Abstract
Radiation exposure to patients undergoing axial computerized tomography as a tool of neurological X-ray diagnostics was studied. Doses thereby delivered were compared with those from routine head films at X-ray tube parameters 200 W, 70 kV, and 70 cm target-to-patient distance. Radiation exposures were analyzed with a view to improving shielding and procedural techniques. Comparisons were made using LiF TLD measurements with an Alderson phantom (standard for axial computer tomography). Skin and intracranial space doses were compared using two computers, Siretom I and Siretom 2000, for various positionings: frontal, fronto-lateral, temporal, temporo-occipital, and occipital. In addition, patient body doses with or without shielding and doses to subjects attending sick children or restless adults were examined. Achievable protection was estimated for lead shields of 0.5 mm lead equivalent. It was concluded that radiation doses delivered to neurologic patients undergoing axial computer tomography are smaller than those resulting from conventional X-ray examinations.
Pavlov, V
[1]
- Meditsinska Akademiya, Sofia (Bulgaria)
Citation Formats
Pavlov, V.
Patient radiation exposure in computerized tomography.
Bulgaria: N. p.,
1980.
Web.
Pavlov, V.
Patient radiation exposure in computerized tomography.
Bulgaria.
Pavlov, V.
1980.
"Patient radiation exposure in computerized tomography."
Bulgaria.
@misc{etde_6497379,
title = {Patient radiation exposure in computerized tomography}
author = {Pavlov, V}
abstractNote = {Radiation exposure to patients undergoing axial computerized tomography as a tool of neurological X-ray diagnostics was studied. Doses thereby delivered were compared with those from routine head films at X-ray tube parameters 200 W, 70 kV, and 70 cm target-to-patient distance. Radiation exposures were analyzed with a view to improving shielding and procedural techniques. Comparisons were made using LiF TLD measurements with an Alderson phantom (standard for axial computer tomography). Skin and intracranial space doses were compared using two computers, Siretom I and Siretom 2000, for various positionings: frontal, fronto-lateral, temporal, temporo-occipital, and occipital. In addition, patient body doses with or without shielding and doses to subjects attending sick children or restless adults were examined. Achievable protection was estimated for lead shields of 0.5 mm lead equivalent. It was concluded that radiation doses delivered to neurologic patients undergoing axial computer tomography are smaller than those resulting from conventional X-ray examinations.}
journal = []
volume = {19:1}
journal type = {AC}
place = {Bulgaria}
year = {1980}
month = {Jan}
}
title = {Patient radiation exposure in computerized tomography}
author = {Pavlov, V}
abstractNote = {Radiation exposure to patients undergoing axial computerized tomography as a tool of neurological X-ray diagnostics was studied. Doses thereby delivered were compared with those from routine head films at X-ray tube parameters 200 W, 70 kV, and 70 cm target-to-patient distance. Radiation exposures were analyzed with a view to improving shielding and procedural techniques. Comparisons were made using LiF TLD measurements with an Alderson phantom (standard for axial computer tomography). Skin and intracranial space doses were compared using two computers, Siretom I and Siretom 2000, for various positionings: frontal, fronto-lateral, temporal, temporo-occipital, and occipital. In addition, patient body doses with or without shielding and doses to subjects attending sick children or restless adults were examined. Achievable protection was estimated for lead shields of 0.5 mm lead equivalent. It was concluded that radiation doses delivered to neurologic patients undergoing axial computer tomography are smaller than those resulting from conventional X-ray examinations.}
journal = []
volume = {19:1}
journal type = {AC}
place = {Bulgaria}
year = {1980}
month = {Jan}
}