You need JavaScript to view this

Synthesis of ferroelectric nanostructures

Abstract

The increasing miniaturization of electric and mechanical components makes the synthesis and assembly of nanoscale structures an important step in modern technology. Functional materials, such as the ferroelectric perovskites, are vital to the integration and utility value of nanotechnology in the future. In the present work, chemical methods to synthesize one-dimensional (1D) nanostructures of ferroelectric perovskites have been studied. To successfully and controllably make 1D nanostructures by chemical methods it is very important to understand the growth mechanism of these nanostructures, in order to design the structures for use in various applications. For the integration of 1D nanostructures into devices it is also very important to be able to make arrays and large-area designed structures from the building blocks that single nanostructures constitute. As functional materials, it is of course also vital to study the properties of the nanostructures. The characterization of properties of single nanostructures is challenging, but essential to the use of such structures. The aim of this work has been to synthesize high quality single-crystalline 1D nanostructures of ferroelectric perovskites with emphasis on PbTiO3 , to make arrays or hierarchical nanostructures of 1D nanostructures on substrates, to understand the growth mechanisms of the 1D nanostructures, and to  More>>
Publication Date:
Dec 15, 2008
Product Type:
Thesis/Dissertation
Resource Relation:
Other Information: Doctoral theses at NTNU; ISSN 1503-8181; Numerical Data; Thesis or Dissertation; TH: Thesis (PhD); 212 refs., figs., tabs
Subject:
36 MATERIALS SCIENCE; FERROELECTRIC MATERIALS; NANOSTRUCTURES; NANOTUBES; PIEZOMETRY; MOLTEN SALTS; HYDROTHERMAL SYNTHESIS; EVALUATED DATA
OSTI ID:
952057
Research Organizations:
Norges teknisk-naturvitenskapelige universitet, Trondheim (Norway)
Country of Origin:
Norway
Language:
English
Other Identifying Numbers:
Other: ISBN 978-82-471-1351-6; ISBN 978-82-471-1350-9; TRN: NO0905161
Availability:
Commercial reproduction prohibited; OSTI as DE00952057
Submitting Site:
NW
Size:
115 pages
Announcement Date:
May 08, 2009

Citation Formats

Roervik, Per Martin. Synthesis of ferroelectric nanostructures. Norway: N. p., 2008. Web.
Roervik, Per Martin. Synthesis of ferroelectric nanostructures. Norway.
Roervik, Per Martin. 2008. "Synthesis of ferroelectric nanostructures." Norway.
@misc{etde_952057,
title = {Synthesis of ferroelectric nanostructures}
author = {Roervik, Per Martin}
abstractNote = {The increasing miniaturization of electric and mechanical components makes the synthesis and assembly of nanoscale structures an important step in modern technology. Functional materials, such as the ferroelectric perovskites, are vital to the integration and utility value of nanotechnology in the future. In the present work, chemical methods to synthesize one-dimensional (1D) nanostructures of ferroelectric perovskites have been studied. To successfully and controllably make 1D nanostructures by chemical methods it is very important to understand the growth mechanism of these nanostructures, in order to design the structures for use in various applications. For the integration of 1D nanostructures into devices it is also very important to be able to make arrays and large-area designed structures from the building blocks that single nanostructures constitute. As functional materials, it is of course also vital to study the properties of the nanostructures. The characterization of properties of single nanostructures is challenging, but essential to the use of such structures. The aim of this work has been to synthesize high quality single-crystalline 1D nanostructures of ferroelectric perovskites with emphasis on PbTiO3 , to make arrays or hierarchical nanostructures of 1D nanostructures on substrates, to understand the growth mechanisms of the 1D nanostructures, and to investigate the ferroelectric and piezoelectric properties of the 1D nanostructures. In Paper I, a molten salt synthesis route, previously reported to yield BaTiO3 , PbTiO3 and Na2Ti6O13 nanorods, was re-examined in order to elucidate the role of volatile chlorides. A precursor mixture containing barium (or lead) and titanium was annealed in the presence of NaCl at 760 degrees Celsius or 820 degrees Celsius. The main products were respectively isometric nanocrystalline BaTiO3 and PbTiO3. Nanorods were also detected, but electron diffraction revealed that the composition of the nanorods was respectively BaTi2O5/BaTi5O11 and Na2Ti6O13 for the two different systems, in contradiction to the previous studies. It was shown that NaCl reacted with BaO(PbO) resulting in loss of volatile BaCl2 (PbCl2 ) and formation and preferential growth of titanium oxide-rich nanorods instead of the target phase BaTiO3 (or PbTiO3 ). The molten salt synthesis route may therefore not necessarily yield nanorods of the target ternary oxide as reported previously. In addition, the importance of NaCl(g) for the growth of nanorods below the melting point of NaCl was demonstrated in a special experimental setup, where NaCl and the precursors were physically separated. In Paper II and III, a hydrothermal synthesis method to grow arrays and hierarchical nanostructures of PbTiO3 nanorods and platelets on substrates is presented. Hydrothermal treatment of an amorphous PbTiO3 precursor in the presence of a surfactant and PbTiO3 or SrTiO3 substrates resulted in the growth of PbTiO3 nanorods and platelets aligned in the crystallographic <100> orientations of the SrTiO3 substrates. PbTiO3 nanorods oriented perpendicular to the substrate surface could also be grown directly on the substrate by a modified synthesis method. The hydrothermal method described in Paper II and III was developed on the basis of the method described in Appendices I and II. In Paper IV, a template-assisted method to make PbTiO3 nanotubes is presented. An equimolar Pb-Ti sol was dropped onto porous alumina membranes and penetrated into the channels of the template. Single-phase PbTiO3 perovskite nanotubes were obtained by annealing at 700 degrees Celsius for 6 h. The nanotubes had diameters of 200 - 400 nm with a wall thickness of approximately 20 nm. Excess PbO or annealing in a Pb-containing atmosphere was not necessary in order to achieve single phase PbTiO3 nanotubes. The influence of the heating procedure and the sol concentration is discussed. In Paper V, a piezoresponse force microscopy study of single PbTiO3 nanorods is presented. The piezoelectric properties were studied in both vertical and lateral mode. Piezoelectric activity and polarization switching was observed in the vertical mode, demonstrating the ferroelectric nature of the nanorods. The nanorods decomposed after repeated cycling of the dc bias at one spot on the nanorod, which resulted in parts of the nanorod disappearing and/or accumulation of particles on the surface of the nanorod. In Paper VI, a method to contact single nanorods by electron beam induced deposition of platinum is presented. An organometallic compound, (trimethyl)-methylcyclopentadienylplatinum(IV), was used as precursor. A home-made apparatus was constructed for the purpose and was mounted onto a scanning electron microscope. Calculations based on apparatus geometry and molecular flow were used to estimate the deposition time and the height of the deposits.}
place = {Norway}
year = {2008}
month = {Dec}
}