You need JavaScript to view this

Development of technology for thin substrate polycrystalline solar cells for practical use. Development of manufacturing technologies for low-cost substrates (low-cost Si substrates); Usugata takessho taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Tei cost kiban seizo gijutsu kaihatsu (usugata takessho kigan seizo gijutsu kaihatsu)

Abstract

This paper reports the study results on manufacturing technologies for low-cost high-quality Si substrates in fiscal 1994. (1) On the 220mm square type electromagnetic casting technology, development of fast stable casting technology was studied using the previously installed 220mm square type electromagnetic casting furnace. As a result, continuous stable casting was achieved at high casting speed up to 3.0mm/min. Any degradation of crystalline quality due to high speed casting was not found. (2) On the 350mm square type electromagnetic casting furnace, oscillation circuit constants were analyzed for design of the power source for No.4 electromagnetic casting furnace. In graphite heating experiment using the 350mm square type water-cooling copper crucible heated by 1000kW high-frequency power source, sufficient heat quantity was obtained for initial melting of Si. Any problems in Si melting were not found through Al block melting test. 6 figs.
Authors:
Tatsuta, M [1] 
  1. New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Publication Date:
Dec 01, 1994
Product Type:
Technical Report
Report Number:
ETDE/JP-mf-97725454
Reference Number:
SCA: 140501; PA: NEDO-96:820195; EDB-97:024885; SN: 97001728476
Resource Relation:
Other Information: PBD: Dec 1994; Related Information: Is Part Of Japan`s New Sunshine Project. 1994 annual summary of solar energy R and D program; PB: 522 p.; 1994 nendo new sunshine keikaku. Seika hokokusho gaiyoshu (taiyo energy)
Subject:
14 SOLAR ENERGY; PHOTOVOLTAIC CELLS; COST; MANUFACTURING; POLYCRYSTALS; CASTING; THIN FILMS; SILICON; ELECTROMAGNETS; CRYSTAL DEFECTS; MELTING
OSTI ID:
425149
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
Other: ON: DE97725454; TRN: 96:820195
Availability:
Available from Office of Scientific and Technical Information, P.O.Box 1000, Oak Ridge Tennessee 37831, USA; OSTI as DE97725454
Submitting Site:
NEDO
Size:
pp. 6-11
Announcement Date:

Citation Formats

Tatsuta, M. Development of technology for thin substrate polycrystalline solar cells for practical use. Development of manufacturing technologies for low-cost substrates (low-cost Si substrates); Usugata takessho taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Tei cost kiban seizo gijutsu kaihatsu (usugata takessho kigan seizo gijutsu kaihatsu). Japan: N. p., 1994. Web.
Tatsuta, M. Development of technology for thin substrate polycrystalline solar cells for practical use. Development of manufacturing technologies for low-cost substrates (low-cost Si substrates); Usugata takessho taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Tei cost kiban seizo gijutsu kaihatsu (usugata takessho kigan seizo gijutsu kaihatsu). Japan.
Tatsuta, M. 1994. "Development of technology for thin substrate polycrystalline solar cells for practical use. Development of manufacturing technologies for low-cost substrates (low-cost Si substrates); Usugata takessho taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Tei cost kiban seizo gijutsu kaihatsu (usugata takessho kigan seizo gijutsu kaihatsu)." Japan.
@misc{etde_425149,
title = {Development of technology for thin substrate polycrystalline solar cells for practical use. Development of manufacturing technologies for low-cost substrates (low-cost Si substrates); Usugata takessho taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Tei cost kiban seizo gijutsu kaihatsu (usugata takessho kigan seizo gijutsu kaihatsu)}
author = {Tatsuta, M}
abstractNote = {This paper reports the study results on manufacturing technologies for low-cost high-quality Si substrates in fiscal 1994. (1) On the 220mm square type electromagnetic casting technology, development of fast stable casting technology was studied using the previously installed 220mm square type electromagnetic casting furnace. As a result, continuous stable casting was achieved at high casting speed up to 3.0mm/min. Any degradation of crystalline quality due to high speed casting was not found. (2) On the 350mm square type electromagnetic casting furnace, oscillation circuit constants were analyzed for design of the power source for No.4 electromagnetic casting furnace. In graphite heating experiment using the 350mm square type water-cooling copper crucible heated by 1000kW high-frequency power source, sufficient heat quantity was obtained for initial melting of Si. Any problems in Si melting were not found through Al block melting test. 6 figs.}
place = {Japan}
year = {1994}
month = {Dec}
}