You need JavaScript to view this

Design and construction of radiant panel for cooling and heating with photovoltaic and thermoelectric element modules; Taiyo denchi to netsuden soshi module wo mochiita fukusha reidanbo panel no sekkei oyobi shisaku

Abstract

Utilizing cooling properties and current voltage characteristics of a small cooling panel using thermoelectric elements which had been fabricated previously on a trial basis, design and prototype production were executed on a large radiant cooling and heating panel driven by photovoltaic cell modules. The panel design set the cooling area to about 0.5 m {sup 2} and the number of elements to 70 pieces, and optimum number of elements in series and parallel connection was derived. As a result of the analysis, it was made clear that the optimum number of thermoelectric module arrays in series and parallel connection varies depending on insolation intensity. It was found preferable that the number of parallel connection array be set to one to two in a region or time period in which low insolation intensity is distributed in greater amount. In the case where high insolation intensity is distributed in a greater amount, setting it to two to three is preferable. By using the structured design method and the HASP Tokyo data, thermoelectric element modules were interconnected with 35 modules in series and two in parallel on a cooling panel installed on the roof of the Science University of Tokyo. A simulation result  More>>
Authors:
Sato, M; Tani, T; [1]  Kadotani, K; Imaizumi, H [2] 
  1. Science University of Tokyo, Tokyo (Japan)
  2. Komatsu Ltd., Tokyo (Japan)
Publication Date:
Nov 25, 1997
Product Type:
Conference
Report Number:
ETDE/JP-98753622; CONF-9711143-
Reference Number:
SCA: 140600; 300400; 320106; PA: JP-98:0G1081; SN: 98001983484
Resource Relation:
Conference: 1997 JSES/JWEA joint conference, Taiyo/furyoku energy koen, Aichi (Japan), 28-29 Nov 1997; Other Information: PBD: 25 Nov 1997; Related Information: Is Part Of Proceedings of JSES/JWEA Joint Conference (1997); PB: 454 p.; Taiyo/Furyoku energy koen ronbunshu (1997)
Subject:
14 SOLAR ENERGY; 30 DIRECT ENERGY CONVERSION; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; RADIATIVE COOLING; PHOTOVOLTAIC CELLS; THERMOELECTRIC COOLERS; SIMULATION; INSOLATION; AIR CONDITIONING; ENERGY CONSERVATION
OSTI ID:
366074
Research Organizations:
Japan Solar Energy Society, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
Other: ON: DE98753622; TRN: JN98G1081
Availability:
Available from Japan Solar Energy Society, 44-14, Yoyogi 2-chome, Shibuya-ku, Tokyo, Japan; OSTI as DE98753622
Submitting Site:
NEDO
Size:
pp. 261-264
Announcement Date:
Sep 02, 1999

Citation Formats

Sato, M, Tani, T, Kadotani, K, and Imaizumi, H. Design and construction of radiant panel for cooling and heating with photovoltaic and thermoelectric element modules; Taiyo denchi to netsuden soshi module wo mochiita fukusha reidanbo panel no sekkei oyobi shisaku. Japan: N. p., 1997. Web.
Sato, M, Tani, T, Kadotani, K, & Imaizumi, H. Design and construction of radiant panel for cooling and heating with photovoltaic and thermoelectric element modules; Taiyo denchi to netsuden soshi module wo mochiita fukusha reidanbo panel no sekkei oyobi shisaku. Japan.
Sato, M, Tani, T, Kadotani, K, and Imaizumi, H. 1997. "Design and construction of radiant panel for cooling and heating with photovoltaic and thermoelectric element modules; Taiyo denchi to netsuden soshi module wo mochiita fukusha reidanbo panel no sekkei oyobi shisaku." Japan.
@misc{etde_366074,
title = {Design and construction of radiant panel for cooling and heating with photovoltaic and thermoelectric element modules; Taiyo denchi to netsuden soshi module wo mochiita fukusha reidanbo panel no sekkei oyobi shisaku}
author = {Sato, M, Tani, T, Kadotani, K, and Imaizumi, H}
abstractNote = {Utilizing cooling properties and current voltage characteristics of a small cooling panel using thermoelectric elements which had been fabricated previously on a trial basis, design and prototype production were executed on a large radiant cooling and heating panel driven by photovoltaic cell modules. The panel design set the cooling area to about 0.5 m {sup 2} and the number of elements to 70 pieces, and optimum number of elements in series and parallel connection was derived. As a result of the analysis, it was made clear that the optimum number of thermoelectric module arrays in series and parallel connection varies depending on insolation intensity. It was found preferable that the number of parallel connection array be set to one to two in a region or time period in which low insolation intensity is distributed in greater amount. In the case where high insolation intensity is distributed in a greater amount, setting it to two to three is preferable. By using the structured design method and the HASP Tokyo data, thermoelectric element modules were interconnected with 35 modules in series and two in parallel on a cooling panel installed on the roof of the Science University of Tokyo. A simulation result revealed that the average temperature difference on the cooled surface in summer is 4.37 degC, and the solar cell utilization rate is 0.67. It is necessary in the future to improve heat dissipation efficiency and area ratio. 1 ref., 12 figs., 5 tabs.}
place = {Japan}
year = {1997}
month = {Nov}
}