You need JavaScript to view this

Inventory of future power and heat production technologies. Partial report Gasification with gas turbine/engine for power plants; Incl. English lang. appendix of 24 p. titled 'Status of large-scale biomass gasification for power production'; Inventering av framtidens el och vaermeproduktionstekniker. Delrapport Foergasning med gasturbin/motor foer kraftvaerk

Abstract

This subproject is limited to applications with gas turbines or engines from approximately 1 MWe and firing of gas in a boiler either as indirect cofiring or as separate firing of gas from waste gasification. Gasification with gas engine, BIG-ICE (Biomass Integrated Gasification Internal-Combustion Engine) is realized in approximately 10 plants in Europe between 1 and 7 MWe. The gas needs to be cleaned from particles and tar before it is fed to the engine. A number of different gasifiers and gas cleaning technologies are applied in these prototypes, and in certain cases a second generation is being built. Gas engines from GE Jenbacher are most common, but there are also other producers with engines for low-calorific-value gas. The exhausts from engines must, unlike gas turbines, be cleaned catalytically, but emissions of hydrocarbons in particular are still higher than from gas turbines. It is possible to increase the electricity generation by applying a 'bottoming cycle' in the form of a steam or an ORC cycle. Such a plant with ORC has been started in Austria this year. During the 1990's expectations were high concerning the development of biomass gasification with gas turbine in a combined cycle BIG-CC (Biomass Integrated Gasification  More>>
Authors:
Waldheim, Lars; Larsson, Eva K [1] 
  1. TPS Termiska Processer, Nykoeping (Sweden)
Publication Date:
Dec 15, 2008
Product Type:
Technical Report
Report Number:
ELFORSK-08-78
Resource Relation:
Other Information: 43 refs., 50 figs.
Subject:
09 BIOMASS FUELS; 29 ENERGY PLANNING, POLICY AND ECONOMY; FORECASTING; GAS TURBINES; ENGINES; GASIFICATION; COST; INVESTMENT; REVIEWS; BIOMASS; WASTES
OSTI ID:
965427
Research Organizations:
Elforsk AB, Stockholm (Sweden)
Country of Origin:
Sweden
Language:
English
Other Identifying Numbers:
Other: Rel-TRN: SE0908300; TRN: SE0908305
Availability:
Available from: Elforsk AB, SE-105 13 Stockholm, Sweden, E-mail: kontakt@elforsk.se or http://www.elforsk.se; OSTI as DE00965427
Submitting Site:
SWDN
Size:
127 p. pages
Announcement Date:
Oct 09, 2009

Citation Formats

Waldheim, Lars, and Larsson, Eva K. Inventory of future power and heat production technologies. Partial report Gasification with gas turbine/engine for power plants; Incl. English lang. appendix of 24 p. titled 'Status of large-scale biomass gasification for power production'; Inventering av framtidens el och vaermeproduktionstekniker. Delrapport Foergasning med gasturbin/motor foer kraftvaerk. Sweden: N. p., 2008. Web.
Waldheim, Lars, & Larsson, Eva K. Inventory of future power and heat production technologies. Partial report Gasification with gas turbine/engine for power plants; Incl. English lang. appendix of 24 p. titled 'Status of large-scale biomass gasification for power production'; Inventering av framtidens el och vaermeproduktionstekniker. Delrapport Foergasning med gasturbin/motor foer kraftvaerk. Sweden.
Waldheim, Lars, and Larsson, Eva K. 2008. "Inventory of future power and heat production technologies. Partial report Gasification with gas turbine/engine for power plants; Incl. English lang. appendix of 24 p. titled 'Status of large-scale biomass gasification for power production'; Inventering av framtidens el och vaermeproduktionstekniker. Delrapport Foergasning med gasturbin/motor foer kraftvaerk." Sweden.
@misc{etde_965427,
title = {Inventory of future power and heat production technologies. Partial report Gasification with gas turbine/engine for power plants; Incl. English lang. appendix of 24 p. titled 'Status of large-scale biomass gasification for power production'; Inventering av framtidens el och vaermeproduktionstekniker. Delrapport Foergasning med gasturbin/motor foer kraftvaerk}
author = {Waldheim, Lars, and Larsson, Eva K}
abstractNote = {This subproject is limited to applications with gas turbines or engines from approximately 1 MWe and firing of gas in a boiler either as indirect cofiring or as separate firing of gas from waste gasification. Gasification with gas engine, BIG-ICE (Biomass Integrated Gasification Internal-Combustion Engine) is realized in approximately 10 plants in Europe between 1 and 7 MWe. The gas needs to be cleaned from particles and tar before it is fed to the engine. A number of different gasifiers and gas cleaning technologies are applied in these prototypes, and in certain cases a second generation is being built. Gas engines from GE Jenbacher are most common, but there are also other producers with engines for low-calorific-value gas. The exhausts from engines must, unlike gas turbines, be cleaned catalytically, but emissions of hydrocarbons in particular are still higher than from gas turbines. It is possible to increase the electricity generation by applying a 'bottoming cycle' in the form of a steam or an ORC cycle. Such a plant with ORC has been started in Austria this year. During the 1990's expectations were high concerning the development of biomass gasification with gas turbine in a combined cycle BIG-CC (Biomass Integrated Gasification Combined Cycle) towards commercialisation. Two demonstration plants were built for the same gas turbine model, Siemens SGT 100 (earlier Typhoon); Vaernamo with pressurised gasification and ARBRE in Eggborough, England, with atmospheric gasification. The atmospheric technology has basically the same demands on gas cleaning as in the engine application, but downstream the gas is compressed to the pressure required by the gas turbine. In pressurised gasification, the gasifier pressure is set by the gas turbine. The gas is not cooled below 350-400 deg C and is cleaned in a high-temperature filter. Despite successful demonstration in Vaernamo, no more plants have been built. The ARBRE plant was never put into regular operation because of contract problems and a number of projects in Holland, Italy and Brazil never got to a construction phase. Indirect co-firing has been realised in a few plants where a CFB gasifier is combined with some cooling and cyclone particle removal. If gas cleaning before firing can be achieved, the technology is believed to have a bigger potential. That would mean that waste fuel or other fuels with high chlorine content can be used, and also that the treated gas can be used in an incineration plant without limiting the superheater temperature to the low levels, in relation to power plant boilers, that is used in waste boilers. This means that both the efficiency to electricity and the ratio between electricity and heat production can be increased, in relation to waste incineration. Improvements in performance during the time period in question require that initiatives are taken and that e.g. gas turbine manufacturers participate actively. The probability for this development is more difficult to assess. For BIG-ICE, the technology is assessed to reach 35-40 % electricity efficiency at the end of the period, i.e. 2025-2030, and the investment cost for bigger plants can be just below that of comparable conventional steam plants, perhaps 3 000 Euro/kWe for a complete plant. Completely commercial technology can be expected at the beginning of the 2020's. For BIG-CC the corresponding assessment is 45-50 % and 2500-3000 Euro/kWe. The route to commercial technology is longer in this case and plants on near commercial conditions cannot be expected until the end of the 2020's. For indirect co-firing it is a fact that lime kiln gasifiers and the gasifiers in Lahti, Ruien and Getruidenberg, without extensive gas cleaning, are in a commercial scale and that years of operation experiences already have been earned, also with waste fuels. The energy conversion to electricity uses existing infrastructure and therefore the adoption requirements are very limited. What remains to be demonstrated is that more extensive gas cleaning will work. MaelarEnergi plans to build a large was te gasification plant including gas cleaning that will be taken into operation in 2011. When the gas cleaning technology has been demonstrated and further improved, standalone plants realising firing of clean gas, and no or very little flue gas cleaning, can be introduced during the first half of the 2020's and see a breakthrough during the second half. The cost of such a plant has been estimated to just over 3000 Euro/kWe, including gas firing and power generation. This cost level is very attractive compared to new waste boilers. The same is true for indirect cofiring, where the cost, however, varies more depending on the existing boiler}
place = {Sweden}
year = {2008}
month = {Dec}
}