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1. Introduction

The main aim of this paper is 1o provide argumenis for the existence and usefulin:is of the
linking thread in form of a symplectic gauge transformation connecting variows intcgrable
systems. It seems (o be quite relevant 12 introduce such an equivalenn: principle in view
ol the growing number of integrable models which recently entered high energy physics
(e.g. matrix models). ‘The kakage is discussed here in a simple context of two-boson KP
hierarchies. One of advantages of using two-boson systems is that the gauge map connecling
them reduces in the special limit to the well-known Miura Lransformation; another is that
their provide a commos origin for variows KdV type of hicrarchies. ‘

We argue that the right setting to study gauge equivalence between integrable syslews is
provided by Adler-Kostast-Symes {AKS) [1] theory with a Poisson bracket siructure defined
in terms of the R-matrix Lie-Poisson (LP) bracket. There are several rensons behind this
statement. The theory of classical R-matrices provides a unified appruach 1o dealing with
most, if not all, existing integrable systems. One practical advantage of usiug the classical R-
matrix theory augmented by the AKS scheme is that it provides a simple inethod Lo construct
commuting integrals for a wide class of integrable models. In the recent paper |2] classical
R-matrix theory based on AKS approach was applied to the algebras of pseudo-dilferential
symbols. This paper bas utilized another feature of AKS approach, namely the possibility
of establishing symplectic gauge invariance between various related integrable systems (soe
also [3] for similar approach). Especially, three integrable models [4, 5, 2J, called in [2] as
KP, with ¢ taking values 0,1 and 2 were shown to be connected by the symplectic gauge
transformation, acling on Lax operators parametrizing the coadjoint orbity. Symplectic
character of the gauge mapping ensured that the R-matrix LY bracket was preserved. Note,
that for £ = 0 the AKS system KPy is nothing but a standard KP hierarchy.

In Section 2 we briefly recapitulate the AKS meihod as applied 1o the algebras of pseudo-
differential symbols and state the resulls of [2) concerning the gauge cyuivalence of rele-
vant integrable models. ln Section 3 we explain the status of Lhe two-Luson KP hierarchy,
which appears in this setling as an invariant subspace of the coudjoint orbit within the
KP¢a; hierarchy. We will work with two main cases of two-boson K1) hivrarchies, one de-
fined within KP¢.; hierarchy will be called Fai di Bruno KP hierarchy, while the second
defined within KP hierarchy for 8 quadratic two-boson KP hierarchy. We will establish for
them the gauge invariance playing the role of generalized Miura transforinations. We em-
phasize the symplectic character of equivalence of KPryy and KP and show how this feature
explains the 2-boson representation of Wy,e and W, in terms of the Fas di Bruno polyno-
mials. We also made a point that the gauge equivalence established for two-boson systens
is valid for an arbitrary n-th Poisson bracket structure and not only the first Poisson bracket
structure. In Section 4 we apply Dirac reduction scheme to both two-boson KI® hierarchies.
We obtain in the process of reduction the standard “one-boson” KdV and mKdV hierachies.
On reduced manifold the gauge transformation connecting the two models takes the forin of
the Miura transformation. We also present some comments on generalizing Schwarzian KdV
(SKdV) hiesarchy to the Lwo-boson system.

The generalized Miura mape appeased before in literature (see [5, 6, 7)) withvut however
being studied in terme of the gauge transformations between Lax opersiors and connecied
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with conventivnal Miura maps via Dirac reduction.
2. AKS Construction of Generalizsed KP Hierarchies

llere we will apply the AKS construction [1] on Lie algebra G of peeudo-diflerential op-
erators on a circle. An element of G is an arbitrary pecudo-differential operator X =
Tir-o D* Xi(x). An infinitesinial version of adjoint transformation is given by ad(Y)X =
[)’:.\’]. In this setting, an ientification of the dual space G* with G and of the coadjoint
action with the adjoint action is allowed by the Adler Lrace; an invariant, non-degenerate
bilinear form given by (L] X} = 1v,{LX) = [ReslX.

There exist three decompusitions of G inlo a linear sum of two subalgebras |4, 3, 2] (i.e.
¢ = §! wG!, with index € laking values £=0,1,2): .

G = (X2=L0KUD)) 5 Gl={Xa= 3. DX} ()
=t )
The: dual spaces to subalgebras G are given by:
B = lhee= 35 uaD7) 5 6 = {lse= Twia)D) @)
=ty im-l

All three decompositions give rise Lo integrable models via the AKS construction. Define
the K matrix ko all the above cases as By = P} — P, where 1§ are projections on G5, It
Mllows from the geueral formalism that [X,Y]a, = [RX,Y}/2 + [X,RY)/2 = | X5, V> -
[X <o, Yol detines an additional (with respect to usual comnmitator) Lie structure on G (see
|2} aud references therein). This additional structure gives rise to the LI R-bracket for
F e ™ (g R):

{F, M)all) = (LI |VFL), VH(L)]g) (3)
whese the gradiemt VF 2 G° -+ § is defined by the standard fornmia given in [I, 2). The
AKS scheme defines the Hamiltonian equations of motion to be dF/dt = {H,F}y lor F €
C* (@ R). The hasic resull of AKS formalism states that the Ad*-invariant functions
{Casimirs) Poigson commute on (°, {,-)x) establishing integrability of the system and
providing quantities in involution.

Froin the general telation for the R-coadjoint action of ¢ on its dual space we lind that
the inlinitesimal shift along an R-coadjoint orbit O(R,) has the form: 8p,L = adp (X)L =
[Xon Ledeoo — [ Xces Ly -dlz-e-

We will now focns on the Hamillonian structure of the integrable systeins given by de-
compositions labelled by £ = 0,1 (as in [2] we call them here as KP, hierarchics). For the
remaining £ = 2 model we refer the reader to [2).

K Hicsarchies. 'The KPimomodel is deflined on the manifold being the R-coadjoint orbit
of the form O(fty) = {L = D + 32, us(z) D™*}. The functions H,,y = ; J Resl*
are Casimir functions on G°, which in R-mnatrix approach |1} produce conumuting integsals

of motion. In lact we lind for this model

BlLjit, = %...r((vu,,. Jo = (VHyp)-) L= [(L7)4), L] 4)
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The subscript (+) means taking the purely differential part of L' and t = {t,] are the
evolution parameters (infinitely many time coovdinates). We recoguiae in (4) Lhe standard
K P flow equation. The flows (4) are bi- Hamillonian (8], i.c. there exist two Poinson bracket
structures {-,-}13 , such that we can rewrite (4) as a Lenard recursion relation OL/8t, =
{H., L)s = {Heys , L)1 for the hierarchy of Poisson bracket structwres withr = 1,2,.... The
first Hamillonian structure is found to be induced by the LP structure: (-.(z),-,(,)}.-

052 (w(2)) 8(= — p), with 19, 5k
[and N e .
n“g("(‘)) = -E( :')'-‘-uﬂ-ul(f)n: + gt'”k(J : ()D:'mu-hn(l’) (5)

This LP bracket algebra is isomorphic Lo the centreless Wy, algebra [10). All this just
classifies KProoas the standard K P hiesarchy.

We now turn our attention 0 KPg,; hicrarchy. Here the Lax operator takes the form
LD =D 4ug+ D' 4 T3 5ig D Application of (3) gives a Hamillonian structure
that is a direct sum of the 2 x 2 matrix P! with non-zero inatrix elements P}}) = P& = D
associated with the modes {vg,u,} and the Hamiltonian structure ) from (5) associated
with {v;[i > 0} [5]- Note that fi*} cosrresponds to the centreless W, algebra.

“Gauge® Equivalence of KP ¢, Hierarchy to Ordinary KP . The fundamental result of {2] was
the proof that all three hicrarchies are “gauge” equivalent via generalized Miura transforma-
tions. Here we focus on the link between two KP¢ systems discussed above. Reference (2] pre-
sented a symplectic (Hamiltonian) map between the orbits such that G : O(H,) — O(R,).
The term “symplectic” (*Hamiltonian”) means that under the map G, the LI bracket struc-
ture on O(R,) is mapped into the LP bracket structure on O(Ry).

{F, B)g (G(L)) = {Fi(G(L)) , FalGIL))}y, (6)

where F,; ase arbitrary functions on O{R,) and L and (L) denote courdinates on the
orbits O(R,) and O(R,), respectively. As a consequence of (6), the infinite set of involutive
integrals of motion {Hn[G(L)]} of the integrable system on O(R,) are transiorned into
those of the integrable system on O(R,): Hn|l) = Hn[G(L)) .

As shown in [2] the right choice of the map G : O(R,) — O(lty) is given by

[ o
G(LW) = D + Y sin(z) D" = AT (9(L))(D + uo(z) + uy(x)D* + Y ve_y(r)D™*) (T)
k=) k=2
where the group element g(L'"?) depends on L™ in O(Ry) C &°.

It is in the sense of eys. (6) and (7) that the jntegrable systems on the orbits O(R)
for different R-inatrices are called “gauge” equivalent. We will provide Turther argunents
in Section 4 for that the mapping of one Poisson bracket structure of an integrable model
into another one by the group coadjoint action (7) deserves a namw: of the generalized Miura
transformation.

Due to the simple formula exp(go(z))D exp(~—do(z)) = D ~ O, ¢u(+), it is easy to see Lthat
a “gauge” generator in (7) must be given by

g(L) = expgu(z) , Oru(2) = uols) (8)
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The prowd bor gange ayuivalence in [2] amouuted to verifying (7) with (8). This established
the “gangs”™ equivalence of KPrgy and KP by explicitly constructing the generalized Miura-
ke translonmation (7)-(8), which maps the Poisson Lracket structure of KPinto that of
KPP, amd viee versa.

3. Main Two Two-Boson KP Systems

Faa i Bruno Hiesarchy. llere we go back to KPey; and make the following crucial vhserva-
tiom. Consider truncated elements of G ° of the type LY = D+ugt w; D~ = D-J+JD™",
where we have introduced two Bose curvents (J, J) 1o create St with notalion used in [11}.
Oue casily verities that under the conljoiat action éx, LY’ = adj, (X)LY? this Gnite Lax oper-
ator naintains its fon, ie. the two-boson Lax operators span an K,-orbit of Bnite funclional
dinmetsion 2. 'Vhis observation, already present in (4] clarifies status of two-boson (J, J) sys-
lan as a consistemt resteiction of the full KPe.) hierarchy understiood as an orbit nwde.
Nute that there are only two possibilities for the invariant R)-orbit; the twu-bosun system
and 1he full KPe., system (in quasiclassical limit situation is mudh richer). A caleulation of
the: Porsson bracket according to (3): {(Ls,“l X), (L","l Yin, = (L?,"l (X, Vn,) yields the
list bracket structure of two-boson (J, J) system given as LP H-bracket: {J(5), J(y) ] =
~¥'(s - y) and 2zero utherwise.

As weshow now the two-buson KP hierarchy is associated with so called Faa di Bruno poly-
noniials and we will call it therefore Fai di Bruno bierarchy. Consider namely the gauge
transforvation between KPP and KPeo, generated by @ such that ¢ = J: )

Ly=e®tV=DyI D+ =D+ f:(-n)-w.u)u”*- (9)
nud

where £,{J) = (4]} are the Fad di Brune polypomials. As a corollary of the sysiplectic
charaster of the “gauge” transformation used in (9), we conclude that u, = (-1)*JP,(J)
sitisly the Poisson-bracket Wy,e, algebra described by the form 2 fiom (5) [5, 11} It
is possible o introduce a deformation pasameter into the Fai di Bruno representation of
Wi, algebra by realefining u, 10 u,(h) = (=1)*J(hD + J)*- 1 [11]. Now the semiclassical
Tt is sinaply obtained by taking b - 0 in u,(h) and yiclds the generators of wy ., algebra.

‘The: higher bracket strnctures have been investigated in [5, 11} and the result can be
siwnmatizanl a3 follows. ‘The three lowat Hamiltonian functions are:

= [4 Hpp= [-00 M,-,=/(JJ"+JJ'+ ) (10)
Foor tee general Hamilonian matrix structore P, we have
D (I (MMaeamif0d (S f8IY _ (0,00
oI, (J) = I (m,,,.,_,/u') =k “(m,,./s.i =Pl g1 165 o)
Awong the multi-Hamiltonian structures only Fyy and Py; are independent.  All other

matrices P, , i = 3,4,... are related o Pyg through Py = (P;,(P;.)")"' Py3 involving
the so-called recurrenwe matrix Pya(Pyy)™" [6, 11} The explicit form of first and second
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local Hamiltonian structures is:

o -» W D+ DJ ]
P"=(—D ) ) ; P"=(-D'+JD DJ+JD) (12)

Taking r = 2 in (11) we especially get Lhe Boussinesq equation:
ho= {3, Hys)y = AP = () =28 ; Sy ={J, Hps), = ki -2(JJ)  (13)

where we re-instroduced & as a deformation parameter. In the dispersiveless imit A — 0
taken in (13) we obtain the classical dispersiveless loag wave equations (Beancy cymations)
12, 5}

Quadratic Two-Bosva KP Hiesarchy. Here we call quadratic iwo-boswun KP hierarchy the
mtmthWnMYullﬂnudulomhw as & hidden current algebra
in the 2d SL(2,R)/U(1) coset model. Construction is based on the pseudo-differential
operator:

L=D+j(D-;-j)"; (14)
Let us discuss the Hamiltonian structure first. The three lowest Hamiltonian functions are:

H,, =/Ji; Hn=/-1'i+1’i+1f ; Hn=/1"i-3u’i-'21 P-2i3' 47143 i 410* (19)
Amwong the Hamiltonian structures ouly second and third are local and are given by

_[9o D Dy +;D -D*+D;+;D .
P’"(D o) » B (D’+JD+DJ Dj +;D -(16)

Proposition. The Hamiltonian structure corresponding to the Lax operator L) in (14) is
invariant under the following two transformations:

] - J'-’;’ and i— (17
i~- J+? and 1) (18)

Proof. One verifies relatively easily that the bracket structures induced by both P,; and
P, ; are invariant under the transformations (17) and (18). Since P, = F;P;' F;, a recurrence
matrix Py(P;)"" and all remaining higher hamiltonian structures must therefore remain
invariant under (17) and (18). This completes the proofl. One can also directly verify that
all three Hamiltonians (15) are invasiant under (17) and (18). Hence we conclude that the

Lax operators given by
,-l
im0t (0-3-3+2) " 1-2) n
. -}
-1 ;
L D+(J+,.)(D 1= J) j (20) .
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kead to the same Hamiltonian functions as (14).

Gauge Equivalence between Fai di Bruso and Quadratic Two-Bosoa Hierarchies. Gen-
eralised Miura Map. We apply on L, from (14) the gange tramsformuation geweraled by
{=(¢+3—h1) with resuit:

L—exp-)L,expll)=D+3+5+307"Y +j)D'=D-J+JD* ()
where we have introduced

J=-J-5+’; i JI=i (22)
Otwe: can now verify explcitly that with the bracket siructure given hy F;; in {16) varables
detined in (22) satisfy the sevond bracket structure P; (12) of Faa di Bruno hierarchy. As a
curollary we ublained therclore a short pruod for the quadratic two-bosun KP hictarchy {13)
system realizing W .. We abo obtained a Miura transform for two-Bose hierarchies in form
of (22) whixch generalizes Lhe usual Miura transformation between one-bose KdV aid mkdV
struciures (as given bhelow).

I is intriguing that the higher hamiltonian structures of quadratic iwo-boson hicrarchy
are being mappel by (22) to their counterparts in Faa di Bruno hierarchy while the gauge
eynivalence establisherd in Section | is limited to the first bracket structure. Explavation
for the equivalence: of higher structures lollows however easily from two additional features.
First, it is true What Lhe Hamiltonian functions are invariant under the gauge eynivakence.
Secomd, we e that the Lenard secursion relations extend Lo two-boson system in KPy,, as
vbservend in [2]. One can now use the above two facts Lo extend the gauge equivalence (in
the symplectic sense) to the arbitrary order of bracket stiucture for the two-buson systenss.

Lot us go back to Lhe alternative expression (19) for the quadratic two-boson hierarchy.
It can be rewritlen under mmltiplication by 1 = 737! from the right and keft as L, =1L, 1 =
127,07 =D+ (D=3 -3)" (57 -7') Next step is to gauge transform L, from KP
to KP%, hierarchy by acting with gauge transformation generated by exp(¢ + ¢) obtaining

Ly~exp(~¢-9) Liexp(¢+8)=D43454+ D' (jy~)) (23)

which is of the form of the Faa di Bruno hieraschy (up Lo conjugation) with J = —) — j and

J = jj =)', This reproduces construction given in [11] to get the second bracket styucture
from the first. Nute that under (18) this is transformed into J = —) - j ~ ‘,—' and J = j)

dilfering from (22) by s conjugation 3 +~ j.
Silarly for (20) we find L, = j='5L,i""i = D+ (5345 ) (D=3 =7)"". The same
transformation as in (23) gives

L,~exp (-9~ @) Lyexp (¢+ )=D+y+j+(y+j )07 (24)

producing KPP, object with J = -~ ~ j and J: 72+3 . This time under (17) these variables
are transformed imto J = -5 — j 4 ‘J—' and J = j; identical to (22).



We see that because of (17) and (18) there is an ambiguity in the possible form of
gencralised Mivra translormation and (22) can appear also in other forms. All ol Lthem are
connecling the Poisson bracket strectwre of Fai di Bruno hierarchy with the curresponding
Poisson bracket structure of the quadratic two-boson hierarchy.

AKNS/NLS Hierarchy. AKNS o NLS system is a constrained KI* system described by:
Lakns = D+ 9D '® (2%)
with the first two bracket structures given by (see for instance [14]):

0 1 -20D'% D+ D'
Pains) = ( -1 o) v Paknsz = ( D+”D_" -9 D¢ ) (26)

One can casily show that AKNS hicrarchy is equivalent to Fai Jdi Bruno two-boson KP.
The prool is based, in the spirit of [2], on establishing gange transfonnation bhetween two
hievarchies. We show now the argument to illustrate the power of gauge Lransfonmation
argument in the KP setting. Consider Ly ns — G-lLAh'NSG =G'D6G + G- DG
Choose G~} = ¥, which leads to

G 'LaknsG=0D¥"' 199D =D+ ¥ (¥"') + 9O D! (27)

Clearly the gauge trancformed L, xng is an element of KP; hierarchy aud it is therefore
natural to introduce new variables such that J = —¥ (%' ) aud J = ¥ ¥ and the inverse
relation being ¥ = exp(f J) and ® = Jexp — ([ J). Since we now have established a gauge
equivalence between two hierarchies it is clear that the first bracket structure in (26) leads
to {J(z), J(»)}) = —&(z — ¥) and therefore a linear Wy, algehra. The second bracket
structure in (26) leads to the second structure in (12) and correspondingly non-linear W, .
I we only took the linear structure in Py ns; (ie. {¥(2), ¥(y)) = (s — y)) we woukl
have induced (12) in its “un-deformed” forms with upper left corner of 175, in (12) bring zero,
corresponding to (Y or W,

The AKNS system is also gauge equivalent Lo quadratic KP hicrarchy if we make in (27)
a substitution ¥ = j exp(¢ + ¢) and ¥ = exp(—¢ — ¢)y or inversely ¥'/¥ = ~) - j + /)
and ¥¥ = jj.

4. Reduction to “One-boson” KdV Systems

We apply here the Dirac reduction schenx: Lo obtain one-boson hicrarchies from two-boson
hierarchies. The general feature will be a transformation of somw two-boson Hamiltonian
equations of motion expressed by 2-nd bracket structure 81'/8t, = {I', H,); (where I' denote
original degrees of freedom) Lo one-boson Hamiltonian system according to Lhe Dirac scheme:

% = {X, H?]Dme (28)
v

with X denoting a surviving one-boson degree of freedom. Another point is that it in a
presence of symmetry in (17) and (18) that enables reduction to be miade.

7 e
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RdV linrarchy. Consides the Dirac constraint: © = J = 0 for system in (9). Fint et w
discuss the resulting Dirac bracket structure. We find for the surviving variable J:

), J))7 = {J(2), S} - / dzd'{J(2), 6(2)}2{6(z), ")) ' {&(Z), Ja))a

=20 Wl — 90+ Fladils —9)+ 3870 - 9) (29)
‘The reduced Lax operator lovks now as:
Ih=D4dD" (30)
and the corsesponding (- zero) howest Hamiltonian functions H¥®Y = ‘v [ /r an:
HA® = / 1 N o ] 2o s / (22 +40) (31)
Musewver une: checks that U How eyuation:
oL /88, = [(5)s, L] (32)

gives un the owest hevel 8J/Jot, = J and 8J )8t = J™ 4 6JF, with the secomd eyuation
reproducing the well-known KdV eyuation. This equation can also be obtaime Ly inserting
X = J and HY* into (28).

mhdV lierarchy. Now consider the quadratic two-boson hicrarchy with Lax given in (14),

{19) ur (20). We dhwnse as a Dirac constraint: # = ) 4+ j = 0. The resulting Dirac bracket
structnre is:

U@ = = [ dads ), Ul 0a) M) ) = =381 — p) (39)
aml e redunnd Lax operator is:
I, = D"JD-'j =D+ i(_l)ufljjh)o-l-n (34)
e

Note that imposing the constraint ¢ = 0 on the equivalent Lax operators from (19) and (20)
respectively, we get:

ANl ’
L=l )yeu= D+, (U + 17) (-J - ;7) =D+D" (- - ) (3%)
) ’y!
L=L,ly0= D—(J+ -J—)( - -J—) y=D+(- =) » (36)
Obvivusly we could have expressed eveiywhere 3 by —3 hence the vne-boson systesn must
be invariant under transformation 3 & —). The flow equations calculated as in (32) are
& 4 Y w Lay
= Y =) (37)

8



Hence the flow equation for d)/di; is the mKdV equation. Farthermore the midV eyuation
could alwo be obtained from Hamiltonian H]** defined in a stamdard way:

"u'“"—ll'; "?“"l()‘-u') ; "?""l(’h‘*Wl'll')'*u"")

()
{and zero for even indicas). Becanse of existence of symmetry described i (17) (asnd (138))
we could cquivalentyy impose the constraints &, = ) + § — 3°/) = 0 or alternatively &, =
)47 +5']7 =0 withoul changing the Disac bracket structure amd the constraint manifold.
Imposing 8, = 0 on the Lax eperator in (14) we get

14 » -1
'!“"*(‘1*%)("-!;) 1=D+(-1*+,) D! (39)

Taking however the cquivalent Lax operator as given in (19) weger |, = L, |, = V-, 07",
Hence the mKdV hicrarchy is given in terms of three aliernative and cquivalent Lax operators
given in (34), (35) and (30). Especially the mKdV Hamiltonians (including thuse: in (33))
are invariant under transformation ) — —).

Miura Map. Let us now impose the Dirac constraint J = —) -3 +)'/7 = U on the generalized
Miura transformation (22). As a result we get the conventional Miura map:

I lyee=13 ("‘J + !’-') ==+ {10)
It is easy to find via Digac procedure that ; satisfies the bracket
U=, 20N = = [ dsde (), HDal (DI (), 300 = =390 =0) )

which is perfectly consistent with J = —32 + )’ satislying the bracket (29).
Especially we see that all Hamiltonians from (31) go to Hamil’onians in (38) under
J 331y

Bi-Hamiltogian Structure of KdV Hieraschy. The evolution equation (28) spevilicd 1o the
constrained manifold J = 0 results in

S am (3, BE 12 < (03 430+ 30°) ¥ ., (42

in which one recognizes the second Hamiltonian structure of KdV hicrarchy. We now show
how (o recover the first Hamiltonian structure of the KdV hierarchy (our discussion is heve
pualldlolhtpmm[i]) Recall now (11) and take r odd s0 H,4) — 0 for J — 0. We find
from (11) using Py, that 8J/Bt, |, o= —D6K,,,/6) |,y On the other hand caleuluting
0J/ X, ,, using both Py, and P), uﬁd the followiag consistency relation in the twu-hosoy
case:

é

2D + (D’ +0J) 1%1 = 'D”J" ’ (49)
Y .
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However in the limit J — 0 since H, .y — 0 we have §H,,,/6J — 0. Therelore sumnarizing
we find

aJ GH,., 2

6"""
-8-': |J=0=

lmo= 20-}- (304004 D)) =5— )

which reproduces well-known result about bi-Hamiltonian structure of KdV (see also [5]).
Equativn (44) can also be treated as a recurrence relation which proves that the system
delined by Lax given in (30) is indeed KdV system to all orders of the Hamiltonjan function.

Oue can now find the bi-Hamiltonian structure for the case of KdV. First we recall a
formula [15}:

1. . ,
(DFE2VD(DL2)=2 (§D‘+(—J‘ +5)D + I)(-—;‘:t;')) {45)

Next from Minra transformation we find [15) SH™NY j8) = (-1 - 2;)8HNY 5], We
therefore have

ml\.vll 51 RAdV l,m‘\nﬂ’
f.'_'zﬂr; (=D =) 'r Lo (D420 (D-2)0°

(16)

where we used both (M) and (45). Relation (46) seveals a bi-lHamiltonian (but non-local)
structure of mKdV hicrarchy and can be rewritten in a more simple way as the Lenard
recussion relation:

mKdV said
nﬂ!%*f“ =(0*~4D)DD) "3; "

Schwarzian KdV Hierarchy. llere few remarks are given ahout Schwarzisn KdV (SkdV)
hierarchy, e.g. [16]. We start by discussing invariance of the Miura map J = —)? 4 )’ =

~(¢') ¢ ¢ wllerc as before ¢ = 3. Lel 6 be some trausformation which leaves J iuvariant,
then 8 (—(¢')? + ¢") = 0 or 8¢” = 2¢'8¢'. Solution to this takes a simple form

0 .
00 =8 =c'exp(20) or  bé= ‘7 + ¢V exp(20) (48)

where ¥ and ¢! are sonw arbitrasy constants. Introduce now the function f connected to
2 through the Cole-Hopf type of transformation j = ¢' = f*/2f or J' = exp(2¢). We find
that (18) corresponds Lo sl; transformation §f = ¢' + &f + ¢~ f? and leaves J = S{J)/2
invariant, where S(f) is s Schwarzian.

It is known that the Cole-Hopf transformation relates the mKdV hierarchy to the SKdV
hieravchy with equation fi/f* = §(f). Hence we will be interested in one-hoson Lax operator

of the
e form L o . f'D-l | !:
"2 Jyoy
‘There are inany ways of promohng lhh opfukn 16 two-hoson system. If we consider u very
simple choice

(49)

A
'l

L . ‘
L= D+-2v “‘;tl’p (50)
A
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the second bracket structureis { 3(z), f(¥) } = —-2f'(2)D;'6(z—y). Another cuoice could be
L=D+(f"/)42+((f*11) + p) D' p leading Lo (49) under constraim (f*/f')+2p = 0.
Defining p = v we can now make contact with quadratic KP hierarchy by defining a map:
j=v4+{(f*/f) and 3 = v. Of course ambiguity of (17) allows equally well a map:
j=v+(f*/f) - (v"/V) avd 3 = v'. The corresponding bracket equivalent to Pz in (16)
is non-local and we find easily e.g. {v{z), f(y)} = D]} f'(2)D;'6(x - y).
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