You need JavaScript to view this

Physics of Ultrasound. Chapter 12

Abstract

Ultrasound is the most commonly used diagnostic imaging modality, accounting for approximately 25% of all imaging examinations performed worldwide at the beginning of the 21st century. The success of ultrasound may be attributed to a number of attractive characteristics, including the relatively low cost and portability of an ultrasound scanner, the non-ionizing nature of ultrasound waves, the ability to produce real time images of blood flow and moving structures such as the beating heart, and the intrinsic contrast among soft tissue structures that is achieved without the need for an injected contrast agent. The latter characteristic enables ultrasound to be used for a wide range of medical applications, which historically have primarily included cardiac and vascular imaging, imaging of the abdominal organs and, most famously, in utero imaging of the developing fetus. Ongoing technological improvements continue to expand the use of ultrasound for many applications, including cancer imaging, musculoskeletal imaging, ophthalmology and others. The term ultrasound refers specifically to acoustic waves at frequencies greater than the maximum frequency audible to humans, which is nominally 20 kHz. Diagnostic imaging is generally performed using ultrasound in the frequency range of 2–15 MHz. The choice of frequency is dictated by a trade off  More>>
Authors:
Lacefield, J. C. [1] 
  1. University of Western Ontario, London (Canada)
Publication Date:
Sep 15, 2014
Product Type:
Book
Resource Relation:
Other Information: Refs., figs., tab.; Related Information: In: Diagnostic radiology physics: A handbook for teachers and students. Endorsed by: American Association of Physicists in Medicine, Asia-Oceania Federation of Organizations for Medical Physics, European Federation of Organisations for Medical Physics| by Dance, D.R. [Royal Surrey County Hospital, Guildford (United Kingdom)]; Christofides, S. [New Nicosia General Hospital (Cyprus)]; Maidment, A.D.A. [University of Pennsylvania (United States)]; McLean, I.D. [International Atomic Energy Agency, Vienna (Austria)]; Ng, K.H. (ed.) [University of Malaya, Kuala Lumpur (Malaysia)]| 710 p.
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ANIMAL TISSUES; APPROXIMATIONS; BLOOD FLOW; CONTRAST MEDIA; HEART; IMAGES; NEOPLASMS; OPHTHALMOLOGY; PENETRATION DEPTH; SPATIAL RESOLUTION; ULTRASONOGRAPHY
OSTI ID:
22360635
Research Organizations:
International Atomic Energy Agency, Vienna (Austria)
Country of Origin:
IAEA
Language:
English
Other Identifying Numbers:
Other: ISBN 978-92-0-131010-1; TRN: XA14M6985065929
Availability:
Also available on-line: http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1564webNew-74666420.pdf; Enquiries should be addressed to IAEA, Marketing and Sales Unit, Publishing Section, E-mail: sales.publications@iaea.org; Web site: http://www.iaea.org/books
Submitting Site:
INIS
Size:
page(s) 291-309
Announcement Date:
Jul 28, 2015

Citation Formats

Lacefield, J. C. Physics of Ultrasound. Chapter 12. IAEA: N. p., 2014. Web.
Lacefield, J. C. Physics of Ultrasound. Chapter 12. IAEA.
Lacefield, J. C. 2014. "Physics of Ultrasound. Chapter 12." IAEA.
@misc{etde_22360635,
title = {Physics of Ultrasound. Chapter 12}
author = {Lacefield, J. C.}
abstractNote = {Ultrasound is the most commonly used diagnostic imaging modality, accounting for approximately 25% of all imaging examinations performed worldwide at the beginning of the 21st century. The success of ultrasound may be attributed to a number of attractive characteristics, including the relatively low cost and portability of an ultrasound scanner, the non-ionizing nature of ultrasound waves, the ability to produce real time images of blood flow and moving structures such as the beating heart, and the intrinsic contrast among soft tissue structures that is achieved without the need for an injected contrast agent. The latter characteristic enables ultrasound to be used for a wide range of medical applications, which historically have primarily included cardiac and vascular imaging, imaging of the abdominal organs and, most famously, in utero imaging of the developing fetus. Ongoing technological improvements continue to expand the use of ultrasound for many applications, including cancer imaging, musculoskeletal imaging, ophthalmology and others. The term ultrasound refers specifically to acoustic waves at frequencies greater than the maximum frequency audible to humans, which is nominally 20 kHz. Diagnostic imaging is generally performed using ultrasound in the frequency range of 2–15 MHz. The choice of frequency is dictated by a trade off between spatial resolution and penetration depth, since higher frequency waves can be focused more tightly but are attenuated more rapidly by tissue. The information contained in an ultrasonic image is influenced by the physical processes underlying propagation, reflection and attenuation of ultrasound waves in tissue.}
place = {IAEA}
year = {2014}
month = {Sep}
}