You need JavaScript to view this

A stability analysis of electron-positron pair equilibria of a two-temperature plasma cloud

Journal Article:

Abstract

The stability of a two-temperature homogeneous static plasma cloud against pair density perturbations is examined. We assumed that the electrons and positrons, cooled via radiation process, are reheated via Coulomb interactions with much hotter protons. Pair equilibrium plasma states are shown to be unstable if deltan{sub e}/deltan{sub p}<0 and deltan{sub e}/deltaT{sub p}<0 on the equilibrium surface n{sub e}{sup eq}(n{sub p},T{sub p}), where n{sub e}=n{sub +}+n{sub -}, n{sub p} and T{sub p} denote electron plus positron density, proton density and proton temperature, respectively. The minimum proton temperature and maximum proton density for which unstable states can appear are: (kT{sub p}){sub min} approx few x m{sub e}c{sup 2} and (n{sub p}){sub max} approx few/Rsigma{sub T}, where R is the plasma cloud radius. We discuss our results in the context of an accreting black hole model assuming that the proton temperature is close to its virial value, kT{sub p}{sup vir} approx GMm{sub p}/R and that subsonic accretion flow is realized at R < tens Schwarzschild radii. The unstable states then correspond to the luminosity range 0.01 L{sub Edd}  More>>
Authors:
Sikora, M; [1]  Zbyszewska, M [2] 
  1. Colorado Univ., Boulder, CO (USA)
  2. Polska Akademia Nauk, Warsaw (Poland). Centrum Astronomiczne
Publication Date:
Jan 01, 1986
Product Type:
Journal Article
Reference Number:
AIX-21-012636; EDB-90-029544
Resource Relation:
Journal Name: Acta Astronomica; (Poland); Journal Volume: 36:3
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COSMIC ELECTRONS; COSMIC POSITRONS; BLACK HOLES; COMPTON EFFECT; COSMIC DUST; EQUILIBRIUM PLASMA; PAIR PRODUCTION; PROTONS; STABILITY; TEMPERATURE DEPENDENCE; ANTILEPTONS; ANTIMATTER; ANTIPARTICLES; BARYONS; BASIC INTERACTIONS; COSMIC RADIATION; DUSTS; ELASTIC SCATTERING; ELECTROMAGNETIC INTERACTIONS; ELECTRONS; ELEMENTARY PARTICLES; FERMIONS; HADRONS; INTERACTIONS; IONIZING RADIATIONS; LEPTONS; NUCLEONS; PLASMA; POSITRONS; RADIATIONS; SCATTERING; 640101* - Astrophysics & Cosmology- Cosmic Radiation
OSTI ID:
5022315
Country of Origin:
Poland
Language:
English
Other Identifying Numbers:
Journal ID: ISSN 0001-5237; CODEN: AASWA
Submitting Site:
INIS
Size:
Pages: 255-273
Announcement Date:
Feb 15, 1990

Journal Article:

Citation Formats

Sikora, M, and Zbyszewska, M. A stability analysis of electron-positron pair equilibria of a two-temperature plasma cloud. Poland: N. p., 1986. Web.
Sikora, M, & Zbyszewska, M. A stability analysis of electron-positron pair equilibria of a two-temperature plasma cloud. Poland.
Sikora, M, and Zbyszewska, M. 1986. "A stability analysis of electron-positron pair equilibria of a two-temperature plasma cloud." Poland.
@misc{etde_5022315,
title = {A stability analysis of electron-positron pair equilibria of a two-temperature plasma cloud}
author = {Sikora, M, and Zbyszewska, M}
abstractNote = {The stability of a two-temperature homogeneous static plasma cloud against pair density perturbations is examined. We assumed that the electrons and positrons, cooled via radiation process, are reheated via Coulomb interactions with much hotter protons. Pair equilibrium plasma states are shown to be unstable if deltan{sub e}/deltan{sub p}<0 and deltan{sub e}/deltaT{sub p}<0 on the equilibrium surface n{sub e}{sup eq}(n{sub p},T{sub p}), where n{sub e}=n{sub +}+n{sub -}, n{sub p} and T{sub p} denote electron plus positron density, proton density and proton temperature, respectively. The minimum proton temperature and maximum proton density for which unstable states can appear are: (kT{sub p}){sub min} approx few x m{sub e}c{sup 2} and (n{sub p}){sub max} approx few/Rsigma{sub T}, where R is the plasma cloud radius. We discuss our results in the context of an accreting black hole model assuming that the proton temperature is close to its virial value, kT{sub p}{sup vir} approx GMm{sub p}/R and that subsonic accretion flow is realized at R < tens Schwarzschild radii. The unstable states then correspond to the luminosity range 0.01 L{sub Edd} journal = {Acta Astronomica; (Poland)}
volume = {36:3}
journal type = {AC}
place = {Poland}
year = {1986}
month = {Jan}
}