You need JavaScript to view this

Use of semiconductors in lieu of emulsions in nuclear spectroscopy; Utilisation de semi-conducteurs a la place d'emulsions en spectroscopie nucleaire; Primenenie poluprovodnikov vmesto ehmul'sij v yadernoj spektroskopii; Sustitucion de las emulsiones por semiconductores en espectroscopia nuclear

Conference:

Abstract

Twenty surface-barrier counters obtained by evaporating gold on to n-type germanium, or junction counters produced by diffusing phosphorus into p-type silicon, are placed in the image plane of a high-resolution magnetic spectrometer in place of a nuclear emulsion plate. To avoid the use of separate amplifiers and registers for each crystal, the outputs of individual counters are connected into a lumped delay line, replacing alternate capacitors of the line. When an ionizing particle strikes a counter, the resultant pulse travels toward both ends of the delay line. Each of the 20 stages of the line consists of two 35-{mu}H inductances and two 60-{mu}{mu}F capacitors of which one is the counter itself and its leads. These components provide for a delay of t = 2(LC){sup 1/2} = 90 ns per stage. Thus the time difference between pulses arriving at the ends of the delay line will differ by 180 ns for two adjacent detectors. The two ends of the delay line are connected into a ''start'' amplifier and a ''stop'' amplifier respectively, followed by identical shaping and trigger circuits. Their outputs operate a 6BN6 time-to-pulse-height converter. A fixed delay of 2.5 {mu}s is included in the stop amplifier, which ensures that  More>>
Authors:
Bilaniuk, O M; Marsh, B B [1] 
  1. University of Rochester, Rochester, NY (United States)
Publication Date:
Apr 15, 1962
Product Type:
Conference
Resource Relation:
Conference: Conference on Nuclear Electronics, Belgrade, Yugoslavia (Serbia), 15-20 May 1961; Other Information: 6 figs, 8 refs; Related Information: In: Nuclear Electronics III. Proceedings of the Conference on Nuclear Electronics. V. III| 544 p.
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; AMPLIFIERS; CAPACITORS; COUNTING RATES; GERMANIUM; MAGNETIC SPECTROMETERS; PHOSPHORUS; PULSES; SEMICONDUCTOR MATERIALS; SIGNALS; SILICON; SPECTROSCOPY; TRIGGER CIRCUITS
OSTI ID:
22082838
Research Organizations:
International Atomic Energy Agency, Vienna (Austria)
Country of Origin:
IAEA
Language:
English
Other Identifying Numbers:
Other: ISSN 0074-1884; TRN: XA12N2056041837
Submitting Site:
INIS
Size:
page(s) 231-239
Announcement Date:
Apr 12, 2013

Conference:

Citation Formats

Bilaniuk, O M, and Marsh, B B. Use of semiconductors in lieu of emulsions in nuclear spectroscopy; Utilisation de semi-conducteurs a la place d'emulsions en spectroscopie nucleaire; Primenenie poluprovodnikov vmesto ehmul'sij v yadernoj spektroskopii; Sustitucion de las emulsiones por semiconductores en espectroscopia nuclear. IAEA: N. p., 1962. Web.
Bilaniuk, O M, & Marsh, B B. Use of semiconductors in lieu of emulsions in nuclear spectroscopy; Utilisation de semi-conducteurs a la place d'emulsions en spectroscopie nucleaire; Primenenie poluprovodnikov vmesto ehmul'sij v yadernoj spektroskopii; Sustitucion de las emulsiones por semiconductores en espectroscopia nuclear. IAEA.
Bilaniuk, O M, and Marsh, B B. 1962. "Use of semiconductors in lieu of emulsions in nuclear spectroscopy; Utilisation de semi-conducteurs a la place d'emulsions en spectroscopie nucleaire; Primenenie poluprovodnikov vmesto ehmul'sij v yadernoj spektroskopii; Sustitucion de las emulsiones por semiconductores en espectroscopia nuclear." IAEA.
@misc{etde_22082838,
title = {Use of semiconductors in lieu of emulsions in nuclear spectroscopy; Utilisation de semi-conducteurs a la place d'emulsions en spectroscopie nucleaire; Primenenie poluprovodnikov vmesto ehmul'sij v yadernoj spektroskopii; Sustitucion de las emulsiones por semiconductores en espectroscopia nuclear}
author = {Bilaniuk, O M, and Marsh, B B}
abstractNote = {Twenty surface-barrier counters obtained by evaporating gold on to n-type germanium, or junction counters produced by diffusing phosphorus into p-type silicon, are placed in the image plane of a high-resolution magnetic spectrometer in place of a nuclear emulsion plate. To avoid the use of separate amplifiers and registers for each crystal, the outputs of individual counters are connected into a lumped delay line, replacing alternate capacitors of the line. When an ionizing particle strikes a counter, the resultant pulse travels toward both ends of the delay line. Each of the 20 stages of the line consists of two 35-{mu}H inductances and two 60-{mu}{mu}F capacitors of which one is the counter itself and its leads. These components provide for a delay of t = 2(LC){sup 1/2} = 90 ns per stage. Thus the time difference between pulses arriving at the ends of the delay line will differ by 180 ns for two adjacent detectors. The two ends of the delay line are connected into a ''start'' amplifier and a ''stop'' amplifier respectively, followed by identical shaping and trigger circuits. Their outputs operate a 6BN6 time-to-pulse-height converter. A fixed delay of 2.5 {mu}s is included in the stop amplifier, which ensures that the stop pulse always arrives at the time-pulse-height converter after the start pulse. The amplitude of the pulse coming out of the 6BN6 converter is proportional to the time difference between the start and stop pulses. Thus, signals originating in various counters of the mosaic are decoded by pulse height. The resulting groups of counts are displayed on the screen of a 400-channel pulse-height analyser, printed out, and graphed by an X-Y recorder. The groups are entirely'resolved so that the decoding is complete. The decoding circuit can accept a pulse every 8{mu}s so that the limitation for the counting rate does not stem from this unit but from the 400-channel analyser. The decoding unit has been found to perform satisfactorily with the magnetic field present and with the cyclotron in full operation. Complete circuitry of the decoding scheme is presented and samples of nuclear data collected with the unit are shown. (author) [French] Dans un spectrometre magnetique a fort pouvoir de resolution, on remplace l'emulsion nucleaire par vingt compteurs a barriere de surface obtenus par evaporation d'or sur du germanium de type n, ou par vingt compteurs a jonction obtenus par diffusion de phosphore dans du silicium de type p. Pour eviter d'avoir a utiliser des amplificateurs et des enregistreurs distincts pour chaque cristal, on connecte les sorties des divers compteurs a une ligne a retard a constantes localisees, ce qui permet de supprimer les condensateurs alternes de la ligne. Quand une particule ionisante frappe un compteur, l'impulsion qui en resulte se dirige vers les deux extremites de la ligne a retard. Chacune des vingt cellules de la ligne se compose de deux inductances de 35 {mu}H et de deux condensateurs de 60 pF dont l'un est le compteur lui-meme et ses connexions. Chaque cellule assure un retard de t = 2(LC){sup 1/2}2 = 90 ns. Ainsi l'intervalle de temps entre les impulsions qui arrivent aux extremites de la ligne a retard differera de 180 ns pour deux detecteurs adjacents. Les deux extremites de la ligne a retard sont connectees respectivement a un amplificateur de depart et a un amplificateur d'arrivee, suivis de circuits de mise en forme et de circuits de declenchement identiques. Leurs signaux de sortie agissent sur un convertisseur 6BN6 tempsamplitude. Un retard fixe d'avance de 2,5 {mu}s est prevu dans l'amplificateur d'arrivee, si bien que l'impulsion d'arrivee atteint toujours le convertisseur temps-amplitude apres l'impulsion de depart. L'amplitude de l'impulsion sortant du convertisseur 6BN6 est proportionnelle a l'intervalle de temps entre les impulsions de depart et d'arrivee. Ainsi les signaux provenant des divers compteurs de l'ensemble sont decodes en hauteurs d'impulsion. Les differentes series de mesures apparaissent sur l'ecran d'un analyseur d'amplitude a 400 canaux, ils sont imprimes et mis sous forme de graphique au moyen d'un enregistreur en X-Y. Les series sont entierement resolues, si bien que le decodage est complet. Le dispositif de decodage peut recevoir une impulsion toutes les 8 {mu}s, si bien que le taux de comptage est limite non par ce dispositif mais par l'analyseur a 400 canaux. L'appareil de decodage a fonctionne de facon satisfaisante en presence du champ magnetique et lorsque le cyclotron etait en plein fonctionnement. Les auteurs presentent en detail le dispositif de decodage et montrent des exemples de donnees nucleaires qu'il a permis d'obtenir. (author) [Spanish] La placa de emulsion nuclear del plano de la imagen de un espectrometro magnetico de alto poder de resolucion se sustituye por 20 contadores de barrera superficial preparados aplicando oro por evaporacion sobre germanio de tipo n, o contadores de capa intermedia preparados difundiendo fosforo en silicio de tipo p. A fin de no tener que utilizar amplificadores y registros distintos para cada cristal, las conexiones de salida de los contadores se conectan a una linea de retardo concentrada sustituyendo a condensadores alternados de la linea. Cuando una particula ionizante incide en un contador, el impulso resultante se desplaza hacia ambos extremos de la linea de retardo. Cada una de las 20 etapas de la linea consiste en dos inductancias de 35 {mu}H y dos condensadores de 60 pF, uno de los cuales es el propio contador y sus conexiones. Estas componentes dan un retardo de t = 2(LC){sup 1/2} = 90 m{mu}s por etapa. Asi, pues, los impulsos originados en dos detectores adyacentes llegaran a los extremos de la linea de retardo con una diferencia de 180 m{mu}s. Uno de los extremos de la linea de retardo se conecta con un amplificador de ''puesta en marcha'' y el otro con un amplificador de ''parada'', a los que siguen circuitos identicos de conformacion y activacion. Sus corrientes de salida excitan un convertidor de tiempo en amplitud de impulso 6BN6. El amplificador de parada contiene un retardo fijo de 2,5 {mu}s que garantiza que el impulso de parada siempre llegue al convertidor despues que el impulso de puesta en marcha. La amplitud del impulso que sale del convertidor 6BN6 es proporcional al intervalo de tiempo entre los impulsos de puesta en marcha y de parada, de modo que las senales que se producen en los diversos contadores del mosaico quedan identificadas por la amplitud del impulso que generan. Los grupos de cuentas resultantes se hacen visibles en la pantalla de un analizador de amplitudes de impulso de 400 canales, se imprimen, y se registran graficamente en un sistema de coordenadas ortogonales. Los grupos quedan enteramente resueltos, asi que la identificacion es completa. El circuito de identificacion es capaz de admitir un impulso cada 8 {mu}s, por lo que la limitacion de velocidad de contaje no se debe a el, sino al analizador de 400 canales. Los autores han encontrado que el sistema de identificacion funciona satisfactoriamente en presencia del campo magnetico y estando el ciclotron en plena marcha. Describen todos los circuitos del sistema de identificacion y presentan ejemplos de datos nucleares obtenidos con este dispositivo. (author) [Russian] Dvadtsat' poverkhnostno-bar'ernykh schetchikov, poluchennykh putem pokrytiya germaniya tipa ''n'' tonkim sloem zolota (nakhodyashchegosya v gazoobraznom sostoyanii), ili schetchiki s ploskostnym perekhodom, poluchaemye posredstvom diffuzii fosfora v kremnij tipa ,''p'', pomeshchayutsya v zerkal'nuyu ploskost' magnitnogo spektrometra s vysokoj razreshayushchej sposobnost'yu vmesto yadernoj ehmul'sionnoj plastiny. S tsel'yu izbezhat' primeneniya otdel'nykh usilitelej i registrov dlya kazhdogo kristalla vykhody otdel'nykh schetchikov soedinyayutsya v sosredotochennuyu liniyu zaderzhki, zamenyaya chereduyushchiesya kondensatory linij. Kogda ioniziruyushchaya chastitsa udaryaetsya o schetchik, voznikayushchij v rezul'tate impul's peredaetsya v oba kontsa linii zaderzhki. Kazhdaya iz 20 stupenej linii sostoit iz dvukh induktivnostej v 35 {mu}H i dvukh kondensatorov v 60 {mu}{mu}F, odnim iz kotorykh yavlyaetsya sam schetchik i ego provoda. EHti komponenty obespechivayut zaderzhku v razmere t = 2 (LC){sup 1/2} = 90 m{mu}s na stupen'. Takim obrazom, razlichie vo vremeni mezhdu impul'- sami, dokhodyashchimi do kontsov linii zaderzhki, budet sostavlyat' 180 m{mu}leek. na dva sosednikh detektora. Oba kontsa linii zaderzhki sootvetstvenno prisoedinyayutsya k ''start''-usilitelyu i ,''stop''-usilitelyu, posle chego pridaetsya formiruyushchaya i puskovaya skhemy. Ikh vykhody privodyat v dejstvie vremenno-amplitudnyj preobrazovatel' impul'sov 6BN6. Ustanovlennaya zaderzhka v 2,5 {mu}s vklyuchena v ''stop''-usilitel', chto obespechivaet postoyannyj prikhod ,,stop''-impul'sa v vremenno-amplitudnyj preobrazo- vatel' posle ,,start''-impul'sa. Amplituda impul'sa, idushchego iz preobrazovatelya 6BN6, proportsional'na raznitse vo vremeni mezhdu ''start''- i ,''stop''-impul'sami. Takim obrazom, signaly, voznikayushchie v razlichnykh schetchikakh mozaiki, dekodiruyutsya amplitudoj impul'sa. Poluchaemye v rezul'tate gruppy scheta izobrazhayutsya na ehkrane 400-kanal'nogo analizatora amplitudy impul'sov, perepechatyvayutsya i izobrazhayutsya graficheski s pomoshch'yu samopistsa X-Y. Gruppy tselikom razlozheny, tak chto dekodirovanie yavlyaetsya polnym. Dekodiruyushchaya skhema mozhet prinimat' odin impul's cherez kazhdye 8 mikrosekund, i, takim obrazom, ogranichenie skorosti scheta iskhodit ne iz ehtogo pribora, a iz 400-kanal'nogo analizatora. Bylo obnaruzheno, chto dekodiruyushchij pribor udovletvoritel'no rabotaet v prisutstvii magnitnogo polya i pri rabote tsiklotrona na polnuyu moshchnost'. Predstavleny polnye skhemy dekodiruyushchego ustrojstva i pokazany obraztsy yadernykh dannykh, sobrannykh s ego pomoshch'yu. (author)}
place = {IAEA}
year = {1962}
month = {Apr}
}