You need JavaScript to view this

A Klein-tunneling transistor with ballistic graphene

Abstract

Today, the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistors in the ballistic regime give access to Klein tunneling physics and allow the realization of devices exploiting the optics-like behavior of Dirac Fermions (DFs) as in the Veselago lens or the Fabry–Pérot cavity. Here we propose a Klein tunneling transistor based on the geometrical optics of DFs. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using non-equilibrium Green's function (NEGF) simulation. (letter)
Authors:
Wilmart, Quentin; Fève, Gwendal; Berroir, Jean-Marc; Plaçais, Bernard; [1]  Berrada, Salim; Hung Nguyen, V; Dollfus, Philippe; [2]  Torrin, David [3] 
  1. Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université P et M Curie, Université D Diderot, 24, rue Lhomond, 75231 Paris Cedex 05 (France)
  2. Institute of Fundamental Electronics, Univ. Paris-Sud, CNRS, Orsay (France)
  3. Département de Physique, Ecole Polytechnique, 91128 Palaiseau (France)
Publication Date:
Jun 15, 2014
Product Type:
Journal Article
Resource Relation:
Journal Name: 2D Materials; Journal Volume: 1; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; EQUILIBRIUM; FERMIONS; GRAPHENE; MOBILITY; OPTICS; REFLECTION; SCATTERING; SIMULATION; TEMPERATURE RANGE 0273-0400 K; TRANSISTORS; TRANSMISSION; TUNNEL EFFECT
OSTI ID:
22541566
Country of Origin:
United Kingdom
Language:
English
Other Identifying Numbers:
Journal ID: ISSN 2053-1583; TRN: GB15Q2329112571
Availability:
Available from http://dx.doi.org/10.1088/2053-1583/1/1/011006
Submitting Site:
INIS
Size:
[10 page(s)]
Announcement Date:
Dec 09, 2016

Citation Formats

Wilmart, Quentin, Fève, Gwendal, Berroir, Jean-Marc, Plaçais, Bernard, Berrada, Salim, Hung Nguyen, V, Dollfus, Philippe, and Torrin, David. A Klein-tunneling transistor with ballistic graphene. United Kingdom: N. p., 2014. Web. doi:10.1088/2053-1583/1/1/011006.
Wilmart, Quentin, Fève, Gwendal, Berroir, Jean-Marc, Plaçais, Bernard, Berrada, Salim, Hung Nguyen, V, Dollfus, Philippe, & Torrin, David. A Klein-tunneling transistor with ballistic graphene. United Kingdom. doi:10.1088/2053-1583/1/1/011006.
Wilmart, Quentin, Fève, Gwendal, Berroir, Jean-Marc, Plaçais, Bernard, Berrada, Salim, Hung Nguyen, V, Dollfus, Philippe, and Torrin, David. 2014. "A Klein-tunneling transistor with ballistic graphene." United Kingdom. doi:10.1088/2053-1583/1/1/011006. https://www.osti.gov/servlets/purl/10.1088/2053-1583/1/1/011006.
@misc{etde_22541566,
title = {A Klein-tunneling transistor with ballistic graphene}
author = {Wilmart, Quentin, Fève, Gwendal, Berroir, Jean-Marc, Plaçais, Bernard, Berrada, Salim, Hung Nguyen, V, Dollfus, Philippe, and Torrin, David}
abstractNote = {Today, the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistors in the ballistic regime give access to Klein tunneling physics and allow the realization of devices exploiting the optics-like behavior of Dirac Fermions (DFs) as in the Veselago lens or the Fabry–Pérot cavity. Here we propose a Klein tunneling transistor based on the geometrical optics of DFs. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using non-equilibrium Green's function (NEGF) simulation. (letter)}
doi = {10.1088/2053-1583/1/1/011006}
journal = {2D Materials}
issue = {1}
volume = {1}
journal type = {AC}
place = {United Kingdom}
year = {2014}
month = {Jun}
}