You need JavaScript to view this

Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

Abstract

Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was  More>>
Publication Date:
Jul 18, 2014
Product Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 450; Journal Issue: 1; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Subject:
60 APPLIED LIFE SCIENCES; AGING; AMP; BRAIN; CARBOXYLASE; CARBOXYLIC ACIDS; CORTICOSTERONE; ELDERLY PEOPLE; HOMEOSTASIS; LIPIDS; LIVER; METABOLISM; RATS; RECEPTORS; STEROLS; VIRUSES; VISIBLE RADIATION
OSTI ID:
22416629
Country of Origin:
United States
Language:
English
Other Identifying Numbers:
Journal ID: ISSN 0006-291X; CODEN: BBRCA9; Other: PII: S0006-291X(14)01001-8; TRN: US15R1250122521
Availability:
Available from http://dx.doi.org/10.1016/j.bbrc.2014.05.112
Submitting Site:
USN
Size:
page(s) 324-329
Announcement Date:
Jan 05, 2016

Citation Formats

Keith, Dove, Finlay, Liam, Butler, Judy, Gómez, Luis, Smith, Eric, Biochemistry Biophysics Department, Oregon State University (United States)], Moreau, Régis, Hagen, Tory, and Biochemistry Biophysics Department, Oregon State University (United States)]. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age. United States: N. p., 2014. Web. doi:10.1016/J.BBRC.2014.05.112.
Keith, Dove, Finlay, Liam, Butler, Judy, Gómez, Luis, Smith, Eric, Biochemistry Biophysics Department, Oregon State University (United States)], Moreau, Régis, Hagen, Tory, & Biochemistry Biophysics Department, Oregon State University (United States)]. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age. United States. https://doi.org/10.1016/J.BBRC.2014.05.112
Keith, Dove, Finlay, Liam, Butler, Judy, Gómez, Luis, Smith, Eric, Biochemistry Biophysics Department, Oregon State University (United States)], Moreau, Régis, Hagen, Tory, and Biochemistry Biophysics Department, Oregon State University (United States)]. 2014. "Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age." United States. https://doi.org/10.1016/J.BBRC.2014.05.112.
@misc{etde_22416629,
title = {Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age}
author = {Keith, Dove, Finlay, Liam, Butler, Judy, Gómez, Luis, Smith, Eric, Biochemistry Biophysics Department, Oregon State University (United States)], Moreau, Régis, Hagen, Tory, and Biochemistry Biophysics Department, Oregon State University (United States)]}
abstractNote = {Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.}
doi = {10.1016/J.BBRC.2014.05.112}
journal = []
issue = {1}
volume = {450}
journal type = {AC}
place = {United States}
year = {2014}
month = {Jul}
}