You need JavaScript to view this

Transmutation doping and recoil effects in semiconductors exposed to thermal neutrons; Transmutations provoquees et effets de recul dans les semi-conducteurs exposes aux neutrons thermiques; Prisadka i sdacha v rezul'tate prevrashcheniya poluprovodnikov pod dejstviem teplovykh nejtronov; Impurificacion por transmutacion y efectos de retroceso en los semiconductores expuestos a neutrones termicos

Conference:

Abstract

Extensive studies of thermal neutron exposure of germanium have been made. Of the five isotopes, three transmute to chemical impurity whose yields in atoms per 100 neutron captures and half-lives are: Ga{sup 71} - 30.4, 11.4 d; As{sup 75} - 9.8, 82 min; Se{sup 77} - 1.2 , 39 h. Therefore, {approx} 3 acceptors (Ga{sup 71}) are introduced for each donor (As{sup 75} and Se{sup 77}) and through choice of exposure one may decrease the electron concentration of n-type Ge to very low values or convert n-type Ge to p-type. The half-life leading to Ga{sup 71} is conveniently long so that details of the ''radioactive titration'' may be followed by Hall coefficient and conductivity. Experiments also show that approximately one electron per neutron capture is removed by lattice defects created by the recoil of nuclei from capture {gamma}-ray emission. These displaced atoms may be restored to normal lattice sites by annealing at {approx}450 Degree-Sign C. Recoil effects in silicon have also been observed, approximately two charge carriers being removed per capture. Implications of these results and those on germanium will be discussed in terms of the capture {gamma}-ray spectrum. In indium antimonide the capture {gamma}-rays from In{sup 115} are not  More>>
Authors:
Crawford, Jr, J H; Cleland, J W [1] 
  1. Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)
Publication Date:
Jan 15, 1962
Product Type:
Conference
Resource Relation:
Conference: Conference on the Use of Radioisotopes in the Physical Sciences and Industry, Copenhagen (Denmark), 6-17 Sep 1960; Other Information: 2 figs, 3 tabs, 24 refs; Related Information: In: Radioisotopes in the Physical Sciences and Industry. Proceedings of the Conference on the Use of Radioisotopes in the Physical Sciences and Industry. V. 1| 556 p.
Subject:
36 MATERIALS SCIENCE; ANNEALING; ARSENIC 75; CHARGE CARRIERS; CRYSTAL DEFECTS; ELECTRONS; EMISSION; GALLIUM 71; GERMANIUM; IMPURITIES; INDIUM; INDIUM 115; NEUTRON REACTIONS; RECOILS; SELENIUM 77; SEMICONDUCTOR MATERIALS; SILICON; SPECTRA; THERMAL NEUTRONS; TITRATION; TRANSMUTATION
OSTI ID:
22025633
Research Organizations:
International Atomic Energy Agency, Vienna (Austria); United Nations Educational, Scientific and Cultural Organization, Paris (France)
Country of Origin:
IAEA
Language:
English
Other Identifying Numbers:
Other: ISSN 0074-1884; TRN: XA12N1612112926
Submitting Site:
INIS
Size:
page(s) 269-286
Announcement Date:
Jan 16, 2013

Conference:

Citation Formats

Crawford, Jr, J H, and Cleland, J W. Transmutation doping and recoil effects in semiconductors exposed to thermal neutrons; Transmutations provoquees et effets de recul dans les semi-conducteurs exposes aux neutrons thermiques; Prisadka i sdacha v rezul'tate prevrashcheniya poluprovodnikov pod dejstviem teplovykh nejtronov; Impurificacion por transmutacion y efectos de retroceso en los semiconductores expuestos a neutrones termicos. IAEA: N. p., 1962. Web.
Crawford, Jr, J H, & Cleland, J W. Transmutation doping and recoil effects in semiconductors exposed to thermal neutrons; Transmutations provoquees et effets de recul dans les semi-conducteurs exposes aux neutrons thermiques; Prisadka i sdacha v rezul'tate prevrashcheniya poluprovodnikov pod dejstviem teplovykh nejtronov; Impurificacion por transmutacion y efectos de retroceso en los semiconductores expuestos a neutrones termicos. IAEA.
Crawford, Jr, J H, and Cleland, J W. 1962. "Transmutation doping and recoil effects in semiconductors exposed to thermal neutrons; Transmutations provoquees et effets de recul dans les semi-conducteurs exposes aux neutrons thermiques; Prisadka i sdacha v rezul'tate prevrashcheniya poluprovodnikov pod dejstviem teplovykh nejtronov; Impurificacion por transmutacion y efectos de retroceso en los semiconductores expuestos a neutrones termicos." IAEA.
@misc{etde_22025633,
title = {Transmutation doping and recoil effects in semiconductors exposed to thermal neutrons; Transmutations provoquees et effets de recul dans les semi-conducteurs exposes aux neutrons thermiques; Prisadka i sdacha v rezul'tate prevrashcheniya poluprovodnikov pod dejstviem teplovykh nejtronov; Impurificacion por transmutacion y efectos de retroceso en los semiconductores expuestos a neutrones termicos}
author = {Crawford, Jr, J H, and Cleland, J W}
abstractNote = {Extensive studies of thermal neutron exposure of germanium have been made. Of the five isotopes, three transmute to chemical impurity whose yields in atoms per 100 neutron captures and half-lives are: Ga{sup 71} - 30.4, 11.4 d; As{sup 75} - 9.8, 82 min; Se{sup 77} - 1.2 , 39 h. Therefore, {approx} 3 acceptors (Ga{sup 71}) are introduced for each donor (As{sup 75} and Se{sup 77}) and through choice of exposure one may decrease the electron concentration of n-type Ge to very low values or convert n-type Ge to p-type. The half-life leading to Ga{sup 71} is conveniently long so that details of the ''radioactive titration'' may be followed by Hall coefficient and conductivity. Experiments also show that approximately one electron per neutron capture is removed by lattice defects created by the recoil of nuclei from capture {gamma}-ray emission. These displaced atoms may be restored to normal lattice sites by annealing at {approx}450 Degree-Sign C. Recoil effects in silicon have also been observed, approximately two charge carriers being removed per capture. Implications of these results and those on germanium will be discussed in terms of the capture {gamma}-ray spectrum. In indium antimonide the capture {gamma}-rays from In{sup 115} are not sufficient to displace a large number of nuclei and the major effect is production of Sn{sup 116}, a donor when substituted in an indium lattice position. Nuclear doping holds promise for investigating numerous compound semiconductors in which introduction of impurity by chemical means is difficult. (author) [French] Les auteurs ont etudie de maniere approfondie l'exposition du germanium aux neutrons thermiques. Pour trois des cinq isotopes de cette substance, il y a transmutation en impuretes chimiques, dont les rendements (en atomes pour 100 neutrons captures) et les periodes sont: pour le gallium-71, 30,4 et 11,4 jours; pour l'arsenic-75, 9,8 et 82 minutes; pour le selenium-77, 1,2 et 39 heures. En consequence, on introduit trois ) (gallium-71) pour chaque (arsenic-75 et selenium-77) ; en choisissant la dose d'exposition, on peut ramener la concentration electronique d'un germanium de type n a de tres faibles valeurs ou meme le transformer en un germanium de type p. La periode du gallium-71 est assez longue pour qu'il soit possible de suivre les details du par le coefficient de Hall et sa conductivite. Les experiences montrent aussi qu'environ un electron par neutron capture est elimine par des defauts de reseau crees par des noyaux de recul dont le deplacement resulte de l'emission de rayons gamma de capture. On peut rendre a ces atomes deplaces leur place normale dans le reseau en procedant a un recuit a environ 450 Degree-Sign C. D'autre part, les auteurs ont observe des effets de recul dans le silicium, deux porteurs de charge environ etant elimines a chaque capture. Ils examinent les consequences de ces resultats et des effets sur le germanium en ce qui concerne le spectre de rayons gamma de capture. Dans l'antimoniure d'indium, les rayons gamma emanant de l'indium-115 sont insuffisants pour deplacer un grand nombre de noyaux et l'effet principal est la production d'atomes d'etain-116, qui sont des lorsqu'ils remplacent des atomes d'indium. Les transmutations nucleaires provoquees ouvrent une voie nouvelle aux recherches sur de nombreux semi-conducteurs composes dans lesquels il est difficile d'introduire des impuretes par des moyens chimiques. (author) [Spanish] Los autores han estudiado muy extensamente la exposicion del germanio a neutrones termicos. Tres de los cinco isotopos de ese elemente se transmutan en impurezas quimicas; los rendimientos en atomos por 100 capturas neutronicas, y los periodos de semidesintegracion respectivos, son los siguientes: {sup 71}Ga - 30,4 - 11,4 dias; {sup 75}As - 9,8 - 82 minutos; {sup 77}Se - 1,2 - 39 horas. Por lo tanto, por cada donor ({sup 75}As y {sup 77}Se) se introducen aproximadamente tres aceptores ({sup 71}Ga); una correcta eleccion de la exposicion permite por tanto disminuir la concentracion de electrones en el germanio de tipo n hasta valores muy bajos, o transformar el germanio de tipo n en germanio de tipo p. Afortunadamente, el periodo de semidesintegracion del nuclido que da origen al {sup 71}Ga es largo; ello permite observar en detalle el curso de la ''valoracion radiactiva'' por medicion del coeficiente de Hall y de la comductividad. Los experimentos demuestran tambien que los defectos que producen en la red cristalina los retrocesos de nucleos causados por la emision gamma consecutiva a la captura neutronica eliminan aproximadamente un electron por cada neutron capturado. El recocido a unos 450 Degree-Sign C hace que los atomos desplazados vuelvan a los sitios que les corresponden en la red cristalina. Tambien se han observado efectos del retroceso en el silicio; cada captura da lugar a la eliminacion de, aproximadamente, dos portadores de carga. Los autores analizaran las deducciones a que llevan estos resultados y los obtenidos con el germanio, basandose en los espectros de rayos gamma de captura. En el caso del antimoniuro de indio, los rayos gamma de captura emitidos por el {sup 115}In no bastan para desplazar un numero grande de nucleos, de modo que el efecto principal es la formacion de {sup 116}Sn, que es un donor cuando sustituye a un atomo de indio en una red cristalina de este elemento. La impurificacion por transmutacion nuclear ofrece una posibilidad de estudiar numerosos semiconductores compuestos en los que resulta dificil introducir impurezas por procomientos quimicos. (author) [Russian] Byli provedeny podrobnye issledovaniya vozdejstviya teplovykh nejtronov na germanij. Iz pyati izotopov tri izotopa prevrashchayutsya v khimicheskie primesi, vykhod kotorykh, v chisle atomov na 100 zakhvatov nejtronov, i ikh periody poluraspada predstavlyayutsya v sleduyushchem vide: Ga{sup 71} - 30,4, 11,4 dnya; As{sup 75} - 9,8, 82 min; Se{sup 77} - 1,2, 39 chasov. Poehtomu okolo 3 aktseptorov (Ca{sup 71}) vvodyatsya na kazhdyj donor (As{sup 75} i Se{sup 77}), i putem vybora prodolzhitel'nosti oblucheniya mozhno sokratit' kontsentratsiyu ehlektronov Se tipa ''n'' do ves'ma malykh znachenij ili prevratit' Se tipa ''n'' v tip ''p''. Period poluraspada, vedushchij k obrazovaniyu Ga71, dostatochno prodolzhitelen, tak chto podrobnaya ''radioaktivnaya titratsiya'' mozhet soprovozhdat'sya opredeleniem koehffitsienta KHolla i ehlektroprovodnosti. Opyty pokazyvayut takzhe, chto priblizitel'no odin ehlektron na kazhdyj zakhvat nejtrona udalyaetsya defektom reshetki, sozdannym otdachej yadra pri zakhvate ispuskaemykh gamma-luchej. EHti vytesnennye atomy mogut byt' vozvrashcheny obratno na svoe mesto v normal'noj reshetke putem otzhiga pri 450 Degree-Sign C. Byli proizvedeny takzhe nablyudeniya nad dejstviem otdachi v kremnie, prichem bylo ustanovleno, chto na kazhdyj zakhvat ustranyaetsya priblizitel'no 2 nositelya zaryada. Posledstviya ehtikh rezul'tatov, a takzhe rezul'taty v otnoshenii germaniya obsuzhdayutsya v funktsii ot zakhvata spektra gamma-luchej. V sur'myanistom indii zakhvat gamma-luchej iz In{sup 115} nedostatochen dlya togo, chtoby vytesnit' bol'shoe chislo yader, tak chto glavnym vozdejstviem yavlyaetsya obrazovanie Sn{sup 116}, kotoryj stanovitsya donorom pri zamene mesta v reshetke indiya. YAdernaya prisadka predstavlyaetsya perspektivnoj dlya izucheniya mnogochislennykh slozhnykh poluprovodnikov, vvedenie v kotorye primesej khimicheskim sposobom predstavlyaetsya zatrudnitel'nym. (author)}
place = {IAEA}
year = {1962}
month = {Jan}
}