You need JavaScript to view this

Research on fabrication technology for thin film solar cells for practical use. Technological development for qualitative improvement (improvement of conversion efficiency of amorphous silicon solar cells after degradation); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Kohinshitsuka gijutsu (amorphous taiyo denchi no shoki rekkago koritsu kojo no gijutsu kaihatsu)

Abstract

This paper reports the study results on technological development for qualitative improvement of a-Si solar cells after initial degradation in fiscal 1994. On the fabrication technology of light-stable a-Si films, the film formation method possible to control combined hydrogen by repetitive formation/treatment was developed. The obtained high-quality light-stable a-Si film was featured by low defect density in a wide optical band gap range, and defect density of nearly 3 {times} 10{sup 16}/cm{sup -3} after light irradiation. The light degradation rate of the cell where the a-Si film was applied to i layer was relatively stable by 10% or less. The a-Si/a-Si double-layer tandem cell fabricated by this technology produced a high conversion efficiency of 10.5%. By applying {mu}c-Si material to photoactive layer as narrow band gap material, the cell with optical sensitivity even in long wavelength ranges more than 1000nm was obtained. The a-Si/{mu}c-Si double-layer tandem cell produced an initial efficiency of 8.0% and an efficiency after degradation of 7.5%. 12 figs., 3 tabs.
Authors:
Tatsuta, M [1] 
  1. New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Publication Date:
Dec 01, 1994
Product Type:
Technical Report
Report Number:
ETDE/JP-mf-97725454
Reference Number:
SCA: 140501; PA: NEDO-96:820202; EDB-97:024877; SN: 97001728483
Resource Relation:
Other Information: PBD: Dec 1994; Related Information: Is Part Of Japan`s New Sunshine Project. 1994 annual summary of solar energy R and D program; PB: 522 p.; 1994 nendo new sunshine keikaku. Seika hokokusho gaiyoshu (taiyo energy)
Subject:
14 SOLAR ENERGY; PHOTOVOLTAIC CELLS; MANUFACTURING; SILICON; PHOTOVOLTAIC CONVERSION; AMORPHOUS STATE; DECOMPOSITION; DEFECTS; OPTICAL PROPERTIES; GRADED BAND GAPS
OSTI ID:
425156
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
Other: ON: DE97725454; TRN: 96:820202
Availability:
Available from Office of Scientific and Technical Information, P.O.Box 1000, Oak Ridge Tennessee 37831, USA; OSTI as DE97725454
Submitting Site:
NEDO
Size:
pp. 69-78
Announcement Date:
Feb 14, 1997

Citation Formats

Tatsuta, M. Research on fabrication technology for thin film solar cells for practical use. Technological development for qualitative improvement (improvement of conversion efficiency of amorphous silicon solar cells after degradation); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Kohinshitsuka gijutsu (amorphous taiyo denchi no shoki rekkago koritsu kojo no gijutsu kaihatsu). Japan: N. p., 1994. Web.
Tatsuta, M. Research on fabrication technology for thin film solar cells for practical use. Technological development for qualitative improvement (improvement of conversion efficiency of amorphous silicon solar cells after degradation); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Kohinshitsuka gijutsu (amorphous taiyo denchi no shoki rekkago koritsu kojo no gijutsu kaihatsu). Japan.
Tatsuta, M. 1994. "Research on fabrication technology for thin film solar cells for practical use. Technological development for qualitative improvement (improvement of conversion efficiency of amorphous silicon solar cells after degradation); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Kohinshitsuka gijutsu (amorphous taiyo denchi no shoki rekkago koritsu kojo no gijutsu kaihatsu)." Japan.
@misc{etde_425156,
title = {Research on fabrication technology for thin film solar cells for practical use. Technological development for qualitative improvement (improvement of conversion efficiency of amorphous silicon solar cells after degradation); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Kohinshitsuka gijutsu (amorphous taiyo denchi no shoki rekkago koritsu kojo no gijutsu kaihatsu)}
author = {Tatsuta, M}
abstractNote = {This paper reports the study results on technological development for qualitative improvement of a-Si solar cells after initial degradation in fiscal 1994. On the fabrication technology of light-stable a-Si films, the film formation method possible to control combined hydrogen by repetitive formation/treatment was developed. The obtained high-quality light-stable a-Si film was featured by low defect density in a wide optical band gap range, and defect density of nearly 3 {times} 10{sup 16}/cm{sup -3} after light irradiation. The light degradation rate of the cell where the a-Si film was applied to i layer was relatively stable by 10% or less. The a-Si/a-Si double-layer tandem cell fabricated by this technology produced a high conversion efficiency of 10.5%. By applying {mu}c-Si material to photoactive layer as narrow band gap material, the cell with optical sensitivity even in long wavelength ranges more than 1000nm was obtained. The a-Si/{mu}c-Si double-layer tandem cell produced an initial efficiency of 8.0% and an efficiency after degradation of 7.5%. 12 figs., 3 tabs.}
place = {Japan}
year = {1994}
month = {Dec}
}