You need JavaScript to view this

Availability analysis of the AP600 passive core cooling system

Abstract

The reliability analysis of the AP600 Passive Core Cooling System (PXS) has been done. The fault tree analysis method was used for the quantitative analysis. The PXS can be grouped to several sub-systems i.e.: Reactor Coolant System (RCS) Injection Subsystem, Emergency Core Decay Heat Removal Subsystem, and Containment Sump pH Control Subsystem. The quantitative analysis results indicates that the system unavailability is highly dependent on the valves configuration of the Automatic Depressurization System (ADS). If the ADS valves is arranged in Option-1, the system unavailability is 2.347E-03, this means that the yearly contribution to plant down time can be estimated to be about 20.56 hours per year. Whereas, by using Option-2 of fourth stage ADS valves, the system unavailability is reduced to be 9.877E-04 or 8.65 hours per year and this value is consistent with the allocated goal value (8.0 hours per year). The ADS contributes 66.89% to the system unavailability if it is arranged in Option-1, and will reduced to be about 21.21% if its fourth stages are arranged in Option-2. If the ADS is not included as a subsystem of the PXS (relocate to RCS as a subsystem of RCS), then the PXS unavailability will be reduced to  More>>
Authors:
Syarip, M; [1]  Subki, I R; [2]  Canton, M H [3] 
  1. National Atomic Energy Research Agency, Yogyakarta (Indonesia)
  2. BATAN Head Office, Jakarta (Indonesia)
  3. Westinghouse Electric Corp. (United States)
Publication Date:
Dec 01, 1996
Product Type:
Conference
Report Number:
IAEA-TECDOC-920; CONF-9411339-
Reference Number:
SCA: 210200; PA: AIX-28:021794; EDB-97:039717; SN: 97001747505
Resource Relation:
Conference: Advisory group meeting on technical feasibility and reliability of passive safety systems for nuclear power plants, Juelich (Germany), 21-24 Nov 1994; Other Information: PBD: Dec 1996; Related Information: Is Part Of Technical feasibility and reliability of passive safety systems for nuclear power plants. Proceedings of an advisory group meeting; PB: 357 p.
Subject:
21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; COOLING; FEASIBILITY STUDIES; AFTER-HEAT REMOVAL; ECCS; FAULT TREE ANALYSIS; PWR TYPE REACTORS; REACTOR SAFETY; RELIABILITY; SAFETY ENGINEERING
OSTI ID:
443193
Research Organizations:
International Atomic Energy Agency, Vienna (Austria)
Country of Origin:
IAEA
Language:
English
Other Identifying Numbers:
Journal ID: ISSN 1011-4289; Other: ON: DE97615987; TRN: XA9743175021794
Availability:
INIS; OSTI as DE97615987
Submitting Site:
INIS
Size:
pp. 281-295
Announcement Date:
Mar 20, 1997

Citation Formats

Syarip, M, Subki, I R, and Canton, M H. Availability analysis of the AP600 passive core cooling system. IAEA: N. p., 1996. Web.
Syarip, M, Subki, I R, & Canton, M H. Availability analysis of the AP600 passive core cooling system. IAEA.
Syarip, M, Subki, I R, and Canton, M H. 1996. "Availability analysis of the AP600 passive core cooling system." IAEA.
@misc{etde_443193,
title = {Availability analysis of the AP600 passive core cooling system}
author = {Syarip, M, Subki, I R, and Canton, M H}
abstractNote = {The reliability analysis of the AP600 Passive Core Cooling System (PXS) has been done. The fault tree analysis method was used for the quantitative analysis. The PXS can be grouped to several sub-systems i.e.: Reactor Coolant System (RCS) Injection Subsystem, Emergency Core Decay Heat Removal Subsystem, and Containment Sump pH Control Subsystem. The quantitative analysis results indicates that the system unavailability is highly dependent on the valves configuration of the Automatic Depressurization System (ADS). If the ADS valves is arranged in Option-1, the system unavailability is 2.347E-03, this means that the yearly contribution to plant down time can be estimated to be about 20.56 hours per year. Whereas, by using Option-2 of fourth stage ADS valves, the system unavailability is reduced to be 9.877E-04 or 8.65 hours per year and this value is consistent with the allocated goal value (8.0 hours per year). The ADS contributes 66.89% to the system unavailability if it is arranged in Option-1, and will reduced to be about 21.21% if its fourth stages are arranged in Option-2. If the ADS is not included as a subsystem of the PXS (relocate to RCS as a subsystem of RCS), then the PXS unavailability will be reduced to about 7.784E-04 or 6.82 hours per year; this is less then the allocated goal value. The major contributors to the system unavailability are mostly dominated by Stage-4 ADS valves (air piston operated valves and squib valves), inservice testing valves of ADS (solenoid operated valves), solenoid valves of Nitrogen Supply to Accumulator, and Passive Residual Heat Removal actuation valves (air operated valves). It is recommended that those valves be analyzed more detail to gain the improvement in its reliability. It is also recommended that the fourth stage of ADS valves should be arranged according to Option-2, i.e. one 10-inch normally open motor operated gate valve in series with one 10-inch normally closed squib valve. (author). 13 refs, 3 figs, 3 tabs.}
place = {IAEA}
year = {1996}
month = {Dec}
}