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SYNCHRONIZING AND CONTROLLING HYPERCHAOS
IN COMPLEX LORENZ-HAKEN SYSTEMS

Fang Jinqging
(CHINA INSTITUTE OF ATOMIC ENERGY, BEIJING)

ABSTRACT

Synchronizing hyperchaos is realized by the drive-respone relationship in
the complex Lorenz-Haken systetn and its higher-order cascading systems for
the first time. Controlling hyperchaos is achieved by the intermittent propor-
tional feedback to all of the drive (master) system variables. The ccmplex
Lorenz-Haken system describes the detuned single-mode laser and is teken as a
typical example of hyperchaotic synchronization to clarify our idess and re-
sults. The ideas and concepts could be extended to some nonlinear dynamical
systems and have prospects for potential applications, for example, to laser,
electronics, plasma, cryptography, communication, chemical and biological
systems and so on.



INTRODUCTION

There has been great interest in the controlling chaos in recent years (-3,
Because it is great possibility of application of chaos control that has inspired
much theoretical and experimental work *~''J, There are two kinds of strate-
gies for controlling chaos: one is for time discrete control and the other for
time-ccntinuous control. For example, the OGY method proposed by Ctt,
Grebogi and Yorke () and some improved methods *? only deal with the
Poincare map, the changes of some accessible system parameter are discrete in
the time, using only small time-dependent perturbations. Self-controlling
feedback proposed by K. Pyragas (") can reali:c ~ time-continuous control. In
the latter. the stabilization of unstable period orbits (UPO) embedded in a
chaotic attractor is achieved either by combined feedback with the use of a spe-
cially designed external oscillator, or by deiayed self-controlling feedback.

From the other point of view, there are two ways for controlling chaos: a
feedback control and a nonfeedback one. The former takes a given UPO as the
goal of the controlling. The desired form is achieved when the controlling in-
put approaches to zero or is very small. On the contrary, the latter is not re-
lated to a certain UPO. The aim of controlling is to suppress chaos or to gener-
ate a new form of dynamics. Thus the controlling input does not vanish as the
desired form is realized under the control.

Another fascinating discovery in the context of chaos control is the syn-
chronization (SYNC) *~*3), Some kinds of the phenomena of the SYNC have
been observed. The scheme of chaotic SYNC developed by Pe~ora and Carroll
(*~11] requires that a chaotic system exists, from which one can separate a sta-
ble subsystem, which is duplicated as a stable slave subsystem with only nega-
tive Lyapunov exponents. When a chaotic master (drive) system and a stable
slave (respone) subsystem are linked with a common drive signal, the two sys-
tems may display synchronized chaos. In the scheme, nonchaotic (such as pe-
riodic limit cycles) SYNC is also found ('*1), The other kind of SYNC is the
scheme for the SYNC of coupled, chaotic, nonlinear oscillators. More recent-
ly, Roy and Thornbury have observed experimental SYNC of the chaotic in-
tensity fluctuations of two Nd: YAG lasers when one or both the lasers are
driven by periodic modulation of their pump beams '), Sugawara and co-
workers also experimentally demonstrate that two chaotic passive Q-switched
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lasets can he syschronized by modulating the saturable absorber in the cavity
of one laser with the output of the other laser [**). Another hind of the SYNC
(161 ia thr t  pair of chaotic systems to the same noise may undergo a transition
at larg* er ough noise amplitude and follow almost identical orbits with com-
plete irsersitivith to initial condition. It is shown that a pair of generic systems
in the *a7me potential evolving to equilibrium through standard Langevin dy-
namices with the same noise collapse into the same orbits at long times. The
SYNU »hemomena above may bring many interesting possibilities in practical
appliczsvions. For example, they make possible a variety of interesting tech-
nologis . ‘it laser, eletronics, communications, plasma, cryptography and so
on.

As . - <hown, the present of more than one positive Lyapunov exponents
in a given ynamical system has been called hyperchaos !’~"*), which is much
more interesting in many fields of nature and laboratory. However, Pecora and
Carroll spacially emphasis that the SYNC of chaotic systems can be achieved
only if the conditional Lyapunov exponents (1) of the slave subsystem are all
negative (*~'1), Vieira and his co-workers also stated that the SYNC is lost
when the hyperchaos appears (%,

We now address the challenging questions : Could not synchronization of
hyperchaos be achieved really 2 How can one realize controlling hyperchaos?
These are open and challenging topics in the field of chaos control and applica-
tions. So one of motivation for our work is to study how to realize synchroniz-
ing and controlling hyperchaos in high-dimensional nonlinear dynamical system
and its cascading systems.

In this paper, we will take the complex Lorenz-Haken system (CLHS)
and its high-dimensional cascading systems (HDCS) as the first example of
synchronizing and controlling hyperchaotic system. Another interest for our
work is 10 a great extent motivated by anologies of laser dynamics with chaotic
dynamics in the other fields of nature since one has benefited a great deal from
the discovery of the anology between the perfectly tuned single mode laser and
the well-known real Lorenz-Haken equation. However, until recently there
has been a few work on chaos control for the CLHS which anologies with de-
tuned single-mode laser. The field of laser research has also benefited from
other advances in chaos control. Ch.cs control has been already applied to in-
crease the power of laser in experiments. The team of Ira B, Schwartz and his
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cooperater developed a method known as tracking method ™). The method has
been applied to both chaotic circuits and lasers with astounding results. For
example, they can maintain control over a much wider power range and in-
crease the output power by a factor of 15.

This paper is organized as follows. The definition of synchronization and
high dimensional cascading systems are described in section 2. The CLHS and
hyperchaotic motion are given in section 3. A stability of the SYNC are ana-
lyzed by some methods in section 4. Synchronizing and controlling hyperchaos
are shown in the sections 5~ 6, respectively. The discussion and conclusion
are made finally.

1 DEFINITION OF SYNCHRONIZATION AND
HIGHER-ORDER CASCADING SYNCHRONIZED SYSTEMS

Let us consider a n-dimentional autonomous nonlinear dynamical system
that may be divided into n parts:

dI|/d‘ = fl(Il' T2y ceo I.) (1- 1)
dx;/dt = f,(x)s 234 ... x,) (1.2)
d-t)/d‘ = f:(-tl’ X2y eovy I.) 1.3
d.t./d‘ = f.(-tl' 119 CRCI A I.) (l- 4)

We can rewrite them as in general nonautonomous form of
dX/dt = f(¢,X) (1.5)
where X, f are vectors:
X = {z®; 2(s... o z(),)7

f = (f](t’ x)l eery f'("X)}T



We call Eqs. (1.1) ~ (1.4) or Eq- (1.5) the master system or the drive one
by Pecaro and Carroll. In what follows, we will restrict ourselves to those cas-
es in which there exists a unique solution f (¢, X) satifies the Lipschitz condi-
tion),

X = X(‘) =X( t; l.ox.) (1-6)
Eq. (1.6) satisfies Eq. (1.5) and the initial conditions
X (‘ﬂ‘ovxo) = Xo (1.7

Les us define the synchronization followed by He and Vaidya (*). Consid-
er two dynamic systems: one is the (1.5) and the other is the primed one but
indentical, dX'/dt = f (¢, X'), where X, X' C R". Let the solutions of the
systems be given by X (£;5 0, Xo) and X' (¢; ts, X',), respectively. We say
that f (¢, X’) synchronizes with f(z, X’) if there exists a subset of R*, denoted
by D(t,) such that X,» X'sC D (t,) implies

BXCes 25.X) — X' (t; £, X' ) = 0as ¢t = oo a.8)

The SYNC is defined as global if D(¢,) spans the whole space, i. e.,
D {t,) =R". It is defined as local if D(t,) is a proper subset of R*. D (1) is
known as the region of synchronization.

In general, the system can be divided into two subsystems arbitrarily, the
master (driviing) and the slave (driven) subsystems, i.e. , X = X.+ X,. Sub-
script m and s denote the master and the slave system, respectively. The mas-
ter system simply consists of these two interacting subsystems. The slave sys-
tem is quite similar, except that a part of it totally driven by the master sys-
tem. We can write them as follows.

The master system is given by

dxm/d‘ = h("xm' n)' dx./d‘ = ‘("‘!x.’ .) (1' 9)

and the slave system is given by



dX’,/dt = g(¢. X, X',) (1.10)

In general, arbitrary vanable of ( x,, x;,... ,z.) can be chosen for the
driving signal only if the other remaining dynamical variables satisfy certain
conditions, such as Pecrao-Carroll SYNC condition. Eq. (1.5) may be divided
into several subsystems, such as (1.1), (1-2), (1. 3), and so on. The succes-
sive slave (driven) systems consisting of the other remaining dynamical vari-
ables are then duplicated. The number of the cascade-order is equal to the num-
ber of the slave (driven) systems. In each cascade one variable is driving one,
the others are duplicated as the slave (driven) system. Fig.1 shows the two
kinds of high-dimensional cascading ststems (HDCS), i. e., (a) series form
and (b) paraliel form. In Fig.1 the CLHS is taken as the master system (see
next section). One primed, double primed and so on denote the first-order ,
the second-order and higher order cascading, respectively. We consider paral-
lel cascading form driven by x, and z; respectivehy, in this paper.

_] ——————————————— 'l
I I I
- 2 : 2 I 2 3 ) :
1
X, X; X x; : x - X, x; :
. . - J ]
X : X, X, X, : Xl 1% ) ;
I . -
X, : X, X, x; { x| 1x X; x; x 1
i -1:
o e .
Drive Cascading (Driven) Drive Coscading (Driven)
(Y] )

Fig.- 1 Two kinds of high-dimensional cascading synchronized systems
(a) Series form and (b) Paralle) form.

2 COMPLEX LORENZ-HAKEN SYSTEM

The Complex Lorenz-Haken system (CLHE) has been derived from the e-
quations describing a ring laser consisting of an ensemble of two-level homoge-
neously broadened atoms as follows;



dX/dt = — kX + kY (2.2)

dY/dt = - aY + (r — 2)X 2.b)

dZ/dt = — bZ + %(xw + XY*%) (2.0

Where X* and Y* are now complex quantities. Complex perameterr = r, + ir;
and @ = 1 — icarise due to the weak dispersive effect. To facilitate the analy-
sis, using a set of real variables through the following transformation:

X = x,expQGp) 2.4
Y = (z; + ixy)exp(ip) (2.¢)
Z=nx, 2.0)

We have the resulting equation (for detail see Ref. ).

dx,/dt =— kx, + kx, @.n

dz,/dt = r.x; — x; — ex;, + kal/x, — 32, 2.2
dx,/dt = ryx, + ex; — x5 — kzixy/x, (2.3)
dx,/dt =— bz, + 1,1, 2.4

with p= ‘}ﬂ defining a generalized frequency of the laser field which is general-
1

ly time dependent. Here, &, r,, r; and b are parameters associated with laser
system. Eqs. (2.1) ~ (2.4) is transformed from the CLHE (2.2) ~ (2.¢)
and is an anology with detuned signal mode laser and will be taken as the drive
(master) system here.

One of the system variables above may be chosen to be a drive signal in
the right parameter space if the Lyapunov exponents (1) of the driven (slave)
subsystem are less than that of the driving variable. Eqs. (2.1) ~ (2.4), is
now taken as a good example to clarify the HDCS. Any one of the above vari-
ables, (z,7;,2,,2,), in general, may be chosen for the drive signal and the
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slave system consisting of the three remaining dynamical variables is then re-
produced. Thus the system is divided into several subsystems. They can be
combined to set up two types of projects of the HDCS, as shown in Fig- 1.

The above types of the HDCS can be synchonized for the right paramerter
space although the subsystems and their duplicates are initially set up to
produce different outputs. Cascading subsystems began at different initial con-
ditions caught up to each other and synchronized soon, and maintain it as time
marches on. The resuls will be shown in the section 5~6.

We numerically find that there are several kinds of driving variables which
may reslized the SYNC, such as nonchaotic, chaotic, intermitent chaotic and
hyperchaotic signal. Our goal in this paper is to realize the SYNC and control
of hyperchaos. The others will be given in elsewhese.

3 ANALYSIS OF STABILITY AND SYNCHRONIZATION

FOR THE CLHE AND HDCS
3.1 Amalysis ef Stability and Hyperchaetic Metioa

A stability analysis of the CLHE has been undertaken (for detail see Ref.
[21]). Some analytical conclusions associated with the SYNC are given here
brifly. The CLHE is essentially analogical only to single-mode laser with de-
tuning. For r;is not equal t0 e, the CLHE’s has trivial and nontrivial station-
ary solution which is exact periodic and corresponds to detuned stationary solu-
tior.. For trival solution, it will be destabilized at r, = r,., where

Tie = 1+ (e+ fz)(¢ bt "z)/(] +") (3.1.1)

For nontrivial stationary state, the only possible for the instability to occur is
the Hopf bifurcation. The condition for this bifurcation is

al(a,a, bt a;) = d; ae 3.1.2)

where a,, a;,and a, and below g, are associated with the parameters in the
CLHE. Ning and Haken shift the origin of the phase space to nontrivial sta-
tionary state and expand around the nontrivail state up to the third order in the
variables *'J, They obtain eigenvalues A, (¢ = 1, 2, 3, 4) at the critical point

A =AF =i, (3.1.3)



ha=—2 £ 3l -
Here £, is the frequency at the critical poiat and & = [ a,/a,]**.

For arbitrary relaxation constants and detuning, all analytical and exact
results of the second threshold of detuned single-mode laser are obtained. The
main conclusion for stability of the CLHE are as follows. (1) In the good-cavi-
ty laser 2 < b 4 1, there is no instability, i. . , the lasers always operate sta-
bly and will oscillate forever. (2) In the bad-cavity laser 2 > b + 1 , there ex-
ists a critical value of the pumping parameter A, . When the pumping parame-
ter A > A,, the laser lose stability through a Hopf bifurcation. The Hopf bifur-
cation generally means an addition of a new frequency to the system.

The conclusions above provide not only a complete understanding of the
second threshold of detuned single mode laser but also the right parameter
space for cur studies of the SYNC for the hyperchaos. We shall mainly consid-
er thecase of £ > & + 1. All discussion sre at two typical system parameters:
(a)ry=—1.5,6=1.2,and (b) r;=— 0.5, b= 0.5. They have the same pa-
rameters: k = 6, ry=91.0, .= 2.5.

Let us firstly demonstrate the hyperchaos existting in the CLHE by two
typical projctions of the hyperchsotic strange attractor, as showr in Fig. 2.

(3.1.4)

Fig. 3 gives some typical power spectra and synchronized results.

'i
j
.

057 .6 0.6 1574 W8 -4 —e1s T 23 5.

Fig- 2 Projections of the hyperchaotic strange sttractor for the CLHE.
Fixed parameters is st the (b) above.

It can be seen from Figs. 2 and 3 that the projections of the Hyperchaotic
strange attractor in various phase plans are all of chaos in time series and the
power spectra are all of broad frequencies band everywhere. All these features
have shown the hyperchaos appears in the CILHE. And it can be understood by
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studying global Lyapunov exponents further in next section.
3.2 Globsl Lyapunov Exponents

The best method for observing hyperchaos is to calculate all of the Lya-
punov exponents of the global system consisting of the driving and driven sys-
tems together. Because He and Vaidya have shown [13] that the conditional
Lyapunov exponents as defined by Pecora and Carroll®®~") zre the lyapunov ex-
ponennts of .he global system. Calculation of the Lyapunov exponents of the
global system depends on the driven (slave) subsystems driven by possible
driving signals. For the driving signal z,, we have thc slave (driven) subsys-
tem

dz',dt = riz, — z', — ex'y

+ k.t’;/.tl - III,. (3‘ 2- 1)

dI’,d‘ = + e.tlz - I,,

+ kI’gI,'/Il (3.2.2)
dI"d‘ = - bI,‘ .i" J.'l.t’g (30 20 3)

For the driving signal z, , the slave subsystem reads
dI’ldt = - kI’l - k.zz (3.2.4)

dI’;/dt = r,.z:’l + 2z, — I’,
- k.z;.z’;/.t’l (3' 2. 5)

d’ Jdt = — b2’ + 2.2, (3.2.6)

The slave subsystems for the driving signal z;,z, are also obtained. They

are ignored herz. For the CLHE, there are four kinds of the global systems

combirring with the above four possible types of the slave subsystems. For

example, the first kind of the global system consists of the CLHE (2.1) ~

(2.4) and eqs. (3.2.1) ~— (3.2.3). The second one consists of the CLHE

(2.1) ~ (2.4) and egs. (3.2.4) ~ (3.2.6), and all that. These equations

and their linearized equations can be used to caluculate all of the Lyapunov ex-
ponents of the global sys-tems, respectively.

Our algorithms for computirg the Lyapunov exponents are mainly used by

the decomposition method (#'3) and based on the repe..ted use of the Gram-
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Schmidt reothonormalization
( GSR ) procedure on the %
vector frame. The GSR
allows the integration of the

vector frame for as long as

log P

requircd for spectral con-

vergence. We have made the

Fortran code fcr the ODE’s ~*%

procedure. Time step s
taken as <0. 001. 5.8

Table. 1 shows the Lya-
punov exponents of the glob-

[ %
al systems. We see from z
Table.1 that there are two
positive A’s in the global sys-
‘ .. -10.23
tem at least. Yor the driving °
signas I, » we have three pos-
itive Lyapunove exponents: %
A] = (. 02869,& = Q. 0000179’
As == 0. 001298 and the rthers a
35.65

are negative. And che driven ¥
system is more stable than
the driving system because A,

> As. Clearly, the above ev-
idences further demonstrate
that there exists the hyper- 84
chans in the CLHE and
HDCS. The criterion of the
hyperchaotic SYNC is satis- ;35.31
fied for the driving signals z, B

and ;. But the SYNC is not

achieved for the driving sig- -13.43}

nals z; and z,.

-13.33-

) 2500 5000 7500 10000
s
.
X,
/‘ A
1!
L . I . N
3 2500 3000 7500 10000
s/

Fig. 3 Typical power spectra for z, and x, (a)

and corresponding synchronized results (b)
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Table. 1 The Lyapunov exponeats of the global sys‘ems
Fixed parameters: k=6, r,=91.0, ;=—1.5, d=1.2, ¢=2.§.
drive system driven system
A A A A ' Ar
x| 2.069X10°% | 1.790X 107 [ —2.242X 10" 4| —7.127X10"?] 1.298X10"* |—3.279X 10| —1.290 X 10" ¢
x| 7.220%107% | 2.450> 10" | 1.635X107* |[—1.173X10"?| 2.732x10"% |—7.983 X% 10"¢|—1.901 10"
23 |—1.392X107%| 9.631%10°7 | 3.440X10°% | ~3.197x10~%| 8.113x10"% | 3.440X 10" { 3.010X 10~?

X | 9-302X107% | 3.953X(1077 | 4.845X10"* | —1.560X10"*[ 1.234X10"* | 3.328X10°¢ { 2.607X10"*
BV denotes driving variable.

4 SYNCHRONIZING HYPERCHANS

We are in position to see the synchronizing hyperchaos in the CLHE and
the HDCS which start with different initial conditions. The definition of the
SYNC is followed by Pecora-Carroll and He-Vaidya. The converge'nt rate of
the SYNC is denoted by the difference between the z; and 2{ , i. e., defining

DV

the quantity of the form Dx,= x, — x/ , as monitoring the SYNC efficiency in
phase space, wherei =1, 2, 3, 4and j = ', ”,", ... denotes the primed
numbers corresponding to cascading order. It is the SYNC of the hyperchaos if
all of Dz, go to zero. In Fig. 4 we plot two synchronized convergent curves of

Dz; (i =1, 4).

[
|
3.28 + N~ 0
E-02
-0. 656 N N .
40 2530 $020 7510 1000
T
Number of time integration step

Fig.4 71wo synchronized convergent curves of Dz, (i=1, 4) (a)
and corresponding phase phase diagram (b)
13



Obviously, the SYNC curves converge very quickly to zero or less than
absolute precision we specified, say, about 107¢, which shows the SYNC is
achieved very well when the time step numbers go to 8 000~10 000 (the maxi-
mum is 40 000~120 000). The synchronized phase diagram x; — z”; is a linear
line. Fig. 3 (b) has already shown the synchronized power spectra for high-or-
der cascading time series, which are in gocd agreement with the power spactra
of the master system.

We can conclude so far that the synchronizing hyperchaos in the CLHE
and the high order cascading systems are realized successfully.

5 CONTROLLING HYPERCHAOS

We now focus on controlling hyperchaos in a high-dimentional (HD) syn-
chronized hyperchaotic system (HCS). Controlling hyperchaos in the HD-HCS
can be realized by applying a intermittent proportinal to all of the master sys-
tem variables (IPMSV). This algorithm is similar to the occasional proportinal
feedback{*? and to proportional pulses in the system variabes (%), We combine
synchronizing with controlling hyperchaos to realize a new dynamics. This is
our subject in this section.

Fig.5 gives block diagram of controlling hyperchaos by the IPMSV
method. The main features of the IPMSV methoa are described as follows.
Firstly, to more specific, we choose an interval timer , i. e., the number of
integration step Al. Secondly, z; in the driving (master) system is replaced by
z; (1 4+ G) at the control activation moment, where i= 1, 2, 3, 4; That is, the

master system become the form of
dx,/dt = f[(1 + G)x] 5.1)

where f represents the function of the right side of the driving (master)
equations, say, Eqs. (2.1) ~ (2.4),i =1, 2, 3, 4. Clearly, there are two
main adjustable parameters, one is the feedback intensity factor G , the other
the step numbers Al or time relapsed between injection and withdrawal. New
desired dynamical behavior mainly depends on the G and AI. The IPMSV
method does not look for and vary any accessible master system parameters
but only rather change the system variables. It is of flexible to change two
parameters G and AI. There exists a certain relation between them associated

14



Controller

driven system

. Drive system

(1+6) X,

Fig. 5 Block diagram of controlling hyperchaos by the
IP-MSV method for the HD—HCS

with dynamical properties of the master system (such as period). We now
choose G and Al are two different constants (either positive or negative) so
that the method works very well. We observed that the full variables are
governed very well by applying the IPMSV during control periods, simultane-
ously. But it does not work very well if applying a IP to some slave system
variables.

All discussion below for controlling hyperchaos is at the fixed parameters
above and the otherone; # =6, r,= 91.0, ;= — 0.5, 6 = 0.5, ¢ = 2.5,

The convergence process of the synchronization and control have three
stages; SYNC-CONTROL-SYNC, as shown in Fig. 6. The arrow indicates
the control activation moment. To more specific, the left of the arrow is the
first stage in which the SYNC is achieved before control on. Between the right
of the arrow and the dashed line is the control stage in which controlling hy-
perchaos is realized. The convergence rate is als» denoted by the difference Dz;
between the z;and slave variables z’', where i = 1, 2. The common point is that
all of Dz;is tend to zero during the SYNC stage. In the control stage if there is
some regular oscillation it is instructor of some desired pattern (e. g. period 2
in Fig. 6). The SYNC is realized again in the right of the dashed line when con-
trolling off.
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DXy X3~ Xz
© -0. 3000012
16- ¢ —
) 16830 33820 50410 67200
T
’
SYiC , CONTROL | SYNC
1257
%"ﬁ'xl-x:
11. 395
(1414
~2. 91
40 16830 5620 50410 67200
T

Fig. 6 Synchronizing and controlling processes of the hyperchaos for the
HDCS during the SYNC-CONTROL-SYNC stages
Difference Dz; between the z, and 2. versus time the step numbers, where
i = 1, 2, Fixed system parameters; k =6, r, =— 1.5, r; = 1.2, b= 2.5,
e=2.5, control parameters; G = —0.2 and Al = 1000.

In the Fig. 7 we obtain the stabilized period 2 for time series of the z; and
primed z’;, 27, at the same system parameters as the Fig. 6. For different con-
trol parameters, such as G = —0. 35 but different AI = 500,700 and 750, the
double-period to chaos are obtained. They are igonored here.

We have also tested and investigated some similar results of synchronizing
and controlling hyperchaos for the other values of parameter in the hyperchaot-
ic region as well. For example, stabilized period-3, the steady state, bistabili-
ty and three stable states are also obtained for another fixed parameters & = 6,
ry=91.0,r,= —0.5and b = 0.5, e = 2.5 but different control parameters
by the IPMSV method, as shown in Fig. 8 (a) ~~ (d), respectively,
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1000 17500 25000 32500 40000
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i control on
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g nmqu Y
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1000 17500 25000 32500 4000)

Fig. 7 Stabilized period-2 for x, snd 17, is obtained for
the same system and control parameters as in Fig. 6

The results above show that new dynamical behavior of controlling hyper-
chaos depends on the system parameters and the critical values of G and Al as
well. The steady state, bistability, tristability, period, quasiperiod and chaos
can also be observed in our system by the IPMSV method. That means that
the higher order cascading synchronized systems may become a generator or
iransformer of various desired form which is a function of G and Al.
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Fig-8 Stabilized period-3 (a), the steady state (b), bistability (c) and tristability
(the three stable states) (d) are obtained for the fixed system parameters; & = 6,
rn=291.0,r;y=—0.5,6= 0.5, and e = 2.5, but different control parameters:

()G = —0.35and AJ = 2200. (b) G = 0.4 and A J = 600.
()G = ~0.35and AT = 20. (d)G = —0.45and A J = 30.

6 DISCUSSION AND CONCLUSION

One of interesting problems is that: Why the hyperchaos is syr._h. :-ized
so vell? The rcasons are analyzed preliminarily as follows %), First, the
CLHE and its cascading systems satisfy the criterion we proposed, i. e. the
master system can synchronize with the slave system because the slave system
is more stable than the master (driving) system. This can be seen from
Table. 1. In other words, the hyperchaotic SYNC may be achieved only if the
largest Lyapunov exponent of the master (driving) system is greater than that
of the slave (driven) system even if there exist more than to one positive Lya-
punov exponents in the global system. Second, more recently, Roy and
Thornbury have observed experimental SYNC of the chaotic intensity fluctua-
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tions of two chaotic Nd: YAG lasers (). Sugawara and co-workers also experi-
mentally demonstrate that two chaotic passive Q-switched lasers can be
syschronized ('*), Their results show that the SYNC can be realized between
two chaotic systems which settle on slightly different strange attractor without
couplings. In a matter of fact, such global system consisting of two chaotic
lasers is the hyperchaotic system since there exist two positive A’s. The A’s of
laser 1 is just greater than that of laser 2. Such experimental fact has indirectly
demonstrated the criterion about hypeichaotic SYNC is correct. But it is to be
proved theoretically further.

Third, it is worthwhile to note that He-Vaidya theorem on the chaotic
SYNC may be extended to the hyperchaotic SYNC (33, The theorem tell us
that the slave system synchronizes with the master system if and only if tl.ere
exists a subset D(z,) C R*such that when the initial conditions of the nondriv-
en part of the slave system fall in D(z,) , the solution of the slave system are
asymptotically stable. The initial conditions for our system have just satisfied
the requirement of theorem (see Ref. [13] in detail), i. e. our initial conditions
have just fallen in the D(¢,) . The results in this paper are held at least for the
CLHE and may be extended o some hyperchaotic systems, specially for slight-
ly different hyperchaotic systems.

In conclusion, we have demonstrated that the synchronizing and control-
ling hyperchaos are realized both in the systems (2.1) ~ (2. 4) and in the high-
er order synchronized hyperchoatic systems, successfully. It is shown that
The IPMSV method can effectively control and stabilize the new desired dy-
namical form in the hyperchaotic system and the HDCS. The results could be
extended to soime nonlinear dynamical system destabilizing by the Hopf bifur-
cation. It can create a new dynamical behavior, such as the period-doubling bi-
furcation to chaos. Every cascaded system may be a richs of patterns at differ-
ent parameter G and AJ. It is also used for the hyperchaotic or chaotic filter
and the others. Some concepts and results above may be most interesting and
promissing for applications.

Finally, we would like to mention that the coupled kind of hyperchaotic
synchronization for the Rossler system and the forced coupled van der Pol sys-
tems are also realized. Those results will be reported i elsewhere.

This work was supported by National project of Nuclear Industry Science
and National Project of Science and Technology for Returned student.

19



(1]
(2]
(3]
(4]
(s]
(6]
(71
(s]

(9]

REFERENCES

Tl HESR. BRNEMEIY AR, (1994),5:23~28. IR HRINE, 1993,
16: No9-10, p6.
TRk PEEER. IREERXTHARNENSRASEAREANR, BRX,
1995.
Cu E., Greboge C., Yorke J A. Controlling Chaos, Phys. Rev. Lett. , 1990, 64:
1196
Hunt E R. Occasional proportional feedback. Phys. Rev. Lett., 1991, 67: 1953
Ditto W L, Rauseo S N, Spano M L. Phys. Rev. Lett., 1990, 65; 3211
Ronieiras F J, Grebogi C, Ott E. , et al. Physica D, 1992, 58: 165
Pyragas K. Continuous control of chaos by self-controlling feed back, Phys. Lett.
A, 1992, 110: 421
Matias M A, Guemez ]. Stabilization of chaod by proportional pulses in the system
variables. Phys. Rev. Lett., 1993, 72: 1455.
Pecora L M, Carroll T L. Synchronizing chaos. Phys. Rev. Lett. , 1520, 64: 821

[10] Pecora L M, Carroll T L. Driving systems with chaotic signals. Phys. Rev. A, 1991,

]

44;: 2374

Carrol L, Pecora L M. Cascading synchronized chaotic systems. Physica, D, 1993
67: 126

(12] Maria de Sousa Vieira, et al. Synchronization of regular and chaotic systems. Phys,

(13]

(14]

(15]

(16]

(17]
(182

(19]

(20]

[21]

20

Rev. A, 1992, 46: R7359

Rong He, Vaidya P G. Analysis and synthesis of synchronous periodic systems.
Phys. Rev. A, 1992, 46: 7387

Roy R., Scott Thornburg K. Exeperimental Synchronization of Chaotic Lasers.
Phys. Rev. Lett., 1994, 72: 2009

Sugawara T. , et al. , Observation of Synchronization in laser chaos, Phys. Rev.
Lett., 1994, 72: 3505

Maritan A, Banavar J R , Chaos, Noise, and Synchronization, Phys. Rev. Lett.
1994, 72; 1451

Rossler O E. An Equation for Hyperchaos, Phys. Lett. A, 1979, 71; 155
Matsumoto T, Chua L O, Kobayashi K. Hyperchaos Laboratory experiment and
Numerical Confirmation, IEEE Trans. Circu, Syst. 1986, CAS33; 1143
Kapitauiak T, Steeb W-H, , Transition to Hyperchaos in Coupled generalized van
der Pol Equations, Phys. Lett. A, 1991, 152, 33

Schwarta I B, Triandaff 1. Tracking Unstable Orbits in experiments, Phys. Rev.
A, 1992, 46, 7439

Ning C Z, Haken H. Deturned lasers and the complex Lorenz equations ; Subcritical
and supercritical Hopf bifurcations



[22] 7®. WEERER. SNRRRHEBEREFREWEDMNE - 1993, 4: 441~
560

(23] WM, BiEX. WEAFR. ENVHRCHTERRE—LERBDHEERPHE
. 1994, 42: 1375. ELJ& CNIC-00700, RRFMB4HREM, 1992

[24] Fang Jinging. Synchronizing and Controlling Hyperchaos. Chinese Science Bulletin,
1995, 14: No3

(2] HAR BRAFALRABRKEN. #HZEM. 1995, 14: 306

21



) HKBF 7S

EBERKE CIP) &K

XM Lorenz-Haken RPN BMEFER XMW=
SYNCHRONIZING AND CONTROLLING HYPER-
CHAOS IN COMPLEX LORENZ-HAKEN SYSTEMS/

HMME —tX: MFELKEML, 1995. 3
ISBN 7-5022-1345-7

L X 1. Jye 0. ORNMED-FRNEK (P

) -ENER IV. TN241

PEBEEBIR CIP MWHF (95) 302492 B

©
T M R 7
HIEHM, BDAK

A, AXHMREILRIN 35 BRKHY, 100037

o B BB 1R AN IR T 20

BREHRMATRIFDH

FA 787X10921/16 - EPIE 1/2 - FWM 20 FF

1995 %€ 3 BALIXIM—AK - 1995 £ 3 B X —KEPW



CHINA NUCLEAR SCIENCE &. TECHNOLOGY REPORT

\

This report is subject to copyright. AR rights are reserved. Submission
ol a report for pubiication imphes the ransfer of the exclusive publication
right from the author(s) 10 the publishes. No part of this publication,except
abstract, may be reproduced. stored in dala vanks or ransmitied in any
form or by any means. electronic . mechanical . photocor ing . recording or
otherwise. without the prior written permission of the publisher. China
Nuclear Information Centre. and/or Alomic Energy Press. Violations fail
under the prosecution act of the Copyright Law of China. The China Nucle-
Information Centre and Atomic Energy Press do nol accept any
responsibility for loss or demage arising from the use of information
contained in any of its reports or in any communication about ils {est or
investigations.

O..‘I..".'I...I...I....".‘..Il..l'.....“"‘

1SBN 7-5022-1345-7




