You need JavaScript to view this

Interest of synchrotron radiation for the therapy of brain tumors: methodology and preclinical applications; Interet du rayonnement synchrotron dans la therapie des tumeurs cerebrales: methodologie et applications precliniques

Abstract

Microbeam radiation (M.R.T.) and stereotactic synchrotron radiation therapy (S.S.R.T.) are innovative techniques currently developed at the european Synchrotron radiation facility. these techniques led to promising, but rarely reproduced, results. the use of different tumoral models for each techniques limit comparisons. M.R.T. experiments on rats bearing 9L tumors 14 days after implantation displayed a double median survival time ( from 20 to 40 days) with a 200 {mu}m spacing irradiation, while a 100 {mu}m spacing irradiation tripled this median (67 days) but damaged normal tissue. the impact of the device dividing synchrotron beam into micro-beams, named multi sit collimator, was also demonstrated. combination of drugs with M.R.T. irradiation was tested. promising results (median survival time: 40 days and 30% of long term survivors) were obtained with an intratumoral injection of gadolinium coupled with a crossing M.R.T. irradiation at 460 Gy. Moreover, earlier M.R.T. irradiation (tumor at D10) quadrupled the median survival time (79 days) with 30% of long term survivors. A new imaging device to target the tumor before irradiation and an adapted collimator will increase the M.R.T. results. As the differences existing between tumoral models used in M.R.T. (9L models) and in S.S.R.T. (F98 models) are major, M.R.T./S.S.R.T. comparative experiments  More>>
Authors:
Publication Date:
Dec 15, 2007
Product Type:
Thesis/Dissertation
Report Number:
FRNC-TH-7642
Resource Relation:
Other Information: TH: These modeles, methodes et algorithmes en biologie, sante et environnement; Also available from Bibliotheque Universitaire de Sciences de Grenoble, 430 avenue de la Bibliotheque BP66 Domaine Universitaire, 38402 - Saint-Martin d'Heres cedex (France)
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BRAIN; GADOLINIUM; IRRADIATION; NUCLEAR MEDICINE; RADIATION DOSES; RATS; SURVIVAL TIME; SYNCHROTRON RADIATION
OSTI ID:
21195092
Research Organizations:
Grenoble-1 Univ. Joseph Fourier, 38 (France)
Country of Origin:
France
Language:
French
Other Identifying Numbers:
TRN: FR0900774067610
Availability:
Available from INIS in electronic form
Submitting Site:
FRN
Size:
321 pages
Announcement Date:
Aug 20, 2009

Citation Formats

Regnard, P. Interest of synchrotron radiation for the therapy of brain tumors: methodology and preclinical applications; Interet du rayonnement synchrotron dans la therapie des tumeurs cerebrales: methodologie et applications precliniques. France: N. p., 2007. Web.
Regnard, P. Interest of synchrotron radiation for the therapy of brain tumors: methodology and preclinical applications; Interet du rayonnement synchrotron dans la therapie des tumeurs cerebrales: methodologie et applications precliniques. France.
Regnard, P. 2007. "Interest of synchrotron radiation for the therapy of brain tumors: methodology and preclinical applications; Interet du rayonnement synchrotron dans la therapie des tumeurs cerebrales: methodologie et applications precliniques." France.
@misc{etde_21195092,
title = {Interest of synchrotron radiation for the therapy of brain tumors: methodology and preclinical applications; Interet du rayonnement synchrotron dans la therapie des tumeurs cerebrales: methodologie et applications precliniques}
author = {Regnard, P}
abstractNote = {Microbeam radiation (M.R.T.) and stereotactic synchrotron radiation therapy (S.S.R.T.) are innovative techniques currently developed at the european Synchrotron radiation facility. these techniques led to promising, but rarely reproduced, results. the use of different tumoral models for each techniques limit comparisons. M.R.T. experiments on rats bearing 9L tumors 14 days after implantation displayed a double median survival time ( from 20 to 40 days) with a 200 {mu}m spacing irradiation, while a 100 {mu}m spacing irradiation tripled this median (67 days) but damaged normal tissue. the impact of the device dividing synchrotron beam into micro-beams, named multi sit collimator, was also demonstrated. combination of drugs with M.R.T. irradiation was tested. promising results (median survival time: 40 days and 30% of long term survivors) were obtained with an intratumoral injection of gadolinium coupled with a crossing M.R.T. irradiation at 460 Gy. Moreover, earlier M.R.T. irradiation (tumor at D10) quadrupled the median survival time (79 days) with 30% of long term survivors. A new imaging device to target the tumor before irradiation and an adapted collimator will increase the M.R.T. results. As the differences existing between tumoral models used in M.R.T. (9L models) and in S.S.R.T. (F98 models) are major, M.R.T./S.S.R.T. comparative experiments were realised on these two models. Results showed that the two techniques have the same efficacy on F98 model and that the M.R.T. is more effective on 9L model. This can help to define adapted tumor type for these techniques. (author)}
place = {France}
year = {2007}
month = {Dec}
}