You need JavaScript to view this

Study of human mesenchymal stem cells plasticity into radiation injured tissues in a N.O.D./S.C.I.D. mouse model: therapeutic approach of the multiple organ dysfunction; Etude de la capacite plastique des Cellules Souches Mesenchymateuses humaines (CSM) apres irradiation du tissu receveur: approche therapeutique de l'atteinte multiorgane radio-induite

Abstract

The therapeutic potential of bone marrow-derived human mesenchymal stem cells (h.M.S.C.) has recently been brought into the spotlight of many fields of research. One possible application of the approach is the repair of injured tissues arising from side effects of radiation treatments and accidents. The first challenge in cell therapy is to assess the quality of the cell and the ability to retain their differentiation potential during the expansion process. Efficient delivery to the sites of intended action is also necessary. We addressed both questions using h.M.S.C. cultured and then infused to Non Obese Diabetes/Severe Combined Immunodeficiency (N.O.D./S.C.I.D.) mice submitted to total body irradiation. Further, we tested the impact of additional local irradiation superimposed to total body irradiation (T.B.I.), as a model of accidental irradiation. Our results showed that the h.M.S.C. used for transplant have been expanded without significant loss in their differentiation capacities. After transplantation into adult unconditioned mice, h.M.S.C. not only migrate in bone marrow but also into other tissues. Total body irradiation increased h.M.S.C. implantation in bone marrow and muscle and further led to engraftment in brain, heart, and liver. Local irradiation, in addition to T.B.I., increased both specific homing of injected cells to the injured tissues  More>>
Authors:
Publication Date:
Jan 15, 2006
Product Type:
Thesis/Dissertation
Report Number:
FRNC-TH-6896
Resource Relation:
Other Information: TH: These radiobiologie; Also available from Universite de Versailles-Saint-Quentin-en-Yvelines. Bibliotheque Buffon, 45, Av. des Etats-Unis, 78000 - Versailles (France)
Subject:
63 RADIATION, THERMAL, AND OTHER ENVIRONMENTAL POLLUTANT EFFECTS ON LIVING ORGANISMS AND BIOLOGICAL MATERIALS; ANIMAL CELLS; BIOLOGICAL RADIATION EFFECTS; DELAYED RADIATION EFFECTS; EPITHELIUM; HOMEOSTASIS; INTESTINES; IRRADIATION; RADIOINDUCTION; RADIOTHERAPY; STEM CELLS; THERAPY
OSTI ID:
21112676
Research Organizations:
Universite de Versailles Saint Quentin en Yvelines (U.V.S.Q), 78 - Versailles (France)
Country of Origin:
France
Language:
English; French
Other Identifying Numbers:
TRN: FR0800203120204
Availability:
Available from INIS in electronic form
Submitting Site:
FRN
Size:
214 pages
Announcement Date:
Dec 19, 2008

Citation Formats

Francois, S. Study of human mesenchymal stem cells plasticity into radiation injured tissues in a N.O.D./S.C.I.D. mouse model: therapeutic approach of the multiple organ dysfunction; Etude de la capacite plastique des Cellules Souches Mesenchymateuses humaines (CSM) apres irradiation du tissu receveur: approche therapeutique de l'atteinte multiorgane radio-induite. France: N. p., 2006. Web.
Francois, S. Study of human mesenchymal stem cells plasticity into radiation injured tissues in a N.O.D./S.C.I.D. mouse model: therapeutic approach of the multiple organ dysfunction; Etude de la capacite plastique des Cellules Souches Mesenchymateuses humaines (CSM) apres irradiation du tissu receveur: approche therapeutique de l'atteinte multiorgane radio-induite. France.
Francois, S. 2006. "Study of human mesenchymal stem cells plasticity into radiation injured tissues in a N.O.D./S.C.I.D. mouse model: therapeutic approach of the multiple organ dysfunction; Etude de la capacite plastique des Cellules Souches Mesenchymateuses humaines (CSM) apres irradiation du tissu receveur: approche therapeutique de l'atteinte multiorgane radio-induite." France.
@misc{etde_21112676,
title = {Study of human mesenchymal stem cells plasticity into radiation injured tissues in a N.O.D./S.C.I.D. mouse model: therapeutic approach of the multiple organ dysfunction; Etude de la capacite plastique des Cellules Souches Mesenchymateuses humaines (CSM) apres irradiation du tissu receveur: approche therapeutique de l'atteinte multiorgane radio-induite}
author = {Francois, S}
abstractNote = {The therapeutic potential of bone marrow-derived human mesenchymal stem cells (h.M.S.C.) has recently been brought into the spotlight of many fields of research. One possible application of the approach is the repair of injured tissues arising from side effects of radiation treatments and accidents. The first challenge in cell therapy is to assess the quality of the cell and the ability to retain their differentiation potential during the expansion process. Efficient delivery to the sites of intended action is also necessary. We addressed both questions using h.M.S.C. cultured and then infused to Non Obese Diabetes/Severe Combined Immunodeficiency (N.O.D./S.C.I.D.) mice submitted to total body irradiation. Further, we tested the impact of additional local irradiation superimposed to total body irradiation (T.B.I.), as a model of accidental irradiation. Our results showed that the h.M.S.C. used for transplant have been expanded without significant loss in their differentiation capacities. After transplantation into adult unconditioned mice, h.M.S.C. not only migrate in bone marrow but also into other tissues. Total body irradiation increased h.M.S.C. implantation in bone marrow and muscle and further led to engraftment in brain, heart, and liver. Local irradiation, in addition to T.B.I., increased both specific homing of injected cells to the injured tissues and to other tissues outside the local irradiation field. M.S.C. may participate to restoration of intestinal homeostasis 3 days post abdominal irradiation. This study suggests that using the potential of h.M.S.C. to home to various organs in response to tissue injuries could be a promising strategy to repair the radiation induced damages. (author)}
place = {France}
year = {2006}
month = {Jan}
}