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摘要

以描写失谐单模激光特性的复数 Lorenz-Haken 系统及其高阶

级联系统作为第一个典型例子，首先实现了存在驱动-响应关系类型

的超混沌同步，并采用间歇正比于所有系统主变量反馈控制法，实

现了超混沌的有效稳定控制.引入的思想方法及概念可以拓广到其

他超混沌系统的同步及其控制.指出了混沌同步、超混沌同步及其控

制可能的实际应用前景，诸如在激光、等离子体、电子学、密码学、

通讯、化学和生物系统等领域中的可能应用潜力.



SYNCHRONIZING AND C~NTROLLING HYPERCHAOS

IN COMPLEX LORENZ-HAKEN SYSTEMS

Fang Jinqing

《优CαHlNA I削NSTf口τTUT、EOF ATOMI'陀C ENERGY. BEUING)

ABSTRACT

Synchronizing hyperchaos is realized by the drive-r四pone relationship in

the ∞，mplex Lorenz-Haken systera and its higher唱rder cascading systems for

the first time. Controlling hyperchaos is achieved by the intermittent pr，司)()r­

ti饵... feedback to all of the drive (master) system variables. The cc;mplex

Lorenz-Haken system describes the detuned single-mode laser and is tsken as a

typi臼I example of hyperchaotic synchronization to clarify our ideas and re­

suits. The ideas andωnc:epts could be extended to some nonlinear dynamical

systems and have pr，饵peets for potential applications. for example. to lltser.

electronics. plasma. cryptography. communication. chemical and biological

systems and 10 on.
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INTRODUCTION

There has been great interest in the controlling ehaωin recent yean [I.&].

坠臼use it is great possibility of application of CI四os control that has inspired

much theoretical and experimental work U-ll]. There are two kinds of strate­

gies for controlling ehaω: one is for time di配rete control and the other for

tin隙-C:C'lltinuous control. For example , the OGY method proposed by Ott.
Grebogi and Yorke U] and some improved methods [Il only deal with the

Poincare map. the changes of some accessible system parameter are di配rete in

the time , using only small time-dependent pertubations. Self-controlling

feedback proposed by K. Pyragas [1l can reali~c , rime-eontinuous control. In

the latter , the stabilization of unstable period orbits (UPO) embedded in a

chaotic attractor is achieved either by combined feedback with the use of a s肘'

cially designed external oscillator , or by deiayed self-controlling feedback.

From the other point of view , there are two ways for controlling chaos: a

feedback control and a nonf四dback one. The former takes a given UPO as the

goal of the controlling. The desired form is achieved when the controlling in­

put approaches to zero or is very small. On the contrary , the latter is not re­

lated to a certain UPO. The aim of controlling is to suppr臼s chaos or to gener­

ate a new form of dynamics. Thus the controlling input does not vanish as the

desired form is realized under the control.
Anoth町 fascinating discovery in the context of chaos control is the syn­

chronization (SYNC) 【'叫3]. Some kinds of the phenomenR of the SYNC have

been observed. The scheme of chaotic SYNC developed by P~ora Rnd Carroll

【'叫I] requires that a chaotic system exists , from which one can separate a sta­

ble subsystem , which is duplicated as a stable slave subsystem with only nega­

tive Lyapunov exponents. When a chaotic master (drive) system and a stable

.Iave (respone) subsystem are linked with a common drive signal , the two sys­

tems may display synchronized chaos. In the scheme , nonchaotic (such as pe­

riodic limit cycles) SYNC is also found [12.13]. The other kind of SYNC is the

.cheme for the SYNC of coupled , chaotic , nonlinear oscillator.. More recent­

Iy, Roy and Thornbury have observed experimental SYNC of the chaotic in­

ten.ity fluctuation. of two Nd: YAG laser. when onl! or both the IlIen are

driven by periodic modulation of their pump beam. (I.]. Sugawara and co­
worken al.o experimentally demon.trate that two chaotic passive Q-switched
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lasels can he syschronized by modulating the saturable absorber in the cavity

of 0."'\传 laser with the output of thf' other laser [IS]. Another hind of the SYNC

口的'"'" th~ t 岛 pair of chaotic systems to the same noise may undergo a transition

at In.,. '!r ough noise amplitude and follow almost identical orbits with com­

plete iT. 蜡r:;itivith to initial condition. It is shown that a pair of generic systems

in the 恰r.1~ 阳tential evolvi时 to equilibrium throull'h standard Langevin dy­

namic~ w~t~ the same noise collapse into the same orbits at long times. The

SYNl· :也~..，)mena above may bring many interesting 阳ssibilities in practical

applia \aonll:. For example. they make possible a variety of interesting tech­

nol唱i. . !ut hser. eletronics. communications. plasma. cryptography and so

。n.

As ; . "oown. the present of more than one p伺itive Lyapunov exponents

in a givpa ynamical system has been called hyperchaos 。川.]. which is much

more intt:resting in many fields of nature and laboratory. However. Pecora and

Carroll specially 号mphasis that the SYNC of chaotic systems can be achieved

。nly if the conditional Lyapunov exponents (A) of the slave subsystem are all

negative [•Il]. Vieira and his co-workus also stated that the SYNC is lost

when the hyperchaos appears [II].

We now address the challenging questions: Could not synchronization of

hyperchaos be achieved really? How can one realize controlling hyperchaos?

These are open and challenging topics in the field of chaos control and applica­

tions. SO one of motivat:.on for our work is to study how to realize synchroniz­
ing and controlling hyperchaos in high-dimensional nonlinear dynamical system

and its cascading systems.

In this paper. we will take the complex lorenz-Haken system (elHS)

and its high-dimensional cascading systems (HDeS) as the first example of

synchronizing and controlling hyperchaotic system. Another interest for our

work i. to a great extent motivated by anologies of laser dynamics with chaotic

dynamics in (he other fields of nature since one has benefited a great deal from

the discovery of the anology between the perfectly tuned single mode laser and

the well-known real lorenz-Haken equation. However. until recently there

has been a few work on r.haos control for the CLHS which anologies with de­

tuned single-mode laser. The field of laser research has also benefited from

。ther advances in chaos control. Ch..cs control hal been already 8pplied to in­

crease the power of laser in experiments. The team of Ira B. Schwartz and his

4
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cωpenter developed a method known as tracking method [.]. The method has

been applied to both chaotic circuits and lasen with astounding results. For

example. they Can maintain control over a much wider power range and in­

crease the output power by a factor of 15.

This paper is organized as follows. The definition of syn.:hronization and

high dimensional cascading systems are described in section 2. The CLHS and

hyperchaotic motion are given in section 3. A stability of the SYNC are ana­

Iyzed by some methods in section 4. Synchronizing and controlling hyperchaω

are shown in the sections 5- 6 , respectively. The discussion and conclusion

are made finally.

1 DEFINITION OF SYNCHRONIZATION AND

HIGHER-ORDER CA曰:ADING SYNCHRONIZED SYSTEMS
Let us consider a n-dimell tional autonomous nonlinear dynamical system

that may be divided into n parts:

d.r./dt = II (.rl' .ru ... • .r.)

d.rz/dt = I ,(.rl' X ,…. , .r.)

d.rJ/dt = I J (.rl' .rIO ••• , .r.)

d.r./dt = I.(.rl' .r" • • • , .r.)

We can rewrite them as in general nonautonomous form of

dXIdt = J(t ,X)

where X , J are vectors:

X = {.r {01' .r(0"" , , .r(t).}T

J = ( II(t , X) , ••• , 1.(t ,X»T

(1.I)

(1 .2)

(1 .3)

(1 .4)

(1 .5)

5



We call Eqs. (I.]) -- (I. 4) or Eq. (I. 5) the master system or the 由ive one

by Pec:aro and Carroll. In what follows. we will restrict oursel四s to thωeωb

臼 in which there exists a unique solution I (t. X) satifies the Li归chitz condι

tion).

X = X(t) = X( t; '..Xρ

Eq. (I. 6) satisfies Eq. (I .5) and the initial c佣ditioos

X (t. ,t..X.) = X.

(I .6)

0. 7>

Les us define the synchronization followed by He and Vaidya [13]. Consid­

er two dynamic systems: one is the (I. 5) and the other is the primed one but

indentical. dX' I，出 = I (t. X吵. where X , X' cr. Let the solutions of the

systems be given by X (t f t. , Xρand X' (tf to. X'.). respectively. We say

that I (t , X') synchronizes with I (t , X') if there exists a subset of r , denoted

by D(I.) such that X. , x'.e D (t.) implies

IIX( If t. ,X.) - X' (tf t. ,X' .)11 - 0 as t-∞(I.8)

The SYNC is defined as global if D(I.) spans the whole space , i. e. ,
D (t.) =R". It is defined as local if D(tρis a proper subset of R". D (t.) is

known as the region of synchronization.

In general , the system can be divided into two subsystems arbitrarily ~ the

master (driviaig) and the slave (driven) subsystems , i. e. , X = X.+ X.. Sub­

script m and s denote the master and the slave system , respectively. The mas­

ter system simply consists of these two interacting subsystems. The slave sys­

tern is quite similar , except that a part of it totally driven by the master sys­

tern. We can write them as follows.

The master system is given by

6

dX"./dt = h(t .XIII ,X.) ,

and the slave system is given by

dX./dt = ,(t.t ,X. ,X.) (t .9)



dX'./dl = 6(t.X..X'.) (I.I0)

In ~neral. arbitrary variable of ( .rI' .rz.... ..r.) can be ch饵en for the

drivina sianal only if the other remaining dynamical variables satisfy certain

conditions. such as Peerao-Carroll SYNC condition. Eq. (}.S) may be divided

into several subsystems. such as (I. J). ().剖. (). 3}. and so on. The su白白，

缸ve slave (driven) systems consistina of the other remaining dynamical vari­

abies are then duplicated. The number of the cascade-order is equal to the num­

ber of the slave (driven) systems. In each cascade one variable is driving one.

the others are duplicated as the slave (driven) system. Fia. 1 shows the two

kinds of high-dimensional ca配ading ststems (HOCS). i. e.. (a) ~ries form

and (b) 阳raUel form. In Fig. 1 the CLHS is taken as the master system (see

next section). one primed. double primed and so on denote the first-order •

the s舵ond币'rder and higher order cascading. respectively. We consider panl­

lei cascading form dri帽n by .%1 and .rl respectivehy. in this paper.

X,

X,

X,

X.

Drige

X，卜矿寸 w.-n 日!

如町1j巳jmt
X.

岛附

Fig. 1 Two kinds of high-dimensional calc.din. Iynchronized IYlteml
(.)岳阳'. form.nd (b) P.,.II.I 'arm.

2 COMPLEX LORENZ-HAKEN SYSTEM

The Complex Lorenz-Haken .y.tem (CLHE) has been derived from the e­

quations describing a ring laser consisting of an ensemble of two-level homoge­

neou.ly broadened atoms as fo))ow. s
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dX/dl = -IX + IY

dYIdI = - .Y + (r - Z)X

(2.a)

(2.b)

dZ/dI = - 6Z + ! (X·Y + XY*) (2.e)z
where X· aDd Y禽町， ω. complex quantities. C棚pie萃 panmeterr = r l + irl
aDd. = I - wariH due to tI幢'回II clispersi帽 effect. To facilitate the a...I,­
·函. using a set of real variables throuch the followiaa traasformatioa:

X = zlexp(ip) (2. d)

Y = (ZI + iz.)exp(ip) (2.的

Z = Z. (2.0
We hive the multi.., equatioa (for detail see Ref. (11):

dzaldl = - hi + hi (2. J)

clzl/dt = rlz. - ZI - 'Z. + I zJlz. - 冉冉 (2.2)

dz./dl = r zZl + 'ZI - Z. - IZzZ.lzl (2.3)

dz./dl = - 6z. + Z.ZI (2.4)

w呐i巾川伊户=号号2削nin咿B
d矗‘ E

Iy time dependent. Here , I ，町， rl and 6 are parameters associated with laser

system. Eqs. (2.1) - (2.4) is transformed from the CLHE (2. a) ..... (2. c)

and is an anology with detuned signal mode laser and will be taken as the drive

(master) system here.

One of the system variables above may be chosen to be a drive signal in

the right parameter space if the Lyapunov expone时s (川。f the driven (slave)

subsystem are less than that of the driving variable. Eqs. (2. I) ..... (2. 刑， IS

now taken as a go<对 example to clarify the HOCS. Anyone of the aboye vari­

ables , (z .X,,X. ,x.) , in general , may be chosen for the drive signal and the
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slave system consistinc of the three remaininc dynamical variables is then re­
produced. Thus the system is diYiclecl bto sevenl subsystems. They can be

c:ombiDecl to 则 ulI nro types of projects of the HOCS. as sho.... in Fig.].

The above types of the HDeS can be synchoDized for the richt 阳nmener

sp配e although the subsystems and their duplicates are initially set up to

produce different outputs. Cascadinc subsystems began at different initial ωn­

ditions caught up to "配h other and sy配hronized s创)D. and maintain it as time

man:hes on. The muls .iII be sho.... in the section 5-6.

We numerically find that d蜡reare饵venl kinds of drivinC variables which

may realized the SYNC. such as nonchaotic. chao时. intermitent chaotic and

hypen:haotic s嘻nal. 仙II' 1081 in this 阳per is to realize the SYNC and c:ontrol

of hypen:haos. The others will be Ii帽n in elsewhe曾.

3 ANALYSIS OF STABILITY AND SYNCHRONIZATION

FOR THE CLHE AND HDCS
]. 1 u.a,. ., S1awa.I,..圃，.町c...dcM.....

A stability analysis of the CLHE has been unci陆naken (for detail see Ref.

[21]).岛IDe ....Iytical conelω画，as associated with the SYNC are giftll here

briOy. The CLHE is essentially mal嘟cal only to siDcle-mocIe laser with de­

tunina. For ,... is not equal to c. the CLHE's has trivialaad nontri词.1 station­

ary solution which is exact periodic: and corr四POD也 to deruned stationary solu­

tiar.. For trival solution. it will be destabilized at "'. = "'Ic' where

"'.. = ] + (c + "'.)(c - I ,...)!n + i l
) (3. ]. ])

For nontrivialstationary state. the only possible for the instability to occur is

the Hopf bifurcation. The condition for this bifurcation is

al (aaG. - al) = al a. (3.].2)

where al' 旬 .and aJ and below ao are associated with the parameters in the

CLHE. Ning and Haken shift the origin of the phase space to nontrivial sta­

tionary state and expand around the nontriveil state up to the third order in the

variables [21]. They obtain eigenvalues At (; -= ], 2, 3 ，的 at the critical point

AI-At-in. (3.].3)
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!'_I 但~\..s1,.. -一-士: (_~ - ::")U <3.1.4)Z .L Z'-J II
Here n. is the freq幌配.， at the critical poi咀aDd II == [ -.t_J-rs .

FOI" arbitra町 rela:utiOll c回IStaats and deωDiD«. all aaaI归ical aDd ~:uet

mults of the second threshold of delUDed siDale-田晦 laser are obtaioecl. The
lUia coadusioD for staIMlit,01 the CLHE are as follows. (}) III the aood吃avi­

t, las町矗< 6 + 1 • there is 110 iastabilit,. i. e. • the lasers al..，.吗黯nt~ sta­
w, and will oscillate fOftvu. CZ) Ia the bed咽wit， laser" > " + 1 • there ex­
ists • critical value of the 阳aaPiDC parameter A.. When the阳mpi鸣 panme­

terA>儿. the laser lose stabilit, throuah • H叩f bifurcation. n瞻性Jl)f hif町­

catioa ,eDenU, means aD additioD of a DeW freque配， to the s,.tem.

The coaclusioas aboft proy诅e lIOt 侃I， a complete u田IentandiDa of the

second threshold 01 detuned siDcle mode laser but also the richt 阳rameter

space for cur studies of the SYNC for the hyperchaos. We shall maial, consid­

er the case of 矗 > b + 1. All cliscussioa are at two typical sJStem parameten:

Ca)η"-].5.6==].2.aDd (b) rl =z- O. 5.6= O. S. The, be四 these皿e 阳­

nmeters: " = 6, r. = 91. 0, ~ = 2. S.
Let us firstly demonstrate the hyperch斟. existtiac in the CLHE by two

typical pro阳ions of the hyperch.otic stra.唱e atrractor , as showr. in Fig. 2.

Fia. 3 ，.晴 some typical 阳，wer speetn and synchronized results.

15.1Z%. JS'‘'.10
x.

Fi,. 2 Projection. 01 the hy严rchaotic str.nte .Ur.ctor for the CLHE.
fillCd Plr...帽，画 .t the C..> .boft.

It can be seen from Figs. 2 and 3 that the projections of the Hyperchaotic

strange attnctor in various phase plans are all of chao. in time series and the

power sputra are all of brωd frequencies band everywhere. All these features

have shown the hyperchaωappearsin the Cl,HE. And it can be understood by
，。
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studying global Lyapunov exponents further in next section.

3. 1 Glolhtl LyapuDov EXpoDP.Dts

The best method for observing hyperchaos is to calculate all of the Lya­

punov exponents of the global system consisting of the driving and driven sys­

terns together. Becau比 He and Vaidya have shown [13J that the conditional

LYllpunov exponents as defined by Pecora and Carrollω-ll] 'ire: the lyapunov ex­

ponennts of .he global system. Calculation of the Lyapunov exponents of the

global system depends on the driven (slave) subsystems driven by possible

driving signals. For the driving signal x ., we have th~ slave (driven) subsys­

tern

dx' 2也 = r.x. - x' 2 - ex' 3

+ kx'lIxl - x.x' 4

dx' .dt = r.xl + ex' 2 - x'.

+ Itx' 2X' .1x.

dx'.也=-bx'. 斗 • Xlx' 2

For the driving signalx2 , the slave subsystem reads

dx' Idt == - Itx' I - h.

dx' ./dt = r.x' I +纽2- x'.

- Itx.X'./X'1

(3.2. 1)

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)

dx' .Idt = - bz'. + x': 7:. (3. 2.6)

The slav句 subsystems for the driving signal z. ,z. are also obtained. They

are ignored her!. For the CLHE , there are four kinds of the global systems

~ombirring with the above four possible types of the slave sub~ystems. For

example , the first kind of the global system consists of the CLHE (2. l) -­

(2. 的 and eqs. (3. 2. 1) --一 (3.2.3). The second one consists of the CLHE

(2. 1) -- (2.4) and eqs. (3.2.4) -- (3.2. 的， and all that. These equations

and their linearized equations can be used to caluculate all of the Lyapunov ex­

ponents of the global sys-tems , respectively.

Our algorithms for computir..g the Lyapunov exponents are mainly used by

th f' decomposition method [22.则 and based on th~ repe..ted use of the GrEim­
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Fig. 3 Typical power spectra lor z. and 叫(.)

and corre.ponding .ynchroniud results (b)
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5000e', 640
z5ω

".ar ! x;
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W附叫M.J~1.MhjIJL... I.
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5000

-10.23t
25ω'

....2

X.

Schmidt reothonormalization

( GSR ) procedure on the

vector frame. The GSR

allows the inteRration of the
- A.

vector frame for as long 蹈，

requin:d for spectral con­

vergence. We have made the

Fortran code fer the ODE's

procedure. Time step is

taken liS ~o. 001.

Table.l shows the Lya­

punov exponents of the glob­

al systems. We see from

Table.l that there are two

positive ).'s in the global sys­

tern at least.ν。r the driving

signa", Xl , we have three POS­

itive Lyapunove exponents:

AJ = o. 02869 ,>., = O. 0000179.

As = O. 001298 and the I"thers A

电 n..5

are negative. And [he driven !
system is more stable than

the driving system because AI

>As• Clearly , the above ev- -lU二，

idences further demonstrate

that there exists the hyper-

chaos in the CLHE and

HDCS. The criterion of the

hyp叫削.c SYNC is satis- 1川

lied for the driving signals XI

and .rz. But the SYNC is not

achieved for the driv,ng sig- -13. 43~

nals oX, and xc.
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4 SYNCHRONIZING HYPERCHAηs

We are in position to see the synchronizing hyperchaos in the CLHE and

the HDCS which start with different initial conditions. The definition of the

SYNC is followed by Pecore-Carroll and He-Vaidya. The convergent rate of

the SYNC is denoted by the difference between the Xi and xf , i. e. , defining

the quantity of the form Dx;= 冉一 xf , as monitoring the SYNC efficiency in

phase space , where i = ], 2, 3, 4 and j = " ",., ... denotes the primed

numbers corresponding to cascading order. It is the SYNC of the hyperchaos if

all of DXi go to zero. In Fig. 4 we plot two synchronized convergent curves of

DXi (i =1 ，的.

3.16 II
DXo

s副 i·n·nIiliIi A

。

-0.77
0.723

DX.

3.Z5
£-02

、， 。

-0.656
40 2530 5020 7510

T
Number of liN inr.,.tioft l1ep

1000

Fig. 4 lwo Iynchronized convergent curvel of Dz. (; = 1, 4) (8)

and corresponding phale phue diagram (b)
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Obviously , the SYNC curves converge very quickly to zero or less than

absolute precision we specified , say , about 10-' , which shows the SYNC is

achieved very well when the time step numbers go to 8 000-10 000 (the maxi­

mum is 40000-120000). The synchronized phase diagram Ii - I飞 is a linear

line. Fig.3 (b) has already shown the synchronized power spectra for high-or­

der cascading time series , which are in gOC'd agreement with the power spactra

of the master system.

We can conclude so far that the synchronizing hyperchaos in the CLHE

and the high order cascading systems are realized successfully.

5 CONTROLLING HYPERCHAOS

We now focus on controlling hyperchaos in a high-diment~onal (HD) syn­

chronized hyperchaotic system (HCS). Controlling hyperchaos in the HD-HCS

can be realized by applying a intermittent proportinal to all of the master sys­

tern variables <IPMSV). This algorithm is similar to the occasional proportinal

feedback[·J and to proportional pulses in the system v.riabes [.J. We combine

synchronizing with controlling hyperchaos to realize a new dynamics. This is

。ur subject in this section.

Fig. 5 gives block diagram of controlling hyperchaos by the IPMSV

method. The main features of the IPMSV methoo. are described as follows.

Firstly , to more specific , we ch∞se an interval time r , i. e. , the number of
integration step M. Secondly , Ii in the driving (master) system is replaced by

Ii (1 +G) at the control activation moment , where;= 1, 2 , 3, 4,That is , the

master system become the form of

dxddt = f[O + G)I;] (5. I)

where f represents the function of the right side of the driving (master)

equations , say , Eqs. (2. I)- (2.4) ,; = 1 , 2, 3, 4. Clearly , there are two

main adjustable parameters , one is the feedback intensity factor G , the other

the step numbers AI or time r elapsed between injection and withdrawal. New

desired dynamical behavior mainly depends on the G and ~1. The IPMSV

method d饵s not look for and vary any accessible master system parameters

but only rather change the system variables. It is of flexible to change tw。

parameters G and 61. There exists a certain relation between them associated

14



cucad跑g

命，ven qat甸回
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IP-MSV method for the HD-HCS

with dynamical properties of the master system (such as ptriod). We now

choose G and AI are two different constants (either positive or negative) so

that the method works very well. We observed that the full variables are

governed very well by applying the IPMSV during control periods , simultane­

ously. But it does not work very well if applying a IP to some slave system

variables.

All discussion below for controlling hyperchaos is at the fixed parameters

above and the other one: It = 6 ， η= 91.0 ， η= 一 O. 5, b = O. 5, e = 2. 5.
The convergence process of the synchronization and control have three

stages s SYNC-CONTROL-SYNC , as shown in Fig. 6. The arrow indicates

the control activation moment. To more specific , the left of the arrow is the

first stage in which the SYNC is achieved before control on. Between the right

of the arrow and the dashed line is the control stage in which controlling hy­

perchaos is realized. The convergence rate is fllt~) denoted by the difference Ox;

between the XI anu slave variables x' I where; = 1, 2. The common point is that

all of OXI is tend to zero during the SYNC stage. In the control stage if there is

.orlle regular o.cillation it i. instructor of some desired P4lttern 臼. g. period 2

in Fig. 的. The SYNC is realized again in the right of the dashed line when con­

trolling off.

15
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Fig. 6 Synchronizing andω'ntrolli ll8 processes of the hyperchao. for the
HI咒S durin. the SYNC-CONTROL-SYNC .taps

Difference Dz; between the z. .nd z，产 ver.u. tame the Itφnumber. ， where
i-I , 2. Fixed 町.tem 归ramet町.，' - 6 ， η ---1.5 ， r , -1.2, 6- 2.5 ,
,=2. 5, control 阳rameter. ， G.. -0.2 and M ,. 1ωO.

In the Fig. 7 we obtain the stabilized period 2 for time .eries of the %J and

primed %' " x·,at the .ame .ystem阳rameter. as the Fig. 6. For different con­

trol parameters , such a. G = -0.35 but different !:J = 500, 700 and 150, the

double-period to chaos are obtained. They are igonored here.

We have also tested and investigated some .imilar re.ult. or .ynchronizing

and controlling hyperchao. for the other value. of parameter in the hypercha悦，

ic region as well. For example , .tabilized period-3 , the .teady .tate , bi.tabili­

ty and three stable states are also obtained for another fixed parameter.. = 6,
叫- 91.0 , ra = - 0.5 and b = 0.5 , e = 2.5 but different control parameters

by the IPMSV method , a. .hown in Fig. 8 (a) ...., (d) , re.pectively.
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the .ame .y.tem and control parameter.ωin FiB- 6

The results above show that new dynamical behavior of controlling hyper­

chaos depends on the system parameters and the critical values of G and 61 as

well. The steady state , bistability , tristability , period , quasiperiod and chaos

can also be observed in our system by the IPMSV method_ That means that

the higher order cascading synchronized systems may become a generator or

i:ransformer of various desired form which is a function of G and 61.
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Fig.8 Stabili7.ed periocl-3 (川， the .teady .tate (b) , bi.tability (c) and tri.tability
<the three stabl~ .tate.) (d) are obtained for the fixed system parameters , .. == 6,
r. == 91.0 ， η= - o. 5, 6 == O. 5, and e == 2. 5, but different control parameter.:

(a) G == -0.35 and 61- 2200. (b) G = 0.4 and 61 = 600.
(c) G == -0·35 a'1d 61 .... 20. (d) G - -0.45 and 61 - 30.

DISCUS';ION AND CONCLUSION

One of interesting problems is that: Why the hyperchaos is sYJ..h. :jzed

s。、，咿n? Th，~ reasons are analyzed preliminarily as follows [2t .Z5]. First , the

CLHE and its cascading systems satisfy tht. criterion we proposed , i. e. the

master system can synchronize with the slave system because the slave system

is more stable than the master (driving) system. This can be seen from

Table. 1. In other words , the hyperchaotic SYNC may be achieved only if the

largest Lyapunov exponent of the master (driving) system is greater than that

of the slave (driven) system even if there exist more than to one positive Lya­

punov exponents in the global system. Second , more recently , Roy and

Thornbury have "bserved experimental SYNC of the chaotic intensity f1 uctua-

18
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tions of two chaotic Nd: YAG lasers [11). Sugawara and co-workers also experi­

mentally demonstrate that two chaotic passive Q··switched lasers can be

syschronized [IS). Their results show that the SYNC can be realized between

two chaotic systems which settle on slightly different strange attractor without

couplings. In a matter of fact. such global system consisting of two chaotic

lasers is the hype-rchaotic system since there exist two positive A's. The A's of

laser 1 is just greater than that of laser 2. Such experimental fact has indirectly

demonstrated the criterion about hypeh:haotic SYNC is correct. But it is to be

proved theoretically further.

Third , it is 嚼。rthwhile to note that He-Vaidya theorem on the chaotic

SYNC may be extended to the hyperchaotic SYNC [13J. The theorem tell us

that the slave system synchronizes with the master system if and only if there

exists a subset D(to) C R- such that when the initial conditions of the nondriv­

en part of the slave l>ystem fall in D(to) , the solution of the slave system are

asymptotically 5ta~le. The initial conditions for our system have just satisfied

the requirement of theorem (see Ref. [13] in detail), i. e. our initial conditions

have just fallen in the D(to) • The results in this paper are held at least for the

CLHE and may be extended 0 some hyperchaotic systems , specially for slight­

ly different hyper,=haotic systems.

In conclusion , we have demonstrated that the synchronizing and control­

ling hyperchaos are realized both in the systems (2. I) - (2.4) and in the high­

er order synchronized hyperchoatic systems , succes5fully. It is shown that

The IPMSV method can effectively control and stabilize the new desired dy­

namical form in the hyperchaotic system and the HOCS. The results could be

extended to some nonlinear dynamical system destabilizing by the Hopf bifur­

cation. It can create a new dynamical behavior , such as the period-doubling bi­

furcation to chaos. Every cascaded system may be a richs of patterns at differ­

ent parameter G and ~1. It is also used for the hyperchaotic or chaotic filter

and the others. Some concepts and results above may be most interesting and

promissing for applications.

Finally , we would like to mention that the coupled kind of hyρerchaotic

synchronization for the Rossler system and the forced coupled van der Pol sys­

terns are also realized. Those results will be reported ir.1 elsewhere.

This work was supported by National project of Nu
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