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Summary

During the last decades the annual energy produced by wind turbines has in-
creased dramatically and wind turbines are now available in the 5 MW range.
Turbines in this range are constantly being developed and it is also being in-
vestigated whether turbines as large as 10-20 MW are feasible. The design of
very large machines introduces new problems in the practical design, and opti-
mization tools are necessary. These must combine the dynamic effects of both
aerodynamics and structure in an integrated optimization environment. This is
referred to as aeroelastic optimization.

The Risø DTU optimization software HAWTOPT has been used in this project.
The quasi-steady aerodynamic module have been improved with a corrected
blade element momentum method. A structure module has also been developed
which lays out the blade structural properties. This is done in a simplified way
allowing fast conceptual design studies and with focus on the overall properties
relevant for the aeroelastic properties. Aeroelastic simulations in the time do-
main were carried out using the aeroelastic code HAWC2. With these modules
coupled to HAWTOPT, optimizations have been made. In parallel with the
developments of the mentioned numerical modules, focus has been on analysis
and a fundamental understanding of the key parameters in wind turbine design.
This has resulted in insight and an effective design methodology is presented.

Using the optimization environment a 5 MW wind turbine rotor has been opti-
mized for reduced fatigue loads due to flapwise bending moments. Among other
things this has indicated that airfoils for wind turbine blades should have a high
lift coefficient. The design methodology proved to be stable and a help in the
otherwise challenging task of numerical aeroelastic optimization.
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Resumé

I de sidste 10-20 år er der sket en dramatisk øgning i den årlige energimængde
produceret af vindmøller, og disse er nu tilgængelige i 5 MW klassen. Møller
i denne klasse bliver konstant udviklet, og det bliver ligeledes undersøgt om
møller s̊a store som 10-20 MW er realiserbare. Design af meget store maskiner
introducerer nye praktiske problemer, og optimerings-værktøjer er nødvendige.
Disse skal kombinere de dynamiske egenskaber af b̊ade aerodynamik og struktur
i et integreret optimerings værktøj. Dette benævnes aeroelastisk optimering.

Risø DTU’s optimerings program HAWTOPT er blevet benyttet i dette projekt.
Det kvasi-statiske aerodynamik-modul er blevet forbedret med en forbedret blad
element metode. Et struktur modul, der udlægger bladets strukturelle egensk-
aber, er ogs̊a blevet udviklet. Dette gøres p̊a en forenklet m̊ade, der muliggør
hurtige design studier p̊a koncept basis, og med fokus p̊a de overordnede egen-
skaber der er vigtige for de aeroelastiske egenskaber. Aeroelastiske simuleringer
foretaget i tidsdomænet er udført ved brug af HAWC2. Med disse moduler
koblet til HAWTOPT er der lavet optimeringer. Parallelt med udviklingen
af de nævnte moduler er der ogs̊a fokuseret p̊a analytiske analyser og p̊a en
fundamental forst̊aelse for nøgleparametrene i design af vindmøller. Dette har
resulteret i indsigt, og en effektiv design metode bliver præsenteret.

Ved brug af optimerings-værktøjet er en 5 MW vindmølle vinge blevet optimeret
med henblik p̊a en reducering af udmattelses-lasterne fra de flapvise bøjnings
momenter. Dette har blandt andet indikeret, at vingeprofiler til vindmøller skal
have en høj lift koefficient. Design metoden var stabil og en stor hjælp i den
udfordrende opgave, som numerisk aeroelastisk optimering er.
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Chapter 1

Introduction

1.1 Background

Wind turbines are constantly being developed and redesigned. Today the largest
machines are in the 5 MW range and some manufacturers are currently designing
for 6 MW. At e.g. Risø DTU, research is presently aimed at designing turbines
as large as 10-20 MW. The increasing size of wind turbines and the increasing
market volume set increasing requirements to optimization of the wind turbine
components. Models have been developed to design rotors aerodynamically.
These models have shown how efficient a turbine can be with respect to energy
production and how large the associated loads are. This leads to a trade-off
between structural requirements and aerodynamic efficiency, and therefore rep-
resents an optimization problem. The problem becomes more complex when
the unsteady loads leading to fatigue damage are considered as well. A common
way of designing rotors is to make an aerodynamic design and based on this
make a structural layout. The process is iterative and needs to be carried out
manually. However, there is a trend toward integrating the different disciplines
and carrying out the rotor design as a multidisciplinary process.

There is a large amount of literature on wind turbine properties and engineering
tools, but there are not many references which describes the integrated design
process. Bak [1] describes the state of the art in aerodynamic tools as well as
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general issues in aerodynamic turbine design. This includes airfoil properties
and their influence on turbine performance. Other books on wind turbines are
Hansen MOL [2] and Burton et al. [3], which are general introductions to many
issues in turbine design, including loads and structures. Other references, which
have been used in the project, are presented below.

Fuglsang [4] describes general aerodynamic design guidelines and Johansen et
al. [5] describes a turbine designed for optimum aerodynamic performance. Snel
[6] reviews the wind turbine aerodynamics. Key parameters in rotor design are
described by Bak [7]. In recent years there has been some interest in winglets
on wind turbines. Døssing [8] describes a winglet design algorithm and an-
other algorithm for performance prediction is described by Gaunaa et al. [9].
Gaunaa & Johansen [10] has made a detailed study of various generic winglet
designs. Even though winglets are out of the scope of the present thesis, much
information about turbine aerodynamics may be obtained by studying winglets.

An improved blade element momentum method (BEMcor) is described by Mad-
sen HAa et al. [11]. This is the primary aerodynamic calculation model used in
this work.

Aerodynamic profile design is described by Timmer & van Rooij [12] and Fuglsang
& Bak [13]. These references includes descriptions of the airfoils used in this
project.

Rotor design taking structure and aeroelasticity into account is described in a
number of articles. Fuglsang [14] gives an introduction to important issues in
blade design and Fuglsang & Madsen [15] describe a numerical optimization
method for wind turbine rotors. Fuglsang & Thomsen [16] and Fuglsang et al.
[17] describe site specific optimization of cost of energy (COE) based on cost
functions. More recently, Jonkman et al. [18] has defined a fictitious 5MW
offshore turbine. This includes data for the nacelle, tower and foundation, and
the turbine is a useful reference case for turbine development.

In a PhD thesis Nygaard [19] describes a numerical method for turbine optimiza-
tion. The work includes descriptions of general aspects in turbine optimization.
The optimizations are focused on cost of energy and primarily takes the aero-
dynamics into account. Very simple structural models are used for determining
structural properties, which are found by simple scaling of existing cross section
data. Aeroelastic calculations are avoided by assuming that fatigue loads are
correlated to steady state loads at rated wind speed. It has been shown that
this assumption is not valid and we have developed new engineering models for
prediction of fatigue loads which may be used for fast optimizations without
using aeroelastic calculations (Appendix F). A PhD study by Merz [20] is about
conceptual design of a Stall-Regulated Rotor for deep water offshore use. It will
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be published in the near future 2011.

An introduction to aeroelastic stability issues for wind turbines is given by
Hansen MH [21][22][23]. The topic is also treated by Riziotis et al. [24]. Even
though aeroelastic stability is an important issue in connection to rotor design,
it has not been considered in this work apart from the response predicted by
aeroelastic simulations in the time domain.

Atmospheric turbulence is important for the dynamic loading on wind turbines
and Fransen [25] describes turbulence in wind turbine clusters. The spectrum
observed in the moving reference of the blade is discussed by Kristensen &
Fransen [26] and measurements are reported by Connel [27]. This special topic
is important for the fatigue loads on the blades.

1.2 Introduction to the project

The continuous development of wind turbine optimization tools means that
software packages expands significantly as more experience is gained. The op-
timizations are based on the blade optimization tool HAWTOPT [16], which
is developed at Risø DTU, Denmark. The aerodynamic optimization variables
include the chord, twist and thickness distributions, but HAWTOPT can han-
dle a large number of constraints and variables. At the start of this PhD study
it was decided that the aerodynamic module needed improvements in order to
accurately calculate the quasi-steady aerodynamics and the annual energy pro-
duction (AEP). A corrected blade element momentum method BEMcor [11] has
been implemented. A structural module was also needed for evaluation of struc-
tural properties and a new module for blade structural layout was developed.
Focus was on developing a model which can lay out the overall properties of the
blade and provide key parameters for the aeroelastic properties but at the same
time be as simple as possible, thereby keeping the number of design variables at
a minimum. Finally, with the structural data available, aeroelastic simulations
were made using HAWC2 in order to calculate fatigue loads. The structural
and aerodynamic design is now integrated in HAWTOPT and can be used to
optimize a conceptual aeroelastic design. Figure 1.1 shows a roadmap of the
design process.

Most optimization algorithms works effectively if the number of design vari-
ables are low and the initial design is relatively close to the optimum. This
will enhance the numerical stability and reduce computation time. It is very
challenging when the design is far from optimum and constraints are possibly
violated. In that case there is a risk that a local optimum is found instead of the
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Blade fatigue
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Numerical

Analytical

Figure 1.1: Project roadmap

global optimum or the algorithm may become unstable. This is especially likely
to happen if many engineering models are used together, which is the case in
wind turbine optimization. Based on practical issues, there are therefore many
reasons for reducing the design problem as much as possible. Once a concep-
tual design has been found, it is possible to refine the optimization using more
advanced models and more design variables. Thus, while it may be tempting to
start with computational-heavy and accurate numerical models it is in practice
a very difficult task and it will not provide any general understanding. Another
reason for starting with simple models is that important parameters and their
relative influence is clarified. This principle is applied throughout the presented
work where it is the aim that the number of design variables should be as low
as possible and engineering models should be as simple as possible.

Blades have been optimized for a 5 MW pitch regulated variable speed turbine
(PRVS), which is a representative design for modern turbines. The optimiza-
tion is focused on weight restrictions and fatigue loads due to bending of the
blades caused by atmospheric shear, turbulence and gravity. Other objectives
may be important but the fatigue loads are key parameters in the blade design
process. The optimization tools may of course be used for optimization of other
objectives. The primary constraint is the energy production because the yearly
revenue is directly proportional to it.

Most published studies are focused on minimizing a cost function by taking
individual component material and manufacturing costs into consideration as
well as transportation etc. While this may be possible for a company it is not
easily done in general in a scientific context because of lacking knowledge of the
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specific cost functions. More and more turbines are placed at sea and the blade
production costs are now only a relatively small fraction of the total cost and
more emphasis is on reliability. In this work focus in on the optimization of
key parameters instead of cost. To ensure the design is economically feasible,
various constraints are used. E.g. a minimum annual energy production.

The PhD project described in this thesis has focused on the development of tools
for conceptual design of the rotor blades. The conceptual design represents
a simplified initial layout of the blade, which is detailed enough to describe
the overall aerodynamic and structural properties. Combining this yields the
aeroelastic properties which are key parameters for fatigue loads and dynamic
stability, and which must be considered in the initial design phase. Subsequently
the blade aerodynamics and structure can be refined, without changing the
aeroelastics significantly.

The blade design is made using engineering models coupled to optimization
software. The engineering models describe the quasi-steady aerodynamics and
the structural properties, and an aeroelastic simulation software is used to obtain
time series of loads and energy production under unsteady conditions. Models
for e.g. noise may also be used but focus is on the aforementioned. The final
conceptual design is described by the aerodynamic shape and the structural
layup of material inside the blade. This represents two vast engineering fields
which in combination with heavy numerical optimization results in a complex
problem.

The scope of this thesis is to present important results from the project. Numer-
ical results have been combined with discussions of key parameters and thereby
fairly general conclusions have been made. Focus is on the optimization method-
ology and results, but details are also included where appropriate. Aeroelastic
optimization is complex, but hopefully reading this thesis will create an overview
of the relations between many parameters in the rotor design process.

1.3 Design variables, constraints and objectives
- model limitations

The design variables considered in this thesis are the spanwise distributions of
chord, twist and thickness. These are numerically optimized and the process
includes an automatic definition of the blade structural properties. Constraints
are put on the annual energy production, blade mass and tip deflection relative
to the blade shape at zero load. The objective is to minimize a selected load or
combinations thereof. In this thesis flapwise fatigue loads have been minimized.
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Some important limitations are listed below. Note that these may all be included
in the optimization method presented.

• Edgewise fatigue loads are not minimized (however, the final design shows
a reduction).

• The undeformed blade is assumed straight.

• Buckling is not considered.

• The design load cases does not include storm loads, e.g. DLC 6.4 .

• The design load cases does not include cases which are strongly controller
dependent.

• The design load cases does not cover cases where stability is important.

• Load extrapolation of extreme loads is not done.

1.4 Outline of the thesis

The contents of the thesis is:

Chapter 2 is an introduction to important issues in the aerodynamic design
of rotors.

Chapter 3 and 4 introduces the developed cross section and blade struc-
tural models for conceptual structural design.

Chapter 5 describes the wind turbine optimization methodology used in
the project.

Chapter 6 discusses results of aeroelastic optimizations.

Chapter 7 contains conclusions from the project.

Appendix A is a summary of the basic aerodynamic rotor equations.

Appendix B describes analytical equations for aerodynamic rotor design.

Appendix C describes the fatigue analysis used for simplifying a complex
dynamic load spectrum into an equivalent load.

Appendix D describes BEMcor. Published in Wind Energy.
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Appendix E describes numerical aerodynamic optimization using the cor-
rected blade element momentum method (BEMcor). Submitted for publi-
cation.

Appendix F describes analytical prediction of blade fatigue. Submitted
for publication.

1.5 Contributions

An overview of the work carried out during the 3-year PhD study is given below.
This includes topics which will not be described in detail in this thesis. Unless
otherwise stated the author is Mads Døssing.

• A method for analysis of wind tunnel measurements using high frequency
microphones distributed over the surface has been established. The anal-
ysis aims at determining the laminar to turbulent transition point. The
method is described in technical reports [28] and [29](co-author) and was
presented to the industry on the Aeroelastic Workshop, May 20081. Re-
sults are given in the technical reports [30][31] and [32].

Work has also been carried out in relation to the full scale DAN-Aero
experiment where transition has been measured under unsteady inflow
conditions.

• The corrected blade element momentum method BEMcor has been im-
plemented in the optimization program HAWTOPT. A reviewed article
on the method has been published in Wind Energy [11](Appendix D)(3rd
author). A conference paper [33] was also published at the 2009 EWEC
Conference in Marseilles and a poster presentation was given. A journal
article on aerodynamic optimization has been submitted for publication
in Wind Energy: Appendix E(1st author).

• Methods for analytical aerodynamic design has been studied and a model
based on constant axial induction has been defined (Appendix B). This
has clarifed key parameters in aerodynamic design.

• A structural model for cross section properties has been developed. This
has been combined with a simple method for layout of the material in
the blade in order to obtain structural data using as few parameters as
possible. This is described in Chapters 3 and 4. The model is linked to
HAWTOPT.

1Risø DTU EFP-Themeday
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• Based on comprehensive studies of aeroelastic simulations an analytical
model for the fatigue loads on blades due to shear, turbulence and gravity
loads has been been derived. A conference paper [34] was published at the
6th PhD Seminar Wind Energy in Europe, Trondheim 2010. A journal
article on the topic has been submitted for publication in Wind Energy:
Appendix F(1st author).

• HAWOPT, including BEMcor and the developed blade structure module,
has been linked to the aeroelastic calculation program HAWC2 and aeroe-
lastic optimizations have been carried out. The results are described in
this thesis.

• Collaboration with industrial partners has taken place in 2 projects where
blades have been designed. The contents of these projects are confidential.
The workload for the author was approximately 250 hours.

• Contributions have been made to a conference paper on winglets for wind
turbines by Gaunaa et al. [9](3rd author).



Chapter 2

Aerodynamic design

The topic of this chapter is the quasi-steady aerodynamic design of the rotor
at various wind speeds or tip speed ratios. This influences the annual energy
production and the mean value of structural loads, and it is therefore a good
starting point in the design process. A general introduction to rotor aerody-
namics will be given and this highlights key parameters.

Both analytical and numerical results are discussed. The analytical design model
is presented in detail in Appendix B and it describes the basic design variables.
However, even though the analytical designs are good they do not represent
the optimum, and for this the numerical models are necessary. Such numeri-
cal optimizations have been carried out and are described in Appendix E. In
this chapter selected results have been included. The numerical aerodynamics
were calculated using the corrected blade element momentum method (BEMcor)
which is described in Appendix D.

It will be explained later that the sensitivity to atmospheric turbulence can be
calculated based on quasi-steady aerodynamic design parameters. However, full
aeroelastic calculations will be necessary in order to include controller perfor-
mance and possible stability problems and the discussion about fatigue therefore
falls naturally into Chapters 5 and 6 and is omitted here.

Introductions to general wind turbine aerodynamics are found in Hansen MOL
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[2] and Burton et al. [3].

2.1 2D airfoil aerodynamics

The airflow at a given radius on the blade is to a first approximation 2 dimen-
sional. However, there are 3D effects due to spanwise flow and data must be
corrected for this. Important 2D aerodynamic parameters are the lift and drag
coefficients

Cl =
l

1/2ρv2relc
(2.1)

Cd =
d

1/2ρv2relc
(2.2)

where l is the lift, d is the drag, ρ is the density of air, c is the chord and vrel
is the relative inflow velocity.

The 2D flow depends on the Reynolds number Re, which typically is in the order
of 1.0e6 to 1.0e7 for a 5 MW machine depending on rotational speed1. At startup
the Reynolds number is small and it increases until the maximum rotational
speed is obtained. Airfoil data representing a typical Reynolds number can be
used but it is important to ensure that the data is not too sensitive to changes
in Re. The airfoil data can be obtained using computational fluid dynamics
(CFD) or by testing in a wind tunnel. XFoil [35] is a program which gives good
results at modest inflow angles. The 3D correction procedure used in this work
is described in [36]. Note that the blade element momentum method (BEM) is
depending on reliable 2D aerodynamic data. The uncertainty on this topic is
reduced by using profile series which are tested and validated.

Airfoil-data should be selected which are not sensitive to leading edge roughness.
The sensitivity depends on the actual design but in general airfoils which have
a thickness relative to chord greater than t ≈24% are sensitive. Thus, from an
aerodynamic viewpoint it is important that as much as possible of the blade
is made using thin profiles, i.e. the relative thickness should be in the range
15%< t <24%.

It is important that the airfoil has little drag, because it decreases the turbine
power. The optimum lift to drag ratio l/d=Cl/Cd is usually limited to a small
range of the angle of attack α, and the blade should therefore operate at that
design point. For a given aerodynamic design, the value of Cl dictates c, since a

1Re is based on c
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given lift must be obtained. The choice of Cl therefore affects many structural
parameters such as stiffness and mass etc., which depend on c. These are impor-
tant parameters influencing the aeroelastic properties and this yields a complex
optimization problem. Experience shows that airfoils should have a high design
lift coefficient because it reduces the dynamic loading due to turbulence and the
results from Chapter 6 confirms this. The range from Cl to its maximum value
Cl,max should also be considered because it may affect stall induced vibrations
and because there should be some safety in that the Cl value can be obtained
in practice.

2.2 3D aerodynamic design

The 3D aerodynamics refers to the overall flow which is not limited to an area
close to the blades. This flow is governed by the axial induction a which decel-
erates the flow of air past the rotor, but a number of other phenomena are also
important. The 3D flow depends on the aerodynamic load distribution on the
blades. Given an optimum load distribution it is possible to design a blade in
many ways, and the result will depend strongly on the 2D airfoil data - this will
be explained in detail below.

The aerodynamics can e.g. be calculated using the following methods: Navier-
Stokes computational fluid dynamics (CFD), where the actuator line method
and the actuator disc method (ACD) are special cases, potential flow methods
and the blade element momentum method (BEM). At the Technical University
of Denmark, a method is being developed where a CFD code is used in the
viscous boundary layer and the surrounding flow is calculated using a potential
flow method. The latter and CFD are the only methods which do not depend
on 2D data, but unfortunately they are computational heavy.

In the present work, the corrected blade element momentum method BEMcor

[11] was used for numerical calculations. This is a fast method and the accuracy
is good because it includes the effects of wake expansion and pressure change
caused by wake rotation. It is further important to note that very accurate 2D
airfoil data is available today where CFD and high quality wind tunnels are
available - however, it is still necessary to correct the data for 3D and roughness
effects and this procedure requires considerable engineering skills.

Before making optimizations it is worth studying the theory behind the 3D
aerodynamics because the problem can be reduced to depend on a few dimen-
sionless key-parameters. Important dimensionless integral properties are the
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power, thrust and root flap moment coefficients

CP =
P

1/2ρV 3
0 πR

2
(2.3)

CT =
T

1/2ρV 2
0 πR

2
(2.4)

CF =
MFNB

1/2ρV 2
0 πR

3
(2.5)

where P is the power due to aerodynamics, T is the thrust force and MF is the
moment measured in the rotor center. V0 is the wind speed, R is the rotor radius
and NB is the number of blades. P is acting on the shaft and the electrical power
is diminished by the drive train losses. T generates an overturning moment on
the tower and MF is equal to the bending moment if the blade is clamped-free,
which is usually the case. For fixed tip speed ratio λ, a blade with defined twist
(β), tip pitch (θp) and chord distribution will experience flow similarity and
constant values of CP , CT and CF . λ is defined as

λ =
ΩR

V0
(2.6)

where Ω is the rotational speed. It will be shown in Section 2.3 that the require-
ment for a fixed chord can be overcome by requiring a fixed design parameter
instead, which gives some freedom in the value of c. The flow similarity is
caused by similarity in the loads distributed along the blade. The dimensionless
load distribution is given by the local thrust and torque coefficients: Ct and Cq
((A.14) and (A.15)). Cq can be found for a given Ct and the aerodynamics can
therefore be reduced to depend on only Ct and λ.

2.3 Design equations

The important parameters can best be explained by studying the basic rotor
theory. A comprehensive summary of important equations can be found in
appendix A.

The lift and drag coefficients, which depend on the local angle of attack, are
projected onto a direction normal and tangential to the rotor plane yielding the
normal coefficient Cy and the tangential coefficient Cx (Equations (A.12) and
(A.11)). The thrust coefficient is then defined as

Ct =
v2relCycNB
V 2
0 2πr

(2.7)
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where r is the radius. Cy is usually dominated by the lift forces and assuming
zero drag the equation may be rewritten2

c∗ClNB = Ct2π
r∗

v∗rel
2 cosφ

(2.8)

where φ is the inflow angle measured relative to the rotor plane. v∗rel=vrel/V0
is the dimensionless relative velocity and r∗=r/R the dimensionless radius. For
fixed λ and Ct, both v∗rel and φ are fixed as well and may be calculated as de-
scribed in section A.5. For a given λ and distribution of Ct over the blade, the
distribution of c∗ClNB is a corresponding design parameter which will ensure
a similar load distribution. It is noted that the design parameter will depend
slightly on NB because it affects the tip losses which changes v∗rel and φ. How-
ever, this is limited to the tip region and the changes are small. Thus NB is
included in the design parameter to highlight that the 3D design is largely inde-
pendent on the number of blades. In section 2.4 a detailed analytical example
is given.

Besides from λ and the design parameter distribution, all other quasi-steady
properties follows in dimensionless form. E.g. CF , CP and CT .

Examples of optimum distributions of c∗ClNB can be found in appendix F where
the inflow angles are shown as well.

The actual blade shape is found by specifying Cl and NB and calculating c∗.
The blade twist β can be found from the inflow angle and the specified angle
of attack using equation (A.4). c∗ and β now defines the aerodynamic shape of
the blade. The relative thickness t can be omitted in the aerodynamic analysis
if Cl and l/d are defined, which may be useful for design purposes. t is mainly
important for the structural properties and will first be included in Chapter 5.

The definition of the design parameter is inspired by the work of Burton et al.
[3] which describes a blade geometry parameter similar to c∗ClNB .

2.4 Analytical design equations for uniform thrust

Equation (2.8) is local (i.e. distributed along the blade span). To obtain integral
quantities such as CP it is necessary to define λ and the distribution of e.g. Ct.
An analytical study has been made on rotors with constant axial induction,

2note that the drag can not be neglected when calculating the power but here it is a good
approximation
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which is equivalent to prescribed load distribution. The details can be found in
Appendix B and the results are discussed below.

The turbine is defined by specifying λ and Ct2, which is Ct corrected for tip
losses

λ , Ct2,d = (Ct/F)design (2.9)

Where F is Prandtl’s tip loss factor. The axial induction is related to Ct2,d
according to (A.40).

a = k3C
3
t2,d + k2C

2
t2,d + k1Ct2,d (2.10)

This polynomial is used in HAWC2 [37] and represents the classic BEM results
at low loadings and ACD results at high loading. In the following it must be
remembered that a=a(Ct2,d), which is not explicitly written. Two dependent
design coefficients are defined and they govern the influence of tip losses and
wake rotation.

A1 =
1

2
NB

√
1 +

λ2

(1− a)2
, A2 =

Ct2,d
λ2

(2.11)

The influence of tip losses is described by integrals which have been calculated
numerically for different values of A1. By fitting a curve to the result a correction
on total thrust due to tip losses is found (A1 >5)

CT,F = − 1.392

1.2 +A1
Ct2,d (2.12)

A similar correction on the flap moment is (A1 >5)

CF,F = − 1.4

2.3 +A1
Ct2,d (2.13)

By integrating as function of A2, a correction for wake rotation losses on the
power is found (A2 <0.065)

CP,a′ =
(
4.906A2

2 − 1.173A2 − 0.002362
)
Ct2,d(1− a) (2.14)

The total thrust and root flap moment coefficient can now be found

CT = Ct2,d + CT,F , CF = 2/3Ct2,d + CF,F (2.15)

The influence of drag on the power is

CP,d = −CFλ (l/d)
−1

(2.16)
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where a uniform l/d is assumed. The importance of l/d is seen, and this should
be as high as possible. CP,d is the only quantity which depends on drag, and
this follows from the assumption that drag has no influence on Ct. The total
aerodynamic power is

CP = (1− a)CT + CP,a′ + CP,d (2.17)

(1 − a)CT is the major contribution to the shaft power and it represent the
power exerted by the airflow onto the rotor thrust. It is diminished by CP,a′

and Cp,d. The inviscous power coefficient CP,l is defined as

CP,l = CP − CP,d (2.18)

In general CP,l can be calculated using Equation (A.53).

The distributed flapwise moment due to aerodynamics is

Cf = Ct2,d

(
1/3r∗3 − r∗ + 2/3

)
+ CF,F − r∗CT,F , r∗ <

r∗F + 1

2
(2.19)

where r∗F is the radial position where tip losses becomes negligible (Eq. A.39).
The flapwise bending moment is usually the dominating force on the blade and
the layup of the main spars may be based on (2.19). In that case Mf should
be calculated at rated wind speed where the aerodynamic forces are largest (for
pitch regulated turbines). Note that the dimensionless bound circulation and
other quantities also follows from the analysis. The tip loss factor is

F =
2

π
arccos

(
eA1(r

∗−1)
)

(2.20)

Equations (2.9) to (2.20) are relatively simple considering the complexity of the
problem and the important quantities can be plotted as function of λ and Ct2,d.
Figure 2.1, 2.2 and 2.3 shows contour plots of CP , CT and CF for l/d=100. The
CP contours depend strongly on l/d and the value selected is representative for
most practical designs. There is a clear peak in the predicted power around
λ=8 and Ct/F=0.98. On the figure is also seen the working points for the
NREL 5MW reference turbine [18]. Figure 2.4 shows the spanwise distribution of
the design parameter at various working points. In general, the design parameter
becomes larger at low λ and high loading (Ct/F ) but by varying Cl it is also
possible to obtain the exact same chord distribution independent of λ, as long
as the Cl value can be obtained in practice. However, often Cl is determined
based on the selected airfoil, structural requirements and aeroelastic properties.
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Figure 2.1: Contour plot of CP versus local thrust coefficient and tip speed
ratio. The symbols indicate values for NREL 5MW. The triangle represents
the largest λ which is equivalent to wind speeds in the range 5< V0 <9 m/s
where Ω is varied. The circles represent V0=10 and 11 m/s where the max Ω
is reached and λ therefore decreases and the turbine is less aerodynamically
efficient (lower CP ). The crosses indicate wind speeds where the rated power
is reached (11 m/s< V0). The trust drops significantly because the blades are
pitched toward lower angle of attack to reduce power. Note that this is an
idealized representation of the working points for a PRVS turbine.

The CF contours are aligned with the CT contours but in more refined designs it
is important to notice that reductions in bending moments may be obtained by
optimization, which will decrease the loading near the tip. Figure 2.5 shows
distributed variables for NREL 5MW in its original layout at λ=7. The design
parameter is compared to the analytical found using the analytical model and
the same λ. Ct/F is selected in order to obtain the same CP as NREL 5MW. The
largest difference is found near the root and tip. Note that on NREL 5MW Ct/F
is increasing toward the tip, which is often seen in practice. An improvement to
the analytical design model would therefore be to use a distribution model for
Ct/F which decreases near the root and increases near the tip.

There are no corrections for wake expansion and the effects of wake pressure
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Figure 2.2: Contour plot of CT versus local thrust coeffient and tip speed ratio.
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Figure 2.3: Contour plot of CF versus local thrust coeffient and tip speed ratio.

due to rotation, but these effects may be neglected when studying first order
effects. The effects are included in BEMcor, which will be used in subsequent
numerical calculations and optimizations.

2.5 Single and multi point optimization

The design parameter is defined in a working point represented by λ. A final
design can only be made by considering the whole range of operating conditions
but the single point design will still be a good first approximation. Typically a
λ value is selected which corresponds to wind speeds below rated power because
there is no need for power optimization above rated wind speed. For PRVS
turbines, AEP is only slightly affected by the turbine being designed in a single
point, but it is noted that this depend on many factors and the designer must
consider this in the design process. If the turbine operates at wind speeds
where the design λ can not be achieved due to restrictions in rotational speed,
the turbine will pitch toward higher angles of attack in order to maintain a high
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Figure 2.4: Overview of the aerodynamic design parameter versus local thrust
coeffient and tip speed ratio.

loading despite Ω being below design value. If Cl,max is reached there will be a
drop in power in addition to the drop in power caused by the increase in drag as
the airfoil gets closer to stall. This must be considered if the design point is well
below rated wind speed and λ is large - in that case there should be sufficient
lift reserve between Cl and Cl,max. In Chapter 6 a design point at rated power
is used (i.e. low λ) which gives good initial results. Thus, PRVS turbines may
be optimized in a single point, but a multi point optimization is still necessary
for the evaluation of fatigue loads and for final optimization of AEP.

2.6 Numerical aerodynamic optimization

In the following a summary of the work done on aerodynamic optimization of
wind turbine rotors is given. It is described in details in Appendix E.

The blade element momentum method with corrections for wake rotation and
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Figure 2.5: Design variables for the NREL 5MW turbine at λ=7.

expansion (BEMcor) was used. The wake rotation refers to the positive effects of
the suction created behind the turbine in the root region. The wake expansion
has a negative effect near the tip. Both effects are not included in the traditional
BEM method. BEMcor is described in detail in [11].

A plot of the dimensionless axial velocity in the rotor plane v∗a=va/V0 is useful for
validation of BEMcor, because the corrections are included in order to calculate
it more accurately. Figure 2.6(a) shows the difference in v∗a obtained using BEM
and BEMcor for a redesign of the NREL 5MW rotor where the rotor is designed
for maximum power at λ=8, using Risø B1-15 airfoils with design Cl=1.4 and
l/d=110 on the entire rotor (Ref. [38]). ∆vW and pw refers to details in the
model. The results are compared to an ACD calculation and a good agreement
is observed between BEMcor and ACD - ACD being the most accurate of the
methods. The BEM method shows some differences in the root and tip region.
The impact of these differences depends on the actual blade design and its
load distribution, leading to differences in CP , CT and CF . Table 2.1 compares
results for the NREL 5MW turbine [18] at wind speeds of 5 and 11 m/s. BEMcor

predicts a 0.5% lower value of CP , compared to BEM.

A series of aerodynamic optimizations have been carried out. The objective was
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CP CT CF
V0=5 m/s, λ=8.0
BEMcor 0.4937 0.8637 0.5884
BEM 0.4961 0.8697 0.5964
V0=11 m/s, λ=6.4
BEMcor 0.4593 0.7186 0.4811
BEM 0.4617 0.7183 0.4831

Table 2.1: Comparison of different aerodynamic models used to calculate prop-
erties for the NREL 5MW turbine [18].

either maximum power, or minimum thrust at reduced power. The latter is in
order to reduce the loads which increase dramatically when the optimum power
is sought. The optimization variable is the distribution of axial induction, which
is equivalent to the load distribution. Note that results have been found using
both BEM and BEMcor in order to highlight differences in the design optima.

Figure 2.6(b) shows the optimum values of CP plotted against λ. The results
are given with and without tip losses and drag, and the importance of these
effects can be seen. The most realistic case is with tip losses and drag included,
and there is very little difference in the results for 6< λ <8, which is often the
range for operation below rated power.

Figure 2.7 shows the optimized design parameter and inflow angle distributions
at two operation points: λ=5 and λ=7. It is noted that there is only a minor
difference between BEM and BEMcor. The distributions of the design parameter
are almost equal. The major difference is in the inflow angle, and the blade twist
should therefore be different.

Optimizations at λ=6 and 8 at reduced power, shows that there may be impor-
tant differences in CP , CT and CF when comparing BEM and BEMcor. This is
discussed in detail in Appendix E. Note that BEMcor shows a possible reduction
in the flapwise bending moment at λ=6, which is a typical value at rated power
where the largest quasi steady loads are found, i.e. the design loads.
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2.7 Conclusions

All quasi-steady key parameters in the 3D aerodynamic design are dimensionless
and follows from λ and the distribution of Ct. This includes the distributions
of inflow angle φ and the design parameter c∗ClNB and moment coefficient Cf
as well as the integral power, thrust and moment coefficients (CP , CT and CF ).
These quantities have been described analytically in the case of a defined con-
stant value of Ct2, which is equivalent to a constant axial induction. Examples
of the design parameter optimized using BEM and BEMcor have been given.

Given the 3D aerodynamic design the actual distribution of c∗ follows from the
distribution of Cl which is a key 2D parameter. The value of c∗ influences the
blade structural parameters such as stiffness, mass and eigenfrequencies, and is
also important for the fatigue sensitivity to unsteady inflow.

The 2D drag has very little influence on the 3D aerodynamics and therefore
it has no direct influence on the blade design. Instead, the drag generates a
moment which reduces the turbine power. In practice, the choice of Cl will
depend on the drag characteristics (i.e. a high l/d is preferable) but this may be
overcome by using profiles with good performance at the desired Cl values.

BEMcor has been validated and gives results which are close to those of an
actuator disc. For a specific turbine, the difference in predicted CP was 0.5%.
It has also been shown that there are fundamental differences in the optima
for BEMcor compared to BEM. E.g. a turbine with the same power may be
designed for a lower flapwise bending moment using BEMcor. The difference in
the blade aerodynamic shape is mainly on the twist.
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Chapter 3

Structural model for the blade
sections

This chapter deals with the structural properties of a blade cross section. A
relatively simple model is used which is sufficient to provide the most important
data which is used as input to the blade layout model presented in Chapter
4. The method is based on dimensionless coefficients from which scaling to the
actual chord and shell thickness can be made.

In the following it is shown how structural parameters can be obtained, which
are assumed to be sufficient to make trustworthy aeroelastic calculations and
stability analysis. Because the scope of this work is not in the structural details
it is possible to reduce the number of inputs, which will simplify aeroelastic
optimizations. The important structural data which should be modeled includes
the bending stiffness EI, the torsional stiffness GJ , the section mass m and
various centers. The method predicts the center of gravity (CG) and the elastic
center (EA1). The shear and aerodynamic centers (SC and AC) are not described
and are defined. From 2D analysis for thin airfoils it is known that AC is in 1/4c
and this will be assumed to be true in general. SC is assumed constant. Flutter
stability depends mainly on EA, CG and AC but other instability issues and the
general aeroelasticity is more complicated. The geometrical shape of the blade
(sweep, prebend etc.) and the distribution of properties are also important, but
this is treated in later chapters.

1EA should not be confused with the spanwise stiffness EA
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The method is based on integrals which in general can be calculated numerically
for an arbitrary cross-section. A model where the cross section is represented
by straight line polygons is also described. This has the advantage that an an-
alytical solution is available. However in the following chapters data obtained
numerically for realistic shaped airfoils is used. Methods based on Taylor ex-
pansions are also given as well as a study of simple scaling of reference data.

A general introduction to the wind turbine cross section properties is found in
M.O.L. Hansen [2]. This has been combined with the methods for structural
idealization described in Megson [39], Chapter 9.

The important material parameters are the spanwise elastic modulus E11, the
in-plane shear modulus G12 of the outer shells and the density ρ. Subscript 1
refers to the spanwise direction which is orthogonal to the cross section. In the
following the notation is simplified to E and G.

3.1 Coordinates and section layout

The calculations are based on thin walled sections (shells) which are divided
into sectors denoted α, β, γ and δ. α, β and γ sectors follow the airfoil surface.
The δ sectors represent the shear webs. Shear deformations are not considered
and in the following the δ sectors are included primarily to take their mass into
account.

The structural sections are defined symmetrically around EA. In that way EA
will not move if more material is added in a sector. The α sector is the main
carrying spar and the γ-sector represents the leading and trailing edges. The β
sector is connecting the two and δ represents the shear webs. They are defined
by x1 . . . x5 which gives the positions along the chord line relative to the leading
edge.

The following analysis is simplified by using a coordinate system with origo in
the elastic axis (EA) (see Figure 3.1). The position can be determined using (3.6)
and the coordinate system subsequently moved. Figure 3.2 shows an example
of a structural layout before translating the coordinates so they will have origo
in EA.
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3.2 Structural integrals

The important structural quantities are described by the integrals in Table 3.1.
The torsional stiffness requires special considerations and is included later.

Section area (closed section) A0 =
∫
S

sgn(y)y dx
Section mass m =

∫
A
ρ dA

Longitudinal stiffness EA =
∫
A
E dA

Moment of stiffness about the x axis ESx =
∫
A
Ey dA

Moment of stiffness about the y axis ESy =
∫
A
ExdA

Moment of mass about the x axis ρSx =
∫
A
ρy dA

Moment of mass about the y axis ρSy =
∫
A
ρx dA

Moment of stiffness inertia about the x axis EIx =
∫
A
Ey2 dA

Moment of stiffness inertia about the y axis EIy =
∫
A
Ex2 dA

Moment of centrifugal stiffness EDxy =
∫
A
Exy dA

Table 3.1: Definitions of cross section integrals. Note that A0 should be inte-
grated over the surface contour lines described by y(x) in order to obtain the
enclosed area. sgn denotes the sign of y. A refers to areas where material is
present. E is the elastic modulus and ρ the mass density.

Assuming thin shells with thickness h and uniform properties across them it
is possible to switch to line integrals along the shell lines described by r =
{x, y(x)}. Using the chordwise coordinate x as parameter, the area segment is

dA = h ds , ds =

∥∥∥∥ drdx
∥∥∥∥ dx =

√
1 +

(
dy(x)

dx

)2

dx (3.1)

Where ds is the curve length. Note that airfoil surfaces are usually described by
x and y(x) so the integrations are now single integrals over x. x is not a possible
parameter if sections are aligned with the y-axis which is the case for the shear
webs. In that case y must be used as integration variable and ds = dy. The
section shell thickness’s are defined as

hα = αc , hβ = βc , hγ = γc , hδ = δc (3.2)

The section mass integral can now be written as

m =

∫
A

ρh ds = αcρα

∫
α

ds+ βcρβ

∫
β

ds+ γcργ

∫
γ

ds+ δcρδ

∫
δ

ds (3.3)

The geometrical quantities are made dimensionless by dividing with the chord

x∗ =
x

c
, y∗ =

y

c
⇒ ds∗ =

ds

c
(3.4)
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This results in the following expression where the integral may be evaluated
numerically

m = c
∑
i

hiρi

∫
i

ds∗ = c2
∑
i

αiρi

∫
i

ds∗ (3.5)

Index i refers to the different sectors and αi is the given sectors thickness pa-
rameter (α, β, γ, δ). The integral is a dimensionless geometrical quantity which
depends on the structural shape and the layout of the sectors. Note that the
integration over the α sector includes two integrals - one on the pressure side
and one on the suction side. In the same way the integrations over the other
sectors are divided into sub-integrals each having a monotonically increasing
integration variable. Repeating the procedure for all structural integrals yields
the dimensionless coefficients in Table 3.2.

CA0
=
∫
i
sgn(y∗)y∗ dx∗

CAi =
∫
i
ds∗

CSxi =
∫
i
y∗ ds∗

CSyi =
∫
i
x∗ ds∗

CIxi =
∫
i
y∗2 ds∗

CIyi =
∫
i
x∗2 ds∗

CDxyi =
∫
i
x∗y∗ ds∗

Table 3.2: Dimensionless geometrical quantities. These should be calculated
using a coordinate system with origo in EA in order for scaling to be correct.

The structural properties can now be expressed as listed in Table 3.3.

Section area (closed section) A0 = c2CA0

Section mass m = c2
∑
i αiρiCAi

Longitudinal stiffness EA = c2
∑
i αiEiCAi

Moment of stiffness about the x axis ESx = c3
∑
i αiEiCSxi

Moment of stiffness about the y axis ESy = c3
∑
i αiEiCSyi

Moment of mass about the x axis ρSx = c3
∑
i αiρiCSxi

Moment of mass about the y axis ρSy = c3
∑
i αiρiCSyi

Moment of stiffness inertia about the x axis EIx = c4
∑
i αiEiCIxi

Moment of stiffness inertia about the y axis EIy = c4
∑
i αiEiCIyi

Moment of centrifugal stiffness EDxy = c4
∑
i αiEiCDxyi

Table 3.3: Cross section properties based on dimensionless coefficients.

The coefficients have been calculated numerically based on the geometry of the
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NACA 34xx airfoil series using defined values of x1 . . . x5. The resulting set of
coefficients depends on thickness and are given in Section 3.8. An example of
analytical expressions for the coefficients is given in Section 3.6.

The center of gravity and the center of mass are found as (note that xEA=0 if
the coefficients are correctly calibrated)

xEA =
ESy
EA

yEA =
ESx
EA

(3.6)

xCG =
ρSy
m

yCG =
ρSx
m

(3.7)

3.3 Principal axes

The 1st principal axis is rotated by the angle ν

ν =
1

2
tan−1

(
2EDxy

EIy − EIx

)
(3.8)

The 2nd principal axis is perpendicular to the 1st. The bending stiffness’s about
the principal axes are

EIx′ = EIx − EDxy tan ν (3.9)

EIy′ = EIy + EDxy tan ν (3.10)

3.4 Torsional stiffness

Assuming St. Venant torsion for a single closed cell, i.e. the profile surface shell
is assumed to carry all shear forces due to torsion.

GJ =
4A2

0∮
1

h(s)G(s) ds
(3.11)

Rewriting using the α, β, γ definitions

1/GJ =

∮
1

h(s)G(s) ds

4A2
0

(3.12)

1/GJ =

1
αGα

CAα + 1
βGβ

CAβ + 1
γGγ

CAγ

4C2
A0
c4

(3.13)
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If the section can not be approximated by a single cell, the method of successive
approximations can be used (see [39]), however, the method is iterative and
cannot be linearized easily.

3.5 Material parameters

The structural model requires that the user specifies E11, G12 and ρ for each
sector on the blade. In most cases the material will be a fiber laminate and the
values must represent the overall engineering values. This gives considerable
flexibility for the user when selecting E11 and G12, which depends on the layup.
The use of fiber laminates also allows twist-bending coupling, but this is not
included in the model. In the laminates, a symmetric fibre layup must therefore
be used because it has zero twist-bending coupling.
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Figure 3.3: Layout of polygon model (t=21%). EA and CG are for the polygon
model.

3.6 Polygon model

The geometrical coefficients in Table 3.2 can be determined analytically using
the expressions in Table 3.4. The layout corresponds to a polygon model with
straight line segments as seen in Figure 3.3. The slope a is defined to make
the profile taper off to zero at the trailing edge. Note that the principal axes
by definition are aligned with the x and y axes. Note that x1 . . . x5 now are
defined relative to EA, the position of which must be assumed. However, it is
relatively safe to assume EA=0.4 relative to the leading edge. t is the relative
profile thickness.

a − t
2(x5−x3)

b
√

1 + a2

CA0α (x3 − x2)t
CA0β

(x2 − x1 + x4 − x3)bt
+(3x21 + x24 + 3x22 − 6x2x1 + x23 − 2x3x4)ab

CA0γ
(x5 − x4)bt+ (x25 − x24 − 2x3x5 + 2x3x4)ab

CA0δ
0

CAα 2(x3 − x2)
CAβ 2(x2 − x1 + x4 − x3)b
CAγ t+ 2(x5 − x4)b+ 2(x2 − x1)a
CAδ 2t
CIxα 1/2(x3 − x2)t2

CIxβ 1/2(x2 − x1 + x4 − x3)bt2 + (3(x2 − x1)2 + (x4 − x3)2)abt
+(14/3(x2 − x1)3 + 2/3(x4 − x3)3)a2b

CIxγ (2b((a(x5 − x4) + 1/2t+ a(x4 − x3))3 − (1/2t+ a(x4 − x3))3))/(3a)



3.7 Example: NACA 3421 33

+2/3(1/2t+ a(x2 − x1))3

CIxδ 1/6t3

CIyα
2/3(x33 − x32)

CIyβ
2/3(x32 − x31 + x34 − x33)b

CIyγ x21t+ 2/3(x35 − x34)b+ (2x2x
2
1 − 2x31)a

CIyδ (x22 + x23)t

CSyα x23 − x22
CSyβ (x22 − x21 + x24 − x23)b

CSyγ x1t+ (x25 − x24)b+ (2x1x2 − 2x21)a

CSyδ (x2 + x3)t

CDxyα 0
CDxyβ 0

CDxyγ 0

CDxyδ 0

Table 3.4: The structural coefficients for the polygon model.

3.7 Example: NACA 3421

To validate the model the 5MW NREL reference turbine at r=37.7 m (t=21%)
has been used as a test case. The structural layout has been modelled using 3
methods:

1. Numerical integration of coefficients based on the geometry of a NACA
3421 profile.

2. The polygon model for calculation of coefficients.

3. PreComp and the geometry of a NACA 3421 profile. PreComp [40] is a
numerical tool for determining cross section properties.

The NREL 5MW turbine uses TU Delft profiles but here the NACA 3421 profile
is used because its shape is representative for many airfoils. Results are found in
Table 3.5. All 3 models yields results which are close to the target values of the
reference turbine. The input parameters have been varied based on assumptions
for the structural layout and material parameters until the values for m, EA,
EIx, EIy and GJ showed good agreement. The model is then considered to be
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calibrated. Note that the simplified semi-analytical models yield good results
but that the polygon model requires some tuning of G.

The value of EA reported in the NREL5MW documentation [18] appears to
be very high and a lower value have been assumed instead which appears to be
more realistic. EA influences the local spanwise strains and stresses, but besides
from that it has very little influence, and the uncertainty has been accepted.

Figure 3.4 shows the properties when the thickness of the α-sector is scaled by
fα. PreComp is considered to be most accurate and the other methods yield
good results when compared.
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Figure 3.4: A comparison of the results when scaling α with the factor fα
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3.8 Structural coefficients for the NREL 5MW
turbine

The process described in Section 3.7 has been repeated for different airfoil thick-
ness, resulting in the following set of coefficients:

Designation NACA3417 NACA3421 NACA3425 NACA3430 NACA3435 NACA3440 Cylinder
t [%] 1.7000e+001 2.1000e+001 2.5000e+001 3.0000e+001 3.5000e+001 4.0000e+001 1.0000e+002
C_A0_alfa 5.5124e-002 6.7844e-002 8.0862e-002 9.7696e-002 1.1500e-001 1.3046e-001 3.4045e-001
C_A0_beta 5.2422e-002 6.4705e-002 7.7813e-002 9.3985e-002 1.1004e-001 1.2404e-001 3.8565e-001
C_A0_gamm 5.7512e-003 6.5273e-003 7.4610e-003 8.9122e-003 1.0264e-002 1.1569e-002 5.9285e-002
C_A0_delt 0 0 0 0 0 0 0
C_A_alfa 7.0329e-001 7.0364e-001 7.0063e-001 7.0102e-001 7.0421e-001 7.0781e-001 7.1001e-001
C_A_beta 1.0540e+000 1.0641e+000 1.0746e+000 1.0865e+000 1.1017e+000 1.1146e+000 1.2839e+000
C_A_gamm 2.7261e-001 2.8745e-001 3.4040e-001 3.4033e-001 3.6946e-001 3.9734e-001 1.1523e+000
C_A_delt 2.9242e-001 3.6059e-001 4.3210e-001 5.2196e-001 6.1290e-001 6.9282e-001 1.8753e+000
C_Ix_alfa 4.3614e-003 6.6011e-003 9.4330e-003 1.3798e-002 1.9102e-002 2.4551e-002 1.7023e-001
C_Ix_beta 3.0281e-003 4.6085e-003 6.6647e-003 9.8241e-003 1.3651e-002 1.7629e-002 1.9283e-001
C_Ix_gamm 2.4869e-004 3.4820e-004 4.9023e-004 7.3366e-004 1.0586e-003 1.4318e-003 2.9643e-002
C_Ix_delt 5.2832e-004 9.8754e-004 1.6972e-003 2.9877e-003 4.8340e-003 6.9774e-003 1.3739e-001
C_Iy_alfa 8.9966e-003 8.2903e-003 7.9196e-003 8.0577e-003 8.1784e-003 7.6762e-003 7.2741e-003
C_Iy_beta 1.1361e-001 1.1910e-001 1.2191e-001 1.2210e-001 1.2419e-001 1.3109e-001 1.2815e-001
C_Iy_gamm 5.8725e-002 6.1096e-002 6.9610e-002 6.9790e-002 7.4295e-002 7.8053e-002 2.5844e-001
C_Iy_delt 1.0081e-002 1.1897e-002 1.3895e-002 1.7027e-002 1.9959e-002 2.1976e-002 5.6643e-002
C_Dxy_alfa 8.3234e-005 1.0531e-004 1.2147e-004 1.7312e-004 1.6142e-004 2.0193e-004 5.3480e-004
C_Dxy_beta -8.4465e-004 -1.0674e-003 -1.0595e-003 -1.1011e-003 -1.1660e-003 -1.1758e-003 6.0500e-004
C_Dxy_gamm -3.4157e-004 -4.1661e-004 -3.1042e-004 -6.2714e-004 -7.6367e-004 -1.1894e-003 9.3861e-005
C_Dxy_delt 1.5784e-004 2.0172e-004 2.1477e-004 2.4017e-004 2.3416e-004 2.4411e-004 -1.7795e-004
C_Sx_alfa 2.6807e-003 2.2678e-003 2.1356e-003 2.0437e-003 2.2753e-003 1.1591e-003 -2.7710e-007
C_Sx_beta -4.2287e-003 -5.3971e-003 -4.1186e-003 -3.5485e-003 -3.4051e-003 -3.3476e-003 -2.1460e-006
C_Sx_gamm -4.6190e-003 -4.7668e-003 -5.0928e-003 -4.4463e-003 -4.1570e-003 -3.4124e-003 1.1952e-006
C_Sx_delt 2.4179e-004 1.3353e-005 2.5686e-004 3.4264e-004 4.9414e-004 1.6570e-004 -7.3188e-007
C_Sy_alfa -3.5268e-002 -2.7316e-002 -2.3568e-002 -2.5581e-002 -2.6219e-002 -1.6491e-002 4.1162e-004
C_Sy_beta 1.7383e-001 1.8641e-001 1.9254e-001 1.9045e-001 1.9236e-001 2.0717e-001 1.7915e-003
C_Sy_gamm 8.7910e-003 5.4370e-003 -9.6036e-003 -7.5650e-003 -1.7439e-002 -2.0861e-002 -1.1645e-003
C_Sy_delt -1.7427e-002 -1.7604e-002 -1.8307e-002 -2.3885e-002 -2.8138e-002 -2.3075e-002 1.0872e-003
x1/c 5.0000e-002 5.0000e-002 5.0000e-002 5.0000e-002 5.0000e-002 5.0000e-002 8.0000e-002
x2/c 1.8000e-001 1.8000e-001 1.8000e-001 1.8000e-001 1.8000e-001 1.8000e-001 3.2500e-001
x3/c 5.3000e-001 5.3000e-001 5.3000e-001 5.3000e-001 5.3000e-001 5.3000e-001 6.7500e-001
x4/c 9.2000e-001 9.2000e-001 9.2000e-001 9.2000e-001 9.2000e-001 9.2000e-001 9.2000e-001
x5/c 9.8000e-001 9.8000e-001 9.8000e-001 9.8000e-001 9.8000e-001 9.8000e-001 1.0000e+000
alfa_0 6.0000e-003 8.0000e-003 8.0000e-003 7.2000e-003 6.0000e-003 1.0500e-002 6.0000e-003
beta_0 3.0000e-003 3.0000e-003 3.0000e-003 3.0000e-003 3.0000e-003 3.0000e-003 7.0000e-003
gamm_0 3.0000e-003 3.0000e-003 3.0000e-003 3.0000e-003 3.0000e-003 3.0000e-003 8.0000e-003
delt_0 3.0000e-003 3.0000e-003 3.0000e-003 3.0000e-003 3.0000e-003 3.0000e-003 0
x_EA 4.0584e-001 3.9450e-001 3.8856e-001 3.9146e-001 3.9160e-001 3.7848e-001 4.9942e-001
y_EA 2.3190e-002 2.4263e-002 2.4129e-002 2.4536e-002 2.5040e-002 2.5736e-002 3.9028e-007
x_CG 4.3713e-001 4.2276e-001 4.1595e-001 4.1834e-001 4.1861e-001 4.0102e-001 4.9967e-001
y_CG 2.2118e-002 2.3120e-002 2.3251e-002 2.3779e-002 2.4320e-002 2.5194e-002 7.3218e-008

Note that the values of x1 . . . x5 were varied until good agreement with the
reference data for e.g. EIx was obtained. This also included tuning of E, G, ρ
and αi.
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NREL 5MW t=0.21 PreComp Numerical Polygon
x1 - 0.05 0.05 0.05
x2 - 0.18 0.18 0.18
x3 - 0.53 0.53 0.53
x4 - 0.92 0.92 0.92
α - 0.008 0.008 0.008
β - 0.003 0.003 0.003
γ - 0.003 0.003 0.003
δ - 0.003 0.003 0.003
ρα kg/m3 1800.0 1800.0 1800.0
ρβ kg/m3 1800.0 1800.0 1800.0
ργ kg/m3 1800.0 1800.0 1800.0
ρδ kg/m3 1800.0 1800.0 1800.0
Eα Pa 37.0e9 37.0e9 37.0e9
Eβ Pa 15.0e9 15.0e9 15.0e9
Eγ Pa 30.0e9 30.0e9 30.0e9
Eδ Pa 15.0e9 15.0e9 15.0e9
Gα Pa 2.3e9 2.3e9 2.5e9
Gβ Pa 2.3e9 2.3e9 2.5e9
Gγ Pa 2.3e9 2.3e9 2.5e9
Gδ Pa 2.3e9 - -
xSC - 0.397 - -
xEA - 0.400 0.395 0.406
xCG - 0.427 0.423 0.433
m kg/m 220.6 228.0 227.1 230.3
EA N 3.06e9 3.502e9 3.496e9 3.52e9
EIx Nm2 3.15e8 3.037e8 3.073e8 3.273e8
EIy Nm2 1.83e9 1.923e9 1.902e9 1.999e9
GJ Nm2 4.59e7 4.521e7 4.540e7 4.575e7
ν deg. -0.438 -0.224 0
EIx′ Nm2 - 3.073e8 -
EIy′ Nm2 - 1.902e9 -

Table 3.5: Comparison of model input data and results when modeling the
properties of the 5MW NREL reference turbine at r=37.7 m (t=21%). The
upper part of the table is input data and lower the output of the models.
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3.9 Matrix representation

Often ν ≈ 0 and it is not necessary to use the principal axes. In that case
the following linear representation can be used to obtain the properties in the
coordinate axes.


m
EA
EIx
EIy


︸ ︷︷ ︸

y

=


c2 0 0 0
0 c2 0 0
0 0 c4 0
0 0 0 c4


︸ ︷︷ ︸

C


ραCAα ρβCAβ ργCAγ ρδCAδ
EαCAα EβCAβ EγCAγ EδCAδ
EαCIxα EβCIxβ EγCIxγ EδCIxδ
EαCIyα EβCIyβ EγCIyγ EδCIyδ


︸ ︷︷ ︸

A


α
β
γ
δ


︸ ︷︷ ︸

x

(3.14)
The matrix formulation can be extended to include the torsional stiffness:

[
y

1/GJ

]
=

[
C 0
0 c−4

] [ A 0 0 0

0
CAα

Gα4C2
A0

CAβ
Gβ4C2

A0

CAγ
Gγ4C2

A0

]
x
1/α
1/β
1/γ


︸ ︷︷ ︸

x2

(3.15)

Note that the coefficients in x2 are not independent. In terms of the absolute
shell thicknesses the result is

y =


c 0 0 0
0 c 0 0
0 0 c3 0
0 0 0 c3


︸ ︷︷ ︸

D

A


hα
hβ
hγ
hδ


︸ ︷︷ ︸

h

(3.16)

Likewise, GJ will also scale with c3 for fixed shell thickness (for the assumed
single-cell torsion).

3.10 Alternative formulations

Some alternative simplified structural formulations which may be usefull, but
not used in this project, is described below. They are based on taylor expan-
sions and there are therefore no requirements on the cross section layout. h is
rewritten

h = hr + ∆h (3.17)
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where hr is a reference value for an existing blade and ∆h is an absolute change.
The equations can now be rewritten as

y = Dy0 + DA


∆hα
∆hβ
∆hγ
∆hδ


︸ ︷︷ ︸

z

, y0 = D−1r yr (3.18)

where y0 includes the reference values corresponding to unit chord and ∆ de-
notes an absolute change of material thickness. This form has the advantage
that the reference values are included directly in yr and the layout will therefore
be close to the reference values.

Linear Taylor expansion

Equation (3.18) is equivalent to a first order Taylor expansion around y0 in which
DA contains the Taylor coefficients. The Taylor coefficients are the partial
derivatives and these may be calculated using finite differences, which can be
determined using e.g. FEM models. For instance, consider the section mass
which, for an arbitrary chord cr, can be approximated as

m = mr +
∂m

∂hα

∣∣∣∣
hαr

∆hα +
∂m

∂hβ

∣∣∣∣
hβr

∆hβ +
∂m

∂hγ

∣∣∣∣
hγr

∆hγ +
∂m

∂hδ

∣∣∣∣
hδr

∆hδ

(3.19)

This is equivalent to the form

y = yr + Arz (3.20)

where Ar is defined as

Ar =



∂m
∂hα

∣∣∣
hαr

∂m
∂hβ

∣∣∣
hβr

∂m
∂hγ

∣∣∣
hγr

∂m
∂hδ

∣∣∣
hδr

∂EA
∂hα

∣∣∣
hαr

∂EA
∂hβ

∣∣∣
hβr

∂EA
∂hγ

∣∣∣
hγr

∂EA
∂hδ

∣∣∣
hδr

∂EIx
∂hα

∣∣∣
hαr

∂EIx
∂hβ

∣∣∣
hβr

∂EIx
∂hγ

∣∣∣
hγr

∂EIx
∂hδ

∣∣∣
hδr

∂EIy
∂hα

∣∣∣
hαr

∂EIy
∂hβ

∣∣∣
hβr

∂EIy
∂hγ

∣∣∣
hγr

∂EIy
∂hδ

∣∣∣
hδr


(3.21)

However, (3.20) is for a fixed chord c=cr and it is necessary to scale to other
chords. Comparing Equation (3.20) and (3.16) yields

y0 = Ah = D−1r (yr + Arz) (3.22)
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In short

y = DD−1r (yr + Arz) (3.23)

The advantage of this formulation is that Ar can be determined using FEM for
an arbitrary internal layout (i.e. different numbers of spars, varying geometry
etc.). It is also valid for thick shells as long as the thickness is not varied too
much. y will take values around the linearization point, i.e. the blade reference
values which may be an advantage.

Note that DD−1r represents a scaling around the reference chord, e.g. c/cr. This
means that the formulation is not necessarily based on a unit chord, which could
introduce large errors when scaled up to the actual chord. This is especially
important for the torsion stiffness properties because it is not known how it
scales in the general case and one have to rely on the chord scaling laws for the
linearized model.

Higher order Taylor expansion

The torsion can be described using higher order Taylor expansions. This is also
useful if the wall thickness’s changes significantly. In the following assume that
only the main spar thickness will be changed. A Taylor expansion of GJ is

GJ = GJr +
dGJ

dhα

∣∣∣∣
hα0

∆hα +
1

2

d2GJ

dh2α

∣∣∣∣
hα0

∆h2α + . . . (3.24)

It is assumed that the torsion stiffness follows the same scaling law as found for
the single cell torsion.


m
EA
EIx
EIy
GJ

 = DD−1r





∂m
∂hα

1
2
∂2m
∂h2

α
. . .

∂EA
∂hα

1
2
∂2EA
∂h2

α
. . .

∂EIx
∂hα

1
2
∂2EIx
∂h2

α
. . .

∂EIy
∂hα

1
2
∂2EIy
∂h2

α
. . .

∂GJ
∂hα

1
2
∂2GJ
∂h2

α
. . .


 ∆hα

∆h2α
...

+ yr


(3.25)

This is on the same form as Equation (3.23). The partial derivatives can be
calculated using finite differences based on FEM calculations with small pertur-
bations on hα.
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3.11 Scaling laws

The cross section properties for a given profile of thickness t is described in
the previous sections. Some useful approximate expressions for simple scaling
is defined in the following. These are useful for understanding how the basic
properties varies, and some simple conclusions are made.

Scaling with thickness, changing shell thickness

Consider airfoils where the y coordinate can be scaled from a reference airfoil of
thickness tref to an airfoil of thickness t (e. g. Naca four digit airfoils without
camber)

y = yref (x)
t

tref
(3.26)

Calculating the area result in

A =

∫
1 dy dx =

t

tref

∫
A

1 dyref dx =
t

tref
Aref (3.27)

Note that constant chord is assumed. The material absolute thickness measured
in the y-direction becomes (notice that this is a poor measure of the actual
thickness near the leading and trailing edge)

hy = f
t

tref
hy,ref (3.28)

Where f = h/href is a factor which is introduced in order to scale all material
thickness’s (hα, hβ , hγ , hδ). In the same way the following scaling rules can be
made

m = f
t

tref
mref (3.29)

EIx = f

(
t

tref

)3

EIx,ref (3.30)

EIy = f
t

tref
EIy,ref (3.31)

This scaling is exact but it is restricted by the entire structure being deformed
in the y-direction.
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Approximate scaling laws

Scaling using constant absolute shell thickness

Note that on horizontal planes such as the main carrying spar hy is very close
to the actual material thickness h. The absolute thickness there can be kept
unchanged by setting f=tref/t resulting in

EIx =

(
t

tref

)2

EIx,ref Constant abs. shell thickness (3.32)

This is only possible because EIx depends mainly on the main carrying spar
and whether or not the thickness of the other sectors change is not important.
However it will be important for the mass and in the following it is assumed
that all sectors have unchanged absolute thickness. The circumference of the
NACA 34xx series is approximately

l = ((π − 2)t1.8 + 2)c (3.33)

Assuming that the mass is proportional to the surface size, it follows that it
scales with thickness as

m =
(π − 2)t1.8 + 2

(π − 2)t1.8ref + 2
mref Constant abs. shell thickness (3.34)

The stiffness to mass ratio for scaling then becomes

EIx
m

=
EIx,ref
mref

t2

t2ref

(π − 2)t1.8ref + 2

(π − 2)t1.8 + 2
≈ EIx,ref

mref

t2

t2ref
Constant abs. shell thickness

(3.35)

Scaling to different shell thickness and chord

From the linear structural model it follows that

EIx =
h

href

(
c

cref

)3(
t

tref

)2

EIx,ref (3.36)

Note that EIx does not scale with c4 because the absolute thickness’s are con-
stant and does not scale linearly. It is also noted that all sectors are scaled,
which may not be what is wanted. If h/href refers to a change in the main carry-
ing spar only, then the expression still holds because of the small influence from
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the other sectors. The mass relation becomes

m =
h

href

c

cref

(π − 2)t1.8 + 2

(π − 2)t1.8ref + 2
mref ≈

h

href

c

cref
mref (3.37)

Note that this is a bad approximation if only the thickness of the main carrying
spar is changed. In the example seen in Figure 3.4 it is noted that for a rela-
tive change in the main carrying spar thickness of h/href=1.5 the corresponding
scaling of mass is only 1.3. This scaling law can be expressed as

m =

(
3/5

hα
hα,ref

+ 2/5

)
c

cref

(π − 2)t1.8 + 2

(π − 2)t1.8ref + 2
mref ≈

(
3/5

hα
hα,ref

+ 2/5

)
c

cref
mref

(3.38)

But it will depend on the specific structural layup. The stiffness to mass ratio
is

EIx
m
≈ EIx,ref

mref

(
t

tref

)2(
c

cref

)2

(3.39)

Or using (3.38)

EIx
m
≈
(

3/5 + 2/5
hα,ref
hα

)−1(
t

tref

)2(
c

cref

)2
EIx,ref
mref

(3.40)

It is seen that there is only a small dependency on the spar thickness whereas
the chord and thickness is very important. It is also seen that if the absolute
thickness (ta=tc) is kept constant, the ratio will not change. The ratio EI/m is
important for the eigenfrequencies which will increase with it. Thus, for fixed
wall thickness the flapwise eigenfrequencies increases with c and t.

The scaling rule for the edgewise stiffness is

EIy =
h

href

(
c

cref

)2

EIy,ref (3.41)

And the stiffness to mass ratio

EIy
m
≈ EIy,ref

mref

c

cref
(3.42)

From this it is seen that increasing the chord will also increase the edgewise
eigenfrequencies.
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Example: Redefine profile thickness

Solving for t in (3.36) yields

EIx =
h

href

(
c

cref

)3(
t

tref

)2

EIx,ref (3.43)

t = tref

√
EIx

EIx,ref

(
h

href

)−1(
c

cref

)−3
(3.44)

Maintaining the bending stiffness and decreasing the main spar thickness to e.g.
h/href=0.66 for constant stiffness and chord yields t=1.23tref . I.e. a thicker
profile is required. The new mass is approximately m=0.8mref (using (3.38))
Note that if the chord is increased by 10% the result is t=1.07tref . The stiff-
ness to mass ratio is then increased by 15% which will tend to increase the
eigenfrequencies.

3.12 Conclusions

A method has been developed allowing for easy calculation of the cross sec-
tion structural properties which are relevant for the aeroelastic properties of
the blade. This model is based on dimensionless coefficients and have been
implemented in a HAWTOPT module.

The model is based on the geometry of a NACA 34xx profile, but it has also
been shown that good results can be obtained using a simple polygon model.

The accuracy of the method is acceptable for conceptual design and it has been
shown that it is possible to tune the model in order to represent a reference
turbine. The tuning involves the selection of material and geometric properties,
including the shell thickness. It is subsequently easy to vary parameters such
as the chord and the shell thickness of the main carrying spar. The material
parameters can also be varied.

Some alternative formulations based on Taylor expansions are also suggested.
These models are not used but may be useful in future work.

Some simple scaling laws have been described, which can be used to obtain
quantitative results. This provides guidelines for the designer, and approximate
calculations of the effects of changing profile thickness, chord and shell thickness,
can be made. E.g. increasing the chord or absolute thickness will increase the
stiffness to mass ratio, which will increase the blade eigenfrequencies.
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Chapter 4

Structural model for the blade

The blade is subjected to spanwise, bending, shear and torsional loads. In this
chapter it is described how the thickness of the main load carrying spar can
be distributed in order to produce a design which is resistant to the worst case
quasi steady loads.

The spanwise, shear and torsional loads will be considered to be less important
and only bending will be considered in the initial design. The blades will be
approximated as slender cantilever beams under relatively small deformations
and the simple Bernoulli-Euler beam theory is then sufficient. An aeroelastic
code for advanced calculations of e.g. deflections is later used for validation of
the design.

Given known structural properties in a section, the next step is to determine
the material layout along the blade span. This must be done in order to fulfill
a number of criteria such as:

1. Constraint on max tip deflection

2. Constraint on local stress and/or strain

3. It must be a practical solution from a manufacturing point of view

4. Good aeroelastic properties. I.e. a stable design with low fatigue damage.
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Figure 4.1: Blade coordinate system and sign conventions. LE: Leading edge.
TE: Trailing edge. SS: Suction side. PS: Pressure side. u and v measures the
edgewise and flapwise deflections.

Item 1 and 2 are directly included in the design process. Item 3 is indirectly
included by the user specifying material data and constraints on material thick-
ness. Item 4 is validated in the optimization process.

The layout is made in a simplified manner which takes into account the most
important steady state forces and using a Bernoulli-Euler beam model to relate
moments and structural properties to a defined deflection shape. This is a
simplified model which is selected for a number of reasons: 1) The goal is to
make a conceptual structural layout which requires simplicity so that various
constraints are easily implemented. 2) Aeroelastic codes predict the full load
spectrum and can be used for validation. HAWC2 has been used in this work.

As a first approximation, a layout which ensures a constraint on the tip deflection
is used. To take the occurrence of gusts etc. into account, a conservative value
should be used (e.g. v∗tip=vtip/R=0.05 − 0.07). To enforce this is in practice,
a flapwise deflection shape is specified, and the material is laid out in order to
obtain the equivalent curvatures along the span. The specific shape is important
for the blade weight and represents an optimization problem. However, if a
simple shape is used this can be overcome with a simple parameter-variation
(line search). This will be explained in detail in later sections. The edgewise
deflection is relaxed, i.e. there is no constraints, which is usually not a problem
with turbines in the 5MW range. Further constraints can be put on the shell
thickness, which should be within specified limits.

All quantities are defined according to the general rules for a cartesian coordinate
system. This makes it easy to transform between coordinate systems. The
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definitions used is seen in Figure 4.1. Small deformations are assumed so that
the z-coordinate can be used as curve-coordinate along the blade. Blade twisting
is neglected.

4.1 Definitions

The blade deflections are denoted u, v and w. The curvatures are defined as

κx =
d2v

dz2
(4.1)

κy =
d2u

dz2
(4.2)

The approximation of angular deformations are

θx = −dv
dz

, θy =
du

dz
(4.3)

dθx
dz

= −κx ,
dθy
dz

= κy (4.4)

The Bernoulli-Euler relations for simple beam theory then becomes

−κx =
Mx

EIx
=
dθx
dz

(4.5)

κy =
My

EIy
=
dθy
dz

(4.6)

Note that quantities should be defined in the principal coordinate system which
is defined relative to the blade chord line which is rotated relative to the blade
coordinate system by the twist and tip pitch.

4.2 Flapwise design deflection shape

The design deflection in the y-direction is defined as a third order polynomial.

v = az3 + bz2 (4.7)

d2v

dz2
= 6az + 2b = κx (4.8)

The first and second order derivatives are approximated as the angle and the
curvature according to the assumptions in the Bernoulli-Euler beam theory.
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The negative values follow from the definition of the right hand rule about the
x-axis. It is assumed that the blade follows this shape all the way to the rotor
center, even though an actual blade starts a small radial distance away. This
polynomial fulfills the clamped boundary conditions that v=0 and θx=0 at z=0.

The boundary conditions on the tip deflection and slope are defined using di-
mensionless numbers

χ = v∗|z∗=1 , ψ =
dv∗

dz∗

∣∣∣∣
z∗=1

, z∗ =
z

R
, v∗ =

v

R
(4.9)

where χ is the dimensionless tip deflection and ψ is the tip slope (which by
definition is dimensionless). This yields a and b

a =
ψ − 2χ

R2
, b =

3χ− ψ
R

(4.10)

Normally a positive curvature is wanted along the span and it can be shown
that this can be enforced by setting

ψ = f 3χ , f ∈ [1/2 1] (4.11)

For a given value of χ, ψ can be selected in order to minimize the blade mass.
A typical value is ψ=0.1785 for χ=0.07. The deflection shape can be optimized
by using more degrees of freedom but good results have been obtained using
the defined polynomial. In practice it is usually found that f has a relatively
small influence on the blade mass. Instead it affects the blade eigenfrequencies
because the stiffness and mass distribution is shifted. It is also often found that
f should be relatively close to 1.0 . This has the unfortunate effect that the
curvature near the blade root is almost zero and the required section mass is
very large. f=0.95 is a good value which can be used as a first approximation.
The design deflection shape for different values of f is seen in Figure 4.2.

4.3 Design loads

The design loads can be calculated in a simple way because the blade is a
cantilever beam (clamped-free). The section loads then only depends on the
load distribution at larger radii. The bending moment is found by integrating
the vector cross moments due to forces at larger radii. This is then a general
vector representation of the bending moment and it can easily be transformed
to the principal axes using a rotation matrix. Note that this requires the sign
of the bending moment to be defined in the general way (see Figure 4.1).
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Figure 4.2: Defined design deflection shape for fixed tip deflection and various
tip slopes.

External forces

θ is the azimuth angle defined as zero when the blade is pointing directly up-
wards. The external forces are described as:

Aerodynamic (assumed known):

pa(z) =

 pa,x(z)
pa,y(z)
pa,z(z)

 (4.12)

Gravity:

pg(z) =

 sin(θ)
0

− cos(θ)

m(z)g (4.13)

Centrifugal:

pc(z) =

 0
0
1

m(z)Ω2z (4.14)

Total

p(z) = pa(z) + pg(z) + pc(z) (4.15)

Note that the aerodynamic loads are the projections of l and d onto the respec-
tive directions.
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Internal forces

Internal forces at z are described as follows with the tip assumed to be load free.

T(z) =

∫ R

z

p(z′) dz′ (4.16)

Internal bending moments

With the vector pointing from point at z to point at z′

r(z, z′) =

 u(z′)− u(z)
v(z′)− v(z)
z′ − z

 (4.17)

the bending moment at z due to distributed loads at z′ is:

M(z) =

∫ R

z

r(z, z′)× p(z′) dz′ (4.18)

This integration is performed numerically using the loads defined above, but of-
ten the bending moments due to aerodynamics are known from the aerodynamic
analysis.

Ma(z) =

 −Mf (z)
Me(z)

0

 (4.19)

The aerodynamic loads should be the largest expected and for PRVS-turbines
the quasi-steady loads at rated wind speed can be used even though the forces
will be larger under a gust. For stall regulated turbines the largest forces may
be found at higher wind speeds. The bending moment due to gravitational
loads Mg and the bending moment due to centrifugal loads Mc, depends on the
blade mass and are determined through an iterative process where the mass is
updated. The gravitational loads are determined for θ=90o, which is the blade
position where the gravity is in-phase with the aerodynamic loads causing the
maximum edgewise bending moment. The total design bending moment is then
found as:

M(z) =

 Mx(z)
My(z)
Mz(z)

 = Ma(z) + Mg(z) + Mc(z) (4.20)

Note that Mx and My are the flapwise and edgewise bending moments. In
the aeroelastic optimizations the fatigue loads due to variations in Mx will be
minimized.
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Figure 4.3: Definitions of angles.

4.4 Design measures in principal axes

The design variables are transformed to the principal coordinate system. The
rotation angle from blade coordinate system to the principal axis system, is seen
in Figure 4.3)

θz = −(β + θp + ν) (4.21)

Note that the traditional sign of angles is opposite to the general right-hand-rule
definition. A coordinate change matrix about the z-axis is defined as:

Rθz =

[
cos θz sin θz
− sin θz cos θz

]
(4.22)

The design curvatures can then be found in the principal-axis-coordinate system[
dθx′
dz
dθy′
dz

]
= Rθz

[ dθx
dz
dθy
dz

]
(4.23)

and likewise for the moments[
Mx′

My′

]
= Rθz

[
Mx

My

]
(4.24)

The required bending stiffness is then determined using the Bernoulli-Euler
assumption

EIx′ = Mx′/dθx′dz (4.25)

EIy′ = My′/
dθ
y′
dz (4.26)
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The material is now laid out in order to obtain this, which also results in other
structural properties of the sections, e.g. mass and principal angle. The value
of dθy/dz has not been defined because the edgewise deflection shape is relaxed.
Instead, its value from the previous iteration should be used in (4.23).

It is often found that ν is small and in that case it is not important for the
analysis. However the transformations are still important because the twist and
pitch angles can be large.

4.5 Layout of main spar

The shell thickness β, γ and δ are user specified. EI ′x is known from (4.25), and
can be transformed back to EIx using (3.9). Solving for α then yields:

EIx′ = EIx − EDxy tan ν (4.27)

α =
EIx/c

4 − βEβCIxβ − γEγCIxγ − δEδCIxδ
EαCIxα

(4.28)

An iterative process is now necessary in order to update loads depending on
mass and deflections etc.

4.6 Deflection shape

The actual deflection shape may deviate from the design shape because con-
straints on the material layout means that the actual bending stiffness’s are
different from (4.25) and (4.26). To calculate the actual deflection the curva-
tures in the principal system is determined

dθx′

dz
=

Mx′

EIx′
(4.29)

dθy′

dz
=

My′

EIy′
(4.30)

These are then transformed back to the profile coordinate system[ dθx
dz
dθy
dz

]
= R−1θz

[
dθx′
dz
dθy′
dz

]
(4.31)

The deflections can now be found by integration of (4.1) and (4.2). Note that
this is based on moments which are not updated, and iterations are needed.
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x [-] y [-]
(x1, y1) xEA 0 Leading Edge
(x2, y2) (xEA − c) 0 Trailing Edge
(x3, y3) (xEA − x2) −tc/2 Main laminate, pressure side. Nearest L.E.
(x4, y4) (xEA − x3) −tc/2 Main laminate, pressure side. Nearest T.E.
(x5, y5) (xEA − x2) tc/2 Main laminate, suction side. Nearest L.E.
(x6, y6) (xEA − x3) tc/2 Main laminate, suction side. Nearest T.E.

Table 4.1: Table of coordinates in a chord aligned system for evaluation of
spanwise shear, εz

1st principal axis
y

x

ν

θz

EA

(x6,y6)

(x4, y4)

(x2, y2)

(x1, y1)

(x5,y5)

(x3,y3)

Figure 4.4: Sketch of the defined strain evaluation points.

4.7 Strains

Given an iterated solution, the axial strain in a given point in the principal
coordinate system (x′, y′), is given by

εz =
Tz
EA

+
Mx′

EIx′
y′ − My′

EIy′
x′ (4.32)

Instead of evaluating in all points over the surface a limited number of evaluation
points have been selected. These are defined based on a simplified, assumed
profile shape and defined in a coordinate system with origo in EA and with x-
axis aligned with the chord and positive direction from trailing to leading edge
(see Figure 4.4):

The principal coordinate system is rotated by -ν relative to the chord. Therefore,
a coordinate shift matrix is used to project the coordinates. This matrix is
defined equivalently to (4.22). E.g.:[

x′

y′

]
= R−ν

[
x
y

]
(4.33)

Note that it is also possible to calculate the strains using the curvatures in the
chord coordinate system. In that case it is not necessary to rotate the evaluation
points but it is instead important to use the correct curvatures (see 4.6).
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4.8 Conclusion

In this chapter a method for material layout in the main load carrying spar has
been described. The aim is to constrain the extreme quasi steady tip deflection,
which is a key constraint in blade design. The method is based on a defined
deflection shape and the simplified cross section model presented in Chapter 3.
It has been implemented in a HAWTOPT sub module.



Chapter 5

Setup for aeroelastic blade
optimization

In this chapter a generalized approach to the turbine optimization is described.
The numerical optimizations carried out are very heavy, and for this reason
the process has been divided into steps which progressively goes toward more
advanced calculations as the design approaches optimum.

The optimizations are based on a reference turbine with defined properties for
the blades, tower, nacelle and drive train. The reference turbine used is of the
PRVS type and only the blade is optimized. The numerical tools are general but
the design approach described in the following is tailored toward PRVS turbines
where the single point optimization is useful.

5.1 Outline of optimization process

The optimization is aimed at minimizing an objective value, which in this work
is the equivalent fatigue load due to variations in the flapwise bending moment
Req(Mx).

Figure 5.1 shows a flowchart of the optimization process which is divided into
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the steps described below.

1 Determine key parameters. At the design point this includes the blade
mass M , CP , the inviscous power coefficient CP,l, vtip, CT and fatigue
parameters (Req(Mx)). The design point is rated wind speed, which in
our case is V0=11 m/s, λ=6.4. AEP is determined using the whole range of
wind speeds between cut-in and cut-out wind speed. CP,l can be calculated
using Equation (A.53).

2 Initial single point optimization using constraint on CP,l. This is an initial
optimization in order to determine design Cl. It is possible to neglect
drag because it mainly affects the power. I.e. if the turbine operates away
from the design angle of attack where the lift to drag ratio is high, the
overall 3D aerodynamics is not changed and the drag primarily generates a
negative torque around the rotor shaft. The design will be optimized for a
different lift coefficient which is optimum for the structural and aeroelastic
properties. The drag may simply be defined to be zero in the aerodynamic
data for the airfoils, but it is easier to monitor CP,l.

3 Select a new set of airfoils which has good drag characteristics in the
relevant range of Cl.

4 Single point optimization using airfoils with good performance at design
Cl. CP is constrained to reference value.

5 Power curve optimization for final design. AEP is constrained to reference
value. It is expected that the single point optimizations yields a blade
which can generate an AEP within a few percent of the reference turbine.
However, because AEP is extremely important, a fine tuning of the design
is carried out.

6 Validation of design based on full set of IEC loadcases. In case there is
a problem with stability, fatigue issues, extreme loads etc. the objective
must be changed to take this into account and the procedure is repeated
from 1.

All point optimizations were initialized by minimizing the turbulence sensitivity
c1 (Section 5.4) in the blade root. The design was then further improved by
evaluating Req(Mx) using 100 second aeroelastic calculations based on design
load case (DLC) 1 in Table 5.2. The optimization procedure takes advantage of
some general conclusions from Chapter 2. I.e. that the overall 3D aerodynamics
can be determined independent of drag and that it is possible to change c if cCl
is kept constant.
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The single point optimizations are carried out at rated wind speed (11 m/s).
The quasi steady loads are largest at that wind speed, and this is therefore
also the design wind speed for the structural layout. Note that this is the
case for pitch regulated variable speed turbines, but it may not necessarily
be so for stall regulated turbines. Considering only one wind speed enhances
numerical stability and speed. Selecting the rated wind speed corresponds to a
relatively low λ and thrust coefficient, and is different from the usual approach,
where turbines are designed for high aerodynamic efficiency at high λ, which
corresponds to low wind speeds. However, designing at rated wind speed makes
it possible to optimize for low bending moments under the conditions which
dictates the quasi-steady structural requirements.

The optimization software HAWTOPT was used for optimization. The design
variables are the distributions of chord, twist and relative thickness. These
distributions are defined using 8-point Bezier-curves in order to obtain smooth
curves. Twist and thickness distributions are relatively simple curves which can
be defined using fewer Bezier-points leading to a reduction in simulation time.
The optimization algorithm is the Sequential Linear Programming method [41].
This is less stable than the Method of Feasible Directions [41] but requires only
1/3 of the optimization-iterations and is therefore considerably faster.

Figure 5.2 shows a flowchart for the optimization tool, which consists of an opti-
mizer coupled to various modules. BEMcor is used for quasi-steady aerodynamic
calculations. The structural model is defined in Chapter 4 and yields M and
the input for aeroelastic simulations. These are carried out using HAWC2 and
result in equivalent fatigue loads Req. The setup for the aeroelastic calculations
will be discussed in Section 5.2. c1 is a fatigue sensitivity parameter which is
defined in Section 5.4.

5.2 Aeroelastic simulations (HAWC2)

The aeroelastic code HAWC2 [37] is used for calculations in the time domain. It
uses a multi body formulation based on Timoschenko beam elements to represent
all structural members of the turbine. The aerodynamics are calculated using
an unsteady BEM method with dynamic wake and stall effects included, and
turbulence is described using the Mann turbulence model. All features will not
be mentioned here but it is noted that HAWC2 is a state-of-the-art tool.

Aeroelastic calculations are not trivial. A well defined model is required and in
order for the aeroelastic response to be correct, it is among other things nec-
essary that the turbine eigenfrequencies are correct. The HAWC2 model has
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Figure 5.2: Flowchart for the optimization software based on HAWTOPT

been calibrated and validated according to this. The model include all struc-
tural members (tower, drive train, blades etc.) but only the blade properties are
changed during the optimization. The simplified blade layout method described
in earlier chapters yields realistic blade eigenfrequencies and it is therefore be-
lieved that realistic aeroelastic simulations can be made.

The blade geometry is defined by putting the 1/2-chord point on the pitch axis.
This increased the numerical stability but unfortunately the obtained designs
are restricted to this layout. If e.g. a different sweep was used the fatigue
loads could have been decreased due to passive load reduction. The simplified
structural model do not yield the shear center and aerodynamic center (SC and
AC) and it is assumed that these are in SC=0.4c and AC=0.25c. The shear
factors are defined to be kx=0.52 and ky=0.52 (Ref. [37]).

The control algorithm which was found to give good results for the reference
turbine was also used in all optimizations. The control will not be described
here but it is noted that the tip speed was limited to 70 m/s. In general, the
control will influence the loading and therefore it can be optimized, but this is
out of the scope of this work. Instead focus is on load cases where the control
is less important.
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Figure 5.3: Statistical properties of the tip deflection [m] (positive downwind),
for the NREL5MW turbine. The numbers refer to IEC loadcases. E.g. 11 is
DLC 1.1 .

5.2.1 Reduced set of design load cases

Depending on the optimization objective it is useful to select a limited number
of design load cases (DLC’s). These must be selected in order to represent the
operating conditions under which the objective is important.

A full loadcase calculation according to the IEC standard 61400-1 [42] has been
carried out. Figure 5.3, 5.4 and 5.5 shows resulting statistical properties of
the tip deflection, root flapwise bending moment and root edgewise bending
moment. The numbers in the figures refers to DLC’s in the standard. E.g. 13 is
DLC 1.3 . Figure 5.6 shows the mean wind speeds. Based on the results a set
of reduced DLC’s have been selected as listed in Table 5.2. They are selected in
order to include cases where tip-deflections and bending moments are largest,
and cases with a large generation of fatigue damage. DLC 1.2 represents normal
operation using the normal turbulence model (NTM). DLC 1.3 uses the extreme
turbulence model (ETM). DLC 2.3 simulates an extreme operating gust (EOG)
and is included to monitor the extreme tip deflections and loads. DLC 6.1 is a
50 year extreme wind model (EWM) with a parked turbine. DLC 6.1 depends
strongly on control issues such as pitch settings, which can be defined arbitrarily
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Figure 5.4: Statistical properties of the flapwise root bending moment [kNm]
(positive for upwind bending), for the NREL5MW turbine. The numbers refer
to IEC loadcases.
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Figure 5.5: Statistical properties of the edgewise root bending moment [kNm]
(positive for bending in the edgewise direction), for the NREL5MW turbine.
The numbers refer to IEC loadcases.
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Figure 5.6: Average wind speeds in IEC design loadcases. The numbers refer
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in standstill. Therefore DLC 6.1 is actually less useful for conceptual design and
can be omitted. Other DLC’s involving normal shut down and emergency shut
down have also been neglected as these are depending on the controller. It is
relatively safe to assume that any possible problems due to the controller can be
solved after the conceptual design process. At 11 m/s there is some fluctuations
in e.g. power and therefore this wind speed has been avoided. Instead 10 m/s
is used, which is just below rated power and max thrust. It is also close to the
annual mean wind speed. The DLC’s at 20 m/s are included in order to cover
the more extreme turbulence at high wind speeds. The design point in the
single point optimizations is rated wind speed and this should not be confused
with wind speeds included in the reduced DLC’s. They are selected in order to
provide a clear picture of the fatigue sensitivity and should ideally include all
wind speeds.

The DLC’s are for wind turbine class IEC II B corresponding to medium refer-
ence windspeed and medium turbulence characteristics:

Class IEC II B: Vref = 42.5 m/s Iref = 0.14

An atmospheric shear exponent of α=0.2 is used. The Weibull wind speed distri-
bution is defined using a roughness length of z0=0.01 m, parametersA=9.59 m/s,
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V0 [m/s] fW [-] V0 [m/s] fW [-] V0 [m/s] fW [-]
5.0 0.0827 12.0 0.0545 19.0 0.0082
6.0 0.0880 13.0 0.0450 20.0 0.0056
7.0 0.0892 14.0 0.0362 21.0 0.0038
8.0 0.0866 15.0 0.0283 22.0 0.0025
9.0 0.0810 16.0 0.0216 23.0 0.0016
10.0 0.0733 17.0 0.0160 24.0 0.0010
11.0 0.0642 18.0 0.0116 25.0 0.0006

Table 5.1: Discrete Weibull distribution of wind speeds. fW is the discrete prob-
ability that the wind speed is V0. The total probability that 5< V0 <25=0.80 .

k=2.0 and hub height hA=90 m. This corresponds to an average wind speed at
hub height of 8.5 m/s. The cumulative probability function is

pW (V0) = 1− exp−(V0/A)k (5.1)

The discrete probabilities of the distribution are given in Table 5.1 and the values
of fj are defined so the sum at a given wind speed corresponds to the discrete
probability. fj describes the weighting of fatigue damage - an explanation is
given in Section 5.3. For DLC 1.2 It is assumed that the turbine operates with
yaw error 50% of the time. Note that the resulting weighted equivalent fatigue
load corresponds to operation in windspeeds of 10 and 20 m/s, thus it only
represents the fatigue damage generated in a fraction of the operating time.
Even though the full operating range is not considered, the equivalent load will
be a good representation of the overall fatigue sensitivity. An exact measure of
the fatigue is found by including all windspeeds and the sum of fj would be 1
corresponding to the full operation range of windspeeds.

5.3 Fatigue loads

The aeroelastic response of a given DLC results in a spectrum of load variations
which is found using rainflow counting. This can be simplified to a single equiv-
alent load Req,j which generates the same fatigue damage per unit time as the
spectrum if the load varies at the frequency feq (feq=1.0 is used throughout).
The equivalent loads of multiple DLC’s can be combined to an equivalent load
Req by specifying the weight of the DLC as the fraction of lifetime the DLC
represents. This is done using the factor fj . Req can be related linearly to the
equivalent stress Seq which is measured in the actual material which absorbs
the load variations. Seq will in general depend on cross section properties.
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Index DLC V0 θyaw TI model analysis fj
1,2 1.2 10 0 0.1834 NTM F 0.01833
3,4 1.2 10 -10 0.1834 NTM F 0.00916
5,6 1.2 10 10 0.1834 NTM F 0.00916
7,8 1.2 20 0 0.1442 NTM F 0.0014
9,10 1.2 20 -10 0.1442 NTM F 0.0007
11,12 1.2 20 10 0.1442 NTM F 0.0007
13,14,15 1.3 10 0 0.2946 ETM U 0
16,17,18 1.3 20 0 0.1838 ETM U 0
19 2.3 10 0 0.0 EOG U 0
20 2.3 25 0 0.0 EOG U 0
21 6.1 42.5 -8 0.0 EWM U 0
22 6.1 42.5 8 0.0 EWM U 0

Table 5.2: Reduced set of loadcases. U) Ultimate. F) Fatigue. Effective simu-
lation time is 600 s unless otherwise stated - this is preceded by a 50 s run-in.

Further details are given in Appendix C and a short introduction is given in
Appendix F.

5.4 Simplified design measure for flapwise fa-
tigue - forced vibrations due to turbulence

A thorough description of fatigue issues for wind turbines can be found in [25].
The theory describes the fatigue on a turbine operating in the atmospheric
boundary layer but does not present any indications about how it can effectively
be reduced in the design process. An analytical study aimed at obtaining this
knowledge have been made and results are presented in Appendix F. It is a
description of the key parameters for the generation of fatigue damage due to
variations in the flapwise bending moment. The analysis relates variations in
inflow due to turbulence and shear to variations in bending moments and the
equivalent fatigue load is derived. An important conclusion is that the equivalent
fatigue load for the variations in flapwise bending moment can be approximated
as:

Rmeq(Mx) =
1

feq
3.0Ω(1− a)

(
σ1V0Ω1/2ρ

∫ R

r

(r′ − r)r′C ′lc dr′
)m ∫ 8.0

0

exp(−x)xm dx

(5.2)

where C ′l is the slope of the dynamic lift curve and m is the Wöhler curve
exponent (glass-fibre m ≈10, steel m=3). The last integral represents the spec-
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trum of the wind fluctuations. It is an advantage to design without taking the
atmospheric properties into account. This yields

Req ∝ (1− a)
1/mΩ1+1/m

∫ R

r

(r′ − r)r′C ′lc dr′ (5.3)

Thus, for optimization it is only necessary to calculate relative changes from the
reference design. Note that a will not change much if the turbine is designed for
the same power. For simplicity it is also assumed that the dynamic lift slope
is independent of design changes, and the exponent of the rotational speed is
replaced with 1. This will introduce a small error but capture the basic trend.
These changes result in:

Req ∝ c1 = Ω

∫ R

r

(r′ − r)r′c dr′ (5.4)

It is seen that the rotational speed and the distribution of the chord is important
for Req. The stress is related to the load through Equation (C.8):

Seq ∝
ymaxEymax

EIx
Ω

∫ R

r

(r′ − r)r′c dr′ (5.5)

The stress in the main spar is considered which is assumed to be in the distance
ymax=ta/2 from the neutral axis. The elastic modulus is Eα. This results in
(omitting the factor 1/2):

Seq ∝ c2 =
taEα
EIx

Ω

∫ R

r

(r′ − r)r′c dr′ (5.6)

Note that EIx is largely dictated by the constraint on maximum tip deflection
and is therefore in practice constant. So the fatigue loads can be reduced by
reducing the thickness and the elastic modulus. Unfortunately, doing so means
that more material must be used, thereby increasing the weight.

The c1 and c2 coefficients can now be used to approximate the relative fatigue
sensitivity of different blades.

The dynamic lift curve slope was omitted in the definition of c1 and c2, but
it is very important because it affects the change in aerodynamic forces for a
given change in angle of attack. However, c1 and c2 are relative measures of the
sensitivity and reducing them will in general reduce fatigue damage.
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5.5 Parameter study - changing design lift coef-
ficient

Before starting the fully numerical optimization a small parameter study using
HAWC2 was carried out. This highlights important properties and verify that
the reduced DLC’s have been selected properly. It will also validate the use of
Equation (5.4).

The chord is changed manually. The HAWC2-control will then automatically
change pitch and Cl in order to keep c∗ClNB constant and thereby maintaining
the same power output. The new chord and lift coefficient then becomes

cnew = cfc (5.7)

Cl,new = Cl/fc (5.8)

The quasi-steady aerodynamic loads at design conditions are not changed, but
they may change at off-design conditions which will influence AEP. The fatigue
loads are expected to change significantly. The changed chord will influence the
structural properties of the blade and to avoid major changes in the flapwise
bending stiffness and blade mass, the relative thickness is changed in order to
maintain the absolute thickness

tnew = t/fc (5.9)

The pitch angle will change with Cl and the lift to drag ratio will also change,
possibly leading to higher drag. The range Cl,max-Cl also changes and this may
affect the stall characteristics and the power.

Figure 5.7 shows the equivalent loads for the flapwise root bending moment for
the reduced DLC’s. Figure 5.8 shows the equivalent loads for the edgewise root
bending moment. Figure 5.9 shows the maximum tip deflections.

The results confirms that the equivalent load scales linearly with the chord as
predicted by equation 5.2 which is shown as the solid line in Figure 5.7. This is
true even at 20 m/s where a large part of the blade is in stall, but the dynamic
lift slope is almost the same making scaling possible. Note that a reduction
in equivalent load to 90% leads to a fatigue damage of (0.9)m. For m=10 the
damage is reduced to 35%. The AEP is lower for the reduced chord and this is
associated with the loss in efficiency above design tip speed ratio and increased
drag. The drag may be reduced significantly by tailoring the airfoils to the
specific design requirements (i.e. minimizing drag at the design lift coefficient).
The increase in relative thickness also increases drag because the best lift to drag
ratio is found for thin profiles. The thicker blade will also be more sensitive to
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Figure 5.7: Equivalent root flapwise moment for reduced DLC’s (m=10).

M [kg] AEP [GWh] f1 [Hz] f2 [Hz] f3 [Hz]
Increased chord (fc=1.1) 16900 19.72 0.647 1.10 1.91
NREL 5MW 15100 19.51 0.665 1.05 1.94
Decreased chord (fc=0.9) 13340 19.23 0.683 0.98 1.99

Table 5.3: Key results from parameter study

leading edge roughness and may have worse dynamic stall characteristics. Table
5.3 summarizes key results in the parameter study.
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Figure 5.8: Equivalent root edgewise moment for reduced DLC’s (m=10).
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Figure 5.9: Max tip deflection for reduced DLC’s.
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5.6 Conclusions

A design methodology has been suggested, which is aimed at making a stable
and effective optimization process for PRVS turbines. It is based on knowledge
about the key parameters for aerodynamics and structures, which have been
discussed in previous chapters. Among other things, the design lift coefficient
is important and is determined using single point optimization.

Based on a full IEC set of loadcases a reduced set of design load cases (DLC’s)
have been defined which can be used for quick evaluation of the design objective.
The DLC’s have been defined in order to include operating conditions which are
important for the dynamic flapwise loads.

The fatigue analysis of several timeseries have been introduced. The analysis
describes the equivalent fatigue load, which will be used to combine the results
of several aeroelastic calculations into a single measure.

Sensitivity parameters c1 and c2 for the flapwise fatigue loads have been defined.
They depend on chord distribution and rotational speed, and can be used for
fast initial optimizations without aeroelastic simulations. A parameter study
has verified that fatigue loads scales proportional to the sensitivity parameters,
as predicted by the theory.



Chapter 6

Results

This chapter contains the results of an optimization. It follows the steps de-
scribed in Section 5.1 but the results of the tuning of the structural model have
also been included. The objective is to design for low fatigue loads due to varia-
tions in the flapwise bending moment Mx, i.e. Req(Mx) is reduced. The results
are compared and discussed in the end of the chapter.

In the following, NREL 5MW refers to the reference turbine.
NREL 5MW (H) refers to the reference turbine with the structural data defined
using our model for the blade - the aerodynamic shape is exactly the same.
HAWTOPT refers to calculations or optimizations from HAWTOPT, which in
all cases uses our structural model.

6.1 Reference turbine, NREL 5MW

The 3 bladed NREL 5MW [18] fictitious turbine was used as reference case.
Some key parameters are listed in Table 6.1. M is the total mass of a single
blade.
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AEP 21.3425 GWh
M 16880 kg
CP 11 m/s λ=6.37 0.459
CP,l 11 m/s λ=6.37 0.492
CT 11 m/s λ=6.37 0.719
v∗tip 11 m/s λ=6.37 0.095 (6.0 m)

Table 6.1: Key parameters for NREL 5MW

α β γ δ
ρ [kg/m3] 1900.0 1900.0 1900.0 1900.0
E11 [Pa] 37.0e9 15.0e9 30.0e9 15.0e9
G12 [Pa] 2.3e9 2.3e9 2.3e9 0.0
β,γ,δ 0.003 0.003 0.003

Table 6.2: Input to the structural model.

6.2 Reference turbine - structural model

The optimizations have been carried out using the structural model defined ear-
lier. The properties of the reference blade are deliberately reproduced as a part
of the tuning of structural parameters. Figure 6.1 (a,b,c,d) shows the distribu-
tion of mass and stiffness. The results deviatev substantially on the innermost
part where a steel flange etc. is mounted. The mass difference is approximately
500 kg (per blade) and therefore a constant value of 1500 kg is added to the na-
celle mass. The first 3 blade-eigenfrequencies are reported in Table 6.3 and the
differences are within 1%. Thus, the structural model yields results which are
close to the reference values and it is concluded that realistic eigenfrequencies
are obtained and that the simplifying assumptions in the structural model are
valid. Figure 6.1 (e,f) shows the relative and absolute shell thicknesses.

The quantities in Table 6.2 was used in the structural model. The α-value,
which is the shell thickness of the main spar normalized with the chord, was
restricted to the range: [0.003, 0.010]. The absolute thickness of the main spar
was limited to hα=0.03 m. These parameters have been selected in order to
represent the materials and shell thicknesses used in the reference turbine.
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Figure 6.1: Plots of parameters for the reference turbine. The structural data
is obtained using our structural model, which has been tuned to reproduce the
reference values.
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Figure 6.2: Original profile data for the NREL 5MW turbine (TU Delft, DUxx
profiles).

6.3 Initial point optimization

This section describes the results of a point optimization at 11 m/s. The objec-
tive is the equivalent fatigue load of the flapwise bending momentReq,1(100s)(Mx)
evaluated using 100 second simulations of DLC 1 in Table 5.2. The optimization
is constrained by the inviscous power coefficient CP,l which makes the optimiza-
tion independent of the drag properties of the airfoils. Figure 6.2 shows the 2D
aerodynamic data used.

Figure 6.3 shows distributions of key parameters from the optimized design. The
stiffness and mass distributions are largely unchanged. The major difference in
the design is the decrease in chord, and the main spar thickness is increased in
order to account for the decrease in absolute structural thickness. The relative
thickness has a minimum around r=48 and increases near the tip. The absolute
thickness follows a smooth curve and the blade is in general thinner than the
reference. The lift coefficient at rated power is around Cl ≈1.4 on most of the
blade. This is close to max lift, indicating that high lift airfoils should be used.
The l/d ratio is around 75 and this reduces the total power considerably. The
inviscous power is the same as for the reference turbine, and therefore a new set
of 2D airfoil data should be used which performs well at high Cl values. This is
described in the next section.

Figure 6.4 shows the equivalent fatigue loads corresponding to Table 5.2. These
are in general reduced indicating that the optimization based on a single 100
second load case has yielded a general reduction.
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Figure 6.3: Results of the initial point optimization using DUxx profiles are
compared to reference values.
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Figure 6.5: Profile data for the selected high lift airfoils (Risø B1-xx profiles).

6.4 Point optimization using high-lift airfoils

In section 6.3 it is found that high lift airfoils should be used on this design and
the Risø B1-xx airfoil family have been selected. The lift and drag characteristics
are seen in Figure 6.5. These profiles have a number of advantages. 1) They
are designed to be roughness insensitive. 2) They have high l/d at the high Cl
values which was not the case for the DUxx profiles. 3) The max-lift is high
and it is possible to design very slender blades with low fatigue sensitivity and
possibly take advantage of high stiffness materials (E.g. carbon fibres).

The point optimization is continued, but now the total CP is used as the con-
straint on power. It was also found necessary to limit the relative thickness to
t=21% on the outer part of the blade. Figure 6.6 shows distributed properties
for the new design. The result is a very slender blade which is designed around a
high Cl ≈1.7 . There is an error in the drag data which is negative and therefore
not realistic around r=19 m. It is believed that this is due to errors in the 3D
corrections, but that it will only have a minor influence on the overall results.

Figure 6.7 shows the equivalent fatigue loads for the reduced DLC’s. There is a
clear reduction at all DLC’s.
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Figure 6.6: Plots of parameters for the NREL 5MW reference layout and the
initial optimization values using B1-xx high lift profiles.
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6.5 Power curve optimization using high-lift air-
foils

The title of this section is misleading because AEP is not optimized but instead
constrained to the value of the reference turbine. In practice the blade is op-
timized for AEP until the value is above the reference, i.e. the blade is in the
design space. The optimization is then switched to the primary objective and
the constraint on AEP is applied.

The final optimized blade has an AEP which is lower than the reference turbine.
It is noted that there often is a trade-off between AEP and fatigue loads, i.e.
reducing fatigue loads is associated with a reduction in AEP. A general expla-
nation for this is not known by the author, it is simply a numerical result. A
possible explanation is that the B1-xx profiles have higher drag, which is the
case for the 21% percent profile which for B1-xx has a l/d ≈110 versus l/d ≈135
for the DUxx profile. The 21% percent profiles are used on a part of the blade
which is heavily loaded and l/d is therefore very important. It is questionable
whether the good performance of the DUxx profiles can be obtained in practice
when leading edge roughness is present, and instead the lower AEP resulting
from the use of B1-xx profiles has been accepted. The constraint on AEP was
set to minimum 21.1 GWh in the final aeroelastic optimization for low fatigue
loads.

Figure 6.8 shows distributed properties of the final design. The aerodynamic
coefficients are plotted for both 8 and 11 m/s which corresponds to the highest
and lowest λ, below rated power. This shows the relevant upper and lower limits
on Cl, between which the airfoils should have low drag. Above rated power this
is not important.

Figure 6.9 shows Req,j(Mx) for the reduced DLC’s. Req,j(Mx) is reduced in all
DLC’s.
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The aerodynamic shape of the final blade is tabulated below.

Radius Chord Twist Thick Abs. Thick

(m) (m) (deg.) (-) (m)

---------------------------------------------------

0.00e+00 3.79e+00 1.36e+01 9.88e+01 3.75e+00

1.50e+00 3.80e+00 1.32e+01 9.88e+01 3.75e+00

5.00e+00 3.94e+00 1.24e+01 9.88e+01 3.89e+00

5.31e+00 3.95e+00 1.23e+01 9.88e+01 3.91e+00

5.80e+00 3.98e+00 1.22e+01 9.88e+01 3.94e+00

6.45e+00 4.03e+00 1.20e+01 9.88e+01 3.98e+00

7.27e+00 4.09e+00 1.18e+01 9.33e+01 3.81e+00

8.24e+00 4.16e+00 1.16e+01 7.81e+01 3.25e+00

9.38e+00 4.24e+00 1.13e+01 6.59e+01 2.79e+00

1.07e+01 4.33e+00 1.09e+01 5.58e+01 2.41e+00

1.21e+01 4.42e+00 1.05e+01 4.76e+01 2.10e+00

1.36e+01 4.50e+00 1.01e+01 4.09e+01 1.84e+00

1.53e+01 4.56e+00 9.59e+00 3.55e+01 1.62e+00

1.71e+01 4.60e+00 9.07e+00 3.13e+01 1.44e+00

1.90e+01 4.60e+00 8.51e+00 2.82e+01 1.30e+00

2.09e+01 4.56e+00 7.92e+00 2.58e+01 1.18e+00

2.30e+01 4.46e+00 7.30e+00 2.42e+01 1.08e+00

2.51e+01 4.32e+00 6.65e+00 2.31e+01 1.00e+00

2.73e+01 4.14e+00 6.00e+00 2.25e+01 9.30e-01

2.95e+01 3.92e+00 5.33e+00 2.20e+01 8.64e-01

3.17e+01 3.68e+00 4.66e+00 2.18e+01 8.01e-01

3.40e+01 3.43e+00 3.99e+00 2.16e+01 7.40e-01

3.62e+01 3.18e+00 3.34e+00 2.14e+01 6.80e-01

3.85e+01 2.94e+00 2.71e+00 2.12e+01 6.23e-01

4.07e+01 2.72e+00 2.11e+00 2.09e+01 5.70e-01

4.29e+01 2.52e+00 1.55e+00 2.06e+01 5.21e-01

4.50e+01 2.34e+00 1.02e+00 2.03e+01 4.77e-01

4.70e+01 2.18e+00 5.33e-01 2.00e+01 4.36e-01

4.90e+01 2.03e+00 9.36e-02 1.97e+01 3.99e-01

5.09e+01 1.88e+00 -2.99e-01 1.94e+01 3.64e-01

5.27e+01 1.72e+00 -6.45e-01 1.91e+01 3.29e-01

5.43e+01 1.56e+00 -9.46e-01 1.89e+01 2.94e-01

5.59e+01 1.38e+00 -1.20e+00 1.86e+01 2.58e-01

5.73e+01 1.20e+00 -1.42e+00 1.84e+01 2.21e-01

5.86e+01 1.01e+00 -1.60e+00 1.82e+01 1.83e-01

5.97e+01 8.18e-01 -1.75e+00 1.79e+01 1.47e-01

6.07e+01 6.34e-01 -1.87e+00 1.77e+01 1.12e-01

6.15e+01 4.66e-01 -1.96e+00 1.75e+01 8.16e-02

6.21e+01 3.21e-01 -2.03e+00 1.73e+01 5.56e-02

6.26e+01 2.08e-01 -2.08e+00 1.72e+01 3.57e-02

6.29e+01 1.34e-01 -2.11e+00 1.71e+01 2.28e-02

6.30e+01 1.00e-01 -2.12e+00 1.70e+01 1.70e-02
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Figure 6.8: Plots of parameters for the NREL 5MW reference layout and the
final power curve optimization.
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6.6 Comparison of designs

An overview of key properties for the reference and designed blades are given
below.

Table 6.3 compares the mass and eigenfrequencies. Note that the high lift blade
has relatively high eigenfrequencies, these are reduced slightly in the final design.
The differences in blade mass is small and the final blade is 4% lighter than the
reference (NREL 5MW (H)).

Table 6.4 compares energy production and design point. The two blades which
are optimized in a single design point have an annual energy production which is
1.5% lower than the reference blade. The AEP is lost at the off design conditions
below rated power, which in our case is the low windspeeds. The loss of AEP
is not acceptable but it is still close to the reference value. Thus, a reasonable
design can be obtained from a single design point. The final AEP optimized
design has an AEP which is 1.0% lower than the reference design. This was
discussed in Section 6.5.

Table 6.5 shows the fatigue sensitivity parameters, c1 and c2 in the root (r=0)
they are smallest for blade 6.4 which is slender and designed using high lift
airfoils. The maximum value of c2 follows the same trend - note that this
maximum value is usually found around r∗ ≈ 1/3.

Table 6.6 shows the numerically determined equivalent fatigue loads.
Req,1(100s)(Mx) denotes the 100 second aeroelastic calculation based on DLC 1.
Req(Mx) refers to the weighted equivalent load of the reduced DLC’s. Req(Mx)
follows the same trend as in Table 6.5 where the high lift blade shows the
lowest analytical fatigue sensitivity. However, Req,1(100s)(Mx) does not follow
this trend and this shows that a single, short, aeroelastic calculation does not
necessarily provide a correct picture of the overall fatigue sensitivity. However,
the result of the optimizations, which was made using Req,1(100s)(Mx), was still
a reduction in Req. It is also noted that the final design has an even lower
Req(Mx) than the single point optimized blade using B1-xx profiles. Probably
this is because the optimizer had not converged completely in the single point
optimization. On the final blade a 15% reduction in Req(Mx) was obtained,
relative to the reference design. The equivalent edgewise fatigue load Req(My)
was reduced with 8.5%.
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M [kg] f1 [Hz] f2 [Hz] f3 [Hz]
6.1 NREL 5MW 16880 0.672 1.05 1.95
6.2 NREL 5MW (H) 16330 0.665 1.06 1.94
6.3 Point Opti. (DUxx) 15945 0.658 1.03 1.89
6.4 Point Opti. (B1-xx) 15500 0.798 1.19 2.25
6.5 AEP Opti. (B1-xx) 15700 0.720 1.17 2.03

Table 6.3: Structural key parameters for blades

AEP [GWh] Airfoils λ Cl
6.1 NREL 5MW 21.3425 DUxx 7.7 0.95
6.3 Point Opti. (DUxx) 21.0414 DUxx 6.4 ≈1.4
6.4 Point Opti. (B1-xx) 20.9682 B1-xx 6.4 ≈1.6-1.8
6.5 AEP Opti. (B1-xx) 21.1034 B1-xx 6.4-8.6 ≈1.4-1.6

Table 6.4: Aerodynamic key parameters for blades. λ and Cl refers to the design
point, which for 6.3 and 6.4 are at rated wind speed. For 6.5 this refers to the
wind speeds below rated power (5< V0 <11 m/s), which are important for AEP.

c1(r = 0) c2(r = 0) max(c2)
6.1 NREL 5MW 2.545e+05 2.572e+06 5.043e+06
6.2 NREL 5MW (H) 2.545e+05 2.572e+06 5.043e+06
6.3 Point Opti. (DUxx) 2.200e+05 2.190e+06 4.350e+06
6.4 Point Opti. (B1-xx) 1.870e+05 1.861e+06 3.498e+06
6.5 AEP Opti. (B1-xx) 1.935e+05 1.955e+06 3.730e+06

Table 6.5: Simplified fatigue parameters for blades.

Req,1(100s)(Mx) Req(Mx) Req(My)
6.1 NREL 5MW - - -
6.2 NREL 5MW (H) 4202.0 5983.0 5270.9
6.3 Point Opti. (DUxx) 3142.0 5787.5 5376.2
6.4 Point Opti. (B1-xx) 3466.0 5258.1 4966.1
6.5 AEP Opti. (B1-xx) 3492.0 5074.4 4826.9

Table 6.6: Fatigue parameters according to reduced DLC’s.
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6.7 Conclusions

The single point optimizations at rated wind speed has yielded sound designs,
but with an undesirable reduction in AEP of approximately 1.5% relative to the
reference turbine. The power curve optimization was carried out by constraining
AEP to 21.1 GWh. This is 1.0% below AEP for the reference turbine, but this
has been accepted in this work because the loss can be regained by increasing
the radius1, which will be associated with a small increase in fatigue loads. The
final design is close to the result of the point optimizations, which was expected
in the discussion of the design methodology in Chapter 5.

The 100 s DLC used for aeroelastic evaluation of fatigue loads gave a mislead-
ing indication of the fatigue-sensitivity in the case of B1-xx high lift airfoils
compared to the DUxx medium lift airfoils. However, the aeroelastic results
of the reduced set of DLC’s showed that a good design was obtained anyway.
The analytical fatigue parameter c1 was used for initial optimization and this
yielded designs close to optimum with respect to low fatigue loads. Thus, an
initial optimization can be made fast by minimizing c1.

The c2 fatigue parameter was found to decrease in all cases. However, in general
it is important to constrain it. It is worth to mention that the reductions in
fatigue loads are larger than those indicated by Req because Seq are reduced
further due to the thinner blade leading to smaller material strains for the same
load.

The design strains, which are evaluated according to the quasi-steady design
loads, are small, and for the final design the extreme values was εz=0.0025 and
εz=-0.0023. Unsteady loads will increase this, but it is assumed this will be
limited to between 50-100%. This is well below the ultimate strain for most
materials and therefore has ultimate failure not been considered. Note that this
may not be the case for very large turbines (10-20 MW) which experience very
large gravity loads.

1From the definition of CP it follows that the radius should be increased by a factor√
1.01=1.005 in order to increase the power by 1.0%.



Chapter 7

Conclusion

The present project is about wind turbine rotor optimization which is multi-
disciplinary. As a minimum it involves aerodynamic, structural and numerical
issues, making it a very complex task. Tools have been improved and developed
and is has been demonstrated that a design with reduced fatigue loads can be
obtained. In this thesis focus is on the experience gained regarding optimiza-
tion of PRVS turbines and the description of key parameters. This includes the
developed conceptual models for the structural layout which are based on as
few parameters as possible. More complicated issues, such as BEMcor and the
aeroelastic simulation tools, have been referred to.

Three articles are included in this thesis. The first describes BEMcor, which is a
corrected blade element momentum method with an accuracy comparable to the
actuator disc method but at the same time much faster. This method has been
used in all numerical calculations. The second article describes aerodynamic
optimization using BEMcor compared to the traditional BEM method. This
shows that there are differences in the design optima especially regarding the
blade twist and it is possible to obtain a lower blade root bending moment.
Besides from this BEMcor gives more accurate predictions of AEP and it is
therefore a useful tool in rotor optimization. The third article describes fatigue
loads on a 5MW wind turbine due to atmospheric turbulence. The analysis is
carried out numerically and analytically and has resulted in an expression for
the equivalent fatigue load. Based on this, two fatigue sensitivity parameters
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have been defined which depend on the key parameters for the blade design.
The sensitivity parameters where used with success in the numerical design
process where they replaced aeroelastic calculations in the initial optimization
iterations.

Aerodynamic design has been studied extensively. Besides from numerical op-
timizations using BEMcor, analytical design methods have also been used. In
this thesis a method has been presented which is based on a prescribed con-
stant thrust, which is equivalent to a constant axial induction. The effects of
tip losses and wake swirl losses are included. The resulting set of simple equa-
tions describes the power, thrust and root flap moment coefficients as function
of tip speed ratio, thrust and the airfoil lift to drag radio, which are key param-
eters. The lift to drag ratio only affects the power coefficient and an inviscous
power coefficient is defined, which is useful for optimizations where focus is on
structural and aeroelastic properties. Another important result is that a given
design can be expressed using a design parameter (c∗ClNB). This means that
there is freedom in selecting the lift coefficient Cl and the resulting value of
the normalized chord c∗ will depend on it. Therefore, Cl is a key parameter
and the choice of it will affect both the drag characteristics and the structural
properties, which depend on the chord. The conclusions have been used in the
set up for aeroelastic optimizations.

It has been described how a conceptual structural model can be made, and it
has been used to define input to the aeroelastic simulations. The cross section
properties are found using dimensionless coefficients, which are based on the
knowledge of airfoil shapes with various relative thicknesses. The basic input is
the defined tip deflection at rated wind speed where the quasi steady loads are
largest. The blade structure is then laid out by varying the distributed thickness
of the main load carrying spars according to a prescribed deflection shape. This
method resulted in stable numerical optimizations and a realistic design.

BEMcor was implemented for improved quasi steady aerodynamic calculations.
Besides from the issues mentioned earlier, it is noted that it was almost as stable
as the traditional BEM method, but a little slower. However, it is still a fast
method and very useful for heavy optimizations. The stability problems were
limited to very few cases where the problems probably could have been solved
by changing damping parameters in the iterative scheme. Another solution was
to use BEM for initialization of the design before using BEMcor.

Aeroelastic optimizations are challenging for a number of practical issues: 1)
The design space is very large and the global optimum is not easily found. 2)
numerical instabilities causes the time consuming calculations to fail or the op-
timizations to diverge. Other practical problems may also arise and therefore
the general optimization procedure used in this project, which is relatively sta-
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ble, have been described. It is based on initial optimizations in a single design
point, which for PRVS turbines is the rated wind speed. An important part
of the procedure is the determination of a reasonable range of the design lift
coefficient, which is a key component influencing the chord length and therefore
both the fatigue sensitivity to turbulence as well as the structural properties. A
major problem with the approach is that the AEP may be lower than for a ref-
erence turbine, even after subsequent power curve optimizations. It is not clear
whether this is caused by the single point optimization procedure or because
airfoils different from the reference turbine have been used. However, the final
result is still a good design.

In the optimizations the aeroelastic code HAWC2 has been used for evaluation
of fatigue loads and these were calculated from a single 100 second simulation.
A simulation of 100 seconds is not representative for the many operation condi-
tions of a wind turbine, but the optimizations yielded blades which in general
had an improved performance with respect to the optimization objective. For
time savings the optimizations were initialized using the analytical fatigue sen-
sitivity parameter which was minimized. This yielded a good initial design, and
this reduced the number of necessary aeroelastic calculations in the subsequent
optimizations.

A blade has been optimized for reduced fatigue loads - the reference turbine was
the NREL 5MW fictitious turbine. This has resulted in a blade which is designed
around a high lift coefficient and a small chord, i.e. a very slender blade. The
flapwise fatigue loads were reduced by 15% and the AEP was reduced by 1%
relative to a reference turbine. It is therefore indicated that high lift profiles are
superior to medium or low lift when designing for low fatigue damage.

The developed numerical tools are now implemented in the turbine optimiza-
tion code HAWTOPT. The inclusion of the structural model means that more
freedom can be used in the design process, and the effects of new concepts on
the turbine design and its aeroelastic properties can be determined quickly.

Not all the work carried out in the PhD project has been described in this thesis.
This includes data analysis of wind tunnel measurements using high frequency
microphones distributed chordwise over the surface of airfoils. This has resulted
in knowledge about the laminar to turbulent transition in the boundary layer,
which is important for the airfoil properties and the roughness sensitivity, which
affects the drag. It has earlier been described that accurate profile data are very
important in numerical optimization and such experimental work is therefore
important.
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7.1 Future work

The tools developed in this project will be used in the future work at Risø DTU.
A specific project is Light Rotor which aims at developing a 10 MW rotor. This
will include the design of a new airfoil family and the experience gained in this
project will be used.

One apparent problem with the structural model is that the mass decreases
with chord length. It is well known that the opposite is usually the case and
one reason for this is that the shell thickness near the leading and trailing
edge has been defined as a fixed fraction of the chord. If the chord and the
absolute profiles thickness are decreased more material must be put into the
main spar to obtain the required stiffness but this mass increase is canceled
by the savings in the other structural sections. Because of this a better model
should be developed which considers the buckling loads in the β sectors and the
edgewise stiffness requirements and define the γ sector accordingly. Note that it
is possible to cope with the buckling requirements by varying the core thickness
in a sandwich constructions in the β sector, and maintaining the absolute shell
thickness of the surface material (i.e. a fixed value of hβ). This will only make
minor changes to E11 and ρ but may change G12, thus it should be ensured that
torsion is not important. In any case it is necessary to make a thorough analysis
of the structural integrity and make adjustments in the engineering input to the
structural module.

The blade angular deformation due to torsion should be included in the blade
layout module. The module should also be able to handle a user specified
undeformed shape. This may include sweep, prebend etc.
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för h̊allfasthetsläre, 1999.
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Nomenclature

a Axial induction factor -
a′ Tangential induction factor -
a , b Prescribed v-deflection coefficients
A Structural matrix
A Weibull parameter m/s
A Rotor swept area (undeformed) m2

A0 Closed section area m2

A1 Aerodynamic design coefficient -
A2 Aerodynamic design coefficient -
c Blade chord length m
C Chord scaling matrix (fixed rel. shell thk.) m2, m4

C Weibull parameter -
c1 Fatigue load sensor m4/s
c2 Fatigue stress sensor m/s
CA Structural coefficient -
CA0 Structural coefficient -
Cd Drag coefficient -
CDxy Structural coefficient -
CF Flapwise bending moment coefficient (Aerodynamic) -
CF,F Tip loss correction on flap moment coefficient -
CI Structural coefficient -
Cl Lift coefficient -
Cp Local power coefficient -
CP Power coefficient -
CP,a′ Wake swirl correction on power coefficient -
CP,d CP component due to drag forces -
CP,l CP component due to lift forces -



98 Nomenclature

Cq Local torque coefficient -
CS Structural coefficient -
Ct Local thrust coefficient -
CT Thrust coefficient -
CT,F Tip loss correction on thrust coefficient -
Ct2 Thrust corrected for tip losses (Ct/F ) -
Ct2,d Design Ct2 -
Cx Local force coefficient, edge -
Cx Tangential force coefficient -
Cy Local force coefficient, flap -
Cy Axial force coefficient -
d Single-cycle damage -
d Blade section drag N/m
D Chord scaling matrix (fixed abs. shell thk.) m, m3

D Fatigue damage -
E Elastic modulus Pa
EA Longitudinal stiffness N
EDxy Moment of centrifugal stiffness Nm2

EIx, EIy Moment of stiffness inertia Nm2

EIx′ , EIy′ Moment of stiffness inertia about principal axis Nm2

ES Moment of stiffness Nm
f Tip slope factor -
f Eigenfrequency Hz
feq Equivalent fatigue cycle frequency Hz
fj Fraction of lifetime - timeseries j -
ft Profile thickness factor -
f(V0) Wind speed distribution (m/s)−1

fW (V0) Weibull wind distribution (m/s)−1

F Prandtl’s tip loss factor -
FT Correlation function, tip loss on thrust -
FF Correlation function, tip loss on flap moment -
g Gravitational acceleration m/s2

G Shear modulus (in plane) Pa
GJ Torsion stiffness Nm2

h Absolute shell thickness vector m
h Laminate thickness -
hA Weibull parameter m
i Bin index -
I Turbulence intensity -
Iref IEC reference turbulence intensity -
j Timeseries index -
k1, k2, k3 Constants, a(Ct/F ) relation -
kx, ky Shear factor -
k Coefficient relating load and stress Pa/N, Pa/Nm
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l Blade section lift N/m
l Turbulence length scale m
m Wöhler-curve parameter -
m Blade section mass Kg/m
M Bending moment vector Nm
M Blade mass Kg
Me Edgewise bending moment (aerodynamic) Nm
Mf Flapwise bending moment (aerodynamic) Nm
M ′i Bending moment about principal axes Nm
Mx Edgewise bending moment Nm
My Flapwise bending moment Nm
MF Root flapwise bending moment (aerodynamic) Nm
MS Shaft driving moment (aerodynamic) Nm
n lifetime cycles -
n′ Average RFC cycles per second Hz
n′tip n′ evaluated at blade tip Hz
neq Equivalent number of fatigue cycles -
nt RFC of timeseries of length t -
N Cycles to failure (Wöhler-curve) -
NB Number of blades -
obj Objective function
p Distributed load vector N/m
px Distributed load (edgewise) N/m
py Distributed load (flapwise) N/m
pz Distributed load (spanwise) N/m
pw Pressure from wake rotation -
pW Cumulative Weibull wind distribution -
P Power W
r Moment-arm vector m
r Coordinate, radius m
R Coordinate change matrix -
R Rotor radius m
R Load-range N, Nm
Req Equivalent fatigue load N, Nm
s Strain evaluation point m
s Surface curve parameter m
S Stress-range Pa
Seq Equivalent fatigue stress Pa
S0 Wöhler-curve parameter Pa
t Timeseries length s
t Profile relative thickness -
ta Profile absolute thickness m
T Internal force vector N
T Thrust N
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T Wind turbine lifetime s
u Blade deflection, edgewise m
v Blade deflection, flapwise m
va Axial velocity in rotor plane m/s
vave Average wind speed m/s
vrel Local relative velocity m/s
vt Velocity in rotor plane, relative to blade - edgewise m/s
Vref IEC reference wind speed m/s
V0 Wind speed m/s
x Relative shell thickness vector -
x Continuous RFC variable -
x Blade coordinate - edgewise m
xi Sector position, chordwise m
xSC Position, shear center m
xEA Position, elastic axis m
xCG Position, center of gravity m
xAC Position, aerodynamic center m
y Structural property vector
y Blade coordinate, flapwise m
y Cross section coordinate (relative to EA) m
yEA Position, elastic axis m
yCG Position, center of gravity m
z0 Roughness length m
z Absolute-change in shell thickness vector m
zhub Hub height m
z, r Blade coordinate, Spanwise m
αd Design angle of attack radians (degree)
α Local angle of attack radians (degree)
α Main spar relative thickness -
α Shear factor -
β Twist radians (degree)
β Relative thickness -
χ Dimensionless tip deflection -
δ Shear web thickness -
∆ Prefix denoting range -
∆vw Correction for wake rotation -
∆ve Correction for wake expansion -
ε Strain -
εa cyclic strain amplitude (fatigue tests) -
γ Leading/Trailing edge laminate thickness -
Γ Bound circulation vector m2/s
κ Curvature m−1

λ Tip speed ratio -
λd Design tip speed ratio -
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λr Local speed ratio -
ν Angle to first principal axis (relative to chord) radians (degree)
ν12 Poissons ratio -
Ω Rotational speed s−1, RPM
φ Inflow angle radians (degrees)
Φ Tip slope (dimensionless) -
ρ Mass density kg/m3

ρS Moment of mass kg
σ1 Turbulence standard deviation - wind direction m/s
σa Cyclic stress amplitude (fatigue tests) Pa
θ Azimuth angle (0=blade pointing up) radian (degree)
θ Deformation angle radian (degree)
θ′ Deformation angle about principal axis radian (degree)
θc Angle to chord line (relative to rotor plane) radians (degree)
θp Pitch angle radians (degree)
θz Angle to first principal axis (relative to rotor plane) radians (degree)
AC Aerodynamic center
ACD Actuator disc method
AEP Annual energy production Wh
AED Aeroelastic design group. Risø DTU, Denmark
ASR Active stall regulated turbine
BEM Blade element momentum method
BEMcor BEM method with corrections
C Cost
CFD Computational fluid dynamics
CG Center of gravity
COE Cost of energy
DLC Design loadcase
EA Elastic axis
EOG Extreme operating gust
ETM Extreme turbulence model
EWM Extreme wind model
HAWT Horizontal axis wind turbine
HAWC2 Aeroelastic code [37]
NTM Normal turbulence model
PRVS Pitch regulated variable speed
Re Reynolds number
RFC Rainflow count
RPM Revolutions per minute
SC Shear center
TI Turbulence intensity
B1-xx Risø airfoil family
DUxx TU Delft airfoil family
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Appendix A

Basic theory

The following is a summary of basic rotor aerodynamic theory.

A.1 Geometrical definitions

Figures 4.3 and A.1 illustrates relevant quantities.

Local relative velocity (not including spanwise flow)

vrel =
√
v2a + v2t (A.1)

Angle to chord line (relative to rotor plane)

θc = θp + β (A.2)

Angle to first principal axis (relative to rotor plane)

θz = θp + β + ν (A.3)

Angle of attack

α = φ− θp − β (A.4)
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Rotorplane
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Figure A.1: Sketch of basic properties relative to a blade section

Inflow angle (relative to rotor plane)

φ = arctan

(
va
vt

)
(A.5)

Relations

vrel sinφ = va (A.6)

vrel cosφ = vt (A.7)

A.2 2D aerodynamic forces

Lift and drag coefficients

Cl =
l

1/2ρv2relc
(A.8)

Cd =
d

1/2ρv2relc
(A.9)

Cd =
Cl
l/d

(A.10)
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Tangential force coefficient

Cx = Cl sinφ− Cd cosφ (A.11)

Normal force coefficient

Cy = Cl cosφ+ Cd sinφ (A.12)

Local power coefficient

Cp =
Ωv2relCxcNB

V 3
0 2π

(A.13)

Local thrust coefficient

Ct =
v2relCycNB
V 2
0 2πr

(A.14)

Local torque coefficient

Cq =
v2relCxcNB
V 2
0 2πr

(A.15)

Relations

Cq =
Cp
λr

(A.16)

Cq
Ct

=
Cx
Cy

(A.17)

Using (A.21) to calculate the inflow angle the following is true with great accu-
racy for large l/d

Cp
Ct

= λr

(
va
vt
− 1

l/d

)
(A.18)

A.2.0.1 Ideal energy conversion

If the flow angle is estimated using ideal energy conversion then the following
equations are good approximations

Cd = 0 (A.19)
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Cx = Cl sinφ (A.20)

Cy = Cl cosφ (A.21)

Cx
Cy

= tanφ =
va
vt

(A.22)

Note that ideal energy conversion (d=0) is a very good approximation when
related to calculation of angles, e.g. inflow angle φ. However, the drag is not
negligible when calculating shaft power, edgewise bending moments and other
properties related to forces in the rotor plane.

A.3 Dimensional analysis, aerodynamics

Tip speed ratio and local speed ratio

λ =
ΩR

V0
(A.23)

λr =
Ωr

V0
=

r

R
λ (A.24)

For similar turbines operating at similar λ, the following dimensionless quanti-
ties are constant. Note that similar turbine means similar geometrical shape or
similar load distribution (both may be expressed dimensionless). A similar load
distribution may be obtained for different geometries.

Power coefficient

CP =
P

1/2ρV 3
0 πR

2
(A.25)

Thrust coefficient

CT =
T

1/2ρV 2
0 πR

2
(A.26)

Flapwise root moment coefficient

CF =
MFNB

1/2ρV 2
0 πR

3
(A.27)
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Flapwise moment coefficient

Cf =
MfNB

1/2ρV 2
0 πR

3
(A.28)

Dimensionless bound circulation

Γ∗ =
Γ

V0R
(A.29)

Note that the dimensionless velocities v∗a, v∗t , and v∗rel are also constant due to
flow similarity.

A.4 Mechanical properties due to aerodynamics

Power coefficient

CP =
2

R2

∫
blade

rCp dr (A.30)

Thrust coefficient

CT =
2

R2

∫
blade

rCt dr (A.31)

Flapwise bending moment coefficient (about rotor centre)

CF =
2

R3

∫ R

0

r2Ct dr (A.32)

Flapwise bending moment coefficient at radius r

Cf =
2

R3

∫ R

r

(r′ − r)r′Ct dr′ (A.33)
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A.5 Blade element momentum method

A.5.1 Tip losses

Prandtl’s tip loss factor is defined as

F =
2

π
arccos

(
e−f

)
(A.34)

where

f =
NB
2

R− r
r sinφ

(A.35)

Linearization around r∗=1 yields a good approximation over the radii where tip
losses are significant

f ∼= −A1(r∗ − 1) , A1 >≈ 6 (A.36)

where

A1 =
1

2
NB

√
1 +

(1 + a′)2λ2

(1− a)2
∼=

1

2
NB

√
1 +

λ2

(1− a)2
(A.37)

Note that increasing A1 is equivalent to decreasing F . To summarize, a good
approximation to (A.34) is

F =
2

π
arccos

(
eA1(r

∗−1)
)

(A.38)

A1 can often be considered as a constant design parameter.
The point where tip losses become significant r∗F can be found by setting f to
an appropriate value. E.g. setting f=-4.0 yields

r∗F = 1− 4.0

A1
⇔ F = 0.988 (A.39)

A.5.2 Induction factors

Relation between axial induction and actuator disc thrust (Ref. [11])

a = k3

(
Ct
F

)3

+ k2

(
Ct
F

)2

+ k1
Ct
F

(A.40)



Blade element momentum method 109

For an undeflected, unconed rotor

k3 = 0.08921 , k2 = 0.05450 , k1 = 0.25116 (A.41)

Momentum theory solution for tangential induction

a′ =
Cq

4(1− a)λr
(A.42)

If the flow angle is calculated using ideal energy conversion then a′ can be
written as

a′ =
Ct

4(1 + a′)λ2r
⇒ a′ =

1

2

√
1 +

Ct
λ2r
− 1

2
(A.43)

An iteration loop is necessary in order to update and converge all forces and
flow properties.
It is safe to substitute Ct/F for Ct because a′ is negligible in the tip region.
Thus, the following expression is, with good accuracy, also valid everywhere on
the blade

a′ =
1

2

√
1 +

Ct/F

λ2r
− 1

2
(A.44)

A.5.3 Velocities and corrections for wake expansion and
rotation

It is possible to include corrections for wake expansion and rotations. The
derivation and calculation of these are explained in [11]. The result is 2 correc-
tions on the axial flow velocity, which becomes

va = (1− a+ ∆vw −∆ve)V0 (A.45)

where ∆vw is a correction for wake rotation and ∆ve is a correction for wake
rotation. The tangential velocity is

vt = λr(1 + a′)V0 (A.46)

Thus, the velocities may be expressed dimensionless as

v∗a =
va
V0

, v∗t =
vt
V0

(A.47)
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A.5.4 Blade design parameter

Combining (A.21) and (A.14) yields

Ct =
v2relClcNB cosφ

V 2
0 2πr

(A.48)

I.e. the drag component in the axial direction is assumed negligible compared
to the lift. Rewritting with dimensionless quantities and rearranging yields

c∗Cl =
Ct2π

NB

r∗

v∗rel
2 cosφ

(A.49)

This result can be regarded as independent of number of blades if tip losses
are neglected. In that case the following is a constant which represents the 3D
aerodynamic design, i.e. the design thrust at desired tip speed ratio.

c∗ClNB (A.50)

A.6 Lifting line theory

Joukowsky theorem

L = ρQ× Γ (A.51)

For turbines the dimensionless bound circulation is

Γ∗ = Cl1/2v
∗
relc
∗ (A.52)

Inviscous power coefficient due to lift forces

CP,l =
2NBλ

π

∫
blade

r∗v∗aΓ∗ dr∗ (A.53)

Viscous power coefficient due to drag forces calculated from known lift to drag
ratio

CP,d = −2NBλ

π

∫
blade

(l/d)
−1
r∗v∗t Γ∗ dr∗ (A.54)

Power coefficient

CP = CP,l + CP,d (A.55)
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Analytical design of turbines
with constant thrust

In the analysis wake swirl losses and tip losses are taken into account. The BEM
corrections for wake rotation and expansion are not included, but the method
still provides a good first approximation.

The design thrust is defined as

Ct2,d = (Ct/F)design (B.1)

This is related to a constant design value of a through equation (A.40). The
actual mechanical thrust on the blade is

Ct = Ct2,dF (B.2)

B.1 Thrust and tip losses

Neglect drag forces when calculating the thrust. The thrust coefficient integral
(A.31) becomes

CT = 2Ct2,d

∫ 1

0

r∗F dr∗ (B.3)
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Alternatively write this as the thrust calculated by neglecting tip loss (first
term) plus the thrust caused by tip loss (second term)

CT = 2Ct2,d

∫ 1

0

r∗ dr∗ + CT,F = Ct2,d + CT,F (B.4)

This yields

CT,F
Ct2,d

= 2

∫ 1

0

r∗F dr∗ − 1 (B.5)

Assume a′=0. Then, because a is constant, A1 is also a constant design param-
eter, describing the whole turbine. The tip loss is therefore only a function of
r∗ and the constant A1

F = F (A1, r
∗) (B.6)

By varying A1 and numerically integrating (B.5) a series of data has been ob-
tained. The following expression fits the data well for A1 >5

CT,F
Ct2,d

= − 1.392

1.2 +A1
(B.7)

Figure B.1 shows the numerically integrated value of CT,F and the polynomial
fit B.7.

B.2 Flapwise moment and tip losses

Equation (A.32) combined with (B.2) yields the following integral for the flap
moment coefficient

CF = Ct2,d2

∫ 1

0

r∗2F dr∗ (B.8)

This can also be rewritten as CF without tip loss (first term) plus the contri-
bution from tip loss (second term)

CF = 2/3Ct2,d + CF,F (B.9)

Combining these equations yields

CF,F
Ct2,d

= 2

∫ 1

0

r∗2F dr∗ − 2/3 (B.10)
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Figure B.1: CT,F versus A1.

The integral in the above has been solved numerically for varying values of A1.
The following expression fits the data well for A1 >5

2

∫
blade

r∗2F dr∗ = 2/3− 1.4

2.3 +A1
(B.11)

Inserting above yields

CF,F
Ct2,d

= − 1.4

2.3 +A1
(B.12)

Figure B.2 shows the numerically integrated value of CF,F and the polynomial
fit B.12. Note that this decrease in the flap moment is the same for all sections
of the blade where tip losses are not present. In theory tip losses are present
everywhere but here it will be defined that they are zero for r∗ < r∗F . The local
flap moment is

Cf (r∗) = Ct2,d2

∫ 1

r∗
(r − r∗)rF dr (B.13)

This integral is divided into two and it is assumed that tip losses are not im-
portant in the first (F=1)

Cf (r∗)
Ct2,d

= 2

∫ r∗F

r∗
(r − r∗)r dr + 2

∫ 1

r∗F

(r − r∗)rF dr (B.14)
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Figure B.2: CF,F versus A1.

The first integral in (B.14) has solution

2

∫ r∗F

r∗
(r − r∗)r dr = 2/3r∗F

3 + 1/3r∗3 − r∗r∗F
2 (B.15)

The second integral in (B.14) is divided into two

2

∫ 1

r∗F

(r − r∗)rF dr = 2

∫ 1

r∗F

r2F dr − 2r∗
∫ 1

r∗F

rF dr (B.16)

These integrals are of the same types as in (B.5) and (B.10). However, the limits
are not correct and should be from 0 to 1. This can be obtained as seen below,
where it is again used that F=1 for r∗ < r∗F . The first integral:

2

∫ r∗F

0

r2 dr + 2

∫ 1

r∗F

r2F dr = 2

∫ 1

0

r2F dr (B.17)

⇔ 2

∫ 1

r∗F

r2F dr = 2

∫ 1

0

r2F dr − 2

∫ r∗F

0

r2 dr (B.18)

Inserting (B.10) and solving the last integral yields

2

∫ 1

r∗F

r2F dr =
CF,F
Ct2,d

+ 2/3− 2/3r∗3 (B.19)
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By the same method and inserting (B.5) the second integral is rewritten:

2

∫ 1

r∗F

rF dr = 1 +
CT,F
Ct2,d

− r∗F
2 (B.20)

Substituting everything back into () and simplifying yields the final result

Cf (r∗) = Ct2,d

(
1/3r∗3 − r∗ + 2/3

)
+ CF,F − r∗CT,F (B.21)

where

r∗ < r∗F (B.22)

However, test examples show that this limit can be extended significantly to

r∗ <
r∗F + 1

2
= 1− 2

A1
(B.23)

B.3 Power and wake swirl losses

Combining (A.18), (A.30) and (B.2) yields the local power coefficient

Cp = Ct2,dF

(
1− a
1 + a′

− λr
l/d

)
(B.24)

and the integrals for the total power coefficient

CP = Ct2,d(1− a)2

∫ 1

0

1

1 + a′
r∗F dr∗ − λ

l/d
Ct2,d2

∫ 1

0

r∗2Fdr∗ (B.25)

Wake swirl losses are represented by a′ appearing in the denominator. Alterna-
tively write this as an integral where a′ is neglected (first term) plus the power
caused by wake swirl (second term) plus the power caused by drag (third term)

CP = 2Ct2,d(1− a)

∫ 1

0

r∗F dr∗ + CP,a′ + CP,d (B.26)

where

CP,d = − λ
l/d
Ct2,d2

∫ 1

0

r∗2Fdr∗ (B.27)

Using (B.3) this can be rewritten as

CP = (1− a)CT + CP,a′ + CP,d (B.28)
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Comparing (B.27) with (B.8) it is seen that

CP,d = − λ
l/d
CF (B.29)

It will be assumed that wake swirl losses are independent of tip losses and drag
losses. This means that CP,a′ can be evaluated on a rotor where those losses
are neglected, i.e. F=1 everywhere and CP,d=0. Setting F=1 means that
CT=Ct2,d. Substituting into (B.28) yields

2Ct2,d(1− a)

∫ 1

0

1

1 + a′
r∗ dr∗ = (1− a)Ct2,d + CP,a′ (B.30)

⇔ CP,a′

Ct2,d(1− a)
=

∫ 1

0

2

1 + a′
r∗dr∗ − 1 (B.31)

The analytical solution can be found by use of equation (A.44)

CP,a′

Ct2,d(1− a)
=1/4A2 ln(A2) +

√
1 +A2

(
1

A2
+ 1/2

)
(B.32)

− 1/2A2 ln(1 +
√

1 +A2)− 1− 1

A2
(B.33)

where A2 is

A2 =
Ct2,d
λ2

(B.34)

A polynomial fit valid for A2 <0.065 is

CP,a′

Ct2,d(1− a)
= 4.906A2

2 − 1.173A2 − 0.002362 (B.35)

Note that the effect of tip losses on the power carries over directly through the
thrust coefficient in (B.28).

B.4 Circulation and viscous drag losses

Equation (B.25) on differential form is

dCP = 2Ct2,d(1− a)
1

1 + a′
r∗F dr∗ (B.36)

The power coefficient based on inviscous theory is equation (A.53). On differ-
ential form it is

dCP,l =
2NBλ

π
r∗v∗aΓ∗ dr∗ (B.37)
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Substituting v∗a=(1− a) and comparing the above expressions yields

Γ∗ = Ct2,d
π

NBλ

F

(1 + a′)
(B.38)

Substituting this result into (A.54) yields an expression for the power losses due
to viscous drag

CP,d = −2λCt2,d

∫ 1

0

(l/d)
−1
r∗2F dr∗ (B.39)

Assuming constant l/d and rewriting yields

CP,d

λCt2,d (l/d)
−1 = −2

∫ 1

0

r∗2F dr∗ (B.40)

The integral is the same as the one appearing in (B.10). Combining with the
above yields

CP,d

λCt2,d (l/d)
−1 = −CF,F

Ct2,d
− 2/3 (B.41)

Using (B.9) this can finally be written as

CP,d

λ (l/d)
−1 = −CF (B.42)

This should not be interpreted as if CP,d depends on CF . It is merely a result
of both depending on the same type of integral (i.e. (B.10))

B.5 Flow angle, lift coefficient and chord

The flow angle can be calculated using Equation (A.44) and the BEM equations
with ∆vw=∆ve=0.

tanφ =
1− a

1/2

(
1 +

√
1 + A2

r∗2

)
λr∗

(B.43)

The blade twist is then defined by the design angle of attack αd

β = φ− αd − θp (B.44)
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The design parameter follows from (A.49) which may be rearranged as

c∗ClNB = Ct2,d
2πFr∗

((1− a)2 + λ2r∗2(1 + a′)2) cosφ
(B.45)

c∗ClNB ∼= Ct2,d
2πFr∗

(1− a)2 + λ2r∗2
(B.46)

c∗ClNB ≈ Ct2,d
2πr∗

(1− a)2 + λ2r∗2
(B.47)

(B.47) is only valid near the center of the blade where tip-losses and wake swirl
is negligible.

B.6 Resume

Design parameters (model input)

λ , Ct2,d = (Ct/F)design (B.48)

(B.49)

Design coefficients

A1 =
1

2
NB

√
1 +

λ2

(1− a)2
(B.50)

A2 =
Ct2,d
λ2

(B.51)

Momentum theory

a = k3C
3
t2,d + k2C

2
t2,d + k1Ct2,d (B.52)

a′ =
1

2

√
1 +

A2

r∗2
− 1

2
(B.53)

Integral quantities

CT = Ct2,d + CT,F (B.54)

CF = 2/3Ct2,d + CF,F (B.55)

CP,d = −CFλ (l/d)
−1

(B.56)
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CP = (1− a)CT + CP,a′ + CP,d (B.57)

Distributed quantities

Γ∗ = Ct2,d
π

NBλ

F

(1 + a′)
(B.58)

Ct = Ct2,dF (B.59)

Cp = Ct2,dF

(
1− a
1 + a′

− λr
l/d

)
(B.60)

Cf = Ct2,d

(
1/3r∗3 − r∗ + 2/3

)
+ CF,F − r∗CT,F , r∗ <

r∗F + 1

2
(B.61)

Tip loss correction on total thrust (A1 >5)

CT,F = − 1.392

1.2 +A1
Ct2,d = FT (A1)Ct2,d (B.62)

Tip loss correction on flap moment (A1 >5)

CF,F = − 1.4

2.3 +A1
Ct2,d = FF (A1)Ct2,d (B.63)

Correction for wake swirl losses (A2 <0.065)

CP,a′ =
(
4.906A2

2 − 1.173A2 − 0.002362
)
Ct2,d(1− a) (B.64)
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Appendix C

Fatigue

The following is a description of fatigue analysis of timeseries. The analysis
is based on the Palmgreen-Miner theory of linear damage accumulation and
rainflow-counting (RFC) of timeseries of loads.

A discussion of the same topic is given by Thomsen [63]. A thorough discussion
of fatigue data for fibre laminates is found in [55]. Data for metals can be found
in e.g. [56].

C.1 Material data

Fatigue test data is presented in SN-graph’s (Wöhler curves) which shows the
cycles to failure N versus stress S. In this text S is the stress range, but note
that the reported stress often is the amplitude of a cyclic load σa. They are
related as

S = 2σa (C.1)

For fibre composites the strain amplitude εa is often used instead of the stress.
The reason is that εa is relatively independent of fibre angles and volume frac-
tions. σa, on the other hand, depends heavily on the fibre angles and volume
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fractions. In this case:

S = 2Eεa (C.2)

Where E is the elastic modulus, which must correspond to the direction of ap-
plied stress. A simplified material SN-curve, representing the high-cycle fatigue,
can be defined as

logS0 −
1

m
logN = logS ⇔ N =

(
S0

S

)m
(C.3)

Where S0 and m are material constants. Representative values for the material
constants for unidirectional glass-epoxy composite materials are

m = 10 (C.4)

S0 = 2E · 0.031 (C.5)

In this form the SN-curve is extremely simplified. Among other things, the
data depends on the mean stress level, which often is different from zero. The
allowable stress ranges are smaller than the largest described by (C.3) because
otherwise the material will go into low cycle fatigue and finally reach the yield
stress. The uncertainties makes it very complicated to make an exact assessment
of the fatigue damage and because of this the concept of an equivalent load is
introduced next.

C.2 Load-stress relations

For a given load R, e.g. a bending moment, the stress may depend on many
factors. It will be assumed that a linear relation holds

S = kR (C.6)

E.g. using Bernoulli-Euler beam theory the axial strain in the outermost fibre,
at distance y from the neutral axis, due to a bending moment M , is

ε =
M

EIx
y (C.7)

The fibre stress is

σ =
E(y)y

EIx
M ⇒ k =

E(y)y

EIx
(C.8)

Where E(y) is the elastic modulus at y.
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C.3 Damage analysis and equivalent load

The analysis aims at determining the component damage in an arbitrarily se-
lected lifetime T , based on a representative timeseries of a given load, in times-
pan t.

The input to the fatigue analysis is a timeseries of a given load. Using Rainflow
counting the series is rearranged into bins where each bin holds the number of
cycles ni of a defined magnitude Ri. This is the range of the cycle and not the
amplitude

Ri = Ri,max −Ri,min (C.9)

Index i refers to the bin number. The bins are defined in order to cover the
entire range of signal-values. In the following the material stress S is relevant
and this can be related to R using (C.6).

The damage di for one cycle of stress range Si is

di =
1

Ni
(C.10)

The total damage for the actual number of cycles ni is

Di =
ni
Ni

(C.11)

The total damage from all bins (i.e. the entire signal) is

D =
∑

Di =
1

Sm0

∑
niS

m
i (C.12)

The timeseries typically has a duration of t=10 min. The bin values ni,t must
then be linear extrapolated to the equivalent lifetime values T before using
(C.12).

ni = T
ni,t
t

= Tn′i (C.13)

The material will fail if D ≥1. Although, in practice D ≥0.7-3.0 .

It is useful to define an equivalent stress amplitude Seq, which under neq cycles
will cause the same fatigue damage. I.e.

D = neq
Smeq
Sm0

(C.14)
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neq can be selected arbitrary. One possibility is to let it correspond to an
equivalent frequency feq (e.g. 1 Hz) in the component lifetime

neq = feqT (C.15)

The specific definition of neq is often complicating things unnecessary making
it harder to interpret results. This can be overcome by not using it at all and
instead use only the equivalent frequency feq, from which the entire analysis
can be made. Since D is given by (C.12) the correct equivalent stress can be
found

Seq =

(∑
niS

m
i

neq

)1/m

=

(∑
n′iS

m
i

feq

)1/m

(C.16)

Seq is independent of T and n′i are under quasi steady conditions independent
of t, so Seq does not depend on sampling time or total lifetime (in practice there
will often be variations with sampling time depending on the signal).

An equivalent load can also be defined

Req =
Seq
k

=

(∑
niR

m
i

neq

)1/m

=

(∑
n′iR

m
i

feq

)1/m

(C.17)

The damage is

D = neq
kmRmeq
Sm0

= feqT
kmRmeq
Sm0

(C.18)

The equivalent load has the advantage that it can be calculated using only a
load history and 1 material constant, m. A meaningful relative comparison of
the damage from various timeseries is made by comparing Rmeq calculated using
the same feq.

C.4 Several timeseries

In case of several timeseries the total damage is found by summation

D =
∑
j

Dj =
∑
j

∑
i

Dij =
∑
j

1

Sm0

∑
i

nijS
m
ij (C.19)

where j is the index of timeseries. When referring to the previous section a sub-
script j should therefore be added to the notation there. The rainflow counted
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values nij,t must again be extrapolated to their lifetime values where Tj is the
actual lifetime of timeseries j.

nij = Tj
nij,t
tj

= Tjn
′
ij (C.20)

Tj is now defined as a fraction of the total lifetime T

Tj = fjT (C.21)

Where fj is the proportion of the lifetime represented by timeseries j. neq is
defined as before

neq = Tfeq (C.22)

It is again usefull to define an equivalent stress Seq of the same form form as in
equation (C.14). Comparing (C.14) with (C.19) the correct value is found

Seq =

(∑
j

∑
i nijS

m
ij

neq

)1/m

=

∑
j

fj

∑
i n
′
ijS

m
ij

feq

1/m

(C.23)

Assuming the same feq, this can be written in terms of Seq,j found for the
individual timeseries using (C.16).

Seq =

∑
j

fjS
m
eq,j

1/m

(C.24)

Where Seq,j could be determined independent of sampling time and lifetime. In
terms of equivalent loads the relations are

Req =

(∑
j

∑
i nijR

m
ij

neq

)1/m

=

∑
j

fj

∑
i n
′
ijR

m
ij

feq

1/m

=

∑
j

fjR
m
eq,j

1/m

(C.25)

The total damage is

D = feqT
kmRmeq
Sm0

(C.26)

C.5 Formulas on integral form

The binned formulation is not useful for analytical analysis, and a more general
formulation is presented below.
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The range of stress is described by a function S(x), and the number of cycles is
a distribution function n(x). x is a general variable and can for instance be the
stress itself (x=S, S(x)=S, n(x)=n(S), dx=dS). The number of cycles from x
to x+dx is

dn′ =
n(x)

T
dx = n′(x) dx (C.27)

Values of n′ can be approximated from a binned RFC as

n′(xi) =
ni(xi)

t∆xi
(C.28)

Where ∆xi is the width of the bin. The summation transforms into an integral∑
n′iS

m
i ⇒

∫
n′(x)S(x)m dx (C.29)

and the damage in unit time is

D′ =
1

Sm0

∫
n′(x)S(x)m dx (C.30)

Assume the distributions them self are distributed, e.g. as a function of wind
speed v

n′ = n′(x, v) S = S(x, v) (C.31)

The damage then becomes a function of v and the damage in time dt is

dD = D′(v)dt (C.32)

Where dt(v) is the infinitesimal time at v during the whole lifetime T . dt(v) is
found from the wind speed probability function f(v) and the total lifetime T

dt = Tf(v)dv (C.33)

The damage in time T is found by integrating (C.32)

D =
T

Sm0

∫
f(v)

∫
n′(x, v)S(x, v)m dx dv (C.34)

This can also be written using the discrete form in equation (C.29)

D =
T

Sm0

∫
f(v)

∑
n′i(v)Si(v)m dv (C.35)
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or as

D =
1

Sm0

∑
Tj

∫
n′j(x)Sj(x)m dx (C.36)

The definitions of the equivalent stress are

Seq =

[
1

feq

∫
f(v)

∫
n′(x, v)S(x, v)m dx dv

]1/m
(C.37)

and

Seq =

[
1

feq

∫
f(v)

∑
n′i(v)Si(v)m dv

]1/m
(C.38)

and

Seq =

[
1

feq

∑
fj

∫
n′j(x)Sj(x)m dx

]1/m
(C.39)
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Validation and modifi cation of the Blade Element 
Momentum theory based on comparisons with 
actuator disc simulations
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ABSTRACT

A comprehensive investigation of the Blade Element Momentum (BEM) model using detailed numerical simulations with 
an axis symmetric actuator disc (AD) model has been carried out. The present implementation of the BEM model is in 
a version where exactly the same input in the form of non-dimensional axial and tangential load coeffi cients can be used 
for the BEM model as for the numerical AD model. At a rotor disc loading corresponding to maximum power coeffi cient, 
we found close correlation between the AD and BEM model as concerns the integral value of the power coeffi cient. 
However, locally along the blade radius, we found considerable deviations with the general tendency, that the BEM model 
underestimates the power coeffi cient on the inboard part of the rotor and overestimates the coeffi cient on the outboard 
part. A closer investigation of the deviations showed that underestimation of the power coeffi cient on the inboard part 
could be ascribed to the pressure variation in the rotating wake not taken into account in the BEM model. We further 
found that the overestimation of the power coeffi cient on the outboard part of the rotor is due to the expansion of the 
fl ow causing a non-uniform induction although the loading is uniform. Based on the fi ndings we derived two small engi-
neering sub-models to be included in the BEM model to account for the physical mechanisms causing the deviations. 
Finally, the infl uence of using the corrected BEM model, BEMcor on two rotor designs is presented. Copyright © 2009 
John Wiley & Sons, Ltd.
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NOTATIONS

a axial induction factor
acor1 axial induction factor after correction 

 for wake rotation
a` tangential induction factor
c chord length (m)
Cd drag coeffi cient
Cl lift coeffi cient
CPav average power coeffi cient
Cpa power coeffi cient for axial loading
Cps power coeffi cient based on shaft 

 power

373Copyright © 2009 John Wiley & Sons, Ltd.

Cpt power coeffi cient for tangential loading
Cptot power coeffi cient for total energy 

 conversion at rotor disc
CQ local torque coeffi cient—tangential 

 loading on actuator disc
CT local thrust coeffi cient—axial loading 

 on actuator disc
Cx projection of lift and drag coeffi cients 

 on tangential direction
Cy projection of lift and drag coeffi cients 

 on axial direction
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k1 k2 k3 constants in polynomial for a(CT)
k1, k2, k3 constants of polynomial trend lines for 

 wake expansion
kmassfl ow mass fl ow factor—ratio between total 

 mass fl ow in the standard BEM 
 model and total mass fl ow in the 
 corrected BEMcor model

dQ torque on differential annular element 
 dr

dT thrust on differential annular element 
 dr

NB number of blades
p pressure
pw pressure from rotation of wake fl ow 

 (swirl)
r radial position
R rotor radius (m)
Xa volume force in axial direction
va axial velocity
va−cor fi nal corrected axial velocity
va−cor1 axial velocity corrected for rotation of 

 wake
vr radial velocity
vt tangential velocity
Vr length of relative velocity vector
V0 free stream velocity (m s)

GREEK LETTERS

l tip speed ratio
lr local tip speed ratio
Δpw pressure component from wake 

 rotation computed with the AD 
 model

Δve axial correction velocity from wake 
 expansion

Δvle variable term of axial correction 
 velocity from wake expansion

Δv2e constant term of axial correction 
 velocity from wake expansion

Δvw correction velocity from wake rotation
f angle from rotor plane to relative 

 velocity vector
r mass density (kg m−3)
Ω angular rotor shaft velocity (rad s−1)

1. INTRODUCTION

It is well known that the blade element momentum (BEM) 
model, being the most common engineering model for 
computation of aerodynamic forces in aerodynamic and 
aeroelastic design models, is derived on basis of a number 
of assumptions for the fl ow properties through the rotor 

and in the wake. The BEM model has originally been 
developed by Glauert1 who also discusses the assump-
tions that must be introduced in order to derive the simple 
relations for axial and tangential induction. One of these 
assumptions is to disregard the pressure term from rota-
tion of the wake. This assumption has later been consid-
ered by e.g. Wilson and Lissaman2 and de Vries3 made a 
more detailed analytical study of the consequences of this 
assumption. From his study, the infl uence of making dif-
ferent assumptions about wake expansion and about the 
pressure term from wake rotation is shown in Figure 1. 
Including the pressure term from wake rotation and at the 
same time including the wake expansion, de Vries showed 
that the power loss from wake rotation at low tip speed 
ratio is almost cancelled by the increased mass fl ow 
through the rotor because of the low pressure in the centre 
of the wake from wake rotation. This is, thus, different 
from the theory of Glauert, where only the loss from the 
wake rotation is included, and this leads to the decrease in 
rotor power coeffi cient at low tip speed ratio as shown by 
the dashed line in Figure 1. However, the analysis was 
carried out for a constant bound circulation along the 
blade span and cannot just be expanded for use on arbi-
trary loadings on the rotor. Later, Sharp4 made a similar 
study and he also came to the conclusion that the rotor 
power coeffi cient does not decrease at low tip speed ratio 
but can even exceed the Lanchester-Betz limit, and the 
same was concluded by Xiros.5 One of the limitations in 
the study of both de Vries and Sharp is the assumption of 
a constant circulation along the blade span and of a con-
stant axial velocity distribution at the rotor disc. Lam6 
worked a little further on the analysis of Sharp and 
showed one more possible solution for the maximum CP 
based on the same CP equation as sharp. This other theo-
retical solution means zero induction at the rotor disc and 
an induction of 1 in the far fi eld corresponding to infi nite 
expansion. One of the complications in above mentioned 
studies is that the constant circulation in combination 
with the wake swirl results in a singularity at the turbine 
axis where the tangential fl ow velocity becomes infi nite. 
Introducing a hub vortex in his model Wood7 tries to 
overcome this by introducing a hub vortex and comes to 
the same qualitative trend of an increasing power coeffi -
cient as function of a decreasing tip speed ratio as found 
by Sharp, however now with a model that differs from the 
one used by Sharp.

Besides disregarding the pressure term from wake rota-
tion, there are other assumptions behind the simple set of 
equations used for computation of the induction and of 
the aerodynamic forces in the BEM model. The most 
uncertain point might be that the equations are derived 
using the momentum equation on integral form, but at the 
end the induction, equations are used on differential form 
where the stream tubes are assumed to be independent of 
each other (also called strip theory). This has big advan-
tages in solving the equations and it also gives a robust 
model, which is desirable when using the BEM model 
together with numerical optimization for rotor design. 
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However, it is uncertain how good this assumption is, and 
in particular, when the loading on the rotor is varying 
considerably in radial direction as is the case in the root 
and tip region.

In order to validate the BEM model and investigate the 
infl uence of the assumptions behind the simplifi ed set of 
equations describing the fl ow through the rotor we have 
carried out a thorough comparison with numerical results 
from an actuator disc (AD) model.8–13 The major difference 
between the BEM model and the AD model is that the full 
set of equations are solved in the AD model using a com-
putational fl uid dynamics (CFD) code, which, in the 
present case, is the commercial code FIDAP.14 A com-
parison of the results from the two models will thus reveal 
the importance of the assumptions behind the simplifi ed 
set of equations in the BEM model.

The organization of the paper is the following. First, 
there is a description of the AD model and the BEM 
model. Then, a section with comparisons of results from 
the two models follows. On the basis of this comparison, 
we then present two sub-models to be included in the BEM 
model in order to model the infl uence of the pressure term 
from wake rotation and the infl uence on the induction from 
wake expansion. These sub-models are not limited to spe-
cifi c load distribution or limited tip speed ratio range and 

the resulting modifi ed BEM model can thus be used for 
design and analysis work in industry. At the end of the 
paper the infl uence of using the modifi ed BEM model is 
shown for two rotor designs.

2. ACTUATOR DISC MODEL 
COMPUTATIONS

The loading on the actuator disc Cy, Cx is derived from the 
lift and drag projections normal and tangential to the rotor 
plane:

 
C C C

C C C

y l d

x l d

= ( ) + ( )

= ( ) − ( )

cos sin

sin cos

φ φ

φ φ
 (1)

where f is the angle from the rotor plane to the relative 
velocity vector, Figure 2.

The infi nitesimal thrust dT and torque dQ on an infi ni-
tesimal annular element dr can be written as
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Figure 1. The infl uence on the power coeffi cient vs. tip speed ratio, from different assumptions on wake expansion and induction 
characteristics from the study of de Vries.3 Figure reproduced from de Vries3.
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where Vr is the relative velocity to the blade section, r is 
density of mass, c is chord length and NB is number of 
blades.

We then derive the local thrust coeffi cient CT and the 
local torque coeffi cient CQ:
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where V0 is the free stream velocity.
For the energy conversion in inviscid fl ow (Cd = 0), we 

can derive the ratio between CT and CQ as follows:

 C

C

dQ

r
dT

C

C
C CQ

T

x

y
Q T= = = ( ) ⇒ = ( )tan tanφ φ  (4)

This equation shows that if we specify a rotor loading by 
CT, then we shall apply a corresponding loading CQ as 
given by equation (4). However, as CQ depends on the 
actual fl ow angle f, which is a part of the fl ow solution, 
an iteration loop is necessary in order to reach a fi nal solu-
tion for a specifi ed axial loading CT. We can now study 
the energy conversion in a rotor simply by specifying the 
loading expressed by CT and CQ.

2.1. Mesh and computational conditions

The general purpose CFD code FIDAP was used for the 
present computations. In the past the code has been used 
for several studies using the actuator disc model. The pre-
vious studies comprised: comparison with the BEM model, 
infl uence of turbulent mixing and high loading,15 aerody-
namics of coned rotors,16 yawed fl ow aerodynamics,17,18 
and dynamic induction.19 Based on experience from these 
studies the set-up for the present simulations was chosen. 
Axisymmetric, swirling fl ow has been assumed and a mesh 
stretching 10R in upstream and radial direction and 20R 
in downstream direction has been used. The disc itself is 
modelled with two layers of elements in the stream-wise 
direction and has a extension of 0.05R (Figure 3). Further, 
the simulations were run for laminar fl ow with a Reynolds 
number of 1000 based on rotor radius.

3. THE BEM MODEL 
COMPUTATIONS

The present implementation form of the BEM model has 
been chosen because it makes it possible to use induction 

V0 (1-a)

r   (1+a`)

Vr

V0

Figure 2. The velocity triangle at the airfoil section.

Z

R

Figure 3. Detailed view on the mesh close to the actuator disc. The disc is modelled with two elements in the streamwise direction 
and has a total width of 0.05R. The dimensions of the total mesh are: 10R upstream, 10R radial and 20R in the 

downstream direction.
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Z

R

Figure 4. Axial velocity contours for an AD simulation on a 20° coned rotor with a constant loading and CT = 0.89.

characteristics from a more detailed numerical model in 
simulation cases where the standard BEM model fails. 
This can, for example, be coned rotors, rotors with high 
blade defl ections or rotors with winglets on the blades. The 
present implementation has further the advantage that the 
input to the model are exactly the same two load coeffi -
cients CT, CQ as used as input for the AD model and this 
means that the two models easily can be compared.

Momentum theory relates the induction a to the axial 
thrust coeffi cient CT by:

 C a aT = −( )4 1  (5)

For angular momentum, we have, for an annular 
element:

 dQ rdr rV a r= ( ) −( )( )ρ π2 1 20 a Ω  (6)

and the torque dQ is derived as:

 dQ V rC cN drr x B= 1

2
2ρ  (7)

Combining equations (6) and (7) and introducing the tan-
gential load coeffi cient CQ defi ned in equation (3), 
we get:

 a =
−( )

=
−( )

C
V

r a
C

a
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The tangential velocity is computed as:

 a a=
−( )

⇒ = =
−( )

C
V

r a
r v

V C

a
Q t

Q0 0

4 1
2

2 1Ω
Ω  (9)

The fl ow through the disc as function of the load coeffi -
cients CT, CQ can now be found by equations (5) and (9). For 
the solution of equation (5), we express the induction as 
function of CT using a third order polynomial:

 a k C k C k CT T T= + +3
3

2
2

1  (10)

The constants have been found so that equation (5) is 
fulfi lled for loadings CT up to 0.7–0.8, but ensuring that 
we have a smooth transition to an empirical relation at 
higher loadings where equation (5) is not valid. At high 
loadings, we have based the shape of the curve on several 
different inputs; the Glauert empirical relation and AD 
simulations at high loadings.14 The following values for 
the constants have been used: k3 = 0.08921, k2 = 0.05450, 
k1 = 0.25116.

Now, there can be rotor designs such as coned rotors, 
where the a(CT) relation as given by equation (10) does 
not hold. Axial velocity contours for a rotor with a coning 
of 20º, computed with the AD model, is shown in Figure 
4. Induction at different radial positions on the disc as 
function of local loading for this simulation have been 
extracted and plotted in Figure 5. It is seen that the curves 
do not follow the standard Glauert relation. On a major 
part of the rotor, the a(CT) slope is less than the Glauert 
relation, and only close to the tip the induction is stronger. 
With the present implementation of the BEM model, these 

` `
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a(CT) relations as function of radius can now be used 
instead of the standard Glauert relation, and we get a much 
more accurate simulation with the BEM model. More 
results on the induction characteristics for coned rotors and 
rotors with defl ected blades can be found in Madsen16 and 
Mikkelsen.20

4. POWER CONVERSION 
COEFFICIENTS

The power conversion in the actuator disc over an annular 
element is, according to de Vries3:

 dP dQ v dT
v

r
dQa= = −Ω 1

2
t  (11)

We now derive non-dimensional power coeffi cients for the 
individual terms in equation (11).

For the total energy conversion, we have

 C
dP

V rdr
ptot =

1
2

20
3ρ π

 (12)

and for the shaft power
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where lr is the local tip speed ratio.
For the energy conversion by the axial volume forces, 

we have
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and for the tangential volume forces, combining equations 
(2) and (11)
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Inserting CQ from equation (3) and combining with 
equation (9), we get
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For the non-dimensional power coeffi cients, we now have 
the same relation as for the power balance shown in 
equation (11)

 C C C CP P P Ptot s a= = − t
 (17)

It should be noted that in the following, all variables are 
non-dimensionalized as follows:

v v V r r R p p V
R

V

r

V
r* * *= = = ( ) = =0 0

2

0 0

, , , ,ρ λ λΩ Ω  (18)

However, for simplifi cation the star is not written.
The non-dimensionalization reduces the expression for 

the power coeffi cients to

 C v CP a Ta =  (19)

and

 C v vP a tt = 2  (20)

5. COMPARISON OF BEM AND AD 
RESULTS

A number of different load distributions have been used 
in the numerical study on which the present results are 
based. Here, the results will fi rst be shown for a tip speed 
ratio of 6 and a constant loading of CT = 0.95, which, 
however, decreases linearly to zero at the rotor centre in 
order to avoid a tangential loading increasing to infi nity 
(Figure 6).

The comparison of the axial and tangential velocities at 
the rotor disc (Figure 7) shows that the induction computed 
by the AD model is less than the induction by the BEM 
model on the inner part of the rotor, whereas the opposite 
tendency is seen on the outer part of the rotor. It should 
be noted that exactly the same loading has been used in 
the two models, as the tangential loading only was found 
by the AD model using a few iterations to fi nd the tangen-
tial loading for the converged solution.
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Figure 5. The relation between loading CT and induction factor 
as used in the present formulation of the BEM code and 
compared with the Glauert correlation. Further, the computed 
correlation for a coned rotor at different radial stations 

is shown.



Wind Energ. 2010; 13:373–389 © 2009 John Wiley & Sons, Ltd.
DOI: 10.1002/we

H. A. Madsen et al. Validation and modifi cation of the BEM theory

379

In Figure 8, it appears that the power coeffi cient for the 
axial loading can exceed the Betz limit considerably, as its 
maximum is around 0.75 at a radial position of 0.1. 
However, it is also at this radial position that the power 
coeffi cient for the tangential loading has its maximum, and 
this represent power supplied to the fl ow in the form of 
wake fl ow rotation. The total power coeffi cient being 
derived as the difference between the two mentioned coef-
fi cients decreases only slightly inboard and this confi rms 
the fi ndings of de Vries3 and Sharp,4 who found that the 
losses due to wake rotation would be counterbalanced 
because of the increased axial fl ow on the inner part of the 
rotor.

The differences in fl ow velocities comparing the AD and 
the BEM model respectively, leads to considerable devia-
tions in the local CP coeffi cients as seen in Figure 9. On 
the inboard part of the rotor, the CP coeffi cient computed 
by the AD model is considerably higher than the CP from 
the BEM model, and is seen to exceed the Betz limit of 0.59 
on part of the rotor. It should also be noted that the shaft 
power CP and the total CPtot

 derived from the power conver-
sion in the fl uid, as shown by equation (17), coincide com-
pletely as they should do.

In order to see the integrated effect of the deviations, 
the local average CPav

 (this coeffi cient is the average power 
coeffi cient over the rotor area from rotor centre to the 
actual radial position) for the two models is shown in 
Figure 10. On almost the whole rotor, the BEM model 
underestimates the power coeffi cient, but at the rotor edge, 
the curves coincide showing that, in average, over the 
whole rotor area, the two models give almost the same 
power coeffi cient.

The example shown here is representative for a big 
number of comparisons performed as background for the 
paper although the deviations decrease for decreasing 
loading. In the following sections, the causes of the devi-
ations will be discussed as well as derivation of two 
sub-models to the BEM model to account for the 
deviations.
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Figure 7. The axial and tangential velocities at the rotor disc, 
computed with the AD and BEM models, respectively, using 

the loading shown in Figure 6.

Figure 8. The power coeffi cients as defi ned by equations (12), 
(14) and (16), computed with the AD model.
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6. MODEL FOR SIMULATION OF 
THE INFLUENCE OF THE 
PRESSURE VARIATION FROM 
WAKE ROTATION

To illustrate the cause of the deviations on the inboard part 
of the rotor, the AD model was run with and without the 
tangential loading but with the same axial loading in the 
two cases. The axial loading was the same as shown in 
Figure 6 with CT equal to 0.95.

Excluding the tangential loading in the AD simulations 
results in an axial velocity profi le at the rotor disc correlat-
ing very well with the BEM results except on the outboard 
part of the rotor (Figure 11). However, for the case with 
tangential loading, and thus with wake rotation, the induc-
tion in the AD results is much less on the inboard part of 
the rotor. The difference is due to the pressure component 
caused by the wake rotation as shown in Figure 12. 
Towards the rotor centre, the decrease in pressure is seen 
to be considerable. The shortcoming in the standard BEM 

model is thus that the balance between external, axial 
loading and the change of axial momentum is not correct 
because of the infl uence on axial momentum from the 
wake rotation pressure component.

The mechanism behind the increased axial velocity due 
to wake rotation is thus simple, and the same is the pro-
posed sub-model to simulate this. The sub-model contains 
three steps:

● compute the radial pressure variation at the rotor disc 
from the induced tangential velocity distribution

● derive the axial velocity component corresponding to 
this pressure variation and add it to the local velocity 
at the disc

● compute an updated tangential velocity correspond-
ing to the new a using equation (8)

● repeat the loop with the new tangential velocity and 
continue until convergence

The non-dimensional pressure term from the wake rotation 
is computed as:

 p
v

r
drw

tr
= ∫

2

1
 (21)

where vt = 2a`lr is the tangential velocity computed in the 
BEM model.

The pressure component from wake rotation Δpw com-
puted with the AD model and derived as the difference in 
pressure with tangential loading and without, respectively, 
is shown in Figure 13 at four positions just behind the rotor 
disc and compared with the pressure pw computed with the 
sub model (equation (21)). The suction computed by the 
AD model is seen to reach its lowest value at a position 
y = 0.3 downstream the disc, but does not completely reach 
the value of pw computed on basis of the BEM wake rota-
tion. This is probably due to the viscous effects in the AD 
due to the strong velocity gradients (the tangential velocity 
is discontinuous across the disc). At the rotor disc, the AD 
model pressure correlates best with 0.7pw, as shown in 
Figure 13.
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Figure 10. The local, average CP−av coeffi cient derived from the 
distributions shown in Figure 6 (the average CP from the rotor 

centre and to the actual radial position).

Figure 11. The axial velocity at the rotor from the AD model 
computed with and without tangential loading, respectively. 

BEM results for the same axial loading.

Figure 12. The pressure distribution behind the rotor as function 
of radial position for the same case as shown in Figure 11.
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7. MODEL FOR SIMULATION OF 
THE DECREASED INFLOW AT THE 
TIP REGION DUE TO WAKE 
EXPANSION

The other characteristic deviation when comparing the 
BEM model with AD results is the reduced infl ow at the 
tip region which is not modelled by the BEM model. This 
is illustrated in Figure 15, where the axial velocity profi les 
computed by the AD model for a constant axial loading 
with CT = 0.89 and no tangential loading CQ = 0.0 are 
shown. The BEM model gives a constant induction, 
whereas the AD model shows a decreasing velocity 
(bigger induction) at the tip region, but with the opposite 
tendency towards the rotor centre. However just 1 diam-
eter downstream, the velocity profi le is more uniform, and 
far downstream, it has become completely uniform. The 
corresponding radial velocity profi les shown in Figure 16 
are a good measure of the rate of expansion and show 
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Figure 13. Comparison of the radial pressure distribution from 
wake rotation behind the rotor disc computed with the AD 
model and compared with the pressure derived from the BEM 

wake rotation.

Figure 14. The effect of the correction of the BEM model to 
include an additional velocity term from the wake pressure 

because of wake rotation.

Figure 15. Axial velocity profi les at several down-stream 
positions from the rotor, computed with the AD model for 

constant loading and no tangential loading.

We now assume that we can derive the axial velocity 
component related to this pressure from wake rotation 
from the following equation (linearized Euler equation):

 ∂
∂

= − ∂
∂

v

y

p

y
w w  (22)

Integrating this equation, the velocity correction term Δvw 
is seen to be equal to pw. For the velocity correction term 
from the wake rotation, we thus get:

 Δv pw w= 0 7.  (23)

The corrected axial velocity va−cor1 through the rotor disc 
can now be computed as:

 v a va cor w− = −( ) +1 1 Δ  (24)

and the corresponding axial induction factor is:

 a vcor a cor1 11= −( )−  (25)

We now also update the tangential induction factor to 
correspond to the new axial induction factor using 
equation (8):

 a cor Q
cor r

C
a

1
1

1

4 1
=

−( )λ
 (26)

When comparing the velocity profi les at the rotor disc, 
including this additional velocity term from wake rotation, 
an excellent correlation with the AD model is observed on 
the inboard part of the rotor (Figure 14). On the outboard 
part, there is still a deviation that will be discussed in the 
next section. It is also seen that the tangential velocity 
profi le computed with the corrected BEM now correlates 
better with the AD model results because of the more 
accurate mass fl ow through the disc.

`
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clearly the big difference in rate of expansion at the rotor 
disc compared to the conditions further downstream. The 
reduced infl ow at the tip is a general characteristic of the 
results from non-linear fl ow models as, e.g. the results of 
actuator disc simulations presented by Sørensen.21

The above results indicate that the reduced infl ow at the 
tip region are due to the rate of wake expansion, which 
causes the streamlines at the rotor disc to be in an angle 
different to ninety degrees to the rotor disc.

A simple 2D vortex model for a constant loaded actua-
tor strip is used to illustrate the infl uence of the angle of 
the vortex paths (assumed to follow the streamlines) to the 
rotor disc, Figure 17. The total axial induction at the disc 
has been computed by numerical integration of the induc-
tion from the constant strength vortex elements distributed 

along the lines passing through the edges of the disc. When 
the vortex system lies on a path perpendicular to the disc 
we get a uniform induction over the disc but when they 
are in an angle different from ninety degrees we get a 
reduced infl ow (increased induction) towards the edges of 
the actuator strip (Figure 18). This simple 2D model illus-
trates the mechanism behind the reduced infl ow in the tip 
region but more detailed, quantitative insight can be 
obtained using an axisymmetric vortex model of a rotor as 
presented by Øye.22

The proposed sub-model to be included in the BEM 
model to account for the reduced infl ow in the tip region 
from wake expansion is therefore based on the assumption 
of a close relation between the reduced infl ow Δve and the 
radial velocity distribution vr. During the process of deriv-
ing this correlation, it was found convenient to split the 
velocity deviation Δve in two parts, Δvle varying along 
the radius and a constant term Δv2e. Δvle was derived as 
the difference between the BEM and the AD velocity 
profi les for radial positions greater than 0.3 and the Δvle 
term was adjusted to 0 at the starting point (Figure 19). 
The other term Δv2e was assumed to be constant over the 
whole rotor, but still linked to the radial velocity but now 
just at one radial position.

The correlation between Δvle and vr, shown in Figures 19 
and 20, at different radial stations, was now determined and 
approximated with third-order polynomial trend lines. The 
variation of the factors in each of these polynomials was then 
derived as function of radius with the following result:

 k r3 15 83 20 73= − +. .  (27)

 k r2 0 52 0 90= − −. .  (28)

 k r r1 1 58 1 63 0 512= − +. . .  (29)

The correction velocity Δvle can now be found as:

 Δv k v k v k vr r r1 3 2 13 2
e = + +  (30)
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Figure 16. Radial velocity profi les at the same positions as the 
axial velocity profi les in Figure 15.

Figure 17. A simple 2D fi xed wake model to illustrate 
the infl uence of wake expansion. Velocity distributions at 
the rotor disc found by numerical integration of the 

describing equations.

Figure 18. The velocity distribution at the rotor disc for the 
vortex system shown in Figure 17 for different wake expansion 
angles. Note the absolute level of the distributions were 

adjusted to 1 at the centre.
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The other constant term Δv2e was computed as the differ-
ence between the BEM and AD velocities at radius 0.3, 
and this term was correlated to the radial velocity at radius 
0.9. The following correlations were derived:
Interval 0.05 ≤ vr09 < 0.15:

 Δv v vr r2 1 0361 0 0961 0 0000309
2

09e . . .= − +  (31)

Interval 0.15 ≤ vr09 < 0.20:

 Δv v vr r2 2 3894 0 9642 0 081709
2

09e . . .= − + −  (32)

For vr09 < 0.05, equation (31) was used with vr09 = 0.05, 
and for vr09 ≥ 0.2, equation (32) was used with 
vr09 = 0.20

The fi nal term for modelling changes in axial velocity 
from wake expansion was then derived as:

 Δ = Δ − Δv v ve e e1 2  (33)

However, the radial velocity cannot be computed with 
the BEM method. Therefore, the equation from the ana-
lytical solution for vr for a two-dimensional actuator disc, 
as presented by Madsen,15 was used. A modifi cation of the 
analytical equation was made in order to fi t the present AD 
results for an axisymmetric disc:

 v
C r

r
r

Tav= + +( )
+ −( )

⎡
⎣⎢

⎤
⎦⎥

1

2 24 4

0 04 1

0 04 1

2 2

2 2.
ln

.

.π
 (34)

The average CTav
 as function of radius was derived as:

 C
C rdr

r
T

T

r

av = ∫ 2
0

2

π

π
 (35)

The CT used in the above equation was found from 
equation (10), but using an induction factor corresponding 
to the axial fl ow velocity after the pressure correction 
given by equation (25). As the pressure correction has the 
infl uence of increasing the fl ow velocity through the disc, 
the corresponding CT will decrease and even become neg-
ative on the inner part, which results in a negative radial 
velocity close to the centre line. One example of the infl u-
ence of the two velocity correction terms for wake expan-
sion as given by equations (30)–(32) is shown in Figure 
21. Corrected axial velocity distributions at the disc are 
shown in comparison with AD, and standard BEM results 
for CT of 0.60 and 0.95, respectively. However, it should 
be noted that the CT derived from the corrected induc-
tion from wake rotation is only used for derivation of the 
radial velocity, and there is no update at this stage of the 
input CT.

One example of the variation of the two correction 
terms Δvw, Δve is shown in Figure 22 for the loading shown 
in Figure 6. At this high loading, the Δvw is considerable 
on the inboard part of the rotor.

As we now have derived two engineering sub-models 
that have been directly calibrated against a numerical AD 
model, we propose in the fi nal equation for the corrected 
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Table I. Variation of the mass fl ow factor kmassfl ow as function 
of thrust coeffi cient CT for a constant loading and a tip speed 

ratio of 1.

CT 0.2 0.4 0.6 0.8 0.89 0.95

kmassfl ow 1.005 1.007 1.004 1.001 1.001 1.004

Table II. Ratio of integrated CP computed with the BEMcor and 
BEM model, respectively, for the simulation case shown in 

Figure 23.

CT 0.95 0.89 0.80 0.70 0.50 0.25

BEM C
BEM C

cor P

P

1.00 1.00 1.00 1.00 0.99 0.99

the standard BEM model is made for different constant 
loadings at a tip speed ratio of 6. The comparison is made 
by showing the ratio between the CP for the BEM and 
BEMcor model in Figure 23, and the increase in deviations 
between the two models for increasing loading is clear. On 
the inboard part of the rotor, the deviations are much more 
pronounced than on the outer part. However, because of 
the increasing relative contribution to the total rotor area, 
the total power for the two models remains almost the 
same independent of loading as shown in Table II. It 
should be noted that the mass fl ow factor has not been 
applied.

The infl uence of tip speed ratio when comparing the 
BEM and BEMcor model is shown in Figure 24. As the tip 
speed ratio decreases, the infl uence of the pressure from 
wake rotation increases, causing the ratio of the power 
coeffi cients to increase considerably on the inboard part of 
the rotor. On the outer part of the rotor, the changes are 
small and this means that the BEMcor model predicts 
a higher total CP for decreasing lambda, as shown in 
Table III.

8.2. Comparison of simulations 
on rotor 1

Next computations results for the constant loaded rotor 
(see loading in Figure 6) with the corrected BEM model 
is shown in Figures 25 and 26 in comparison with the AD 
results and results from the standard BEM model. The 
introduction of the correction models is seen to improve 
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wake rotation and reduced tip region infl ow from wake 

expansion at the loading shown in Figure 6.

axial velocities in the BEM model to include an optional 
mass fl ow factor kmassfl ow, which adjusts the total mass fl ow 
in the corrected model to be the same as in the uncorrected 
BEM model:

 v k a v va cor massflow w− = −( ) + −( )1 Δ Δ e  (36)

We denote it optional because in general, it should be 
set to 1 as there is no direct link between the physical 
mechanism behind the two correction terms: i) pressure 
term from wake rotation; and ii) wake expansion causing 
reduced infl ow in the tip region. However, it turned out, 
as shown previously, that the two terms almost cancel each 
other, and in this way, the value of the factor will be com-
puted to be close to 1. The reason to introduce the mass 
fl ow factor is that there could be applications (e.g. where 
the BEM model is used in an aeroelastic model for certi-
fi cation of turbines) where it is desirable to link a corrected 
BEM model as close as possible to an uncorrected BEM, 
but still introducing the changes from the two sub-models 
with infl uence on the load distribution on the blades. As 
an example, the mass fl ow factor for the load distribution 
in Figure 6 has been derived for different CT, and as seen 
in Table I, the factor is, in this case, very close to 1.0.

8. RESULTS

8.1. Infl uence of loading and 
tip speed ratio

In order to provide an overview of the infl uence of the two 
correction terms in the BEMcor, model a comparison with 

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1  1.2

R
A

T
IO

 C
p

c
o

r/C
p

 [-
]

r [-]

CONSTANT LOADING -- λ = 6 

CT=0.95
CT=0.89
CT=0.80
CT=0.70
CT=0.50
CT=0.25

Figure 23. Comparison of the standard BEM and the BEMcor 
model for a constant loading and a tip speed ratio of 6 at 
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Table III. Ratio of integrated CP computed with the BEMcor and 
BEM model, respectively, for the simulation case shown in 

Figure 25.

l 3 4 5 6 7 8

BEM C
BEM C

cor P

P

1.04 1.02 1.01 1.00 0.99 0.99

the correlation with the AD results substantially and the 
axial velocity profi les at the disc almost coincide (Figure 
25 left graph). Also, for the radial velocity, the correlation 
is good, in particular on the outboard part (Figure 25 right). 
For the local CP shown in the left fi gure in Figure 26, there 
is also a very good correlation between the corrected BEM 
model and the AD results, whereas the BEM model under-
predicts CP on the inboard 60% of the rotor and overpre-
dicts CP on the outboard part. In total, these deviations 
almost cancel out as shown on the right graph in Figure 
26, where the local, average CPav

 is shown as function of 
radius.

8.3. Comparison of simulations 
on rotor 2

The loading on rotor 2, shown in Figure 27, was derived 
in order to obtain constant induction on the main part of 
the rotor for a lambda of 8. As seen in Figure 28, a constant 
velocity, and thus, also a constant induction, was obtained 
on a major part of the rotor from radius 0.1 to radius 0.7 
when computed with the AD and the BEMcor model. From 
radius 0.7 and to the tip, a constant loading was chosen, 
as seen in Figure 27. This particular loading was the one 
chosen for the design of the rotor presented in Johansen 
et al.10,13 It appears clearly from Figure 28 that the standard 
BEM computes a lower velocity in the region from radius 
0.7 and inboard. A high local CP was obtained on a major 
part of the rotor as seen in Figure 29, and exceeds 0.6 from 
about radius 0.7 and to 0.1, which is quite different from 
the results of the standard BEM model. When looking in 
Figure 30 at the local average CPav

, this is underestimated 
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Figure 24. Comparison of the standard BEM and the BEMcor 
model at a constant loading with a thrust coeffi cient of 0.89 and 

for different tip speed ratios.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

 1.1

 1.2

 1.3

 1.4

 1.5

0 0.2 0.4 0.6 0.8 1 1.2

v
a

r [-]

CONSTANT LOADING -- CT=0.95 -- λ = 6   

AD
BEM

BEMcor

-0.1

-0.05

0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0 0.2 0.4 0.6 0.8 1 1.2

v
r

r [-]

CONSTANT LOADING -- CT=0.95 -- λ = 6   

AD    
BEMcor

Figure 25. In the left fi gure, the axial velocity distribution at the disc computed with the BEM, BEMcor and AD model is shown. To 
the right is the radial velocity computed with the BEMcor model shown in comparison with AD results.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.2  0.4  0.6  0.8  1  1.2

C
p

r [-]

CONSTANT LOADING -- CT=0.95 -- λ = 6 

AD
BEM

BEMcor

Figure 26. In the left fi gure, the local power coeffi cient 
computed with the BEM, BEMcor and AD model is shown. To 
the right is the average CPav

 computed with the BEMcor is shown 
in comparison with AD results.



Wind Energ. 2010; 13:373–389 © 2009 John Wiley & Sons, Ltd.
DOI: 10.1002/we

Validation and modifi cation of the BEM theory H. A. Madsen et al.

386

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

L
O

A
D

 C
O

E
F

F
IC

IE
N

T
S

 [
-]

r [-]

CONSTANT INDUCTION -- CT=0.95 -- λ = 8 

CT
CQ

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2

v
a

r [-]

CONSTANT INDUCTION -- CT=0.95 -- λ = 8 

AD
BEM

BEMcor

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.2  0.4  0.6  0.8  1  1.2

C
P

r [-]

CONSTANT INDUCTION -- CT=0.95 -- λ = 8 

AD
BEM

BEMcor

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.2  0.4  0.6  0.8  1  1.2

C
P

a
v

r [-]

CONSTANT INDUCTION -- CT=0.95 -- λ = 8

AD
BEM

BEMcor

Figure 27. The loading on rotor 2 was derived in order to obtain 
constant induction over a major part of the rotor.

Figure 28. The axial velocity distribution at the rotor disc 
for rotor 2 computed with the AD, the BEM and the 

BEMcor model.

Figure 29. The local CP for rotor 2 computed with the AD, the 
BEM and the BEMcor model.

Figure 30. The local average CPav
 for rotor 2 computed with the 

AD, the BEM and the BEMcor model.

by the BEM method until the tip where all models give the 
same result which is the integrated CP for the whole 
rotor.

As mentioned above, the loading in Figure 27 was the 
basis for the design of the rotor presented in Johansen 
et al.,10,13 where the design target was maximum rotor 
effi ciency. The three-bladed rotor was designed for a tip 
speed ratio of 8, and the 15% thick Risø-B1-15 airfoil was 
used along the whole blade span. Simulations on this rotor 
with three different models, the AD model, a lifting line 
model and a full 3D CFD model EllipSys3D were pre-
sented in Johansen et al.10,13 and one of the graphs showing 
the local power coeffi cient along the blade radius is pre-
sented below in Figure 31. It is seen that there is a close 
correlation between the three model results and with the 
EllipSys3D being the most advanced and detailed model 
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Figure 31. The graph reproduced from Johansen et al.10 shows 
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maximum CP. Tip speed ratio 8 and a thrust coeffi cient 
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this is a validation of the AD model results. The presented 
case also confi rms that a high CP on a real rotor in viscid 
fl ow can be obtained on the inboard part of the rotor 
although the local tip speed ratio is low. This confi rms that 
the loss from the wake rotation is compensated by the 
increased power conversion from the axial loading due to 
the increased mass fl ow from the low pressure in the 
wake.

Finally, computations with the BEM and BEMcor model 
have been run on the same rotor, Figure 32. The tendencies 
in comparing the BEM and BEMcor results are the same as 
conclude several times in this paper. The BEM model 
under predicts the CP considerably on the inboard part of 
the rotor and over predicts on the outer part.

9. SUMMARY AND DISCUSSION

A detailed investigation of the BEM model has been 
carried out on basis of numerical results from an AD 
model. The comparisons show that the BEM model over-
estimates the induction on the inboard part of the rotor due 
to neglecting the pressure term in the wake from wake 
rotation. At the tip, the tendency is opposite and the 
increased induction on the outboard part of the rotor com-
puted with the AD model seems to be due to wake expan-
sion. Two engineering sub-models to be incorporated 
in the BEM model have been developed, and the 
specifi c implementation in the BEM loop is summarized 
in Appendix A.

The results of the corrected BEM model correlates very 
well with AD simulations for a number of different load 
forms. The BEMcor model has also the advantage that the 
fl ow quantities in the stream tubes are no longer indepen-
dent as both correction terms are based on integral quanti-
ties. The study has shown that the integrated CP computed 
with the standard BEM model correlates very well with 
AD results at tip speed ratios from 6–8, and this also holds 
for the BEMcor model. However, the distribution of local 
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Figure 32. Simulated CP on the same rotor as in Figure 31 with 
the AD model, a lifting line model, the BEM and the 

BEMcor model.

CP is quite different when comparing the standard BEM 
model with the BEMcor model for rotors with high loading, 
and in particular, high loading on the inboard part.

For decreasing tip speed ratios below 6, an increase in 
integrated CP is predicted with the BEMcor model, and is 
4% at a tip speed ratio of 3.

As most industrial blade designs are developed using 
aerodynamic models based on the BEM theory, an inclu-
sion of modelling the two mechanisms described in the 
present paper could lead to slightly modifi ed trends in new 
designs. The main observation is that the inboard part of 
the blade does not necessarily have a low performance 
because of the low local tip speed ratio. One design trend 
could thus be to be more focussed on how to obtain the 
high loading on the inboard part of the blade in order to 
achieve the high performance. Another point could be to 
look more into the potentials of lowering the tip speed ratio 
at low wind speeds and in this way reduce the infl uence 
of airfoil drag and still obtain a high aerodynamic perfor-
mance because the decrease in tip speed ratio does not 
necessarily decrease the performance as much as has pre-
viously been expected. Also, the optimal pitch setting 
could be changed slightly as the maximum CP occurs at a 
higher thrust coeffi cient.

APPENDIX A

The implementation of the two sub models in the BEM 
loop. Equation numbers refer to the equation in the main 
text.

 1. Compute loading coeffi cients

 

C
dT

V rdr

V C cN

V r

C
dQ

V r rdr

V C cN

V

T
r y B

Q
r x B

= =

= =

1
2

2 2

1
2

2

0
2

2

0
2

0
2

2

ρ π π

ρ π 00
2 2πr

 (3A)

 2. Compute axial and tangential induction

 a k C k C k CT T T= + +3
3

2
2

1  (10A)

 a =
−( )

C
a

Q
r

1

4 1 λ
 (8A)

 3. Compute mass fl ow ṁ BEM for uncorrected 
BEM

�m a rdrBEM = −( )∫ 1 2
0

1
π

 4. Compute wake pressure as function of radius
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r
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= ∫

2

1
 (21A)
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where vt = 2a`lr.

 5. Compute new axial and tangential induction due 
to wake pressure from wake rotation as function 
of radius

 Δv pw w= 0 7.  (23A)

 v a va cor w− = −( ) +1 1 Δ  (24A)

 a vcor a cor1 11= −( )−  (25A)

 a cor Q
cor r

C
a

1
1

1

4 1
=

−( )λ
 (26A)

 6. Repeat from 3 until convergence
 7. Derive a local, corrected CT−cor1 (only for com-

putation of the radial velocity) taking into 
account the infl uence on the fl ow from wake 
rotation
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(35A)

 8. Compute the radial velocity from the average 
local thrust coeffi cient

 v
C r

r
r

T av cor= + +( )
+ −( )

⎡
⎣⎢

⎤
⎦⎥

−1

2 24 4

0 04 1

0 04 1
1

2 2

2 2.
ln

.

.π
 (34 A)

 9. Compute velocity correction Δvle from wake 
expansion as function of radius

 k r3 15 83 20 73= − +. .  (27A)

 k r2 0 52 0 90= − −. .  (28A)

 k r r1 1 58 1 63 0 512= − +. . .  (29A)

 Δv k v k v k vr r r1 3 2 13 2
e = + +  (30A)

 10. Compute velocity correction Δv2e from wake 
expansion

Interval 0.05 ≤ vr09 < 0.15:

 Δv v vr r2 1 0361 0 0961 0 0000309
2

09e . . .= − +  (31A)

Interval 0.15 ≤ vr09 < 0.20:

 Δv v vr r2 2 3894 0 9642 0 081709
2

09e . . .= − + −  (32A)

For vr09 < 0.05, equation (31A) was used with vr09 = 0.05, 
and for vr09 ≥ 0.2, equation (26) was used with vr09 = 0.20

`

 11. Compute fi nal velocity correction Δve from wake 
expansion

 Δ = Δ − Δv v ve e e1 2  (33A)

 12. Compute mass fl ow ṁ BEMcor
 for corrected BEM

�m a v v r drBEM wcor = − + −( )∫ 1 2
0

1
Δ Δ e π

 13. Compute mass fl ow factor kmassfl ow

k
m

m
massflow

BEM

BEM

cor=
�
�

 14. Compute fi nal corrected velocity va−cor at disc 
and corrected induction acor

 
v k a v v

a v

a cor massflow w

cor a cor

−

−

= −( ) + −( )

= −( )

1

1

Δ Δ e
 (36A)

 15. Compute corresponding fi nal corrected a`cor and 
fi nal corrected tangential velocity vt−cor

 a cor Q
cor r

C
a

=
−( )

1

4 1 λ
 (8A)

This is now the fi nal, corrected velocities at the rotor 
disc and a new rotor loading CT, CQ derived from the cor-
rected velocities at the rotor disc can be computed. 
However, for the results shown in the present paper, except 
the results in Figure 32, CQ has not been updated when 
using the BEM and BEMcor models but corresponds in all 
cases to the AD results. This has been done to in order to 
show a comparison between the models where the loading 
has been exactly the same.
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ABSTRACT

The blade element momentum method (BEM) is widely used for calculating the quasi steady aerodynamics of horizontal
axis wind turbines. Recently, the BEM method has been expanded to include corrections for wake expansion and the
pressure due to wake rotation (BEMcor) and more accurate solutions can now be obtained in the blade root and tip
sections. It is expected that this will lead to small changes in optimum blade designs. In this work BEMcor has been
implemented and the spanwise load distribution has been optimized in order to find the highest possible power production.
For comparison optimizations have been carried out using BEM as well. Validation of BEMcor shows good agreement with
the flow calculated using an advanced actuator disc method. The maximum power was found at a tip speed ratio of 7 using
BEMcor and this is lower than the optimum tip speed ratio of 8 found for BEM. The difference is primarily caused by the
positive effect of wake rotation which locally causes the efficiency to exceed the Betz limit. Wake expansion has a negative
effect which is most important at high tip speed ratios. It was further found that using BEMcor it is possible to obtain a
5% reduction in flap bending moment when compared to BEM. In short, BEMcor allows fast aerodynamic calculations and
optimizations with a much higher degree of accuracy than the traditional BEM model. Copyrightc© 2010 John Wiley &
Sons, Ltd.
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1. NOTATIONS

a Axial induction factor -
a′ Tangential induction factor -
b Blade design parameter -
c Chord m
Cl Lift coefficient -
Cd Drag coefficient -
CP Power coefficient -
CT Thrust coefficient -
CF Root flap moment coefficient -
Ct Local thrust coefficient -
Cq Local torque coefficient -
Cp Local power coefficient -
Cx Tangential force coefficient -
Cy Axial force coefficient -
d Drag N
F Tip loss -

Copyright c© 2010 John Wiley & Sons, Ltd. 1
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k1, k2, k3 Constants,a(Ct/F ) relation -
l Lift N
MF Root flapwise bending moment Nm
NB Number of blades -
pw pressure from wake rotation -
P Power W
r Coordinate, radius m
R Rotor radius m
T Thrust N
va Axial wind speed relative to blade section m/s
vt Tangential wind speed relative to blade section m/s
vr Radial/spanwise wind speed relative to blade section m/s
vrel Wind speed relative to blade m/s
V0 Wind speed m/s
x Coordinate, edge m
y Coordinate, flap m
α Angle of attack radians (degrees)
β Twist radians (degrees)
∆vw Correction for wake rotation -
∆ve Correction for wake expansion -
λ Tip speed ratio -
Ω Rotational speed s−1

ρ Mass density kg/m3

φ Inflow angle radians (degrees)
obj Objective function
BEM Blade element momentum method
BEMcor Blade element momentum method, corrected
ACD Actuator disc
CFD Computational fluid dynamics

2. INTRODUCTION

The blade element momentum method (BEM) in its original form has in recent years been subjected to a thorough
investigation with the purpose of determining its accuracy with respect to performance on the inner part of the rotor.
These investigations were initiated by the wind turbine manufacturer Enercon, Germany, claiming that the reason for their
proven high power efficiency of certain turbines was the increased performance on the root part of the rotor, where the
power efficiency locally was higher than the Betz limit with a power efficiency ofCP =16/27.

Madsen et al. [1][2] analyzed the phenomenon in detail and found as claimed an increase on the inner part of the rotor
if it was exposed to sufficiently high loading. The explanation for this increase of power efficiency was that for wind
turbines in normal operation the rotation of the wake causes an acceleration of the axial flow on the inner part. On the
outer part of the rotor wake expansion causes a deceleration of the flow. Both effects are not captured in the standard BEM
model and among other issues this has led to the conclusion that the power production from the inner part of the blade is
underestimated and conversely overestimated on the outer part. The cause for this is believed to be the failure of the BEM
method to accurately predict the axial velocities, for a given loading, correctly. The result from the work by Madsen et al.
[1][2] are the BEM corrections for the axial flow. If these are implemented the method is denoted corrected blade element
momentum method (BEMcor).

In [1] main focus is on the derivation of the corrections and the corrected velocities are validated against an actuator
disc (ACD) calculation. This is done for a defined loading and no iterations are carried out. In this work the corrections are
implemented in a full BEMcor algorithm where the loading is updated according to the velocities in the rotor plane. It is
noted that due to numerical issues the results of BEMcor are sensitive to the order in which various properties are updated
when iterating and care must be taken that the implementation is validated correctly. For this reason our implementation
of the BEMcor algorithm has been validated thoroughly.

In this work rotor blades have been optimized using BEM and BEMcor for calculation of properties along the blade
span - including effects of drag and tip losses. The optimization variable is the spanwise distribution of the axial induction,
which corresponds to an optimization of the aerodynamics and the optimum aerodynamic load distribution is found. The

2 Wind Energ. 2010; 00:1–10 c© 2010 John Wiley & Sons, Ltd.
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Figure 1. Sketch of the section properties

objective is either maximum power or maximum power to thrust ratio at reduced loading. The resulting power, thrust,
flap bending moment and distributed properties are then studied. The optimized blade designs may deviate from what is
reasonable from a manufacturer’s point of view. E.g. the chord is unconstrained and very large near the blade root. However,
an unconstrained optimization is necessary in order to make sure the full potential of the wake rotation is utilized. The
blade layout is illustrated using the inflow angle and a design parameter. This has the advantage that the chord and twist are
not ultimately defined but will depend on the design lift coefficient, which can be selected by varying the twist in order to
obtain the desired angle of attack. Thus, even though the blade stiffness and other structural properties are not considered,
there is some freedom in the selection of the chord. The profile thickness distribution is not considered and it is assumed
that it is possible to obtain the design lift and drag.

The results of the BEM method are usually expressed using the dimensionless power and thrust coefficients which
depend on the tip speed ratio. A similar dimensionless coefficient for the root flapwise bending moment has been defined.

Note that results are reported for both BEM and BEMcor. Thus, they represent optimized results obtained using the
two methods and this shows the fundamental differences in the predicted optima. The differences when calculating the
aerodynamics of a given design is also relevant but for simplicity this is not included in this work. The single exception is
the validation part where properties for a defined turbine has been calculated.

3. METHODS

The BEMcor algorithm yields general results because everything can be expressed in dimensionless form. For a given blade
design all variables will only depend on the tip speed ratioλ defined as

λ =
ΩR

V0
, λr =

Ωr

V0
(1)

whereλr is the local speed ratio. Dimensionless parameters are

r∗ =
r

R
, c∗ =

c

R
, v∗a =

va
V0

, v∗t =
vt
V0

, v∗r =
vr
V0

(2)

The power, thrust and flap moment coefficients are defined below, as well as dimensionless distributed forces etc. A
dimensionless design parameter for the blade aerodynamic layoutb is also defined later. Figure1 shows the basic quantities
in a blade section.

3.1. The corrected BEM method

The classic BEM method is described by e.g. Glauert [3] and Hansen [4]. The theory relates the aerodynamic forces to the
induction factora, which describes the slowing of the free wind measured in the rotorplane. The corrected BEM method
(BEMcor) is described in [1] and the governing equations are repeated below.

The local aerodynamic forces are expressed using a normal force coefficientCy and a tangential force coefficientCx

Cx = Cl sinφ− Cd cosφ (3)

Cy = Cl cosφ+ Cd sinφ (4)

whereCl andCd are the lift and drag coefficients, andφ is the flow angle (see Figure1). In this workCl and the lift-to-drag
ratio l/d=Cl/Cd is specified andCd=Cl (l/d)

−1.
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The local thrust coefficientCt and the local torque coefficientCq are defined as

Ct =
v2relCycNB

V 2
0 2πr

(5)

Cq =
v2relCxcNB

V 2
0 2πr

=
Cx

Cy
Ct (6)

whereNB is the number of blades,V0 is the free wind speed andvrel is the velocity in the rotorplane relative to the moving
blade section. The tip losses are calculated using Prandtl’s tip loss factorF

F =
2

π
arccos

[
exp

(
−NB

2

R− r

r sinφ

)]
(7)

For low loading (a <0.3) an analytical expression for the axial induction factor is valid

a =

(
8πrF sin2 φ

CycNB
+ 1

)−1

(8)

However, an empirical relationship is necessary at higher loading and (8) is replaced by a polynomial which approximates
an actuator disc solution at high loading and (8) at low loading (Ref. [1])

a = k3

(
Ct

F

)3

+ k2

(
Ct

F

)2

+ k1

(
Ct

F

)
(9)

For an undeflected and unconed rotor the constants are

k3 = 0.08921 , k2 = 0.05450 , k1 = 0.25116

The tangential inductiona′ is

a′ =
Cq

4(1− a)λr
(10)

The first BEM correction∆vw represents the increase in axial velocity through the rotorplane due to the pressure drop
behind the turbine caused by wake rotation. It is defined as

∆vw = 1.0pw , pw =

∫ r∗

1

v∗t
2

r∗
dr∗ (11)

wherev∗t is the dimensionless tangential velocity andpw is the dimensionless pressure due to wake rotation. In [1] the
factor 1.0 is replaced by the empirical factor 0.7, which yielded a better agreement with ACD data. An explanation for
this is that not all the pressure deficit is converted into axial velocity. However, in this work the value 1.0 is used because
the validation shows good agreement with ACD data. It is believed that the difference in results is caused by details in the
implementations and especially important is the order in which quantities are updated.

The second BEM correction∆ve represents the decrease in axial velocity due to wake expansion. It is determined from
2nd and 3rd order polynomial fits describing the difference between BEM and ACD results. I.e.

∆ve = ∆ve(v
∗
r ) (12)

wherev∗r is the radial velocity evaluated using an analytical solution for a 2 dimensional ACD (Madsen [5]). The derivation
of ∆ve and∆vw is relatively complicated and is described in great detail in [1]. Here it is important to mention that the
corrections are in dimensionless form (scaled byV0) and there is flow similarity for fixedλ.

The axial velocityva, the tangential velocity and the flow angle are

va = (1− a+∆vw −∆ve)V0 (13)

vt = λr(1 + a′)V0 (14)

φ = arctan
va
vt

(15)

The local angle of attackα can finally be calculated as the difference in the flow angle and the twistβ

α = φ− β (16)

The lift and drag coefficients are determined according to the angle of attack and an iteration loop is then necessary in order
to find a converged solution for all quantities in Equations (3)-(16). Note that the BEM corrections only appear explicitly
in Equation (13).
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3.2. Power, thrust and root moment

The local shaft power coefficient is defined as

Cp =
Ωv2relCxcNB

V 3
0 2π

= λrCq (17)

The shaft power, the thrust and the root flapwise bending moment can now be expressed dimensionless as

CP =
P

1/2ρV 3
0 πR

2
=

2

R2

∫
rCp dr (18)

CT =
T

1/2ρV 2
0 πR

2
=

2

R2

∫
rCt dr (19)

CF =
MFNB

1/2ρV 2
0 πR

3
=

2

R3

∫
r2Ct dr (20)

3.3. Optimization algorithm

The optimization algorithm is an unconstrained steepest descent method with step length determined by the golden section
method (see e.g. Sun and Yuan [6]). The design variables are 36 discrete values of the axial inductiona distributed along
the blade span using a cosine spacing to pack the blade elements closer near the root and tip. The innermost element is at
r∗=0.1 . In each iterationCt is determined numerically using (9) and the chord is varied according to (5)

c =
CtV

2
0 2πr

v2relCyNB
(21)

ExceptCl andl/d which are defined, all other properties are updated according to the BEMcor algorithm described above.
The optimization objective is either the power

obj = −CP (22)

or the power to thrust ratio

obj = −CP

CT
exp

(
− (CP − CP,design)

2

2 · 0.052
)

(23)

The exponential is a penalty function included to keepCP close to the desired valueCP,design. CP,design is a specified
power and it is around this operating point the thrust is minimized. If the penalty function is not included the optimization
will yield a very low power because the power to thrust ratio is highest at low loading. The penalty function is a normalized
Gaussian distribution function with meanCP,design and standard deviation 0.05 .

3.4. Blade design parameters

The blade designs are visualized using the inflow angleφ and a blade design parameterb defined as

b = c∗ClNB (24)

In this way the chord is not finally described because it will depend on the design lift coefficient andNB . b is defined by
combining (4) and (5) and assuming negligible influence of drag, i.e.Cd sinφ << Cl cosφ. Then

b =
CtV

∗
0

22πr∗

v∗rel
2 cosφ

(25)

The quantities on the right hand side all follows from the the dimensionless aerodynamic analysis. Note thatb will depend
onNB because of tip losses which affectsφ andv∗rel. However, this dependency is small and limited to the outer part of
the rotor and only a small error is introduced whenNB is included inb (NB=3 was used in the optimizations). In a final
design the chord is

c∗ =
b

NBCl,design(αdesign)
(26)

The twist is defined in order to obtain the design angle of attack

β = φ− αdesign (27)
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Figure 2. Dimensionless axial velocities in the rotorplane. BEMcor yields a good approximation to the actuator disc results.
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Figure 3. Dimensionless tangential velocities. Note that the kinematic velocity due to rotation is not included.

3.5. Actuator disc calculations

The ACD method is based on computational fluid dynamics (CFD) and is therefore more advanced than BEMcor. A
description of the specific implementation is given in [1]. The ACD input is the values ofCq andCt/F calculated using
BEM or BEMcor. Note that tip losses are included by correcting the mechanical loadingCt to obtain the equivalent ACD
loadingCt/F .

4. DISCUSSION

4.1. Validation

BEMcor was validated against ACD by comparing the velocities calculated for the same loading. As a test case the optimum
rotor described in Johansen et al. [7] was used. This is a rotor designed for maximum power atλ=8 using Risø B1-15
airfoils with designCl=1.4 andl/d=110 on the entire rotor. The rotor is a redesign of the NREL 5MW reference rotor
(Jonkman et al. [8]). In the BEM and BEMcor calculations the actual blade shape was used (twist, chord and thickness) and
actual 2D aerodynamic lift and drag data, which depends on the calculated angle of attack.

Figure2 shows the axial velocities in the rotorplane. There is an excellent agreement with the BEMcor results. The
results of BEM deviate near the tip and root.

The tangential velocities, seen in Figure3, are comparable on large parts of the blades. There is a noticeable errornear
the tip but this is not important because the kinematic velocities due to rotation are completely dominating at large radii.
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Figure 4. Optimized Cp values for different tip speed ratios.

4.2. Optimum power

It is now interesting to study the optimum power which can be obtained using BEMcor and compare this to the optima for
BEM. The optimizations have thus been carried out using both methods. The investigation is divided into 3 parts. The first
is ideal conditions without tip losses and drag. The second includes tip losses. The third includes both drag and tip losses
and is therefore representative for a realistic case. Figure4 shows the optima calculated usingλ values in the range from 4
- 12. The results are discussed below.

4.2.1. Optimum power under ideal conditions
The first case, where drag and tip losses are excluded, shows an increase inCP for increasingλ. However, using BEMcor

the power approaches the Betz limit very slowly because of losses due to wake expansion. Atλ=12 it is only 98.7% of the
Betz limit whereas BEM exceeds it slightly. Atλ <5 the optimum power using BEM is lowest because the positive effect
of wake rotation is not included. Note that there is still a significant negative effect because of the energy lost to wake
rotation, which causes the decrease in efficiency at lowλ (this is explained in the classical BEM theory). Numerical values
of CP , CT andCF are given in TableI. Note thatCT andCF are increasing withλ when BEM is used but decreasing
when BEMcor is used.

4.2.2. Optimum power with tip loss included
This case is almost equivalent to the previous with the difference that tip losses are included. Tip losses affect the outer

part of the rotor resulting in a drop in the optimum power. The reason for this cannot be explained easily because of the
complexity in the interconnection of velocities and aerodynamic loads. The result is the centered curves in Figure4. Note
that BEM and BEMcor predict the same optimum power atλ=7.

4.2.3. Optimum power with tip loss and drag included
The lower curves in Figure4 show results when tip loss and drag are included. A value ofl/d=100 is used, which is

representative for modern wind turbine airfoils - including leading edge roughness. The value is probably too high for the
thick profiles used on the inner part of real rotors, but these will only make a small contribution to the total drag losses
(however, it is not negligible). The global optimum for BEMcor is now atλ=7 which is lower than the global optimum for
BEM, which is atλ=8.

Forλ <7 the optimumCP value is highest for BEMcor and forλ >7 the optimum value is highest for BEM. This was
also the case when drag was excluded and the reason is that drag in most cases has a very limited effect on the flow which
is governed by lift forces. Instead the drag generates a negative shaft driving torque which depends on the lift to drag ratio
used and this negative power contribution will affect BEM and BEMcor in a similar way. The conclusion is that the break
even atλ=7 is fairly general, but it may shift slightly according to the optimization which can favour a different loading
depending onl/d.

Numerical values ofCP , CT andCF are given in TableII .

4.2.4. Optimum power - blade layouts
As examples of the actual designs, optimumCP designs atλ=5 andλ=7 are illustrated. The designs are with tip losses

and drag as described above (l/d=100). Figure5 shows the design parameter as function of radius. This is equivalent to the
chord distribution for a defined number of bladesNB and design liftCl (e.g.NB=3,Cl=1.4). The difference between the
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Figure 6. The inflow angle for optimum CP found using BEM and BEMcor. The difference in inflow angle is significant. Near the root
it is approximately 5 degrees and on large parts of the blade the difference is approx. 1 degree.

BEM design and the BEMcor design is small. A significant difference is only observed in the root region and it is largest at
λ=5. This shows that the optimum for BEMcor requires a slightly increased loading near the root. Overall, the difference is
very small and it should be expected that structural properties, e.g. bending stiffness, are practically the same.

Figure6shows the inflow angle. Unlike the chord distribution there is a significant difference between BEM and BEMcor.
Near the root it is approximately 5 degrees and on large parts of the blade it is 0.5-1 degree. Thus, the more accurate design
obtained using BEMcor has a twist which is different from the BEM design.

4.2.5. Optimum power - local power
It is interesting to study the distribution ofCp because it shows the efficiency of the local energy conversion. This is

done atλ=7 for BEMcor and atλ=8 for BEM because these are the optimum design points forl/d=100 and are realistic
practical designs. Figure7 shows the results. The Betz limit is exceeded locally on large parts of the bladewhen BEMcor

is used and drag is omitted. Note that the Betz limit is also slightly exceeded when BEM is used for optimization. This
can be explained by the use of Equation (9) which is based on actuator disc calculations and therefore deviates from the
momentum solution from which the Betz limit is derived.

4.3. Optimum designs at reduced loading

Up to now optimum designs have been discussed. In practice, turbines are designed to be near optimal because it causes a
large increase inCT andCF to obtain the optimum design. Thus,CT is reduced compared to the value at optimumCP . In
this work, the optimization objective at reduced power was defined to be the power to thrust ratio (Equation (23)), which
is equivalent to minimizing the thrust for a given power.
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The results from optimizations are seen in Figure8, which showsCF andCT plotted againstCP . The calculations are
for λ=6 andλ=8. l/d=110. It is worth noting that using BEMcor a blade can be designed which has a 5% lower root flap
moment relative to one designed using BEM. The reduction is seen atλ=6 , which is a typical value at rated windspeed
where the quasi steady loads are largest and therefore define the design loads for the blade structure. The difference in the
moment is caused by the effects of wake rotation and expansion which are most important near the tip and root. BEMcor

includes these and the optimizer consequently increases the aerodynamic loading near the root and decreases it near the
tip. This fundamental difference shows the importance of using BEMcor in structural design and optimization.

5. CONCLUSION

Results of aerodynamic optimizations using both BEM and BEMcor have been presented. These have shown the
significance of using BEMcor, which makes it possible to obtain a degree of accuracy comparable to an actuator disc
calculation.

BEMcor shows an optimumCP of 0.500 atλ=7. This can be compared to the optimumCP =0.502 atλ=8, which was
found using BEM. Both results are for a realistic lift to drag ratio of 100.

At low tip speed ratios (λ <7) the optimumCP values are highest for BEMcor, when compared to BEM. The difference
is primarily caused by the positive effect of pressure due to wake rotation. At high tip speed ratios (λ >7) the optimum
CP values are lowest for BEMcor. This is primarily because of the negative effect of wake expansion.

The thrust and root flap moments are in general different when designs are optimized using the 2 different methods.
Also in the cases where the power is the same. For optimum designs, BEM and BEMcor yield different inflow angles which
is an important difference. The difference in chord distribution is relatively small.

It has been shown that using BEMcor it is possible to design a blade with a 5% reduction in root flap bending moment.
Thus, BEMcor can lead to designs which are different from those found without taking wake expansion and rotation into
account.
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ABSTRACT

The design of blades for horizontal axis wind turbines relies heavily on numerical optimization methods. Estimating the
fatigue damage requires aeroelastic simulations in the time domain. This is very time-consuming and simplified methods
are much needed. We determined time simulations and resulting fatigue loads on the NREL 5MW reference turbine using
HAWC2. We then derived analytical expressions which captured the most important fatigue generating-effects. The results
show that gravity and turbulence generate the edgewise fatigue loads. The flapwise loads are mainly caused by turbulence.
A number of other factors are also important, but the resulting equations provide a simplified means of predicting fatigue
loads which should lead to improvements in blade design as well as a general understanding of the important parameters.
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1. NOTATIONS

a Axial induction factor -
c Chord m
Cl Lift coefficient -
D Fatigue damage -
E Youngs modulus Pa
feq Equivalent frequency Hz
g Gravitational acceleration m/s2

I Turbulence intensity -
k Proportional constant (S=kR) Pa/Nm
l Turbulence length scale m
m Wöhler-curve parameter -
m Blade-section mass Kg/m
Mf Flap-wise bending moment Nm
Me Edge-wise bending moment Nm
n′ Average RFC cycles per second Hz
n′
tip n′ evaluated at blade tip (r=R) Hz

N Cycles (Ẅohler-curve) -
r Coordinate, radius m
R Load-range Nm
R Rotor radius m
S0 Wöhler-curve parameter Pa

Copyright c© 2010 John Wiley & Sons, Ltd. 1
Prepared using weauth.cls [Version: 2010/06/17 v1.00]



A numerical and analytical investigation of blade fatigue loads M. Døssing, C. Bak

S Stress-range Pa
t Simulaton time s
T Component lifetime s
v Axial wind speed m/s
va Axial wind speed in rotorplane m/s
V0 Wind speed m/s
x Continuous RFC variable
zhub Hub height m
α Angle of attack rad.
α Shear factor -
Ω Rotational speed s−1

ρ Mass density kg/m3

σ1 Turbulence standard deviation m/s
RFC Rainflow-count
NTM Normal turbulence-model
DLC Design load-case
HAWT Horizontal-axis wind turbine

2. INTRODUCTION

Wind turbine blades are designed for a typical lifetime of 20 years during which they operate in the atmospheric turbulence
and under cyclic gravitational loading. This causes the loads on the blade to vary in time which cause fatigue damage.
Control strategies and stability issues are also important but will not be studied in detail here. In addition to aerodynamic
efficiency and production price, fatigue survivability is a main design driver and it is therefore extremely important to
calculate the fatigue damage and component lifetime when designing wind turbine blades.

We have derived an analytical expression which describes the fatigue loads on wind turbine blades. The results are given
in terms of equivalent fatigue loads for the edge- and flapwise bending moments. This has the advantage that the fatigue
damage, which results from a complicated load history, can be quantified using a minimum of material- and structural
data. We calculated equivalent loads numerically and compared them to analytical predictions to validate the theory. The
NREL 5 MW fictitious reference turbine [1], which is representative for modern wind turbines in the MW range, was used
as a test case. The numerical simulations of the wind turbine were made using HAWC2 [2], which is an aeroelastic code
developed at RISØ DTU National Laboratory for Sustainable Energy.

We had two reasons for deducing the analytical expression. 1) It provides a simplified mean for predicting fatigue
damage and is useful for initial design purposes. 2) Given the success of the analytical model we have established the
important parameters which influence the fatigue damage. This knowledge is important because it clearly shows designers
how they can improve the design.

The structural design requirements for blades are described in standards (IEC 61400-x [3]). An appropriate fatigue
analysis based on a 10 min aeroelastic time series has to be carried out, using e.g. the Palmgreen-Miner theory for a
number of design load cases (DLCs). The DLCs corresponds to typical operating conditions described by wind speed,
turbulence intensity, wind shear etc. We used DLC 1.1 in [3] as the numerical reference case, which corresponds to normal
operation from cut-in to cut-out wind speed in atmospheric turbulence using the normal turbulence model (NTM).

Previous work has mainly focused on the development of aeroelastic codes and the correct numerical estimation of
fatigue damage - i.e. a completely numerical approach which is carried out routinely in the design and certification of wind
turbines. Some good examples of the results of this approach can be found in a study by Larsenet al. [4]. The results are
based on heavy calculations and it is hard to generalize them since wind-turbines differ very much from one manufacturer
to the next. In this article we present an analysis which aims at providing this generalization. Fuglsang [5] gives a general
introduction to wind turbine design and optimization, but the discussion remains qualitative. In Fuglsang & Madsen [6]
the possibility of fast engineering models for estimation of fatigue damage is mentioned and a semi-empirical model is
suggested. This model is based on a linear relationship between the variations in blade bending-moments and the turbulence
standard deviation, and this is in agreement with the results from our work. Fuglsang approximated the linear-coefficient
using empirical data and the wind speed derivative of bending moments in steady state operation. The procedure had to
be repeated whenever the overall dynamics or rotational speed changed, which makes it complicated to use in general.
Fuglsang [7] also describes how 2D airfoil properties affects the turbine design, andhe makes aeroelastic calculations for
a slender blade with reduced chord. The results are a reduction in blade fatigue loads and this is in agreement with our
conclusions.
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Burtonet al. [8] describes analytical methods for calculation of varying loads on the wind turbine. The analysis takes
blade eigenmodes and wind turbulence into account which is more advanced than our method, where the effect of free
vibrations are ignored. A major drawback is that the results are expressed as standard deviations of loads. Another
drawback is that the mass distribution and modeshapes are used as input. These data are not easily available.

3. METHODS

In the following we describe the important components of the analytical analyses. Variations in wind speed relative to the
rotating blade are related to variations in bending moments by taking the blade aerodynamic layout into consideration. We
used an analytical expression to describe operation in shear and an engineering model in the case of turbulence. The fatigue
damage is expressed using equivalent loads. The variation in bending moment due to gravity is taken as the difference in
the static moments in the horizontal blade positions.

3.1. Fatigue Analysis

The fatigue analysis is based on the Palmgreen-Miner theory. A simplified material SN-curve (Wöhler-curve) is defined as

logS0 − 1

m
logN = logS ⇔ N =

(
S0

S

)m

(1)

whereS0 andm are material constants (glassfiber:m ≈10,S0 ≈ 0.062E , E=Youngs modulus) andN is the number of
cycles to failure at stress rangeS (note that many Ẅohler-curves uses the stress amplitudeσa and this should be multiplied
by 2 to obtain the stress range). Using the relationship above, the equivalent fatigue loadReq from a binned rainflow count
(RFC) or a distributed RFC is

Rm
eq =

1

feq

∑
n′
iR

m
i , Rm

eq =
1

feq

∫
n′(x)R(x)m dx (2)

whereR is the load ranges andn′
i is the average number of cycles per second. It is assumed thatR can be related to

S through a linear relationshipS=kR. In the distributed form,x is a general variable which is usefull if the load range
distributionR(x) depends on a variable. As a special casex=R and the expression is simply the integral form of the binned
summation

Rm
eq =

1

feq

∫
n′(R)Rm dR (3)

Req is the range af a cyclic load with frequencyfeq which generates the same fatigue damage as the distributed RFC. The
actual fatigue damage in timeT is

D = feqT
kmRm

eq

Sm
0

(4)

whereD >1 indicates failure. Datapoints in a distributed RFC can be approximated from a numerically determined binned
RFC using the formula

n′(xi) =
n′
i

∆xi
(5)

where∆xi is the bin width of bini.

3.2. Range of flapwise bending moment

The range-of-change of lift coefficient∆Cl at radiusr is related to the axial velocity range in the rotor plane∆va by
assuming a linear lift slope (dCl/dα)

∆Cl =
dCl

dα
∆α ∼= dCl

dα

∆va
vrel

∼= dCl

dα

∆va
Ωr

(6)

whereα is the angle of attack,vrel is the inflow velocity relative relative to the blade andΩ is the turbine rotational speed.
It is assumed that the important variations in the inflow have a duration which is long enough to reach a quasi-steady state.
The range of aerodynamic flapwise bending moment∆Mf can then be found as

∆Mf = 1/2ρΩ

∫ R

r

∆va(r
′ − r)r′

dCl

dα
c dr′ (7)

wherec is the chord.
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3.3. Equivalent flap-wise load due to wind-shear

The case where the wind turbine operates without turbulence in a power law shear is simple because the variations in axial
velocities are given analytically as

∆va = (1− a)V0

[(
1 +

r

zhub

)α

−
(
1− r

zhub

)α]
(8)

Note that the axial inductiona diminishes∆va which is determined as the difference in local windspeed when the blade
is pointing up relative to pointing down. The cyclic variations in loads vary with the frequency of rotation so the RFC is
binned with 1 bin and the quantities in (2) are

n′
1 =

Ω

2π
, R1 = ∆Mf (∆va) (9)

Fully written out the equivalent load forMf is

Req(Mf ) =

(
Ω

feq2π

)1/m

Ω1/2ρ

∫ R

r

(1− a)V0

[(
1 +

r

zhub

)α

−
(
1− r

zhub

)α]
(r′ − r)r′

dCl

dα
c dr′ (10)

Note thatα in the exponent is the shear factor, but in the derivative the angle of attack.

3.4. RFC of axial velocities in a turbulent windfield

The RFC of axial velocities is usually expressed in terms of the power-spectra. Kristensen & Frandsen [9] describes this
and compares results with data from the 200 kW Gedser turbine. The theory is advanced so we developed a different and
simplified approach.n′

tip denotes the distributed RFC of the turbulent, undisturbed wind calculated in the moving frame
of reference of the blade tip, with ranges∆v. Other important parameters are the turbulence standard deviationσ1 at hub
height, the rotational speedΩ, rotor radiusR, a characteristic turbulence length scalel, the power-law shear factorα and
the hub heightzhub. A dimensional analysis yields the functional relationship

σ1n
′
tip

Ω
= f

(
∆v

σ1
,
Ωl

σ1
,
ΩR

σ1
,

R

zhub
, α

)
(11)

Figure 1 shows distributed RFCs calculated using HAWC2. The results can be approximated using only the first
dimensionless group

σ1n
′
tip

Ω
= 3.0 exp

(
−∆v

σ1

)
= f

(
−∆v

σ1

)
,

∆v

σ1
∈ [0, 8.0] (12)

Note that this approximation was found forR=63 m, and it may be different for other radii depending onΩR/σ1. The
effect ofα is clearly seen in Figure1. The shear in the atmospheric boundary layer shifts some of the cycles right towards
larger∆v.

3.5. Equivalent flapwise load due to turbulence

It is assumed thatn′
tip is valid on a major part of the blade so thatn′=n′

tip. Usingx=∆v as distribution variable in (2) the
other quantities are

n′(x) = (1− a)n′
tip(x) , R(x) = ∆Mf (x) , x = ∆v = ∆va (13)

Note thatn′ was scaled by the axial induction because this slows the rate of turbulent eddies flowing through the rotor
plane. A representative value fora must be used (e.g.a evaluated at 70% radius). The velocity ranges are assumed to be
the same in the rotor plane as in the indisturbed windfield. After integration by substitution the equivalent load forMf was
found

Rm
eq(Mf ) =

1

feq
3.0Ω(1− a)

(
σ1

1/2ρΩ

∫ R

r

(r′ − r)r′
dCl

dα
c dr′

)m ∫ 8.0

0

yme−y dy (14)

wherey=∆v/σ1 is the substituted integration variable. The two remaining integrals can be solved numerically. The first
depends on the aerodynamic properties of the blade and the second on the dimensionless shape of the RFC. The blade
properties are therefore completely decoupled from the properties of the atmospheric wind. Note that this equation is valid
for R=63 m because it was based on (12).
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Figure 1. Distributed rainflow count of axial velocities plotted using dimensionless groups
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Figure 3. 1 Hz equivalent edgewise root-bending moment. Equation: analytical (gravity) (15)
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3.6. Equivalent edge-wise load due to gravity

The range of the edgewise bending moment∆Me is approximated as the difference in the static moment due to gravity,
between the two horizontal blade-positions. Without going into details the equivalent load is

Rm
eq(Me) =

Ω

2πfeq

(
2g

∫ R

r

(r′ − r)mdr′
)m

(15)

wherem is the mass density per spanwise length.

4. RESULTS

TableII shows parameters for 5 different cases of numerical simulations. Case 1 is design load case 1.1 (DLC 1.1) in [3],
where the normal turbulence model (NTM) is used. The conditions are representative for a turbine under normal operation
conditions. Case 3 is without shear and 4 is without turbulence. Except for Case 1, the blade bending stiffness’es are set very
high (∞) in order to eliminate effects from bending deformations. The torsion stiffness is either actual values or∞. The
lift-slopedCl/dα is denotedC′

l figures. The analytical equations are calculated using the static value (dCl/dα=7.5 rad−1)
and a reduced value (6.0 rad−1) corresponding to a dynamic lift curve. The static value is set according to the information
in the NREL 5 MW documentation [1] and is relatively high when compared to the theoretical value of 2πrad−1.

Figure2 shows Equations (10) and (14) against numerical results calculated using HAWC2. The loads refer to bending
moments evaluated in the blade roots (r=0 m). Figure3 shows Equation (15) compared to numerical results.

5. DISCUSSION

5.1. Flapwise fatigue loads

If there is no turbulence and only shear, the numerical and analytical results agree well. This was expected because the
analytical equations were based on very few assumptions: Mainly that Equation (6) is valid and that the loads change slowly
enough to be considered quasi-static so (7) is also valid. I.e. a change in axial velocity causes a quasi-steady deflection of
the blade. When turbulence is included, it was expected that changes would happen so fast that the quasi-steady assumption
would no longer be valid. However, all results indicate that only large-scale changes in the axial velocity are important for
the root-bending moment, and these are varying so slowly that a quasi-steady deflection of the blade is reached.

The dynamic lift slope was expected to be diminished and this can be described using the concept of the reduced
frequency. It can be seen that Equation (14) agrees fairly well with DLC 1.1 fordCl/dα=6.0 rad−1. At very high wind
speeds HAWTs are often stalled on large parts of the blades. In this case, (6) is no longer valid and there is no simple link
between a change in axial velocity and a change in lift. The effect of this may be seen in Figure2 where the analytical
equations predict increasing fatigue loads with wind speed but the numerical simulations indicate a maximum around 20
m/s. In general, it is therefore important to be critical when selecting the lift curve slope. Apart from the issues mentioned
(stall, reduced frequency) the introduction of trailing edge flaps can be modeled as a reduction ofdCl/dα.

Based on the relatively good results obtained it can be concluded that Equation (12) can be used as an engineering tool
for predicting the RFC of axial velocities. However, it is important to remember that it described the RFC at the blade
tip, but was used along the whole blade. Depending on the usage, it may have to be re-evaluated based on numerical
simulations or experiments. This is also the case if shear is more dominant. Note that the analysis was based on numerical
calculations using the Mann turbulence model and therefore represents an accepted approximation to real turbulence.

Torsion stiffness is important, andReq is in general higher when the blade is soft in torsion. An explanation for this is
the change in the angle of attack introduced when the blades twist, but the actual behaviour may depend heavily on the
specific design (sweep etc.). When the blade bending-stiffness is soft, thenReq is somewhat reduced because the time
delay caused by the bending acts as a low pass filter removing the effects of fast changes. However, these mechanisms are
very complicated and it is not possible to draw any general conclusion. We note that, in many cases, the fatigue loading
will also depend on stability issues and the turbine control algorithm.

5.2. Design guidelines - flapwise fatigue loads

Equation (14) shows the following relationship to the flapwise fatigue damage

D ∝ kmRm
eq , Rm

eq ∝ Ωm+1 , Rm
eq ∝ σm

1 = ImV m
0 , Rm

eq ∝
(∫ R

r

(r′ − r)r′
dCl

dα
c dr′

)m

(16)
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Table II. Key parameters and simulation cases

Case α (shear) Turbulence EI (Bending stiffness) GJ Torsion stiffness

DLC 1.1 0.2 NTM Soft Soft
3 0.2 0 ∞ Soft
3b 0.2 0 ∞ ∞
4 0.0 NTM ∞ Soft
4b 0.0 NTM ∞ ∞

whereI is the turbulence intensity. Thus, increasingI andΩ increases the fatigue damage dramatically. It can also be seen
that the chord distribution is very important, especially on outer parts of the blade where a shorter chord will reduce the
fatigue damage. Finally, the effect of the unsteady 2D aerodynamics is included throughdCl/dα. Note that these formulas
can be used for optimization by minimizing the shown quantities.

5.3. Edgewise fatigue loads

In the special case of no turbulence the edgewise fatigue loads are predicted with good accuracy using (15), which is based
on quasi-steady gravity loads. When turbulence is included, the equivalent fatigue load is increased by approximately 50%.
This shows the important effects of turbulence on edgewise fatigue loads. The aerodynamic influence on edgewise fatigue
loads has not been described analytically in this work.

5.4. General notes

The equivalent loads were all evaluated in the blade root (r=0 m). Forr >0 we expect the validity of the analytical analysis
to be better because it is a better assumption thatn′=n′

tip and because there is less filtering of the fast structural dynamics.
The dimensionless RFC can be expected to vary with rotor radius, so the results presented cannot be scaled directly to

turbines which are very different in size. In that case, the dimensionless functional relationship must be determined again
if an absolute value for the fatigue load is needed. It is not necessary to reevaluate if a relative design study is carried out,
because the atmospheric properties are decoupled from the turbine design properties.

6. CONCLUSION

The fatigue caused by the flapwise bending moment can be predicted by the theory presented. The accuracy is best in the
case of rotation in shear, which shows that the assumptions used in the analytical approach are valid and that the important
fatigue generating effects have been identified. However, the fatigue damage is much higher when turbulence is present and
the fatigue loads are described by Equation (14). Important parameters include the dynamic lift-curve slope, the turbulence
standard deviation, the chord distribution, and the rotational speed (the latter increases both cycles and load).

The edgewise fatigue loads have been threated analytically based on the assumption that gravity loads are predominant.
The results are in good agreement with numerical calculations when shear and turbulence are excluded. When included,
the results deviate substantially and the actual loads are up to 50% greater. The aerodynamic forces are therefore important
for the edgewise fatigue loads.

We have presented a methodology for optimization of wind turbine blades for low flapwise fatigue loads. The method
is fast because it is based on integral quantities, making it possible to omit aeroelastic time simulations in the initial design
process.
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