You need JavaScript to view this

Integrated interpretation of AE clusters and fracture system in Hijiori HDR artificial reservoir; Hijiori koon gantai jinko choryuso no AE cluster to kiretsu system ni kansuru togoteki kaishaku

Abstract

With regard to a fracture system in the Hijiori hot dry rock artificial reservoir, an attempt was made on an interpretation which integrates different data. Major factors that characterize development and performance of an artificial reservoir are composed of a fracture system in rocks, which acts as circulating water paths, a heat exchange face and a reservoir space. The system relates not only with crack density distribution, but also with cracks activated by water pressure fracturing, cracks generating acoustic emission (AE), and cracks working as major flow paths, all of which are characterized by having respective behaviors and roles. Characteristics are shown on AE cluster distribution, crack distribution, production zone and estimated stress fields. Mutual relationship among these elements was discussed based on the Coulomb`s theory. The most important paths are characterized by distribution of slippery cracks. Directions and appearance frequencies of the slippery cracks affect strongly directionality of the paths, which are governed by distribution of the cracks (weak face) and stress field. Among the slippery cracks, cracks that generate AE are cracks that release large energy when a slip occurs. Evaluation on slippery crack distribution is important. 7 refs., 8 figs.
Authors:
Tezuka, K; [1]  Niitsuma, H [2] 
  1. Japan Petroleum Exploration Corp., Tokyo (Japan)
  2. Tohoku University, Sendai (Japan)
Publication Date:
May 27, 1997
Product Type:
Conference
Report Number:
CONF-9705167-
Reference Number:
SCA: 150906; 150904; PA: NEDO-97:912206; EDB-97:116204; SN: 97001846498
Resource Relation:
Conference: 96. SEGJ conference, Butsuri tansa gakkai dai 96 kai (1997 nendo shunki) gakujutsu koenkai, Tokyo (Japan), 27-29 May 1997; Other Information: PBD: 27 May 1997; Related Information: Is Part Of Proceeding of the 96th (spring, fiscal 1997) SEGJ Conference; PB: 476 p.; Butsuri tansa gakkai dai 96 kai (1997 nendo shunki) gakujutsu koenkai koen ronbunshu
Subject:
15 GEOTHERMAL ENERGY; HOT-DRY-ROCK SYSTEMS; ACOUSTIC MEASUREMENTS; GEOLOGIC FRACTURES; ACOUSTIC EMISSION TESTING; RESERVOIR ROCK; CIRCULATING SYSTEMS; GROUND WATER; HEAT EXCHANGERS; SPATIAL DISTRIBUTION; HYDRAULIC FRACTURING; STRESS ANALYSIS; SLIP
OSTI ID:
522608
Research Organizations:
Society of Exploration Geophysicists of Japan, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
Other: ON: DE97770262; TRN: 97:912206
Availability:
Available from The Society of Exploration Geophysicists of Japan, 2-18, Nakamagome 2-chome, Ota-ku, Tokyo, Japan; OSTI as DE97770262
Submitting Site:
NEDO
Size:
pp. 29-32
Announcement Date:

Citation Formats

Tezuka, K, and Niitsuma, H. Integrated interpretation of AE clusters and fracture system in Hijiori HDR artificial reservoir; Hijiori koon gantai jinko choryuso no AE cluster to kiretsu system ni kansuru togoteki kaishaku. Japan: N. p., 1997. Web.
Tezuka, K, & Niitsuma, H. Integrated interpretation of AE clusters and fracture system in Hijiori HDR artificial reservoir; Hijiori koon gantai jinko choryuso no AE cluster to kiretsu system ni kansuru togoteki kaishaku. Japan.
Tezuka, K, and Niitsuma, H. 1997. "Integrated interpretation of AE clusters and fracture system in Hijiori HDR artificial reservoir; Hijiori koon gantai jinko choryuso no AE cluster to kiretsu system ni kansuru togoteki kaishaku." Japan.
@misc{etde_522608,
title = {Integrated interpretation of AE clusters and fracture system in Hijiori HDR artificial reservoir; Hijiori koon gantai jinko choryuso no AE cluster to kiretsu system ni kansuru togoteki kaishaku}
author = {Tezuka, K, and Niitsuma, H}
abstractNote = {With regard to a fracture system in the Hijiori hot dry rock artificial reservoir, an attempt was made on an interpretation which integrates different data. Major factors that characterize development and performance of an artificial reservoir are composed of a fracture system in rocks, which acts as circulating water paths, a heat exchange face and a reservoir space. The system relates not only with crack density distribution, but also with cracks activated by water pressure fracturing, cracks generating acoustic emission (AE), and cracks working as major flow paths, all of which are characterized by having respective behaviors and roles. Characteristics are shown on AE cluster distribution, crack distribution, production zone and estimated stress fields. Mutual relationship among these elements was discussed based on the Coulomb`s theory. The most important paths are characterized by distribution of slippery cracks. Directions and appearance frequencies of the slippery cracks affect strongly directionality of the paths, which are governed by distribution of the cracks (weak face) and stress field. Among the slippery cracks, cracks that generate AE are cracks that release large energy when a slip occurs. Evaluation on slippery crack distribution is important. 7 refs., 8 figs.}
place = {Japan}
year = {1997}
month = {May}
}