You need JavaScript to view this

A transistorized 1024-channel neutron time-of-flight analyser; Selecteur transistorise de temps de vol pour neutrons, a 1024 canaux; Nejtronnyj analizator vremeni proleta s 1024 kanalami i s perevodom skhemy na tranzistory; Aparato transistorizado de 1024 canales para analizar tiempos de vuelo de neutrones

Conference:

Abstract

A transistorized 1024-channel neutron time-of-flight analyser is described. This instrument has been divided in two fully independent parts: the analogue-to-digital converter (ADC) that measures the time-of-flight and the 1024-channel ferrite-core memory. In this way the output signals coming from the ADC can be recorded on a magnetic tape together with the output from other ADCs which measure other physical quantities related to the same nuclear event, with an overall number of channels higher than the capacity of the memory. The AD converter is provided with a temporary memory that, by its regularizing action on the signals rate, (1) when the AD converter, directly connected to the 1024-channel memory, allows a dead time of only 0.5 {mu}s, and (2) when the AD converter drives a magnetic tape recorder and allows a better utilization of the magnetic tape itself. The temporary memory has a capacity of four numbers of up to sixteen bits. The channel-width of the analyser is variable from 0.5 up to 48 {mu}s. The 1024 channels can be divided in two contemporary groups of 512, each connected to two detectors. The temporary memory allows contemporary recordings of signals into the two groups. The channels can also be subdivided over  More>>
Authors:
Giannelli, G [1] 
  1. European Atomic Energy Community, CCR, Ispra (Italy)
Publication Date:
Apr 15, 1962
Product Type:
Conference
Resource Relation:
Conference: Conference on Nuclear Electronics, Belgrade, Yugoslavia (Serbia), 15-20 May 1961; Other Information: 1 fig; Related Information: In: Nuclear Electronics II. Proceedings of the Conference on Nuclear Electronics. V. II| 473 p.
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; ANALOG-TO-DIGITAL CONVERTERS; DEAD TIME; DESIGN; FERRITES; MAGNETIC TAPES; MULTI-CHANNEL ANALYZERS; NEUTRONS; SIGNALS; TIME-OF-FLIGHT METHOD
OSTI ID:
22028364
Research Organizations:
International Atomic Energy Agency, Vienna (Austria)
Country of Origin:
IAEA
Language:
English
Other Identifying Numbers:
Other: ISSN 0074-1884; TRN: XA12N1987116630
Submitting Site:
INIS
Size:
page(s) 49-54
Announcement Date:
Jan 18, 2013

Conference:

Citation Formats

Giannelli, G. A transistorized 1024-channel neutron time-of-flight analyser; Selecteur transistorise de temps de vol pour neutrons, a 1024 canaux; Nejtronnyj analizator vremeni proleta s 1024 kanalami i s perevodom skhemy na tranzistory; Aparato transistorizado de 1024 canales para analizar tiempos de vuelo de neutrones. IAEA: N. p., 1962. Web.
Giannelli, G. A transistorized 1024-channel neutron time-of-flight analyser; Selecteur transistorise de temps de vol pour neutrons, a 1024 canaux; Nejtronnyj analizator vremeni proleta s 1024 kanalami i s perevodom skhemy na tranzistory; Aparato transistorizado de 1024 canales para analizar tiempos de vuelo de neutrones. IAEA.
Giannelli, G. 1962. "A transistorized 1024-channel neutron time-of-flight analyser; Selecteur transistorise de temps de vol pour neutrons, a 1024 canaux; Nejtronnyj analizator vremeni proleta s 1024 kanalami i s perevodom skhemy na tranzistory; Aparato transistorizado de 1024 canales para analizar tiempos de vuelo de neutrones." IAEA.
@misc{etde_22028364,
title = {A transistorized 1024-channel neutron time-of-flight analyser; Selecteur transistorise de temps de vol pour neutrons, a 1024 canaux; Nejtronnyj analizator vremeni proleta s 1024 kanalami i s perevodom skhemy na tranzistory; Aparato transistorizado de 1024 canales para analizar tiempos de vuelo de neutrones}
author = {Giannelli, G}
abstractNote = {A transistorized 1024-channel neutron time-of-flight analyser is described. This instrument has been divided in two fully independent parts: the analogue-to-digital converter (ADC) that measures the time-of-flight and the 1024-channel ferrite-core memory. In this way the output signals coming from the ADC can be recorded on a magnetic tape together with the output from other ADCs which measure other physical quantities related to the same nuclear event, with an overall number of channels higher than the capacity of the memory. The AD converter is provided with a temporary memory that, by its regularizing action on the signals rate, (1) when the AD converter, directly connected to the 1024-channel memory, allows a dead time of only 0.5 {mu}s, and (2) when the AD converter drives a magnetic tape recorder and allows a better utilization of the magnetic tape itself. The temporary memory has a capacity of four numbers of up to sixteen bits. The channel-width of the analyser is variable from 0.5 up to 48 {mu}s. The 1024 channels can be divided in two contemporary groups of 512, each connected to two detectors. The temporary memory allows contemporary recordings of signals into the two groups. The channels can also be subdivided over the time-of-flight in two groups of which the first (of 16 channels) is used to record the true zero time of the time-of-flight, while the second group can be set in any position over the total time-of-flight interval. The number of channels used in the recording of the time-of-flight can be reduced in order to record another quantity with 1024 overall channels. The logical design of the instrument is described. In the design advantage has been taken of the possibilities offered by the transistorization and the related mechanical construction systems in order to produce a most flexible instrument and one in which future modifications or extensions, which may be required by the experimenters, are feasible. (author) [French] L'auteur decrit un selecteur transistorise de temps de vol pour neutrons, a 1024 canaux. Cet appareil comporte deux elements completement independants: un convertisseur de donnees analogiques en donnees numeriques (CAN) qui mesure le temps de vol et une memoire a ferrites de 1024 canaux. Les signaux de sortie provenant du CAN peuvent ainsi etre enregistres sur un ruban magnetique en meme temps que les signaux de sortie d'autres CAN qui mesurent d'autres donnees physiques, associees au meme evenement nucleaire, le nombre total des canaux etant plus eleve que la capacite de la memoire. Le CAN est muni d'une memoire temporaire qui, par son action regularisatrice sur le rythme des signaux: 1) permet d'obtenir un temps mort de 0,5 {mu}s seulement lorsque le convertisseur est directement branche sur la memoire a 1024 canaux, et 2) permet une meilleure utilisation du ruban magnetique lorsque le convertisseur entraine un enregistreur a ruban magnetique. La memoire temporaire peut enregistrer jusqu'a quatre nombres composes de 16 chiffres binaires au maximum. La largeur des canaux du selecteur peut varier de 0,5 a 48 {mu}s. Les 1024 canaux peuvent etre divises en deux groupes - fonctionnant simultanement - de 512 canaux, relies chacun a un detecteur. La memoire temporaire permet l'enregistrement simultane des signaux dans les deux groupes. Les canaux peuvent egalement etre subdivises par rapport au temps de vol en deux groupes dont le premier (16 canaux) sert a enregistrer le point zero, le deuxieme pouvant etre place en un point quelconque de l'intervalle total du temps de vol. On peut reduire le nombre de canaux utilises pour l'enregistrement du temps de vol de facon a enregistrer egalement une autre quantite avec l'ensemble des 1024 canaux. L'auteur explique le principe logique selon lequel l'appareil a ete construit. Au cours de la conception on a tire parti des possibilites offertes par la transistorisation et des avantages mecaniques qui en decoulent afin de mettre au point un appareil extremement souple qui puisse se preter aux modifications ou extensions que les recherches pourraient souhaiter introduire. (author) [Spanish] Se describe un aparato transistorizado de 1024 canales para analizar tiempos de vuelo de neutrones. El aparato se divide en dos partes completamente independientes: el convertidor analogicodigital (CAD), que mide el tiempo de vuelo, y la memoria de nucleos de ferrita de 1024 canales. De este modo, las senales que salen del CAD pueden ser registradas en cinta magnetica junto con las senales de otros CAD que miden otras magnitudes fisicas relacionadas con el mismo suceso nuclear, con un numero total de canales superior a la capacidad de la memoria. El CAD tiene una memoria temporal que por su accion reguladora del ritmo de los impulsos permite: 1) obtener un tiempo muerto de solo 0,5 microsegundos cuando el CAD esta conectado directamente a la memoria de 1024 canales, y 2) aprovechar mejor la cinta magnetica cuando es el propio CAD quien acciona el registrador magnetico. La memoria temporal tiene una capacidad de cuatro numeros de hasta 16 digitos. La amplitud de los canales del analizador se puede variar desde 0,5 hasta 48 microsegundos. Los 1024 canales se pueden dividir en dos grupos simultaneos de 512 canales, conectado cada uno a dos detectores. La memoria temporal permite registrar senales simultaneamente en ambos grupos. Tambien se pueden subdividir los canales en dos grupos segun el tiempo de vuelo; el primero (de 16 canales) se emplea para registrar el origen de tiempos de vuelo, y el segundo se puede colocar en cualquier posicion a todo lo largo del intervalo de tiempos de vuelo. El numero de canales empleados para registrar tiempos de vuelo se puede reducir para poder registrar simultaneamente otra magnitud en el total de 1024 canales. El autor describe el diseno logico del instrumento, que aprovecha las posibilidades que ofrecen los transistores con una oportuna disposicion mecanica, para lograr un instrumento de gran adaptabilidad y que sea posible modificar o ampliar si lo precisaran los experimentadores. (author) [Russian] Daetsya opisanie nejtronnogo analizatora vremeni proleta s 1024 kanalami i s perevodom skhemy na tranzistory. EHtot pribor byl razdelen na dve absolyutno nezavisimye chasti: analog k tsifrovomu preobrazovatelyu (ATSP), kotoryj izmeryaet vremya proleta, i 1024-kanal'noe nakopitel'noe ustrojstvo na ferritovykh serdechnikakh. Takim putem vykhodnye signaly, postupayushchie iz ATSP, mogut byt' zaregistrirovany na magnitnoj lente vmeste s vykhodnymi signalami iz drugikh ATSP, izmeryayushchikh drugie fizicheskie kolichestva, otnosyashchiesya k tomu zhe yadernomu prevrashcheniyu pri obshchem kolichestve kanalov, prevyshayushchem moshchnost' nakopitel'nogo ustrojstva. Analog tsifrovogo preobrazovatelya snabzhen vremennym zapominayushchim ustrojstvom, kotoroe blagodarya svoemu regulirovaniyu skorosti signalov: 1) pozvolyaet dostich' velichiny mertvogo vremeni lish' 0,5 {mu} v sekundu, kogda analog tsifrovogo preobrazovatelya svyazan neposredstvenno s 1024-kanal'nym nakopitel'nym ustrojstvom; i 2) sposobstvuet luchshemu ispol'zovaniyu samoj magnitnoj lenty, kogda analog tsifrovogo preobrazovatelya privodit v dejstvie magnitofon. Vremennoe zapominayushchee ustrojstvo obladaet sposobnost'yu zapominat' s chetyrekhkratnoj tochnost'yu (vplot' do shestnadtsati dvoichnykh razryadov). SHirina kanala analizatora kolebletsya ot 0,5 do 48 {mu}s. 1024 kanala mogut byt' razdeleny na dve odinakovye gruppy po 512 kanalov, kazhdaya iz kotorykh soedinyaetsya s dvumya detektorami. Vremennoe zapominayushchee ustrojstvo dopuskaet odnovremennuyu zapis' signalov dvumya gruppami. Kanaly mogut byt' takzhe podrazdeleny po vremeni proleta na dve gruppy, iz kotorykh pervaya gruppa (16 kanalov) ispol'zuetsya dlya zapisi chisto nulevogo vremeni proleta, togda kak vtoraya gruppa mozhet byt' ispol'zovana v lyuboj pozitsii po obshchim intervalam vremeni mezhdu proletami. CHislo kanalov, ispol'zuemykh dlya zapisi vremeni proleta, mozhet byt' sokrashcheno dlya togo, chtoby zapisyvat' - takzhe drugie velichiny s pomoshch'yu vsekh 1024 kanalov. Daetsya opisanie logicheskoj konstruktsii pribora. V konstruktsii byli ispol'zovany vozmozhnosti, kotorye predostavlyayut tranzistorizatsiya i sistemy sootvetstvennoj mekhanicheskoj konstruktsii dlya togo, chtoby mozhno bylo obespechit' naibolee gibkoe dejstvie pribora. EHtot pribor dolzhen byt' takim, chtoby pozvolyat' vnesenie budushchikh izmenenij i provedenie usovershenstvovaniya, kotorye mogut potrebovat'sya v rezul'tate ehksperimentov. (author)}
place = {IAEA}
year = {1962}
month = {Apr}
}