You need JavaScript to view this

Drift Instabilities and Electron Cyclotron Oscillations for Arbitrary Plasma Pressure; Instabilites de Derive et Oscillations Cyclotroniques des Electrons pour des Pressions de Plasma Arbitraires; Drejfovaya neustojchivost' i ehlektronno-tsiklotronnye kolebaniya pri proizvol'nom davlenii plazmy; Inestabilidades de Deriva y Oscilaciones Ciclotronicas de los Electrones en un Plasma de Presion Arbitraria

Abstract

Most of the familiar drift instabilities (flute, universal, etc.) were, calculated in the limit {beta} = (plasma pressure)/(magnetic pressure) = 0. In this limit the perturbed electric field is electrostatic, and the Vlasov equation is remarkably simplified. The {beta} limit for validity of the electrostatic approximation depends on the particular mode considered and many present experiments fall outside the range. Two well-known low frequency drift instabilities are examined at arbitrary {beta}; the zero-{beta} regime is determined and stability criteria for larger values of {beta} are derived. In addition, the influence of finite {beta} on radiation at the electron cyclotron harmonics is examined. The finite Larmor radius (R) flute instability driven by mirror type curvature of the magnetic field is considered first. The lowest order's ominously large contribution, inversely proportional to R{sup 2}, cancels to all orders of {beta}. The leading terms are then independent of R, and are. included in the eigenvalue problem; stability criteria are obtained for various ranges of B. Next the universal instability, E = Perturbed = E (exp ik{sub Up-Tack }r{sub Up-Tack })(exp ik{sub II}r{sub II}), in a uniform magnetic field B = B{sub 0}i{sub II} is considered, with field curvature simulated by a fictitious gravity.  More>>
Authors:
Krall, N. A.; Pearlstein, L. D. [1] 
  1. General Atomic Division, General Dynamics Corporation, San Diego, CA (United States)
Publication Date:
Apr 15, 1966
Product Type:
Conference
Report Number:
IAEA-CN-21/82
Resource Relation:
Conference: Conference on Plasma Physics and Controlled Nuclear Fusion Research, Culham (United Kingdom), 6-10 Sep 1965; Other Information: 9 refs.; Related Information: In: Plasma Physics and Controlled Nuclear Fusion Research Vol. I. Proceedings of a Symposium on Plasma Physics and Controlled Nuclear Fusion Research| 792 p.
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; APPROXIMATIONS; BOLTZMANN-VLASOV EQUATION; CUSPED GEOMETRIES; CYCLOTRON HARMONICS; CYCLOTRONS; DRIFT INSTABILITY; EIGENVALUES; ELECTRIC FIELDS; ELECTRONS; FLUTE INSTABILITY; LARMOR RADIUS; MAGNETIC FIELDS; PLASMA PRESSURE; RELATIVISTIC RANGE; SIMULATION
OSTI ID:
22117316
Research Organizations:
International Atomic Energy Agency, Vienna (Austria)
Country of Origin:
IAEA
Language:
English
Other Identifying Numbers:
Other: ISSN 0074-1884; TRN: XA13M2242073937
Submitting Site:
INIS
Size:
page(s) 735-745
Announcement Date:
Aug 01, 2013

Citation Formats

Krall, N. A., and Pearlstein, L. D. Drift Instabilities and Electron Cyclotron Oscillations for Arbitrary Plasma Pressure; Instabilites de Derive et Oscillations Cyclotroniques des Electrons pour des Pressions de Plasma Arbitraires; Drejfovaya neustojchivost' i ehlektronno-tsiklotronnye kolebaniya pri proizvol'nom davlenii plazmy; Inestabilidades de Deriva y Oscilaciones Ciclotronicas de los Electrones en un Plasma de Presion Arbitraria. IAEA: N. p., 1966. Web.
Krall, N. A., & Pearlstein, L. D. Drift Instabilities and Electron Cyclotron Oscillations for Arbitrary Plasma Pressure; Instabilites de Derive et Oscillations Cyclotroniques des Electrons pour des Pressions de Plasma Arbitraires; Drejfovaya neustojchivost' i ehlektronno-tsiklotronnye kolebaniya pri proizvol'nom davlenii plazmy; Inestabilidades de Deriva y Oscilaciones Ciclotronicas de los Electrones en un Plasma de Presion Arbitraria. IAEA.
Krall, N. A., and Pearlstein, L. D. 1966. "Drift Instabilities and Electron Cyclotron Oscillations for Arbitrary Plasma Pressure; Instabilites de Derive et Oscillations Cyclotroniques des Electrons pour des Pressions de Plasma Arbitraires; Drejfovaya neustojchivost' i ehlektronno-tsiklotronnye kolebaniya pri proizvol'nom davlenii plazmy; Inestabilidades de Deriva y Oscilaciones Ciclotronicas de los Electrones en un Plasma de Presion Arbitraria." IAEA.
@misc{etde_22117316,
title = {Drift Instabilities and Electron Cyclotron Oscillations for Arbitrary Plasma Pressure; Instabilites de Derive et Oscillations Cyclotroniques des Electrons pour des Pressions de Plasma Arbitraires; Drejfovaya neustojchivost' i ehlektronno-tsiklotronnye kolebaniya pri proizvol'nom davlenii plazmy; Inestabilidades de Deriva y Oscilaciones Ciclotronicas de los Electrones en un Plasma de Presion Arbitraria}
author = {Krall, N. A., and Pearlstein, L. D.}
abstractNote = {Most of the familiar drift instabilities (flute, universal, etc.) were, calculated in the limit {beta} = (plasma pressure)/(magnetic pressure) = 0. In this limit the perturbed electric field is electrostatic, and the Vlasov equation is remarkably simplified. The {beta} limit for validity of the electrostatic approximation depends on the particular mode considered and many present experiments fall outside the range. Two well-known low frequency drift instabilities are examined at arbitrary {beta}; the zero-{beta} regime is determined and stability criteria for larger values of {beta} are derived. In addition, the influence of finite {beta} on radiation at the electron cyclotron harmonics is examined. The finite Larmor radius (R) flute instability driven by mirror type curvature of the magnetic field is considered first. The lowest order's ominously large contribution, inversely proportional to R{sup 2}, cancels to all orders of {beta}. The leading terms are then independent of R, and are. included in the eigenvalue problem; stability criteria are obtained for various ranges of B. Next the universal instability, E = Perturbed = E (exp ik{sub Up-Tack }r{sub Up-Tack })(exp ik{sub II}r{sub II}), in a uniform magnetic field B = B{sub 0}i{sub II} is considered, with field curvature simulated by a fictitious gravity. Here the zero-{beta} limit is dependent upon wavelengths. If {beta} < (electron mass)/(ion mass), or if {beta} <(k{sub II}r{sub p}){sup 2} where r{sub p} = plasma radius and 1/k{sub II} {>=} plasma length, the zero-{beta} limit obtains. Since the instability only exists for (k{sub II}r{sub p}){sup 2} < 0.01, a modest plasma pressure violates the zero-{beta} limit. The eigenvalue for {beta} >(k{sub ll}r{sub p}){sup 2} is calculated and conditions for cusp stabilization as well as mirror destabilization are obtained. The dominant high frequency non-relativistic modes of the stable zero-{beta} plasma are longitudinal waves at electron gyrofrequency harmonics. If excited these modes can radiate only if coupled to transverse waves; in zero-{beta} this coupling occurs at a surface or at a local inhomogeneity. Since a prominent effect of finite {beta} is to couple longitudinal and transverse waves, the spectrum and coupling of electron cyclotron oscillations is calculated for arbitrary {beta}. (author) [French] La plupart des instabilites de derive connues (instabilites en cannelures, instabilites universelles, etc.) ont ete calculees a la limite ou {beta} = (pression de plasma)/(pression magnetique) = 0. A cette limite, le champ electrique perturbe est de nature electrostatique, et l'equation de Vlasov est remarquablement simplifiee. L'autre valeur limite de {beta} en-deca de laquelle l'approximation electrostatique est valable depend du mode particulier considere et dans beaucoup d'experiences faites a l'heure actuelle, {beta} tombe en dehors de cet intervalle. Lesauteursetudientdeuxinstabilitesdederiveabasse frequence bien connues pour des valeurs arbitraires de {beta}; ils etablissent le regime pour {beta} = 0 et deduisent des criteres de stabilite pour des valeurs de {beta} plus elevees. De plus, ils etudient l'influence de valeurs finies de {beta} sur le rayonnement dont les frequences sont des harmoniques de la frequence cyclotronique des electrons. La premiere de ces instabilites est l'instabilite en cannelures a rayon de Larmor fini provoquee par la courbure de type miroir du champ magnetique. L'importante contribution defavorable de l'ordre le plus bas, inversement proportionnelle a R{sup 2}, s'annule pour tous les ordres de {beta}. Les termes predominants ne dependent plus de R et sont inclus dans le probleme de valeur propre; les auteurs deduisent des criteres de stabilite pour differents intervalles de valeur de {beta}. La seconde instabilite est l'instabilite universelle E (pertube) = E (exp ik{sub Up-Tack }r{sub Up-Tack })(exp ik{sub II}r{sub II}) dans un champ .magnetique uniforme B = B{sub 0}i{sub II}, la courbure de champ etant simulee par une force de gravitation fictive. Dans ce cas, la limite correspondant a {beta} = 0 depend des longueurs d'onde. Si {beta} < (masse electronique)/(masse ionique), ou si {beta} <(k{sub II}r{sub p}){sup 2} ou r{sub p} est le rayon de plasma et 1/k{sub II} Greater-Than-Or-Equal-To a la longueur de plasma, la limite {beta} = 0 reste valable. Comme l'instabilite n'existe que pour (k{sub II}r{sub p}){sup 2} < 0,01, il suffit d'une faible pression du plasma pour que la limite {beta}= 0 ne soit plus respectee. Les auteurs calculent la valeur propre pour {beta} >(k{sub ll}r{sub p}){sup 2} et ils determinent les conditions permettant de realiser une stabilisation par configuration cuspidee ainsi qu'une suppression de la stabilite par miroir. Les modes non relativistes a haute frequence dominants du plasma stable. pour lequel {beta} = 0 sont des ondes longitudinales ayant pour frequences des harmoniques de la gyrofrequence des electrons. Lorsque ces modes sont excites ils ne peuvent rayonner que dans le cas ou ils sont couples a des ondes transversales; pour {beta} = 0, ce couplage se produit a la surface ou a l'endroit d'une inhomogeneite. Comme des valeurs finies de {beta} ont pour effetde coupler des ondes longitudinales a des transversales, les auteurs calculent le spectre ainsi que le couplage d'oscillations cyclotronique des electrons pour des valeurs de {beta} arbitraires. (author) [Spanish] La mayoria de las inestabilidades de deriva conocidas (en estrias, universales, etc.) han sido calculadas en el limite en que {beta} = (presion del plasma)/(presion magnetica) = 0. En este limite, el campo electrico perturbado es de indole electrostatica y la ecuacion de Vlasov se simplifica notablemente. El valor lunite de {beta} mas alla del cual la aproximacion electrostatica es aplicable depende del modo particular que se considere, y muchos de los experimentos actuales caen fuera del intervalo de validez. Los autores examinan dos inestabilidades de deriva, bien conocidas, de baja frecuencia, con un valor de {beta} arbitrario; establecen el regimen para {beta} = 0 y deducen criterios de estabilidad para valores de {beta} mas elevados. Ademas, examinan la influencia de un valor finito de {beta} sobre la radiacion cuyas frecuencias son armonicos de la frecuencia ciclotronica de los electrones. En primer lugar consideran la inestabilidad en estrias de radio de Larmor (R) finito, provocada por una curvatura del tipo de espejo, del campo magnetico. La considerable contribucion desfavorable del orden mas bajo, inversamente proporcional a R{sup 2}, se anula para todos los ordenes de {beta}. En esas condiciones, los terminos predominantes son independientes de R y se incluyen en el problema de valores propios; los autores deducen criterios de estabilidad para varios intervalos de {beta}. A continuacion se considera la inestabilidad universal E(perturbado) = E (exp ik{sub Up-Tack }r{sub Up-Tack })(exp ik{sub II}r{sub II}) en un campo magnetico uniforme B = B{sub 0}i{sub II}, habiendose simulado la curvatura del campo de una fuerza de gravedad ficticia. En este caso, el limite para {beta} = 0 depende de las longitudes de onda. Si {beta}<(masa electronica)/(masa ionica), o si- {beta} <(k{sub II}r{sub p}){sup 2} en donde r{sub p} = radio del plasma y 1/k{sub II} Greater-Than-Or-Equal-To longitud del plasma, ese limite conserva su validez. Puesto que la inestabilidad existe unicamente para (k{sub II}r{sub p}){sup 2} < 0.01 no se cumple el limite para {beta} = 0 si la presion del plasma, es pequena. Los autores Calculan el valor propio para {beta} >(k{sub ll}r{sub p}){sup 2} obtienen las condiciones para la estabilizacion cuspidal asi como la supresion de la estabilizacion mediante espejos. Los modos no relativistas de alta frecuencia dominante del plasma estable para el cual {beta} = 0 son ondas longitudinales cuya frecuencia corresponde a armonicos de la'girofrecuencia. de los electrones. Si estos modos estan excitados solo pueden radiar si estan acoplados a ondas transversales; con {beta} = 0 este acoplamiento se producan la superficie o en una inhbmogeneidad local. Puesto que un efecto notable de {beta} finito es el de acoplar ondas longitudinales y transversales, los autores calculan el espectro y el acoplamiento de oscilaciones ciclotronicas de los electrones para valores de {beta} arbitrarios. (author) [Russian] Bol'shaja chast' izvestnyh drejfovyh neustoj- chivostej {l_brace}zhelobkovaja, universal'naja i t . d . ) byla rasschitana v predele {beta} = (plazmennoe dav- lenie)/(magnitnoe davlenie)= 0. V jetom predele vozmushhennoe jelektricheskoe pole javljaetsja jelektrostaticheskim i uravnenie Vlasova maksimal'no uproshheno.- Predel'noe {beta}, pri kotorom eshhe spravedlivo jelektrostaticheskoe priblizhenie, zavisit ot rassmatrivaemoj formuly kolebanij, i mnogie sovremennye jeksperimenty vyhodjat za jetot diapazon. Dva horosho izvestnyh nizkochastotnyh vida drejfovyh neustojchivostej issledujutsja pri proizvol'nom {beta}; opredeljaetsja rezhim nulevogo {beta}, i vyvodjatsja kriteriiustojchivosti dlja bol'shih znachenij {beta}. Krome togo, issleduetsja vlijanie konechnogo {beta} na izuchenie na jelektronno-ciklotronnoj garmonike. Vnachale rassmatrivaetsja zhelobkovaja neustojchivost' s konechnym larmorovskim radiusom (R), vyzyvaemaja kriviznoj magnitnogo polja zerkal. Pugajushhie bol'shie chleny samyh nizkih porjadkov, obratno proporcional'nye R{sup 2}, sokrashhajutsja vo vseh porjadkah po {beta}. Glavnye chleny zatem ne zavisjat ot R i vkljuchajutsja v zadachu o sobstvennyh znachenijah; poluchajutsja kriterii ustojchivosti dlja razlichnyh diapazonov {beta}. Dalee rassmatrivaetsja universal'naja neustojchivost' E (vozmushhennoe) = E(exp ik{sub Up-Tack }r{sub Up-Tack })(exp ik{sub II}r{sub II}) v odnorodnom magnitnom'pole B = B{sub 0}i{sub II} s kriviznoj polja, imitirovannoj fiktivnoj siloj tjazhesti. V jetom sluchae predel nulevogo {beta} zavisit ot dliny voln.' Esli {beta}<(massa jelektrona)/(massa iona) ili esli {beta}<(k{sub II}r{sub p}){sup 2} , gde r{sub p} - radius plazmy i 1/k{sub II} Greater-Than-Or-Equal-To dliny plazmy, to poluchajut predel nulevogo {beta}. Poskol'ku neustojchivost' sushhestvuet tol'ko dlja (k{sub II}r{sub p}){sup 2} < 0.01, umerennoe davlenie plazmy narushaet predel nulevogo {beta}. Rasschitano sobstvennoe znachenie dlja {beta} >(k{sub ll}r{sub p}){sup 2} i polucheny uslovija dlja stabilizacii'v ostrokone'chnoj geometrii zerkal'noj neustojchivosti. Preobladajushhie vysokochastotnye nereljativistskie kolebanija ustojchivoj plazmy s nulevym {beta} javljajutsja prodol'nymi volnami pri jelektronnoj girochastotnoj garmonike. V sluchae vozbuzhdenija jetih kolebanij, oni mogut rasprostranjat'sja tol'ko togda, kogda svjazany.s poperechnymi volnami; pri'nulevom {beta} jeta svjaz' proishodit na poverhnosti ili v lokal'noj neodnorodnosti. Poskol'ku znachitel'noe vlijanie konechnogo {beta} dolzhno soedinjat' prodol'nye i poperechnye volny, to spektr i svjaz' jelektronno-ciklotronnyh kolebanij rasschityvajutsja pri proizvol'nom {beta}. (author)}
place = {IAEA}
year = {1966}
month = {Apr}
}