Abstract
Described herein are the results of the FY1994 research program for energy conversion technology using chemical reactions by the aid of solar energy. The demonstration runs were conducted by a bench-scale unit, which was operated stably for 100h, to produce promising results. The catalyst exhibits stable performance, without showing a sign of deactivation. It is found that the heat pump system works well, without being interfered with accumulated by-products. A heat of approximately 2,100kcal/h is recovered. It is confirmed that steam of 150{degree}C and 200{degree}C is generated from hot water of 80{degree}C and 95{degree}C, respectively. The bench-scale runs show a thermal efficiency of around 10%, which is lower than the target level. However, the runs with hydrogen-occluding alloy attain a process thermal efficiency of 30%. The system in which solar collector and chemical heat pump units are combined is evaluated with respect to its economic efficiency and operability for its eventual commercialization. 6 figs., 2 tabs.
Takita, M
[1]
- New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Citation Formats
Takita, M.
Research and development of utilization technology of solar thermal system for industrial and other use. Research and development of key technology (energy conversion on technology using chemical reactions); Sangyoyo nado solar system jitsuyoka gijutsu kaihatsu. Yoso gijutsu no kenkyu (kagaku energy henkan gijutsu no kenkyu).
Japan: N. p.,
1994.
Web.
Takita, M.
Research and development of utilization technology of solar thermal system for industrial and other use. Research and development of key technology (energy conversion on technology using chemical reactions); Sangyoyo nado solar system jitsuyoka gijutsu kaihatsu. Yoso gijutsu no kenkyu (kagaku energy henkan gijutsu no kenkyu).
Japan.
Takita, M.
1994.
"Research and development of utilization technology of solar thermal system for industrial and other use. Research and development of key technology (energy conversion on technology using chemical reactions); Sangyoyo nado solar system jitsuyoka gijutsu kaihatsu. Yoso gijutsu no kenkyu (kagaku energy henkan gijutsu no kenkyu)."
Japan.
@misc{etde_425199,
title = {Research and development of utilization technology of solar thermal system for industrial and other use. Research and development of key technology (energy conversion on technology using chemical reactions); Sangyoyo nado solar system jitsuyoka gijutsu kaihatsu. Yoso gijutsu no kenkyu (kagaku energy henkan gijutsu no kenkyu)}
author = {Takita, M}
abstractNote = {Described herein are the results of the FY1994 research program for energy conversion technology using chemical reactions by the aid of solar energy. The demonstration runs were conducted by a bench-scale unit, which was operated stably for 100h, to produce promising results. The catalyst exhibits stable performance, without showing a sign of deactivation. It is found that the heat pump system works well, without being interfered with accumulated by-products. A heat of approximately 2,100kcal/h is recovered. It is confirmed that steam of 150{degree}C and 200{degree}C is generated from hot water of 80{degree}C and 95{degree}C, respectively. The bench-scale runs show a thermal efficiency of around 10%, which is lower than the target level. However, the runs with hydrogen-occluding alloy attain a process thermal efficiency of 30%. The system in which solar collector and chemical heat pump units are combined is evaluated with respect to its economic efficiency and operability for its eventual commercialization. 6 figs., 2 tabs.}
place = {Japan}
year = {1994}
month = {Dec}
}
title = {Research and development of utilization technology of solar thermal system for industrial and other use. Research and development of key technology (energy conversion on technology using chemical reactions); Sangyoyo nado solar system jitsuyoka gijutsu kaihatsu. Yoso gijutsu no kenkyu (kagaku energy henkan gijutsu no kenkyu)}
author = {Takita, M}
abstractNote = {Described herein are the results of the FY1994 research program for energy conversion technology using chemical reactions by the aid of solar energy. The demonstration runs were conducted by a bench-scale unit, which was operated stably for 100h, to produce promising results. The catalyst exhibits stable performance, without showing a sign of deactivation. It is found that the heat pump system works well, without being interfered with accumulated by-products. A heat of approximately 2,100kcal/h is recovered. It is confirmed that steam of 150{degree}C and 200{degree}C is generated from hot water of 80{degree}C and 95{degree}C, respectively. The bench-scale runs show a thermal efficiency of around 10%, which is lower than the target level. However, the runs with hydrogen-occluding alloy attain a process thermal efficiency of 30%. The system in which solar collector and chemical heat pump units are combined is evaluated with respect to its economic efficiency and operability for its eventual commercialization. 6 figs., 2 tabs.}
place = {Japan}
year = {1994}
month = {Dec}
}