Abstract
Feed components contaminated with salmonellae act as vehicles in the transmission of these bacteria to slaughter animals and hence to meat and poultry. Terminal decontamination of ingredients or mixed feed seems required because sanitary improvements in processing, bagging and storage do not always appear effective in considerably reducing salmonella contamination rates. Experiments were carried out to assay the decontamination effect of pelletization of mixed feed. Enumeration of enterobacteriaceae was used as the analytical criterion. It appeared that a temperature over 80 Degree-Sign C generally led to five decimal reductions in enterobacteriaceae counts; however, also currently used lower temperatures may bring about two decimal reductions only. Following earlier experiments with fish meal, range finding tests on the decontamination of mixed feed with {sup 60}Co gamma rays were also performed. To achieve five decimal reductions in the counts of the most resistant enterobacteriaceae which were encountered about 0.5 Mrad was required; survival curves were generally not linear, so that overall effective dose had to be used as a parameter. Feeding experiments with rats, using 35% fish meal irradiated at 0.8 Mrad in the diet for two years, demonstrated that neither losses of nutritive value nor the occurrence of orally toxic factors is
More>>
Mossel, D. A.A.;
[1]
San Marcos University, Lima (Peru)]
- Central Institute for Nutrition and Food Research TNO, Zeist (Netherlands)
Citation Formats
Mossel, D. A.A., and San Marcos University, Lima (Peru)].
Salmonella Radicidation of Dry Mixed Feeds and Feed Ingredients.
IAEA: N. p.,
1967.
Web.
Mossel, D. A.A., & San Marcos University, Lima (Peru)].
Salmonella Radicidation of Dry Mixed Feeds and Feed Ingredients.
IAEA.
Mossel, D. A.A., and San Marcos University, Lima (Peru)].
1967.
"Salmonella Radicidation of Dry Mixed Feeds and Feed Ingredients."
IAEA.
@misc{etde_22145742,
title = {Salmonella Radicidation of Dry Mixed Feeds and Feed Ingredients}
author = {Mossel, D. A.A., and San Marcos University, Lima (Peru)]}
abstractNote = {Feed components contaminated with salmonellae act as vehicles in the transmission of these bacteria to slaughter animals and hence to meat and poultry. Terminal decontamination of ingredients or mixed feed seems required because sanitary improvements in processing, bagging and storage do not always appear effective in considerably reducing salmonella contamination rates. Experiments were carried out to assay the decontamination effect of pelletization of mixed feed. Enumeration of enterobacteriaceae was used as the analytical criterion. It appeared that a temperature over 80 Degree-Sign C generally led to five decimal reductions in enterobacteriaceae counts; however, also currently used lower temperatures may bring about two decimal reductions only. Following earlier experiments with fish meal, range finding tests on the decontamination of mixed feed with {sup 60}Co gamma rays were also performed. To achieve five decimal reductions in the counts of the most resistant enterobacteriaceae which were encountered about 0.5 Mrad was required; survival curves were generally not linear, so that overall effective dose had to be used as a parameter. Feeding experiments with rats, using 35% fish meal irradiated at 0.8 Mrad in the diet for two years, demonstrated that neither losses of nutritive value nor the occurrence of orally toxic factors is effected by such an irradiation treatment. It is recommended that pilot plant tests be carried out. In these tests an attempt should be made to combine improved sanitation and pelletizing with a terminal radiation treatment of the bagged material with the lowest dose required. Such tests should preferably be carried out in suitable areas of countries like Peru or Chile. A brief outline is given of the development work and training of scientific and technical staff that should be carried out during the installation of such a pilot plant. (author)}
place = {IAEA}
year = {1967}
month = {Nov}
}
title = {Salmonella Radicidation of Dry Mixed Feeds and Feed Ingredients}
author = {Mossel, D. A.A., and San Marcos University, Lima (Peru)]}
abstractNote = {Feed components contaminated with salmonellae act as vehicles in the transmission of these bacteria to slaughter animals and hence to meat and poultry. Terminal decontamination of ingredients or mixed feed seems required because sanitary improvements in processing, bagging and storage do not always appear effective in considerably reducing salmonella contamination rates. Experiments were carried out to assay the decontamination effect of pelletization of mixed feed. Enumeration of enterobacteriaceae was used as the analytical criterion. It appeared that a temperature over 80 Degree-Sign C generally led to five decimal reductions in enterobacteriaceae counts; however, also currently used lower temperatures may bring about two decimal reductions only. Following earlier experiments with fish meal, range finding tests on the decontamination of mixed feed with {sup 60}Co gamma rays were also performed. To achieve five decimal reductions in the counts of the most resistant enterobacteriaceae which were encountered about 0.5 Mrad was required; survival curves were generally not linear, so that overall effective dose had to be used as a parameter. Feeding experiments with rats, using 35% fish meal irradiated at 0.8 Mrad in the diet for two years, demonstrated that neither losses of nutritive value nor the occurrence of orally toxic factors is effected by such an irradiation treatment. It is recommended that pilot plant tests be carried out. In these tests an attempt should be made to combine improved sanitation and pelletizing with a terminal radiation treatment of the bagged material with the lowest dose required. Such tests should preferably be carried out in suitable areas of countries like Peru or Chile. A brief outline is given of the development work and training of scientific and technical staff that should be carried out during the installation of such a pilot plant. (author)}
place = {IAEA}
year = {1967}
month = {Nov}
}