You need JavaScript to view this

Application of vector CSAMT for the imaging of an active fault; CSAMT ho ni yoru danso no imaging

Abstract

With an objective to identify three-dimensionally resistivity in deep fault in the Mizunawa fault in Fukuoka Prefecture, a measurement was carried out by using the CSAMT method. The measurement was conducted by arranging seven traverse lines, each line having observation points installed at intervals of about 500 m. Among the 68 observation points in total, 33 points performed the vector measurement, and the remaining points the scaler measurement. For observation points having performed the vector measurement, polarized wave eclipses were depicted in the electric field to discuss which direction the current will prevail in. For analyses, a one-dimensional analysis was performed by using an inversion with smoothing restriction, and a two-dimensional analysis was conducted by using the finite element method based on the result of the former analysis. The vector measurement revealed that the structure in the vicinity of a fault was estimated to have become complex, and the two-dimensional analysis discovered that the Mizunawa fault is located on a relatively clear resistivity boundary. In addition, it was made clear that the high resistivity band may even be divided into two regions of about 200 ohm-m and about 1000 ohm-m. 2 refs., 7 figs.
Authors:
Kobayashi, T; Fukuoka, K [1] 
  1. Oyo Corp., Tokyo (Japan)
Publication Date:
May 27, 1997
Product Type:
Conference
Report Number:
CONF-9705167-
Reference Number:
SCA: 440700; 580000; 990301; PA: NEDO-97:912247; EDB-97:120349; SN: 97001846539
Resource Relation:
Conference: 96. SEGJ conference, Butsuri tansa gakkai dai 96 kai (1997 nendo shunki) gakujutsu koenkai, Tokyo (Japan), 27-29 May 1997; Other Information: PBD: 27 May 1997; Related Information: Is Part Of Proceeding of the 96th (spring, fiscal 1997) SEGJ Conference; PB: 502 p.; Butsuri tansa gakkai dai 96 kai (1997 nendo shunki) gakujutsu koenkai koen ronbunshu
Subject:
44 INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; 58 GEOSCIENCES; 99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; MAGNETOTELLURIC SURVEYS; IMAGE PROCESSING; GEOLOGIC FAULTS; ELECTRIC CONDUCTIVITY; GEOLOGIC STRUCTURES; VECTORS; SCALARS; ELECTRIC FIELDS; ELECTRIC CURRENTS; FINITE ELEMENT METHOD
OSTI ID:
522648
Research Organizations:
Society of Exploration Geophysicists of Japan, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
Other: ON: DE97770262; TRN: 97:912247
Availability:
Available from The Society of Exploration Geophysicists of Japan, 2-18, Nakamagome 2-chome, Ota-ku, Tokyo, Japan; OSTI as DE97770262
Submitting Site:
NEDO
Size:
pp. 210-213
Announcement Date:
Sep 29, 1997

Citation Formats

Kobayashi, T, and Fukuoka, K. Application of vector CSAMT for the imaging of an active fault; CSAMT ho ni yoru danso no imaging. Japan: N. p., 1997. Web.
Kobayashi, T, & Fukuoka, K. Application of vector CSAMT for the imaging of an active fault; CSAMT ho ni yoru danso no imaging. Japan.
Kobayashi, T, and Fukuoka, K. 1997. "Application of vector CSAMT for the imaging of an active fault; CSAMT ho ni yoru danso no imaging." Japan.
@misc{etde_522648,
title = {Application of vector CSAMT for the imaging of an active fault; CSAMT ho ni yoru danso no imaging}
author = {Kobayashi, T, and Fukuoka, K}
abstractNote = {With an objective to identify three-dimensionally resistivity in deep fault in the Mizunawa fault in Fukuoka Prefecture, a measurement was carried out by using the CSAMT method. The measurement was conducted by arranging seven traverse lines, each line having observation points installed at intervals of about 500 m. Among the 68 observation points in total, 33 points performed the vector measurement, and the remaining points the scaler measurement. For observation points having performed the vector measurement, polarized wave eclipses were depicted in the electric field to discuss which direction the current will prevail in. For analyses, a one-dimensional analysis was performed by using an inversion with smoothing restriction, and a two-dimensional analysis was conducted by using the finite element method based on the result of the former analysis. The vector measurement revealed that the structure in the vicinity of a fault was estimated to have become complex, and the two-dimensional analysis discovered that the Mizunawa fault is located on a relatively clear resistivity boundary. In addition, it was made clear that the high resistivity band may even be divided into two regions of about 200 ohm-m and about 1000 ohm-m. 2 refs., 7 figs.}
place = {Japan}
year = {1997}
month = {May}
}