You need JavaScript to view this

Physics of Magnetic Resonance. Chapter 14

Abstract

The discovery of nuclear magnetic resonance (NMR), a property of nuclei in a magnetic field where they are able to absorb applied radiofrequency (RF) energy and subsequently release it at a specific frequency, goes back many decades to the early 1900s. Physicist Isidor I. Rabi, fascinated by the work of Otto Stern and Walther Gerlach which demonstrated that particles have intrinsic quantum properties, delved into the magnetic properties of nuclei, and in 1938 Rabi discovered the phenomenon of NMR. Several years later, in 1946, Felix Bloch and Edward Purcell refined the methods and successfully measured the NMR signal from liquids and solids. For their discoveries, Rabi received the Nobel Prize for physics in 1944 and Bloch and Purcell in 1952. While Rabi, Bloch, Purcell and other physicists working in this field had laid the foundations, a major discovery that transformed the NMR phenomenon for imaging was not made until 1973, when Paul Lauterbur developed a method for spatially encoding the NMR signal by utilizing linear magnetic field gradients. About the same time, Peter Mansfield had also discovered a means of determining the spatial structure of solids by introducing a linear gradient across the object. The idea of applying magnetic field  More>>
Authors:
Song, Hee Kwon [1] 
  1. Hospital of the University of Pennsylvania, Philadelphia (United States)
Publication Date:
Sep 15, 2014
Product Type:
Book
Resource Relation:
Other Information: Refs., figs., tabs.; Related Information: In: Diagnostic radiology physics: A handbook for teachers and students. Endorsed by: American Association of Physicists in Medicine, Asia-Oceania Federation of Organizations for Medical Physics, European Federation of Organisations for Medical Physics| by Dance, D.R. [Royal Surrey County Hospital, Guildford (United Kingdom)]; Christofides, S. [New Nicosia General Hospital (Cyprus)]; Maidment, A.D.A. [University of Pennsylvania (United States)]; McLean, I.D. [International Atomic Energy Agency, Vienna (Austria)]; Ng, K.H. (ed.) [University of Malaya, Kuala Lumpur (Malaysia)]| 710 p.
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ANIMAL TISSUES; COMPUTERIZED TOMOGRAPHY; IMAGE PROCESSING; IMAGES; MAGNETIC FIELDS; MAGNETIC PROPERTIES; NMR IMAGING; RADIOWAVE RADIATION; SPATIAL DISTRIBUTION
OSTI ID:
22360637
Research Organizations:
International Atomic Energy Agency, Vienna (Austria)
Country of Origin:
IAEA
Language:
English
Other Identifying Numbers:
Other: ISBN 978-92-0-131010-1; TRN: XA14M6987065931
Availability:
Also available on-line: http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1564webNew-74666420.pdf; Enquiries should be addressed to IAEA, Marketing and Sales Unit, Publishing Section, E-mail: sales.publications@iaea.org; Web site: http://www.iaea.org/books
Submitting Site:
INIS
Size:
page(s) 333-359
Announcement Date:
Jul 28, 2015

Citation Formats

Song, Hee Kwon. Physics of Magnetic Resonance. Chapter 14. IAEA: N. p., 2014. Web.
Song, Hee Kwon. Physics of Magnetic Resonance. Chapter 14. IAEA.
Song, Hee Kwon. 2014. "Physics of Magnetic Resonance. Chapter 14." IAEA.
@misc{etde_22360637,
title = {Physics of Magnetic Resonance. Chapter 14}
author = {Song, Hee Kwon}
abstractNote = {The discovery of nuclear magnetic resonance (NMR), a property of nuclei in a magnetic field where they are able to absorb applied radiofrequency (RF) energy and subsequently release it at a specific frequency, goes back many decades to the early 1900s. Physicist Isidor I. Rabi, fascinated by the work of Otto Stern and Walther Gerlach which demonstrated that particles have intrinsic quantum properties, delved into the magnetic properties of nuclei, and in 1938 Rabi discovered the phenomenon of NMR. Several years later, in 1946, Felix Bloch and Edward Purcell refined the methods and successfully measured the NMR signal from liquids and solids. For their discoveries, Rabi received the Nobel Prize for physics in 1944 and Bloch and Purcell in 1952. While Rabi, Bloch, Purcell and other physicists working in this field had laid the foundations, a major discovery that transformed the NMR phenomenon for imaging was not made until 1973, when Paul Lauterbur developed a method for spatially encoding the NMR signal by utilizing linear magnetic field gradients. About the same time, Peter Mansfield had also discovered a means of determining the spatial structure of solids by introducing a linear gradient across the object. The idea of applying magnetic field gradients to induce spatially varying resonance frequencies to resolve the spatial distribution of magnetization was a major milestone and the beginning of magnetic resonance imaging (MRI). For their work, Lauterbur and Mansfield were awarded the Nobel Prize for medicine in 2003. Since its discovery, MRI has quickly become one of the most important medical imaging devices available to physicians today. Unlike other imaging modalities, such as X ray and computed tomography, MRI does not involve ionizing radiation. MRI also offers superior soft tissue contrast that is not possible with other imaging modalities. Furthermore, in MRI, the desired level of image contrast among different tissues can often be precisely controlled with simple adjustments to the acquisition timing parameters. MRI has become an invaluable tool for the assessment of many types of disease.}
place = {IAEA}
year = {2014}
month = {Sep}
}