You need JavaScript to view this

Research and development of system to utilize photovoltaic energy. Survey on the evaluation of photovoltaic power generation; Taiyoko hatsuden riyo system no kenkyu kaihatsu. Taiyoko hatsuden hyoka no chosa kenkyu

Abstract

This paper reports the survey results on evaluation of PV power generation in fiscal 1994. (1) On the evaluation technique of energy pay-back time, foreign trial calculation examples by integration method were surveyed. However, there were not many study examples, and the calculation basis of input energy was also ambiguous. The calculation result by input-output analysis in Japan gave the value more than that by integration method, pointing out that indirect input energy is essential. (2) On the evaluation technique of the degree of environmental contribution, CO2 emission of the PV generation system installed on ordinary housing roofs was calculated to estimate reduction of CO2 emission and cost. As a result, PV power generation as reduction measures against CO2 brought a little cost increase. (3) On the latent scale of PV power generation, it was estimated to be nearly 191GW although under no restriction. It was a considerably large value as compared with the current power generation capacity in Japan. 4 tabs.
Authors:
Tatsuta, M [1] 
  1. New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Publication Date:
Dec 01, 1994
Product Type:
Technical Report
Report Number:
ETDE/JP-mf-97725454
Reference Number:
SCA: 140600; PA: NEDO-96:820223; EDB-97:024944; SN: 97001728504
Resource Relation:
Other Information: PBD: Dec 1994; Related Information: Is Part Of Japan`s New Sunshine Project. 1994 annual summary of solar energy R and D program; PB: 522 p.; 1994 nendo new sunshine keikaku. Seika hokokusho gaiyoshu (taiyo energy)
Subject:
14 SOLAR ENERGY; PHOTOVOLTAIC POWER SUPPLIES; EVALUATION; PAYBACK PERIOD; EMISSION; CARBON DIOXIDE; POLLUTION ABATEMENT; COST; SECTORAL ANALYSIS; ENVIRONMENTAL IMPACTS
OSTI ID:
425177
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
Other: ON: DE97725454; TRN: 96:820223
Availability:
Available from Office of Scientific and Technical Information, P.O.Box 1000, Oak Ridge Tennessee 37831, USA; OSTI as DE97725454
Submitting Site:
NEDO
Size:
pp. 330-336
Announcement Date:

Citation Formats

Tatsuta, M. Research and development of system to utilize photovoltaic energy. Survey on the evaluation of photovoltaic power generation; Taiyoko hatsuden riyo system no kenkyu kaihatsu. Taiyoko hatsuden hyoka no chosa kenkyu. Japan: N. p., 1994. Web.
Tatsuta, M. Research and development of system to utilize photovoltaic energy. Survey on the evaluation of photovoltaic power generation; Taiyoko hatsuden riyo system no kenkyu kaihatsu. Taiyoko hatsuden hyoka no chosa kenkyu. Japan.
Tatsuta, M. 1994. "Research and development of system to utilize photovoltaic energy. Survey on the evaluation of photovoltaic power generation; Taiyoko hatsuden riyo system no kenkyu kaihatsu. Taiyoko hatsuden hyoka no chosa kenkyu." Japan.
@misc{etde_425177,
title = {Research and development of system to utilize photovoltaic energy. Survey on the evaluation of photovoltaic power generation; Taiyoko hatsuden riyo system no kenkyu kaihatsu. Taiyoko hatsuden hyoka no chosa kenkyu}
author = {Tatsuta, M}
abstractNote = {This paper reports the survey results on evaluation of PV power generation in fiscal 1994. (1) On the evaluation technique of energy pay-back time, foreign trial calculation examples by integration method were surveyed. However, there were not many study examples, and the calculation basis of input energy was also ambiguous. The calculation result by input-output analysis in Japan gave the value more than that by integration method, pointing out that indirect input energy is essential. (2) On the evaluation technique of the degree of environmental contribution, CO2 emission of the PV generation system installed on ordinary housing roofs was calculated to estimate reduction of CO2 emission and cost. As a result, PV power generation as reduction measures against CO2 brought a little cost increase. (3) On the latent scale of PV power generation, it was estimated to be nearly 191GW although under no restriction. It was a considerably large value as compared with the current power generation capacity in Japan. 4 tabs.}
place = {Japan}
year = {1994}
month = {Dec}
}