be and how fast it 
can be done, and how well experimental data can be approximated by mathematical models. 
Most scanners employ convolution back-projection methods, using various convolution 
functions (or so-called convolution kernels that filter the projection data before the back-
projection process, in order to obtain a true representation). 

The image reconstruction algorithm must be formulated in the geometry of the beam/detector 
configuration, which is defined by scanner geometry. There are four basic types of scanner 
geometry, which classify the scanners into four generations. First-generation scanners 
measure projections consisting of sets of parallel, pencil-beam rays. The use of divergent 
ray-beams speeds up the process of data collection, and this geometry is used in scanners of 
higher generations. Second- to fourth-generation scanners employ a fan beam geometry, 
with various modifications in the source-detector movement. Independent of the scanner 
geometry, 2-D images created from sets of 2-D data measured in parallel planes can be used 
for a 3-D reconstruction. A novel approach in 3-D imaging has been proposed (5) that uses 
a cone beam geometry coupled to a 2-D detector and a single-axis rotational stage, and 
permits a direct 3-D reconstruction from the data collected in this way, this can be 
considered fifth-generation scanning. 

Because the experimental data do not strictly satisfy theoretical models, a number of effects 
have to be taken into account, which require mathematical solutions and add to the 
complexity of the problem. In particular, the problems of beam geometry, finite beam 
dimensions and distribution (causing partial volume effects), beam scattering, and the 
radiation source spectrum (multienergy sources causing beam hardening effects) have to be 
addressed. In high-accuracy, high-resolution CT imaging, the problems of data accuracy, 

56 



image noise, detectability limits for various types of features, imaging of inhomogeneously 
distributed multielement materials, etc., also have to be addressed. 

Tomography with truncated data is of interest, when it is impossible or undesirable to collect 
the complete set of data required by the Radon transform of the object. This arises in a 
variety of cases and forms a field in itself. Mathematical approximations are used to 
compensate for the unmeasured projection data; otherwise, images are strongly distorted and 
a clear understanding of the limitations of the reconstructed images is needed. Examples of 
the use of truncated data tomography are mapping of underground resources via cross-
borehole imaging and region-of-interest tomography (i.e., high-resolution imaging of a 
portion of an object). CT images reconstructed using incomplete data present features in the 
object with varying degrees of accuracy, depending on which data were missing, and the 
accuracy of the approximations used to compensate for the unmeasured projection data. To 
avoid image distortion, when reconstructing CT images from truncated data, one must use 
some approximations to compensate for the unmeasured projection data. The techniques of 
incomplete data tomography have recently been applied to calculate laminographic images 
(6). Laminography provides a tomographic-type image in one plane, using a series of about 
a dozen radiographic images. Traditionally, the image is measured with film as the imaging 
medium: the film is exposed to a series of radiographic shots while moving the source and 
detector in a correlated way, to obtain an image focused in one plane and thus separate 
overlying features. Computed laminography provides digital laminographic images that are 
more exact and can be calculated in various planes in the object from one series of digital 
radiographs. 

Finally, because CT data are obtained as numerically measured images, mathematical 
techniques in image processing and data analysis are extensively used, such as image data 
filtering, algebraic operations on images, data profiling and statistical calculations. 

The CT laboratory at AECL's Chalk River Laboratories practices CT for a variety of 
nonmedical applications (7, 8, and references therein). The experimental bases are two 
first-generation and one multidetector (a hybrid of second and third generation) scanners, 
with Co-60 and Ir-192 used as radiation sources (7, 9). The reconstruction algorithm used 
for image reconstruction employs a filtered back-projection technique in a pencil-beam 
geometry. Presently used algorithms have to be adapted to faster computers and a greater 
amount of data (larger images). Mathematical techniques have been developed to 
incorporate beam hardening effects for Ir-192 sources (10), and to employ truncated data 
approximations in cases of high resolution imaging of central parts of objects (region-of-
interest tomography, 11). Issues such as detectability limits for detecting small ("point") 
defects and low-amplitude density gradients, depending on the scan parameters, have been 
addressed to some extent (12, 13), but these issues require more thorough approaches. 
Our goal is the construction of a multidetector scanner facility, based on the newest detection 
technology, with a 2-D imaging detector. Image reconstruction procedures must be 
developed for the divergent beam and a multienergy spectrum of an X-ray tube. Because 
we are aiming for CT imaging of high accuracy, such issues of technique limitations as 
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sensitivity, resolution and defect detectability have to be further addressed, and in general 
should be considered for particular types of scanner configurations, beam conditions and 
reconstruction algorithms. Image processing is currently performed for 2-D images, using 
satisfactory image analysis programs. However, the capability to handle large data matrices 
will be needed for high-resolution tomography, and 3-D image processing is required. 

References 

1. J. Radon, "Uber due bestimmung von funktionen durch ihre integralwerte langs 
gewissermannigfaltigkeiten" ("On the determination of functions from their integrals 
along certain manifolds"). Berichte Saechsische Académie der Wissenschaften 69 
(1917) 262. 

2. A.C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, (IEEE 
Press, The Institute of Electrical and Electronics Engineers, Inc., New York, 1988). 

3. A. Rosenfeld and A.C. Kak, Digital Picture Processing, (Academic Press, New York, 
NY, 1982). 

4. G.T. Hermann, Image Reconstructions from Projections, (Academic Press, New York, 
NY, 1980). 

5. L.A. Feldkamp, D.J. Kubinski and G. Jesion, "3-D X-ray computed tomography", 
Review of Progress in Quantitative NDE, edited by D.O. Thompson and D.E. Chimenti 
(Plenum Press, New York, 1986), Vol. 5A, pp. 555-566; L.A. Feldkamp and G. 
Jesion, "Practical cone-beam algorithm", J. Opt. Soc. Am. A/Vol.l, No 6/June (1984) 
612-619. 

6. M.D. Barker, "Laminographic reconstruction from real-time radiographic images", 
Review of Progress in Quantitative NDE, edited by D.O. Thompson and D.E. Chimenti 
(Plenum Press, New York, 1989), Vol. 8A, pp. 457-464. Also, private 
communication. 

7. B.D. Sawicka, R.V. Murphy, G. Tosello. P.W. Reynolds and T. Romaniszyn, 
"Computed tomography of radioactive objects and materials", Nuclear Instruments and 
Methods in Physics Research A 299 (1990) 468-479. 

8. B.D. Sawicka and B.J.F. Palmer, "Application of computed tomography to the 
development of advanced ceramics", Journal of Canadian Society for Nondestructive 
Testing, Vol. 10, No.2 (1989) 24-33. 

9. T. Taylor and L.R. Lupton, "Resolution, artifacts and the design of computed 
tomography systems", Nuclear Instruments and Methods in Physics Research A 242 
(1986) 603-609. 

10. P.D. Tonner, G. Tosello, D.S. Hall, L.R. Lupton and B.D. Sawicka, unpublished 
report, (September 1988). 

11. P.D. Tonner, B.D. Sawicka, G. Tosello and T. Romaniszyn, "Region-of-interest 
tomography imaging for product and material characterization", Industrial Computerized 
Tomography (published by the American Society for Nondestructive Testing, Inc., 
1989), pp. 160-165. ISBN 0-931403-89-8. 

12. B.D. Sawicka and R.L. Tapping, "CAT scanning of hydrogen induced cracks in steel", 
Nuclear Instruments and Methods in Physics Research A 256 (1987) 103-111. 

13. B.D. Sawicka and B.J.F. Palmer, "Density gradients in ceramic pellets measured by 
computed tomography", Nuclear Instruments and Methods in Physics Research A 263 
(1988) 525-528. 

58 



C,::i L>S" O I OH H 

Generalized Pauli Operators 

N.C. Schmeing 
Theoretical Physics Branch 

Chalk River Laboratories 

ABSTRACT 

A new description of the Lie algebras An generalizes the Pauli matrix representation of A\. Prop­
erties analogous to the Lie algebraic and group properties of the Pauli matrices are retained by 
matrices representing the generators of An in the new decomposition. The new decomposition also 
carries a Hopf algebraic structure and is used to express new solutions to the Yang-Baxter equation. 

1. In t roduct ion 

Patera and Zassenhaus have proposed^1) a new decomposition of all Lie algebras An and formulated their 
Lie algebraic and group properties in analogy with those of the two-dimensional Pauli matrices: 

A generator basis for A\ is o\ to ffz with fixed N. The eight matrices given by the above with {N, N'} = ±1 
is a group Vi. For the rank 2 algebra, the matrices: 

/ 0 1 ON / 0 u 0 \ / 0 w2 0 \ / l 0 0 \ 
Ai = u>k I 0 0 1 , Bk = uk 0 0 w3 J , C* = w* [ 0 0 u I , Dk = uk 0 u 0 , 

\ 1 0 0 / \ 1 0 0 / \ 1 0 0 / \0 0 w 2 / 

/ 0 0 1 \ / 0 0 w \ / 0 0 w 2 \ / l 0 0 \ 
Al = L>-k 1 0 0 1 , flj = w-fc I 1 0 0 , C£ = u~k 1 0 0 J , 23j = w-fc 0 w2 0 ) , 

\ 0 1 0 / • \ 0 w2 0 / \ 0 u 0 / \ 0 0 uj 

with w = exp(27ri'/3) and k fixed are a basis of generators. To be specific, define A = Ao, etc., above. 
Then A to D~ are the eight generators of A2, which is ff£(3). Along with Ik = uikI, with I the identity 
matrix and k any integer mod 3, the above 3 x 3 matrices form a group V3. A Hopf structure inherent in 
this decomposition for any An has been formulated^2) by this author. We will discuss this new basis as an 
example of the generalized Pauli matrices. 

2. Group Proper t i e s 

The two-dimensional Paul matrices with w = exp(27n/2) = —1 are seen to be analogous to the three-
dimensional ones in their form. Calling the dimensionality of the matrices d, the following group properties 
hold for Vd-

The adjoint action is diagonal. If Xk, Yk> are in Vd, XkYk'X^1 = wJYi, for some j depending on the two 
matrices. The group Vd is generated by the matrices which are in the Lie algebra, plus the identity, via the 
group-operation of matrix multiplication. Its order is d3 = 8 or 27. Except for multiples of unity, which 
form the center, all elements are in the conjugacy class of lowest order regular elements, of order dd. Thus 
there exists an equivalence relation between all operators. The quotient group of Vd is abelian, so Vd is a 
nilpotent subgroup. 

3 . Lie Algebraic Proper t ies 

The Pauli matrices that form the basis of generators for the Lie algebras are quite remarkable in that they 
provide a finest grading of the algebra, as seen by the commutation relations above. The space of the 
generators decomposes into a direct sum of one dimensional subspaces labelled by the eigenvalues under 
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commutation with a fixed set of two generators, e.g. A and D. The algebras also decompose into a direct 
sum of Cartan subalgebras. They are equivalent to one another and pairwise orthogonal. The r elements in 
each subalgebra are equivalent to one another. Their fundamental representation is not modular, but cyclic. 
It may be chosen such that the operator A transforms from one state into the "next" on the circle, while D 
changes the state by a phase. Other operators do both. T h u s ^ the enveloping algebra is generated by A 
and D alone, in contrast to the root space decomposition where in principle all generators are needed. 

4. Hopf Algebraic P roper t i e s 

The Hopf algebra axioms are clearly stated in our paper/2) For the Patera-Zassenhaus decomposition, the 
homomorphisms in that definition imply that the Hopf algebra is determined entirely by the properties of A 
and D. Best understood in the context of the theory of categories, the three mappings forming Hopf algebra 
(in addition to the multiplication within the enveloping algebra on which it is based) will be explained briefly 
and intuitively. The comultiplication A maps an operator into an expression which shows how it acts on a 
system computed of two objects. The familiar cases are that the operator assigns a value to the first object 
and a value to the second object and adds, or else multiplies, to get the value for the system. The counit e 
is 0 for operators if additive and 1 if multiplicative. The antipode is an additive or multiplicative inverse in 
these familiar cases. For the decomposition considered here, the following defines the Hopf structure: 

A A = D ® A + A ® 1; AD = D <g> D 

e(T) = € ( D ) = l ; e ( A ) = 0 

7 (D) = D - 1 ; 7 ( A ) = - D - 1 A . 

We refer the interested reader to our paper for several solutions to the Yang-Baxter equation given there 
for the first time. They are not quasiclassical, and one case is a limit of the non-standard braid group 
representation given by Couture & Lee/3) 
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ABSTRACT 

An overview is given for Performance Assessment Methodology (PAM) for Low Level Radioac­
tive Waste (LLRW) disposal technologies, as required for licensing and safety studies. This is 
a multi-disciplinary activity, emphasizing applied mathematics, mass transfer, geohydrology and 
radiotoxicity effects on humans. 

1. Introduction 

Facilities for the permanent disposal of LLRW must be engineered and built to protect the public from 
radiological exposure for many years. Over time, radionuclides can migrate from the facility and enter the 
environment by various pathways. The overall performance assessment requires that these rates of migration 
and their consequences be predicted. 

The accepted methodology that has evolved world-wide for such predictions is pathways analysis. Pathways 
and mechanisms are identified which may expose the waste in the facility to some future individual, called 
the critical individual, who lives near the facility. The methodology includes a mass transfer model for 
radionuclide migration along the pathway, and a dose model to predict radiological exposure effects on the 
critical individual. 

The special problems of LLRW, including its treatment and permanent disposal options, are described in 
other AECL publications. In the remainder of this paper, the analysis of long-term migration of radionuclides 
from an engineered underground vault to the underlying aquifer, and the resulting impact on humans, will 
be described. 

2. The IRUS Facility 

AECL's choice for permanent disposal of LLRW is IRUS (Intrusion Resistant Underground Structure), à 
concrete vault buried in a sandy site above the local aquifer/1) For this discussion, it is sufficient to note 
that the floor of the vault is permeable; it is free-draining to prevent possible flooding. The roof is designed 
for a service life of 500 years; however, it will eventually fail allowing rainwater to infiltrate the vault. The 
dominant mass transfer mechanism for a wet vault is convection, a relatively fast process. In the dry vault 
with the roof intact, the slower process of diffusion is the dominant mechanism. Hence, the time and rate of 
roof failure will be important features in the mass transfer model. The waste placed in the facility will be 
conditioned and packaged, and appropriate parameters for these processes are included in the system model. 

3. Mass Transfer Equations 

The various parts of the system (waste, vault, geosphere) where mass transfer of radionuclides occurs, are 
porous media. These are unconsolidated particles with pore water acting as the conduit for the migration of 
atoms. Although it is misleading to consider such a system as constituting a single medium with designated 
properties, the concept does lead to a practical set of equations. The physical processes governing mass 
transfer are diffusion in pore water, convection by movement of pore water, adsorption on the solid phase 
and radioactive decay. An equivalent Fick's law is assumed for the medium, which when combined with the 
continuity equation and a linear adsorption model, leads to the one-dimensional transfer equation for the 
pore water concentration C(x,t), 

dC _ d*C dC 
R-5t-D-d^-y-d^-RXC (1) 
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where 

R retardation factor due to adsorption, which may be in the hundreds or thousands, 
D' equivalent diffusivity resulting from the form assumed for Fick's law 
V pore water velocity 
A radioactive decay constant 

The last term may be left out of (1) and applied as a decay factor exp(—M) a t the end of the mass transfer 
calculation. 

Equation (1) applies to the flux of atoms as well as their concentration. Appropriate initial and boundary 
conditions complete the problem. 

A computer code, COSMOS-3, has been written to generate solutions of (1) for various parts of the system. 
Some details of this model will be described next. 

4. The Vault Model and Source Term 

The rate of release of radionuclides from the engineered facility to the geosphere, called the source term, is 
an important feature of the performance assessment model. To calculate the source term, a mathematical 
model of the mass transfer process in the vault is constructed. Within the IRUS vault, mass transfer is 
assumed to occur in two stages. Diffusive radionuclide leaching from the waste to the surrounding backfill 
represents the first stage. The second stage consists of a mixture of diffusion and convection (depending on 
vault conditions) from the vault as a whole. The atoms move downward through the permeable bottom of 
the vault, crossing a buffer layer and an unsaturated layer that retard their migration relative to the water, 
then enter the aquifer. The first stage acts as a driver for the second stage. The resulting nuclide flux from 
the second stage is the source term. The vault concentration equation is thus of the form, 

where, 

S(t)=a[exp(=±) + aexp(~)] (3) 
tw tw 

is the driving term resulting from leaching, which consists of a principal exponential representing long-term 
behaviour, and a secondary term representing rapid initial transients. The respective time constants are tw 
and t'w, where tw exceeds t'w by about an order of magnitude. In the COSMOS-3 code, (2) is solved with 
appropriate initial and boundary conditions, and the solution is represented by an analytical approximation. 
Finally, the concentration at the base of the vault is converted into the vault flux or source term, Js(t)-

The COSMOS-3 code assumes the roof of the facility eventually fails, allowing the entry of increasing amounts 
of rainwater. Therefore, while diffusion in the dry vault is the initial mass transfer process, an increasing area 
of the vault becomes subject to convection. This transition is handled in the time-step loop of COSMOS-3. 
The characteristic time scale for vault mass transfer, tv, will be large for diffusion (D' dominates (2)), and 
small for convection (V dominates (2)). Since the waste leaching may also be fast or slow, there are four 
possible situations within the vault: 

• fast leaching, dry vault (tv > tw, V— 0) 
• slow leaching, dry vault (tv < tw, V = 0) 
• fast leaching, wet vault (tv > tw,D = 0) 
• slow leaching, wet vault (tv <tw,D= 0) 

The four corresponding solutions, whose details are given in Ref. 2, are combined to construct the source 
term at each time step. 
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5. The Geosphere Response 

Parabolic transport equations for adjoining regions are theoretically linked in both directions. To allow 
a sequential solution with undirectional linking only, fictitious boundary conditions are used, in which the 
response of each section of the geosphere to any radionuclide flux which enters it is the same as if the medium 
were semi-infinite. The flux at any finite distance L into a section of geosphere is then the convolution, 

J(L, t) = [ J0(t - T) G(L, T) dr (4) 
Jo 

where the Green's function for simple diffusive / convective transport, Eq. (1), is 

<?(«,«) = xB>» ( 4 ^ 3 ) ^ exp[-(xf~^t)2] (5) 

and where Jo(i) is the flux entering at the boundary, x = 0. COSMOS-3 uses the analytical source term 
Js(t) to start the solution, one region at a time, and each calculated function J(L,t) is used as the driving 
term in Eq. (4) for the next. 

The final step in the mass transfer calculation is to give an expression for the concentration in the aquifer 
or surface water body. Either of these may be regarded as a source of water for human use, depending on 
the scenario chosen. In the aquifer, the flux and concentration are related by the equation, 

J = VC (6) 

In a lake, a simple mixing model determines the diluted concentration. 

6. The Biosphere Response 

The impact on human health of radionuclides which migrate from the vault into the biosphere will depend on 
the human scenario assumed; that is, on the type and extent of groundwater usage by humans. The common 
"worst case" scenario is the assumption that the critical individual is a subsistence farmer who uses the 
water for all his needs. These include bathing, drinking, crop irrigation and livestock watering, fishing and 
recreation. This leads to a complex web of pathways by which the farmer may be exposed to radioactivity, 
including direct ingestion, inhalation and external exposure. The dose rate incurred via each pathway is 
typically expressed by multiplying the radionuclide concentration in the water by a transfer factor (PTF), 
which represents the rate of water utilization in the pathway, and by a dose conversion factor (DCF); 

Dose Rate = Concentration * PTF * DCF. 
(Sv/a) (Bq/m3) (m3/a) (Sv/Bq) 

These are summed over alï pathways to give either a whole body effective dose or various organ doses. Since 
concentrations vary with time during the simulation, the dose rate will also vary with time. 
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COMPUTER MODELLING OF EDDY CURRENT PROBES 
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ABSTRACT 

Computer programs have been developed for modelling impedance and transmit-receive eddy current probes in 
two-dimensional axis-symmetric configurations. These programs, which are based on analytic equations, 
simulate bobbin probes in infinitely long tubes and surface probes on plates. They calculate probe signals due to 
uniform variations in conductor thickness, resistivity and permeability. These signals depend on probe design 
and frequency. 

A finite element numerical program has been procured to calculate magnetic permeability in non-linear 
ferromagnetic materials. Permeability values from these calculations can be incorporated into the above analytic 
programs to predict signals from eddy current probes with permanent magnets in ferromagnetic tubes. 

These programs were used to test various probe designs for new testing applications. Measurements of magnetic 
permeability in magnetically biased ferromagnetic materials have been performed by superimposing experimental 
signals, from special laboratory ET probes, on impedance plane diagrams calculated using these programs. 

1. Introduction 

Eddy current testing (ET) probes are composed of coils of wire as depicted in Figure 1. Time harmonic 
magnetic fields are generated by AC excitation current driven through a transmit coil. The time harmonic fields 
interact with metallic conductors by generating electrical eddy currents in the conductors in accordance with 
Faraday's law of electromagnetic induction. Variations in the magnetic-field pattern that may be caused by 
changes in the conductor geometry, permeability, or conductivity are detected by detector coils, shown in Figure 
1. An eddy current impedance probe uses one coil as both transmitter and detector. In this case, the conductor 
may be characterized by examining the coil's impedance. Transmit-receive probes use separate transmit and 
detector coils. 

Eddy current probe signals are typically presented on a 2-dimensional display, which plots the quadrature 
component of the detector coil voltage (component which is 90° out of phase with the transmitter coil current) as 
a function of the in-phase component. Theoretically, these components are treated with complex mathematics, 
where the in-phase component corresponds to a "real" value and the quadrature component corresponds to an 
"imaginary" value. 

2. Analytic Modelling 

Computer programs based on equations developed by Dodd and Deeds(1) are used to simulate impedance and 
transmit-receive ET probes. These equations are closed form analytic solutions to geometries such as bobbin 
coils with infinitely long coaxial tubes, shown in Figure 1(a), and surface coils with plates, shown in Figure 1(b). 

•These programs also predict how coil geometry affects probe signals. These programs cannot simulate probe 
signals from real three-dimensional (3-D) defects. They only model probe response due to uniform wall loss. 

An example of the output produced by these programs is shown in Figure 2, which is a plot of the in-phase and 
quadrature components of an eddy current probe signal. Signals are plotted which correspond to changes in tube 
wall thickness and magnetic permeability. 

Programs based on analytic equations by Burrows(3), when combined with the equations of Dodd et al., can 
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predict eddy current probe response from small spheroidal defects0-'. 

Transnlt or 
Impedance Call 

D e t e c t o r Coll 

Transnlt o r D e t e c t o r Coll 
Inpedance Coil 1| 
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Figure 1: Eddy current probes modelled by analytic 
equations. (a) Bobbin coils with coaxial tube 
conductors, (b) Surface coils widi plates. 
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Figure 2: Normalized voltage plane display for a 
transmit-receive probe in a carbon steel tube with 
variable permeability and wall thickness. 

3. Numerical Finite Element Modelling 

A 2-D finite element modelling (FEM) package for IBM PC compatibles was purchased from Infolytica Corp. of 
Montreal. It has programs for solving nonlinear magnetostatic problems and linear low-frequency time-harmonic 
electromagnetic problems. So far, these programs have been used for analyzing permanent magnet 
configurations on magnetic biasing probes used for inspecting ferromagnetic tubes. These probes are composed 
of eddy current coils and permanent magnets. The field from die permanent magnets alters die permeability of 
the test material. Widi a proper permanent magnet configuration, noise from variable permeability in die test 
material can be significantly reduced and defect signals can be enhanced. 
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WAVES IN SOLIDS 
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ABSTRACT 

A computer model that simulates the propagation of ultrasonic waves has been developed at AECL Research, Chalk 
River Laboratories. This program is called EWE, short for Elastic Wave Equations, the mathematics governing the 
propagation of ultrasonic waves. This report contains: a brief summary of the use of ultrasonic waves in non-destructive 
testiDg techniques, a discussion of the EWE simulation code explaining the implementation of the equations and the types 
of output received from the model, and an example simulation showing the abilities of the model. 

1. Use of Ultrasonics in Non-Destructive Testing 
Ultrasonic waves are used in the non-destructive testing of materials to discover any defects or 
discontinuities inside the material. This is achieved by creating a wave using a piezoelectric transducer, 
which converts an electrical signal to an oscillating pressure with a frequency in the megahertz range. 
This wave travels through the material, interacting with any defects or discontinuities in its path, and is 
then received by either the same transducer, or a transducer in a different location. The signal is then 
converted back to electrical energy, and is displayed as an amplitude or A-scan, which is a graph of the 
electrical signal as a function of time. 

2. EWE (Elastic Wave Equations) 

2.1 Explanation of the Equations and Their Implementation 
The EWE model was designed to perform all the operations of a real ultrasonic test. To explain how this 
is accomplished, here are the Elastic Wave Equations calculated by the model: 

3 v _ 3 ^ 3J^ 
p dt dx + dy UU) 

^ = ( U 2 n ) | + ^ | (2.3) 

f = (^)| + x | (2.4) 

dXv dii dv 
~df= »Ty + »7x (2"5) 
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where U and v are velocities, and Xx, Xy, Yx, and Yy are stresses. These equations hold true for an 
isotropic, uniform medium. Note that in (2.1) and (2.2), the derivatives of the velocities u and v depend 
on the derivatives of the stresses Xx, Xy, and Yy, and in (2.3), (2.4) and (2.5), the derivatives of the 

stresses Xx, Xy, and Yy depend on the derivatives of the velocities u and v. Using these equations, two 
grids are established containing velocity and stress data. These grids then interpenetrate in space to form 
the given region. Velocities are calculated at grid points from stresses on surrounding grid points. 
Similarly, the stress grid is calculated to find the new velocity grid. This repeats to propagate the wave 
through the grids. Additional formulas arc used to calculate velocity and stress data for cracks, slots, and 
absorbing or reflecting boundaries. Data is also collected at the surface closest to the transducer, over the 
time period of the simulation, to allow the calculation of the signal displayed in an A-scan. 

2.2 Output Types From the Model 
These calculations generate considerable amounts of data. A realistic simulation produces files on the 
order of 250MB, and could take 24 hours of CPU time to execute on the Cyber 990 mainframe. To 
analyze these results, graphical visualization techniques are implemented. The data files consist of 

values of u and v for the region stored at several regular time intervals. The data is then put into a 
commercially-provided graphics package available on the Cyber, such as CA-DISSPLA or NCAR. 
These packages create contour plots of the data to show the waves. The output capabilities of the model 
include: 

Energy Displays; created from the velocity data, displayed in Fig. 1. 
Compression Wave Velocity Displays; created by employing a DIV operator on the wave 
fields, which attenuates the shear waves. 
Shear Wave Velocity Displays; created by employing a CURL operator on the wave fields, 
which attenuates the compression waves. 

• Vector Displays; created from the velocity data. 
Focal Point Displays; created from the maximum energy at each point over the duration of 
the simulation. 

• A-Scan graphs; similar to experimental data from ultrasonic instruments. 

Fig. 1 Energy Display output from the EWE model. The waves with large wavelengths are compression waves, 

and the small wavelength waves are shear waves. 

There are some capabilities to produce colour contour displays, and animated simulation is among our 
present endeavors. All these tools are useful in analyzing the interaction of ultrasonic waves with defects 
and discontinuities, and in interpretation of inspection results such as an A-scan. 
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3. Application Example 
Materials have a property known as a critical angle, which represents the angle of total internal 
reflection. This means that if a wave hits a boundary at an angle below the critical angle, it will split into 
different types of waves and divide its energy among these new waves. This division process is called 
mode conversion. If a waves hits a boundary above the critical angle, it will completely reflect from the 
boundary. 

Through a previous simulation, an interesting effect was observed. When a shear wave hit the 
backwall surface at just below the critical angle of the material, some energy is mode converted into a 
compression wave travelling parallel to the surface. This compression wave then mode converted back to 
a shear wave at the backwall surface, and travelled along side the original shear wave, which reflected 
the rest of the energy. 

We decided to see if this phenomena occured in real materials, so we tried this technique using 
zirconium as the material. In zirconium, the critical angle is 29°, so we chose a smaller angle of 26°, and 
ran the simulation. It exhibited many of the same effects as the first simulation, except more energy 
converted to compression wave, therefore there was a significant drop in amplitude of the shear wave 
upon reflection. Through the study of this case, it was hypothesized that if a layer of material with a 
critical angle of less than 26° was placed inside the backwall surface of the zirconium, the shear wave 
would not mode convert to compression wave. It would just reflect off the backwall surface entirely. 
Such a material did exist in zirconium hydride, a material found in blister defects on pressure tubes. 
Zirconium hydride has a critical angle of about 20°. 

We ran the new simulation with a zirconium hydride layer in place. As predicted, most of the 
energy did reflect back from the boundary. A comparison between the plain zirconium and the zirconium 
hydride layer case was performed to see the effect on the amplitude of the reflected shear wave in detail. 
This was done by moving the receive transducer along the near surface of the region and Finding the 
amplitude of the wave for each position. In a few spots, the shear wave was three times larger in the 
zirconium hydride than the plain zirconium. Another wave exhibited different effects in the two cases. 
This wave is caused partially by a compression wave converting to shear wave at the backwall surface, 
and partially by the initial shear wave converting to a compression wave at the backwall surface. Both 
these waves meet the near surface of the region at the same time, .creating a single wave. Its amplitude 
decreased slightly in the zirconium hydride case compared to the zirconium case. 

Since in the zirconium case, this compression-shear wave was about half the size of the shear 
wave, simple mathematical manipulation of the signals could be used to give a result that is near zero for 
the case of pure zirconium, and large for a case with zirconium hydride. By subtracting twice the 
amplitude of the compression-shear wave from the amplitude of the shear-shear wave, this effect is 
realized. The zirconium hydride signal is 10 times the size of the zirconium signal using this method, as 
shown in Fig. 2. 

Results of (Shear-Shear) • 2( Compression-Shear) 

Axial Position (mm) 

Fig. 2 Graph of possible function to improve detection of zirconium hydride . 
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All the ideas for this example were triggered and analyzed by simulation with the computer 
model. In this way, we hope to be able to develop new techniques for inspection, as well as further 
understanding and explanation of existing inspection results. 
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MATHEMATICAL MODELLING OF HOT FORMING OF METALS 
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ABSTRACT 

In recent years, mathematical models are gaining significant recognition in the improvement of 
metal forming processes. Methods for the modelling of the physical phenomena in hot forming are 
presented; the complexity of the interdependent relations between the macro-behaviour and micro-structural 
changes is discussed. A modelling approach to account for these interwoven relations is proposed. The 
need for coupling of macro and micro models is emphasized. 

1. INTRODUCTION 
The technology of hot rolling of metals has been in existence for decades. Significant progress made over 
the years on this technology has mainly relied upon the accumulated experience of expensive and time 
consuming trial-and-error methods. However, the ever increasing competitiveness in the world market, the 
demands for tighter tolerance on mechanical properties and the call for energy conservation have necessitated 
the development of methods for improvement. Mathematical modelling has thus gained wide-spread 
recognition in the metals industry. Progress has been made specifically in the areas of mathematical 
description of the behaviour of metal deformation, heat transport phenomena, constitutive relations, and to a 
lesser degree, in the area of microstructural evolution during and after forming processes. Due to the 
complexity of the processes many difficulties remain to be resolved for achieving further improvements in 
cost reduction and in the control of mechanical properties of products. 

It is well known that the most critical factors in controlling the final properties of metals are the 
rate of strain, accumulated strain, temperature and the cooling path subsequent to rolling. These factors are 
by no means homogeneous and time invariant in a deforming metal. The temporal and spatial variation in 
grain size, crystallography, phase, and solubility of alloy elements are generally dependent upon strain, 
strain rate and temperature path. Among the wide range of parameters that may affect the rolling process, 
only the modelling of heat conduction, thermomechanical coupling, visco-plastic How, and phase 
transformation will be briefly discussed. 

2. MACRO- AND MICRO-SCOPIC MODELLING 
The mathematical description of the coupling behaviour of metal flow and heat and mass transport 

can be deduced from the principles of conservation of momentum, energy and mass which lead to the 
following differential equations: 
(i) for the viscoplastic flow of metal we have 

LT[DÉ+ Ôm] + %o + pu = 0 

a pu + LTDLÛ + LTMP = X0 (1 ) 

in which the volumetic stress, Ôm , is expressed in terms of hydrostatic pressure P, whereas ' L ' denotes 

in the material coordinates. X rj is the externally applied force vector, p is the density of the 
material. The notations ' ~ ' and ' • ' respectively denote a vector quantity and a time derivative. D denotes 
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the material compliance which can itself be temperature, stress and strain/strain rate dependent. It should be 
mentioned here that a microstructural based constitutive law is required to model the flow behaviour 
correctly ; 
(ii) for the heat transport phenomenon we have 

pet + pH = V(kVT) + Q (2a) 

k—- = h f (T-T e ) 
oxj (2b) 

where hf denotes the heat transfer coefficients for the convective, radiative or conductive transfer depending 

upon the nature of the boundary; c, k and H are respectively the specific heat, the thermal conductivity and 
the enthalpy related to the phase transformation. The second term on the left hand side of Eq. (2a) represents 
the heat adsorbed or generated due to a phase transformation, and Q represents the heat generated in a unit 

time by the plastic energy dissipation per unit volume which is:Q = ffJ'E. In a multicomponent system 
H becomes: H=SHinj, where Hj is the partial molar enthalpy, and nj is the molar flux of species i; 

(iii) for the microstructural evolution (particle or matter transport) it is assumed that microstructural 
changes during hot rolling are diffusion-like processes driven by the free energy stored in the distorted 
grains and at the grain boundaries. The migration of dislocations, vacancies and solute particles in a 
material matrix and at a interface are expressed mathmetically as: 

fl = V(BVîi) + û-Vîi (3) 

where TJ is a generalized state variable, to which a physical meaning can be assigned, such as the 
represention of the concentration of migrating solutes, dislocations, etc. B is the diffusion coefficient. It is 
important to note that the diffusion coefficient is a function of temperature, cooling rate, dislocation 
density, chemical potential and mean path length of the migrating particles. Also in a deforming metal, 
dislocation density and free energy are directly related to the local stresses, strains and strain rates. The 
second term on the right hand side in Eq. (3) accounts for the effect of the rate of deformation on the rate of 
microstructural changes. It is through these dependencies that the microstructure is coupled with the flow of 
metal and heat as described by Eq.s (1) and (2). Note that Eq.(3) is a general expression to account for the 
microstructural evolution. Specifics relating phase transformation is given in the next section. 

Eq.s (1-3) together with the contact interface models provide a description of the thermomechanical 
processes including the microstructural changes during hot forming. These equations can be solved 
simultaneously by the finite element method. 

3. Modelling of Phase Transformation of Metals 
Phase transformation in a general sense encompasses nucleation, precipitation, recrystallization, grain 
growth and other microstructural evolution. Theoretically, they have been all treated as diffusion processes. 

In hot forming, phase transformation depends strongly upon the temperate* Î and the rate of 
temperature change. The resulting phase structure directly affects the strength, hardness, toughness, 
ductility and other physical properties of the products. This effect on the properties is further complicated 
because phase transformation is always accompanied by heat production or absorption, which in turn, 
causes temperature changes. Moreover, since metal surfaces are in contact with cold forming tools and 
cooling agents, the temperature of the metal surface is likely to be significantly lower than that of its 
interior. This difference can create large thermal gradients and can cause non-uniform temperature 
distribution and rate of temperature changes in the metal piece. Thus the resulting transition products may 
differ from location to location in a hot-formed metal. Phenomenological models for phase transformation 
without the considerationn of thermal diffusion have been derived analytically by Kirkaldy and others^1'2). 
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However, Hillert and Agren@) pointed out that analytical solutions for the diffusion controlled 
transformations have very limited applicability, and they indicated that the use of numerical methods to 
solve the basic diffusion equations is a natural alternative. 

The fact that phase transformation is a rate process makes the conventional macroscopic, 
thermodynamic treatment of the phenomenon inappropriate. The modelling of this physical phenomenon 
requires consideration of the microscopic, atomic or particle interaction and the rate of reaction, and a 
connection between macro- and microscopic properties. 

In phase transformation of metals, there are two types of transport phenomena which occur 
simultaneously: the transport of substance of various components and the readjustment of lattice sites, 
and the transport of energy due to the accompanied heat production and to the initial and imposed thermal-
boundary conditions. To account for these phenomena let us consider a system in a state of non-
equilibrium. This can be described by the phenomenological theory and the principle of microscopic 
reversibility introduced by Onsager^. Experimental evidence has shown that thermal flux Ju can be set up 
by a local fluctuation of concentration of solutes; and a flow of substance Jj can be set up by the 
fluctuation of a temperature field or an externally-imposed thermal gradient. These fluxes flow in and out 
across a phase interface under the action of driving forces Xi and Xu. Such a movement will be 
accompanied by an entropy production: 

T | ^ = £ j i { X i - X n } + JuXu 
dt i=l (4) 

where 
n-1 

Ji = X L * { X k - X n } + LiuXu 
k=l (5a) 
n-1 

Ju = 2L,Luk{Xk — Xn} + LuuXu 
k=l (5b) 

The cross coefficients Lik and LQJJ represent the interference of all components. 
By choosing Ji and Xi based upon the Gibbs' Equations and by satisfying Onsager's reciprocity 

relation requirement, we obtain the following equations after some algebraic manipulations: 
n-1 

Ji = XLikTlVg'k-Vg'nJ + LiuT-Vr 
k=l (6) 
n-1 

Ju = ^ L u k T f V g ' k - V g ' n l + L u u T - V r 
k=l 

where g'k = gk/T and gjj is the Gibbs free energy of substance k. As previously mentioned, phase 

transformation is a transient, rate process and the model must take into consideration the kinetics of the 
process. For the flow of substance, this process is described by the reaction rate, which in this case, can be 
interpreted in two ways. In a microscopic sense, it can be described as frequency of jumps of component i 
to the nearest neighboring locations in a unit time, and in a macroscopic sense, it can be described as the 
rate of change in concentration of solutes in a unit volume. For the flow of heat, the process is described 
by the rate of heat stored in or released from a unit volume. These changes must be equal to the net fluxes 
of the substance/heat entering the volume, we may therefore write: 

fli = VJi ( 7 ) 
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where T|i represents, in this case, the concentration of component i and the temperature at and near i. 
Introducing Eq. (6) into Eq.(7) leads to a set of rate equations consisting gradient terms of Gibbs free 
energy and temperature. While this set of equations represents the statistical micro-changes, it is 
inconvenient for practical applications. It is more convenient to convert Eq. (7) in terms of concentration 
and thermal gradients. This is readily obtainable by comparing the rate equation with the Fick's Second law 

n-1 
ci=£VBijVcj + VKiuVT 

j=l (8a) 
n-1 

f = ^VBujVcj + VKuuVT 
j=l (8b) 

with the coefficients given as 
n-1 

Bij = XLikl9(g , k-g , n) /9cj 
k=l (9a) 

Kiu = Liu / T (9b) 

It is interesting to note that Eq.s (8) and (9) have effectively linked a microscopic description of a phase-
transformation problem with macroscopic quantities q and T. This is achieved through the definition of 
By and Kju given in Eq. (9). In this equation, the microscopic parts are reflected by the Gibbs free energy 
gi which is the cause for atoms to jump to and from locations. The frequency of these jumps directly 
determines the net flux of a component across a phase interface. Eq. (8) consists of a set of n simultaneous 
Eq.s with n state variables. It furnishes a description of the coupled thermal and substance transport 
phenomena in a phase transformation for an n-component system. The solution of this set of equations 
provides the values of (n-1) state variables along with temperature values at any location at a time point 
(i.e., ci(t) and T(t)) which is needed for the prediction of phase transformation processes. The n th 
component is eliminated from the equation due to its dependence on other variables. The closed solution 
for these types of Eq.s is not readily available and we must rely upon finite element method solution. 
Details of finite element formulation is here omitted. In Eq. (9), Ly is the cross coefficient representing the 
interaction between the components i and j . The coefficient Luj is defined as the heat flux transported 
across a phase interface due to a unit increase in chemical potential over a unit distance; and coefficient Lju 

is the flow of atoms of component i due to an unit increase in temperature over a unit distance. Eq. (8) 
provides a theoretical description of a coupled heat and mass transport phenomena in phase transition. It 
permits the evaluation of the needed state variables, such as the evolution of concentrations of solutes, 
temperatures and rate of temperature changes at any location in time, for the determination of fractions 
transformed at a given state. The entropy production and temperature changes and rate of transition are 
rigorously accounted for. It should be noted that for austenite/ferrite/pearlite transformation, the 
transformation mechanism is known to be controlled by carbon diffusion. In this case, the interstitials can 
be considered as one of the alloy components, and Eq. (8) remains equally applicable. The application of 
the present formulation requires the knowledge of the cross coefficients, Lij and Luj which may be 
calculated theoretically for certain cases. However, they are also obtainable experimentally. 
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ABSTRACT 

Mathematical methods are widely used to solve practical problems arising in modern industry. This 
article outlines some of the topics relevant to AECL programmes. This covers the applications of 
Transmission and Neutron Transport Tomography to determine density distributions in rocks and 
two phase flow situations. Another example covered is the use of variational methods to solve the 
problems of aerosol migration and control theory. 

1. Introduction 

Mathematics may have first developed out of our need to solve practical problems, but it has evolved into 
an independent discipline. While the aim in pure mathematics is to find all possible implications of the 
underlying assumptions, the relevance and acceptability of the final results impose constraints in applied 
mathematics. Industrial mathematics is essentially applied mathematics characterized by serving the needs 
of industry. The field of industrial mathematics is quite wide. A few examples are described below. 

2. Nonintrusive Imaging Techniques 

For some measurements, probe-based (intrusive) techniques are impractical, leaving nonintrusive ones as the 
only alternatives. Most nonintrusive techniques are based on the principle of tomography. Transmission 
tomography has been used to determine the local density of rocks^1), X-ray and 7-ray transmission tomogra­
phy, to determine the density distribution of fluids^2), industrial products and for medical diagnosis. Neutron 
transport topographic methods are better suited for some fluid flow situations/3) Methods developed and in 
use at Whiteshell are described here. 

2.1 Geophysical tomography 

Seismic tomography is used to determine density variations in rocks. Measured quantity is the travel time 
Ti =T(Li) of sound along each of many paths £,-,£ = l , 2 , . . . n , given by 

Ti = Jr,(r)M(r) (1) 

where T)(r) is the slowness to be computed at point r and d£(r) is the infinitesimal-length. All of the 
transmission tomographic problems reduce to an equivalent problem. Standard methods may be classified 
as algebraic reconstruction, and the transform methods. A new method, called the areal basis inversion 
technique (ABIT) reduces (1) to a Fredholm-type integral equation of the first kind and solves it by the 
./^-inversion theorem/1) A comparison of results produced from synthetic data demonstrates that ABIT 
defines the anomaly more accurately. 

2.2 Gamma-ray densitometer 

The phase-distribution is needed to understand many physical situations involving two-phase flow. Multi-
beam gamma densitometers are commonly used for this purpose; they measure, essentially, the chordal void 
fractions. An algorithm developed recently^2) to extract the phase-distribution is outlined below. 

The chordal void fraction ct(<j>) along L{<j>) is given by 

1 rrM) 
aW = ÏÛT\ r(s(#,r)<fr (2) 

where T(s(<f>),r) = 1 for r in s(<f>), and zero otherwise, d(<j>) = (ri(<f>) — ro(4>)) and s(<j>) is a subset of 
[ro(<f>), ri((/>)] defined by the phase distribution. The points ro(cj>) and r\(<j>) are the intersections of the 7-ray 
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with the circumference of the pipe. The purpose here is to approximate T. The procedure used was based 
on the series expansion method; i.e., expand T as a linear combination of some basis functions Pj. The 
coefficients are determined by (2). For the three-beam densitometers in use at Whiteshell, the problem was 
reduced to solving one nonlinear equation: h(j) = 0, after some manipulations. The method was verified 
for several realistic flow patterns and found to be a vast improvement over the existing methods. 

2.3 Neutron transport tomography 

While the quantities of interest are still the distribution of the phases and the void fraction, the system 
of interest is the heated section of an experimental test facility, The 7-rays are attenuated almost out of 
existence by this type of system, rendering the multi-beam gamma densitometers inapplicable. A method 
based on neutron transport tomography solves the technical problem satisfactorily, but the mathematical 
problem encountered is quite complex. 

In addition to other difficulties in solving the inverse problem of nonlinear tomography, the number of 
detector locations in a realistic experimental situation is quite small, two or three at the most. As was 
the case with gamma densitometry, the series expansion method is, therefore, better suited in this kind of 
situation. This procedure was used to reduce the problem to solving ^(7) = 0. The D vector ^(7) is defined 
by <j>d(l) = Ud — fio(rd),d — 1 ,2, . . . ,D, and 7 is the D vector to be computed, u<j is determined by the 
measured count and 

«<r> = / yZ^\exp[-K> I>fr(r, r')\ { £ i^-— + A [ | > A H (M»0)}( i = 0,1,2, • 

where f,(r, r ') is the line integral of the basis vectors /?,- along the straight line joining r and r ' . 

The solution 7 yields the void fraction and the phase distribution in a straightforward manner. The method 
was verified by using experimental neutron counts for a number of void fraction values in a stratified flow 
pattern. Agreement between the experimental and computed values of the void fraction is excellent for most 
of the measured values. The present method also identifies the flow pattern quite well. 

3. Variational Methods 

Variational calculus is one of the major tools used to formulate physical problems. Fermat's "least time" 
and Hamilton's "least action" principles have enjoyed widespread applications in the framework of varia­
tional calculus. On the other hand, variational methods such as the Rayleigh-Ritz method, the Bubnov-
Galerkin method and the method of moments provide powerful tools to solve differential, integral and 
integro-differential equations. Both types of applications are indicated here. 

3.1 Geophysical tomography 

It was assumed in Section 2.1 that a signal travels along straight lines joining the sources and the detectors. 
A more accurate model may be used to describe the signal path. According to Fermat's principle, the travel 
time along a ray path joining the given points is minimum compared to all of the neighbouring paths. The 
physical path is then described by the Euler equation of the associated variational problem, which reduces 
to 

V , = > | ) (3) 

Equation (3) forms the basis of the ray tracing and the shooting methods/4) 

3.2 Aerosol migration 

The transport of aerosols is described by a multi-component, nonlinear integrodifferential equation. Here we 
consider a simplified version that is adequate enough to address most of the complications. 

The number density, C(m,t), of particles of mass m in size range (0, M) at time t is the solution of 
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C(m,t)sF(m,t,C(m,t)) 

where the prime denotes the derivative with respect to time, and F is a nonlinear operator. The value of 
C(m, 0) is known and C(0,t) = C(M,t) = 0. In the direct variational method, the solution C(jn,t) is treated 
as an element of an appropriate Hilbert space H with a scalar product (,). For the present case, H may be 
taken to be the space of square integrable functions over the interval (0,M). The solution C(m,t) may be 
approximated by a linear combination of basis functions {vj(m)}: 

n 
C(m,0 = X>;(i)»;(m). 

i=i 
This reduces the problem to solving 

^ = *(«(*)) 

where A is the normalization matrix, and the vector function g(a(t)) is as defined above. Standard methods 
are used to integrate this equation. A commonly used basis set in this case is given by 

wj(m) = m'- 1e-Tm 

where 7 is an arbitrary positive constant. This scheme was tested for a number of cases/5) Variational 
approximations converge rapidly to the exact, solution as the basis size increases. 

S.3 Control theory 

The dynamics of a large class of linear control systems is described by 

dx/dt = A(t)x + B(t)u, x(0) = xo, (4) 

where x and u axe vectors, and A and B are matrices. It is required to find the value u* of the control 
function u that optimizes a functional termed the performance index. It can be shown that u* is related to 
the solution £* of an operator equation of the forn/6) 

(l + K)C=g (5) 

where g is a given vector in a Hilbert space and K is an operator. 

While the problem is solvable by the variational methods of the type described above, convergence rate is 
often poor. However, the set {K,~1g} may be used as a basis in the direct variational method. The method 
based on such a representation is called the moment method/7) The rate of convergence of the method, when 
applicable, is usually better, and it may be applied to generate monotonically convergent upper and lower 
bounds to j ( 6 ) . 

The moment method was compared with the standard variational methods for several realistic problems. 
The method of moments required only a few basis functions, compared to tens in the other types. 

4 . Concluding Remarks 

As a subfield of applied mathematics, industrial mathematics overlaps with a number of areas of pure 
mathematics. The applications of the non-intrusive imaging techniques illustrated here cover a small section 
of the tomographic methods. Other methods worth mentioning are positron emission tomography and 
ultrasound and magnetic resonance imaging. 

The topics and applications discussed in this paper were selected for their significance to AECL Research. 
Also, these are some of the areas in which we have made substantial improvements over the techniques that 
were otherwise available. However, some further work is needed before these developments can be fully 
exploited. 

76 



5. References 

1. G. Lodha, J.G. Hayles, S.R. Vatsya and M. Serzu, A new approach to geophysical tomography using 
areal basis inversion technique, to be published. 

2. S.R. Vatsya, G.R. McGee and P.S. Yuen, Use of a three-beam gamma densitometer to determine average 
void fraction and flow regime, Tenth Annual Conference of Canadian Nuclear Society, Ottawa, 1989. 

3. S.R. Vatsya and P.T. Wan, Unpublished report, (1991); S.R. Vatsya, Unpublished report, (1992). 
4. W.L. Rodi and J.G. Berryman, Notes on inversion, Technical Report, ER Laboratory, Mass. Inst. 

Tech., 1991. 
5. S.R. Vatsya and M. Razzaghi, A solution scheme for aerosol transport models, ]4th Annual CNS Simu­

lation Symposium, 1988. 
6. S.R. Vatsya, Optimization of spaces station and robotic control systems, CASI Symposium on Space 

Station, Ottawa, 1989. 
7. Yu V. Vorobyev, Method of Moments in Applied Mathematics, Gordon & Breach, New York, 1965. 

77 



MDPOLY: A Molecular Dynamics Simulation Code 

P. Y. Wong 
Math and Computation 

AECL Research 

ABSTRACT 

MDPOLY is a molecular dynamics (MD) simulation code developed at the National Research Council of Canada. 
Unlike many early MD codes, which perform only constant volume calculations, MDPOLY uses the constant pressure 
method, which allows a solid to change its size and shape in response to a given pressure. As such, MDPOLY is 
particularly well suited for studying structural transformations of crystals. This talk gives an overview of MDPOLY's 
features and the mathematics involved. 

W h a t is molecular dynamics and how does it work? 

Molecular dynamics (MD) is a well known technique for simulating liquids and solids by computer1). A 
basic ingredient of any MD simulation is a so-called MD box, usually cubic, which contains the particles 
(atoms or molecules) to be simulated. The particles move inside the box according to the equations of motion 
specified by the molecular dynamics. The MD box satisfies a periodic boundary condition (PBC), which 
means that when a particle moves out from one face of the box, its image from the opposite face enters so 
that the number of particles in the box is conserved at all times. A PBC also implies that the entire physical 
space can be filled with identical MD boxes so that only one box need be considered. This explains why an 
MD box with no more than a few hundred particles can be used to simulate a macroscopic (~ 1024 atoms) 
bulk system. 

There are three basic steps involved in an MD simulation: 
(i) Numerically integrate the equations of motion to an equilibrium around a given temperature, 
(ii) Collect particle trajectories as a function of time in equilibrium, 

(iii) Perform statistical averages from particle trajectories. 

Early or conventional MD simulations are based on the classical equations of motion with a fixed MD box. 
An excellent example of.such a simulation is described in a 1964 paper published by Rahman^2). This paper 
demonstrates the power of MD simulations and plays an important role in opening up the field of molecular 
dynamics. 

2. Constant Pressure Molecular Dynamics 

A major shortcoming of conventional molecular dynamics is that the MD box volume must be kept constant, 
a condition which limits applications. Since 1980, a new molecular dynamics (NMD) has evolved which allows 
the box to change its size and shape in response to a given hydrostatic pressure (see Nose and Klein^3) and 
references therein). Commonly called constant pressure molecular dynamics, the new MD opens up a way 
to explore structural transformations of crystals. 

Following Nosé and Klein, the three equations of motion in NMD are: 

s{ = h-iftmf1 - G ^ G s , (1) 

~ ( I . " . ) = n (2) 

h = w-\n--pcx\)o- (3) 

Eq.(l) gives a molecule's centre-of-mass translational motion, while Eq.(2) specifies the rotational motion 
about the centre-of-mass. The matrix h in Eq.(3) carries the size and shape of the MD box at any time t 
and, as shown, varies according to the imbalance between the internally generated stress tensor II and the 
external pressure P e x . If h is not allowed to vary with time, these equations are reduced to the classical 
equations of motion. 
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3. MDPOLY 

MDPOLY^ is a polyatomic, rigid-molecule MD code developed at the National Research Council of 
Canada. 

3.1 Key features 

• constant pressure molecular dynamics, 
• pairwise additive potentials plus distributed charges, 
• forces are of the site-site form, 
• orientations represented by quaternions^5), 
• equations of motion solved by Gear's predictor-corrector method^6). 

3.2 Quaternions 

The standard method of solving the rotational equation (Eq.(2)) is to rotate the inertia tensor I in the 
space-fixed coordinates by the Euler «ingles (<j>, 6, t/>) to the body-fixed coordinates. The angular velocity u 
is then solved in the body-fixed frame. The method poses a difficulty in that the equations of motion of the 
Euler angles contain a singularity at 9 = 0. In MDPOLY, Evans'^5) method of quaternions is used to solve 
for the orientations, which is singularity-free. 

3.3 Method of solution 

The equations of motions are solved using Gear's predictor-corrector method. 

3.4 Computer-lime intensive 

All MD codes are computer-time intensive and MDPOLY is no exception. This is due to the number of 
forces that need to be calculated in a timestep which goes as N2/2a, where a is the reduction factor due to 
range cutoff, and N the number of atoms in a simulation. Computer time is the main constraint to larger 
simulations. An MDPOLY simulation typically takes many hours of Cyber-990 time. 

3.5 Difficulty 

MDPOLY is particularly well suited for modelling crystal structural transformations^7). A major problem 
here is to find a good potential. While the Lennard-Jones type of potentials seem to work well with solid 
and liquid carbon tetrafluoride^8), so far they are not able to explain the crystal transformations of TeFç or 
C^Fa. How to find an effective potential, given the demanding computer time constraint, remains a very 
real challenge. 
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A SELF-CONSISTENT MODEL OF IRRADIATION CREEP AND GROWTH 

C.H. WOO, C. TOME and N. CHRISTODOULOU 
Reactor Materials Research Branch 

Reactor Materials Division 

ABSTRACT 

Irradiation creep and growth in zirconium alloys result in anisotropic dimensional changes relative to the crystallographic 
axis in each individual grain. Since the deformation of each grain is constrained by the collective deformation of neighbouring grains, 
anisotropic deformation generates internal stresses. As a result, the total deformation of a polycrystalline specimen cannot simply be 
taken as the average of the deformation of its individual grains under the action of only the external stresses. The aim of this paper 
is to demonstrate how intergranular interaction can be taken into account during irradiation creep and growth. 

1. Introduction 

Zirconium alloys are widely used as structural materials in nuclear reactors. During manufacturing and under reactor 
operating temperatures, most of these alloys have a hexagonal close-packed crystallographic structure. They tend 
to develop sharp textures because of the anisotropic properties of the single crystal. Many of their physical properties 
are anisotropic including irradiation creep (i.e. deformation under an applied stress) and growth (i.e. deformation 
under no load). Both creep and growth result in anisotropic dimensional changes relative to the crystallographic axes 
in each individual grain. Since a polycrystalline sample is a collection of many grains with different orientations, 
anisotropic deformation of the individual crystals generates internal stresses due to the constraint imposed on each 
grain by the collective deformation of the surrounding grains. These stresses cause elastic, plastic and creep 
deformation as each grain has to conform to the deformation of its neighbours to maintain the integrity of the entire 
sample. 

2. Polycrystalline Model 

The distribution of orientations of all the grains in space in a polycrystallline sample defines the crystallographic 
texture. A self-consistent polycrystalline deformation model developed by Woo [1] will be used to calculate the 
steady state deformation rate of the polycrystal. Each grain of the polycrystalline sample is considered to be an 
inhomogeneous ellipsoidal inclusion embedded in a continuum matrix with properties identical to those of the 
polycrystal. The intergranular compatibility condition can then be described by the elastic-plastic interaction between 
the inclusion and the matrix, using the 'constraint' tensor K' introduced by Hill [2] for the continuum matrix. If o* 
is a uniform stress field producing a traction on the interface of the inclusion with the matrix, and è* is the 
corresponding uniform deformation rate due to the traction, then K* is defined by 

t' = t - É = K\ o ' = K*.(a - £) (1) 

Here K* is a function of the creep compliance of the polycrystalline matrix K and the aspect ratio of the inclusion, 
É and 2 are the strain rate of the polycrystal and external stress, respectively and ê is the strain rate of the 
individual grain. It is also implied in eq. (1) that o* is equal to the internal stress generated due to the anisotropic 
deformation of the single crystal and the constraint imposed by the collective deformation of the surrounding grains. 
For irradiation creep K and K* are assumed to be independent of stress and are related by 

K* = (S:1 -1)-1. K (2) 

Here S, the 'viscous' Eshelby tensor, is a function of K'1 and the aspect ratio of the inclusion and can be calculated 
numerically [1]. The following expressions are also true 
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Ê = k o + -y 

É = K z + r 

È = { Ê } 2 = la} 

From equations (1-5) the macroscopic strain rate is given by 

É= {(k+K*)-'} [{k+K'r'kJS + {(k+K*)-'?}] 

(3) 

(4) 

(5) 

(6) 

where k and ̂  are the single crystal creep compliance and growth, rate respectively, and {j brackets denote weighted 
averaging over the grains. K can be expressed in terms of k by means.of 

K= {(k+K*)-1}"1 {(k+lO-'k) (7) 

The effect of texture is accounted for in eqs. (6) and (7) through the weighted average and the fact that all 
the tensors have to be referred to the same set of axes. Eq. (7) is used in the numerical calculation for determining 
K given k and the crystallographic texture, k can also be calculated if K and the crystallographic texture are given. 
The latter technique is used to derive k for calandria and pressure tube materials. Then it is possible to correlate 
the calculated values of k with the predominant creep mechanisms taking place during reactor operation. 

The manipulation of the tensors involved in the analysis can be handled more readily if the following basis 
of 2nd order orthonormal symmetric tensors bn is defined 

i>x= lA/5" 
'1 0 0> 

0 1 0 

fi 0 ~2t 

(1 0 0' 

o T o 
,0 0 0, 

'l 0 0̂  
0 1 0 
,0 0 1 ; 

i>3= IA/S 
'0 0 0* 
0 0 1 

\0 1 0; 

Jb«=l/v/2 
'0 0 1' 
0 0 0 

\l 0 0) 

bs= l /v /2 
'0 1 01 

1 0 0 
fi 0 0 ; 

25a=l/72 

b6= iA/3 

The fourth rank tensors can then be represented as follows: 

k = k, b" b* (8) 

where k„ k2 (=ks), k3 (=k»), ks (=0) are the corresponding eigenvalues. 
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LOW-DIMENSIONAL DESCRIPTION OF PLANT CANOPY TURBULENT FLOW 

Yahui Zhuang 

Environmental Science Branch 
AECL Research, Pinawa, Manitoba 

Abstract 

We propose that the large-scale airflow structures within forest canopies can be described by a rel­
atively low-dimensional dynamical system. This research aims at simplifying a model of turbulence 
transport in the plant canopy. 

1. Introduction 

Over the last two decades, research on air turbulence in plant canopies has revealed that various transport 
mechanisms within the canopy are dominated by intermittent, large-scale coherent structures. They appear 
as sweep structures in the velocity signals and ramps in the scalar fluctuations. These organized motions 
are one of the causes of the inhomogeneity in canopy turbulence. It is well known that the traditional 
gradient transport theory does not work in describing canopy flow.'1) Although the higher-order closure 
models have provided some valuable information, they tend to smear the instantaneous large-scale flow 
structures considered to be very important in the turbulent transport processes. It is suggested that the 
coherent dynamics have to be incorporated to explain the flow phenomena observed. Most existing works on 
the coherent structure in canopy turbulent flow use the conditional sampling or VITA technique to extract 
the coherent structures. The averaging and smoothing procedures used in these methods prevent them from 
giving a complete description of the dynamics of the coherent structures. 

On the theoretical side, recent applications of dynamical system theory to turbulence flow have shown that 
the transport properties of the turbulent flows, especially the ones that are obviously influenced by the 
coherent structures, may be described by a relatively low-dimensional strange attractor in phase space/2) 
This suggests that the natural decomposition of the turbulent flow is to divide the flow into organized motions 
represented by the dominant orbits in phase space and the statistical fluctuations about these orbits. 

In view of the abundant evidence of coherent structures in the canopy flows, we feel that a low-dimensional 
study of the canopy turbulent flow may provide the dynamical information about the transport processes 
that the experimental work cannot offer. In this study we will use a simple dynamical system theory to 
determine whether the canopy flow is low-dimensional, and if it is then find the suitable flow coordinates in 
phase space to represent the flow in physical space. The flow dynamics, especially the coherent structures, 
will be discussed in terms of this low-dimensional dynamical system. 

2. Dimensional es t imate of t h e canopy flow 

Dissipative nonlinear dynamical systems, such as the one under study, that exhibit chaotic behaviour in 
the experimental signals sometimes have strange attractors characterized by their fractal dimensionality in 
phase space. To examine the possibility that i.he canopy turbulence is a low-dimensional one, we can try 
to estimate the dimension of the phase space region visited by this dynamical system. A simple method 
developed by Grassberger and Procaccia'3) will be used to measure the global geometrical properties; i.e., 
the correlation dimension of this system. The definition of the correlation 

C(r) = lim±f2 tf(r-|*.-*il) (1) 

where H(x) is the Heaviside function with H(x) = 1 for x > 0, H{x) = 0 for x < 0, the X are the phase 
space variables for this system and N the total number of the phase variables. The theory is that C(r) oc rd 

for a certain range of r. The exponent d is closely related to the fractal dimension D. The phase variable, 
X, can be constructed from a time series of a single experimental variable. With this technique, and using 
a vertical velocity time series obtained from an experiment within a canopy, we calculated the correlation 
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C(r). Our analysis shows that the system has only six degrees of freedom and, in principle, one should be 
able to describe the velocity evolution using a closed set of ordinary differential equations with only six, and 
at most 15, independent variables. Although this gives no hint as to what the phase variables are and what 
the equations might look like, it provides an inspiration for seeking a low-dimensional description of the flow. 

3. Identification of flow coordinates (Phase space) 

Knowing that the flow can be decomposed into a small number of elementary components, one can expand 
the velocity field in the volume occupied by the fluid in a set of suitable orthogonal functions. A common 
choice of the orthogonal functions is the Fourier series as used in the spectral method of fluid dynamics. Such 
a selection of orthogonal functions, although elegant mathematically, is not very suitable for our purpose. 
Since we are interested in large-scale dynamics, the Fourier series representation, as Tennekes^4) pointed out, 
weighs too much on the small scales and is ineffective in representing the large scales. Furthermore, the 
large-scale structures are sensitive to the geometry of the boundary; i.e., different flows have different large-
scale structures. In this study, we will extract such orthogonal functions from the experimental data by the 
"Proper Orthogonal Decomposition" proposed by Lumley/5) Once the orthogonal functions are extracted 
from the experimental data, the velocity signal can be decomposed as 

V{x,i) = Vaj4>j(x,t). (2) 

Here otj are the general flow coordinates in phase space. 

4. Governing equations 

So far we have found a way to decompose the velocity field. To describe the evolution of the flow field, we 
need dynamical equations that can predict the variations of the decomposition coefficients, otj, with time 
and the interactions among different orthogonal functions in space. We assume that the velocity variation 
at a fixed space is caused essentially by the large-scale turbulence given by Eq. (2), plus some small-scale 
random fluctuations which can be modeled. Substituting (2) into the Navier-Stokes equations, 

& = J * 0 . (3) 

then projecting (Galerkin) this along the eigenfunctions, <f>„, we obtain the ordinary differential equations, 

^ = F t (a ) , fc = l , 2 f . . . (4) 

The contribution from small-scale turbulence will be modeled by the eddy viscosity concept. 

5. Numerical simulation of the flow field 

The phase space evolution of the flow field will be obtained by numerically integrating Eq. (4) in time. Each 
set of a's represent a flow visualization at that moment by Eq. (2). It is hoped that such an instantaneous 
flow simulation will help us to understand the dynamics of the canopy flow, especially the coherent dynamics 
observed in the experiments. 
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APPENDIX A 

WORKSHOP ON APPLIED MATHEMATICS 

PROGRAMME 

FRIDAY, FEBRUARY 7 
8:30am 
8:55am 
9:00am 
9:30am 
9:45am 

10:00am 
10:30am 
11:00am 
11:15am 
11:30am 
11:45am 
12:00pm 
12:15pm 
12:30pm 

1:30pm 
2:00pm 
2:15pm 
2:30pm 
2:45pm 
3:00pm 
3:30pm 
3:45pm 
4:15pm 
4:30pm 
5:00pm 
6:30pm 
7:00pm 

Doll ing: Opening Remarks 
L e e : Rude Interruption 

B a s e t : Finite elements - theory and applications 
K o b o s : F.E. Analysis of Duralcan™ MMC Brake Rotor 

R o w a t : Isotope-selective laser ionization 
Selander: Performance assessment modelling 
o o o Coffee and discussion break o o o 

M c R a e : Shanks' iterated algorithm 
Lina: Parallel computations and CANDTJ reactors 

Milgraml Classical and notsoclassical analysis 
Chris todoulou: Irradiation creep and growth 

Subrao: Matrix computations 
P u s c h : Theory and applications of differential algebra 

o o o Lunch o o o 
D i s e r e n s : Eddy current simulations in 3d 

Sull ivan: Computer modelling of eddy current probes 
Sawicka: Computed tomography and related techniques 

Thibaul t : Ultrasonic waves in solids 
Chapl in: Modelling ultrasonic inspection of pressure tubes 

o o o Coffee and discussion break o o o 
Poulsen: From calculus to numerics and back again 

Carver: Overview of multidimensional two-fluid computation 
Banas : Multiphase flows and computational fluid dynamics 

V a t s y a : Topics in industrial mathematics 
o o o End of session o o o 

CASH BAR - ELMS CAFE 
D I N N E R 

SATURDAY, FEBRUARY 8 
9:00am 
9:30am 
9:45am 

10:15am 
10:30am 
11:00am 
11:30am 
11:45am 
12:00pm 
12:15pm 
12:30pm 

1:30pm 
1:45pm 
2:00pm 
2:15pm 
2:30pm 
2:45pm 
3:15pm 
5:30pm 

Too: Mathematical modelling of hot forming of metals 
Davis : Pressure-tube sampler 

Davie's: Normal form methods and.resonances in particle accelerators 
Zhuang: Low-dimensional description of canopy turbulent flow 

o o o Coffee and discussion break o o o 
R a s m u s s e n : Computer Simulation Western 

W o n g : MDPOLY — A molecular dynamics simulation code 
W o o : Radiation damage modelling 

Jack: Unusual representations of discontinuous curves 
K e e c h : GLUBFIT — Interactive graphic curve fitting program 

o o o Lunch o o o 
Schmeing: Generalized Pauli Operators 

Marsigl io: Electron correlations in solids 
Couture: Quantum symmetries 

Leivo: Quantum groups with Mathematica 
L e e : Quantum algebra and quantum holonomy 

o o o Coffee and discussion break o o o 
R O U N D T A B L E D I S C U S S I O N 

Lee : Closing Remarks 
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