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Abstract. Disruptions in a large tokamak can cause serious damage to the device

and should be avoided or mitigated. Massive gas or killer pellet injection are possible

ways to obtain a controlled fast plasma shutdown before a natural disruption occurs.

In this work, plasma shutdown scenarios with different types of impurities are studied

for an ITER-like plasma. Plasma cooling, runaway generation and the associated

electric field diffusion are calculated with a 1D-code taking the Dreicer, hot-tail and

avalanche runaway generation processes into account. Thin, radially localised sheets

with high temperature can be created after the thermal quench, and the Dreicer and

avalanche processes produce a high runaway current inside these sheets. At high

impurity concentration the Dreicer process is suppressed but hot-tail runaways are

created. Favourable thermal and current quench times can be achieved with a mixture

of deuterium and neon or argon. However, to prevent the avalanche process from

creating a significant runaway current fraction, it is found to be necessary to include

runaway losses in the model.
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1. Introduction

Plasma-terminating disruptions are one of the crucial problems that ITER [1] and similar

devices will face. The sudden loss of the thermal energy (∼ 1 GJ) and the subsequent

rapid quench of the plasma current(≥ 10 MA) is dangerous not only because of the

prompt heat load during the thermal quench (of the order of 104 MW/m2 for timescales

of ∼ 1 ms in the divertor of ITER), but also because of the electromechanical stresses

induced by the current quench. In some cases, the current quench can be accompanied

by a vertical plasma displacement in which the current channel moves rapidly towards

the wall, inducing asymmetric halo currents. These events would exert large forces on

the vacuum vessel, and would lead to severe restrictions on the design of its components.

Development of techniques to safely terminate the discharge and mitigate the destructive

effects of disruptions is one of the most critical issues for ITER and other large-scale

power-producing tokamaks.

Fast plasma shutdown by impurity injection could be a possible way to avoid

disruption related damage [2]. Impurities cool down the plasma through isotropically

distributed radiation, which reduces the high local heat loads on the first wall compared

with a natural disruption. The large impulse transferred to the vessel and its components

as an effect of poloidal halo currents can also be reduced, if the plasma becomes so cool

that the current quench time is short enough (for ITER τCQ <∼ 0.5 s is required [3]).

However, if the temperature is too low, very energetic electrons may be produced. As

the temperature drops on the short time scale of the thermal quench, an electric field

is induced which keeps the current constant. When the field is higher than a certain

critical electric field Ec, a population of electrons can be accelerated to relativistic

speeds. These so-called runaway electrons (REs) can form high energy beams that

may seriously damage the device upon impact. A cooling scenario should be chosen

so that not only the current quench time is sufficiently short but also so that runaway

production is avoided.

Experiments with massive gas injection [4, 5, 6, 7] and killer pellet injection [8, 9, 10]

show that fast plasma shutdown can be achieved by impurity injection. One aim of such

experiments is to suppress RE generation by a suitable choice of the impurity materials

and of the amount of impurities to be injected. However, extrapolations to reactor

parameters are not straightforward. Simulations of killer pellet injection [11, 12, 13] have

been performed by coupling runaway models to pellet injection and impurity radiation

models. Simulations of massive gas injection involving sophisticated fluid models [14, 15]

have also been made, but the inclusion of runaway effects is in its early stages. Often

simpler 0D simulations are used in order to model experimental results [7, 16].

The aim of this work is to investigate fast shutdown for an ITER-like plasma

using different types of impurities, and to try to find scenarios suitable for runaway-

free disruption mitigation. We explore in detail what effect different concentrations

of injected neon and argon have on the resulting current quench time and on the

number of runaway electrons in ITER-like plasmas. We also investigate to what extent
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the runaway generation can be suppressed by introducing magnetic perturbations or

injecting additional deuterium in the plasma.

The simulations presented in this paper are performed with a 1D runaway code,

which was initially presented in [17, 18] and developed further in [11, 19], where it was

applied to impurity injection scenarios in JET-like plasmas. The code determines the

temperature evolution by taking into account radiation, Ohmic heating, heat diffusion

and collisions between different particle species. The process of how the impurities

are injected into the plasma is not addressed in the present work. Instead, we use a

predescribed impurity density profile, together with a sensitivity analysis investigating

the effect of various impurity density profiles. The primary runaway processes included

in this work are the Dreicer and hot-tail processes and a simple estimate for runaways

created by Compton scattering with high energy gamma rays from the activated wall.

These processes provide a seed population of runaways that is further amplified by the

(secondary) avalanche mechanism. A similar model was used in [2], but without the

Dreicer and hot-tail runaway electron mechanisms.

An example of an ITER simulation using the present model for a low argon fraction

was presented in [20]. Here, we make a more extensive study and compare results for

various cases with different fractions of impurities in the plasma, including cases with

different deuterium-impurity mixture. In contrast to JET [20], where injection of a large

amount of pure argon would suppress runaway generation due to the resulting high

electron density, our results show that in ITER high impurity fractions alone are not

expected to suppress the runaway generation. It is necessary to simultaneously inject

a large amount of deuterium or at the same time have a sufficient level of magnetic

perturbations.

The remainder of the paper is organized as follows. In Sect. II the runaway

generation and loss processes included in the present model are discussed. The impurity

induced plasma cooling and the corresponding evolution of the electric field is described

in Sec. III. In Sec. IV we present results for disruption mitigation scenarios with different

impurity species and in Sec. V we summarize our conclusions.

2. Runaway electron generation and losses

The accelerating force on the electrons due to the electric field is counteracted by

the friction force due to collisions. Since the collision frequency decreases as v−3

at high velocities, there is a critical velocity, vc = vT
√

ED/2E above which the

electrons are continuously accelerated until they reach relativistic speeds. Here,

ED = m2
ec

3/(eτTe) is the Dreicer field, and τ is the relativistic electron collision time

τ = 4πε20m
2
ec

3/(nee
4 ln Λ). The runaway acceleration is possible when the electric field

is larger than the critical value Ec = mec/(eτ).

For a precise description of the runaway electron phenomenon one would need to



Simulation of RE generation in ITER 4

solve the kinetic equation

∂f

∂t
+ v · ∂f

∂r
− eE

me

· ∂f
∂v

= C(f) + S(f), (1)

where C(f) is the (relativistic) Fokker-Planck collision operator and S(f) is a

source/sink term that describes close collisions and runaway loss mechanisms. A

numerical solution of this problem [21] is computationally very expensive. Therefore, we

will use estimates of the number of electrons that enter the runaway region of velocity

space (v > vc(E)) due to different runaway mechanisms. Instead of modelling the

velocity space dynamics for the electrons that are already inside the runaway region,

we only consider their total density nrun. This density evolves due to the Dreicer, hot-

tail, γ-ray Compton scattering and avalanche generation mechanisms, and due to radial

diffusion caused by magnetic field fluctuations,

∂nrun

∂t
=

(

∂nrun

∂t

)Dreicer

+

(

∂nrun

∂t

)hot-tail

+

(

∂nrun

∂t

)γ

+

+

(

∂nrun

∂t

)avalanche

+
1

r

∂

∂r
r DRR

∂nrun

∂r
. (2)

The radial diffusion coefficient is here given by the Rechester-Rosenbluth estimate [22]

DRR = πqv‖R (δB/B)2, where q is the safety factor, v‖ ≃ c is the parallel velocity, R

is the major radius and δB/B is the normalized magnetic perturbation amplitude. In

reality, the diffusion coefficient is lower due to the averaging effect of the large particle

orbits [23]. Runaway electrons can also be lost from the plasma due to several other

processes that are not included in this study, e.g. resonant interaction with waves [24].

The Dreicer mechanism produces runaways by velocity space diffusion into the

runaway region due to small angle collisions. Assuming quasi-steady state for the

electron distribution function the generation rate is [25]
(

dnrun

dt

)Dreicer

≃ ne

τ

(

mec
2

2Te

)3/2 (
ED

E

)3(1+Zeff)/16

e
−

ED
4E

−

√

(1+Zeff)ED
E . (3)

The hot-tail mechanism is efficient if the cooling rate is comparable with the collision

frequency, so that the quasi-steady state approximation used to obtain Eq. (3) does not

hold. Impurity radiation mainly cools the low energy part of the electron distribution,

whereas the high energy part will be cooled by collisions with thermal electrons. At

high energies the electrons have lower collision frequency, so they cannot thermalize as

quickly as the low energy bulk of the distribution. For a short while, they are therefore

left as an elevated hot-tail of the distribution function. If the critical velocity decreases

rapidly, these electrons may end up inside the runaway region and become runaways.

In the present model, the Fokker-Planck equation for energetic electrons colliding

with a Maxwellian bulk distribution of electrons with temperature T is solved without

taking the electric field into account. It is assumed that the electric field only plays the

role of delineating the runaway region. For certain cooling types there exists analytical

solutions for this problem [26, 19]. However, the calculated temperature decay caused
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by radiating impurities does not in general follow these special cases. Therefore, we

solve the following kinetic equation numerically

∂f

∂t
= C(f) =

e4 ln Λn

8πǫ20me

1

v2
∂

∂v

[

v2G(v/vT )

(

1

T
f(v) +

1

mev

∂f(v)

∂v

)]

, (4)

where G is the Chandrasekhar function, and lnΛ = 14.9 − 0.5 ln(ne/10
20) + ln(Te) is

the Coulomb logarithm [?]. The kinetic equation is solved with a fully implicit finite

differences method, and the boundary conditions are calculated from the analytical

limits. Knowing the distribution function, the number of runaways can be estimated as

the velocity space integral of f over the runaway region [19]
(

dnrun

dt

)hot-tail

=
d

dt

∫ ∞

vc
(v − vc)

2fd3v. (5)

The avalanche mechanism is caused by close collisions between runaways and thermal

electrons, and results in an exponential growth of the runaway density, here modelled

by the analytical interpolation formula derived by Rosenbluth and Putvinski [27]
(

dnrun

dt

)avalanche

≃ nrun
E/Ec − 1

τ ln Λ

√

πϕ

3(Zeff + 5)
×

(

1− Ec

E
+

4π(Zeff + 1)2

3ϕ(Zeff + 5)(E2/E2
c + 4/ϕ2 − 1)

)−1/2

, (6)

where ϕ = (1 + 1.46ǫ1/2 + 1.72ǫ)−1 and ǫ = r/R denotes the inverse aspect ratio. The

avalanche amplifies the seed population of runaways created by the primary processes

(Dreicer and hot-tail), and is a very powerful runaway mechanism in tokamaks with

large current.

In ITER, tritium decay and Compton scattering of γ-rays emitted by the activated

wall are also possible primary runaway electron sources. The magnitude of the runaway

electron generation rate from γ-ray Compton scattering is uncertain, because it depends

on the activation of the wall. In most of the simulations presented here the other

two primary runaway mechanisms already produce a significant runaway seed current.

However, when the Dreicer generation is suppressed and the hot-tail generation is

absent, the number of runaways produced by the Compton scattering process cannot

be neglected. For simplicity, we assume that the runaway generation is constant in the

whole plasma and can be calculated by the following formula (∂nrun/∂t)
γ = σΓγne0.

Here Γγ ≈ 1018m−2s−1 is the gamma ray flux [28], ne0 = 1020m−3 is the electron

density, and it is assumed that the cross section σ is 1 barn. With these values

(∂nrun/∂t)
γ = 1010 m−3s−1.

3. Plasma cooling and electric field evolution

The cooling process due to impurity radiation is described in a one dimensional

cylindrical model [11] by the following energy balance equations

3

2

∂(neTe)

∂t
=

3ne

2r

∂

∂r

(

χr
∂Te

∂r

)

+ POH − Pline − Pbr − Pion + P eD
c + P eZ

c ,(7a)



Simulation of RE generation in ITER 6

3

2

∂(nDTD)

∂t
=

3nD

2r

∂

∂r

(

χr
∂TD

∂r

)

+ PDe
c + PDZ

c , (7b)

3

2

∂(nZTZ)

∂t
=

3nZ

2r

∂

∂r

(

χr
∂TZ

∂r

)

+ P Ze
c + P ZD

c . (7c)

The electrons, deuterons and impurity ions are modelled separately, because of their

different collision times. The different species are coupled with collisional energy

exchange terms: P kl
c = 3nk(Tl − Tk)/(2τkl), where the heat exchange time is τkl =

3
√
2π3/2ǫ20mkml/(nle

4Z2
kZ

2
l ln Λ) (Tk/mk + Tl/ml)

3/2 , and the subscripts k and l refer

to electrons (e), deuterium ions (D) and impurities (Z). The heat diffusion coefficient

is assumed to be constant χ = 1 m2s−1, unless otherwise indicated. The exact value

of the heat diffusion coefficient in disruptions is not known so this is a free parameter

in our model. The electron temperature changes due to Ohmic heating (POH = σ‖E
2)

and power losses caused by ionization (Pion), bremsstrahlung (Pbr) and line radiation

(Pline =
∑

i nineLi(ne, Te)). Line radiation is the sum of the radiation for each charge

state and the charge state densities ni evolve due to electron impact ionization and the

radiative recombination. The radiation rates are extracted from the ADAS database

[29]. Opacity effects could also be important, especially for low-Z impurities such as

beryllium and carbon, as shown in [16], but for the noble gases (neon and argon) used

in our study the difference in calculations with and without opacity effects is small.

In the cases investigated in [16] it was shown that the neglecting the influence of the

opacity may underestimate the temperature by a factor of about 2, which in turn leads

to an overestimation of the runaway current and a longer current decay time. Here we

assume transparent plasmas, and therefore our results represent a worst-case scenario.

It is assumed that the final impurity profile nfinal(r) is proportional to the initial

plasma density profile n0(r) = nD(r)|t=0 = ne(r)|t=0. The level of the final impurity

density nfinal is varied between the different simulations, as well as the material

(nfinal = nAr or nfinal = nNe). In the beginning of the simulations we let the impurity

density nZ(r, t) increase exponentially to its final value according to nZ = (1−e−t/th)nfinal

on the time scale th = 1 ms. This time scale was chosen because it is long enough to

make the numerical calculations tractable but shorter than the relevant physical time

scales. The time derivative of nZ in Eq. (7c) soon gives a very small contribution to the

rate of energy change for impurity ions in our calculations because the entering ions are

very cold compared with the ions that are already present.

As the plasma cools and its conductivity drops (σ‖ ∼ T 3/2
e ), an electric field trying

to maintain the current arises. The Maxwell equations and Ohm’s law yield the following

equation for the toroidal component of the electric field

1

r

∂

∂r

(

r
∂E

∂r

)

= µ0
∂

∂t

(

σ‖E + nrunec
)

. (8)

The total current is the sum of the Ohmic and runaway currents, assuming that

the runaways travel with the speed of light. Equations (2), (7) and (8) are solved

simultaneously to study plasma shutdown scenarios with neon and argon impurity

injection.
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Figure 1: (a) Initial ITER density and temperature profiles as functions of normalized radius

r/a. (b) Initial current profile.

4. Results and discussion

In our simulations we use a specific ITER-like scenario [30], obtained with the ASTRA

code, with a plasma current of 15 MA, magnetic field B = 5.3 T, major radius

R = 6.2 m, and mid-plane minor radius 2.0 m. In our cylindrical model we use the

radius a =
√
κ 2.0 m, where κ = 1.84 is the elongation. Figure 1 shows the initial

plasma temperature, density and current profiles. The central temperature and density

are T0 = 24.7 keV and ne0 = 1020 m−3.

4.1. Impurity injection

To describe the physical processes, we first discuss how the temperature changes due to

impurities, by examining two specific examples with 10% argon (nAr = 0.1n0) and 50%

neon (nNe = 0.5n0) injection. The temperature evolution of the electrons, deuterium

ions and argon ions at r = 0 is shown in Fig. 2(a). The initial dramatic electron

temperature-drop is mainly due to dilution caused by the large number of cold electrons

that enter the plasma in the first milliseconds. During this time the thermal energy does

not fall very much. Later, line-radiation and Bremsstrahlung induce a steady cooling

of the plasma to a few eVs in about 115ms. Fig. 2(b) shows the time evolution of the

radiation, Ohmic heating, ionization power densities and of the total thermal energy of

the plasma. The Ohmic heating increases slowly as the temperature drops but it cannot

compensate the radiation losses. After 115 ms a radiative collapse occurs and most of

the remaining thermal energy is lost. Figures 2(c) and (d) show the same quantities for

the injection of 50% neon. This choice of neon density was made so that the radiation

collapse occurs at the same time as in the argon simulation. In the case of neon the

background deuterium ions are cooled more rapidly, due to the larger number of injected

impurities and the correspondingly larger collisional energy exchange. Figure 3 shows

the time evolution of the number of ionized argon and neon atoms. The main difference

is that due to the different ionization energies (1.3 keV for Ne9+ and 4 keV for Ar17+),
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Figure 2: (a) Time evolution of the temperature of electrons, deuterium and argon ions at r = 0

during injection of 10% argon. (b) Time evolution of radiation, Ohmic heating and ionization

power (integrated over the whole volume) and the total thermal energy of the plasma. (c)

Same as in (a) but for 50% neon. (d) Same as in (b) but for 50% neon.

most neon atoms are fully ionized. In spite of this, the radiation power density is almost

the same both for argon and neon, since to obtain comparable cooling we injected more

neon atoms and therefore have a correspondingly higher electron density.
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Simulation of RE generation in ITER 10

0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

r/a

T
 (

eV
)

(b)

0 0.2 0.4
0

5

10

15

r/a

j/
j i0

j at t=0

j at t=160ms

(c)

0 0.1 0.2 0.3 0.4
0

50

100

150

r/a

P
 (

M
W

/m
3
)

(d)P
rad

P
Ohm

0 100 200 300 400
0

5

10

15

20

t (ms)

I (
M

A
)

(e) I total
I sheets
I run

0 0.1 0.2 0.3 0.4
0

5

10

15

r/a

E
 (

V
/m

)

(f)

0 0.1 0.2 0.3 0.4

2

4

6

8

x 10
4

E
D

(V
/m

)

E E Dreicer

Figure 4: Current sheets are created after injection of neon into the plasma nNe/n0 = 0.5.

(a) Electron temperature as a function of time and normalized radius. The other plots show

plasma parameters as functions of normalized radius at t=160 ms: (b) electron temperature,

(c) current density in the plasma, (d) radiation losses and Ohmic heating, (e) plasma current

decay including the current driven inside the sheets (dash-dotted) and the runaway current,

(f) electric field and Dreicer field (note the different scale for the Dreicer field ED).

The temperature evolution in the whole plasma cross section is shown in Fig. 4(a).

Due to a thermal instability resulting from a balance between heat diffusion, radiation

and Ohmic heating, radially localised high temperature sheets are created. The

physics behind the formation of these soliton-like structures was described in [2]. The

temperature inside the sheets is a few hundred eV (Fig. 4(b)) and consequently the

resistivity is much lower than in the surrounding plasma. As the high electric field
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from the surrounding cold region diffuses into the hot sheets it drives high current and

keeps the region hot due to Ohmic heating. Figure 4(c) shows the current density of

the plasma. The heat created in the center of the sheets diffuses outwards where it is

radiated away (Fig. 4(d)). These current sheets exist for a long time and prolong the

current quench (see Fig. 4(e)). In this work, in contrast to [2], we consider the Dreicer

runaway generation process which is sensitive to the temperature. The Dreicer field is

lower inside the sheets than outside (Fig. 4(f)). Furthermore the electric field changes

only slightly with radius because there is enough time for the diffusion to smooth it out.

The Dreicer generation strongly depends on the ratio of these two electric fields because

ṅDreicer
run ∼ exp(−ED/E). As a result, Dreicer runaways are produced inside the sheets

at a much higher rate than outside. Therefore, the peaked Ohmic current driven inside

the sheets will be converted to an even more peaked runaway profile. The resulting

runaway beams are sensitive to how the sheets are formed. A higher heat conductivity

(χ) generally gives wider and fewer current sheets and if χ is high enough no sheets are

created. Without current sheets the Dreicer generation becomes negligible compared to

the other primary runaway mechanisms. In our simulations χ is chosen to be 1 m2s−1

which is in the same order as the equilibrium value from the ASTRA code. If an MHD

instability is present in the plasma a value of 100 m2s−1 could be reasonable, in which

case the current sheets disappear. The influence of different heat conductivity values

are further detailed in Sec. 4.4.

4.2. Density scan

Simulations with different argon concentration were performed, taking all runaway

generation processes (Dreicer, hot-tail, γ-ray and avalanche mechanism) into account

and neglecting the losses. In most cases current sheets are created and the Dreicer

generation inside the sheets is the strongest primary runaway generation mechanism.

At high impurity concentration the thermal quench is short, so the hot tail generation

becomes strong. To compare the different primary runaway generation processes we

can integrate the terms on the right hand side in in Eq. (2) separately. The result is

shown in Fig. 5. The γ term is weak compared to the other primary mechanisms in

these scenarios. For argon content nAr/n0 > 0.9 the hot-tail generation is the dominant

seed mechanism. This creates a broad runaway current profile which is later amplified

by the avalanche mechanism, see Fig. 6(a). For lower argon concentration the Dreicer

generation inside the sheets dominates, which leads to spikes in the runaway current

profile as shown in Fig. 6(b) for nAr/n0 = 0.1.

Simulations with different concentrations of neon and argon were performed to

determine the thermal and current quench times and the total runaway current

generated. These simulations were also done without runaway losses. Figure 7(a) shows

the thermal and current quench times, and the generated runaway current is presented

in Fig. 7(b). The displayed current quench time (τCQ) is defined as the time in which

the Ohmic current drops to 1/e of its initial value, and similarly the thermal quench
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Initial current density and final runaway current density from a simulation with (a) nAr/n0 =

1.0 and (b) nAr/n0 = 0.1. The hot-tail seed population is magnified with a factor of 1000 for

better visibility.

time (τTQ) is the time needed for the total thermal energy to drop to 1/e of the initial

thermal energy. In case of argon, all simulations result in a significant runaway current.

Increasing the argon content increases the electron density, and therefore slightly reduces

the final runaway current. The thermal quench time decreases if more argon is injected

and the hot-tail seed therefore becomes strong for densities nAr/n0 >∼ 50%. In the case

of neon injection, if nNe/n0 < 2 the γ-ray Compton scattering seed is usually stronger

than the Dreicer generation and therefore the runaway current is almost independent

of the amount of injected neon. For nNe/n0 = 2, the Dreicer generation is strong in

the high temperature sheets and this creates a peak in the total runaway current. For

higher neon density the hot-tail generated runaway seed becomes also important.

There is a significant difference in thermal and current quench times between neon

and argon. Clearly argon is more efficient in cooling the plasma, but this efficient cooling
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Figure 7: (a) Thermal quench time (τTQ) and current quench time (τCQ) after injection of

different amounts of neon and argon into the plasma. (b) Generated runaway current.

and the short thermal quench time also has the effect that the RE current is much higher

for argon than for neon.

To reduce runaway generation a mixture of deuterium and impurities could be

injected into the plasma. With deuterium the electron density can be increased without

significantly decreasing the thermal quench time. Figure 8 compares the thermal quench

time, current quench time and runaway current for different amounts of argon with

and without massive deuterium injection (nD/n0 = 10). The thermal quench becomes

somewhat shorter in the cases where large amounts of cold deuterium particles are

introduced, but it does not change significantly. The main difference when the extra

deuterium is added is that the runaway current is reduced for low argon density cases.

The reason is that the high electron density caused by the large amount of deuterium

decreases the Dreicer generation, as can be seen in Fig. 9. This figure presents the final

Dreicer, hot-tail and γ-ray Compton scattering runaway seed currents generated during

simulations with nD/n0 = 10 and different argon contents. The Dreicer generation is

smaller compared with the case without the added deuterium in Fig. 5. For argon

densities in the range of 0.2n0 − 0.5n0 the Dreicer generation is still active in the

high temperature sheets. At other densities the sheets do not form and the Dreicer

generation is negligible. The extra deuterium does not affect the γ-ray Compton

scattering generation. The hot-tail and avalanche generation are also more difficult to

reduce [19]. Even with a ten-fold deuterium density increase the avalanche generation

is not suppressed, as seen in Fig. 8(b). If the argon concentration is too large, the

hot-tail process provides a seed which is amplified to a high final runaway current. On

the other hand, at lower densities the γ-ray Compton scattering seed is also amplified

to a considerable final runaway current.

In order to suppress the avalanche in these scenarios, the critical electric field should

be larger than the actual electric field, and to accomplish this we would need a more

than hundred-fold density increase. In reality, such a large amount of gas would put a

serious load on the vacuum pumps. Instead of further increasing the deuterium density,
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in the following we will examine shutdown scenarios with runaway losses that could

counteract the avalanche mechanism.
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current decreases to zero in simulations with nD/n0 = 10 and different argon concentrations.

The currents from Dreicer (ID), hot-tail (Ih), and γ (Iγ) generation processes are defined the

same way as in Fig. 5. The Dreicer generation is reduced by the density increase caused by

the extra deuterium.
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4.3. Runaway losses

Runaway electron diffusion due to magnetic perturbations can reduce the runaway

density. In this section the effect of the magnetic perturbation is studied for an argon

scenario with nAr/n0 = 1.0 and no added deuterium. In this scenario hot-tail generation

creates a runaway current which is amplified to a strong runaway beam if we do not have

losses. Runaway current fractions from simulations with different magnetic perturbation

levels are presented in Fig. 10, which shows the maximum runaway current, because the

runaway current changes with time. The time evolution of the runaway current and the

total current is shown in Fig. 11 for four different values of δB/B.
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Figure 10: Runaway fraction of total current as a function of normalized magnetic field

perturbations at injection of argon (nAr/n0 = 1.0).

Without runaway losses the simulation ends with high runaway current (Fig. 11(a)),

because there is a strong initial seed runaway profile due to the hot-tail effect. When

the magnetic perturbation level is increased up to δB/B ∼ 10−4, radial diffusion makes

this seed profile broader (see Fig. 12), which allows the avalanche mechanism to create

an even higher final runaway current. For δB/B = 2 · 10−4 (Fig. 11(b)) there are

significant runaway losses, but in the first few ms when the electric field is very high

it cannot yet counteract the avalanche mechanism. With high magnetic perturbation

(δB/B ≥ 8·10−4, Fig. 11(d)) the runaway loss rate is higher than the avalanche rate and

the runaway electrons generated by the hot-tail process will diffuse out of the plasma

before they can form a strong runaway beam, as predicted in [23]. The observed level

of magnetic perturbations in existing large tokamaks (such as JET) is larger than 10−3

at the stage of the current quench [31], and if the same level of magnetic perturbation

will be present in ITER, it would be sufficient to scatter the runaway beam.
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Figure 11: Time evolution of the total current and runaway current for different normalized

magnetic field perturbations and injection of nAr/n0 = 1.0. (a) δB/B = 0, (b) δB/B =

2× 10−4, (c) δB/B = 4× 10−4, (d) δB/B = 8× 10−4.
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current density profile gets broader when δB/B is larger.
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4.4. Sensitivity to the impurity profile and heat conduction coefficient

Various tests were performed to investigate the effect of our assumptions. First of all we

tested the sensitivity of our results to the predescribed impurity density profile. During

a controlled shutdown the aim is to achieve efficient cooling all along the plasma radius,

which means that the impurity density has to be above some minimum level throughout

the whole plasma. The parts of the plasma where this minimum level is not reached will

remain hot and prolong the thermal and current quench of the plasma. The electric field

will diffuse into these hot regions, thereby strengthening the runaway generation, and

furthermore, the effect of runaway generation reduction by electron density increase will

be weaker. As long as the impurity content is sufficiently high throughout the plasma,

the details of the radial impurity density profile does not not have a decisive influence

on the runaway generation. To illustrate this, simulations were performed with the four

different impurity profiles in Fig. 13. The temperature profile evolution is different for
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Figure 13: Different impurity profiles p0 ∼ n0, p1 ∼ 1.5 − x2, p2 ∼ 1.5 − 4(x − 0.5)2,

p3 ∼ 1.5− (x− 1)2. The profiles are normalised so that the total impurity particle number is

the same.

each impurity profiles as it strongly depends on the local impurity/background plasma

density ratio. However, as Fig. 14(a) shows, the thermal quench times are similar in

all cases. If we compare the current quench times (Fig. 14(b)) we see that the more

impurities there are in the center the faster the quench will be. Fig. 14(c) shows that

all the profiles result in a significant runaway current. There is ±15 percentage point

variation in the final runaway current depending on the impurity density profile, but

since all cases result in a large runaway current and the differences in thermal and

current quench times are small, the main conclusions of the paper do not depend on the

choice of exact impurity density profile.

To mimic the penetration of material from the edge to the centre of the plasma,

simulations were set up with a spatially dependent time delay before the density begins

to increase from zero to its final value,

nZ(r, t) =

{

nfinal(r)(1− e−(t−delay(r))/th) if t > delay(r)

0 otherwise
,
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Figure 14: Simulation results for the impurity profiles in Fig. 13. (a) Thermal quench time,

(b) current quench time and (c) generated runaway current.

where delay(r) = (a− r)/v. The delay function was chosen as the time it would take a

v = 600 m/s pellet to reach point r. The delay in the center is around 4.5 ms. The radial

impurity profile was similar to the background density profile shape (nfinal(r) ∼ n0(r))

and the temperature evolution of the background plasma was compared to the case

where the time for impurity penetration was neglected. Figure 15 shows the temperature

profile evolution. The cooling process does not change qualitatively when the delay is

introduced. Besides the 4-5 ms offset caused by the delay the final thermal and current

quench times does not change considerably, as can be seen in Fig. 16.

Figure 15: Temperature profile evolution (a) without delay and (b) with delay (50% argon).

To study the effect of different heat conduction coefficients, argon scenarios were

investigated with χ = 5 m2/s and χ = 10 m2/s. The results (Fig. 17) indicate

that the thermal and current quench times do not change significantly. As previously

mentioned, the sheet structures become radially broader with higher heat conduction.

The temperature inside such thick sheets is also lower, and since the Dreicer generation

is sensitive to the temperature, the runaway current is found to decrease with increasing
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Figure 16: (a) Thermal quench time, (b) current quench time and (c) generated runaway

current with and without delay. The quench times are in all cases the time interval from the

beginning of the simulation to the time when the 1/e level is reached. The longer quench times

for the delay cases are caused by the 4-5 ms delay in the central plasma.

χ at low argon densities. At high argon densities (nAr/n0 ≥ 0.7) there is a strong hot-tail

seed and it is only slightly influenced by the change in the heat conduction. The final

runaway current changes only moderately in these cases.
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Figure 17: (a) Thermal quench time, (b) current quench times and (c) runaway current as a

function of argon density using different heat conduction coefficients.

5. Conclusions

Fast plasma shutdown scenarios with neon and argon impurities were simulated for

ITER-like parameters, with a 1D code solving the coupled equations of electric field

diffusion, runaway generation and energy balance. For simplicity, the complicated

physics of how the impurities are transported into the plasma was not modelled, but

a predescribed impurity profile was used. The change of the plasma temperature is

calculated taking radiation, Ohmic heating, collisions between species and heat diffusion
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into account. Dreicer, hot-tail, γ-ray Compton scattering and avalanche runaway

electron generation during the current quench and the evolution of the electric field

are determined self-consistently. Runaway losses were also calculated with a simple

model for diffusion due to magnetic perturbations.

Our results indicate that injection of high-Z impurities, such as argon or neon is

very efficient in cooling the plasma, but can lead to high runaway current. Primary

runaway electrons are generated by the hot-tail process when nAr ∼ n0 (or nNe > 2n0)

or by the Dreicer process at lower impurity densities. The avalanche generation is

not suppressed for the studied impurity concentrations (nZ/n0 ∼ O(1)) and it further

amplifies the runaway current. Long-lived radially localised sheets of high temperature

can be formed after the thermal quench and this influences the Dreicer generation. The

Dreicer generation is strong inside these sheets and it can create runaway beams with

high current. When the impurity content is high, sheets do not form, and the Dreicer

generation is therefore not significant. Instead, the large amount of impurities make the

thermal quench time so short that hot-tail generation becomes the dominant runaway

seed mechanism.

The Dreicer seed can be suppressed if we increase the plasma density by using a

mixture of deuterium and neon or argon, but the avalanche mechanism is not suppressed.

If we have other strong primary generation processes, such as hot-tail or γ-ray Compton

scattering, then we have to rely on runaway loss mechanisms that can counteract the

avalanche. A simple model for losses due to runaway diffusion was used to show that

for nAr ∼ n0, a magnetic perturbation level δB/B = 10−3 is sufficient to stop runaway

avalanching.
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