You need JavaScript to view this

Predictive emission monitoring system (PEMS) for emission control in biomass fired plants; Predikterande emissionsmaetsystem (PEMS) foer emissionskontroll i biobraensleeldade foerbraenningsanlaeggningar

Abstract

An alternative method for estimation of NO{sub x}-emissions from biomass fired plants has been investigated. The method, `Predictive emission monitoring` (PEMS), implicates the creation of a mathematical formula. The formula expresses the relations between NO{sub x}-emissions and various operating and external parameters, such as flue gas temperature, excess combustion air and heat load. In this study the applicability of PEMS has been tested for two plants both of type travelling stokers. The most important results of the study are: PEMS is suitable for emission monitoring for some types of biomass fired plants (for example travelling stokers) even if the plant is fired with fuel with varying water content. In most cases it should be sufficient if the relation is based on oxygen level in the flue gas and plant load, with the possible addition of flue gas temperature and/or furnace temperature rate. These parameters are usually measured in any case, which means that no additional investment in instrumentation is necessary. In this study many measured parameters (for example the throttle levels) did not affect the NO{sub x}-emissions. A PEMS relation is only applicable for a specific plant and for a fixed validity range. Thus the function should be performed in  More>>
Publication Date:
Aug 01, 1996
Product Type:
Technical Report
Report Number:
SVF-575
Reference Number:
SCA: 095000; 540120; PA: SWD-96:007530; EDB-96:148701; NTS-97:003329; SN: 96001673389
Resource Relation:
Other Information: DN: Figures and tables with text in English; PBD: Aug 1996
Subject:
09 BIOMASS FUELS; 54 ENVIRONMENTAL SCIENCES; AIR POLLUTION MONITORING; BIOMASS; COMBUSTION; AIR POLLUTION CONTROL; EMISSION; SOLID FUELS; NITROGEN OXIDES; EXPERIMENTAL DATA; WOOD-FUEL POWER PLANTS; MULTIVARIATE ANALYSIS
OSTI ID:
378203
Research Organizations:
Stiftelsen foer Vaermeteknisk Forskning, Stockholm (Sweden)
Country of Origin:
Sweden
Language:
Swedish
Other Identifying Numbers:
Journal ID: ISSN 0282-3772; Other: ON: DE97703142; TRN: SE9607530
Availability:
INIS; OSTI as DE97703142
Submitting Site:
SWD
Size:
80 p.
Announcement Date:

Citation Formats

Harnevie, H, Sarkoezi, L, and Trenkle, S. Predictive emission monitoring system (PEMS) for emission control in biomass fired plants; Predikterande emissionsmaetsystem (PEMS) foer emissionskontroll i biobraensleeldade foerbraenningsanlaeggningar. Sweden: N. p., 1996. Web.
Harnevie, H, Sarkoezi, L, & Trenkle, S. Predictive emission monitoring system (PEMS) for emission control in biomass fired plants; Predikterande emissionsmaetsystem (PEMS) foer emissionskontroll i biobraensleeldade foerbraenningsanlaeggningar. Sweden.
Harnevie, H, Sarkoezi, L, and Trenkle, S. 1996. "Predictive emission monitoring system (PEMS) for emission control in biomass fired plants; Predikterande emissionsmaetsystem (PEMS) foer emissionskontroll i biobraensleeldade foerbraenningsanlaeggningar." Sweden.
@misc{etde_378203,
title = {Predictive emission monitoring system (PEMS) for emission control in biomass fired plants; Predikterande emissionsmaetsystem (PEMS) foer emissionskontroll i biobraensleeldade foerbraenningsanlaeggningar}
author = {Harnevie, H, Sarkoezi, L, and Trenkle, S}
abstractNote = {An alternative method for estimation of NO{sub x}-emissions from biomass fired plants has been investigated. The method, `Predictive emission monitoring` (PEMS), implicates the creation of a mathematical formula. The formula expresses the relations between NO{sub x}-emissions and various operating and external parameters, such as flue gas temperature, excess combustion air and heat load. In this study the applicability of PEMS has been tested for two plants both of type travelling stokers. The most important results of the study are: PEMS is suitable for emission monitoring for some types of biomass fired plants (for example travelling stokers) even if the plant is fired with fuel with varying water content. In most cases it should be sufficient if the relation is based on oxygen level in the flue gas and plant load, with the possible addition of flue gas temperature and/or furnace temperature rate. These parameters are usually measured in any case, which means that no additional investment in instrumentation is necessary. In this study many measured parameters (for example the throttle levels) did not affect the NO{sub x}-emissions. A PEMS relation is only applicable for a specific plant and for a fixed validity range. Thus the function should be performed in such a way that it covers the limits of the operating parameters of the plant. Usage of different fuels or drift optimization can only be done within the validity range. Good combustion conditions could be necessary to receive a usable PEMS-function. Before creating the PEMS-function the combustion and the emission levels must be optimized. In plants with very fluctuating combustion, for example fixed stokers, it is possible that PEMS leads to not satisfying results. The total cost for a PEM-function can be calculated to be about 50-70% compared to a CEM during a period of a decade. 8 refs, 13 figs, 15 tabs, 8 appendices}
place = {Sweden}
year = {1996}
month = {Aug}
}