Abstract
Sugar is fermented to EtOH by yeasts capable of elaborating zymase and proteolytic enzymes, the zymase component comprising exceptionally large amounts of phosphatase. Saccharomyces ellipsoideus was acclimated to 20% EtOH by growing on fresh pineapple juice in a medium consisting of malt sirup 15, sugar sirup 3, and pineapple juice 82%. An aqueous solution of 2000 gallons of sugar cane molasses in H/sub 2/O to give a Brix of 16/sup 0/ was placed in a 48,000-gallon fermentor. S. ellipsoideus with a cell constant of 1 x 10/sup 9/ cells/ml was added, with sufficient H/sub 2/SO/sub 4/ to adjust the pH to approximately 4.5. Fermentation was carried out at 35/sup 0/ until the Brix dropped to 8/sup 0/, after which it was brought back to 16/sup 0/ by adding 6000 gallons of sirup containing nutrients in H/sub 2/O. This process was repeated with another 6000 and then 2000 gallons of sirup. The total fermentation required 48 h and the EtOH content was 15.25% by volume. Te EtOH was recovered in the usual manner by removal of solids and fractional distillation.
Citation Formats
Coates, E W, and Conde Julio, C.
Fermentation of sugar to ethyl alcohol in the presence of proteolytic enzymes.
United States: N. p.,
1963.
Web.
Coates, E W, & Conde Julio, C.
Fermentation of sugar to ethyl alcohol in the presence of proteolytic enzymes.
United States.
Coates, E W, and Conde Julio, C.
1963.
"Fermentation of sugar to ethyl alcohol in the presence of proteolytic enzymes."
United States.
@misc{etde_5649509,
title = {Fermentation of sugar to ethyl alcohol in the presence of proteolytic enzymes}
author = {Coates, E W, and Conde Julio, C}
abstractNote = {Sugar is fermented to EtOH by yeasts capable of elaborating zymase and proteolytic enzymes, the zymase component comprising exceptionally large amounts of phosphatase. Saccharomyces ellipsoideus was acclimated to 20% EtOH by growing on fresh pineapple juice in a medium consisting of malt sirup 15, sugar sirup 3, and pineapple juice 82%. An aqueous solution of 2000 gallons of sugar cane molasses in H/sub 2/O to give a Brix of 16/sup 0/ was placed in a 48,000-gallon fermentor. S. ellipsoideus with a cell constant of 1 x 10/sup 9/ cells/ml was added, with sufficient H/sub 2/SO/sub 4/ to adjust the pH to approximately 4.5. Fermentation was carried out at 35/sup 0/ until the Brix dropped to 8/sup 0/, after which it was brought back to 16/sup 0/ by adding 6000 gallons of sirup containing nutrients in H/sub 2/O. This process was repeated with another 6000 and then 2000 gallons of sirup. The total fermentation required 48 h and the EtOH content was 15.25% by volume. Te EtOH was recovered in the usual manner by removal of solids and fractional distillation.}
place = {United States}
year = {1963}
month = {Jun}
}
title = {Fermentation of sugar to ethyl alcohol in the presence of proteolytic enzymes}
author = {Coates, E W, and Conde Julio, C}
abstractNote = {Sugar is fermented to EtOH by yeasts capable of elaborating zymase and proteolytic enzymes, the zymase component comprising exceptionally large amounts of phosphatase. Saccharomyces ellipsoideus was acclimated to 20% EtOH by growing on fresh pineapple juice in a medium consisting of malt sirup 15, sugar sirup 3, and pineapple juice 82%. An aqueous solution of 2000 gallons of sugar cane molasses in H/sub 2/O to give a Brix of 16/sup 0/ was placed in a 48,000-gallon fermentor. S. ellipsoideus with a cell constant of 1 x 10/sup 9/ cells/ml was added, with sufficient H/sub 2/SO/sub 4/ to adjust the pH to approximately 4.5. Fermentation was carried out at 35/sup 0/ until the Brix dropped to 8/sup 0/, after which it was brought back to 16/sup 0/ by adding 6000 gallons of sirup containing nutrients in H/sub 2/O. This process was repeated with another 6000 and then 2000 gallons of sirup. The total fermentation required 48 h and the EtOH content was 15.25% by volume. Te EtOH was recovered in the usual manner by removal of solids and fractional distillation.}
place = {United States}
year = {1963}
month = {Jun}
}