You need JavaScript to view this

Development of large scale wind energy conservation system. Development of control techniques for assembly-type wind power generating systems; Ogata furyoku hatsuden system no kaihatsu. Shugogata furyoku hatsuden system no seigyo gijutsu no kaihatsu

Abstract

Described herein are the results of the FY1994 research program for development of control techniques for assembly-type wind power generating systems. The study on optimum system configuration produces 50 to 100kW wind power units for screening small-size wind power plant types, and, at the same time, surveys performance of commercial units and experiences of 9 makers capable of producing the above units. As a result, 3 MICON`s units (output: 100kW, active YAW control, monopole tower, maximum wind speed: 60m/s) are selected. The study on optimum operational techniques integrates 2 medium-size power units into a power line, showing a service factor of 30.2% on the annual average, monthly varying in a range from 11.8 to 45.0%. These units, installed in Miyako Island, were attacked by 3 typhoons of wind velocity of 25m/s or higher in 1994, and the only damage recorded is that of the anemoscope/anemometer. It is found that No.1 unit is located at a better geographical point than the No.2 unit, to produce a higher output. 3 figs., 3 tabs.
Authors:
Takita, M [1] 
  1. New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Publication Date:
Dec 01, 1994
Product Type:
Technical Report
Report Number:
ETDE/JP-mf-97725454
Reference Number:
SCA: 170600; PA: NEDO-96:820253; EDB-97:025085; SN: 97001728534
Resource Relation:
Other Information: PBD: Dec 1994; Related Information: Is Part Of Japan`s New Sunshine Project. 1994 annual summary of solar energy R and D program; PB: 522 p.; 1994 nendo new sunshine keikaku. Seika hokokusho gaiyoshu (taiyo energy)
Subject:
17 WIND ENERGY; WIND POWER PLANTS; CONTROL SYSTEMS; POWER RANGE 10-100 KW; PERFORMANCE; EFFICIENCY; FLUCTUATIONS; MANUFACTURERS; INTERCONNECTED POWER SYSTEMS; GEOGRAPHY
OSTI ID:
425207
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
Other: ON: DE97725454; TRN: 96:820253
Availability:
Available from Office of Scientific and Technical Information, P.O.Box 1000, Oak Ridge Tennessee 37831, USA; OSTI as DE97725454
Submitting Site:
NEDO
Size:
pp. 513-522
Announcement Date:
Feb 14, 1997

Citation Formats

Takita, M. Development of large scale wind energy conservation system. Development of control techniques for assembly-type wind power generating systems; Ogata furyoku hatsuden system no kaihatsu. Shugogata furyoku hatsuden system no seigyo gijutsu no kaihatsu. Japan: N. p., 1994. Web.
Takita, M. Development of large scale wind energy conservation system. Development of control techniques for assembly-type wind power generating systems; Ogata furyoku hatsuden system no kaihatsu. Shugogata furyoku hatsuden system no seigyo gijutsu no kaihatsu. Japan.
Takita, M. 1994. "Development of large scale wind energy conservation system. Development of control techniques for assembly-type wind power generating systems; Ogata furyoku hatsuden system no kaihatsu. Shugogata furyoku hatsuden system no seigyo gijutsu no kaihatsu." Japan.
@misc{etde_425207,
title = {Development of large scale wind energy conservation system. Development of control techniques for assembly-type wind power generating systems; Ogata furyoku hatsuden system no kaihatsu. Shugogata furyoku hatsuden system no seigyo gijutsu no kaihatsu}
author = {Takita, M}
abstractNote = {Described herein are the results of the FY1994 research program for development of control techniques for assembly-type wind power generating systems. The study on optimum system configuration produces 50 to 100kW wind power units for screening small-size wind power plant types, and, at the same time, surveys performance of commercial units and experiences of 9 makers capable of producing the above units. As a result, 3 MICON`s units (output: 100kW, active YAW control, monopole tower, maximum wind speed: 60m/s) are selected. The study on optimum operational techniques integrates 2 medium-size power units into a power line, showing a service factor of 30.2% on the annual average, monthly varying in a range from 11.8 to 45.0%. These units, installed in Miyako Island, were attacked by 3 typhoons of wind velocity of 25m/s or higher in 1994, and the only damage recorded is that of the anemoscope/anemometer. It is found that No.1 unit is located at a better geographical point than the No.2 unit, to produce a higher output. 3 figs., 3 tabs.}
place = {Japan}
year = {1994}
month = {Dec}
}