You need JavaScript to view this

Ablation of burned skin with ultra-short pulses laser to promote healing: evaluation by optical coherence tomography, histology, {mu}ATR-FTIR and Nonlinear Microscopy; Ablacao de pele queimada com laser de pulsos ultra-curtos para promocao da cicatrizacao: avaliacao por tomografia por coerencia optica, histologia, {mu}ATR-FTIR e microscopia nao-linear

Abstract

Burns cause changes in the anatomical structure of the skin associated with trauma. The severity of the burn injury is divided into first, second and third-degree burns. The third-degree burns have been a major focus of research in search of more conservative treatments and faster results in repair for a functional and cosmetically acceptable. The conventional treatment is the use of topical natural or synthetic skin graft. An alternative therapy is the laser ablation process for burned tissue necrosis removal due to the no mechanical contact, fast application and access to difficult areas. The purpose of this study is to evaluate the feasibility of using high intensity femtosecond lasers as an adjunct treatment of burned patients. For this study, 65 Wistar rats were divided into groups of five animals: healthy skin, burned skin, two types of treatment (surgical debridement or femtosecond laser ablation) and four different times in the healing process monitoring. Three regions of the back of the animals were exposed to steam source causing third-degree burn. On the third day after the burn, one of the regions was ablated with high intensity ultrashort laser pulses ({lambda} = 785 nm, 90 fs, 2 kHz and 10 {mu}J/ pulse), the  More>>
Publication Date:
Jul 01, 2012
Product Type:
Thesis/Dissertation
Report Number:
INIS-BR-13490
Resource Relation:
Other Information: Thesis (Ph.D.)
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BURNS; EXCITATION; FLUORESCENCE SPECTROSCOPY; FOURIER TRANSFORMATION; HARMONIC GENERATION; HISTOLOGY; INFRARED SPECTRA; LASER RADIATION; MICROSCOPY; PHOTONS; SKIN; THERAPY; TOMOGRAPHY
OSTI ID:
22190303
Research Organizations:
Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
Country of Origin:
Brazil
Language:
Portuguese
Other Identifying Numbers:
TRN: BR1400043014792
Availability:
Available from INIS in electronic form
Submitting Site:
BRN
Size:
95 page(s)
Announcement Date:
Feb 14, 2014

Citation Formats

Santos, Moises Oliveira dos. Ablation of burned skin with ultra-short pulses laser to promote healing: evaluation by optical coherence tomography, histology, {mu}ATR-FTIR and Nonlinear Microscopy; Ablacao de pele queimada com laser de pulsos ultra-curtos para promocao da cicatrizacao: avaliacao por tomografia por coerencia optica, histologia, {mu}ATR-FTIR e microscopia nao-linear. Brazil: N. p., 2012. Web.
Santos, Moises Oliveira dos. Ablation of burned skin with ultra-short pulses laser to promote healing: evaluation by optical coherence tomography, histology, {mu}ATR-FTIR and Nonlinear Microscopy; Ablacao de pele queimada com laser de pulsos ultra-curtos para promocao da cicatrizacao: avaliacao por tomografia por coerencia optica, histologia, {mu}ATR-FTIR e microscopia nao-linear. Brazil.
Santos, Moises Oliveira dos. 2012. "Ablation of burned skin with ultra-short pulses laser to promote healing: evaluation by optical coherence tomography, histology, {mu}ATR-FTIR and Nonlinear Microscopy; Ablacao de pele queimada com laser de pulsos ultra-curtos para promocao da cicatrizacao: avaliacao por tomografia por coerencia optica, histologia, {mu}ATR-FTIR e microscopia nao-linear." Brazil.
@misc{etde_22190303,
title = {Ablation of burned skin with ultra-short pulses laser to promote healing: evaluation by optical coherence tomography, histology, {mu}ATR-FTIR and Nonlinear Microscopy; Ablacao de pele queimada com laser de pulsos ultra-curtos para promocao da cicatrizacao: avaliacao por tomografia por coerencia optica, histologia, {mu}ATR-FTIR e microscopia nao-linear}
author = {Santos, Moises Oliveira dos}
abstractNote = {Burns cause changes in the anatomical structure of the skin associated with trauma. The severity of the burn injury is divided into first, second and third-degree burns. The third-degree burns have been a major focus of research in search of more conservative treatments and faster results in repair for a functional and cosmetically acceptable. The conventional treatment is the use of topical natural or synthetic skin graft. An alternative therapy is the laser ablation process for burned tissue necrosis removal due to the no mechanical contact, fast application and access to difficult areas. The purpose of this study is to evaluate the feasibility of using high intensity femtosecond lasers as an adjunct treatment of burned patients. For this study, 65 Wistar rats were divided into groups of five animals: healthy skin, burned skin, two types of treatment (surgical debridement or femtosecond laser ablation) and four different times in the healing process monitoring. Three regions of the back of the animals were exposed to steam source causing third-degree burn. On the third day after the burn, one of the regions was ablated with high intensity ultrashort laser pulses ({lambda} = 785 nm, 90 fs, 2 kHz and 10 {mu}J/ pulse), the other received surgical debridement, and the last was considered the burn control. The regions were analyzed by optical coherence tomography (OCT), histology, attenuated total reflectance infrared spectroscopy using Fourier transform ({mu}-ATR-FTIR), two-photon excitation fluorescence microscopy (TPEFM) and second harmonic generation technique (SHG) on days 3, 5, 7 and 14 pos-treatments. The results showed that with the laser irradiation conditions used it was possible to remove debris from third degree burn. The techniques used to characterize the tissue allowed to verify that all treatments promoted wound healing. On the fourteenth day, the regeneration curve showed that the attenuation coefficient of laser ablated tissue converges to the values of healthy skin, but collagen fibers have not yet reached the same organization of those in the healthy skin. (author)}
place = {Brazil}
year = {2012}
month = {Jul}
}