You need JavaScript to view this

Design of environment-friendly and next generation-type conversion system for unused carbon resources by developing highly functional materials; Kokino zairyo kaihatsu ni yoru kankyo chowagata jisedai miriyo tanso shigen tenkan system no kochiku

Abstract

Studies are conducted for the development of now-unused kinds of fossil carbon resources, such as low rank coal and heavy gravity crude oil, into higher-value liquid fuel. In the preliminary treatment process, the fossil carbon resources are dried by use of supercritical carbon dioxide, when it is found that the resources are disintegrated and water is desorbed. In a low rank coal liquefaction process using the NiMo/KB (Kefjen Black) catalyst, more than 60% is converted into oil, which rate is improved by use of the dual-temperature liquefaction process. This catalyst may be recovered by separation utilizing specific gravity difference. As a low temperature gasification catalyst, the alkaline carbonate-carried carbon catalyst is very quick at the initial stage of reaction. The perovskite-carried alkaline carbonate catalyst is high in carbon oxidizing/activating efficiency at low temperatures. The silica film deposited on an alumina-coated support tube is excellent in selectivity and speed as a hydrogen separating film, and a carbonized polyimide film as a carbon dioxide separating film. For the supercritical phase adsorption/separation of chemicals not to be distilled easily, the NaY-type zeolite functions effectively. Pd/ZrO2 serving as a carbon monoxide conversion catalyst enables the recovery of more MeOH when Pd grains are smaller  More>>
Authors:
Wakabayashi, K; Morooka, S; Arai, Y; [1]  Sakanishi, K [2] 
  1. Kyushu University, Fukuoka (Japan). Faculty of Engineering
  2. Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study
Publication Date:
Feb 01, 1997
Product Type:
Conference
Report Number:
CONF-970283-
Reference Number:
SCA: 010400; PA: NEDO-97:820049; EDB-97:104647; SN: 97001821143
Resource Relation:
Conference: Report meeting for the results of `the publicly applied proposal type and hi-tech (emphasized) field research and development in fiscal 1995`, 1995 nendo teian kobogata saisentan (juten) bun`ya kenkyu kaihatsu seika hokokukai, Tokyo (Japan), 12-14 Feb 1997; Other Information: PBD: Feb 1997; Related Information: Is Part Of Preprint of the results of `the publicly applied proposal type and hi-tech (emphasized) field research and development in fiscal 1995`; PB: 469 p.; `1995 nendo teian kobogata saisentan (juten) bun`ya kenkyu kaihatsu` seika hokokukai yokoshu
Subject:
01 COAL, LIGNITE, AND PEAT; COAL PREPARATION; DRYING; COAL LIQUEFACTION; HYDROGENATION; CATALYSTS; MEMBRANES; SEPARATION PROCESSES; CARBON DIOXIDE; SUPERCRITICAL STATE; COAL GASIFICATION
OSTI ID:
506687
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
Other: ON: DE97757283; TRN: 97:820049
Availability:
Available from New Energy and Industrial Technology Development Organization, Sunshine 60, 30F 1-1, 3-chome, Higashi-Ikebukuro, Toshima-ku, Tokyo, Japan; OSTI as DE97757283
Submitting Site:
NEDO
Size:
pp. 418-419
Announcement Date:
Aug 23, 1997

Citation Formats

Wakabayashi, K, Morooka, S, Arai, Y, and Sakanishi, K. Design of environment-friendly and next generation-type conversion system for unused carbon resources by developing highly functional materials; Kokino zairyo kaihatsu ni yoru kankyo chowagata jisedai miriyo tanso shigen tenkan system no kochiku. Japan: N. p., 1997. Web.
Wakabayashi, K, Morooka, S, Arai, Y, & Sakanishi, K. Design of environment-friendly and next generation-type conversion system for unused carbon resources by developing highly functional materials; Kokino zairyo kaihatsu ni yoru kankyo chowagata jisedai miriyo tanso shigen tenkan system no kochiku. Japan.
Wakabayashi, K, Morooka, S, Arai, Y, and Sakanishi, K. 1997. "Design of environment-friendly and next generation-type conversion system for unused carbon resources by developing highly functional materials; Kokino zairyo kaihatsu ni yoru kankyo chowagata jisedai miriyo tanso shigen tenkan system no kochiku." Japan.
@misc{etde_506687,
title = {Design of environment-friendly and next generation-type conversion system for unused carbon resources by developing highly functional materials; Kokino zairyo kaihatsu ni yoru kankyo chowagata jisedai miriyo tanso shigen tenkan system no kochiku}
author = {Wakabayashi, K, Morooka, S, Arai, Y, and Sakanishi, K}
abstractNote = {Studies are conducted for the development of now-unused kinds of fossil carbon resources, such as low rank coal and heavy gravity crude oil, into higher-value liquid fuel. In the preliminary treatment process, the fossil carbon resources are dried by use of supercritical carbon dioxide, when it is found that the resources are disintegrated and water is desorbed. In a low rank coal liquefaction process using the NiMo/KB (Kefjen Black) catalyst, more than 60% is converted into oil, which rate is improved by use of the dual-temperature liquefaction process. This catalyst may be recovered by separation utilizing specific gravity difference. As a low temperature gasification catalyst, the alkaline carbonate-carried carbon catalyst is very quick at the initial stage of reaction. The perovskite-carried alkaline carbonate catalyst is high in carbon oxidizing/activating efficiency at low temperatures. The silica film deposited on an alumina-coated support tube is excellent in selectivity and speed as a hydrogen separating film, and a carbonized polyimide film as a carbon dioxide separating film. For the supercritical phase adsorption/separation of chemicals not to be distilled easily, the NaY-type zeolite functions effectively. Pd/ZrO2 serving as a carbon monoxide conversion catalyst enables the recovery of more MeOH when Pd grains are smaller in diameter.}
place = {Japan}
year = {1997}
month = {Feb}
}